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Packaging industry is one of the largest industries in the world and is also 

associated with many environmental concerns. To reduce the environmental impacts, 

sustainable packaging design decision has been one of the top priorities in packaging 

industries nowadays. One of the commonly used tools measuring and quantifying the 

environmental impact of a product throughout all life stages is the Life Cycle Assessment. 

Based on the result from Life Cycle Assessment, decision is supposed to be made for 

choosing the more sustainable designs from a design population. However, the decision 

making process is challenging because of the complexity of the problem. The complexity 

is incurred by the large set and multi-criteria characteristic of result from Life Cycle 

Assessment, the existence of trade-off of designs between different indicators, and the 
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uncertainty in the environmental impact indicator values. The objective of this 

dissertation is to aid the decision making process to cope with these challenges, find the 

more sustainable packaging designs alternatives, based on both deterministic 

environmental impact indicators values and environmental impact indicator values with 

uncertainty. 

To achieve the research objective, to aid the decision making process, a decision 

making framework is developed, which consist of three research components. 

Component 1 efficiently finds the non-dominated designs among a large design 

population using Ranking Based Pareto Filter Algorithm. Component 2 concerns the 

trade-offs between designs on different indicators, using Design Preference Function and 

Ranking Based Rate of Substitution Method.  Component 3 deals with the uncertainty in 

the environmental impact indicator values. When dealing with the uncertainty in the 

environmental impact indicators, the Ranking Based Pareto Selection Algorithm has been 

modified to the Probabilistic Pareto Filter Algorithm.  

 



 

 iv 

Acknowledgment 

This dissertation was accomplished with the kind help from a lot of people. First 

and foremost, I would like to express my deepest gratitude to my advisor, Professor Hae 

Chang Gea. In the years of study at Rutgers, Dr. Gea has been provided continuous 

guidance, help, support and encouragement. Dr. Gea not only has guided and influenced 

me in my academic study using his erudite knowledge, rigorous attitude and persistent 

inspirit of pursing truth, but also navigated and lightened me in my life by sharing many 

of his valuable experience, respectable values and wise life philosophy. For me, Dr. Gea 

is not only my advisor, but also a mentor of life time. I always feel lucky and honored to 

have the opportunity to work with Dr. Gea.  

I want to express my sincere appreciation to all the committee members, 

Professor Howon Lee, Professor Aaron Mazzeo and Professor Hoang Pham, for their 

valuable advice, comments and encouragement for my dissertation.  

My appreciation goes to my colleagues and friends: Dr. Po Ting Lin, Dr. Euihark 

Lee, Dr. Wei Song, Dr. Xike Zhao, Dr. Zheqi Lin, Dr. Xiaobao Liu, Dr. Jiantao Liu, Dr. 

Xiaoling Zhang, Dr. Yanfeng Li, Xiang Yang, Yi Tan, Tian Jin, Michelle Lee, and many 

of my friends whose names I cannot list all here. Their support and friendship made my 

time at Rutgers unforgettable and enjoyable.  

Most importantly, I want to thank my family. Their trust, support and 

unconditional love motivate me to pursue a better stage of myself, all the time. 



 

 v 

Dedications 

                                              

                                                 To my family. 



 

 vi 

Table of Contents 

ABSTRACT OF THE DISSERTATION ....................................................................... ii 

Acknowledgment .............................................................................................................. iv 

Dedications......................................................................................................................... v 

List of Figures ................................................................................................................. viii 

List of Tables ..................................................................................................................... x 

Chapter 1. Introduction ................................................................................................... 1 

1.1. Motivation and Objective .................................................................................................................... 1 

1.2. Literature Reviews ............................................................................................................................... 5 
1.2.1. Packaging and Packaging Sustainability ...................................................................................... 6 
1.2.2. Life Cycle Assessment ............................................................................................................... 10 
1.2.3. Decision Making Challenges for Sustainable Packaging using Life Cycle Assessment ............ 13 

Multi-Criteria Characteristic ........................................................................................................... 14 
Trade-off between Solutions ........................................................................................................... 16 
Presence of Uncertainty .................................................................................................................. 17 

1.2.4. Current Existing Methods for Multi-Criteria Decision Making Problem .................................. 19 

1.3. Research Contributions ..................................................................................................................... 21 

1.4. Overview of the Dissertation ............................................................................................................. 24 

1.5. Summary Remarks ............................................................................................................................. 25 

Chapter 2. The Pareto Optimal Solutions for Multi-Criteria Decision Making 

Problem ............................................................................................................................ 27 

2.1. Introduction ....................................................................................................................................... 27 

2.2. Multi-Criteria Decision Making Problem (MCDM) .......................................................................... 28 

2.3. Solution of Multi-Criteria Decision Making Problem: Pareto Optimum .......................................... 30 

2.4. Pareto Optimal Search Algorithm ..................................................................................................... 33 

2.5. Ranking Based Pareto Front Filter Algorithm .................................................................................. 35 

2.6. Example ............................................................................................................................................. 42 

2.7. Conclusion and Remarks ................................................................................................................... 45 

Chapter 3. Implementation of Decision Maker’s Preference ..................................... 47 

3.1. Introduction ....................................................................................................................................... 47 

3.2. Design Preference Function .............................................................................................................. 48 

3.3. Ranking Based Rate of Substitution ................................................................................................... 51 
3.3.1. Marginal Rate of Substitution .................................................................................................... 52 
3.3.2. Ranking Based Rate of Substitution .......................................................................................... 54 



 

 vii 

3.4. Example ............................................................................................................................................. 59 
3.4.1. Design Preference Function ....................................................................................................... 60 
3.4.2. Ranking Based Rate of Substitution .......................................................................................... 61 

3.5. Conclusion and Remarks ................................................................................................................... 63 

Chapter 4. Non-Deterministic Pareto Front ................................................................. 64 

4.1. Uncertainty in the Environmental Impact Indicators ........................................................................ 64 

4.2. Decision Making with Uncertainty in Environmental Impact indicators .......................................... 66 

4.3. Probabilistic Dominance and Probabilistic Pareto Optimum ........................................................... 68 

4.4. Calculation of the Probabilistic Dominance Factor ......................................................................... 71 

4.5. Probabilistic Non-Dominance and Pareto Optima ........................................................................... 74 

4.6. Example ............................................................................................................................................. 77 

4.7. Conclusion and Remarks ................................................................................................................... 79 

Chapter 5. Sustainable Packaging Design Selection Decision Case Studies .............. 80 

5.1. Deterministic Case Study-Soft Tube .................................................................................................. 81 
5.1.1. Designs Inputs............................................................................................................................ 81 
5.1.2. Decision Making for Sustainable Packaging ............................................................................. 85 

5.2. Non-deterministic Case Study -Milk Packaging ................................................................................ 89 
5.2.1. Design Inputs ............................................................................................................................. 89 
5.2.2. Decision Making for Sustainable Packaging ............................................................................. 92 

5.3. Conclusion and Remarks ................................................................................................................... 96 

Chapter 6. Conclusion and Future Work ..................................................................... 97 

6.1. Summary ............................................................................................................................................ 97 

6.2. Future Work ....................................................................................................................................... 98 

Appendix: Cumulative Distribution Function Value for Standard Normal  

Distribution .................................................................................................................... 100 

References ...................................................................................................................... 103 

 



 

 viii 

List of Figures 

Figure 1.1. Three Pillars of Sustainability (Source: http://www.thwink.org) .................................................. 2 

Figure 1.2. Decision Making Framework for Sustainable Packaging Design ................................................. 5 

Figure 1.3. Example of Different Stages for Milk Packaging ......................................................................... 6 

Figure 1.4. Packaging Examples for Different Products ................................................................................. 9 

Figure 1.5. Illustration of the Life Cycle for a Packaging Product ................................................................ 10 

Figure 1.6. Multi-Criteria Decision Making Example ................................................................................... 16 

Figure 1.7. Pareto Front of the Multi-Criteria Decision Making Problem .................................................... 17 

Figure 1.8. Uncertainty in the Environmental Impact Indicator of Water Depletion which is assumed to 

be normally distributed .............................................................................................................. 18 

Figure 1.9. Research Component of Decision Making Framework for Sustainable Packaging Design ........ 24 

Figure 2.1. Mapping from Design Alternative Space to Design Attribute Space .......................................... 30 

Figure 2.2. Illustration of Dominance Relation between Designs ................................................................. 31 

Figure 2.3. Pareto Front for a Two Dimensional Case .................................................................................. 32 

Figure 2.4. Flow Diagram of Exhausting Search Pareto Filter [40] .............................................................. 34 

Figure 2.5. Illustration 2D Ranking Based Pareto Selection Method ............................................................ 38 

Figure 2.6.Illustration 2D Ranking Based Pareto Selection Method ............................................................. 38 

Figure 2.7. Pareto Front of Obtained Using Ranking Based Pareto Filter Algorithm ................................... 39 

Figure 2.8. Flow Chart for Ranking Based Pareto Filter Algorithm ............................................................. 41 

Figure 2.9. Radar Chart of the Environmental Impact Indicators of All Design Alternatives ...................... 42 

Figure 2.10. Ranking of Whole Set of Design Alternatives with respect to f1 .............................................. 43 

Figure 2.11. Update the Pareto Optimal Solutions ........................................................................................ 44 

Figure 2.12. Final Pareto Optimal Solutions ................................................................................................. 45 

Figure 3.1. Design Preference Function example 1 ....................................................................................... 49 

Figure 3.2. Design Preference Function Example 2 ...................................................................................... 50 

Figure 3.3. Environmental Impact Indicator Values Converted to Design Preference Value ....................... 51 

Figure 3.4. Redraw of General Case of Marginal Rate of Substitution. [41] ................................................ 53 

Figure 3.5. Criteria of Rate of Substitution ................................................................................................... 54 

Figure 3.6. Example of Selecting Designs using Ranking Based Rate of Substitution ................................. 57 

Figure 3.7. Whole Set of Pareto Optimal Designs......................................................................................... 60 

Figure 3.8. Design Preference Function ........................................................................................................ 60 

Figure 3.9. Preference Value for the Whole Set of Pareto Optimal Designs ................................................. 61 

Figure 4.1. Normal Distribution of Water Depletion of Two Different Designs ........................................... 67 

Figure 4.2. Dominance Relation in Deterministic Case (Left), and Probabilistic Dominance Relation 

(Right) ........................................................................................................................................ 70 



 

 ix 

Figure 4.3. Conceptual illustration for PPS: Deterministic Pareto Front (Left), and Probabilistic Pareto 

Front (Right) .............................................................................................................................. 71 

Figure 4.4. Distributions of  Two designs on  One Environmental Impact Indicator .................................... 73 

Figure 4.5. Flow Chart for Probabilistic Pareto Selection Algorithm ........................................................... 76 

Figure 4.6. Whole Set of Design Alternatives with Uncertainty ................................................................... 77 

Figure 4.7. Whole Set of Design Alternatives with Uncertainty after Ranking ............................................ 78 

Figure 4.8. Whole Set of Pareto Design Alternatives .................................................................................... 79 

Figure 5.1. Design Inputs for Soft Tube Packaging ...................................................................................... 84 

Figure 5.2. Radar Chart of Environmental Impact Indicator of All Designs ................................................. 85 

Figure 5.3. Design Preference Function for Soft Tube .................................................................................. 86 

Figure 5.4. Pareto Optimal Designs of The Soft Tube .................................................................................. 87 

Figure 5.5. Radar Chart of all Pareto Optimal Designs after Design Preference Function ........................... 88 

Figure 5.6.Design Inputs for Milk Packaging ............................................................................................... 92 

Figure 5.7. Radar Chart for Environmental Impact Indicators for All Milk Packaging Designs with 

Uncertainty................................................................................................................................. 93 

Figure 5.8. Design Preference Function for Milk Packaging ........................................................................ 94 

Figure 5.9. Radar Plot for all Pareto Selections for Sustainable Milk Packaging Selections ........................ 95 

 



 

 x 

List of Tables 

Table 3.1. Solutions Obtained by Ranking Based Rate of Substitution Considering All Environmental 

Impact Indicators ....................................................................................................................... 58 

Table 3.2. Solutions obtained using Ranking Based Rate of Substitution after Reducing Indicators ........... 59 

Table 3.3. Final Selected Optimal Designs after Design Preference Function and Ranking Based Rate of 

Substitution ................................................................................................................................ 62 

Table 3.4. Final Selected Optimal Designs after Design Preference Function and Ranking Based Rate of 

Substitution ................................................................................................................................ 62 

Table 5.1. List of Optimal Selection for Sustainable Milk Packaging Designs Considering All Decision 

Attributes ................................................................................................................................... 88 

Table 5.2. List of Final Selection for Sustainable Milk Packaging Designs after Reducing f3 and f6 ........... 89 

Table 5.3. List of All Pareto Selections for Sustainable Milk Packaging Designs ........................................ 95 

Table 5.4. List of Final Selection for Sustainable Milk Packaging Designs after Reducing f2 and f6 ........... 96 



 

 

1 

Chapter 1. 

Introduction 

This dissertation presents a decision making framework for selecting the 

sustainable packaging designs using Life Cycle Assessment. The Life Cycle Assessment 

for the packaging designs is firstly performed in order to evaluate and quantify the 

environmental impact. The sustainable packaging design decision problem was 

formulated as a Multi-Criteria Decision Making problem. Then the two phase decision 

making framework was proposed to select the more sustainable packaging designs, by 

coping with the multi-dimensional feature of the environmental impact indicators from 

Life Cycle Assessment, trade-off among design alternatives between different design 

attributes, and uncertainty in the environmental impact indicators. Case studies are shown 

to demonstrate the function the decision making framework.  

Chapter 1 provides an introduction and background for the dissertation. In this 

chapter, session 1.1 presents the motivation, the objective and the scope of the research. 

Session 1.2 contains the literature reviews in the related aspects of the research. The 

research contributions are illustrated in session 1.3 while the overview of the dissertation 

is shown in session 1.4. Session 1.5 summarizes this chapter. 

1.1.  Motivation and Objective 

In 1987, the United Nations World Commission on Environment and 

Development in its report “Our Common Future” defines “sustainability”: “Sustainable 
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Development is development that meets the needs of the present without compromising 

the ability of future generations to meet their own needs [1]”, pointing out that current 

activities should not deprives the future generations of the ability to maintain and endure. 

Since then, sustainability has drawn a lot of attention from many fields of the world, such 

as government [2][3] and non-governmental organizations [4][5][6][7], research 

institutions [8][9][10][11][12] and industries [13][14][15]. Later, the 2005 World Summit 

on Social Development identified sustainable development goals, such as economic 

development, social development and environmental protection [16], which now are 

often referred as three components of sustainability, as shown in Figure 1.1.  

