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ABSTRACT OF THE THESIS

Using Pilot-Jobs for Developing eThread, a

Meta-threading Pipeline

by Anjanibhargavi Ragothaman

Thesis Director: DR. SHANTENU JHA

The genome revolution has produced vast amount of sequence information, but the

functional annotation of most of the gene products are yet to be explored in depth.

Functional inference of low sequence identity is brought about by the structure based

template methods. To model and understand these proteome scale functions, state-

of-the-art algorithms like eThread is used. They are compute intensive and demand

efficient and optimal use of the underlying resources. Combination of large scale data

and complex workload raises the need for pilot based approaches. eThread is a meta-

threading protein structure modeling algorithm which is supported by ten independent

single-threading algorithms whose computational complexity also depends on the num-

ber and size of the input sequences. In this thesis, eThread pipeline is developed on an

extensible, scalable and interoperable pilot-job based framework and it supports con-

current tasks execution and data-parallelization on heterogeneous resources deployed on

Amazon EC2 with S3 as data repository. This study aims to understand the dominant

factors which influence the performance of eThread on EC2. This analysis suggests an

optimized solution based on execution time and cost of implementation. It primarily

achieves better utilization of resources by scaling workload on multiple resources. Fur-

ther ideas on increasing resource capacity and discussions on the importance of dynamic
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execution of tasks are also laid out.
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Chapter 1

Introduction

Systems Biology aims to understand the components in the living systems, how they in-

teract and how diseases are manifested due to its malfunctions. Genome revolution was

a major point which created a huge amount of sequence information for the community.

At the point of writing this dissertation, the Protein Data Bank had 101741 structures

[1]. Nevertheless, molecular functions of most of these products still remain unknown.

Standard homology-based tools over-predict the molecular function eventually leading

to high level of mis-annotation [2]. Structure-based approaches to annotate provide a

promising solution for this issue. Protein structure modeling plays an essential role in

Functional Genomics by helping to decipher structural information which subsequently

gets utilized for protein function inference [3].

Presently, the most accurate and widely used computational protein structure pre-

diction methods build on information from related proteins and many assessment meth-

ods like CASP (Critical Assessment of Protein Structure Prediction) use threading and

template based methods for tertiary structure prediction [4, 5]. A number of techniques

search for low-sequence identity templates called as the twilight zone sequence similar-

ity structures [6] to construct the structural model and infer its molecular function to

avoid the issue of mis-annotation. These structure based approaches are powerful tools

in speeding up the genome-wide protein annotation and help to overcome the limitation

of traditional sequence based approaches.

Specifically, there is a development of meta-threading techniques for protein struc-

ture prediction in the recent time. These methods consider output from different indi-

vidual threading algorithms and construct target-to-template alignments. They stand
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a better chance in accurate predictions when compared to single threading method-

ologies. There are existing successful meta-threading predictors like LOMETS [7] and

neural-network based predictor Pcons [8]. Along this line is eThread, a highly accurate

meta-threading model to identify templates for the template-based modelling of protein

structures [4]. It combines ten state-of-the-art threading algorithms and uses machine

learning to optimally select structural templates and provide functional modeling.

However, one of the critical scientific challenges is to optimally combine the output

of the individual threading algorithms to provide an increased overall accuracy over sin-

gle threading methods. But, it comes with a caveat. With the increase in complexity

of the algorithms, there is an equivalent increase in the demand for more powerful and

intelligent computational resources. As these meta-threading procedures have multiple

algorithms, it is highly important to consider the implementation details and optimal

utilization of the computing resources. These meta-threading pipelines pose compu-

tational challenges due to their heterogeneous collection of the individual threading

algorithms and differ in terms of input files, time to completion, memory usage and

I/O operations. Moreover, they involve data intensive computations. Hence, a thor-

ough profiling of the resource and the algorithm is necessary to execute the complete

implementation in an optimal way.

In previous work by Brylinski et al, a comprehensive study of resource profiling for

eThread in terms of time to solution and memory footprint was performed on dedicated

HPC clusters [6]. Though this approach of using individual machine is widely used in

many scenarios, there is a developing need for distributed computing due to various

reasons. First of all, eThread comprises of diverse set of algorithms each differing in

their computational needs. Typically HPC clusters are homogeneous and consist of

identical nodes which may not be necessary for all the threading algorithms. They

typical involve large amount of data sets which demands for more storage space.

On this account, cloud infrastructures offer wide and flexible range of instance types

in different combinations of CPU, memory, storage and networking capacity on demand.

The user gets the freedom to customize the environment for specific needs. Also, cloud

infrastructure is aptly suited for applications which are loosely coupled [9]. eThread is
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a classic example for such an application as the ten threading algorithms are not depen-

dent on each other. Thus, it provides an opportunity to optimally use the infrastructure

and on efficient implementation methods, it avoids over or under utilization of the re-

sources. Apart from resource profiling it is also essential to consider the cost-to-solution

as different instance types come with different hourly rates.

Nevertheless, for an application like eThread, the design and development on any

particular infrastructure requires knowledge about that platform, its programming sys-

tem and functioning. In this case, if the application development is independent of the

runtime environment it will be portable to any kind of infrastructure. With such an ap-

plication, it becomes very flexible to deploy it in diverse infrastructure types like HPC,

Grids or clouds. Those applications that are flexible, extensible and easily deployable

are not only at an advantage to adapt to any kind of infrastructure and but are also

readily scalable. Hence the application can support the testing of both simple genomic

scale and complex proteome scale simulations.

There are key considerations to make while designing the eThread application as

there are varied options available with the cloud infrastructure. It is important to de-

compose the application, design the workflow for the individual threading algorithm

and schedule appropriate workloads to instances for optimal utilization along with cost

in consideration. Interestingly, distributed infrastructure [10, 11] and pilot-job abstrac-

tions [9, 12, 13] have been effectively used in many large scale bioinformatics applications

which share these afore mentioned concerns.

BigJob [14] is a SAGA based Pilot-Job framework which is very helpful in flexible

and scalable implementation, coordination and management of the infrastructure and

help in efficient utilization of the resource. The pilot-job system acts as a container

for the number of sub-jobs in the workflow and helps in concurrent execution of the

chain and domain libraries in the protein threading process of each single-threading tool.

They also help in submitting the tasks to heterogeneous virtual machines and in parallel

execution of all the ten protein threading tools there by making it very optimal. This

dissertation handles the pilot-job based implementation of eThread meta-threading

pipeline on cloud infrastructure to tackle an efficient execution of the workflow.
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1.1 Related Work

Due to the increase in the improvements of available computational resources, the last

two decades has seen lot of work on using HPDC resources for scientific workflows. For

instance, Montage [15] is an image processing application which takes multiple images

of the sky from different telescopes and builds a mosaic equivalent to a single image. It

follows a complex set of workflow represented by a DAG and is fed to Pegasus workflow

planner [16]. Montage is computationally intensive and the jobs are executed across

distributed resources which help in better utilization of the idle computational resources

and in optimizing the time-to-solution. Replica Exchange molecular dynamics simula-

tions [17] are classic examples of compute and data intensive bio-molecular applications.

They are used to understand problems ranging from protein folding dynamics to bind-

ing affinity calculations [18, 19]. Naturally, there are multiple implementations of RE

simulations to fulfill the need of efficient and scalable mechanisms to execute in the

available resources [20, 21, 22, 23].

