
SOME RESULTS IN COMPUTATIONAL AND
COMBINATORIAL GEOMETRY

BY MUDASSIR SHABBIR

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

William Steiger

And approved by

New Brunswick, New Jersey

October, 2014

ABSTRACT OF THE DISSERTATION

Some Results in Computational and Combinatorial Geometry

by Mudassir Shabbir

Dissertation Director: William Steiger

In this thesis we present some new results in the field of discrete and computational geome-

try. The techniques and tools developed to achieve these results add to our understanding of

important geometric objects like line arrangements, and geometric measures of depth.

Small Hitting Sets

Given a set S of n points, a weak ε-net X is a set of points (not necessarily in S) such that

any convex set, called a range, that contains more than an ε fraction of S must meet X for a

fixed ε > 0 [30]. Aronov et al. gave the first bounds on ε when the cardinality of X is a fixed

small number in the plane. Later Mustafa and Ray proved that |X| = 2 can be chosen so that

we hit all convex ranges that contain 4n/7 points of S [46]. We describe an O(n log4 n) time

algorithm to find points z1 6= z2, at least one of which must meet any convex set of “size”

greater than 4n/7; z1 and z2 comprise a hitting set of size two for such convex ranges. This is

the first algorithm for computing the hitting sets of fixed size.

ii

Data Depth

Data-depth measures are real valued functions that are defined on the points of Rd with respect

to a given set S in Rd. They are helpful in nonparametric statistical analysis by partitioning

the space in a center-outwardly fashion. We introduced a new framework to study many well-

known data-depth measures in a uniform way. We define and provide first bounds for line-depth

and show how it bridges the relation among Tukey-depth, simplicial-depth, and ray-shooting

depth measures in R3. We also develop the first algorithm to efficiently compute a point of high

ray-shooting depth in the plane.

Graph Search with Immunity

Faults and viruses often spread in the networked environments by propagating from a site to

neighboring site. We model this process of network contamination by using graphs. Consider

a graph G = (V,E), whose vertex set is contaminated. Our goal is to decontaminate the set

V (G) using the mobile agents that move along the edge set of G. The temporal immunity

τ(G) ≥ 0 is defined as the time that a decontaminated vertex of G can remain continuously

exposed to a contaminated neighbor without getting infected itself. We study the lower and

upper bounds on the temporal immunity required to decontaminate some classes of graphs -

mostly geometric - that correspond to some well-known network topologies, and we present an

upper bounds on ι1(G), in some cases with matching lower bounds.

iii

Acknowledgements

I am grateful to Boris Aronov, William Steiger, Jeff Kahn, and Mario Szegedy for serving on

my thesis review committee. Their feedback improved the quality of this thesis manifold.

I would like to thank my advisor William Steiger for standing by my side through all this

time. For his continuous support and mentoring, I would always remain grateful.

For my training as a researcher, I would like to acknowledge the crucial part played by

my teachers. I must thank Jeff Kahn, Bill Steiger, Mario Szegedy, József Beck, Mike Saks,

Vladimir Retakh, Muthu, and Greg Cherlin for their guidance and patience. I would like spell

out my gratitude for Jeff Kahn for offering the series of courses on Combinatorics - one couldn’t

ask for a more exhilarating hour and twenty minutes.

I am thankful to Nabil Mustafa for introducing me to some interesting problems in the area

and for tons of delightful conversations.

I would like to thank my friends Asif, Shakeel, Arzoo, Pavel, Rajat, Sergiu, Rezwana, Basit,

Edinah, Zhiyuan, Imdad, Ben, Fatma, Amey, Charlene, Jess, Mashariq, Haroon, Talal, Sharjeel

and Ahmed (and others who are slipping through my mind) for the inspiring discussions and

nice times that we had together. I am indebted to all my friends for their contributions direct

or indirect. I also thank the amazing folks who live on the third floor of Hill Center including

Carole, Regina, Maryann, and Aneta for their kindness.

In the end, I acknowledge the support of my family, specially that of my parents, for this

endeavor. I find it remarkable in a community where sending kids to school is thought of as a

lousy investment!

iv

Dedication

To “Jon Snow” who knows nothing!

v

Table of Contents

Abstract . ii

Small Hitting Sets . ii

Data Depth . iii

Graph Search with Immunity . iii

Acknowledgements . iv

Dedication . v

1. Introduction . 1

2. Hitting Large Convex Ranges . 5

2.1. Introduction . 5

2.2. The Hitting-Set Algorithms . 6

2.2.1. Characterizing a Highest Lowest-Point 7

2.2.2. Finding the Best Above/Below Candidate - Separated Case 11

2.2.3. Finding the Best Above/Below Candidate - Crossing Case 12

2.3. Computing the Convex Hull of a Level Restricted to a Strip 25

2.4. Final Remarks . 28

3. k-Centerpoints: A Generalization . 29

3.1. Introduction . 29

3.2. Data-Depth Measures . 30

3.2.1. Tukey Depth . 30

vi

3.2.2. Simplicial Depth . 31

3.2.3. Ray-Shooting Depth . 34

The status in R3 and higher dimensions 36

3.3. A Uniform View of data-depth . 37

Line-depth in R3 . 39

3.3.1. Relations between data-depth measures in R3 47

3.4. k-Centerpoints Conjectures . 52

3.5. Conclusion . 57

4. Algorithms for Ray-Shooting Depth . 59

4.1. Introduction . 59

4.2. Computing a point of ray-shooting depth at least n2/9 61

Summary of the Algorithm . 71

4.3. Implementation . 73

5. Decontaminating Network . 76

5.1. Introduction . 76

5.1.1. Previous Work . 77

Graph Search . 77

Decontamination . 78

5.1.2. Definitions and Terminology . 79

5.1.3. Decontamination Model Specification 79

5.2. Some Simple Graphs . 81

5.3. Spiders, k-ary Trees, and Mesh Graphs . 84

5.3.1. Spider and k-ary Trees . 85

5.3.2. Decontaminating a Mesh . 88

vii

5.4. General Trees . 93

5.5. Discussion . 98

References . 102

viii

1

Chapter 1

Introduction

A famous theorem in combinatorics states that if we have “enough” points in general position

(no three on a line) in the plane, then n of them must be in convex position. In fact let f(n)

denote the smallest value - if any - for which the previous statement is true, Erdős and Szekeres

actually proved in 1935 that the function f exists, and that it is at most 1 +
(

2n−4
n−2

)
, roughly

O(4n/
√
n). They later showed in 1961 that f(n) is at least 1 + 2n−2, actually believed to be

the correct value for f(n), and highlighting the large gap that still exists between known upper

and lower bounds for f .

This far-reaching fundamental fact about geometry and combinatorics has stimulated a

great deal of subsequent research, and actually gave birth to Ramsey theory. It could also

be said that this theorem exhibits the spirit of discrete geometry, and that it exemplifies its

strong connection with Computational Geometry: if we were given a set of points in general

position in the plane, How do we find the largest subset in convex position? The journal Dis-

crete and Computational Geometry, the flagship for this part of Combinatorics and Computer

Science, is devoted to research that expands both subjects and in doing so, highlights the strong

interconnections.

The following four chapters of this thesis are - each in their own particular ways - examples

of these kinds of close connections between Combinatorics and Computation. In Chapter 2

we give the first efficient algorithm to compute small hitting sets for convex ranges. In order to

accomplish this, it was necessary to deepen our understanding of line arrangements in the plane,

and thus, this chapter represents something more than the algorithm itself. It is hoped that the

2

new insights into the structure of line arrangements will help develop efficient algorithms for

other problems as well. Chapters 3 and 4 both depend on new algorithmic and combinatorial

tools for arrangements of points and lines in R2. Finally, Chapter 5 contains several algorithms

- and the combinatorics behind them - for certain graph traversal problems.

In Chapter 2 we show how to find small hitting sets for convex ranges. Given a set S of n

points, a weak ε-net X is a set of points (not necessarily in S) such that any convex set, called a

range, that contains more than an ε fraction of S must meet X for a fixed ε > 0 [30]. Because

every range must meet X , X is also called a “hitting set”. It is well known that weak ε-nets of

constant size always exist. Aronov et al. studied the problem of finding the best bounds on ε for

fixed small cardinality X [4]. When X is just a single point the problem is a well known one.

A classical result known as the centerpoint theorem states that for any set S of n points, there

exists a point x that meets all convex ranges that contain more than 2n/3 points of S [53].

Aronov et al. gave the first bounds on ε when X has two, three, four, and five points. Later

Mustafa and Ray proved that |X| = 2 can be chosen so that we hit all convex ranges that contain

4n/7 points of S [46]. They also gave an example to show that it was the best possible. Their

proof relies on the existence of a “highest-lowest” point - defined in with respect to convex

ranges that contain 4n/7 points of S.

We describe an O(n(log n)4) algorithm to find points z1 6= z2, at least one of which must

meet any convex set of “size” (for a convex set we abuse the term size to mean the size of the

intersection of this set with S) greater than 4n/7; z1 and z2 comprise a hitting set of size two

for such convex ranges. And the fraction 4/7 is minimal, as shown in [47]. This algorithm

can then be used to construct (i) three points, one of which must meet any convex set of size

> 8n/15; (ii) four points, one of which must meet any convex set of size > 16n/31; (iii) five

points, one of which must meet any convex set of size > 20n/41. The efficient algorithm -

the first for small hitting sets for convex ranges - is not the only contribution for Chapter 2.

In order to devise the efficient algorithm and to demonstrate its complexity - a more detailed

3

understanding of line arrangements was needed. Chapter 2 ends with a discussion of some

open algorithmic and combinatorial problems suggested by these results.

Data-depth measures are real valued functions that are defined on the points of Rd with

respect to a given set S in Rd. The set S represents a discrete sample from an unknown distri-

bution.

John Tukey was one of the first mathematicians to extend the notion of data-depth to Rd,

d > 1. He began with the observation that for n given points in R1, and x in R1, d(x) is the

number of si ∈ S in the smaller of the two halflines containing x. He then defined for z ∈ Rd

the halfspace depth, whereby d(z) = minz∈h(|{si ∈ h}|), the min taken over all halfspaces of

Rd that contain z, so d(z) ≤ (n + d)/2, just as was the case for d = 1. Halfspace depth, or

Tukey depth, is one of the most familiar and widely used depth notions.

Again given a set S of n data points in Rd, the simplicial depth of z ∈ Rd is the number of

subsets of d+ 1 points of S that are in convex position and that contain z. A median is a point

in Rd of maximal simplicial depth; a point z not within Conv(S) has depth d(z) = 0.

Finally given a point set S in a d dimensional space, the ray-shooting depth of a point

q ∈ Rd is the smallest number of the (d − 1)-simplices intersected by any ray from q where a

simplex is induced on any d points in S. The ray-shooting depth of the point set S is defined

as the maximum ray-shooting depth of any point in Rd. In the chapter 3, we introduce a new

depth notion - the line depth. We study its relation to the other three data-depth measures

defined above and prove the first nontrivial bounds on the depth of a median. Inspired by

this connection, we propose a new framework to study the data-depth measure in a uniform

manner. We think this may facilitate better understanding of the relationships between the

different notions.

In Chapter 4 we present a new algorithm to compute a point of “high” ray-shooting depth.

We describe the algorithm and derive its complexity. The ray-shooting Theorem says:

Theorem 1. [26]. Any set S of n points in R2 has RS-depth at least n2/9, and this bound is

4

tight in the worst case.

The topological proof given in [26] follows from a variant of Brouwer’s fixed point theorem and

is as such purely existential, although a straightforward algorithm could be derived from it with

running time O(n5 log5 n) by an exhaustive search. We present instead an algorithm that com-

putes a point z ∈ R2 of ray-shooting depth n2/9. Its running time is O((n2 log2 n). We also

discuss a software package that we created for the famous statistical computing environment R

using the concept for ray-shooting depth.

Finally in Chapter 5, a certain graph search problem is discussed. We define this problem

in the network terminology. Faults and viruses often spread in the networked environments by

propagating from a site to neighboring site. We model this process of network contamination

by using graphs. Consider a graph G = (V,E), whose vertex set is contaminated and our goal

is to decontaminate the set V (G) using the mobile decontamination agents that move along

the edge set of G. The temporal immunity τ(G) ≥ 0 is defined as the time that a decontami-

nated vertex ofG can remain continuously exposed to a contaminated neighbor without getting

infected itself. We study the lower and upper bounds on the temporal immunity required to de-

contaminate some classes of graphs - mostly geometric - that correspond to some well-known

network topologies and present an upper bounds on ι1(G), in some cases with matching lower

bounds. Variations of this problem have been extensively studied in the literature. But the

proposed algorithms have been restricted to monotone strategies, where a vertex, once decon-

taminated, may not be recontaminated. We exploit the nonmonotonicity of some new strategies

to give the bounds which are strictly better than those derived using the monotone strategies.

Instead of a chapter to address prospects for further research, we have taken up these issues

at the end of each separate chapter.