 
Figure 1.1. Three Pillars of Sustainability (Source: http://www.thwink.org) 

A lot of efforts have been made in different fields to foster the sustainable 

development, including the packaging industry [17][18][19][20][21]. Packaging brings a 

lot of convenience to our daily life today, so the high demand makes the packaging 

industry one of the biggest industries in the world [22]. At the same time, packaging is 
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associated with many sustainability issues, such as atmosphere, land use, resource 

consumption, energy, water, waste and so on [23]. In order to reduce the negative impact, 

packaging industry is making efforts to enhance the sustainability performance of 

packaging. Sustainable packaging development involves research multiple aspects, such 

as the development of new material [24][25][26], landfill waste management [27], 

recycling method [28], and packaging design decisions [20][21]. In this dissertation, the 

research is focused on the packaging design selection decision.  

In order to find the more sustainable designs, a packaging design options set 

needs to be created，from which the more sustainable design will be selected. All the 

packaging design alternatives need to be analyzed for their environmental impact, so that 

decision for more sustainable design could be made. Life Cycle Assessment (LCA) is the 

most used method to conduct the comprehensive evaluation of the environmental impact 

throughout life cycle, such as climate change, human health, resource consumption, 

energy, water depletion, ecosystem and so on [23][29][30], thus has been broadly 

adopted for sustainable packaging design decisions [30][31]. In this dissertation, the Life 

Cycle Assessment will be conducted for all the designs, and design selection decision 

will be made that which designs are more sustainable based on the LCA results. A 

systematic decision making framework is desired to choose the most sustainable 

packaging from a set of packaging design alternatives. This decision making framework 

should be able to resolve the following questions:  

 How to differentiate the “good designs” and “bad designs” from the many 

design alternatives? 



 

 

4 

 How to implement the decision maker’s preference when choosing the 

designs? 

 How to deal with uncertainty that exists in the environmental impact 

indicators when choosing the “best design”? 

 It is challenging to answer the above questions, because of the following reasons: 

First, results from Life Cycle Assessment for packaging designs are a large set of multi-

dimensional environmental impact indicators data, and this makes the problem a Multi-

Criteria Decision Making Problem. As a result, there may not be one single best solution.  

Secondly, trade-off exists among designs, and different design options may excel on 

different environmental impact indicators that result in conflicting design solutions. As a 

result, design decision will highly depend on decision maker’s preference. The preference 

is resulted from locations, environmental regulations and so on. How to implement 

decision maker’s inclination into the selection process needs to be solved. Thirdly, the 

existence of uncertainty cannot be ignored. The presentence of uncertainty makes the 

decision making process more complicated. As a result, a systematic based decision 

making method is needed to aid the design selection. 

To address the design decision challenges, a ranking based decision making 

framework using LCA for sustainable design is proposed, as shown in Figure 1.2. Pareto 

Optima concept is adopted first to find the possible proper design options based on the 

Life Cycle Assessment result. In order to find the Pareto Optimal solutions efficiently, 

Ranking Based Pareto Filter algorithm (RBPF) was proposed to find the Pareto Optima in 

the deterministic case, and Probabilistic Pareto Filter algorithm (PPF) was proposed for 
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the non-deterministic case. Then Design Preference Function (DPF) and Ranking Based 

Rate of Substitution (RBRS) are proposed to implement decision maker’s preference, in 

order to find the most preferred packaging designs among all the Pareto Optimal designs.  

 
 

(a) Deterministic Decision Making Framework for Sustainable Packaging  

 

  
 

(b) Non-Deterministic Decision Making Framework for Sustainable Packaging 

 

Figure 1.2. Decision Making Framework for Sustainable Packaging Design  

1.2. Literature Reviews 

In this session, the key research components are reviewed. First, the packaging    

system and packaging sustainability issues are reviewed. Second, Life Cycle Assessment 

is then introduced as the sustainability evaluation methodology. Finally, the challenges of 

sustainable packaging design selection as a Multi-Criteria Decision Making Problem are 

discussed. 



 

 

6 

1.2.1. Packaging and Packaging Sustainability 

Packaging is the coordinated complex product delivery system preparing goods 

for transport, distribution, storage, retailing and use [17][32]. Usually, a packaging 

system includes several different levels, such as primary package, secondary package, 

and tertiary packaging [22]. Primary package is the first wrap or containment of the 

product; Secondary package holds one or several primary packages; Tertiary package, 

also refereed as distribution package, or shipper, groups packages for manual handling 

and protects the product during shipping [22]. Some examples for the three stages of 

packaging are shown in Figure 1.3. 

 

 
 

Figure 1.3. Example of Different Stages for Milk Packaging  

 

 

 Almost every product needs a packaging, because of the important role it plays. 

Packaging offers significant functions for a product, such as containment, protection, 

preservation, transportation, information and promotion [22]. The containing function 

have to successfully meet the objective of containing a product, considering the product’s 
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physical form such as mobile fluid, viscous fluid and solid/fluid, as well as product’s 

nature such as flammable, fragile and abrasive [22]. The protect function provides the 

prevention of physical damage for a product, while preserve stops or inhibits chemical 

and biological changes [22]. The transport function enables the effective movement of 

goods from the point of production to the point to the point of final consumption [22]. 

Another function, inform and sell, is very important in today’s economic scenarios, in 

which intensive competition exist between products, thus help customer to understand the 

specification of the product, hence make the best purchase decision [22]. As a result, the 

high demand on packaging makes the industry one of the largest in the world, since 

packaging plays important roles for a large range of industries as shown in Figure 1.4.  

 

 
 

(a) Pharmaceutical Packaging (Source: http://www.pharmapackagingsolutions.com)  
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(b) Food Packaging (Source: http://www.brown-machine.com) 

 
 

(c) Cosmetics Packaging (Source: http://blog.mjacobandsons.com) 
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(d) Electronic Products Packaging (Source: http://www.theguardian.com) 

 

Figure 1.4. Packaging Examples for Different Products 

However, packaging industry is associated with many environmental concerns. 

For example, the materials that packaging needs cost a lot of non-renewable natural 

resources; packaging has been considered as a main waste creator; the manufacturing and 

transport process cost significant energy and so on [23][33]. 

 As a result, the packaging industry has highly regarded the sustainable 

development of packaging. There are many perspectives of sustainable packaging 

development approaches, such as the development of new recyclable and biodegradable 

material, landfill waste management, efficient recycling method, packaging design 

selection decision [24][25][26][27][28]. Among all of the perspectives, Packaging design 

selection decision has received high attention. In this dissertation, packaging design 
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selection decision refers to the process of generating a set of design options, then 

choosing the more sustainable alternatives based on the environmental impact indicators.  

1.2.2. Life Cycle Assessment 

In order to evaluate the environmental impact of packaging designs, Life Cycle 

Assessment has been adopted. Life Cycle Assessment is the detailed analysis to assess 

the environmental impacts associated with all the stages of a product’s life from raw 

materials extraction through manufacturing, distribution, use, repair and maintenance, 

and disposal or recycling [34][35][36][37][38][39]. Figure 1.5 shows a typical the life 

cycle of a packaging, from the extraction of raw material, materials processing, 

manufacturing, product packaging, transportation, on shelf, delivery to consumer, use, to 

after disposal activities (recycle, reuse, recover or waste management). 

 
Figure 1.5. Illustration of the Life Cycle for a Packaging Product 
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Life Cycle Assessment provides a comprehensive approach of investigating the 

potential environmental impacts of a product [34]. It becomes an important method in 

sustainability management and decision making, because it has expanded the scope of 

environmental impact analysis for product to include all burdens and impact in the whole 

life cycle a product generates, not only focusing the emissions and wastes created only by 

any of one step of the whole life cycle [40][41]. The result from Life Cycle Assessment 

can be used to compare design alternatives, and select the most sustainable design 

alternatives from a generated design set [40].  Thus it can assist in various decision-

making activities in industrial, governmental, and non-governmental organizations (such 

as strategic planning, setting policies, and making choices) [38].  

Recently, Life Cycle Assessment has been widely used in packaging design field 

as an effective tool to quantify and measure the environmental impact of design 

alternatives [23] [36][38], from where the environmental impact data could be generated, 

and used as the foundation for making sustainable packaging design decisions.  

In this dissertation, the Life Cycle Assessment is performed by utilizing the Life 

Cycle Assessment packaging database Software. By inputting the design information, 

such as materials selection, manufacturing process option, and transportation manner, the 

environmental impact indicators are generated for each design. Those environmental 

impact indicators are aimed to provide complete information of a packaging design 

regarding sustainability. For the Life Cycle Assessment Software that is utilized in this 

research dissertation (PackageSmart from Earthshift [29]), the Impact Assessment 

categories are descripted below: 
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Human Health 

The damage analysis for “human health” links six impact categories (Climate 

change, Human toxicity, Photochemical oxidant formation, Particulate matter formation, 

Ionizing radiation and Ozone depletion) to the DALYs (Disability Adjusted Life Years, 

the sum of years of potential life lost due to premature mortality and the years of 

productive life lost due to disability) [29]. 

Ecosystems 

Climate change, terrestrial acidification, freshwater eutrophication, Eco toxicity, 

agricultural land occupation, urban land occupation, Natural land transformation are the 

impact categories that apply to ecosystem [29]. The damage to ecosystems is measured 

by considering the species that disappear in a given time period [29]. 

Resources 

Resources take Fossil depletion and Metal depletion into consideration [29]. The 

quantification of the damage is based on the marginal increase of cost due to extraction of 

resources, measured as dollars per kilogram [29]. 

Water Depletion 

Water depletion category quantifies the total water consumed by a process/ 

product. It is measured as the volume of water consumed (m3) [29]. 

Climate Change 

There are several gaseous emissions that cause global warming, such as carbon 

dioxide, methane, nitrous oxides and fluorinated gases [29]. This category combines the 

effect of differing greenhouse gases remain in the atmosphere and their relative 

effectiveness in absorbing outgoing infrared radiation [29]. The concentration of 
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greenhouse gases is measured as kg equivalents of CO2, i.e. the relative global warming 

potential of a gas as compared to CO2, and the unit of measure for this category is kg CO2 

equivalents [29]. 

Cumulative Energy Demand 

Cumulative energy demand measures the cumulative energy resources required 

(total MJs) throughout the life cycle of a package, including energy non-renewable fossil, 

non-renewable nuclear, non-renewable biomass, renewable biomass, renewable wind, 

solar, geothermal and renewable water [29]. 

When making the decision of more sustainable packaging design options in this 

dissertation, all of the six mentioned environmental impact indicators are desired to be 

minimized. 

1.2.3. Decision Making Challenges for Sustainable Packaging using 

Life Cycle Assessment 

After Life Cycle Assessment was conducted for all the designs, decision need to 

be made that which designs are more sustainable based on Life Cycle Assessment results. 

However, the decision making process of chooses the optimal design from many design 

alternatives that serve the same function is challenging, because of the following reasons: 

First, Life Cycle Assessment results in a large set of multi-dimensional conflicting 

environmental impact indicators data, therefore a single best solution may not exist. 

Secondly, trade-off exists among designs between different indicators; different design 

options may excel on different indicators that result in conflicting design solutions. As a 
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result, design selection decision will highly depend on decision maker’s preference, 

which results from locations, environmental regulations and so on. Finally, the evaluation 

of environmental impact indicator often involves uncertainty, which makes the selection 

more complicated. 

Multi-Criteria Characteristic 

The environmental impact indicators obtained from the Life Cycle Assessment 

are multi-dimensional and conflicting data. This makes the sustainable packaging 

selection process a Multi-Criteria Decision Making problem [42][43][44][45][46]. A 

Multi-Criteria Decision Making problem refers to a decision making problem that has 

multiple, usually conflicting criteria, which are the environmental impact indicators in 

this dissertation. In general, there are two different types of Multi-Criteria Decision 

Making Problem due to the different problems settings: in the first type, there are a finite 

number of alternative solutions and in the second type there are an infinite number of 

solutions. The infinite solutions come from the continuous range of design variables, 

while when the design inputs are discreet, only finite number of solutions will be 

generated [47][48][49]. In this research dissertation, because the design variables are 

materials selection, manufacturing process selections, and transportation manners, the 

focus is the Multi-Criteria Decision Making problem with a finite number of alternatives. 

To better illustrate the challenge, a simple example of Multi-Criteria Decision 

Making problem is considered here, as shown in Figure 1.6. There are four design 

options that are analyzed by the Life Cycle Assessment tool whose results include six 

environmental impact indicators, f1 to f6 , as climate change, energy demand, ecosystem, 
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human health, resources, and water depletion, as the radar chart plotted. In our study, the 

smaller value of each indicator represents a better performance towards sustainability. 

From the radar chart, comparing the four designs’ environmental impact indicators, it is 

obvious that options D4 has a larger value than D1, D2 and D3 on every indicator, so will 

not be considered as a good design. However, decision of determining which is better 

among D1, D2 and D3 is very difficult, because each of them have trade-off. D1 has 

good performance on all criteria but f1; D2 is better than D1 on f1 but worse on all other 

criteria, while it presents equal or better performance on f1, f2, f4, f5 than D3; D3 is better 

than D1 only on f1, and better than D2 on f3 and f6. In such a situation, no single optimal 

solution exists.    

Therefore, instead of searching for the one best design, finding all “good 

packaging options” is obviously necessary. These “good designs’ refers to Pareto 

Optimal design in this dissertation, which will be introduced in the next chapter. In the 

example showed above, all D1, D2 and D3 are called Pareto Optimal designs for the 

original design alternatives set of four. The whole subset set that containing all Pareto 

Optimal designs of D1, D2 and D3, is called Pareto Front. In reality, the design options 

set could be much larger; as a result, it is important to have an efficient algorithm to 

search for the Pareto Optimal designs since one package could have a variety of design 

options. 
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Figure 1.6. Multi-Criteria Decision Making Example 

Trade-off between Solutions 

After the Pareto Front is found from the original design set, the selection of the 

best packaging options among the Pareto Front become necessary since there is no one 

single best design exists, and the “best solution” varies according to different decision 

maker’s inclination. In general, designers make decisions depending on their preference 

from Life Cycle Assessment results. For example, in Figure 1.7, D1, D2, and D3 are all 

Pareto Optimal designs, and comparison for them will depend on the inclination of the 

decision maker. If f1 is a very important indicator, then D1 should not be considered as a 

good candidate, since it has a significant bad performance on f1; but D2 should be 

considered as a good choice, as well as D3. Similarly, D1 and D2 should be selected if 

the designer has a higher priority about f2.  
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Figure 1.7. Pareto Front of the Multi-Criteria Decision Making Problem 

The implementation of decision maker’s preference is necessary and challenging. 