These diverse examples show case few non-trivial applications which are similar in

resource requirements, which are mostly parallel and distributed resources, and demand

an efficient model for optimized time-to-solution, data transfer and overall performance.

There are also other upcoming programming models and algorithms like Hadoop and

MapReduce to facilitate large scale distributed data processing [11, 24].

In direct relation to this thesis, the initial work on eThread was performed by Brylin-

skis group to understand the behaviour of the application on a dedicated resource [6].

The implementation methods followed a simplified version of the Portable Batch System

(PBS) prescribed by preliminary set of rules. The resource profiling helped to derive a

fundamental understanding of the nature of single-threading tools. It helped in getting

an insight that the behaviour of each protein threading tool varies widely in terms of

time-to-solution and memory utilization. Though standalone systems have their own

advantages, they are limited by nature. They do not meet increasing computing de-

mands and the user would meet storage constraints with increase in data set size. An

application which uses heterogeneous set of algorithms is bound to have varied resource
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demands and the individual resource will not be able to meet the expectations in an

efficient manner. This paved the way to think about alternate solutions to implement

eThread. Cloud computing fits the requirement as they provide abundant immediately

available resources in varied ranges and provide both scale-up and scale-out options.

1.2 Structure of the Thesis

This thesis contains five chapters. Chapter 1 provided the motivation behind this dis-

sertation. It introduced meta-threading in genomics, discussed the concepts underlying

eThread pipeline and the motivation behind its need. Chapter 2 provides the required

theory and background of eThread, pilot-jobs , cloud infrastructure and the benchmark

dataset used. Chapter 3 introduces the implementation of eThread pipeline. It explains

the details of the python program and the deployment and execution details. Exper-

imental benchmark results are presented with the analysis in Chapter 4 . Chapter 5

provides the concluding remarks with directions for future work. Finally, Appendix is

included explaining the steps required for any user to replicate the experiment to their

environment.
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Chapter 2

Background

This chapter deals with the background required to develop the eThread pipeline on the

Amazon EC2 cloud infrastructure using the pilot framework. It provides an overview

about eThread, the infrastructure used and explains the concept of pilot-jobs and dis-

cusses the specific implementation (BigJob) of the concept including the control flow

and data flow within BigJob.

2.1 Overview of eThread

Protein threading helps in predicting the protein structure and further in functional

annotation. Meta-threading techniques are creating headway in protein structure pre-

diction. These methods identify template structures and construct target-to-template

alignments by analyzing outputs from different threading algorithms. These combined

predictions have a higher chance to be accurate than those produced by single threading

algorithms. Also, previous work has shown that meta-threading supported by machine-

learning outperforms single-threading approaches in functional template selection [25].

It effectively identifies many facets of protein molecular function even in a low sequence

identity regime. Additional advantage of the meta-predictors is the improved estima-

tion of the reliability of the predictions [25]. eThread employs the meta-threading

analysis method with the support of machine-learning making it one of the robust

meta-threading analysis tools.

2.2 Method Overview

The meta-threading flowchart for the eThread algorithm is shown in figure 2.1. For

an amino acid input sequence, the algorithm applies the meta-threading to search for
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Figure 2.1: Flowchart of meta-threading pipeline of eThread. Pipeline includes tem-
plate identification by individual threading algorithms followed by target-to-template
alignment using eThread. Partial representation of the complete flowchart from [4]

structurally similar templates in two libraries, which consists of full protein chains

and individual domains. In threading individual domains are included to improve the

recognition of the templates that may only partially cover a multiple-domain target [26].

Also, if a full chain template is found, it provides information about the mutual orienta-

tion of domains [4]. The identified templates are subsequently filtered by eThread and

the corresponding target-to-template alignments are constructed. The optimization of

eThread pipeline using pilot framework is implemented till the meta-threading process.

Later stages of the alignment, followed by inter-residue contact prediction, 3D structure

modeling and model ranking are not the focal point in this dissertation.

2.3 Threading Component Methods

eThread is a meta-threading procedure which combines prediction from ten state-of-

the-art single-threading algorithms: CS/CSI-BLAST [27], HHpred [28], HMMER [29],

pfTools [30], pGenThreader [31], COMPASS [32], SAM-T2K [33], SPARKS [26], SP3

[26], and Threader [34]. It also uses PSIPRED [35] for secondary structure prediction

and NCBI BLAST [36] for sequence profile construction. Table 2.1 provides the function
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Table 2.1: Components of eThread pipeline for protein threading and sequence analysis
Threading Tool Purpose

COMPASS Protein threading/fold recognition
CS/CSI-BLAST Protein threading/fold recognition

HHpred Protein threading/fold recognition
HMMER Protein threading/fold recognition

NCBI BLAST Sequence alignment
pfTools Protein threading/fold recognition and motif recognition

pGenThreader Protein threading/fold recognition
PSIPRED Secondary structure prediction
SAM-T2K Protein threading/fold recognition

SPARKS/SP3 Protein threading/fold recognition
Threader Protein threading/fold recognition

of each of the programs used in eThread. Each individual threading/fold recognition

algorithm assesses structures in the template library using a scoring system. For exam-

ple, SP3, SPARKS and Threader assign Z-scores using the entire template library as

a background. COMPASS, CSI-BLAST, HMMER and SAM-T2K employ analytically

estimated E-values whereas HHpred uses calibrated probabilities for true relationship

between proteins. For template selection, eThread was constructed using Support Vec-

tor Machines for classification problems (SVC) to assess whether a specific template is

structurally related to the target with a TM-score of > 0.4. It is observed that the tem-

plate structures above this value contain sufficient information to enable the full-length

reconstruction of the target structure [37].The accuracy of the template selected is eval-

uated using 2-fold cross validation excluding those templates whose sequence identity

to target is > 40%.

2.4 Computational Requirements of Threading Tools

The meta-threading pipeline consists of heterogeneous set of algorithms and it poses

significant challenges for implementation and optimized utilization of the resources.

The computational load would vary for each algorithm in terms of time to completion,

memory, I/O operations and network bandwidth utilization. Some tools do not share

the common input files or access the external data libraries. The threading algorithms

quite often employ complicated dependencies between the individual tasks. Present
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solutions to these meta-threading tools provide pseudo-gateways such as web interfaces

that query several public servers.

An attempt to use a dedicated HPC machine with local installation of all the pack-

ages and software has been tried earlier [6]. Though it provides a reliable solution,

not many are equipped with powerful resources to implement it in full scale. An al-

ternative approach was taken to implement the meta-threading pipeline on a cloud

platform. It provides a flexible and cost effective infrastructure solution. Further, the

resource-on-demand option by the cloud providers avoids the queue wait time which

is faced while using public shared scientific computing resources. These factors made

cloud technology a viable option for eThread application.

2.5 Experiment Testing Infrastructure

eThread pipeline was implemented on cloud infrastructure. Cloud computing environ-

ment offers infrastructure service as pay per use model. It provides abundant resources

immediately on demand. It also helps to scale up or down to accommodate chang-

ing computing requirements. Cloud infrastructure provides diverse types of instances

for different computing needs. It is very advantageous to run heterogeneous tools on

various tailored platforms rather on a single dedicated hardware.

Specifically, Amazon EC2 cloud infrastructure was used for our experimentation.

It offers Amazon machine Images (AMIs) which are the pre-configured templates for

the instances. It enables faster creation of instances and in creation of images with the

required tools.