5

Chapter 2

Hitting Large Convex Ranges

2.1 Introduction

Let S be a set of n given points in general position in R2. If A is a convex subset of R2, its

“size” is defined to be |A ∩ S|, the number of points of S that it contains. The (Tukey) depth,

d(z), of a point z ∈ R2 is defined as the minimum, over all halfspaces h containing z, of

|S ∩ h|, the size of the smallest halfspace containing z. It is known that there always exists a

point z ∈ R2 (not necessarily in S) with depth d(z) ≥ n/3. Such a point is called a centerpoint

for S. The constant c = 1/3 is best possible: for every c > 1/3 there are sets S with respect

to which no point has depth cn. The interesting algorithm of Jadhav and Mukhopadhyay [31]

computes a centerpoint in linear time.

Alternatively, if z is a centerpoint for S, every convex set of size greater than 2n/3 must

contain z. A centerpoint may thus be said to “hit” all convex subsets of R2 with more than 2/3

of the points of S. For this reason, centerpoint z is called a hitting-set (of size 1) for convex

sets of size greater than 2n/3. Mustafa and Ray [46], following related work of Aronov et al.

[4], studied the possibilities for hitting sets with more than one point, a natural extension of the

notion of centerpoint. They showed that given S ⊆ R2 there are points z1 6= z2 (not necessarily

in S) such that every convex set of size greater than 4n/7 must meet at least one of them. In

addition they showed via a construction that the constant 4/7 is best possible for hitting sets

of size 2: for every c < 4/7 there are sets S for which, whatever points x, y ∈ R2 be chosen,

there is a convex subset containing more than cn points of S, but containing neither x nor y).

6

Earlier, Aronov et al. [4] had shown that the optimal constant c was in the interval [5/9, 5/8].

Let ck ∈ (0, 1) be the smallest constant for which, for every set S of n points in R2, there

are distinct points z1, . . . , zk, at least one of which must meet any convex set of size greater

than ckn. We know c1 = 2/3 and c2 = 4/7. Mustafa and Ray were also able to show that

c3 ∈ (5/11, 8/15], that c4 ≤ 16/31 and that c5 ≤ 20/41.

Here we address the leading algorithmic question: given S, how can we find a small hitting

set for it, and what is the complexity of this task? Some answers are contained in the following

statements, and in the proofs.

Theorem 1. Let S be a set of n given points in general position in R2 and take c2 = 4/7. Then

in O(n(log n)4), we can find distinct points z1, z2, at least one of which must meet any convex

set of size greater than c2n.

The running time is in the unit cost RAM model.

As in Mustafa and Ray, and using Theorem 1 inductively, we also show

Corollary 1. As in Theorem 1, in O(n(log n)4) we can find points

1. z1,z2,z3, one of which must meet any convex set of size greater than 8n/15;

2. z1,z2,z3,z4, one of which must meet any convex set of size greater than 16n/31;

3. z1,z2,z3,z4,z5, one of which must meet any convex set of size greater than 20n/41.

In what follows, we describe the algorithms to support these statements, and conclude with

some open questions that are suggested by our results, and seem especially interesting.

2.2 The Hitting-Set Algorithms

Again, S denotes a set of n given points in R2, and if A is a subset of R2, its “size” is defined

as |A ∩ S|, the number of points of S that it contains. Consider the collection R of all convex

subsets of size greater than c2n, with c2 = 4/7. These are our ranges. To prove Theorem 1, we

7

describe an O(n(log n)4) algorithm to construct a pair of points z1, z2, at least one of which

must meet every range inR.

For every pair A 6= B in R consider A ∩ B and note that |A ∩ B| > n/7. Write pA,B =

(u, v) ∈ A ∩B for a point of minimal y-coordinate; if A ∩B is not bounded below, v = −∞.

The existence proof in [46] showed that z1 may be taken as a point pA′,B′ = (u, v) such that

pA′,B′ has the maximum y-coordinate over all pairs A 6= B inR i.e., a point in the intersection

of two ranges whose lowest-point is the highest. Such a point is called a highest lowest-point.

Then the second point z2 may then be taken as a (usual) centerpoint for S \ (A′ ∩B′) and that

everything works out as claimed, that is every range meets either z1 or z2 (or both).

Let p = (u, v) be a lowest-point in A′ ∩ B′, the intersection of two ranges, each of size

more than c2n, and where v is as large as possible. Our proof of Theorem 1 partly relies on

understanding what such a point dualizes to in the line arrangement dual to S. This is combined

with tools introduced by Matoušek [42] for computing the center of a given point set, along with

some combinatorial and algorithmic observations. All together, they enable us to show that z1

can be found in the stated complexity. Once we have z1, z2, a centerpoint for S\(A′ ∩B′), can

then be found using the well-known algorithm of Jadhav and Mukhopadyay in linear time [31].

2.2.1 Characterizing a Highest Lowest-Point

Given the set S of n points in general position in the plane, we will work with L, the n lines

dual to S using v = xu + y as the equation of line that is dual to point (x, y), and (−m, b) as

the point dual to the line with equation y = mx + b. In the arrangement A(L) of the n dual

lines, the jth level λj is the closure of the set of points in R2 that lie on a single line of L and

have exactly j lines of L on or above them, 1 ≤ j ≤ n. Γj denotes the boundary of the convex

hull of λj . It is clearly a concave function if j > n/2+1 and a convex function if j < n/2−1.

Notation 1. From here on we will reserve k to express the critical size of ranges that allow

8

two-point hitting sets for every set of n points in general position in R2, that is,

k := 1 + b4n/7c. (2.1)

Thus, if A and B are convex sets, each of which contain k points of S, A ∩ B is a convex

set with at least n/7 points of S. Also we observe that

Fact 1. We can narrow the focus to convex sets A,B which are actually closed halfspaces of

size k, each supported by some point in S.

That’s because for every pair A,B of ranges whose intersection is bounded below, A′ ≡

conv(A ∩ S) ⊆ A and B′ ≡ conv(B ∩ S) ⊆ B, so the pair A′, B′ must have a lowest-point

at least as high as that of A,B. In addition, a lowest-point of A′ ∩ B′ is supported by a line

through an edge ofA′ and a line through an edge ofB′ and if either of these two halfspaces has

size > k, one or both of the supporting lines can be moved in such a way that both halfspaces

will now have size k and their intersection will have a higher lowest point . It’s also clear that

if either of the supporting lines does not meet some point of S, the line may be shifted up or

down until it does meet a point of S and so that the lowest point would be higher.

From now on, we will only consider halfspaces of size k for our ranges.

Suppose then that pA,B = (uAB, vAB) is a lowest point in A ∩ B. There are two distinct

cases: either

• Case 1 (above/above): Both of the ranges are halfspaces of size k, each supported below

by a line containing at least one point of S. One of the lines (say `A) has slope mA ≥ 0

and the other has slope mB ≤ 0), and there is at most one zero slope .

• Case 2 (above/below:) Again, both ranges are halfspaces of size k, each supported by

a line containing at least one point of S. One of the ranges (say B) is supported above

by a line with slope mB > 0 and A is supported below by a line with slope mA, and

mB > mA ≥ 0 . A second variant of this situation is when mB < mA ≤ 0 (not shown).

9

We first characterize the dual of a highest lowest point when the ranges A,B are in the

above/above case. Write y = mAx + bA for the equation of `A, the line of support for A,

y = mBx + bB for the equation of `B , the line of support for B, and suppose without loss of

generality that mA > 0 and mB ≤ 0. Since A and B both have k points of S on or above, and

since pA,B is a highest lowest point, it is necessary that (i), there are k points of S on or above

both `A and `B , and each contains a point of S, (ii) pA,B is the intersection of `A and `B , and

(iii) pA,B = (u, v) has the largest value of v among any such pair A,B of ranges for which (i)

and (ii) both hold. For (iii) to hold it is also clear that each line in fact contains two points of S.

If not, the line may be rotated about its one point so as to give a higher intersection point pA,B .

These observations reveal that

1. `A dualizes to a point qA = (uA, vA) that is a vertex of λk, the k-level ofA(L), and with

uA > 0, and `B dualizes to qB = (uB, vB) also a vertex of λk, but with uB ≤ 0,

2. pA,B dualizes to a line through two points having the properties described above, and

3. the above line meets the vertical axis u = 0 at a point (0, v) with the maximal possible

value of v.

In view of the fact that the convex hull of the k-level of A(L) is a concave function, the three

properties above prove

Lemma 1. The dual of a highest lowest point for the above/above case is the line ` incident

with the edge of Γk that crosses the vertical axis u = 0. So if ` has equation v = xu + y the

point p = (x, y) is a highest lowest point for the set of above/above ranges.

In [42] Matoušek gave an algorithm to compute the tangent to a given level (for us it’s k)

in an arrangement of n lines that crosses a given vertical line (for us it’s u = 0) and it runs in

O(n(log n)3). Combined with Lemma 1, it follows that

Lemma 2. If a highest lowest point pA,B arises from a pair of ranges that are above/above, it

can be found in O(n(log n)3).

10

The above/below situation is more complex, and much harder to deal with. The dual of a

lowest point here is, as before, straightforward to describe, but now it is more challenging to

characterize a highest one in such a way that it may be found efficiently.

There are again two sub cases: (i) in the first, one range , say A, is above its line of support

`A that has slope mA ≥ 0, while range B is below its line of support `B , and its slope is mB >

mA; in (ii), the other sub-case, again A is above `A and B below `B , but now mB < mA < 0.

As before, if `A ∩ `B = pA,B is to be a highest lowest point, both lines must be incident with

two points of S.

In the first sub-case, `A dualizes to a vertex qA = (uA, vA) on λk, the kth level of A(L),

and uA ≥ 0. The dual of `B is a point qB = (uB, vB) with uB > uA and qB has k lines of L

on or below it, so it is a vertex of λn−k+1, the n− k + 1 level in A(L) and it lies “to the right”

of qA. Finally, pA,B dualizes to a line `A,B incident with two such points, and which meets the

vertical axis at a point (0, v) with the maximal possible value for v.

The other case where both slopes are less than 0 is symmetric. Here the dual of a highest

lowest point is a line `A′,B′ joining a vertex qB′ = (uB′ , vB′) on λn−k+1, to a vertex qA′ =

(uA′ , vA′) on λk, uB′ < uA′ < 0, and where such a line meets the vertical axis at a point (0, v)

with the largest possible value of v. To summarize:

Lemma 3. The dual of a highest lowest-point in the above/below case is either (i) a line `A′,B′

joining a vertex qB′ = (uB′ , vB′) on λn−k+1, to a vertex qA′ = (uA′ , vA′) on λk, and where

uB′ < uA′ < 0, or (ii) a line `A,B joining vertex qB = (uB, vB) on λn−k+1, to vertex

qA = (uA, vA) on λk, and where uB > uA ≥ 0. Among all such lines, if any, it is the one

which meets the vertical axis u = 0 at the highest possible point.

The remainder of the chapter addresses the algorithmic issues; we exploit the characteriza-

tions of highest lowest points in an efficient way. Lemma 2 already resolves the above/above

case in a simple and straightforward manner.

But Lemma 3 suggests a search among pairs of points where in each pair, we have a vertex

11

p = (u, v) ∈ λk and a vertex p′ = (u′, v′) ∈ λn−k+1 - both in the positive halfspace or both in

the negative halfspace, and p′ further from the vertical axis u = 0. There could be more than

[n ∗ 2c∗
√

logn]2 pairs to check, by virtue of the lower bound construction for planar halving sets

found by Géza Tóth [54]; on the other hand we know that there no more than O(n8/3) such

pairs, in view of Tamal Dey’s bound on k-sets in R2 [22].

In what follows we will show that in fact there are only a constant number of such pairs that

need to be checked. This is a main combinatorial and algorithmic contribution of this chapter.

It allows us to use adaptations of Matoušek’s algorithms to construct convex hulls of levels in

arrangements with which we will discover and evaluate only a constant number of the relevant

pairs and thus find a highest lowest-point in the claimed running time.

2.2.2 Finding the Best Above/Below Candidate - Separated Case

The centerpoint theorem states that there exists a point z such that for any line ` through z there

are at least n/3 points of a given point set S on both sides of `. This implies that in the dual Γj

and Γn−j+1 can always be separated by a line, as long as j ≤ n/3. In our situation it may or

may not be the case that Γk and Γn−k+1 intersect. But if these convex functions do not meet,

or if they meet in at most one point, there are only few possibilities for a highest lowest-point,

and they may be checked efficiently. In particular,

Lemma 4. If Γk and Γn−k+1 meet in at most one point, a highest lowest-point may be found

in O(n(log n)4)

Proof. Using Lemma 1, in O(n(log n)3) we compute the line ` incident with that edge of Γk

that crosses u = 0. This is the dual of the above/above candidate for highest lowest-point. Next

we use Matoušek’s O(n(log n)4) algorithm [42] to actually construct Γk and Γn−k+1 and in a

further O(n log n), we can learn whether the convex sets (above Γn−k+1 and below Γk) can be

separated by a line. If yes, then the above/above candidate ` and the two inner tangents to Γk

12

Γk

Γn−k+1

A

B

Γk

Γn−k+1

B

C

Figure 2.1: Above/Below where the hulls of level k and level n − k + 1 are disjoint, or touch
at one point.

and Γn−k+1 suffice to describe the set of possible candidates for the dual of a highest lowest-

point. The reason, as suggested in Fig. 2.1, is that a lowest-point B on λn−k+1 and a highest

point A on λk, (with A and B both on the same side of the vertical axis u = 0 but with B

further away), must both be vertices of the convex hulls of their levels if the line they determine

is to meet u = 0 at the highest possible point (see Fig. 2.1, left-side). The other possibility is

that the above/above candidate gives a higher lowest-point, and this occurs if the inner tangent

has its two vertices on opposite sides of the vertical axis (Fig. 2.1, right-side).