Also, the large number of Pareto Optimal Designs also makes this process complicated to 

handle. Therefore, it is critical to have a systematic way to incorporate the designer’s 

preference into the decision making process to select the most sustainable packaging 

designs. 

Presence of Uncertainty  

The environmental impact indicator value from Life Cycle Assessment may not 

be deterministic. Instead, the environmental impact indicator values may involve 

uncertainties due to many reasons. For example, the LCA data has uncertainty because of 

lack of data collection or unrepresentative data. Moreover, the design model itself also 

has uncertainty because of manufacturing process, or some other factors. Additionally 

measurement errors can also affect to the uncertainty of LCA results. The presence of 
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uncertainty may not be ignored. And design selection under uncertainty makes decision 

process more complicated. 

To better illustrate this challenge, Figure 1.8 shows an example of the presence of 

the uncertainty in one environmental impact indicator. Assume that the water depletion 

follows normal distribution, and two designs’ (D1 and D2) water depletion is plotted in 

Figure 1.8. The mean value (µD1) of ‘design D1 shows lower water depletion tan mean 

value (µD2) of design D2. However, from the distribution curve, there is a possibility that 

the water depletion of D2 design can be lower than design D1. Therefore, depending on 

the criteria of probability from the decision maker, D2 design can be also selected which 

in a deterministic comparison cannot be the case. 

 

Figure 1.8. Uncertainty in the Environmental Impact Indicator of Water Depletion which is assumed 

to be normally distributed 
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1.2.4. Current Existing Methods for Multi-Criteria Decision Making 

Problem 

Research for Multi-Criteria Decision Making problem could be back to 1950’s, 

and has been continuously growing since then. There are different types of approaches 

for solving a Multi-Criteria Decision Making problem, which are briefly reviewed here 

[42][45][47][50][51][52][53][54][55][56]. Mainly, there are two concepts of finding 

optimal solutions for a Multi-Criteria Decision Making Problem. First type of approach 

converts the multi-dimensional data into single-dimensional data, and then creates an 

order based on the single dimensional data. So the decision maker could choose “the best 

solution” or choose several solutions from top order to bottom order.  The other type of 

approach finds all the good solutions, which are refereed as Pareto Optimal solutions, and 

then do analysis about the good solutions, thus further find the best solutions. 

In the first category, there are different families of methods such as the weighting 

methods, similarity to ideal point method, the outranking Method, utility theory. The 

weighting method includes Weighted Sum Method and Weighted Product Method [51]. 

In the case of minimizing all objectives, the Weighted Sum Method converts the multiple 

objectives into one objective by assign a set of weights to each of the objective, and finds 

one best solution that has the smallest weighted sum of all objective values.  Similarly, 

the Weighted Product Method finds the smallest weighted product of all objective values 

[51]. However, there are several drawbacks of the weighting methods: First, the 

weighting methods are only applicable when all the objectives are expressed in exactly 

the same unit; however, the six environmental impact indicators are in different unit and 

scale. Secondly, the weighting method finds only one solution, however, when choosing 
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the sustainable packaging designs, it is important to provide a small set of designs, in the 

case that more decision factors will be considered that are beyond the Life Cycle 

Assessment indicators. Thirdly, an inherent problem of weighting methods is that the 

weighting is difficult to decide among the objectives. 

The similarity to ideal point method , which includes The Technique for Order 

Preference by Similarity to Ideal Solutions (TOPSIS) and Compromise Programming (CP) 

[51][54]. The methods of finding the similarity to ideal point also will fail when the 

objectives are not in the same scale, because the larger scaled objectives will weaken the 

effects of smaller scaled objectives, so is not a good options for the sustainable packaging 

decision making problem, due to the significant of scale different between the 

environmental impact indicators. 

The outranking method, which includes The Preference Ranking Organization 

Method for Enrichment Evaluation method (PROMETHEE) and The Elimination and 

Choice Translating Reality method (ELECTRE) [51][54]. Both of PROMETHEE and 

ELECTRE perform pair-wise comparison of alternatives in order to rank them with 

respect to a number of criteria.  

The utility theory includes mainly Multi-Attribute Utility Theory (MAUT). This 

method could solve the problem that Weighted Sum Method could not resolve that 

different scale of decision attributes could not add up, by convert the real decision 

attribute values into the utility value, then the total utility will be summed up, and all 

designs could be ordered. But the weight is usually very hard to define for all of  the 

design attributes [51][54].  
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All methods in the first category try to order and rank the design from the best to 

the worst, according to specific index the method created. However, those designs that 

are dominated by the better designs have not been eliminated, and the ranking may vary 

according to different methods and difference decision parameters, also the order and 

ranking will fail to present the trade-offs between the solutions, as a result, decision made 

based on the order may not be reliable. 

In the second category, the Pareto Optimal solutions are the solutions that cannot 

be improved on any attribute without sacrificing on other attribute. This method could 

help the decision maker to avoid choosing any design that still can be improved by 

another solution.  

As a result, a systematic decision making process need to be created to first get rid 

of the “bad solutions”, and then analyze the advantage and disadvantage between 

solutions over the design attributes. To achieve this goal, this dissertation constructed 

such a decision making framework, and the detailed research contribution is introduced 

in the next session. 

1.3. Research Contributions 

The principal goal of this dissertation is the development of decision making 

framework for sustainable packaging design selection, based on the environmental 

impact indicators produced from the Life Cycle Assessment of a design alternatives set. 

Selecting the most sustainable designs from a design alternatives set is achievable by 

understanding how to differentiate good designs and bad designs, how to implement the 

decision maker’s preference, and how to cope with the uncertainty. 
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One key contribution of this dissertation is that it formulates the sustainable 

packaging design problem as a Multi-Criteria Decision Making Problem, develops a 

decision making framework, integrating Pareto Optima Concept, Design Preference 

Function, Ranking Based Rate of Substitution, Probabilistic Pareto Filter Algorithm on 

the decision making for sustainable design, provides a foundation for different stages of 

decision making process. Even there are existing work related to Multi-Criteria Decision 

Making Problem, not any of them could solve the entire problem for the Sustainable 

Packaging design selection problem, because the design have to satisfy many decision 

factors, such as regulation, decision maker’s preference due to local situation and so on. 

So according to the practical need of packaging design selection scenario, the two phases 

decision making framework was formulated. 

Inside of this decision making framework, one contribution of the research is the 

Ranking Based Pareto Filter algorithm, which employees the ranking concept to improve 

efficiency of Pareto Front filter process, to find the “good designs” among the design 

options set. 

Another contribution in the decision making framework is the Design Preference 

Function and Ranking Based Rate of Substitution, which incorporate the decision 

maker’s preference, to find the most preferred designs from the Pareto Optimal designs. 

By implementing decision maker’s preference using these two methods, several preferred 

sustainable design can be obtained, giving the flexibility to the decision maker to finalize 

the choice according to some decision factors beyond the Life Cycle Assessment, such as 

resource accessibility, and avoided to generate only one solution which many Multi-

Criteria Optimization methods do. 
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Finally, the development of Probabilistic Pareto Optima Filter algorithm helps to 

facilitate the design decision when uncertainty exists.  

Figure 1.9 schemes the systematic strategy to aid the decision making process to 

find the most sustainable packaging designs using the proposed decision making 

framework, in both the deterministic and non-deterministic scenario. 

At the beginning, a set of design alternatives are necessary to be generated. Then 

the Life Cycle Assessment is performed for all the designs, and the environmental 

impacts are obtained. The environmental impact indicators may be deterministic or non-

deterministic. In the deterministic case, the Ranking Based Pareto Selection Method 

eliminates the “bad design”, and Design Preference Function and Ranking Based Rate of 

Substitution choose the decision maker’s preferred sustainable designs. In the non-

deterministic case, the uncertainty was addressed in the first phrase of the decision 

making framework. Probabilistic Pareto Filter algorithm was proposed to find the “good 

designs”, Ranking Based Rate of Substitution were utilized to deal with the 

environmental impact indicators variation, thus find the most decision maker preferred 

designs.  
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Figure 1.9. Research Component of Decision Making Framework for Sustainable Packaging Design 

1.4. Overview of the Dissertation 

The reminder the dissertation is organized as below:  

In Chapter 2, the first phase of the decision making framework- Pareto Optima is 

discussed. Ranking Based Pareto Filter algorithm was proposed to improve the efficiency 
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of Pareto Front filter algorithm, as well as to improve the flexibly of choose only part of 

the Pareto Optima. Chapter 3 presents how to implement decision maker’s preference, to 

find the “best design’.  Design Preference Function and the Ranking Based Rate of 

Substitution method were proposed to achieve this goal. In Chapter 4, probabilistic Pareto 

Filter algorithm is proposed based on the Ranking Based Pareto Selection method, to 

address the uncertainty in the Pareto Optima search process. In Chapter 5, the proposed 

decision making framework is utilized to solve the Multi-Criteria Decision Making 

problem for sustainable packaging selection, to illustrate the effectiveness of the whole 

decision making framework by showing two case studies, including deterministic case 

and non-deterministic case. In Chapter 6, a conclusion is provided for this study and a 

future research plan is proposed. 

1.5. Summary Remarks 

 

This chapter has provided an introduction of the dissertation on decision making 

framework for sustainable design using life cycle assessment. The motivation and 

research background were first introduced. Then the challenges for the sustainable 

packaging design decision problem were discussed. There are mainly three challenges. 

First, LCA results are a large set of multi-dimensional environmental impact indicators 

data, there may not exist a single best solution. Secondly, trade-off exists among designs 

between different indicators, and each non-dominated design has its advantage and 

disadvantage. As a result, decision will highly depend on decision maker’s preference. 
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The preference results from locations, environmental regulations and so on. Finally, the 

uncertainty existence makes the selection more complicated.  

In the next chapter, the Multi-Criteria Decision Making formulation  and Pareto 

Optimal solutions will be introduced, and the first research component- Ranking Based 

Pareto Selection method will be discussed, to address the first challenge-how to 

differentiate the good designs and bad designs efficiently. 
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Chapter 2. 

The Pareto Optimal Solutions for Multi-Criteria 

Decision Making Problem 

2.1. Introduction 

The selection of sustainable packaging design needs to be based on the 

environmental impact indicators, which can be acquired by performing Life Cycle 

Assessment. The multi-dimensional, often conflicting data from Life Cycle Assessment 

make the sustainable packaging design decision problem a Multi-Criteria Decision 

Making problem. As a result, among many design alternatives, “one single best solution” 

may not exist. Instead, the search for all “good designs” is of significant importance. This 

refers to the Pareto Optimal solutions, or non-dominated solutions. When the design 

alternatives population is big, an efficient algorithm to find the Pareto Optimal solutions 

is imperative. This chapter is directed at the first challenge of the decision making 

problem for sustainable packaging designs, which is how to differentiate the “good 

designs” and the “bad designs”. The overview of Multi-Criteria Decision Making 

Problem, definition and terminology, and current existing method of Pareto Front search 

algorithm are discussed. Then the Ranking Based Pareto Filter algorithm is proposed, 

with an example explaining the process of the method.  
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2.2. Multi-Criteria Decision Making Problem (MCDM) 

As mentioned in the introduction, because the results from Life Cycle Assessment 

are multi-dimensional characteristic of the environmental impact indicators, the design 

selection process is a Multi-Criteria Decision Making Problem, and we are trying to 

choose the most sustainable designs from a set of design alternatives, each with multiple 

environmental impact indicators. Here some terminologies are introduced for Multi-

Criteria Decision Making Problem, which will be used in this dissertation: 

The Multi-Criteria Decision Making problem of N objectives in the sustainable 

packaging design selection context can be formulated as follows in Equation (2.1): 

i
X

l

q

min f (X) i 1,..., N

s.t. g (X) 0 l 1,...,L

h (X) 0 q 1,...,Q (2.1)



 

 

                         

Where fi is the ith objective function, X=(x1,…xI) is the vector of discrete design variables, 

gl is the lth inequality constraint function, and hq  is the qth equality constraint function.  

Design Variable Space 

The I-dimensional vector X is the components of the discrete design variable. In 

the sustainable packaging design selection context, the design variable includes the 

materials selection, manufacturing process selection, and transportation manner.  

Design Alternatives Space 
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The combination of design variables, forms a design alternative. In other words, a 

vector of design variables can represent a design alternative. For example, a water bottle 

was made from PET, manufactured by injection molding, and transported by diesel truck 

is a design alternative, and the material-PET, manufacturing method -injection molding, 

and the transportation manner –diesel truck are the design variables. Any feasible change 

of the design variables will form a new design alternative. All of the design alternatives 

form the design alternatives space. 

Design Attribute (Objective) Space 

The N-dimensional space whose coordinates are design objectives functions (i.e. 

f1,…fn ). In this dissertation, each point in this space represents the environmental impacts 

indicators of a design alternative. The performance attribute of a design alternative are 

evaluated by inputting the design variable information into Life Cycle Assessment in this 

space [57]. The relation between the Design Alternatives Space and Design Attribute 

Space is pitched in Figure 2.1. Let Di designate a feasible alternative and denote the set 

of all feasible design alternatives by D. To an element Di in D, there are n indices of 

value associated with it: f1 (Di) ,…, fn (Di). We can think of the n evaluators f1 ,…, fn as 

mapping each Di in D into a point in an n-dimensional consequence space [57]. 
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Figure 2.1. Mapping from Design Alternative Space to Design Attribute Space 

2.3. Solution of Multi-Criteria Decision Making Problem: Pareto 

Optimum 

In order to select the more sustainable packaging designs, a set of packaging 

design will be generated. In order to get the objective values, which are the 

environmental impact indicator value, of every design on each criterion, the designs are 

evaluated by Life Cycle Assessment. The results from Life Cycle Assessment are 

multiple dimensional data. When there are multiple conflicting objectives, the optimal 

solutions could not be the unique solution any more, since different design could be excel 

at different environmental impact, and not any of them could be considered as absolutely 

bad or good. Instead, a subset of all the good design options needs to be found. These 

solutions are called “Pareto Optima”. 

In order to define the Pareto Optima, the definition of dominance is first 

introduced here: 
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A design decision vector 1 1 1 1 T

1 2 Nf [f , f ,..., f ] is said to dominate the decision 

vector 2 2 2 2 T

1 2 Nf [f , f ,..., f ] , in a minimization context, if and only if [58]: 

1 2

i i

1 2

i i

f f , i {1,..., N}

and f f , i {1,..., N} (2.2)

  

  
 

Where N is the number of decision attributes. 