Table 2.2: EC2 Instance Types Chosen for the experimentation and their specifications
Instance Type Number of Cores Memory(GB)

t1.micro economic 1 0.613
m1.small General Purpose 1 1.7

m1.medium General Purpose 1 3.7
m1.large Memory optimized 2 7.5

c1.medium Compute optimized 2 1.7
c1.xlarge Compute optimized 8 7.0

hi1.4xlarge Storage optimized 16 60.5
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Amazon EC2 provides varied instance types which fit different purposes. The in-

stance types are classified based on varying CPU, memory, storage and networking

capability. Users are free to choose any instance combinations for their needs. For

our experimentation five types of VMs were chosen based on the results from previous

study [6] of characterization of the threading algorithms. Economic, general purpose,

memory optimized, compute optimized and storage optimized were the instance types

chosen based on memory and storage requirements of the threading tools. Economic

type of instance used was t1.micro. This is very low cost instances which provides burst

of CPU performance for a short period of time. The general purpose instances cho-

sen were m1.small and m1.medium. Memory optimized instance chosen was m1.large.

C1.medium and c1.xlarge were the compute optimized instances. Finally, the storage

optimized instance chosen was hi1.4xlarge. The specification of each instance chosen is

listed in the table 2.2.

2.6 Pilot-Jobs

Pilot-Job is a kind of multi-level scheduling mechanism which manages the workload

submission to a resource. The structure for a pilot-job framework was proposed in P*

model [38]. According to P* Model, pilot-jobs enable utilization of a placeholder job

as a container for a dynamically determined set of compute tasks. They are used in

distributed computing for scheduling tasks at multiple levels possibly to heterogeneous

systems. They provide an efficient abstraction for dynamic execution and utilization

of a dynamic resource pool. They are very helpful for decoupling task submission from

resource assignment. These tasks could be a single task, set of independent sub-tasks

forming a bag of tasks, or a set of dependent tasks forming an ensemble. Thus, they

effectively reduce the queue wait time in distributed HPC machines.

Pilot-Jobs also relax the user from the challenge of mapping specific tasks to spe-

cific resource in a heterogeneous environment. Some of the existing pilot-job frame-

works are BigJob [14], Condor-G/Glide-in [39], Swift [40], DIANE [41], DIRAC [42],

Falkon[43], PanDA [44], ToPoS [45], Nimrod/G [46] and MyCluster [47]. Utilization of
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Figure 2.2: Elements, Characteristics and Interactions of P* model. Pilot Manager
manages Pilots and execution of CUs. CU submitted to PM becomes SU, which is
scheduled to a Pilot by the PM [38]

distributed cyber-infrastructure in an efficient manner is essential in a distributed ap-

plication such as eThread pipeline. Pilot abstractions aid in effectively decoupling the

compute oriented tasks and associated data management. This alleviates the burden

of the application to confine to a particular resource for scheduling compute and data

units.

In order to proceed further with the understanding of the pilot-jobs and their use in

applications like eThread, it is helpful to understand few standard terminologies that

will be dealt in later chapters. The P* model provides a detailed description of the

pilot-job abstractions which can be used as a conceptual model for different pilot-job

frameworks. The elements and characteristics of the P* model are stated below.

• Pilot (Pilot-Compute) is the actual unit that gets submitted or scheduled

on the target resource. It enables the user to control and manage the allocated

resources.
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• Compute Unit (CU) encapsulates the compute task defined by the user which

gets submitted to the framework. There is no view of the allocated resource at

the CU.

• Scheduling Unit (SU) Once the CU is submitted to the pilot-job framework,

it is assigned to the SU which is internal to the P* model. It is not visible to the

application or user.

• Pilot Manager (PM) is the master entity that is responsible for the manage-

ment and coordination of the different components in the P* model. PM handles

the decisions related to resource management between CUs once assigned to the

pilot; it manages the number of resources assigned to SU and their internal group-

ing. It is responsible for scheduling the SU on to a pilot and then onto a target

physical resource.

The interactions between the elements of the P* model are determined by Coordi-

nation characteristics. The properties of affinity, i.e. early and late binding between

the SU and pilot are determined by the Scheduling characteristics.

2.7 Pilot-Data

In distributed systems it is essential to manage the data movement and interaction

within the application. Pilot-Data [48] is an extension of the Pilot-Job abstraction

which helps in the management of the data movement in conjunction with the CUs.

The pilot-data of the P* model addresses the data placement issues and the complexity

that arise due to the heterogeneous nature of the existing storage and file-system types.

Pilot-Data abstractions are analogous to that of Pilot-Job. The elements of the Pilot-

Data are:

• Pilot (Pilot-Data) acts like a place holder object for the data units. It is similar

to the pilot in the compute model managing the data placement in resource.

• Data Unit (DU) It is the actual data that interacts with the application.
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Figure 2.3: Architecture of BigJob. BigJob Manager manages the sub-jobs via BigJob
Agent with the help of SAGA job and file API. BigJob Agent monitors and manages
the sub-jobs [14]

• Scheduling Unit (SU) is the internal unit managing data unit scheduling to

one or more SUs.

• Pilot Manager (PM) is the central entity similar to the compute model manag-

ing the DUs and SUs. Once the DU gets attached to the framework, PM handles

the movement of the DUs from SU to the physical storage resource.

The coordination and scheduling characteristics in P* compute model and the Pilot-

Data model remain the same. The scheduling characteristics are crucial in terms of

affined placement of data units to correspond to specific CUs. The complete illustration

of the P* model is shown in figure 2.2.

2.8 BigJob

BigJob [14] is a SAGA (Simple API for Grid Applications) based classic pilot-job

framework which follows a Master-Worker coordination model. It is a high-level and
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easy-to use API for accessing distributed resources and manages job submission, mon-

itor, and more. BigJob works independent of the underlying resources which makes

it easy to work on heterogeneous platform. It has been demonstrated for efficient

executions of loosely coupled and embarrassingly parallel applications on distributed

cyber-infrastructure (DCI). This flexibility and provision to execute complicated work-

flows makes it a suitable candidate for eThread. Figure 2.3 shows an overview of the

SAGA BigJob implementation. The three major components of the BigJob framework

reflect the components of the P* model.

• BigJob-Manager is responsible for the coordination and management of pilots

(Pilot-Compute and Pilot-Data) which run on remote resources to run assigned

tasks. BigJob-Manager maps a data unit to a compute unit. BigJob is built

upon SAGA Job API which invokes SAGA adaptors for submitting jobs to the

resources while hiding all details to BigJob level API.

• BigJob-Agent is responsible for gathering local information and for executing

the compute unit(s) and placing the data units appropriately on the resource

where the tasks are submitted.

• Advert-Service employing a redis server, helps in coordination and communi-

cation to facilitate the control flow and data exchange between BigJob-Manager

and BigJob-Agent.