We will refer to the process of checking for this configuration, and then finding its candidate

for highest lowest-point, as THE PHASE I ALGORITHM.

2.2.3 Finding the Best Above/Below Candidate - Crossing Case

Finally we come to the real crux of the small hitting set computation problem. This is the

complicated case where Γk and Γn−k+1 actually meet in two points. First we define some

notation.

Notation 2. A vertical strip between a pair of points A = (Ax, Ay) and B = (Bx, By) is

denoted by |A,B|. Formally

|A,B| = {p = (px, py) ∈ R2 : Ax ≤ px ≤ Bx}.

Also,

13

u = 0

A

B

λk

Γ∗
k(A,B)

Figure 2.2: The area between two dotted vertical lines represents the vertical strip |A,B|. The
fat black curve is Γ∗k(A,B), the boundary of the restricted convex hull.

Definition 1. Given a vertical strip |A,B|withA = (Ax, Ay) andB = (Bx, By), an important

idea is the convex hull of λk , restricted to |A,B|, which we write as Γ∗k(A,B) or just Γ∗k when

A and B are clear from the context. It is the upper chain of the convex hull of the set of vertices

of λk that lie interior to |A,B| along with λk(Ax) (the point on λk with horizontal coordinate

Ax) and λk(Bx). Similarly Γ∗n−k+1(A,B) is the restricted hull of λn−k+1 for |A,B|, the

lower chain of the hull of the vertices of λn−k+1 strictly within the interior along with the

points λn−k+1(Ax) and λn−k+1(Bx).

It is not difficult to adapt Matoušek’s original O(n(log n)4) algorithms for this context but

we postpone the details until section 2.3.

Notation 3. We write µ(A,B) for the vertical coordinate of the point at which the line through

a pair of points A,B meets the vertical line u = 0.

We begin with an interesting and possibly unexpected structural feature that motivates and

supports our algorithm and the analysis of its running time. It is expressed in the following

statement.

Fact 2. There are at most 7 edges AiAi+1 of the convex hull Γk which are touched or crossed

by λn−k+1. Given Γk, they may be found in O(n log n).

14

Proof of Fact 2: Let E = AiAi+1 be an edge of Γk that is touched or crossed by λn−k+1,

Ai = (ui, vi) and Ai+1 = (ui+1, vi+1). We will say λn−k+1 “pierces” Γk in this edge.

The piece-wise linear curve λn−k+1 is above E at ui and also at ui+1, so if it pierces E

there is a point A′ = (u′, v′) ∈ E (u′ > ui) where λn−k+1 first meets E. Since Ai is in level

k and A′ is in level n − k + 1, we know that between Ai and A′, at least n/7 more lines of L

crossed edge E from above than from below, and the same holds for the segment on E from

A′ to Ai+1, except “above” and “below” are reversed. This implies that E meets at least 2n/7

lines from L. The claim now follows by virtue of the fact that Γk is convex, so no line of L can

meet it more than twice, and this means there can be at most 7 such edges.

For each line ` ∈ L it can be decided whether it meets Γk in 0, 1, or 2 of its edges - and

which ones - in O(log n) using binary search on the vertices of Γk. Also, by this same process,

we know for each of the edges in Γk whether it might have enough lines meeting it to allow

λn−k+1 to pierce it. In a further O(n log n) we can actually check the at most seven candidate

edges by “walking” the edge from left to right and keeping track of the levels of A(L) that are

crossed.

Remark 1. Though we won’t use it, we observe that by the same reasoning used to prove Fact 2,

we can also show that at most 7 edges of Γn−k+1 can be below a vertex of λk in the vertical

strip defined by that edge, and they too may be found in O(n log n). Furthermore Fact 2 is also

true for the restricted convex hulls Γ∗k(A,B) and Γ∗n−k+1(A,B) for any fixed pair of points A

and B.

We begin by assuming we have done the O(n(log n)4) time processing to obtain Γk, and

Γn−k+1, and have discovered the configuration in Figure 2.4, with L andR the left and the right

intersection points of Γk and Γn−k+1 respectively. Refer to a pair of points C = (u1, v1) ∈ λk

and D = (u2, v2) ∈ λn−k+1 0 ≤ u1 < u2 as a legal pair. Likewise an illegal pair is a pair of

the points, one in the λk and the other in the λn−k+1, that is not legal. We seek a legal pair of

the point C,D with the property that µ(C,D) is the highest among all such pairs.

15

Let C and D be a given pair of points as above with the additional condition that at least

one of the points lies outside the vertical strip |L,R|. Then we claim that the algorithm in

PHASE I can be easily adapted to compute the best legal pair of points C∗ and D∗ in further

O(n(log n)4).

CASE A: When either C orD lies outside the Strip |L,R|. There are four possible cases

depending on whether C (or D) is to the left of |L,R| or to the right. We observe that in all

of these four possible cases we can meet the prerequisite for the algorithm in PHASE I that the

convex hulls of the levels do not meet at more than one point.

When D lies to the right of R, we take the convex hull of the points of λk that lie to the right of

R, denoted by Γ∗k(R,R
′) where R′ = (∞, 0). The restricted convex hull Γ∗k(R,R

′) does not

meet Γn−k+1 except possibly at the point R as shown in part (i) of Figure 2.3. Similarly when

D lies to the left of L take the convex hull of of points in λk that are to the left of L, Γ∗k(L,L
′),

where L′ = (0, 0). Two convex hulls Γ∗k(L,L
′) and Γn−k+1 meet at at most one point L as in

Figure 2.3(ii).

The other two cases when C lies outside the strip |L,R| instead of D can be symmetrically

handled in the straightforward way, using same ideas. Therefore in four runs of the algorithm

in PHASE I the best pair among the four cases when either C or D lies outside the Strip |L,R|

can be computed.

So now assume we know that the optimal pair of points C and D lie in the vertical strip

|L,R|. As above L = (a, b) and R = (c, d) denote the leftmost and rightmost intersection

points of Γk and Γn−k+1. Without loss of generality we will assume that both 0 < a < c lie in

the positive halfspace, and we will discuss only this case. If a < 0, or if c < 0, the discussion is

easily adapted from the present context in an obvious way and we will omit the straightforward

details. By Fact 2, at most seven edges of Γk are pierced by λn−k+1 within the vertical strip

|L,R|.

16

L R

u = 0

L R

u = 0

L R

u = 0

L R

u = 0

(i)
(ii)

(iii)
(iv)

Figure 2.3: There are four cases: in (i) assume D lies to the right of R so we ignore all the
points on Γn−k+1 to the left ofR, i.e., the dotted curve and convex hulls of the rest meet at only
R. Similarly in (ii), (iii), and (iv).

u = 0

Aj

Aj−1

Aj+1

Aj+2

Γ 4n
7

Γ 3n
7

L
R

B1

B2

Figure 2.4: Γk and Γn−k+1 meet in two points.

17

In O(n log n) we find the at most seven edges of Γk between L and R that are pierced by

λn−k+1. We will refer to these edges as bad edges and recursively search the vertical strips

defined by these edges for the optimal pair of points. An edge that is not bad is a good edge.

We argue that that the vertical strips defined by the endpoints of a good edge can’t contain one

or both of the optimal pair of points and hence can be ignored except for one special case.

CASE B: A Corner Case. As already discussed, we know that the total number of bad

edges on the convex hull Γk is at most seven. On the other hand, if all the edges are good, we

consider it as a special case. The configuration in Figure 2.4 is an illustration of this case. We

handle this case, the “corner case”, as follows.

First of all, observe that this can only happen when there are no vertices of λn−k+1 below

the boundary of Γk and only a single edge of Γn−k+1 is intersected by Γk. Let B1B2 be that

edge on Γn−k+1. Rotate the vertical line through B2 (the right endpoint of this edge) counter-

clockwise until it hits Γk at some vertex, say, Ai as illustrated in Figure 2.5(i). Note that the

one of the optimal pair of points, C, must lie on Γk but the other optimal point D that is to

the right of C may lie anywhere on λn−k+1 and not necessarily on the convex hull Γn−k+1.

Furthermore any point on Γk that is to the left of Ai can’t be in an optimal pair because the

line through any such point Aj , j < i and a point B ∈ λn−k+1 which is to the right of Aj

would hit the vertical axis lower than µ(Ai, B2), the point where the line through Ai, B2 meets

the vertical axis which is a potential optimal pair. As before let the vertices of Γk be ordered

from left to right and let A` be the last vertex on Γk above the line through B1, B2. We observe

that if there is a legal pair of points C,D in this vertical strip with µ(C,D) ≥ µ(Ai, B2)

then it follows that (1) µ(C,D) ≤ µ(A`−1, A`) and (2) µ(C,D) ≥ µ(Ai, Ai+1). We use this

observation to perform a binary search for the optimal line.

Consider the line through Ab i+`
2 c, Ab i+`

2 c+1. If λn−k+1 intersects this line to the right of

Ab i+`
2 c and to the left of B2 then there is a legal pair of points C,D and a line through this

pair has a y-intercept that is at the least as high as µ(Ab i+`
2 c, Ab i+`

2 c+1). This situation is

18

u = 0

B1
B2

Ai

Aj

Aj+1

B′u = 0

(i) (ii)

Ai

A`

A`

Figure 2.5: In (i) B1B2 is an edge of Γn−k+1 that is pierced by Γk. The line through Ai, B2 is
a tangent line to the convex hull Γk. In (ii) There is a vertexB′ ∈ λn−k+1 with µ(B′, Aj+1) ≥
µ(Aj , Aj+1) if and only if the line through Aj , Aj+1 is met by λn−k+1 to the right of Aj+1.
The test can be performed in O(n log n) time. A` is the rightmost vertex on Γk above B1B2.

illustrated in Fig. 2.5(ii). We will recursively search for this pair in the strip |Ab i+`
2 c+1, A`|.

Otherwise we know that there is no such pair and the line through the optimal pair C,D has

smaller y-intercept and we should look for it among the legal pairs of points in the vertical strip

|Ai, Ab i+`
2 c|. This test can be performed in O(n log n) time using Lemma 6. And in at the

most dlog ne tests, we can find the vertex D on in Γ∗k that is in the best pair. To find the other

point C in the optimal pair we draw a tangent from D to the λn−k+1 to the right. This can

be accomplished in O(n log2 n) time using Lemma 7. Thus the algorithm runs in O(n log2 n)

time in this case and finds the best pair in the vertical strip |B1, B2|.

Fact 3. Vertical strips of good edges need not be checked as long as there is a bad edge to the

right.

Proof. Let AiAi+1 be an arbitrary good edge on Γk such that there is a bad edge AjAj+1 to

the right. The vertices Ai, Ai+1, . . . on Γk are ordered from the left to right and i+ 1 ≤ j. Let

B be a point on the level λn−k+1 in the vertical strip |Aj , Aj+1|, and since AjAj+1 is a bad

edge, we can assume that B is below the edge AjAj+1 . By the convexity of Γk, B also lies

below the line through Ai, Ai+1. Therefore line through B,Ai+1 meets u = 0 at a higher point

than the line through Ai, Ai+1.

19

Aj
Aj+1

Ai

Ai+1

A`

B

D

Figure 2.6: AiAi+1 is a good edge and there is a bad edge AjAj+1 to the right. The points B
and D are vertices of λn−k+1. Since µ(B,Ai+1) ≥ µ(D,A`) for all A` on Γk that lie to the
left of D, the vertical strip |Ai, Ai+1| of the good edge may be skipped when searching for a
pair of points with the highest µ value.

By the assumption that AiAi+1 is a good edge, any point D ∈ λn−k+1 in the vertical strip

|Ai, Ai+1|must lie above the line throughAi, Ai+1. This implies that µ(D,A`) ≤ µ(Ai, Ai+1)

for all A` on Γk that are to the left of D. By transitivity it follows that µ(B,Ai+1) ≥ µ(D,A`)

for any pointD on λn−k+1 in the vertical strip |Ai, Ai+1|. The vertical strip defined byAi, Ai+1

need not be considered while searching for a pair with a line of highest y-intercept.

Remark 2. The statements in Lemma 4, Fact 2, Fact 3 and the arguments in the CASE A and

CASE B all remain true when we replace the convex hulls Γk and Γn−k+1 with the restricted

convex hulls Γ∗k(U, V) and Γ∗n−k+1(U, V) for an arbitrary pair of points U and V .

We will invoke the following recursive algorithm with the initial input U = (0, 0) and

V = (∞, 0).

PAIR(U,V)

• The INPUT is a pair of points U = (a, a′) and V = (b, b′), a < b. The initial call is with

U = (0, 0) and V = (∞, 0).