In this dissertation, a design decision vector is the environmental impact 

indicators for a design alternative. Figure 2.2 shows an example of the dominance 

relation between some data points, in a two-dimensional space. In the case that both f1 

and f2 to be minimized, solution A dominates solution B, since on both f1 and f2, A is 

smaller than B. Similarly, C also dominates B for the same reason. But A does not 

dominates C, and C does not dominates A, because neither A is better than C on both f1 

and f2, nor C is better than A on both f1 and f2. 

 
Figure 2.2. Illustration of Dominance Relation between Designs 
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After the dominance relation is introduced, then the Pareto Optimum can be easily 

defined as follows: a design Di is said to be Pareto optimum if and only if there does not 

exist another design that dominates it. In other words, within the design alternatives set, 

solution Di cannot be improved by another solution in any objective without adversely 

affecting at least one other objective. The corresponding objective vector F(Di) is called 

a Pareto dominate vector, or non-inferior or non-dominated vector [58][59]. The set of all 

Pareto Optimal solutions is called the Pareto Optima Set, or Pareto Front [55][56]. Pareto 

Optima is named after Vilfredo Pareto (1848-1923), an Italian economist who used built 

the fundamental in modern theory of Multi-Criteria Analysis [60].  

Figure 2.3 shows an illustration of Pareto Front of a set of two-dimensional data. 

The red points dominate all of the grey points. Thus, the red points construct the Pareto 

Front of the original data.  

 
Figure 2.3. Pareto Front for a Two Dimensional Case 
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2.4. Pareto Optimal Search Algorithm 

Literature review shows that in the Multi-Criteria Decision Making problem with 

a finite number of decision vectors, the Pareto Front are usually found by the 

conventional method-Exhausting Search method [61]. The flow is shown in Figure 2.4 

[61].  

This Pareto Filter Algorithm is described below in four steps [61]: 

Step-1: Initialize  

Initialize the algorithm indices and variables: 

i=0, j=0,k=1, and m=number of generated solutions. 

Step-2: Set i=i+1; j=0. 

Step-3: (enclosed in dashed box): Eliminate non-global Pareto points by doing the  

following: 

j=j+1 

If i=j go to the beginning of Step 3 

Else Continue 

If i jf f
 and 

i j

s(f f ) 0  , s  

    Then f i is not a Pareto Point.  

     Go to Step 4. 

Else if j=m 

     Then f i is a Pareto Point. 

      k iP f  

     k=k+1 

     Go to Step 4. 
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Else go to the beginning of Step 3 

Step-4: If i≠m, go to Step 2, else end. 

 
 

Figure 2.4. Flow Diagram of Exhausting Search Pareto Filter [40] 
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This algorithm is very simple but is not efficient because every option much be 

compared again the entire set of design options until all Pareto optimal solutions are 

found. It finds the Pareto Front by checking every point with other point, on each 

dimension, to determine the dominance relation between one design and another. In this 

process, a data point will be picked randomly, and then compared with other data point in 

a random sequence. If a data point is investigated to be a Pareto Optima, it will be 

marked as Pareto Optimum, then put back to the whole set of data, and the next data will 

be picked randomly from the data set, randomly, repeat the same procedure.  Eventually, 

all the Pareto Front is found. 

For the decision making problem for the sustainable packaging design, the design 

alternatives set is usually large. When apply the Pareto Filter Algorithm, if not all the 

Pareto Optimal solutions are not necessarily to be found, and instead, only the top choices 

according with respect to an indicator are need to be found out, this algorithm obviously 

are not efficient enough.  

In order to improve the efficiency of the Pareto Front filter algorithm, at the same 

time, finding Pareto Front with integrating decision maker’s preference, Ranking Based 

Pareto Filter Algorithm was proposed, which is introduced in session 2.5. 

2.5. Ranking Based Pareto Front Filter Algorithm 

From the previous sections, we know that the exhausting searching Pareto Front 

filter algorithm is widely used to find the Pareto Optimal Designs from a set of design 

options because the algorithm is simple. This algorithm is straightforward but not 

efficient enough, since some of the non Pareto Optima are kept in the comparing process 
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until the entire Pareto Front is found. To improve the efficiency of generating the Pareto 

Front, a new algorithm could aim to eliminate the unnecessary design comparison, by 

excluding some undesired designs during the process. The Ranking Based Pareto Filter 

algorithm is proposed to meet this goal.  

The development of this algorithm is based on the natural extension of the 

definition of dominance, as follows: 

Assume none of any two designs in the set have the same value on any decision 

attribute, then a design decision vector 
1 1 1 1 T

1 2 Nf [f , f ,..., f ] does not dominate the 

decision vector
2 2 2 2 T

1 2 Nf [f , f ,..., f ] , in a minimization context, , if and only if: 

1 2

i if f , i {1,..., N} (2.3)    

Where N is the number of decision attributes. 

Now assume there are M designs, we sort them according to one decision attribute, 

for example f1, in a descending order. So the first design D1 after the sorting is the best 

design with respect to fi , which is a Pareto Optimal Solution. Also, after the sorting, any 

design Dn will not dominate any design before it, that is Di (i=1~ n-1), because it is 

certain that Dn is worse than Di on the fi, where fi is the attribute that all the data sorted 

about. So we know that if a design Dn is dominated by any Pareto Optimum before it, 

then it is not a Pareto Optimum. If a design is not dominated by any Pareto Optimum 

before it, then it is not dominated by any other design, thus it is a Pareto Optimum. 

To apply the Ranking Based Pareto Filter Algorithm, the top prioritized 

environmental impact indicator needs to be selected, and sort all the designs with respect 
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to it. The indicator is determined by preference of decision maker or importance of 

environmental considerations. After sorting, it is obvious that the first design is a Pareto 

Optimum, which has the best performance on the most prioritized environmental impact 

indicator. Since the latter design will not dominate the designs before it, one design only 

needs to be compared to the higher ranked Pareto Optimal design to check whether it is 

Pareto Optimum or not. 

To further explain the mechanism of the proposed algorithms, an example is shown in  

Figure 2.5 to Figure 2.7, where packaging design options are plotted for the two 

dimensional cases. If designer defines f1 as the most important indicator, then all data can 

be ranked based on f1. So we can get the ID of the designs from 1 to 17. Therefore D1 is 

a Pareto Optimum, and here we plot all Pareto Optima in red, and initialize the Pareto 

Front ={D1}. Then we need to move to the next point, D2, to check it is a Pareto Optima 

or not. D2 only needs to be compared with only higher ranked Pareto Optimal design, 

which in this case is D1, to check if it is dominated by D1 and do not need to be 

compared with lower ranking points. In the two dimensional case, to apply the 

dominance check, we only need to compare D2 with D1 on f2 . Since D2 has a worse 

performance than D1, so we can conclude, that D2 is dominated by D1, so it is also a not 

Pareto Optimum. So the updated Pareto Front ={D1}. 
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Figure 2.5. Illustration 2D Ranking Based Pareto Selection Method 

Figure 2.6 illustrates the next step, exam D3 is a Pareto Optimum or not. When 

checking D3, we only need to compare D3 with D1. And D3 is not dominated by D1, so 

is a Pareto Optimum. The Pareto Front is updated as {D1, D3}. Then the dominance 

check continues until all the data are checked, in the case the all Pareto Optima are 

desired to be found.  

 

Figure 2.6.Illustration 2D Ranking Based Pareto Selection Method 
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Through ranking a design based on one of the indicator, the Pareto Front selection 

can be found more efficiently. The whole Pareto Front consists of Design D1, D3, D5, 

D7, D11 and D15 are identified as Pareto Optimal design, as shown in Figure 2.7. 

 

 
Figure 2.7. Pareto Front of Obtained Using Ranking Based Pareto Filter Algorithm 

The Ranking Based Pareto Filter algorithm is summered below step by step, for 

finding the whole Pareto Front case, and followed with the flow chart in Figure 2.8. 

Step-1: Set the most prioritized design attribute fq, q is any number from 1 to n, 

n=number of design decision attribute. 

Rank all designs with respect to fq, to get the design’s ID Di,  

i=[1,…,m]， m=number of designs. 

Step-2: Initialize the algorithm indices and variables: 

i=1, j=1, k=1, l=1 

P=[D1],  

l is the number of Pareto Optima 
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Step-3: Set i=i+1; j=1 

Step-4: Set j=j+1 

Step-5: Check one design is dominated by the current Pareto Optima set or not by     

checking: 

If Di≠Pk 

and (Di-Pj)s≥0,s 

Then Di is dominated by Pk 

Go to step-6 

Else if k=l 

Update Pareto Set P, P ={D1, Di} 

Else go to step-4 

Step-6: If i=m, go to step-3, else end. 

In a case that not all the Pareto Optima are need to be found, step-6 is not 

necessary to be checked, and Pareto Search process could stop at the step that qualified 

number of Pareto Optima are found.  
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Figure 2.8. Flow Chart for Ranking Based Pareto Filter Algorithm 

 

The Ranking Based Pareto Filter algorithm could significantly improve the 

efficiency of the Pareto Front search process, when all the Pareto Optimal Solutions 

needs to be found, because those dominated design have been eliminated to avoid any 

repeated and unnecessary comparison. Comparing with the Exhausting Search Filter 
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Algorithm, the computation cost could be reduced from n2 to n*log(n). When only part of 

the Pareto Optimal need to be found, this algorithm could avoid doing unnecessary 

comparison.  

2.6. Example 

Here we show an example as a demonstration for the Ranking Based Pareto Filter 

algorithm. 

Assume there are 6 six-dimensional design vectors, which is plotted in Figure 2.9. 

We will find all of the Pareto Optima according to the f1 dimension, using Ranking Based 

Pareto Filter Algorithm. Here we use different color to represent different designs. 

Assume all dimensions’ values are in the range of (0~10). 

    
Figure 2.9. Radar Chart of the Environmental Impact Indicators of All Design Alternatives 

First, we demonstrate how to use this algorithm to find the whole Pareto Front: 
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Step-1: Pick up the top prioritized design attribute, rank, initialize 

Pick up the most important indicator; here assume f1.Then rank all the design 

vectors according to f1 in the ascending order, as D1, D2, D3, D4, D5 and D6, as shown 

in Figure 2.10. 

  
Figure 2.10. Ranking of Whole Set of Design Alternatives with respect to f1 

Step-2: Dominance Check 

Since D1 has the best performance on f1 among all the design vectors, so it is 

automatically a Pareto Optimum. Then we need to check the dominance of D2: compare 

D2 with the current updated Pareto Front, which is D1, on all of the rest of the 

environmental impact indicators, f2-f6.Then D2 is found to be dominated by D2, so it is 

not a Pareto Optimum. In Figure 2.11, we use dashed line to indicate a design is a Pareto 

Optimal design; the dominated design will remain in solid line. So up to this step, only 

D1 is found a Pareto Optimum. 
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Figure 2.11. Update the Pareto Optimal Solutions 

Step-3: Dominance check for all of the rest designs 

Then move to the next design vector, D3, compare with the current Pareto Optima 

Set, that is, D1. Then we found s3 is not dominated by D1, since on f2, D3 has a smaller 

value than D1.so we update the Pareto Optima Set as {D1, D3}.Then repeat to the next 

design vector, until to D6.  

Finally, the result has been plotted in Figure 2.12. All Pareto Optima have been 

plotted in dashed line, and non-Pareto Optima have been plotted in solid line. From the 

figure we can see, D2 is not a Pareto Optimum, because it is dominated by D1. D5 is not 

a Pareto Optima, because it is dominated by D1, D3 and D4. Similarly, D6 is not a Pareto 

Optima, because it is dominated by D1, D3 and D4. So the whole Pareto Front consists of 

D1, D3 and D4. 
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Figure 2.12. Final Pareto Optimal Solutions 

In some cases, the design options set may be very large, and the Pareto Front 

consist many designs, even more than needed. Then it is not necessary to find all the 

Pareto Optima. Assume in this example, two Pareto Optimal designs are desired to be 

found, then the search process could stop after D3 were found a Pareto Optimum. So part 

of the Pareto Front, D1 and D3 were found efficiently. 

2.7. Conclusion and Remarks 

This chapter discussed about the first phase of the decision making framework, 

which is the Pareto Optima search. The basic concept and terminology of Multi-criteria 

Decision Making problem formulation was introduced. The conventional exhausting 

search Pareto Filter algorithm was introduced, as well as the drawback of the algorithm. 

Then the Ranking Based Pareto Selection method was proposed, aimed at improving the 

efficiency of the Pareto Optima search algorithm and providing the flexibility of finding 
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partial of the Pareto Front. The advantaged of the proposed Ranking Based Pareto 

Selection algorithm was discussed. An example was demonstrated to illustrate the 

effectiveness of the algorithm. 

In the next chapter, the second phase of the decision making framework, how to 

cope with the conflicting performance of designs in different environmental impact 

indicator, find the decision maker’s preferred design will be discussed. In order to find 

the preferred designs, the implementation of decision maker’s preference is necessary. To 

achieve this goal, Design Preference Function, and the Ranking Based Rate of 

Substitution are proposed, to help to guide to the most sustainable designs. 
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Chapter 3. 