2.8.1 Cloud BigJob

BigJob differs in terms of execution with respect to cloud infrastructure. The user level

job contains the container with the description of the target and not the description

of the workload. So, the physical resources are provisioned to the container. The

Cloud BigJob ensures basic fault tolerance methods. It waits till the confirmation of

allocation of resource (requested instance start up) is received and then sets up the SSH

keys. Once the preparation steps are successfully completely BigJob starts executing

the task.
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2.9 Workload Management

Application workload management is provided by Pilot-API as follows. Pilot-API com-

prises Compute-Unit and Data-Unit classes as primary abstraction. Using these, a

distributed application can specify a computational task along with required input and

output files. Once compute-units and data-units are submitted, they are queued at the

redis-based coordination service which is processed recurrently by a scheduler. Impor-

tantly, BigJob-Manger’s asynchronous interface allows the application to respond in-

stantaneously without waiting for BigJob to complete the placement of Compute/Data

Unit, which is critical for dealing with a large number of tasks. Unprocessed tasks are

stored in a FIFO queue. Once the target resource is made available, the sub-tasks are

assigned. For parallel tasks, BigJob-Manager uses a node-file and spawns the sub-tasks

using SAGA job API and SSH adaptor.

Current BigJob implementation supports data management between tasks provi-

sioned by Pilot. It utilizes S3 as data repository as default. Any task once completed

deposits pre-defined output into S3 storage and the subsequent tasks locate the output

if specified as its input.

The complete set of main classes exposed by the compute part of the API is described

in the BigJob user manual [49]. The essential classes and attributes used for this

experimentation are mentioned here. Pilot-Job and Pilot-Data classes are symmetric

and are described adjacently.

• PilotCompute (PC): A pilot-job, which can execute the compute workload

(ComputeUnit). There can be any number of PilotComputes based on the number

of resources available or required.

• PilotComputeDescription (PCD): Description for specifying the requirements

of a PilotCompute. The python dictionary mandates following parameters:

– Service url: Specifies the SAGA-Python job adaptor

– Number of processes: The number of cores that need to be allocated to run

the jobs.



16

The parameters mentioned below are Amazon EC2 cloud specific attributes:

– Vm id: Template Instance ID from which the VM has to be created

– Vm ssh username: username for the VM Authentication

– Vm ssh keyname: Authentication word stored at Amazon account

– Vm ssh keyfile: Location of the certificate authentication file (could be SSH

or pem file)

– Vm type: The instance type to be created

– Region: region for the AWS instance to be located

– Access key id: The username for Amazon AWS compliant instances.

– Secret access key: The password for Amazon AWS compliant instances.

• PilotComputeService (PCS): A factory for creating PilotComputes. It takes

Coordination URL as an argument.

• PilotDataService (PDS): A factory (service) which can create PilotData ac-

cording to the specification. It takes coordination url as an argument.

• PilotData (PD): A pilot that manages data workload (DataUnit)

• PilotDataDescription (PDD): An abstract description of the requirements of

the PD. It requests resources required to run all sub-jobs. The python dictionary

requires the following parameters to access the cloud storage resource:

– Service url: Specifies the file adaptor and target resource hostname on which

a Pilot-Data will be created

– Access key id: The username for Amazon AWS instance.

– Secret access key: The password for Amazon AWS instance.

The actual job is represented by ComputeUnits and DataUnits:

• ComputeUnit (CU): A work item executed on a PilotCompute.

• DataUnit (DU): A data item managed by a PilotData

Compute and Data Units are specified using an abstract description object:
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• ComputeUnitDescription (CUD): abstract description of a ComputeUnit.

The python dictionary requires following arguments. The arguments can take

direct input or as environment variables.

– Executable: Specifies the path to the executable that will be run

– Working directory: The working directory for the executable

– Arguments: Specifies any arguments that the executable needs

– Number of processes: Defines how many CPU cores are reserved for the

application process

– Input data: Specifies the input data flow for a ComputeUnit. This is used

in conjunction with PilotData

– Output data: Specifies the output data flow for a ComputeUnit. This is

used in conjunction with PilotData

– Output: Specifies the name of the file who captures the output from <std-

out>

– Error: Specifies the name of the file who captures the output from <stderr>

• DataUnitDescription (DUD): Abstract description of a DataUnit. The data

unit description defines the different files with their location to be moved around

as a python dictionary.

2.10 Benchmark Dataset

For the benchmarking experiments, 20 protein gene sequences whose length range from

50-600 amino acids were used. The information on sequence length and number of

sequences used in the range is specified in table 2.3. These 20 sequences are the sub-set

of the 110 benchmark sequences used in previous work by Brylinski et all [6]. The 20

sequences were used for the analysis of ten threading tools and two tools PSIPRED and

BLAST and meta-analysis.

All these data sets were placed in Amazon S3 and the required sequences were

placed in the experiment environment during runtime by PilotData. This enabled
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Table 2.3: Benchmark dataset: Test Sequence length range and number of sequences
Sequence length Number of sequences

50 - 100 2
100 - 150 2
150 - 200 2
200 - 250 2
250 - 300 2
300 - 350 2
350 - 400 2
400 - 450 2
450 - 500 1
500 - 550 1
550 - 600 2

better storage utilization as the time for the data movement was negligible compared

to the runtime completion.
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Chapter 3

Pilot based eThread Implementation

In chapter 2 we discussed the theory behind the tools required to build the eThread

application. In this chapter we provide the details of the BigJob based eThread python

program followed by the high-level design and workflow of the eThread module.

3.1 BigJob-eThread Python Module

At the heart of the implementation of the BigJob based eThread module is a python

program which enables the execution of the workflow. Since the individual protein

threading tools are not dependent on each other, each protein threading module can

be concurrently executed. So, the python program is multi-threaded to enable con-

current execution of the ten protein threading tools. There are ten threads launching

each individual protein threading tool to the respective Amazon EC2 instance. The

python eThread program works in conjunction with a JSON interface to fetch the user

input. The necessary installations required for the execution of the eThread program

is explained in appendix A.

3.1.1 JSON Configuration Input

The input to the program is passed through a JSON Configuration file. This enables to

change the required parameters easily. The parameters that are set through the Config

file are mentioned as follows:

• programs: A list of names of the threading tools that are present

• Programs to omit: A list of names of the threading tools not to be executed. It

provides flexibility to the user to choose to run only the required threading tools,
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if necessary.

• Coordination url: The redis server location co-ordination URL to be used by

BigJob

• Pcd common: A dictionary of the pilot compute description parameters which

are common across pilot for each threading tool

– Service url

– Number of processes

– Vm ssh username

– Vm ssh keyname

– Vm ssh keyfile

– Region

– Access key id

– Secret access key

• Vm id: A dictionary of the AMI ID to create the instance for each of the individual

threading tool

• Vm type: A dictionary of the instance type to create for each of the individual

threading tool

• Input file path: A list of the paths where the input files are placed for pilot data

to collect it and place it in the working directory of the task

• Dataset: A list of amino acid sequences used for the experiment

• Output file path: Path where the required output files need to be stored in a local

location

• Cud common: A dictionary of the Compute Unit Description parameters that

are common across tasks

Working directory: Location on the remote machine where the tasks are to

be executed
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Figure 3.1: Generic Workflow of individual threading tools. Input sequence under-
goes pre-processing step if necessary. It is followed by independent chain and domain
execution and formatting.