20

• The OUTPUT is two vertices C = (u1, v1) ∈ λk and D = (u2, v2) ∈ λn−k+1, both in

the vertical strip erected throughU and V , and with 0 ≤ u1 < u2. They have the property

that among all such pairs within the strip, the line through C and D meets u = 0 in the

highest possible point.

• The STEPS:

1. Construct Γ∗k(U, V), the restricted convex hull of λk, and Γ∗n−k+1(U, V).

2. If Γ∗k(U, V) and Γ∗n−k+1(U, V) meet at at most one point then apply PHASE I and

return the best pair. Otherwise continue.

3. Compute L and R, the left and the right intersection points of two convex hulls.

4. Assuming that at least one of the points C and D lies outside vertical strip, solve

the four possible cases using PHASE I and compute the best pair among them as

described in CASE A.

5. Construct Γ∗k(L,R) - the restricted convex hull of λk - and Γ∗n−k+1(L,R).

6. Find all the bad segments AiAi+1 on Γ∗k(L,R).

7. If there are no bad segments then we are in the corner case; handle it as described

in CASE B and find the optimal pair in this case and jump to the last STEP.

8. Let AjAj+1 be the rightmost bad edge. If there are any more edges to the right of

Aj+1 then recursively call PAIR with Aj+1 and V ′ as input where V ′ is the point

where λn−k+1 intersects the vertical line through V . Note that this would yield a

case in which the convex hulls don’t intersect or if they do intersect then it’s just a

corner case since there can’t be any bad segments in this strip.

9. For each bad segment AiAi+1:

– Compute the restricted hull Γ∗n−k+1(Ai, Ai+1).

– Rotate the vertical line through Ai counter-clockwise until it first becomes

tangent to λn−k+1 at a point X = (s, t), s ∈ [Ai, Ai+1] within the strip (this

21

may be done in O(n) time by finding the smallest slope among lines from U

to the vertices of Γ∗n−k+1(Ai, i+ 1)).

– Recursively solve the left and the right subproblem: PAIR (Ai, X) and PAIR

(X,Ai+1).

10. Return the best pair among all cases.

END PAIR.

Lemma 5. The algorithm PAIR(U,V) correctly finds a pair C = (u1, v1) ∈ λk and D =

(u2, v2) ∈ λn−k+1, both in the vertical strip erected through U and V , and with 0 ≤ u1 < u2.

They have the property that among all such pairs within the strip, the line through C and D

meets u = 0 in the highest possible point.

Proof of Lemma 5: We have already discussed the correctness of our algorithm when the

convex hulls of two levels don’t meet at more than one point or when the convex hulls of two

levels do intersect but there are no bad edges. The following two claims complete the proof of

the lemma.

Fact 4. The optimal pair can not lie in vertical strips defined by two different bad edges.

Proof. Assume AiAi+1 and AjAj+1 are a pair of bad edges on Γ∗k where i < j, vertices being

ordered from the left to right. For all the points in λn−k+1 that lie in the vertical strip |Ai, Ai+1|,

the points in λk that lie in |Aj , Aj+1| are illegal pairs. So we only need to consider the case for

pairs with a point B ∈ λn−k+1 ∩ |Aj , Aj+1| and the other point A ∈ λk ∩ |Ai, Ai+1|. But for

any fixed A and B we note that µ(B,Aj) ≥ µ(A,B). This completes the proof.

Fact 5. While splitting a bad edge UV into two subproblems, the optimal pair lies inside the

left subproblem or the right subproblem.

Proof. By virtue of the choice of the point X = (s, t) ∈ Γ∗n−k+1 that splits |U, V | into |U,X|

and |X,V | (it’s the lower point of tangency from U ∈ λk to Γ∗n−k+1) either the pair CL =

22

(x, y) ∈ λk, DL = (x′, y′) ∈ λn−k+1, returned by the left sub-problem or the pair CR =

(z, w) ∈ λk, DR = (z′, w′) ∈ λn−k+1, s < z < z returned in the right subproblem must

determine a line meeting u = 0 at a point higher than that by any pair, one point on λn−k+1 to

the right of X and one point on λk to the left of X . Indeed, this underlies the ability to ignore

the evaluation at all but a constant number of the lines through pairs of points, one on λk the

other on λn−k+1, while still discovering the dual of a highest lowest-point.

Finally we complete the proof of Theorem 1 as we establish

Fact 6. Let L and R denote the two points where Γk and Γn−k+1 meet. The algorithm

PAIR(L,R) finds the dual of a highest lowest-point in the above/below case in O(n(log n)4).

Proof of Fact 6: The key idea behind the proof is to provide a concrete integer bound (56) on

the depth of the recursion. We establish this bound by following a longest path to a leaf, a node

that we will call z. As we follow the path from the root to z, at each level, j, we will define a

segment ej for that node in such a way that after we reach z the collection of segments defined

along this path will be vertically separated. More important, we will establish the following

properties:

1. at least n/7 lines of the arrangement must meet each segment,

BUT

2. no line in R2 can meet more than eight of the segments in our collection.

We will combine these two properties to obtain the bound on the depth of the recursion.

For the details, we imagine running PAIR on a single edge AiAi+1 of Γk that is pierced

by λn−k+1. As mentioned, z denotes the leaf node on a longest path in the recursion tree

of the algorithm on our n lines. This lowest node corresponds to a subproblem on a vertical

strip between U = (a, b) and V = (c, d). These points are in Γ∗k(U, V) and λn−k+1 does not

23

penetrate it, so PHASE I will find the pair for a highest lowest-point. We fix a point q ∈ λn−k+1

strictly within the open strip |U, V |.

Now, we trace the path from the root of the recursion tree down to node z. At the root

(level 1), the problem is divided by the edges on the convex hull Γk. Good edges and corner

cases are resolved and each bad edge is divided into two subproblems. Since there are at most

seven bad edges, there are at most fourteen children of the root node. If the point q lies inside

a vertical strip defined by either a good edge or a corner case, the optimal pair is searched

for as described in the discussion on CASE A and CASE B and no further recursive calls are

made. So without loss of generality, q lies in the vertical strip of a bad edge AiAi+1 of Γk.

And X1, the point in λn−k+1 that splits this into the two sub-problems, is the point of lower

tangency from Ai to λn−k+1 that lies within the strip. If the path from this node to z follows

the right subproblem [X1, Ai+1], we define segment e1 to be AiX1 as illustrated in Fig. 2.7(i)

and Fig. 2.7(ii). Otherwise we take e1 = Z1Ai+1, where Z1 ∈ λn−k+1 is the point of lower

tangency from Ai+1 to λn−k+1 that lies within the strip as in Fig. 2.7(iii) and Fig. 2.7(iv).

Aj

Xj

ej q

Aj

Xj

ej

q

Aj+1

Zj

ej

q

Aj+1

Zj

ej
q

(i)

(ii)

(iii) (iv)

Figure 2.7: The segment ej lies on a line that is tangent from a point on Γk (either Aj or Aj+1)
to λn−k+1 to the right or to the left. The four possibilities are illustrated in the figure.

In level m of the recursion we are between vertices Aj and Aj+1 of Γ∗k and edge AjAj+1 is

penetrated by λn−k+1. If Xj is the point in λn−k+1 of lower tangency to λn−k+1 from Aj that

24

lies within this strip, and if the path to z now follows the right subproblem [Xj , Aj+1], then we

define the segment ej to be AjXj . Otherwise the path to z follows the left subproblem and ej

will be the segment ZjAj+1, where Zj ∈ λn−k+1 is the point of lower tangency to but now,

from Aj+1. Fig. 2.7 illustrates the edge for level j of the recursion; it matches a vertex in λk to

one in λn−k+1. Both vertices are in the opposite subproblem in this node from the path leading

to leaf z, so this edge ej is vertically separated from all subsequent edges ei, i > j, and this

shows that all edges in our collection are vertically separated.

The final step now will show that the depth of the recursion is at most 56 - there just cannot

exist more segments that satisfy all their properties (one endpoint on λk, the other at a point of

tangency to λn−k+1, as well as being vertically separated from all subsequent edges). First, if

some line ` meets edge ej in our collection ` may meet (i) both the k-level and the n− k + 1-

level, (ii) neither of these levels, or (iii) exactly one of these levels, within ej’s vertical strip. In

the first case, n/7 lines of L cross the given line ` within this strip, and because the edges are

vertically separated, there can be at most seven such edges. If ` crosses ej but misses one or

both λk and λn−k+1 within this strip, it’s in a different branch of the recursion from the deepest

node z, so ` misses all subsequent edges ei, i > j.

There are four possible cases for the line segment ej as illustrated in Fig 2.7. In the first

case on the top left of the figure, the line through edge ej is a tangent from a point Aj on Γk to

a point Xj on λn−k+1. This implies that all the points in the level λn−k+1 lie above this line

and so does its (current and any future) restricted convex hull. In particular intersection of two

convex hulls (restricted to the strip between Xj and Aj+1) lies above this line. Since all the

subsequent edges ei in our collection with i > j lie in this intersection, all of them lie above

the line through ej . Also by construction all the edges in our collection are vertically separated.

Any line that intersects ej but does not intersect the level λn−k+1 in the vertical strip of ej , the

blue curve in the figure, must intersect the vertical line through Xj at a point below Xj and

hence must not intersect any ei with i > j. Argument is similar for the rest of the three cases.

25

So the worst case is that ` previously met seven edges and crossed both λk and λn−k+1

with each of them, and now crosses ej and misses all subsequent edges, and this gives 8 as the

maximum number of edges in our collection that can meet any line. Since each edge in our

collection meets at least n/7 lines of the arrangement, and none of these n/7 lines could meet

more than eight edges, the collection has at most 56 edges.

Remark 3. We note that this bound on the depth of the recursion implies that we do the

above/below case in at most c · (14)56n(log n)4 time steps because at each step we split the

problem into at most 14 subproblems.

2.3 Computing the Convex Hull of a Level Restricted to a Strip

In [42] Matoušek describes an algorithm for computing the convex hull of a level λk in an

arrangement of n lines. It runs in O(n log4 n) time. In this section, we provide a few simple

modifications to that algorithm and give the proof of its correctness to make it work in the

restricted settings, that is to compute the convex hull of a level λk restricted to a vertical strip.

Modifications we recommend are quite simple in nature and are provided here solely for the

purpose of completeness. We do assume familiarity with Matoušek’s algorithm in [42] on

reader’s part.

Since a given set S of n points, the n lines dual to S can be computed in O(n) time we

will assume that the input to our algorithm is a pair of points U, V along with a collection L

of n lines in the plane. Desired output is the convex hull of λk restricted to the strip |U, V |.

The leftmost (similarly the rightmost) point on λk in this strip can be easily computed by

considering the order in which the lines in L intersect the vertical line through U (similarly V).

Therefore we assume without loss generality that U and V lie on λk. Modifications required in

first three Lemmas are as below. As in Matoušek we assume that k < n/2 as the algorithm is

symmetric for k ≥ n/2.

26

Lemma 6. Given a collection L of n lines, a line q, and two points U, V , one can find all

vertices of λk lying on q restricted to vertical strip between U, V in time O(n log n).

Proof. Compute all vertices of λk lying on q using Lemma 3.1 in [42] for the corresponding

problem. Throw away the vertices lying to the left of U and the vertices lying to the right of

V and return the rest of the vertices. Time complexity is dominated by Matoušek’s O(n log n)

procedure in Lemma 3.1.

Lemma 7. Given a collection L of n lines and three points x, U, V , one can find tangent to

Γ∗k(U, V) between U, V thru x and touching Γ∗k(U, V) to the right of x (if it exists) in time

O(n log2 n).

Proof. Let τ∗ be the tangent line that we seek. Although we don’t know τ∗ yet for a pair

of lines `, `′ we can decide the order in which they intersect τ∗ by checking whether their

intersection point y lies on/above or below τ∗; following the notation in [42] this decision

problem is referred to as the question (`, `′). The question (`, `′) can be decided by computing

the points of λk that lie on the line through x and y in O(n log n) time using Lemma 6. It is

easy to see that once we know the order of intersections of all the lines in L with τ∗, we will

explicitly know the line τ∗.

Start by computing the order in which the lines in L intersect the vertical line through U

and the order in which they intersect the vertical lines through V . If these orders are identical

for a pair of lines, i.e., they do not intersect in the vertical strip |U, V |, then the order of their

intersection with τ∗ is of no consequence so we will ignore them. As in [42], the problem

of sorting the order of the intersection of lines with τ∗ is solved using Megiddo’s parametric

search [44].

Given a batch of questions (`1, `
′
1) . . . (`m, `

′
m) where m ≤ n/2, at least half of these

questions can be answered in O(n log n) time as follows. Slopes zi of the lines through x, yi

are computed where yi is the intersection point of (`i, `
′
i) for all 1 ≤ i ≤ m. Check whether z,

27

the median of zi’s, lies above or below τ∗ in O(n log n) time using Lemma 6. If z lies above

τ∗ then all zj ≥ z lie above as well and if it lies below the line τ∗ then all zk ≤ z lie below as

well. In any case we can answer at least m/2 of the questions in O(n log n) time.

Cole’s extension of the parametric search [18] implies that the search problem for τ∗ can be

solved in O(log n) weighted batched questions. We adapt the scheme above for the weighted

batched problem exactly as in [42]. The overall time complexity for deciding the order of all

lines and hence computing the tangent τ∗ is O(n log2 n) time.