Implementation of Decision Maker’s Preference 

3.1. Introduction 

From the first phase of the decision making tool, all the Pareto Optimal designs 

were found. After the Pareto Optimal solutions are found from the original design options 

set, there still may remain a lot of “all good” solutions left. Further design decision needs 

to be made, but all the Pareto Optimal solutions have trade-offs again each other on the 

environmental impact indicators, and there is no absolute the “best” solution. Instead, the 

most “preferred designs” could be selected, according to decision maker’s preference. It 

is necessary to cope with the decision maker’s preference, because practical situation that 

for different decision maker varies. As a result the design selected may be different to 

meet the different decision maker’s preference. So how to deal with the trade-offs 

between these designs, and how to differentiate among those designs about their 

advantage and disadvantage will highly depend on the decision maker’s preference. The 

preference could include the priority about different indicators, satisfactory value and so 

on. How to implement these preferences into the decision making process, guide the most 

preferred solutions needs to be addressed. In this chapter, Design Preference Function is 

introduced to classify the satisfactory level according to the environmental impact criteria; 

Ranking Based Rate of Substitution was developed to integrate decision maker’s 

preference of the environmental impact priority, to guide to the most “preferred optimal 

design decisions”. 
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3.2. Design Preference Function 

The first type of decision maker’s preference is involved to the criteria for each 

environmental impact indicator. In practical cases, satisfying designs need to meet some 

criteria for the environmental impact indicators’ values in a certain range. These criteria 

may be resulted from many factors, such as regulation and policy from government, 

business partner requirement. The criteria can be expressed as a threshold value. For 

example, a decision maker will be satisfied if the energy demand fi is lower than a certain 

value fi
1 according to the environmental regulation. If there is no single value of fi 

determined by any law or regulation, instead, it came from a practical situation according 

to a specific scenario, then it could be expressed as a range, enable a buffer zone. For 

example, the decision maker may feel the environmental impact indicator fi of one design 

is excellent as long it is smaller than fi
1, and is not acceptable if it is higher than fi

2, and 

between fi
1 and fi

2 is acceptable, as pitched in Figure 3.1. In order to represent the 

preference and normalize the different indicator values, any indicator value fi smaller 

than fi
1 could be converted to a smaller value Pi

1  which is within the preference range, for 

example, (0,1), and if it is between fi
1 and fi

2, be assigned another value Pi
2, which is 

larger than Pi
1, but still in the range of (0,1), and for any fi that is larger than fi

2, it will be 

converted to Pi
3, which is larger than Pi

3, in the range of (0,1). As a result, the Design 

Preference Function is a step function, as shown is Figure 3.1.  
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Figure 3.1. Design Preference Function example 1 

The Design Preference Function that expressed in the will classify the design on 

one indicator into three groups; this sometimes will ignore some small difference of the 

performance within the same range. To reflect the difference more precisely, this 

preference function could be constructed in a different way, such as linear function, to 

present the performance, as pitched in Figure 3.2. But the choice of Design Function 

format could depend on the specific need of a decision making situation.  
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Figure 3.2. Design Preference Function Example 2 

Through the Designer Preferences Function, all environmental impact indicator 

values fi can be normalized into the predefined preference values Pi range. The preference 

values of each indicator can be used to guide decision making process since it represents 

performance of a design according to the preference of specific decision makers. In this 

paper, lower Pi value represents higher preferred environmental impact performance. 

Through Design Preference Function, all the Pareto Optimal designs have been 

classified and converted from environmental impact indicators (fi) to the preference value 

(Pi), for each design, as shown in Figure 3.3. In the environmental impact indicator 

domain, because each indicator may have a different unit, and a different range that has 

huge difference between different indicators, the performance of a design in each 

indicator is not easy to understand. The design preference value could help the decision 

maker to understand more clearly of the performance of one design on every specific 

indicator.  
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Figure 3.3. Environmental Impact Indicator Values Converted to Design Preference Value 

3.3. Ranking Based Rate of Substitution 

After the Design Preference Function was applied, the Pareto Optimal designs are 

classified and normalized. But the Design Preference Function does not compare designs 

about their trade-offs over different environmental impact indicators to further help to 

select the most sustainable designs. In order to investigate the trade-off of the designs, 

further differentiate the performance, find the most sustainable designs subset, decision 

maker’s priority about different environmental impact indicators needs to be incorporated.  

The conventional method to corporate with the priority about the different 

attributes for a Multi-Criteria Decision Making Problem is  the Weighted Sum Method 

[39], that is, assign a set of weight for all of the decision attributes, according to the 

importance, thus, each multi-dimensional design objective vector is converted into a 

single value. However, The Weighted Sum method has two drawbacks: First, the weight 

between all environmental impact indicators is hard to set; Secondly, this method 

generates only one optimal solution which has the best performance. But in the case of 

selecting the sustainable packaging designs, a small set of solutions to the decision maker 
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is necessary, because there may still be other decision factors that are not included in the 

environmental impact indicators from Life Cycle Assessment, such as materials 

accessibility. 

Thus, a method that can engage the preference of priority about the environmental 

impact indicators, and compare the trade-off between different designs, also provide a set 

of optimal designs is highly needed. To do so, Marginal Rate of Substitution was adopted, 

based on which Ranking Based Rate of Substitution is proposed.  

3.3.1. Marginal Rate of Substitution  

In this session, the basic concept about Marginal Rate of Substitution is first 

introduced below:   

In order to simplify the visualization, we suppose there is a two-dimensional 

design vector where f1 and f2 are the two attributes, as shown in Figure 3.4. In the case 

that both f1 and f2 are to be minimized as an objective, the Marginal Rate of Substitution 

reflects the rate between the amount f1 has to decrease in order to remain indifferent and 

the amount f2 is increased. Specifically, in Figure 3.4, at design D1, let Δf2 be the amount 

that the decision maker would compromise in the environmental impact f2 in order to 

gain an improvement Δf1 in environmental impact f1 while maintaining constant value, 

according to the preference. The Marginal Rate of Substitution, R12
1, between the two 

environmental impact indicators f1 and f2 at design D1 is the ratio –Δf1/ Δf2. Similarly, the 

Marginal Rate of Substitution, Rij
t, between any two environmental impact indicator fi 

and fj at design Dt can be defined as the ratio –Δfi/ Δfj.  
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Figure 3.4. Redraw of General Case of Marginal Rate of Substitution. [41] 

The concept of Marginal Rate of Substitution can be extended to compare any 

two design vectors about the trade-off between two attributes. For example, as shown in 

Figure 3.5, in a two dimensional objective space, there are three designs D1, D2 and D3. 

Comparing to D1, both of D2 and D3 have a worse performance on f1, while have a 

better performance on f2. Assume for the given attribute values for D1, We could 

compare both D2 and D3 with D1, by calculating the Marginal Rate of Substitution, to 

check that, which design between D2 and D3, compensates better on f2 for the loss on f1. 

At D1, the desired Marginal Rate of Substitution is λ. So when it comes to how good is 

another design compared to D1, we need to compare the Marginal Rate of Substation of 

D2, which is Δf2
2,1/Δf1

2,1=λ2,1. If  λ2,1 is better than λ, then it means, even D2 has a worse 

performance on f1 than D1, but it could be considered as good, because of its qualified 

improvement on f2. Similarly, we could get λ3,1 , if it is not better than λ , then it will be 

considered as no good, because it did not improve enough on  f2  to compensate the loss 

on f1. 

The arrow graphically 

depicts the Marginal Rate 

of Substitution at (f1,f2) 
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Figure 3.5. Criteria of Rate of Substitution 

In this dissertation, since the design environmental impact indicators have been 

normalized in to the preferred value through the Design Preference Function, Rij
t is 

dimensionless.  

3.3.2. Ranking Based Rate of Substitution 

As last session mentioned, the concept of Marginal Rate of Substitution can be 

utilized to compare any two designs, between any two design decision attributes. But in 

the decision making problem for sustainable packaging design, there are more than two 

attributes and more than two designs to compare. In order to extend the Marginal Rate of 

Substitution concept to the Multi-Criteria Decision Making problem with more than two 

attributes, the Ranking Based Rate of Substitution is proposed. The Ranking Based Rate 

of Substitution method implements the ranking of the priority of the environmental 

impact indicators, by comparing all other environmental impact indicators with one 
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selected environmental impact indicator, also comparing all other designs with the one 

selected Pareto Optimal design. 

 The operation of Ranking Based Rate of Substitution is based on the trade-off 

between two Pareto Designs. The trade-off, Rjp
ik  can be calculated in form of equation 

(3.1) 

i k

j jik

j,p i k

p p

f f
R i 1 m, k 1...m, j 1...n, and j p (3.1)

f f


     



 

Where f represents the value of environmental indicators; the subscripts j and p 

represent the jth and pth indicators; the superscripts i and k denote two design options. 

Rj,p
ik is the trade-off substitution design option i for design options k in terms of the gain 

of fj over the loss of fp. If the trade-off is greater than a pre-defined minimum trade-off 

value, then the substitution of design option i for k is acceptable. Decision maker can first 

select an acceptable Pareto Design, fk, as the baseline. If the trade-off of substituting 

another Pareto design, fi, is acceptable, then fi will be included in the set of possible 

solutions otherwise it will be rejected. The comparison process continues until the entire 

Pareto Front set is evaluated and a final reduced Pareto Set is obtained. To control the 

number of possible Pareto solutions in the final set, the designer can choose a different 

baseline design and/or define different minimum trade-off value for each environmental 

impact indicator. 

The decision maker could also define the priority of the environmental impact 

indicators along with the implementation of trade-off to further reduce the size of final 
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possible solution set. Thus, the baseline design will be chosen as the Pareto Optimal 

design that has the best performance on the top prioritized indicator. This refers to the 

Ranking Based Rate of Substitution, and the Rate of Substitution can be obtained from 

(3.2):  

i 1

j ji1

j,p i 1

p p

f f
R i 1 m, j 1...n, and j p (3.2)

f f


    



 

Here Rj,p
i1 is a ratio between ith design and the 1st ranked design. Once current 

design’s rates of substitution are calculated, then the designer can eliminate some of the 

designs when the rate dose not satisfied criteria. The criterion is defined by the designer 

according to the priority about different environmental impact indicators. 

It is only necessary to calculate the Ranking Based Rate of Substitution between 

any pair of designs when they have trade-off s between two environmental impact 

indicators, since substitution only exists in such situation. In the case that smaller 

objective value represents a better design, the Ranking Based Rate of substitution is a 

positive dimensionless number, and the larger it is, the better of the performance of trade-

off. 

In a N dimensional case where N is equal or greater than three, one design will 

generate N-1 Ranking Based Rate of Substitution, where N-1 is equal or greater than two. 

In this case, a good design is considered as good if there is at least one indicator has a 

Ranking Based Rate of Substation that is better than the desired number. We say this 

design is not dominated by the most preferred design, thus should be one of the optimal 
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designs. If in none of the environmental impact indicator, a design satisfies, and is not 

better the criteria of Marginal Rate of Substitution, then it is not an Optimal Design. 

Depending on the priority of each environmental impact, the designer can set 

different criteria for different environmental impact indicators, which can reflect the 

priority about the importance of the design objectives. A simple example is shown in 

Figure 3.6, all D1, D2 and D3 has six decision attributes, 5 Ranking Based Rate of 

Substitution is produced. In order to use Criteria of Ranking Based Rate of Substitution 

to determine a design is optimal or not, in terms of tradeoff between different design 

attributes, comparing to the most preferred design. D1 is not considered as a preferred, 

since none of the 5 Ranking Based Rate of Substitution satisfies the criteria. While D2 is 

considered a decision maker preferred design, because it has a satisfying Ranking Based 

Rate of Substation R2,1 , R4,1 and R5,1, which means it has a good compensation on both 

f2 , f4 and f5, comparing to the performance of f1.Similary, D3 could be considered as a 

good design, because on f5 and f6, it has satisfactory Ranking Based Rate of Substitution. 

 
Figure 3.6. Example of Selecting Designs using Ranking Based Rate of Substitution 
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A table will better help us to visualize the performance of the three designs in 

terms of the Ranking Based Rate of Substitution, as shown in Table 3.1. The highlighted 

cell in red represents the Ranking Based Rate of substitution that satisfies the criteria, so 

D1 has no satisfying performance on any of the environmental impact indicators. 

However, D2 and D3 can be considered as optional designs. 

 R2,1 R3,1 R4,1 R5,1 R6,1 Optimal 

Design? 

Criteria  0.50 0.65 0.65 0.5 0.38 ━ 

D1 0.41 0.32 0.38 0.34 0.35 No 

D2 0.55 0.74 0.83 0.37 0.65 Yes 

D3 0.47 0.56 0.57 0.82 0.74 Yes 

  

Table 3.1. Solutions Obtained by Ranking Based Rate of Substitution Considering All Environmental 

Impact Indicators 

If the optimal design set needs to be further narrowed, then the priority of the 

environmental impact indicators can help to do so. By reducing the less prioritized 

environmental impact indicators, the designs that have good performance will be found. 

For example, in Table 3.2, the less prioritized environmental impact indicators f5 and f6 , 

has been reduced by ignoring the Ranking Based of Rate of Substitution R5,1 and R 6,1, 

then D2 was found the only one satisfies the criteria, thus will be considered as an 

Optimal Design. 
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 R2,1 R3,1 R4,1 Optimal Design? 

Criteria   0.50 0.65 0.65 ━ 

D1 0.41 0.32 0.38 No 

D2 0.55 0.74 0.83 Yes 

D3 0.47 0.56 0.57 No 

 

Table 3.2. Solutions obtained using Ranking Based Rate of Substitution after Reducing Indicators 

3.4. Example 

In order to illustrate how the Design Preference Function and Ranking Based Rate 

of Substitution Method facilitate the selection of decision maker’s preferred designs, an 

example is shown below. 

Assume there are 5 Pareto Optimal Designs, which were selected from the 

original design alternatives set. The six design objective values of each design are plotted 

in Figure 3.7. First, the Design Preference Function will be applied, to apply the indicator 

preference. Then the Ranking Based Rate of Substitution is applied, to further select the 

designs that have satisfying compensation.  
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Figure 3.7. Whole Set of Pareto Optimal Designs 

3.4.1. Design Preference Function  

The first step to integrate the decision maker’s preference is the Design 

Preference Function, which has been plotted in Figure 3.8.  
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Figure 3.8. Design Preference Function 
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The Design Preference Functions converts the environmental impacts indicator to 

the design preference value, which is in the range of [0,1] ,as shown in Figure 3.9.  

 
 

Figure 3.9. Preference Value for the Whole Set of Pareto Optimal Designs 

3.4.2. Ranking Based Rate of Substitution 

After the Design Preference Function, the preference value has been calculated 

from the environmental impact indicator values. Next, Ranking Based Rate of Substation 

will be utilized to compare all the “good designs”. The Ranking Based Rate of 

Substitution will be calculated using Equation (3.2) from the normalized preference value, 

so it is dimensionless.  The most important indicator here is assumed to be P2 , then the 

Ranking Based Rate of Substitution will be calculated for all others designs but D2, 

which has the best performance on D2 and selected as the baseline. So the results are 

shown in Table 3.3. 
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 P2 P4 P3 P6 P5 P1 Optimal Design? 

Criteria  ━ 0.15 0.2 0.25 0.5 0.8  

D2 ━ ━ ━ ━ ━ ━  

D4 ━ -0.5 10 -11 10.5 -8.75 Yes 

D3 ━ 0.12 10 0.25 7.25 -8.75 Yes 

D1 ━ 0.25 0 -0.45 0.025 0.025 Yes 

D5 ━ -0.95 1 -1.1 1.175 -0.975 Yes 

 

Table 3.3. Final Selected Optimal Designs after Design Preference Function and Ranking Based Rate 

of Substitution 

To further narrow down to a smaller set of optimal selection, reducing the 

decision attributes will help. By reducing the least prioritized decision attribute P5 and P1, 

D5 is eliminated from the optimal designs set. As a result, D4, D3 and D1 are found to be 

the most sustainable packaging designs, as shown in Table 3.4. 