3.2 eThread Workflow

One of the significant outcomes of this dissertation is the pilot-job based eThread

python program to submit the jobs to Amazon EC2 cloud. eThread has ten protein

threading tools that are not dependent on each other and can be run in parallel. The

python program developed is a multi-threaded program which launches all the ten

individual protein threading/fold recognition tools in parallel. The inputs given are

the amino acid sequences. The individual threading algorithms have a pipeline of sub-

processes. First is the pre-processing for certain protein threading tool, then the main

processing or the execution phase and the post processing or the formatting phase. The

generic workflow of the individual threading tools in the eThread pipeline is shown in

figure 3.1 and the overall experiment workflow DAG is shown in the figure 3.2.
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Figure 3.2: Workflow DAG of eThread meta-threading pipeline. The vertices in the
graph are the tasks in the workflow which are represented by ‘Txy’ and edges represent
the data dependencies between the tasks in the workflow represented by ‘Fxy’.x-‘N’th
VM, y-chain/domain execution/formatting task

3.3 High-level Design of eThread Module

The eThread program is simple and straight forward. There are twelve modules for

threading and sequence alignment programs. Csblast(), pftools(), hmmer(), pgen-

threader(), threader(), compass(), hhpred(), sparks(), sp3() and samt2k() are the pro-

tein threading tool modules. Psipred() is a prerequisite to run threader() module and

blast() is prerequisite to run samt2k() module. These two set of tools are executed

in different VMs as the computational requirements of the pre-requisite modules and

the protein threading modules are different which is discussed later in chapter 4. But,

they are run in sequence in single thread. Ten threads are executed in parallel. Each

thread launches a pilot for executing a protein threading tool. Each pilot creates a new

instance (created by Cloud BigJob object) specific to the protein threading tool. After

the completion of the execution, each module’s results are used as input for eThread()
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Figure 3.3: Pilot compute creation: Instantiation of pilot compute using pi-
lot compute description.

module which performs template selection and construction of alignment.

3.4 Implementation of Protein Threading Module using BigJob

In each of the protein threading tool, a pilot is launched using Cloud BigJob object.

Once the pilot is launched, it creates an instance using the specifications from the

pilot compute description provided by the user in the JSON file. A typical request for

an instance looks like the one shown in figure 3.3. The information can be a direct

string or environment variable and it can also accept variables. Authentication key

information required for a creation of VM is provided here. The resource details are

provided only to the pilot. The compute unit is not exposed to the resource information

except for the number of cores the compute unit requires.

In this way the infrastructure details are isolated from the tasks to be executed. It

makes the user easily concentrate on executing the tasks and also makes the portability

of the application from one resource to the other much easier.

Once the pilot-job is instantiated, many compute units (where actual tasks are

performed) can be created in the container job. For each step in the workflow of the

protein threading tool shown in figure 3.1, one compute unit is created. The creation

of the compute unit is shown in figure 3.4.

The ComputeUnitDescription(CUD) has the information about the executable, num-

ber of cores required to execute the task (if the application is MPI based, it can use

multi-cores), link to the S3 bucket location where the required input files are placed

and a link to the S3 bucket location where the required output files need to be placed.
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Figure 3.4: ComputeUnit creation using ComputeUnitDescription

Here, the CUDs are appended in a list for the total number of amino acid sequences

to be analyzed. Equivalent number of compute units are created for the list of com-

pute unit description. The chain and domain tasks are not dependent on each other.

So, the chain execution step and domain execution step are executed concurrently.

Once the execution step is finished successfully, the output files are transported

to the compute units of the respective chain and domain formatting step by pilot-

data. Again, chain and domain formatting are executed in parallel. After successful

completion of the formatting, the result files are placed in a specific S3 bucket, to

be used by eThread() module for template alignment. This process is similar for all

protein threading tools, except for few tools which have an additional pre-processing

step before the chain/domain execution steps. In that case, the pre-processing step is

executed first followed by the chain and domain processing.

After completion of all single-threading algorithms, another pilot is created to exe-

cute the eThread() module. It acquires the output files from all the previously executed

protein threading tools and uses it as input to perform the alignment. This summarizes

the implementation of the eThread pipeline using BigJob.
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Chapter 4

Results and Discussion

In chapter 3 we presented the implementation details of the eThread program and the

high-level workflow. In this chapter we discuss the set of experiments performed and

analyze their results.

Some characteristics of the applications require usage of Distributed cyber-infrastructure

which are designed to support peak utilization under varying load conditions. It is es-

sential to understand the behavior of the application in order to utilize the resources

optimally. Otherwise, it will be time consuming to execute the tools and will not be

economic, thus making it impractical to use.

There are three modes of implementations handled for building the task-resource

mapping for eThread pipeline that are discussed further. The experiments were per-

formed on Amazon EC2 cloud infrastructure. Use of different instance types were

studied according to the computational requirements of each protein threading tool.

Tasks were submitted to the cloud VMs using BigJob. The benchmark was performed

for all the ten threading tools and two standalone tools.

4.1 Task-Resource Mapping

There are three combinations of tasks to resource mapping that have been implemented.

They can help towards the best mode of usage of the allocated resources. They help

in increasing the scale of operation, easily extending the functionality to a new module

and reuse the patterns and abstractions for any new infrastructure. The usage modes

that are implemented are

i. Homogeneous tasks on homogeneous VMs
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ii. Heterogeneous tasks on homogeneous VMs

iii. Heterogeneous tasks on heterogeneous VMs

Category (i) is a simple bag of tasks assigned to one instance type. Here, the same

task is executed multiple times with different input files. This has been implemented as

a first step in eThread module. Each sub-job in a pipeline of tasks has been executed

for multiple input sequences.

Category (ii) is a again a bag of tasks, but proceeding a step further, has different

set of homogeneous tasks working together to form a workflow. It is implemented in

eThread as chain and domain execution tasks working in parallel for set of amino acid

sequences. These parallel sub-jobs are followed by a pipeline of tasks forming a classic

heterogeneous set of tasks. This kind of heterogeneous set of tasks is recurring across

the different protein threading tools and each protein threading tool is submitted to

similar kind of instances. Also, as a part of experimentation, sub-jobs of each threading

tool are simultaneously submitted to multiple homogeneous instances to understand if

distributing the tasks across instances is beneficial.

Finally, category (i) and (ii) lead towards category (iii), where the heterogeneous

tasks forming the protein threading tool are executed in different types of instances

simultaneously. Thus is completes the eThread meta-threading pipeline module. It also

includes few special set of tasks like in Threader and SAM-T2K, where a pre-requisite

step is implemented in a different instance and the main execution is implemented in

another instance.

4.2 Profiling of Meta-Threading Components for Different EC2 In-

stance Types

There is a significant difference between each individual protein threading tools of the

eThread pipeline in terms of TTC and memory utilization. It is important to gain

insight on relative computing loads across all the protein threading tools against all the

instances chosen. TTC varies considerably between the VM types due to the difference

in the configurations mentioned in table 2.2.
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Figure 4.1: Average TTC (in minutes) of the ten individual threading tools for 20 amino
acid sequences in different instance types. It is seen that Threader takes the maximum
TTC. Along x-axis of each subplot, 1:t1.micro, 2:m1.small, 3:m1.medium, 4:m1.large,
5:c1.medium, 6:c1.xlarge, 7:hi1.4xlarge

The average TTC and memory footprints are shown in figure 4.1 and 4.2. The input

sequences are 20 amino acid sequences. Figure 4.1 shows the average TTC for each

individual threading component in each VM type. An expected speed-up in instances

that use multi-core is observed across all the threading tools. It is observed that the

average TTC of CSBLAST and HMMER across the seven instance types is much smaller

when compared to other threading tools. Threader tool takes the maximum TTC. In few

tools like pfTools, SAM-T2K, Threader and HMMER TTC is larger in c1.medium than

m1.large though both have two cores. This behaviour is observed because, c1.medium

instance is compute optimized and have only 1.7 GB RAM memory. Whereas m1.large

is memory optimized and has 7.5 GB RAM memory. Few other tools like HHpred,

COMPASS and pGenThreader were highly memory intensive and were chosen not to

be executed on c1.medium and other smaller memory instance types.