As remarked in [42], in a special case of Lemma 7 when x is at infinity one can compute a

tangent to a restricted λk that has a prescribed slope.

Lemma 8. Given a collection L of n lines, a pair of points U, V , and a vertical line W lying

inside |U, V | one can compute tangent τ∗ touching Γ∗k at its intersection point with W , in time

O(n log3 n).

Proof. There are two steps for the algorithm to find τ∗ in this case. First, we can compute the

slope of τ∗ relative to the slopes of lines in L as below:

• Use Lemma 7 to find a tangent τ ′ to Γ∗k parallel to a line q in L.

• If τ ′ touches Γ∗k strictly to the left of W we can push the intersection of τ ′ with W down

by slightly lowering the right end of τ ′ and hence the slope of τ∗ is smaller than the slope

of q. We proceed similarly for τ ′ touching Γ∗k to the right of W .

After the lines in L have been sorted by their slopes, a binary search can be performed to find

the slope of τ∗ relative to the slopes of lines in L in O(n log3 n) time.

In the second step we explicitly find τ∗ using a parametric search. Sort the intersection of

the lines in L with τ∗ - deciding the order of a pair of lines `, `′ is referred to as the question

(`, `′). Since τ∗ passes through a pair of points in the vertical strip, we will only solve questions

28

(`, `′) for which intersection point x = ` ∩ `′ lies inside |u, v|. We already know relative slope

of τ∗ with respect to the lines in L therefore we can decide the question (`, `′) once we know

whether the intersection x = ` ∩ `′ lies above or below τ∗. And that is readily available using

Lemma 7. Similarly the weighted questions batch problem is solved as in Matoušek.

The bounds in Lemma 4.1, Lemma 4.2, and Lemma 4.3 and the main algorithm in Ma-

toušek are same for the restricted convex hull problem and the time complexity analysis of

Matoušek is valid for the restricted convex hull algorithm as well.

2.4 Final Remarks

This algorithm leaves open the challenge of finding small hitting sets that are optimal for a

given set S. Let ck(S) denote the smallest constant for which there exist k distinct points in

R2, at least one of which must meet any convex set of size > ck(S)|S|. As already mentioned,

Mustafa and Ray showed that c2(S) ≤ c2 = 4/7 and that 4/7 is minimal. Another interesting

combinatorial question is to learn the exact values for c3, c4, c5 and it would be interesting

to know how many points are needed to hit every convex set containing half the points of a

given set S. Also the algorithmic problem of determining c2(S) for a given S, and of finding

(efficiently) two points that meet all ranges of size c2(S)n seems interesting and nontrivial.

29

Chapter 3

k-Centerpoints: A Generalization

3.1 Introduction

Given a set of n real numbers S = {s1, s2, . . . , sn} the rank γ(x) is the cardinality of the set

{si : si < x, 1 ≤ i ≤ n}. If the elements in S are distinct (a reasonable assumption for almost

all the real data), the rank function partitions the real line into n+1 disjoint subinterval. Define

the depth for any x ∈ R as

d(x) ≡ min(|{j : sj ≤ x}|, |{j : sj ≥ x}|)

This is the minimum number of data points that must be touched when moving monotonically

from x to ±∞. The range of the depth function is between 0 and
⌈
n
2

⌉
. The min and the max

elements of S have depth 1 (if they are unique) and a median has the maximal depth among all

x ∈ R.

When the data are from an unknown probability distribution F , data-depth provides valu-

able information about F . Statisticians and other researchers who work directly with the data

realized the utility of depth-by-rank in R1 and sought analogous for higher dimensions. John

Tukey was one of the pioneers and proposed the generalization for Rd called halfspace depth,

now also known as the Tukey depth. The idea of Tukey depth is based on the generalization

of the fact that in R1, the depth d(x) is the minimum size (the number of elements of S) of a

halfspace that contains x.

In the past 50+ years, mathematicians, statisticians, computer scientists, and a variety of

researchers who work with the massive data have all contributed to the subject of data-depth.

30

In this chapter we will describe and relate some of these results. Several basic questions will

be addressed including different generalizations of the depth in Rd, and the relation between

them. The main contribution of this chapter is the definition of a new depth measure in R3,

the line depth, and proving the first nontrivial bounds for a deepest point with respect the line

depth. We discuss some ways in which line depth relates to other well known depths in the

three dimensions. We then propose a general framework in which they ought to be studied

more uniformly. We present a simple set of conjectures on the bounds of the depth of the

deepest point in a uniform data-depth model that generalizes several previous results in this

regard. Finally we (i) argue for why these might be true, (ii) prove these conjectures are true

for R2, and (iii) discuss the first non-trivial bounds in dimensions more than 2, and, (iv) via

more detailed arguments, derive better bounds in R3.

The subsequent chapter will be devoted to the algorithmic aspects of the data-depth prob-

lem.

3.2 Data-Depth Measures

data-depth measures are real-valued functions that are defined on the points of Rd with respect

to a set S of n given data points in Rd. The set S represents a discrete sample from an unknown

distribution. We review below some well-known data-depth measures and summarize some of

their interesting properties.

3.2.1 Tukey Depth

John Tukey was one of the first mathematicians to extend the notion of data-depth to Rd, d > 1.

He began with the observation that for n given points in R1, d(x) is the number of si ∈ S in

the smaller of the two halflines containing x. He then defined for z ∈ Rd the halfspace depth,

whereby d(z) = minz∈h(|{si ∈ h})|, the min taken over all halfspaces of Rd that contain z,

so d(z) ≤ (n+ d)/2, just as was the case for d = 1.

31

A fundamental result in combinatorial geometry, a consequence of Helly’s theorem, is the

Centerpoint Theorem. It states that there exists a centerpoint namely a point z ∈ Rd : d(z) ≥

dn/(d+ 1)e and that the term dn/(d+ 1)e is the best possible in the worst case. In fact all

such points form a convex body in Rd called “the center”. The points on the boundary of the

convex hull of S have depth 1. A median is a point z ∈ Rd of maximal depth. Its depth d(z) is

the depth of S.

3.2.2 Simplicial Depth

Let S be n given data points in R1. Define the simplicial depth of x ∈ R to be the number of

1-simplices with vertices in S that contain x; that is, the number of intervals with endpoints

in S. Thus points x < min(S) and y > max(S) have depth 0 and a maximal depth point - a

median of S - has depth at least (n/2)2. A key observation is that simplicial depth and Tukey

depth order points in the same way: d(x) < d(y) in Tukey depth⇔ the same holds with respect

to simplicial depth.

In dimension d ≥ 2, given a set S of n data points, the simplicial depth of z ∈ Rd is the

number of subsets of d+ 1 points of S that are in convex position and that contain z. A median

is a point in Rd of maximal depth and a point z not within Conv(S) has depth d(z) = 0. If z

is a median, its depth is the depth of S.

The First Selection Lemma (see [43], pg. 207) in two dimensions states that given any set

S in R2, there exists a point in plane that has the simplicial depth at least n3/27. Regina Liu

began the study of the statistical properties of this depth measure in [39]. Not surprisingly, there

is a close relation between Tukey and simplicial depths. Wagner pointed out the following fact:

Lemma 1. [55] Any point q with Tukey depth τn with respect to an n-point set in Rd has

simplicial depth at least (d+1)τd−2dτd+1

(d+1)! · nd+1 −O(nd).

This is an interesting relation because along with the Centerpoint Theorem, it already gives

32

the bounds on cd that are very close to the ones in first selection lemma in two dimensions. Wag-

ner used this to establish improved bounds for the First Selection Lemma in higher dimensions.

Unfortunately it was proved soon after that this approach of taking an arbitrary centerpoint and

bounding its simplicial depth can’t give the optimal bounds for the First Selection Lemma even

when d = 2. In fact the suboptimal bounds in the above lemma are the best possible using this

technique as shown below.

Theorem 1. [14] There exists an n-point set S and a point q, both in Rd, such that the Tukey

depth of q is τ · n and the simplicial depth is at most (d+1)τd−2dτd+1

(d+1)! · nd+1 +O(nd).

We observe the following simple relation in two dimensions between the two depth mea-

sures:

Claim 1. Given a set S of n points in R2 with Tukey depth τn, with 1/3 ≤ τ ≤ 1/2, the

simplicial depth of S is at least (−2τ3 + 2.5τ2 − τ + 1/6) · n3. Moreover this relation is

optimal.

In particular, the above claim together with the Centerpoint Theorem implies the First Se-

lection Lemma in R2. We will use the following key Lemma.

Lemma 2 (Boros-Füredi [11]). Given a set S of n points in Rd, where Tukey depth of S is τn,

there exists a point p with depth τn, and a setH of d+ 1 halfspaces {h1, . . . , hd+1}, such that

(i) |hi ∩ S| = τn, (ii) p lies on the boundary hyperplane of each hi, and (iii) h1 ∪ . . . ∪ hd+1

cover the entire Rd.

Lemma 2 in the plane gives a point q of depth τ · n with three halfplane each containing

exactly τ · n points and that cover the whole plane between them. Let Si, 1 ≤ i ≤ 6 be the six

regions such formed as outlined in figure 3.1.

Let si be the number of points of S in the region Si. It’s easy to see that there are at least

the following number of triangles that contain q:

33

h1 h2

h3

S1

S2

S3

S4

S5

S6

Figure 3.1: Three halfplanes h1, h2 and h3 cover the whole plane. Regions are defined as
follows: S1 = h1 ∩ h2 ∩ h3, S2 = h1 ∩ h2 ∩ h3, S3 = h1 ∩ h3 ∩ h2, S4 = h3 ∩ h1 ∩ h2,
S5 = h2 ∩ h3 ∩ h1, and S6 = h2 ∩ h1 ∩ h3.

• s5×s2× (s3 +s4): with one point in S5, other in S2 and the third point in either S3∪S4

or S6 ∪ S1,

• s1×s4× (s2 +s3): with one point in S1, other in S4 and the third point in either S2∪S3

or S5 ∪ S6,

• s3×s6× (s1 +s2): with one point in S3, other in S6 and the third point in either S1∪S2

or S4 ∪ S5,

• s3
1/3.0 + s2

1 × (1− 2τ)/2.0− o(n2): with all three points in S1 ∪ S4,

• s3
3/3.0 + s2

3 × (1− 2τ)/2.0− o(n2): with all three points in S3 ∪ S6,

• s3
5/3.0 + s2

5 × (1− 2τ)/2.0− o(n2): with all three points in S5 ∪ S2, and

• s1 × s3 × s5 + s2 × s4 × s6: with one from each of S1, S3, and S5 or one point from

each of S2, S4, and S6.

The claim follows by some algebraic manipulation. Basit et al. [7] used a more elaborate

version of this technique to get improved bounds for the First Selection Lemma in R3.

While the First Selection Lemma gives the optimal bound on the simplicial depth of a point

set in the plane, known bounds on the simplicial depth of point sets in higher dimensions are far

34

from the optimal, despite the fact that the search for such bounds has been been subject of many

major works in Discrete Geometry for last three decades. Bárány first showed that given a point

set S of n points in Rd there exists a point q which is contained in cd.
(
n
d+1

)
−O(nd) simplices

with vertices from S where cd ≥ 1
(d+1)d

[5]. The bound on cd was improved by Wagner

to d2+1
(d+1)(d+1) [55]. Recently Gromov showed that cd ≥ 2d

(d+1)!(d+1) using a new topological

method [29].

When d = 3, Basit et al. proved that there is always a point in R3 which is contained in more

than 0.00227n4 tetrahedrons induced by a set of n points. Gromov improved this bound to

0.07480 in [29]. In the same paper Gromov also gave a proof of the optimal bound of the

First Selection Lemma using a topological method. This proof is of special interest because

it establishes an optimal bound on ray-shooting depth in R2 that will be discussed in the next

section.

3.2.3 Ray-Shooting Depth

Given a point set S in the plane, the ray-shooting depth of a point q ∈ R2 is the smallest number

of the edges intersected by any ray from q where an edge is induced by a pair of points in S.

The ray-shooting depth (henceforth called RS-depth) of S is the maximum RS-depth in R2.

The ray-shooting Theorem is:

Theorem 2. [26]. Any set S of n points in R2 has RS-depth at least n2/9, and this bound is

tight.

It is observed that any point with RS-depth at least n2/9 is both a centerpoint, as well as a

point of high simplicial depth. Now let q be a point with RS-depth rn2 with respect to a point

set S in the plane. The Tukey depth of q is the minimum number of points of S contained in a

halfplane that also includes q. Consider any line ` through q. Since q has RS-depth rn2, each of

the two half-infinite rays of ` starting at q must intersect rn2 edges each. The line ` intersects

at least 2rn2 edges. Say there are k ≤ n/2 points of S on one side of ` and n− k points on the

35

other side. As k · (n− k) ≥ 2rn2, we have k ≥ (n−n
√

1− 8r)/2. Therefore both halfplanes

defined by ` must contain at least (n − n
√

1− 8r)/2 points. The ray-shooting theorem states

that r ≥ 1/9 which shows that the Tukey depth of q is at least n/3 as required in the centerpoint

theorem. Therefore the ray-shooting theorem implies the Centerpoint Theorem. As before let q

be a point with RS-depth rn2 with respect to a point set S in the plane . For the First Selection

Lemma, we would like to count the number of triangles that contain q. For a point si ∈ S

consider the ray from q in the direction ~q(−si) (−si is the antipodal point of si with respect

to q). For every edge {sj , sk} that intersects this ray, the triangle defined by {si, sj , sk} must

contain q where i, j, k are distinct. By the assumption on the ray-shooting depth of q, for each

si there are at least rn2 such triangles containing q. Summing up these triangles over all points

si, where each triangle is counted three times, q lies in at least rn3/3 distinct triangles.