 

 P2 P4 P3 P6 Optimal Design? 

Criterion ━ 0.15 0.2 0.25  

D2 ━ ━ ━ ━  

D4 ━ -0.5 10 -11 Yes 

D3 ━ 0.12 10 0.25 Yes 

D1 ━ 0.25 0 -0.45 Yes 

D5 ━ -0.95 1 -1.1 No 

 

Table 3.4. Final Selected Optimal Designs after Design Preference Function and Ranking Based Rate 

of Substitution 
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3.5. Conclusion and Remarks 

In this Chapter, two components-Design Preference Function and Ranking Based 

Rate of Substitution were introduced, to implement decision maker’s preference, 

including criteria for environmental impact indicators and priority between 

environmental impact indicators, thus to choose the most preferred designs. 

The Design Preference Function classifies and normalizes the environmental 

impact indicators and Ranking Based Rate of Substitution could implement decision 

maker’s indicator priority, by comparing all other designs with the most preferred design, 

thus find the most preferred designs. 

The environmental impact indicators from the Life Cycle Assessment could 

involve uncertainty due to lack of information, system variation. In the next chapter, 

uncertainty will be taken into account the decision making process.  
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Chapter 4. 

Non-Deterministic Pareto Front 

In chapter 2, Ranking Based Pareto Filter algorithm was proposed to successfully 

facilitate the Pareto Optimal design search process for base on deterministic 

environmental impact indicators. However, evaluation of the environmental impact 

indicator often involves uncertainty. The uncertainty in environmental impacts indicator 

values will make the Pareto Optimal design filter process more complicated, because the 

original definition for Pareto Optimum no longer applies. To this end, the Probabilistic 

Pareto Front Filter algorithm has been developed, based on the Ranking Based Pareto 

Front Filter algorithm.  

4.1. Uncertainty in the Environmental Impact Indicators 

Through the whole process of Life Cycle Assessment, they are many potential 

resources of uncertainty, which will influence the accuracy of the environmental impact 

indicator values. Uncertainty in Life Cycle Assessment results may be resulted from 

many typical factors as discussed below [62][63][64][65][66]:  

Database Uncertainty  

The uncertainty in database refers to the uncertainty and inaccurate information 

collected, as a result, the data in an LCA software database may not exactly represent the 

actual quantity [67]. For example, for one environmental impact indicator, there are 
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multiple values or distributions of data collection due to geographical , temporal and 

technological difference of a product, so an accurate quantity is hard to be determined 

[62][68].  

Model Uncertainty 

The model uncertainty refers to some aspects that cannot be modelled within the 

present Life Cycle Assessment structure, such as the spatial and temporal characteristic 

lost [62]. Different Life Cycle Assessment software may generate different 

environmental impact indicator values for the same design, and this is because of the 

model they used varied. The simplified models may not capture exact cause-and-effect 

mechanisms, or data regression may have the wrong functional form [67].  

Statistical/ Measurement Error on Product Parameters  

The statistical error may be resulted from a limited set of sample set [67]. 

Measurement errors may also exist in the sample data, as well as the unknown standards 

used to collect and quantify the data [67].  

Because of the possible existence of the uncertainty in the whole process of Life 

Cycle Assessment, it is very likely that the environmental impact indicators are also 

involved with uncertainty as the Life Cycle Assessment output. This means that actual 

environmental impact indicator values gained from the Life Cycle Assessment software 

is not an accurate single value, but a value with uncertainty. The uncertainty in the 

environmental impact indicators could be represented in many formats, such as a 

probabilistic distribution.  
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4.2. Decision Making with Uncertainty in Environmental Impact 

indicators 

From the last session, we know that the environmental impact indicator values 

from Life Cycle Assessment may not be able to present the accurate measurement of a 

design options, but involve uncertainty which cannot be avoided.  

 When these uncertainties are considered during the sustainable packaging 

selection decision making process, the comparison between designs becomes very 

challenging. First, to illustrate the challenge for decision making while environmental 

impact indicators has uncertainty, Figure 4.1 is shown to explain the comparison in a one 

dimensional case. Assume for two designs D1 and D2, the water depletion environmental 

impact indicator values are no longer an accurate value, but instead, data that are 

normally distributed, with mean value (µD1) and standard deviation σs1 for design S1, and 

mean value (µD2) standard deviation σD2 for D2. The figure shows D1 has a lower mean 

value than D2 on water depletion. In a deterministic case, in which only the mean value is 

given, D1 naturally will be considered to be better than D2, since µD1 is smaller than µD2. 

However, we cannot simply conclude that design D1 is always better than D2 because the 

variation of both options need to be considered too. Depending on the criteria of 

probability, which is decided by the decision maker, D2 design can be also considered 

has a good performance on the water depletion attribute.  
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Figure 4.1. Normal Distribution of Water Depletion of Two Different Designs 

The challenges that uncertainty caused extends to the Pareto Front search, when 

there are multiple attributes to consider in order to find the optimal designs from all the 

alternatives. In the deterministic case of finding Pareto Front, one design D1 dominates 

another design D2, if on all the environmental impact indicators; D1 has at least one 

environmental impact indicator value smaller than D2. But in the non-deterministic case, 

the definition of dominance is no longer valid, since the uncertainty exists. 

Literature review shows that there are related research try to resolve the challenge 

of uncertainty in Multi-Criteria Decision Making [69][70][71][72] . There are mainly two 

streams of approaches to deal with uncertainty by directly comparing the mean and 

variance values, such as the “Mean-Variance” method [69] ,“Minimize Mean Value 

Approach”, or “Minimize Mean + K* Standard Deviation Approach” [70]. However, 

these methods could only handle when there are significant difference between two data, 

since they investigated the mean value and standard deviation, not the probability 
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between two data. Also, for “Minimize Mean + K* Standard Deviation Approach”, the 

determination of K for decision maker is difficult. 

Another stream of approach to deal with uncertainty is to determine the Pareto 

Front by defining probabilistic dominance [71][72].  By defining the probabilistic 

dominance, the Pareto under uncertainty could be found by checking the dominance 

criteria. Also, the probabilistic dominance allows the use of Pareto filter algorithm that 

has been developed. J.E Fieldsend’s definition of probabilistic dominance calculates the 

sum of degree of confidence, which fail to investigate the design on each individual 

decision attribute’s performance [71]. H. Eskandari’s definition of probabilistic 

dominance calculates the product of degree of confidence , which also fail to investigate 

each individual attribute’s performance, also the criteria is for threshold value is hard to 

determine for the decision maker [72].  

To overcome the drawback of current existing methods of dealing uncertainty in 

Multi-Criteria Decision Making problem, the probabilistic dominance is redefined in the 

next session.  

4.3. Probabilistic Dominance and Probabilistic Pareto 

Optimum 

When there is uncertainty in the environmental impact indicators, the equation 

(2.2) for dominance, and equation (2.3) for non-dominance are not valid anymore. In 

order to cope with the uncertainty using the Ranking Base Pareto Front Filter algorithm, 

and include all the designs that potentially good designs, the definition of non-dominance 
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that concluded in chapter 2 has been modified into the Probabilistic Non-Dominance, 

which is stated as below: 

A decision vector 
A A A A T

1 2 Nf [f , f ,..., f ] is said to not probabilistically dominate 

the decision vector B B B B T

1 2 Nf [f , f ,..., f ] , in a minimization context, if and only if: 

AB A B

i i i icP (f f ) P , i 1,....,n (4.1)     

Where Pi
AB(·) is a probability operator, fi

A is an environmental impact indicator of 

design A, fi
B is an environmental impact indicator of design B, n is the number of 

indicators, Pic is the probabilistic criteria. We can call the Pi
AB “probabilistic non-

dominance factor”, which could reflect the probability that A does not dominate B. In 

other words, if design option A has at least one attribute probabilistically worse than 

design B, then design A is said to probabilistically does not dominated design B. 

The difference between deterministic Pareto dominance and Probabilistic Pareto 

dominance is illustrated in Figure 4.2. Dominance Relation in Deterministic Case (Left), 

and Probabilistic Dominance Relation (Right) for a two dimensional case. The left figure 

demonstrate a deterministic case, in which the dominance relation is determined by 

comparing the mean values. The mean values for area represented by the coordinate of 

the black dots. As a result, design A absolutely dominates B. The figure on the right 

illustrates the non-deterministic case, where not only the mean values are to be 

considered, but also the uncertainty. The dark black dots stills represent the mean value, 

and the gray circles represent the uncertainty. As a result, we first can conclude that A is 

not dominated by B or C, because its means value is smaller both of B and C. But, by 
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adopting the probabilistic dominance, C has a higher chance to be dominated by A, while 

B has a high probability not to be dominated by A. By setting different value of Pic, the 

probabilistic Pareto Front may contain different solutions. 

     

Figure 4.2. Dominance Relation in Deterministic Case (Left), and Probabilistic Dominance Relation 

(Right) 

After the Probabilistic Dominance has been defined, Probabilistic Optimum can 

be further defined. If one design option is not probabilistically dominated by any other 

design, then this design can be considered as a Probabilistic Pareto Optimum. All the 

Probabilistic Pareto Optima construct the Probabilistic Pareto Front. By incorporating the 

probabilistic dominancy comparison, we will be able to cope with the uncertainty of Life 

Cycle Assessment results during the Pareto Front selection process. As a result, some of 

the design which has large mean value but still can be selected into the Pareto set if it 

satisfies the probabilistic criteria. Furthermore, the Pareto Front selection will be more 

flexible depending on the designer’s preference by adjusting the probabilistic criteria, Pc. 
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A comparison between the deterministic Pareto Front selection and the probabilistic 

Pareto Front is illustrated in Figure 4.3. In the left figure, the red points are the designs on 

the Pareto Front in a deterministic case. In the right figure, red points are the design on 

Pareto Front, from which we can see that, two more designs has been considered 

Probabilistic Pareto Optima, due to their high probability of not being dominated. 

 

 
 

Figure 4.3. Conceptual illustration for PPS: Deterministic Pareto Front (Left), and Probabilistic 

Pareto Front (Right)  

4.4. Calculation of the Probabilistic Dominance Factor  

The previous sessions have introduced the definition of Probabilistic Dominance, 

Probabilistic Dominance Factor and Probabilistic Pareto Optimum, in order to obtain the 

Probabilistic Front, the calculation of Probabilistic Dominance Factor between each pair 

of designs is critical, which will be introduced in this session from the statistics theory. In 
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this session, normal distributed environmental impact indicators are discussed are an 

example. 

The environmental impact indicator values may follow the symmetrical, bell-

shaped curve of the normal distribution, or Gaussian frequency distribution. Assume on 

one environmental impact indicator fi, for design A, the environmental impact indicator 

value xi
A is normally distributed, with the mean value μi

A and standard deviation σi
A, then 

the distribution can be expressed as: 

A A
2i i

A
i

x1
( )

2A

i A

i

1
f (x ) e (4.2)

2






 

 

Where f(xi
A) is the height of the frequency curve corresponding to an assigned 

value xi
A, μi

A is the mean value of the environment impact indicator fi for design A, and 

σi
A is the standard deviation of the environmental impact indicator fi .  

In order to demonstrate how the Probabilistic Dominance Factor, consider there 

are two designs A and B as shown in Figure 4.4. For one environmental impact indicator, 

for example f1, which are normally distributed, environmental impact indicator value of 

design A is x1
A has the mean value μ1

A=30 and standard deviation is σ1
A=6; similarly, for 

design B, the environment impact indicator x1
B has the mean value μ1

B=32 and standard 

deviation is σ1
B=10. The probability of x1

A < x1
B is given by  

AB A B

1 1 1P P(x x ) (4.3)   
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Figure 4.4. Distributions of  Two designs on  One Environmental Impact Indicator 

If we subtract x1
A from x1

B, then the distribution x1
AB= x1

A - x1
B, so we want to 

get P (x1
AB <0).  

The mean and standard deviation of the distribution of the destruction x1
AB needs 

to be determined. Without going into the statistical details, we know that since the 

environmental impact indicators of the two designs A and B can be considered as 

independent, the result distribution of x1
A and x1

B can be obtained by performing 

algebraic operations on the two independent variables x1
A and x1

B. Then we can get       

AB A B

1 1 1 30 32 2        , AB A 2 B 2 2 2

1 1 1( ) ( ) (6) (10) 11.66        .  

The part of the distribution to the left of x1
AB represents the area for which μ1

A - 

μ1
B <0, which means μ1

A <μ1
B, and x1

A is smaller than x1
B occurs. If we transfer to 

standard normal variable, z=(x-μ)/σ, then at x1
AB=0, 
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AB

1

AB

1

0 0 ( 2)
z 0.17 (4.4)

11.66

  
  


 

From Appendix, the area to the left of z for the cumulative normal distribution 

function, we can see that P (x1
AB <0)=0.5657. If in this case, Pc=0.55, then on f1, the 

Probabilistic Dominance Factor of A over B satisfies the criteria, then other 

environmental impact indicators needs to be checked, to determine that if A 

probabilistically dominates B on all environmental impact indicators or not; If Pc=0.6, 

then the Probabilistic Dominance Factor of A over B does not satisfy the criteria, this 

mean A must not dominate B. 

4.5. Probabilistic Dominance and Probabilistic Pareto Optima 

 

In Chapter 2, the Ranking Based Pareto Filter Algorithm was proposed to 

improve the efficiency of the process of finding Pareto Optima. When uncertainty exists 

in the environmental impact indicators, the dominance check criteria need to be changed 

to the probabilistic dominance in the algorithm. As a result, the flow chart for the 

Probabilistic Pareto Selection algorithm has been changed into the as shown in Figure 4.5 

below. 

The Probabilistic Pareto Filter algorithm is summered below step by step, for 

finding the whole Probabilistic Pareto Front case, and followed with the flow chart in 

Figure 4.4. 

Step-1: Set the most prioritized design attribute fq, q is any number from 1 to n, 

n=number of design decision attribute. 
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Rank all designs with respect to the mean value of  fq, to get the design’s 

ID Di,  

i=[1,…,m]， m=number of designs. 