A note about the behaviour of CSBLAST on t1.micro and m1.small instance has

to be considered. t1.micro is small machine with 0.613 GB RAM and are suited for

small throughput applications and m1.small is memory optimized with 1.7 GB RAM.In

Figure 4.1, when comparing the TTC of t1.micro and m1.small of CSBLAST, it is

seen that t1.micro completes faster than m1.small. Upon investigation, it is seen that
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Figure 4.2: Average Memory Consumption of different threading tools in m1.large in-
stance using 20 amino acid sequences. The error bar shows the maximum and minimum
values for the largest and smallest length sequences. Along x-axis, the different thread-
ing tools represented are 1:CSBLAST, 2:HHpred, 3:COMPASS, 4:pfTools, 5:SAM-T2k,
6:Threader, 7:pGenThreader, 8:HMMER, 9:SPARKS, 10:SP3

t1.micro instances are allowed to operate at up to two EC2 Compute Units (ECU)

(one ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or

2007 Xeon processor) whereas m1.small instances get a constant one ECU at all times

[50]. T1.micro instances are designed to support tens of requests per minute from

the application, but the actual performance depends on the amount of CPU resource

used for each request. When there is a spike in activity for a short duration and the

application requires more CPU resources, the instance utilizes up to two ECUs. If

the CPU resource utilization continues to occur for longer time duration than desired

(the duration is not known exactly) the instance is limited and it runs on a low CPU

level. Figure 4.3 shows the average CPU utilization of both t1.micro and m1.small. As

seen, t1.micro completely utilizes the CPU resources for a short duration of time. So,

even though m1.small has more memory than t1.micro, as CSBLAST is not a memory

intensive task and due to the short TTC, t1.micro is observed to complete faster.
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Figure 4.3: Average CPU utilization of t1.micro (orange) and m1.small (blue) while
running CSBLAST for 20 sequences. X-axis shows the TTC and y-axis represents CPU
utilization. Chart obtained from Amazon Performance measurement toolkit during
execution of tasks.

Individual threading components also differ with respect to memory utilization. Fig-

ure 4.2 shows the memory utilization of the threading algorithms in m1.large instance.

COMPASS and pGenThreader are memory intensive and require a minimum of 3 GB

RAM memory. HHpred, SPARKS and SP3 are also considerably heavy on memory

usage as they require more than 1 GB RAM. HHpred, COMPASS and pGenThreader

use PSI-BLAST for constructing sequence profiles and hence require more RAM mem-

ory. CSBLAST, pfTools, HMMER and Threader are very low on memory consumption.

Memory utilization remains the same across different instance types for each threading

tool. Hence the data for other instance types are not shown in figure 4.2.

When compared to previous study [6], SAM-T2k is observed to consume very low

memory. SAM-T2k uses BLASTP for sequence alignment which loads a large sequence
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Figure 4.4: Time to Completion of the subtasks in the eThread meta-threading pipeline
for pfTools using 20 amino acid sequences in different instance types.

library into memory. The actual threading process requires only about 1% of the mem-

ory required by BLASTP. For the test sequences shown in table 2.3, BLASTP consumes

around 5589 MB whereas SAM-T2K as such consumes 68 MB. Hence, in the cloud im-

plementation, sequence alignment using BLASTP was isolated and was executed in a

different VM and it was configured to use two cores during the experimentation. This

enabled SAM-T2K to be run on instance types of smaller memory capacity. Simi-

larly, Threader requires PSIPRED as a pre-requisite which has been modified to run

PSIPRED in a separate instance and then run the main Threader execution, which

occupies very low memory. This hints towards overall optimization with the task level

decomposition.

Along with this, the main processing steps involve execution of chain and domain

libraries in each of the threading tool. They are independent of each other and they can

be run in parallel. The time taken to complete chain and domain tasks were measured.

It was observed that most of the tools had chain and domain tasks having 60% and

40% ratio of completion time. Figure 4.4 shows the TTC of the subtasks for pfTools for

all the instance types. However, there was one anomaly to this pattern, where pfTools

domain library took more time to complete than chain library execution in t1.micro

instance.
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Figure 4.5: Average VM start time of different types of Amazon EC2 cloud in-
stances. Along x-axis the different VM types are 1:t1.micro, 2:m1.small, 3:m1.medium,
4:m1.large, 5:c1.medium, 6:c1.xlarge, 7:hi1.4xlarge

4.3 Cloud-BigJob Performance Overload

Table 4.1: Comparing VM launching time using BigJob and TTC for all the jobs
submitted on m1.large instance through BigJob using for 20 amino acid sequences.
Time is measured in minutes

Protein Threading Tool VM Start time TTC for all jobs

CS/CSI-BLAST 1.75 10.37
HHpred 2.7 617.08

COMPASS 2.62 204.15
pfTools 1.24 58.61

SAM-T2K 1.74 359.83
Threader 2.6 2897.2

pGenThreader 1.24 429.48
HMMER 1.23 9.81
SPARKS 1.25 263.9

SP3 2.64 458

Main performance overload while using BigJob with cloud environment is the VM

creation time [14]. Figure 4.5 shows average VM start time for different instance types.

Starting up a VM has higher overhead than spawning a job in already running machine.

It involves creation of an instance from the template, wait for the booting of the machine

and all the required processes to start and then wait for BigJob to communicate with
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the machine and then submit the job and start execution. But as shown in table 4.1,

when compared to the Total Time to Completion (TTC) of the jobs submitted by

eThread, the VM start up time was significantly small. This offsets the concerns about

the overload caused in using cloud infrastructure. Also, in production applications,

typically large number of sequences are processed which will make the overload due

to VM start time insignificant even for threading tools like CSBLAST, HMMER and

pftools which executes relatively fast.

Another overhead is the data-transfer that happens between the local resource and

the remote machine where the tasks are executed. Also, the data-transfer that happens

between the intermediate tasks of the protein threading acts as an overhead. In figure

3.1, The arrows show the data transfer happening between each stage. The intermediate

data are exported by Pilot-Data to S3 external storage to save the memory in the

working instance. They are again imported to the working directory when required.

However, the data transfer is not a significant overload as it takes less than 1% of TTC

to transfer the data.

4.4 Executing Single Threading Tool on Multiple Instances

An essential factor to consider when using large number of sequences is the natural in-

crease in TTC. Hence, distributing the tasks on multiple homogeneous or heterogeneous

resources will help to provide an optimal solution. This is the implementation of cate-

gory (ii) and (iii) mode of usage discussed in section 4.1 , where mapping heterogeneous

tasks to homogeneous/heterogeneous resources was presented.

4.4.1 Homogeneous Instances

In this parallelization experimentation, two instances were launched simultaneously

using the pilot-job for each protein threading tool and 20 amino acid sequences were

analysed. As the eThread pipeline is independent for each sequence, multiple tasks

can be executed in parallel for multiple sequences. In our experiments, based on the

instance type, for each core in the launched instances, one task was executed. Figure
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Figure 4.6: Time to completion for pfTools for 20 amino acid sequences using Single
instance and two homogeneous instances

4.6 shows the comparison of TTC of the pftools using two instances and one instance for

20 sequences. PfTools was chosen as an example among the threading tools to present

the analysis. There is no significant improvement observed for large instance types

like c1.xlarge and hi1.4xlarge while using two instances as only 20 input sequences

were used for test purpose. With more number of data sets, this multiple instances

implementation will be very effective even for large instances to reduce the Total Time

to Completion.