But by the ray-shooting theorem, there exists a point with RS-depth n2/9. Using r = 1/9

now gives the First Selection Lemma. So in dimension 2 the ray-shooting theorem implies the

First Selection Lemma.

On the other hand, a centerpoint is not always a point of “high” ray-shooting depth. Con-

sider the example in the figure 3.2. The centerpoint c in the figure has ray-shooting depth at

most n2/18 + 6n. It can be shown that this is the worst possible example - that a centerpoint

always has ray-shooting depth of n2/18−O(n).

Fact 1. Given a set of points S in the plane any centerpoint c has ray-shooting depth more than

n2/18−O(n).

Proof. It is enough to show that there are “enough” edges meeting an arbitrary ray ρ from

the centerpoint c. Since a point in S contributes at most n − 1 edges, we may assume that ρ

meets a point s1. Let the points in S = {s1, s2, . . . , sn} be ordered radially around c in the

counter-clockwise order. Translate and rotate the point set so that c is the origin and s1 lies on

the positive horizontal axis. Let `i be the line through c and the point si - so `1 is the horizontal

axis with at least n/3 points above and at least n/3 points below. Note that for a point si with

36

s1

s2

sn
3

s 2n
3 +1

s 2n
3 +2

sn

{sn
3 +1, sn

3 +2, . . . , s 2n
3
}

ρ

Figure 3.2: Two thirds of the points are arranged on a unit circle around a point c so that
s 2n

3
+i := si for all 1 ≤ i ≤ n/3. Clearly c is a centerpoint but c doesn’t have “high” ray-

shooting depth as the ray ρ starting at c intersects at most n2/18 + 6n edges.

i ≤ n/3 and a point sj with j ≥ n− (n/3− i), the edge sisj meets the ray ρ. This is because

there are at least n/3 points to the right of the line `i. And at least n − (n/3 − i) of them lie

below ρ. There are at least (n/3− i) edges for each si with i ≤ n/3 that meet ρ. Therefore the

number of edges meeting ρ is more than
∑n/3

i=1(n/3− i). The claim follows.

The status in R3 and higher dimensions

We saw that the optimal bounds on the depth of the Tukey, simplicial, and the RS-median are

known in the plane. Unfortunately things are much less well-understood already in R3. Of the

depth measures, as stated earlier, the centerpoint theorem again gives the Tukey depth lower

bound of n/4 in R3, and this is optimal.

However, optimal bound for the simplicial depth is not known. It is known that for any set

S of n points in Rd, there exists a point lying in cd · nd+1 simplices, where cd is a constant

that depends on the dimension d. The determination of the exact value of cd is a long-standing

open problem in the combinatorial geometry. Bárány [5] proved that cd ≥ 1
d!(d+1)d+1 . Bárány’s

bound was improved to d2+1
(d+1)!(d+1)d+1 by Wagner [55], who in fact showed that any point of

Tukey depth τn is contained in at least the following number of simplices:

37

(d+ 1)τd − 2dτd+1

(d+ 1)!
· nd+1 −O(nd). (3.1)

More recently, Bukh, Matoušek, and Nivash [14] gave an elegant construction of a point set

S so that no point in Rd is contained in more than (n/(d+ 1))d+1 simplices defined by S upto

lower-order terms. Furthermore, they conjecture that this is the right bound.

For d = 3 then, the conjectured bound is c3 = 0.0039. For this case, the bound of Wagner

was recently improved by Basit et al. [7], where they showed that c3 ≥ 0.0023. This was

further improved by Gromov [29] using a complicated topological argument; he showed that

cd ≥ 2d/((d + 1)(d + 1)!2). For d = 3 this gives c3 ≥ 0.0026. This bound for R3 has since

been improved even further by Mach and Sereni [33] to c3 ≥ 0.0031.

In higher dimensions, the notion of RS-depth corresponds to finding a point q such that any

ray from q intersects “lots” of (d − 1)-simplices spanned by points of S. No combinatorial

bounds on the RS-depth of such a point are known for d ≥ 3. It was not studied in the paper

that proposed it [26], and their topological technique that was used for the two-dimensional

case fails for d = 3 and above. Using the bounds on simplicial depth, it is not too hard to derive

a first such bound: any set S of n points in Rd has RS-depth at least 2d/((d+1)((d+1)!)2)·nd.

See Theorem 4 in Section 3.4 for a more general bound.

3.3 A Uniform View of data-depth

Given the lack of optimal bounds for simplicial-depth and RS-depth in dimensions higher than

two, a leading question is what are the bounds to expect? What would be a good conjecture?

We think that one good way to address such questions is to look at the extreme cases. As it

turns out, there is one particular extreme case that is of special interest. Consider the following

point set of size n: fix a simplex in Rd - it is helpful to think of it as a regular simplex albeit

this is not a requirement. Place n/(d + 1) points on each of its (d + 1) vertices. Call such a

point set a simplex-like point set. For the kind of questions we are considering, this seems to

38

represent an ‘extremal’ case. In other words, the lower bounds for the data-depth of this point

set appear to be true for any point set.

So let’s consider the depth measures we have defined in this chapter so far for the simplex-

like point set with its points lying on the vertices of a simplex ∆ in Rd. Let c be the centroid of

∆, i.e., the arithmetic mean of the d+ 1 vertices of the simplex. Any hyperplane through c has

at least one vertex of ∆ to each of its two sides. Therefore c has a Tukey depth ≥ n/(d + 1).

And it is best possible because a hyperplane through c exists with d vertices of the simplex

on the one side and one vertex on the other side. This meets the exact requirements of the

centerpoint theorem. As ∆ contains the centroid c, all simplices with a vertex in each of the

disjoint sets of points contain c. There are exactly (n/(d+ 1))d+1 such simplices. Finally, any

ray from cmust intersect at least one facet of S, and so intersect (n/(d+1))d (d−1)-simplices

spanned by S and so have that much RS-depth.

Let us give some justification for reliance on this extremal case. First note that, so far,

all theoretical and empirical evidence seems to show that as the Tukey depth of a point set

increases, so does its simplicial-depth and also its RS-depth. So, for example, for a point set

with the Tukey depth of n/2, we get the maximum possible values of both simplicial depth

and RS-depth. Theoretical results for R2 relating Tukey depth to simplicial depth have already

been discussed in Claim 1.

Second, we outline below an argument showing that, when the Tukey depth of a point set

is the lowest possible, i.e., n/(d + 1), then we get exactly the bounds one expects from the

simplex-like point set. This, together with the first point, leads us to suspect that the bounds

derived from the simplex-like point set might indeed be always realizable for any point set.

So consider the following theorem from Boros and Füredi [11]: Given a set S of n points

in Rd with Tukey depth n/(d+ 1), there exists a point p with depth n/(d+ 1), and a set H of

d+ 1 halfspaces {h1, . . . , hd+1}, such that (i) |hi ∩S| = n/(d+ 1), (ii) p lies on the boundary

plane of each hi, and (iii) h1 ∪ . . . ∪ hd+1 cover the entire Rd. It is easy to see that in this

39

configuration, with the given constraints, the d+ 1 regions Ai = Hi
⋂(∩j 6=iHj

)
each contain

exactly n/(d + 1) points, and all the other 2d+1 − 2 regions are empty. We already assume

that the point p has Tukey depth n/(d + 1). And it is not too hard to prove that in such a

configuration in Rd it has simplicial depth (n/(d+ 1))d+1 and has RS-depth (n/(d+ 1))d. In

some sense, with respect to the point p, the n points are essentially in a simplex-like position,

combinatorially, when Tukey depth is n/(d+ 1).

Furthermore, the intuition one gets from simplex-like point sets conforms to all the infor-

mation we have about these problems. It gives exactly the results known for R (which is trivial)

and for R2. And it matches the conjecture in [14] that there always exists a point of simplicial

depth (n/(d+ 1))d+1 (ignoring lower-order terms).

Line-depth in R3

Let us continue with the consideration of the set S in R3 where n/4 points are placed near each

of the vertices of some tetrahedron S. And let c be the centroid of S.

The Tukey depth of c is realized by some half-space (a 3-dimensional halfspace) with c

lying on its (2-dimensional) boundary. Similarly the RS-depth of c is realized by a ray - a half-

line (a 1-dimensional halfspace) with c lying on its (0-dimensional) boundary. But this begs the

question: what do the halfplanes (2-dimensional halfspaces) with c on their (1-dimensional)

boundary define? It is natural to consider the 2-dimensional space defined by a half-plane h

with c on its (1-dimensional) boundary and then count the number of edges spanned by S that

intersect h. What answer is to be expected? Going by the intuition of simplex-like point set, any

half-plane through c will intersect at least one edge of S, and so intersect at least (n/4)2 edges

spanned by S. Formally, a point q ∈ R3 has line depth r if any halfplane through q intersects at

least r edges spanned by S. The line depth of a point set S is defined as the highest line depth

of any point. A half-space in 2-dimensional space is called a half-plane. We conjecture:

Conjecture 1. Any set S of n points in R3 has line depth at least (n/4)2.

40

Like RS-depth and simplicial-depth in R3, it seems hard to prove this exact bound using

current techniques. But we are able to show the following:

Theorem 3. Given any set S of n points in R3, there exists a point q such that any halfplane

through q intersects at least 2n2/49 edges spanned by S.

So with the notion of line depth, we have three measures in R3 for any point q: 2-dimensional

space is the familiar Tukey depth, 1-dimensional space gives line depth, and 0-dimensional

space gives RS-depth. Intuitively, it is clear that as the dimension of the flat decreases, the

degrees of freedom increase and the problem becomes more complicated. On one end, optimal

results for the 2-dimensional case (Tukey depth) are known. On the other end, very partial

results are known for the 0-dimensional case. It is our hope that the middle 1-dimensional case

will be more accessible than the 0-dimensional case. That is another motivation to study the

line depth problem.

Proof of Theorem 3. For any set S with n points and Tukey depth τn, our bound is achieved

via a two-step strategy. First, we show that there exists an increasing function of τ that lower-

bounds the line depth of S. Then, via an alternate technique, we show the existence of a

decreasing function of τ that also lower-bounds the line depth of S. Combining the two yields

our theorem.

Lemma 3. Given a set S of n points in R3, let p be a point with Tukey depth at least τn. Then

the line depth of p is at least (τn)2/2− o(n).

Proof. Given an arbitrary half-plane H through such a point p, we define a procedure to find

edges that intersect H . Starting from H , rotate a half-plane in one direction with the axis of

rotation as the bounding line of H . Sort points in S by the order in which they intersect this

rotating half-plane, i.e., p1 is the first point to be hit. Call the half-plane through pi as Hi, and

the plane containing Hi as Gi. Let H+
i be the halfspace define by Gi such that H ⊆ H+

i .

H partitions H+
i into H++

i and H+−
i ; denote the wedge containing the points {p1, . . . pi} as

41

H++
i . By the definition of Tukey depth of p, |H++

i ∩ S|+ |H+−
i ∩ S| ≥ τn. Observe that for

any i ≤ τn, the line segment defined by pi and pj ∈ H+−
i ∩ S must intersect H . The number

of such line segments can be bounded as

T ≥
τn∑

k=1

k =
(τn)2

2
− o(n). (3.2)

Note that since τ ≥ 1/4 by the Centerpoint Theorem, if you take p to be a Tukey median,

Lemma 3 proves the existence of a point with line depth at least n2/32. By a second method,

we prove the following lower-bound:

Lemma 4. Given a set S of n points with Tukey depth τn, there exists a point q with line depth

at least (τ − 3τ2) · n2.

Note that this is a decreasing function of τ for τ ∈ [0.25, 0.5]. For the proof, we extend the

approach in [7] to work for the line depth case.

Given a set S of n points in R3, with depth(S) = τn, use Lemma 2 to obtain the point

p and a set of four halfspaces {h1, h2, h3, h4} satisfying the stated conditions. We will now

show that p gives the required line depth lower-bound of (τ − 3τ2) ·n2. As the four halfspaces

cover the space, a point in R3 is in either one, two, or three of the halfspaces. There the four

halfspaces partition R3 into the following convex unbounded regions:

Ai = (
⋂

l 6=i
hl) ∩ hi, Bi,j = (

⋂

l 6=i,j
hl) ∩ hi ∩ hj , Ci = (

⋂

l 6=i
hl) ∩ hi (3.3)

See Figure 3.3. The bars at the top of halfspaces indicate the complements, i.e., for h ⊆ Rd,

h := Rd \ h. We note that regions Ai and Ci are antipodal around the point p (in the sense

that a line through p and intersecting Ai will intersect Ci and not intersect any other region).