Step-2: Initialize the algorithm indices and variables: 

i=1, j=1, k=1, l=1 

P=[D1],  

l is the number of Pareto Optima 

Step-3: Set i=i+1; j=1 

Step-4: Set j=j+1 

Step-5: Check one design is dominated by the current Pareto Optima set or not by     

checking: 

If Di≠Pk 

And P( (Di-Pj)s≥0)≥Pc,s 

Then Di is dominated by Pk 

Go to step-6 

Else if k=l 

Update Pareto Set P, P ={D1, Di} 

Else go to step-4 

Step-6: If i=m, go to step-3, else end. 
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Figure 4.5. Flow Chart for Probabilistic Pareto Selection Algorithm 

Because of the adoption of probabilistic dominance criteria, uncertainty in the 

environmental impact indicators has been taken into consideration while filtering the 

Pareto Optima successfully. 
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4.6. Example 

In this session, an example will be shown to illustrate Probabilistic Pareto 

Selection algorithm. 

In this example, assume there are 6 designs, each with six environmental impact 

indicators, which assumed to be normally distributed. In Figure 4.6, for easier 

visualization, the uncertainty was plotted as ±3σ around the mean value. 

   
Figure 4.6. Whole Set of Design Alternatives with Uncertainty 

First, one environmental impact indicator will be chosen as the top prioritized, 

according to the decision maker’s preference. Here we assume f1 is the most important 

indicator, and then all 6 designs will be ranked with respect to f1, as shown in Figure 4.7.  
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Figure 4.7. Whole Set of Design Alternatives with Uncertainty after Ranking 

Then D1 is automatically a Pareto because it has the smallest mean value.  Next, 

the Probabilistic Dominance will be checked for the next design option D2, against D1.  

D2 is not dominated on all indicators by D1, and then D2 is included in the Pareto Set. 

This dominance check continues to D3, D4, D5 and D6, and finally found that D5 and D6 

are dominated, and other four designs, D1, D2, D3 and D4 are not probabilistically 

dominated, thus are to be probabilistic Pareto Optima, as shown in Figure 4.8.  
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Figure 4.8. Whole Set of Pareto Design Alternatives 

4.7. Conclusion and Remarks 

In this chapter, Probabilistic Pareto Front Filter algorithm was introduced in order 

to cope with the uncertainty in the environmental impact indicators. As the first phase of 

the decision making process for sustainable packaging, the algorithm facilitate to select 

the all designs that have a high probability not dominated by other designs. The 

Probabilistic Pareto Front Filter algorithm includes different designs as Probabilistic 

Pareto Optimal design by adjusting the probabilistic criteria. The uncertainty in the 

environmental impact indicators has been successfully incorporated by this method. 
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Chapter 5. 

Sustainable Packaging Design Selection Decision 

Case Studies  

In this chapter, two case studies will be shown to demonstrate the function of the 

decision making framework proposed in previous chapters. In the first case study, the 

environmental impacts indicators are assumed to be deterministic, so the deterministic 

decision making framework will be used, which contains Ranking Based Pareto Filter 

Algorithm, Design Preference Function, and Ranking Based Rate of Substitution. In the 

second case study, the environmental impact indicators are assumed to be normally 

distributed. So in the first phase of the decision making process, Probabilistic Pareto 

Front Filter Algorithm will be utilized to deal with the uncertainty. Then the preferred 

sustainable designs are found by adopting the second phase of the decision making 

framework. The environmental impact indicator values were obtained from 

PackageSmart (EarthShift Inc.) by conducting the Life Cycle Assessment, which are (1) 

Climate Change (kg CO2eq), (2) Energy Demand (MJ), (3) Ecosystems (species/yr.) (4) 

Human Health (DALY), (5) Resources ($/kg) (6) Water depletion (m3) [29]. The primary, 

secondary and tertiary packaging are defined respectively for both case studies, and 

number of packaging options are determined by a number of packaging components, 

materials, processes and transportations manners. 
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5.1. Deterministic Case Study-Soft Tube 

In the deterministic decision making scenario, the soft tube packaging design is 

studied as an example. Soft tube is one of the most useful packaging types which have 

many applications especially in cosmetic, pharmaceutical and consumer products [22]. In 

order to utilize the Life Cycle Assessment to analyze the environmental impacts of the 

soft tube package, the three stages of packaging - primary, secondary and tertiary 

packaging are defined. The three stages of packaging may vary for different product. In 

this case, the primary packaging is composed of a tube, tube head and a cap. The 

secondary packaging is a carton that could be made from different materials. The tertiary 

packaging is defined as the corrugated paperboard box.  

As we mentioned before, the process of the sustainable packaging design 

selection decision making process is as follows: First, all the feasible designs needs to be 

found, which can be obtained by feasibly combine different design input options, such as 

materials options, manufacturing processing and transportation manner. Secondly, all the 

design alternatives will be input into the Life Cycle Assessment software, so the 

environmental impact indicators can be evaluated. Thirdly, the deterministic decision 

making method for sustainable packaging selection, which is proposed in this dissertation 

will be applied to the environmental impact indicator data, so that the sustainable designs 

can be selected. 

5.1.1. Designs Inputs  

 Design Variables  
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In this part, design input variables will be briefly described for the soft tube 

packaging, including material options, manufacturing processing options, and 

transportation manners. 

1. Materials Options: 

HDPE 

HDPE (high-density polyethylene) is widely used as the materials for tube 

packaging and carton ， because of it significant features such as low cost, easy 

processibility and good moisture barrier [22].  

PET 

PET （polyethylene terephthalate), the high melting point of 249 °C makes it one 

of the highest of the common packaging plastics, including soft tube and carton. PET also 

has good heat resistance, excellent grease/oil barrier properties, high tensile strength, 

good printing characteristics, high impact strength, high scuff resistance and excellent 

dimensional stability [22]. 

PP 

PP (polypropylene), is widely used for soft tubes and carton, for its easy 

processibility, good dimensional stability, good water vapor barrier properties, and good 

heal-seal strength. 

Aluminum +PE  

Composite materials is also very often used for soft tubes, one example is 

aluminum and PE.  Aluminum and PE has a wide application on soft tube because its 

good elongation. 

Paperboard 
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Paperboard is the most important materials for folding carton packaging. One 

significant advantage is the low tooling cost comparing with that for other materials such 

as plastics. 

Corrugated Paperboard 

Corrugated paperboard is mostly often used to produce the shipping boxes for its 

durability, easy processibility. 

2. Manufacturing Processing Options: 

Injection molding 

Injection molding uses a powerful extruder with the capability to inject a precise 

amount of resin into a fully enclosed mold, and it is the leading method of manufacturing 

for soft tube. 

Profile Extrusion 

Profile extrusion processing could produce a shape of constant cross section 

profile, such a hollow pipe or tube. 

Welding Process 

Welding is the process to connect the tube and the tube head. 

Production of Carton 

 The production of carton in the Life Cycle Assessment database refers to a 

serious of production sequence, such as one-up die, machine test, production die, 

finishing operations and production printing.  

3. Transportation Manner Options: 

Truck 
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Among many of the transportation manners to choose from, the transportation is 

selected as the diesel truck, because of diesel truck‘s advantages such as durability, less 

maintenance. 

 

 Design Alternatives 

The feasible combination of the previously introduced design variables forms a 

design alternative. Based on the design variables mentioned in the previous session, 

totally of 96 feasible packaging design options are generated by combining different 

feasible materials of each packaging components, which is shown in Figure 5.1. All these 

design alternatives were input into the Life Cycle Assessment Software, and the 

environmental impact indicators are obtained. 

 
Figure 5.1. Design Inputs for Soft Tube Packaging 
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5.1.2. Decision Making for Sustainable Packaging  

 

This session of the case study present the application of the deterministic decision 

making framework for sustainable packaging design, which is the focus of this 

dissertation. As introduced in previous chapters, the first phase of the decision making 

process is to find all, or part of the “good designs”-Pareto Optimal Designs, using the 

Ranking Based Pareto Filter Algorithm. In order to do so, one most prioritized 

environmental impact indicators needs to be selected. For this case study, assume 

resource (f5) is defined as the most important indicator among six indicators; the priority 

about the indicators is f5→f1→f2→f4→f3→f6. All of the design will be ranked with 

respect to f5. By implementing Ranking Based Pareto Filter algorithm, all the 24 Pareto 

Optimal designs can be found, as shown in Figure 5.2. All Pareto Optimal designs are 

represented by the Red color, and non-Pareto Optimal designs are represented the 

environmental impacts of the Pareto Front designs are plotted in blue. 

  
Figure 5.2. Radar Chart of Environmental Impact Indicator of All Designs 
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The Pareto Optimal designs are the “good designs” from the original set of design 

alternatives. Further decision aid is needed to select the most decision maker’s preferred 

designs. At this stage of the decision making, decision maker’s preference, including 

threshold values and Marginal Rate of Substation needs to be implemented. The first step 

of the preference implementation is the classification of the Pareto Designs according to 

the satisfactory value for each of the environmental impact indicator, which is, Design 

Preference Function. For different cases, the Design Preference Function for each 

indicator may vary, since these preferences come from regulation, policy, local resource 

availability and so on. The Design Preference Function for this soft tube case study has 

been plotted in Figure 5.3. 

 
Figure 5.3. Design Preference Function for Soft Tube 
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After the utilization of Design Preference Function, all the Pareto Designs’ 

environmental impact indicators will be converted into the preferred value, in this 

dissertation which is 0 to 1, which is plotted in Figure 5.4.  

 
Figure 5.4. Pareto Optimal Designs of The Soft Tube  

After the environmental impact indicators have been converted into the preferred 

values, the trade-off between each Pareto Optimal Designs needs to be differentiated, 

thus find out the decision maker’s preferred designs. Since f5 is the most prioritized 

design attribute, all Pareto Optimal Designs will be ranked with respect to f5 value. Then 

all the Pareto Designs will get a new ID, form D1 to DP, P is the total number of Pareto 

Optima. D1, who has the best performance on f5, is the “Most Preferred Design” among 

all the Pareto Optima. Next, Ranking Based Rate of Substitution will help to selected all 

the designs that have a good compensation on other environmental impact indicator, 

comparing with the value of D1 on f5.  
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Finally, all of the designs that have a good compensation comparing with the 

“most preferred design” are selected. The final selected designs have been plotted in 

Figure 5.5, and listed in Table 5.1. 

 
Figure 5.5. Radar Chart of all Pareto Optimal Designs after Design Preference Function 

 

 

 

Design Tube Tube Head Cap Carton 

Rate of 

Substitution: 

All  

Design 1 HDPE HDPE HDPE PP  

Design 2 HDPE PP Carton Paperboard f2, f4, f3 

Design 3 PP PP HDPE Paperboard f4 

Design 4 HDPE HDPE HDPE HDPE f3, f6 

Design 5 HDPE PP HDPE HDPE f6 

 

Table 5.1. List of Optimal Selection for Sustainable Milk Packaging Designs Considering All Decision 

Attributes 
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If a smaller set is needed for the decision maker, we could reduce the decision 

attributes. By reducing f3 and f6, Design 4 and Design 5 will be eliminated. Thus only 

Design 1, Design and Design 3 are selected, which is in Table 5.2. 

Design Tube Tube Head Cap Carton 

Rate of 

Substitution: 

Reduce f3, f6 

Design 1 HDPE HDPE HDPE PP  

Design 2 HDPE PP Carton Paperboard f2, f4, f3 

Design 3 PP PP HDPE Paperboard f4 

Design 4 HDPE HDPE HDPE HDPE f3, f6 

Design 5 HDPE PP HDPE HDPE f6 

 

Table 5.2. List of Final Selection for Sustainable Milk Packaging Designs after Reducing f3 and f6 

5.2. Non-deterministic Case Study -Milk Packaging 

In the non-deterministic decision making scenario, milk packaging design is 

shown as a case study. Milk is one of the largest consumed food products in the world, 

and many different packaging designs are developed to protect the milk product from 

recontamination. Therefore, in this example, the milk packaging system is studied to 

demonstrate the non-deterministic decision making tool. 

5.2.1. Design Inputs  

As the first step, a set of design options needs to be generated by considering 

different design input options, which will be introduced below. 

 

 Design Variables  
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1. Materials Options: 

The features of many of the materials that will be used for milk packaging, such 

as HDPE, PET and PP, have been introduced in the case study for soft tube, so will not 

be repeated here again. And some materials special for milk packaging are introduced as 

follows: 

Glass 

Glass is used for milk packaging because it is easy to bed recycled, and evern 

reused. Glass is also provides good moisture barrier. 

Carton 

Carton with a thin layer of PE film is also a widely used milk packaging for its 

advantages such as light weight, easy shaping and so on. 

Aluminum 

Aluminum is used to produce for glass milk packaging closure, for it easy shaping 

and elongation. 

Wood 

Wood is a very important material for tertiary packaging, or shipping unit, 

because it is low cost, renewable, green, clean, light weight, also has very good strength 

and durability.  

2. Manufacturing Processing Options  

Blow molding 

Blow molding is moderate in cost, and allows users to customize the design mold. 

So it could satisfy the user to create a variety of milk packaging bottles. 

Production of Wood Pallet 
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Wood pallets are extruded using special dies. High temperature and high pressure 

are generated in this process, which soften the components of the wood and bind the 

materials in the pallet together. 

3. Transportation Manner Options 

In this case study, the transportation manner is also selected as truck, same as the 

first case study. 

 Design Alternatives 

By combining the compatible design variables, the design alternatives are 

generated.  The three packaging stages for milk packaging levels are defined as shown in 

Figure 5.6. The primary packaging is composed of two components such as jug and cap. 

The secondary and tertiary packaging is defined too. The detail packaging options for the 

milk packaging case study are illustrated in Figure 5.6. For the jug, three different types 

of plastic materials (HDPE, Recycled HDPE, PET), glass, and carton are implemented. In 

case of plastic and carton jug, the HDPE, and PP materials are used for closure, and for 

glass jug, aluminum closure was used. For secondary packaging, two types of plastic 

material (HDPE, PP), and two types of carton packaging are considered as an example 

(carton box and carton container with wrap). Through these packaging combinations, 

totally 44 packaging options are generated in order to find the most desired packaging. 

All of them are input into the Life Cycle Assessment software to analyzed the 

environmental impact. 
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Figure 5.6.Design Inputs for Milk Packaging 

5.2.2. Decision Making for Sustainable Packaging  

This session of the case study present the application of the non-deterministic 

decision making framework for sustainable packaging design. The first phase of the 

decision making process is to find all, or part of the “good designs”-Pareto Optimal 

Designs. And in the non-deterministic case, uncertainty needs to be taken into 

consideration, so the Probabilistic Pareto Filter Algorithm is adopted. In this case study, 

probability of failure criteria is defined as lower than 0.45. In order to do so, one most 

prioritized environmental impact indicators needs to be selected. For this case study, 

assume resource (f1) is defined as the most important indicator among six indicators; the 

priority is defined from high to low as: f1→f3→f5→f4→f2→f6. All of the design will be 

ranked with respect to f1. By implementing Probabilistic Based Pareto Filter algorithm, 

all the 6 Pareto Optimal designs can be found, as shown in Figure 5.7. All Pareto Optimal 
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designs are represented by the Red color, and non-Pareto Optimal designs are represented 

the environmental impacts of the Pareto Front designs are plotted in random colors. The 

uncertainty was represented by short bar, which is 3 times of the standard deviation. 