4.4.2 Heterogeneous Instances

Along with the homogeneous instances experimentation, usage of heterogeneous in-

stance type was also analysed. Different combinations of t1.micro, m1.small, m1.medium,

m1.large and c1.xlarge instances were employed to understand the variations which are

presented in figure 4.7 for pftools in comparison with single and homogeneous multiple

instances. This experiment tried to combine a single core instance with a multi-core in-

stance and study different heterogeneous combinations. It is seen that pfTools takes the

longest TTC using one t1.micro instance. When t1.micro is combined with m1.large,

the heterogeneous combination is 82% faster when compared to using two t1.micro in-

stances and 24% faster than using a single m1.large instance suggesting to be effective
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Figure 4.7: The graph on the left is Total Time to Completion of pfTools for 20 se-
quences using heterogeneous mix of two instances. On the right, the graph is a com-
parison of single instance and two homogeneous instances

in terms of time and cost. Yet, the choice of combination has to be carefully under-

taken. For example, when c1.xlarge is combined with m1.small, it takes more time to

complete than using a single c1.xlarge instance. Though additional core was used in

the heterogeneous combination, sharing few tasks with another core in another physical

machine has shown to be detrimental.

4.5 Cost of Running eThread on Cloud

There are multiple ways the research community has developed funding and usage

models for their computational and storage needs. Well funded projects have their

own clusters while other look for options like campus/national grids, compute time

allocations to shared clusters (TeraGrid) and some share their resources with others in

the community (OSG). Each of these options has its own pros and cons. It might be

very expensive to own a local cluster which might not be used optimally at time, or there

could be situations where required resources are not allocation in a shared cluster due to

heavy demand. A new addition to these, the cloud computing models are coming to the

limelight. Amazon Web Services is among the first to provide commercial computational

and storage cloud resources on a pay per usage basis. They provide resources on-demand
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and enable customization of the environment based on the applications needs. In turn,

the vendors charge according to usage based on a fee structure. This model can be

very attractive and affordable as it eliminates the initial huge investments, operating

and maintenance cost involved in owning a computing resource and eliminates the huge

wait time typically incurred in using shared resources.

Table 4.2: Pricing of AWS EC2 instances per hour as of writing the thesis
Instance Type Cost($/hr)

t1.micro 0.02
m1.small 0.06

m1.medium 0.12
m1.large 0.24

c1.medium 0.145
c1.xlarge 0.58

hi1.4xlarge 3.1

In this section, the computing cost of using Amazon EC2 for eThread meta-threading

pipeline will be examined. The storage and communication cost are not explored in this

study for two reasons. The data exchange between the cloud resources, EC2 and S3, are

free and the data stored in S3 is not long term. During the period of experimentation,

the cost of different instance types per hour is stated in table 4.2. These values were

used to estimate the cost-for-solution for the benchmark experiments conducted.

Figure 4.9 presents the prorated cost-for-solution of ten protein threading tools

on each instance type used for it. The number of amino acid sequences used was 20.

‘N’cores available in each instance was utilized by executing N tasks in parallel. In terms

of cost effective utilization, though t1.micro could be thought of as most viable option

due to its cheapest pricing, the actual affordable instance in terms of optimized TTC and

cost-for-solution happened to be c1.medium in most of the threading tools. C1.medium

instance type is compute optimized and offers two cores. That makes it much faster

when compared to other small instance types and it is not as costly as hi1.4xlarge

instance thus striking a balance between time and cost. Time-to-completion figure has

been included here for relative comparison. Nevertheless, this method of optimization

has to be improved, as high computing resources like hi1.4xlagre machine could easily

fall prey to being underutilized if the number of tasks is not in multiples of the number
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Table 4.3: Comparison of TTC using pilot based eThread pipeline and ideal limit
derived by executing tasks without pilot and dividing the TTC by number of cores.
The tasks were executed using 20 sequences. Unit of time is in minutes

Tool m1.small c1.xlarge hi1.4xlarge

pilot ideal pilot ideal pilot ideal

SAM-T2K 1270.97 1771.25 224.45 65.58 168.28 35.66
SP3 1312.25 1124.44 118.58 68.09 105.71 32.94

CSBLAST 25.15 15.44 5.98 1.23 4.38 0.47
HMMER 28.95 16.03 6.07 1.04 5.80 0.59
pfTools 244.77 225.64 18.27 12.75 15.48 9.24

Threader 27842.19 23744.35 2019.32 1487.98 1552.20 1090.41
SPARKS 1021.77 1037.67 79.97 54.28 73.27 41.79

of cores.

4.5.1 Alternate Scheduling Strategy

There is another approach that could be handled for cost and time optimization. It is

known that the eThread module has to wait for all the ten threading tools to complete

the meta-threading and provide the results to start the alignment process. On obser-

vation, Threader tool takes the maximum TTC and cost-for-solution. The shortest

time taken to complete Threader tool task by hi1.4xlarge (1552 minutes) is still larger

when compared to all other tools longest TTC. It would be intuitive to choose m1.large

kind of instance for Threader which is optimized for both TTC and Cost-for-Solution,

and for the rest of the threading tools, choosing the cost effective solution. However, it

should be noted that the price observed in the graph is not the actual cost as the pricing

used for the calculations are prorated cost and also the pricing scheme are subject to

change by Amazon.

Though BigJob offers parallel execution of multiple tasks, without an effective task

planning and scheduling, the resources cannot be utilized to the maximum benefit.

Table 4.3 compares the TTC of the current pilot-job based pipeline and a theoretical

ideal limit. The ideal limit was derived by executing the tasks without pilot mechanism

and dividing the TTC by the number of cores available to the instance. From the table

it is evident that the existing pipeline has lot of room for improvement more so with

resources of higher number of cores. It calls for better methods and algorithms for
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scheduling tasks to the resources.
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Figure 4.8: Prorated Cost-for-Solution in USD,Pricing is used from table 4.2
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Figure 4.9: Average TTC (in minutes) of the ten individual threading tools for 20
amino acid sequences in different instance types
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Chapter 5

Conclusion

Since eThread combines heterogeneous algorithms, the optimal utilization of resources

requires critical attention. In this communication, Pilot based eThread pipeline was

developed and an extensive profiling was performed on Amazon EC2 instances in con-

junction with S3 as the data repository. In continuation to earlier work [6], in this study,

multiple data-level and task-level parallelization experiments using pilot-jobs were per-

formed to understand the optimal resource utilization for various kinds of task-resource

mapping. A detailed time and cost based analysis was performed to understand the

behavior of the eThread pipeline.

From the results in figures 4.1 and 4.2 it is seen that the individual threading

tools in the eThread pipeline varies widely from each other in terms of Total Time

to Completion and memory utilization. In this scenario utilization of heterogeneous

resources has enabled better utilization of resources. Also, from the figure 4.7 it is

seen that using right combination of heterogeneous resources for a single threading tool

helps to reduce the overall TTC. Since the most of the individual protein threading

tools have longer time to completion, an economic approach to the implementation of

pipeline was essential. From figure 4.1 and 4.9 it is seen that using a time and cost

optimized instance for Threader has to be implemented.