Similarly region Bi,j is antipodal to region Bk,l for distinct 1 ≤ i, j, k, l ≤ 4. For brevity we

also define

A :=
⋃

i∈[4]

Ai, B :=
⋃

i,j∈[4],i 6=j
Bi,j ,

42

h2h3

h4

h1

A1

B1,4

A4

B1,2

B1,3

C2 C3

h1

h4

h3h2

B1,2

C3 B2,4

A2A1

h1

h4

h3

h2B2,3

C1 B3,4

A3

B1,3

Figure 3.3: Partitioning of R3 into 14 regions by the four halfspaces as visible from three
different angles. The labels on the planes represent the halfspace that is facing the reader.

where [m] denotes the numbers [m] := {1, 2, . . . ,m} for an integerm. Setαi = |S∩Ai|/n,

βi,j = |S ∩Bi,j |/n, and γi = |S ∩ Ci|/n. Note that we have the following two constraints on

the non-negative variables αi, βi,j and γi:

τ =
|hi ∩ S|

n
= αi +

∑

j 6=i
βi,j +

∑

j 6=i
γj for each i = 1 . . . 4 , and (3.4)

∑

i

αi +
∑

i<j

βi,j +
∑

i

γi = 1, as {h1, h2, h3, h4} cover R3 \ {p}. (3.5)

Summing up (3.4) for all four halfspaces, and subtracting (3.5) from it, we get

∑

i<j

βi,j + 2 ·
∑

i

γi = 4 · τ − 1. (3.6)

Therefore,
∑

i<j βi,j +
∑

i γi ≤ 4τ − 1. This fact, together with equation (3.4), implies that

1− 3τ ≤ αi ≤ τ for i = 1 . . . 4.

In what follows we need the following lemma.

Lemma 5. For any 1 ≤ i < j ≤ 4, we have αiαj+βi,jαi ≥ τ−3τ2. Similarly, αiαj+βi,jαj ≥

τ − 3τ2.

Proof. Assume the other two halfspaces are hk and hl (other than hi and hj). Since |S ∩hk| =

43

1− τ , and |S ∩ hl| = τ , we get S ∩ (hi \ hl) = αi + βi,j + αj ≥ 1− 2τ . Then we have

αiαj + βi,jαi ≥ αiαj + (1− 2τ − αi − αj)αi = αi(1− 2τ − αi).

This last term is minimized at the extreme values of αi, which are either τ or 1 − 3τ , both

yielding a lower-bound of τ(1− 3τ).

We will repeatedly use the following fact in different cases below to count the number of

line segments intersecting an arbitrary half plane H .

Fact 2. Given a set of halfspaces H in R3, let X be the convex region of their common inter-

section, and let H be any set such that X \H has more than one path-connected component.

Then if p and q are points in two different components, the edge pq must intersect H .

Let A+
i , A−i be a partition of Ai and B+

i,j , B
−
i,j a partition of Bi,j . Then define: α+

i =

|A+
i ∩S|
n , α−i =

|A−i ∩S|
n , β+

i,j =
|B+

i,j∩S|
n , β−i,j =

|B−i,j∩S|
n .

Claim 2. αi · αj + β+
i,j · αj + β−i,j · αi ≥ τ − 3τ2.

Proof.

αi · αj + β+
i,j · αj + β−i,j · αi ≥ αiαj + min(αi, αj)(β

+
i,j + β−i,j)

= αiαj + βi,j min(αi, αj)

= min(αiαj + βi,jαi, αiαj + βi,jαj) ≥ τ − 3τ2

by Lemma 5.

Claim 3. α+
i · αj + α−i · αk + α+

i · β−i,j + β+
i,j · αj + α−i · βi,k ≥ τ − 3τ2.

44

Proof. The left-hand side is equal to

= α+
i (αj + β−i,j) + α−i (αk + βi,k) + αjβ

+
i,j

≥ min(αj + β−i,j , αk + βi,k)(α
+
i + α−i) + αjβ

+
i,j

= αi min(αj + β−i,j , αk + βi,k) + αjβ
+
i,j

= min(αiαj + αiβ
−
i,j + αjβ

+
i,j , αiαk + βi,kαi + αjβ

+
i,j)

≥ min(αiαj + min(αi, αj)(β
+
i,j + β−i,j), αiαk + βi,kαi)

= min(min(αiαj + αiβi,j , αiαj + αjβi,j), αiαk + βi,kαi)

= min(αiαj + αiβi,j , αiαj + αjβi,j , αiαk + βi,kαi)

≥ τ − 3τ2,

where the last inequality follows from Lemma 5.

Let p be as defined in Lemma 2; we will show that any half-plane through p intersects at

least (τ − 3τ2) · n2 edges spanned by S. We identify a line ` as the supporting line of the

halfplane H if it lies on the boundary of H . The supporting line ` of H passes through a pair

of antipodal regions among the fourteen regions define in Equation 3.3 as well as the point p.

There are two obvious possibilities for a halfplane H: either it intersects A (recall that A is

the union of Ai, i ∈ [4]) or it does not intersect A (Case 2 below). For the first possibility we

can have three possible sub cases: the supporting line ` of H passes through some Ai but H

doesn’t intersect A \ Ai (Case 1) or H intersects A but the supporting line ` doesn’t (Case 4)

or ` passes through some Ai and H intersects some Aj , j 6= i (Case 3).

Let η(H) denote the number of edges meeting halfplane H . It suffices to prove the bound

on η(H) separately for the following four cases. We will use terms above (or below) a half-

planeH to distinguish between points that lie on opposite sides of the plane passing throughH .

Also we call a pair of regions as neighbors (to each other) if exactly one halfspace hi separates

points in one region from the points in the other region.

45

Case 1: Supporting line ` passes through Ai and H does not intersect A \ Ai for

i ∈ [4]

Note that in this case the supporting line ` also passes through Ci. By definition Ci =

(
⋂
j 6=i hj) ∩ hi. Since there is no point common in all four (open) halfspaces (or their com-

plements) we also have that Ci = (
⋂
j 6=i hj). There are three neighbors of Ci: Bj,k, Bk,l, Bj,l

where j, k, l ∈ [4] \ {i} and any halfplane H with supporting line passing through Ci will

intersect exactly one of them (see Figure 3.4). Without loss of generality let us assume that

H intersects some Bj,k where j, k 6= i, and let H = {hi, hl}. By definition, all the points in

Aj ∪ Bj,k ∪ Ak lie in the intersection of halfspaces in H. As H does not intersect Aj and Ak

(by assumption), H partitions the region defined by the intersection of halfspaces inH into two

pieces, withAj∪B+
j,k lying aboveH , whileAk∪B−j,k lies belowH . Using Fact 2 withH andH ,

we see that the following number of edges must intersectH: η(H) ≥ αj ·αk+β+
j,k ·αk+β−j,k ·αj .

From Claim 2, it follows that η(H) ≥ τ − 3τ2.

CiBj,k Bk,l

Bj,l

`

hk

hj

hl

hi

Figure 3.4: Region Ci has three neighboring regions: Bj,k, Bj,l and Bk,l and for a halfplane H
with supporting line ` passing through Ai and Ci, H intersects exactly one of them.

Case 2: (H does not intersect any Ai for i ∈ [4]).

If H does not intersect any Ai then it must be that the supporting line ` passes through Bi,j and

Bk,l and H intersects Bxy with x ∈ {i, j} and y ∈ {k, l}. With loss of generality assume that

46

x = j and y = k. Let H = {hi, hl} . Then, by definition, all the points in Aj ∪ Bj,k ∪ Ak lie

in the intersection of halfspaces in H. And in this case, H partitions the region defined by the

intersection of halfspaces in H into two pieces, with Aj ∪ B+
j,k lying above H , and Ak ∪ B−j,k

lying below H . Using Fact 2 with H and H , we get : η(H) ≥ αj · αk + β+
j,k · αk + β−j,k · αj .

From Claim 2, it follows that η(H) ≥ τ − 3τ2.

Case 3: (Supporting line ` passes through Ai and H also intersects some Aj for

some i, j ∈ [4], j 6= i).

In this case H may also intersect Bj,k or Bj,l but not both. Without loss of generality H inter-

sects Bj,k (if H does not intersect any of them then we can take either one part of the assumed

partition to contain no points of S). Let H = {hi, hl}. Then, by definition, all the points in

Aj ∪Bj,k ∪Ak lie in the intersection of halfspaces inH. And in this case, H partitions the re-

gion defined by the intersection of halfspaces inH into two pieces, with A+
j ∪B+

j,k lying above

H , andA−j ∪Ak∪B−j,k lying belowH . Using Fact 2 withH andH , the edges with endpoints in

the following pairs of regions are intersecting H: (A+
j , Ak), (A

+
j , B

−
j,k), (Ak, B

+
j,k). Similarly

H also partitions hi ∩ hk; setting H = {hi, hk}, the edges with endpoints in following pairs

must intersect H: (Al, A
−
j), (A−j , Bj,l). Therefore, η(H) ≥ α+

j · αk + α−j · αl + α+
j · β−j,k +

β+
j,k · αk + α−j · βj,l. From Claim 3, it follows that η(H) ≥ τ − 3τ2.

Case 4: (H intersects A but the supporting line ` doesn’t).

Since supporting line ` does not intersectA, it must intersectB. Without loss of any generality,

` passes through Bi,j and Bk,l and H intersects Aj . In this case H may also intersect Bj,k or

Bj,l but not both. Again without loss of generality H intersects Bj,k (if H does not intersect

any of them then we can take either one part of the assumed partition to contain no points of S).

Let H = {hi, hl}. Then, by definition, all the points in Aj ∪ Bj,k ∪ Ak lie in the intersection

of halfspaces in H. And in this case of H , H partitions the region defined by the intersection

47

Aj

Bj,k

Ak

hi
hl

hj

hi
hl

A+
j

A−
j

B+
j,k

B−
j,k

Ak

hj

Figure 3.5: Halfplane H partitions hi ∩ hl = Aj ∪ Bj,k ∪ Ak into two parts: A+
j ∪ B+

j,k lying
above H and A−j ∪Ak ∪B−j,k lying below H .

of halfspaces in H into two pieces, with A+
j ∪B+

j,k lying above H , and A−j ∪ Ak ∪B−j,k lying

below H as in Figure 3.5. Using Fact 2 withH and H , we get that edges with endpoints in the

following pairs of regions are intersecting H: (A+
j , Ak), (A

+
j , B

−
j,k), (Ak, B

+
j,k). Similarly H

also partitions hi ∩ hk; settingH = {hi, hk}, the edges with endpoints in following pairs must

intersect H: (Al, A
−
j), (A−j , Bj,l). Therefore, the following number of edges must intersect H:

η(H) ≥ α+
j · αk + α−j · αl + α+

j · β−j,k + β+
j,k · αk + α−j · βj,l. From Claim 3, it follows that

η(H) ≥ τ − 3τ2. This completes the proof of Lemma 4.

Finally, to complete the proof of Theorem 3: take any set S of n points with Tukey depth

τn. If τ ≥ 0.285, Lemma 3 gives a point with line depth at least (0.285)2n2/2 ≥ n2/24.5.

On the other hand, if τ < 0.285, Lemma 4 gives a point with line depth at least (0.285 −

3(0.285)2)n2 ≥ n2/24.5.

3.3.1 Relations between data-depth measures in R3

For d = 2, we have two fundamental measures: Tukey depth, and RS-depth. Recall from

section 3.2.3 that any point of RS-depth n2/9 has Tukey depth at least n/3. However the

converse is not necessarily true. So there is a hierarchy in dimension 2. Is the analogous

48

property true in R3?

Speculation 1. Let q be a point in R3 with RS-depth (n/4)3. Then q has line depth at least

(n/4)2. Similarly, let q be a point with line depth (n/4)2. Then q has Tukey depth at least

(n/4).

Unfortunately, the hierarchical structure that is present in R2 is absent in R3.

Lemma 6. There exists a point set S and a point q both in R3 such that the line depth of q is at

least cn2 with c > 1
16 while the Tukey depth of q is at most n/4 where n is large enough.

Proof. To prove this statement we will construct one such set of n points and a point q with

claimed bounds on its line depth and Tukey depth. Our point set S has two parts A and B

with |A| = 3n/4 and |B| = n/4. We place the points in A = {a1, a2, . . . , a3n/4} around the

origin at regular distance in the unit radius circle in the xy-plane with z = 0, i.e., the point

ai := (cos(4i
3n2π), sin(4i

3n2π), 0). Similarly the points in B lie in a circle of small enough

radius ε > 0 around the point (0, 0, 1) at regular distance again in the xy-plane with z = 1.

Any ε < 2π
3n/4 will work but for simplicity assume ε is arbitrarily small. We fix q to be the

midpoint on the line segment between the centers of these two circles i.e. q = (0, 0, 1/2). It is

easy to see that the Tukey depth of q is at most n/4.