 

 
Figure 5.7. Radar Chart for Environmental Impact Indicators for All Milk Packaging Designs with 

Uncertainty 

Next, similarly to the soft tube case study, Design Preference Function needs to 

be defined to implement the decision maker’s preference. The mean value was utilized of 

the environmental impact indicator in the Design Preference Function. The Design 

Preference Function for this milk packaging case study has been plotted in Figure 5.8.  
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Figure 5.8. Design Preference Function for Milk Packaging 

After Design Preference Function is applied, the advantages of trade off are 

examined and eight designs are founded as final designs as shown in Figure 5.9. Once 

final designs are founded, it is also known that which environmental impact indicators are 

giving advantages for each design during Pareto Selections and rate of substitution. 

Therefore, the final design can also be ranked as group of design depending on the 

priority of the indicator. Since f1 is the most important function, the priority is defined 

from high to low as: f1→f3→f5→f4→f2→f6 and the final design and advantage functions 

of trade-off is list in Table 5.2. 
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Figure 5.9. Radar Plot for all Pareto Selections for Sustainable Milk Packaging Selections 

 

 

 

Design Jug Closure Container 

Rate of 

Substitution: 

All 

Design 1 Carton PP Paperboard  

Design 2 rHDPE PP Carton f5, f4,f2 

Design 3 rHDPE PP PP f5 

Design 4 Carton PP Paper+Wrap f4,f2 

Design 5 rHDPE HDPE Carton f2 

Design 6 rHDPE HDEP PP f2 

 

Table 5.3. List of All Pareto Selections for Sustainable Milk Packaging Designs 

If designer only focusing on first three environmental impacts such as f1, f3 and f5, 

and f4, then design 1 to 4 can be selected as final packaging design set as highlighted with 

green color. Moreover, different indicator priority can lead different final design selection 

which can implement different situations such as geological reasons or regulations.  
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Design Jug Closure Container 

Rate of 

Substitution: 

Reducing f2,f6 

Design 1 Carton PP Paperboard  

Design 2 rHDPE PP Carton f5, f4,f2 

Design 3 rHDPE PP PP f5 

Design 4 Carton PP Paper+Wrap f4,f2 

Design 5 rHDPE HDPE Carton f2 

Design 6 rHDPE HDEP PP f2 

 

Table 5.4. List of Final Selection for Sustainable Milk Packaging Designs after Reducing f2 and f6 

5.3. Conclusion and Remarks 

In this chapter, two case studies were shown, to illustrate the procedure and 

effectiveness of both the deterministic and non-deterministic decision making framework 

for sustainable packaging design.     

In the deterministic case, based on the environmental impact indicators from Life 

Cycle Assessment, Ranking Based Rate of Substitution can find the Pareto Optimal 

designs of the packaging options. Furthermore, by using the Design Preference Function 

and Ranking Based Rate of Substitution, the trade-off between environmental impact 

indicators for each design can be handled. 

 In the non-deterministic case, the first phase of the decision making framework 

has been revised to Probabilistic Pareto Selection finds the Pareto Optimal designs, based 

on the environmental impact indicators that have variation.  

The two case studies demonstrate how the proposed decision making framework 

can guide the decision for sustainable packaging options. 
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Chapter 6. 

Conclusion and Future Work 

6.1. Summary  

A systematic decision making framework to choose sustainable packaging 

designs from a set of design alternatives has been proposed in this research work. There 

are two phase in this decision making framework, first is to find the Pareto Optimal 

Designs efficiently, using Ranking Based Pareto Filter algorithm, eliminate the bad 

designs, which are the dominated design; secondly, the decision maker’s preference are 

corporate to select the most sustainable packaging design solution among the non-

dominated designs by using Design Preference Function and Ranking Based Rate of 

Substitution. 

 In order to find the more sustainable packaging designs, a set of design 

alternatives were generated which serve the same function, from which the more 

sustainable packaging design was selected. The Life Cycle Assessment is conducted for 

the packaging designs, using the Life Cycle Assessment software, to evaluate the 

environmental impacts. Then the design decision making for the sustainable packaging 

based on the Life Cycle Assessment results was formulated as Multi-Criteria Decision 

Making Problem. In the decision making framework, the Pareto Optimum Concept was 

adopted to differentiate good designs and bad designs; and the Marginal Rate of 

Substitution concept was adopted to deal with the trade-off between Pareto Optimal 

Designs. Ranking Based Pareto Front Filter algorithm was proposed to improve the 
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efficiency of the process of find the Pareto Optimal designs, Design Preference Function 

and Ranking Based Rate of Substitution was proposed to integrate the decision maker’s 

preference to find the decision maker’s preferred designs, and narrow the final solutions. 

Probabilistic Pareto Filter algorithm was proposed to find the Probabilistic Pareto Optima 

when the environmental impact indicator values is involved with uncertainty.  

Soft tube packaging for the deterministic case and milk packaging for the non-

deterministic case have been selected as case study, because of their wide application, 

and large number of packaging options. The sustainable packaging designs were found 

through the proposed decision making process, in each case study, for deterministic and 

non-deterministic case, respectively. As a result, not only the proposed decision making 

framework can be utilized to aid the soft tube and milk packaging design decision, but 

also it can be applied other packaging system. 

6.2. Future Work 

The proposed framework of decision making for sustainable packaging based on 

Life Cycle Assessment can be applied to many packaging design decision problems. In 

the future study, the proposed decision making framework can be applied to find the 

sustainable packaging design for other many other packaging systems. Different design 

input of the packaging also can be considered with different materials selections, 

manufacturing process, and transportation manners. 

Another focus for the future work could be devoted to the uncertainty. Especially 

in the viewpoint of non-deterministic Pareto filter process; there are many different kinds 

of statistical distributions for the environmental impact indicators besides the distribution 
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mentioned in the dissertation. In the Future study, the Pareto filter process should be 

studied for other distractions, such as Weibull and Gumbel distributions.  

Also, in the non-deterministic decision making framework, uncertainty has been 

addressed only in the first phrase-Pareto Optima Selection, more research should be done 

to the next step, such as in the Design Preference Function and Ranking Based Rate of 

Substitution. 
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Appendices 

Cumulative Distribution Function Value for Standard Normal Distribution 
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Cumulative Distribution Function Value for Standard Normal Distribution 

(Continued) 

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 
-3.9 .00005 .00005 .00004 .00004 .00004 .00004 .00004 .00004 .00003 .00003 
-3.8 .00007 .00007 .00007 .00006 .00006 .00006 .00006 .00005 .00005 .00005 
-3.7 .00011 .00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008 .00008 
-3.6 .00016 .00015 .00015 .00014 .00014 .00013 .00013 .00012 .00012 .00011 
-3.5 .00023 .00022 .00022 .00021 .00020 .00019 .00019 .00018 .00017 .00017 
-3.4 .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024 
-3.3 .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035 
-3.2 .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050 
-3.1 .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071 
-3.0 .00135 .00131 .00126 .00122 .00118 .00114 .00111 .00107 .00104 .00100 
-2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139 
-2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193 
-2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264 
-2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357 
-2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480 
-2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639 
-2.3 .01072 .01044 .01017 .00990 .00964 .00939 .00914 .00889 .00866 .00842 
-2.2 .01390 .01355 .01321 .01287 .01255 .01222 .01191 .01160 .01130 .01101 
-2.1 .01786 .01743 .01700 .01659 .01618 .01578 .01539 .01500 .01463 .01426 
-2.0 .02275 .02222 .02169 .02118 .02068 .02018 .01970 .01923 .01876 .01831 
-1.9 .02872 .02807 .02743 .02680 .02619 .02559 .02500 .02442 .02385 .02330 
-1.8 .03593 .03515 .03438 .03362 .03288 .03216 .03144 .03074 .03005 .02938 
-1.7 .04457 .04363 .04272 .04182 .04093 .04006 .03920 .03836 .03754 .03673 
-1.6 .05480 .05370 .05262 .05155 .05050 .04947 .04846 .04746 .04648 .04551 
-1.5 .06681 .06552 .06426 .06301 .06178 .06057 .05938 .05821 .05705 .05592 
-1.4 .08076 .07927 .07780 .07636 .07493 .07353 .07215 .07078 .06944 .06811 
-1.3 .09680 .09510 .09342 .09176 .09012 .08851 .08691 .08534 .08379 .08226 
-1.2 .11507 .11314 .11123 .10935 .10749 .10565 .10383 .10204 .10027 .9853 
-1.1 .13567 .13350 .13136 .12924 .12714 .12507 .12302 .12100 .11900 .11702 
-1.0 .15866 .15625 .15386 .15151 .14917 .14686 .14457 .14231 .14007 .13786 
-0.9 .18406 .18414 .17879 .17619 .17361 .17106 .16853 .16602 .16354 .16109 
-0.8 .21186 .20897 .20611 .20327 .20045 .19766 .19489 .19215 .18943 .18673 
-0.7 .24196 .23885 .23576 .23270 .22965 .22663 .22363 .22065 .21770 .21476 
-0.6 .27425 .27093 .26763 .26435 .26109 .25785 .25463 .25143 .24825 .24510 
-0.5 .30854 .30503 .30153 .29806 .29460 .29116 .28774 .28434 .28096 .27760 
-0.4 .34458 .34090 .33724 .33360 .32997 .32636 .32276 .31918 .31561 .31207 
-0.3 .38209 .37828 .37448 .37070 .36693 .36317 .35942 .35569 .35197 .34827 
-0.2 .42074 .41683 .41294 .40905 .40517 .40129 .39743 .39358 .38974 .38591 
-0.1 .46017 .45620 .45224 .44828 .44433 .44038 .43644 .43251 .42858 .42465 
0.0 .50000 .49601 .49202 .48803 .48405 .48006 .47608 .47210 .46812 .46414 
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Cumulative Distribution Function Value for Standard Normal Distribution 

(Continued)  

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 .50000 .50399 .50798 .51197 .51595 .51994 .52392 .52790 .53188 .53586 
0.1 .53983 .54380 .54776 .55172 .55567 .55962 .56356 .56749 .57142 .57535 
0.2 .57926 .58317 .58706 .59095 .59483 .59871 .60257 .60642 .61026 .61409 
0.3 .61791 .62172 .62552 .62930 .63307 .63683 .64058 .64431 .64803 .65173 
0.4 .65542 .65910 .66276 .66640 .67003 .67364 .67724 .68082 .68439 .68793 

0.5 .69146 .69497 .69847 .70194 .70540 .70884 .71226 .71566 .71904 .72240 
0.6 .72575 .72907 .73237 .73565 .73891 .74215 .74537 .74857 .75175 .75490 
0.7 .75804 .76115 .76424 .76730 .77035 .77337 .77637 .77935 .78230 .78524 
0.8 .78814 .79103 .79389 .79673 .79955 .80234 .80511 .80785 .81057 .81327 
0.9 .81594 .81859 .82121 .82381 .82639 .82894 .83147 .83398 .83646 .83891 

1.0 .84134 .84375 .84614 .84849 .85083 .85314 .85543 .85769 .85993 .86214 
1.1 .86433 .86650 .86864 .87076 .87286 .87493 .87698 .87900 .88100 .88298 
1.2 .88493 .88686 .88877 .89065 .89251 .89435 .89617 .89796 .89973 .90147 
1.3 .90320 .90490 .90654 .90824 .90988 .91149 .91309 .91466 .91621 .91774 
1.4 .91924 .92073 .92220 .92364 .92507 .92647 .92785 .92922 .93056 .93189 

1.5 .93319 .93448 .93574 .93699 .93822 .93943 .94062 .94179 .94295 .94408 
1.6 .94520 .94630 .94738 .94845 .94950 .95053 .95154 .95254 .95352 .95449 
1.7 .95543 .95637 .95728 .95818 .95907 .95994 .96080 .96164 .96246 .96327 
1.8 .96407 .96485 .96562 .96638 .96712 .96784 .96856 .96926 .96995 .97062 
1.9 .97128 .97193 .97257 .97320 .97381 .97441 .97500 .97558 .97615 .91670 

2.0 .97725 .97778 .97831 .97882 .97932 .97982 .98030 .98077 .98124 .98169 
2.1 .98214 .98257 .98300 .98341 .98382 .98422 .98461 .98500 .98537 .98574 
2.2 .98610 .98645 .98679 .98713 .98745 .98778 .98809 .98840 .98870 .98899 
2.3 .98928 .98956 .98983 .99010 .99036 .99061 .99086 .99111 .99134 .99158 
2.4 .99180 .99202 .99224 .99245 .99266 .99286 .99305 .99324 .99343 .99361 

2.5 .99379 .99396 .99413 .99430 .99446 .99461 .99477 .99492 .99506 .99520 
2.6 .99534 .99547 .99560 .99573 .99585 .99598 .99609 .99621 .99632 .99643 
2.7 .99653 .99664 .99674 .99683 .99693 .99702 .99711 .99720 .99728 .99736 
2.8 .99744 .99752 .99760 .99767 .99774 .99781 .99788 .99795 .99801 .99807 
2.9 .99813 .99819 .99825 .99831 .99836 .99841 .99846 .99851 .99856 .99861 

3.0 .99865 .99869 .99874 .99878 .999882 .99886 .99889 .99893 .99898 .99900 
3.1 .99903 .99906 .99910 .99913 .99916 .99918 .99921 .99924 .99926 .99929 
3.2 .99931 .99934 .99936 .99938 .99940 .99942 .99944 .99946 .99948 .99950 
3.3 .99952 .99953 .99955 .99957 .99958 .99960 .99961 .99962 .99964 .99965 
3.4 .99966 .99968 .99969 .99970 .99971 .99972 .99973 .99974 .99975 .99976 

3.5 .99977 .99978 .99978 .99979 .99980 .99981 .99981 .99982 .99983 .99983 
3.6 .99984 .99985 .99985 .99986 .99986 .99987 .99987 .99988 .99988 .99989 
3.7 .99989 .99990 .99990 .99990 .99991 .99991 .99992 .99992 .99992 .99992 
3.8 .99993 .99993 .99993 .99994 .99994 .99994 .99994 .99995 .99995 .99995 
3.9 .99995 .99995 .99996 .99996 .99996 .99996 .99996 .99996 .99997 .99997 
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