Yet, from table 4.3 it is understood that the current implementation requires lot

more improvisation and alternate strategies to dynamically allocate tasks to resources

in order to improve the performance.
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5.1 Proposed Dynamic Scheduling of eThread Pipeline

There are many aspects associated with the current execution of eThread pipeline which

requires more exploration, understanding and optimization. From figures 4.1 and 4.4, it

is seen that the behaviour of certain threading tools on t1.micro is still not completely

understood as they deviate from the expected results. Also, table 4.3 shows the need

for effective optimization models for multi-core instances. These reasons suggest a need

for a better approach in the task scheduling mechanism and choice of resources for

different threading tools.

One of the strategies to improve the utilization of the resources will be to under-

stand the diversity in the length of the input sequences and the computational load

of the threading tools. Whenever parallelization is possible at the threading tool algo-

rithm level, it should be explored and implemented. It is also possible to estimate the

computation time for different tools based on the length of the input sequence.

Here, a dynamic scheduling mechanism is proposed, where different tasks are sched-

uled using the pilot framework. The scheduling mechanism can be trained to compare

the incoming task with the parameters including the input sequence length and the

threading tool to be executed. The tasks can be classified as long executing tasks and

short executing tasks by comparing the TTC for the given sequence length and the

threading tool with the existing results. Now, the longer executing tasks and thread-

ing tools which require more computation resources (like Threader, COMPASS and

pGenThreader) can be scheduled to execute using high performing compute instances.

The shorter executing tasks and threading tools which do not require large computing

resources (like CSBlast, HMMER and pfTools) can be scheduled to execute in smaller

instance types. As soon as one task is finished next task is submitted immediately and

thus made sure that the computing resources are effectively utilized.
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5.2 Future Work

Along with the proposed dynamic scheduling methods, task-level parallelization tech-

niques using advanced accelerated techniques such as GPGPU with parallel program-

ming techniques like CUDA or MPI based methods can be used to reduce the exe-

cution time. Especially, PSI-Blast is used as a pre-requisite step in many threading

tools. A GPU based implementation of this algorithm would significantly improve the

performance. In conjunction to this, using sophisticated machine learning techniques

to classify the incoming tasks based on time and cost profiling can help in optimal

and economic utilization of the resources. On the other hand, it will also be equally

interesting to experiment a hybrid mix of distributed cyber-infrastructure and cloud.

Wide range of computational tools and techniques are being developed for high

throughput protein annotation and structure-based functional annotation of the twi-

light zone of sequence identity. Template based approaches are gaining popularity and

especially, protein meta-threading is of particular interest as they combine heteroge-

neous algorithms to improve the accuracy of the predictions. In those lines, eThread

which combines ten single protein threading algorithms offers a robust method to iden-

tify protein structure and function.

Pilot-Jobs enable the decoupling of tasks and resource assignment. This leads to

effective task and data level parallelization when possible and helps to operate on het-

erogeneous resources with ease. Cloud computing provides resources on demand with

no wait time and are apt for the heterogeneous mix of algorithms. It offers new business

models which also provide cost effective options.

Finally, eThread pipeline is a cost effective and viable option for genome-scale an-

notation and in Next Generation Sequencing analytics which can be easily extended at

ease to any other kind of distributed infrastructure.
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Appendix A

Appendix

This section details the necessary tools required, their versions and the installation

procedure to replicate the eThread pipeline.

Table A.1: Threading tools incorporated in eThread and their software version used
Threading Tool Version

CSBLAST 2.1.0
pfTools 2.3.4

HMMER v3.1b1
pGenThreader 8.9

HHpred 2.0
Threader/PSIPRED 3.5/v3.3

COMPASS 3.1
SPARKS2 20050315

SP3 20050315
BLAST 2.2.25

SAM-T2K 3.5

Table 7 presents the versions of each single-threading algorithm used for installation

of eThread pipeline. The BigJob version used in our experiment is 0.64.5.

A.1 Installation Details

In order to work with the python program explained in chapter 3 the necessary instal-

lation procedure is explained in this section. Working with pilot-job based eThread

program is a two part installation. One part requires the installation of modules for the

protein threading tools. Other is the pilot-job (BigJob) layer which helps in decoupling

the application from the underlying infrastructure.
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A.1.1 Protein Threading Modules

It is important to choose a suitable OS to have a hassle free installation and execution.

In most of the scenarios, LINUX based OS variants are chosen for threading tools.

During installation few threading tools like SP3, SPARKS and SAM-T2K seemed to

have installation issues with Red-Hat version. Hence, CentOS was chosen for our ex-

perimentation which provided a hassle free process. AMI templates were built for each

individual threading tool as each of the threading tools required considerable amount

of memory.

The following PERL modules were installed as prerequisite for the required software

set:

• Al::NaiveBayes1

• Algorithm::NeedlemanWunsch

• Bit::Vector

• Compress::Zlib

• File::Slurp

• Math::MatrixReal

• Math::Trig

• Statistics::Descrptive

• Uniq

• YAML

After the installation of the basic software tools, the eThread package was installed

using tar and make package [51]. Upon successful installation, the following files were

present in the ethread-1.0/bin/:

• econtact
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• econtact model

• econv-compass

• econv-csiblast

• econv-fix1

• econv-hhpred

• econv-hmmer

• econv-pftools

• econv-pgenthreader

• econv-samt2k

• econv-threader

• eextract

• emodel

• erank-modeller

• erank-tasser

• ethread

• ethread model

After building the models, threading library packages were downloaded and un-

packed in a location where the individual threading tools had to be installed. These

steps remain common to all the threading tools. Once it was completed, the pro-

tein threading/fold recognition tools were installed on the desired instances. Next, the

Amazon EC2 AMIs templates were created from the instance and used for creating

customized instances when required. This completes the initial installation process of

eThread.
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A.1.2 Installation of BigJob

BigJob was installed at the local environment from where the eThread jobs were sub-

mitted to the remote resource. A virtual environment was created and activated for

using BigJob. BigJob was installed using pip. SSH password-less login was set up to

enable submitting the jobs to the remote resource. The commands used are as follows:

$ virtualenv $HOME/.bigjob/ethread

$ source $HOME/.bigjob/ethread/bin/activate

$ pip install bigjob

The BigJob version used during the experimentation was 0.64.5. The implemen-

tation of eThread program in our experiment is specific to Amazon EC2 cloud envi-

ronment. If it requires to be installed in any other standalone system, please follow

the procedure stated in [51]. This is the final step towards the installation of required

packages and software modules.

A.2 Accessing the Existing eThread Application

The application program and the required input and python program files can be ac-

cessed from the bitbucket repository at [52]. This experimentation is based on Amazon

EC2 infrastructure. The input sequences used, JSON input parameter configuration

file and the python program required to execute the BigJob based eThread application

used for the experimentation are available in the repository. After the basic installation

process is complete, the JSON configuration file requires necessary modification based

on the infrastructure used. The pilot compute description arguments and parameters

would change accordingly. For arguments specific to a particular Grid/Cluster refer

to the BigJob documentation in [53]. If the system is implemented on Amazon EC2

environment, the security credentials, the AMI IDs and the location of input files alone

change as per need in the JSON configuration file. The python program can be executed

using a simple readme available in the repository.
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