We want to show that for any halfplane H through q there are more than n2/16 edges incident

on the pairs of points in S that intersect H . We identify a line ` as the supporting line of the

halfplane H if it lies on the boundary of H . The supporting line ` of H passes through the

point q. By symmetry of points in A and B we can assume, without loss of any generality, that

the line ` lies on xz-plane and that the halfplane H lies in the positive y halfspace. For a point

u in the three-dimensional space we use x(u), y(u), z(u) to represent x, y, and z coordinates

of u respectively. We write Conv(A) and Conv(B) for respective convex hulls of the points

in A and B. For a set Q of points π(Q) denotes the plane through Q whenever Q determines

a unique such plane. Unless a halfplane misses both the convex hulls (which is described in

49

Case 1), its supporting line ` may or may not intersect Conv(B). The scenario when it does

intersect Conv(B) is described in Case 2 below. We divide the case when it does not intersect

Conv(B) into further sub cases based on whether ` intersect Conv(A) or not.

Case 1: H misses both Conv(A) and Conv(B).

It is easy to see that for all ai = (u, v, 0) ∈ A with v ≥ 0 and for all bj ∈ B edge aibj meets

H . We have

η(H) ≥ n

4
× 3n

4
× 1

2

=
3n2

32
>
n2

16
.

As a matter of fact, the number of the edges intersecting H is exactly 3n2

32 in this case.

Case 2: The supporting line ` passes through Conv(B).

Since the points in B are placed in a small enough circle the line ` passes very close to the

origin i.e. the euclidean distance between origin and the closest point on ` is at most ε. Among

all the edges that are incident on a pair of vertices in A only a linear (in |A|) number of them

pass through any circle of radius ε around the origin . That is because for each point ai in A

there are at most 4 points a′ such that the edges of the form aia′ intersect such a circle due to

the choice of ε to be an arbitrarily small number. Since a halfplane passing through q and the

origin is intersected by (1/2)(3n/8)(3n/8) edges with both endpoints in A,

η(H) ≥ 3n

8
× 3n

8
× 1

2
− cn

=
9n2

128
− cn > n2

16
,

where cn is the linear number of edges that pass through a circle of radius ε around the origin.

For the rest of the proof we will assume that the supporting line ` does not pass through

Conv(B). In Case 3 and Case 4 we describe the scenario when ` does not intersect Conv(A)

50

either. And then for Case 5 and Case 6 we assume that the supporting line ` does pass through

Conv(A).

Case 3: H intersects Conv(A) but the supporting line ` doesn’t.

Note that H can’t intersect Conv(B) in this case. Let H partition the points in A into two

parts, A1 lying above and A2 lying below H . All edges with one endpoint in A1 and the

other endpoint in A2 meet H . Similarly all edges with one point in B and other in A2 with

the positive y-coordinate meet H too. If there are k points in A1 then we can assume that

0 ≤ k ≤ 3n
8 . We have

η(H) ≥ k × (
3n

4
− k) + (

3n

8
− k)× n

4

=
3n2

32
+

2nk

4
− k2

=
3n2

32
+ k(n/2− k) >

n2

16
.

`
q

A
B1

B2

A2

A1

Bq

`

(a) (b)

Figure 3.6: Figure(a) on the left illustrates Case 3 when H partitions A into A1 and A2.
Similarly figure(b) on the right illustrates Case 4 when H partitions B into B1 and B2.

51

Case 4: H does not intersect Conv(A), intersects Conv(B), and the supporting

line ` doesn’t intersect Conv(B).

Let H partition the points in B into two parts B1 lying above and B2 lying below H . All the

edges with one point in B1 and other in B2 meet H . Similarly all edges with one point in B1

and other in A with a negative y-coordinate meet H . And all the edges with one point in B2

and other in A with a positive y-coordinate meet H as well. If there are k points in B1 then we

can assume that 0 ≤ k ≤ n
8 . We have

η(H) ≥ k × n

4
− k + k × 3n

8
+ (

n

4
− k)× 3n

8

=
3n2

32
k × n

4
− k > n2

16

Case 5: The supporting line ` intersects Conv(A), but H doesn’t intersect Conv(B).

H partitions the points in A that lie in positive y halfspace into two sets A1 and A2 such that

the points in A1 and the points in B lie to the left of the plane π(H) while the points in A2 lie

to the right. Let |A1| = k and |A2| = 3n/8− k. When k ≤ n/8 there are at least n/4× 2n/8

edges with one endpoint in B and the other in A2 and all such edges intersect H . Similarly

when n/8 < k < 2n/8 there are at least n/8 × 2n/8 edges with one endpoint in A1 and the

other in A2 and n/4× n/8 edges with one endpoint in A1 and the other endpoint in B - again

all such edges intersect H . We have a slightly more interesting case when k ≥ 2n/8. If there

are 3n/8− k′ points in A above π(H) and 3n/8 + k′ points below then we know that there are

at least (3n/8− k′)× (3n/8 + k′)/2 edges that intersect H where k′ ≤ k ≤ n/8. The number

of edges meeting H is at least n
2

16 in all cases.

Here is the final case:

52

Case 6: The supporting line ` intersects Conv(A), H intersects Conv(B), but `

does not intersect Conv(B).

Let p0 = (u0, v0, 0) and p1 = (u1, v1, 1) be the points where ` intersects the plane z = 0 and

the plane z = 1 respectively. By the symmetry of the points in A and B we may assume that

u0 < 0. Since ` passes through the point q at z = 1/2, this implies that u1 > 0. Also notice

that as H intersects Conv(B), H must intersect the plane z = 0 only in the negative X half

i.e. i.e x(H ∩{p ∈ R3 : z(p) = 0}) < 0. Let A′ := A∩{(x, y, z) : y ≥ 0} i.e. the points in A

that lie in the positive y halfspace. H partitions the points in A′ into two sets: A1 lying below

H and A2 lying above. Similarly H partitions B into B1 lying below H and B2 lying above.

Let |A1| = k and |A2| = 3n/8− k. Due the small choice of ε, the radius of circle that contains

B, it must be that k ≤ 2. Also with |B1| = j and |B2| = n/4− j, it must be that j > n/8. All

edges with one endpoint in A1 ∪B1 and the other endpoint in A2 ∪B2 meet H . Also all edges

with one endpoint in B2 and the other endpoint in A \A′ meet H . Therefore,

η(H) ≥ j × (
3n

8
− k) + (

3n

8
+ k)× (

n

4
− j)

> (
3n

8
− k)× (

n

4
)

=
3n2

32
− 2n

4
>
n2

16

as required.

In summary then, unlike the d = 2 case where a point of high RS-depth has a correspond-

ingly high Tukey depth, the three measures in R3 do not have any such hierarchical relation.

3.4 k-Centerpoints Conjectures

The previous view can be extended to d-dimensions, giving the following “affine k-centerpoints”

conjectures:

Conjecture 2 (Affine k-Centerpoints Conjectures). Given a set S of n points in Rd, and an

53

integer 0 ≤ k ≤ d − 1, there exists a point q ∈ Rd such that any (d − k)-half flat through q

intersects at least (n/(d+ 1))k+1 k-simplices spanned by S.

The case k = 0 is the centerpoint theorem in any Rd. The case d = 2, k = 1 is the RS-depth

result of [26].

The case d = 3, k = 1 is the line depth theorem, for which we have presented Theorem 3.

For the general k-centerpoints problems, it is not hard to see that for every k and d there

exists a point q and a constant cd,k such that any (d − k)-half flat through q intersects at least

cd,k · nk+1 k-simplices spanned by S. The following bounds were proved in [48] by extending

the technique of Bárány [5] and using the result of Gromov [29].

Theorem 4. Given a set S of n points in Rd, and an integer 0 ≤ k ≤ d−1, there exists a point

q ∈ Rd such that any (d− k)-half flat through q intersects at least

max

{(
n/(d+ 1)

k + 1

)
,

2d

(d+ 1)(d+ 1)!
(
n
d−k
) ·
(

n

d+ 1

)}

k-simplices spanned by S.

Using some approximations for binomial coefficients and factorials, it can be showed that

first bound dominates the expression above for k < 0.9d and for k > 0.9d the second bound

starts to dominate for d > 800. For smaller values of d, this threshold tends to grow with d

from 0.8d to 0.9d.

Coming back to the simplex-like point set, one can further observe another thing. Let S

denote the tetrahedron of the simplex-like point set in R3 and suppose we’re studying the line

depth of the centroid c. Then, as mentioned earlier, any half-plane through c intersects at least

one edge of the tetrahedron, so it intersects at least (n/4)2 edges spanned by S. But, in fact,

something stronger is true: take any line l through c and move l in any way to ‘infinity’ (i.e.,

outside the convex-hull of S). Then it has to cross at least one edge of the tetrahedron. So the

property for the simplex-like point set is in fact topological in nature.

54

In fact, this property is already true for centerpoints: if a point q has Tukey depth r, then

any plane through q intersects at least r points as we move the plane to infinity, regardless of

whether the movement is any arbitrary continuous movement or affine. See [3] for a discussion

of this.

The “affine” k-centerpoints conjectures can therefore be strengthened to a more natural

topological version:

Conjecture 3 (k-Centerpoints Conjectures). Given a set S of n points in Rd, and an integer

0 ≤ k ≤ d− 1, there exists a point q ∈ Rd such that any (d− k − 1)-flat through q must cross

at least (n/(d+ 1))k+1 k-simplices spanned by S to move the flat until it leaves Conv(S).

We now give a proof of these topological k-centerpoints conjectures in R2.

Theorem 5. For any set S of n points in R2, the k-centerpoints conjectures are true.

Proof. As centerpoint-depth is already proven to be topological, we only have to resolve the

RS-depth case.

We will actually prove the contrapositive: given a set S of n points in R2, let q be the point

with RS-depth ρ. Take any curve γ from q to a point at ∞ that intersects at most ρ edges

spanned by S. We want to show that there exists a ray from q that also intersects at most ρ

edges spanned by S. We prove this in two steps: first by replacing γ by a piecewise linear

curve, and then replacing this piecewise linear curve with a ray.

Given any curve γ, let η(γ) denote the number of edges spanned by S that γ intersects. We

assume that η(γ) is finite.

Lemma 7. Given a curve γ with one endpoint at q and the other endpoint at infinity, there

exists a piecewise linear curve γ′ starting at q and ending at a point at infinity, such that

η(γ) = η(γ′).

Proof. Given S, let A be the arrangement induced by Θ(n2) lines supporting all the edges

spanned by points of S. The curve γ enters and leaves a number of cells in the arrangement

55

A. Lets say it enters some cell C at point si and then leaves that cell at point ei. Replace

this portion of γ between si and ei by the straight-line edge siei (by convexity of C, this lies

completely inside C). Note that γ cannot intersect any edge in the interior of any cell C (no

edge can intersect a cell of this arrangement). Therefore, the RS-depth does not change by this

replacement.

Repeating this for each cell that γ enters and leaves, we get a sequence 〈q = s1, . . . , sm, u1〉,

si ∈ R2, u1 ∈ S1, which represents the piecewise linear curve γ′ defined by the segments

s1s2, . . . , sm−1sm together with the half-infinite ray ~sm starting from sm in the direction u1.

Finally, as discussed above, we have η(γ) = η(γ′). See Figure 3.7(a).

Let γ′ be the piecewise linear curve defined by the sequence 〈s1, . . . , sm, u1〉 as above.

Consider the one-bend curve γ′′ starting at sm−1 and defined by the segment sm−1sm together

with the half-infinite ray ~sm in direction u1. The Lemma below shows that there exists a

direction u2 ∈ S1 such that the half-infinite ray r starting at sm−1 in direction u2 has η(r) ≤

η(γ′′). In other words, γ′′ can be ‘straightened’ to a ray r without increasing the number of

edges intersected. This implies that

η(〈s1, . . . , sm−1, u2〉) ≤ η(〈s1, . . . , sm, u1〉)

We now repeat this for the curve defined by 〈s1, . . . , sm−1, u2〉 to get another curve with one

less bend. And so on till we get a ray r starting at q in direction u ∈ S1. By induction,

η(〈q = s1, u〉) ≤ η(〈s1, s2, um−1〉) ≤ η(〈s1, s2, s3, um−2〉) ≤ · · · ≤ η(〈s1, . . . , sm, u1〉)

and the proof of Theorem 5 is completed. It remains to prove the following.

Lemma 8. Given a piecewise linear curve γ′ defined by 〈q1, q2, u2〉, there exists a direction

u1 ∈ S1 such that η(〈q1, u1〉) ≤ η(〈q1, q2, u2〉).

Proof. See Figure 3.7(b). First we show the following:

56

q

γ

γ′

q1 q2

u2

u1

A

B

C

D

E

(a) (b)

r γ′

Figure 3.7: (a) Converting γ to piecewise linear, (b) Illustration for Lemma 8.

Claim 4. There exists a direction u1 ∈ S1 such that:

(i) the ray from q1 in the direction u1 intersects the ray from q2 in direction u2, (ii) number of

points in region A is equal to the number of points in region B (Figure 3.7(b)).

Proof. Start with the ray r from q1 through q2. And continuously rotate r towards the direction

u2. Initially the regionA is empty whileB may contain some of the data points. When r points

in the direction u2 the opposite is true. At each event when r meets a data point either the

number of data points in A increase by 1 or the number of data points in B decrease by 1 after

the event. There must be a ray from q1 in a direction between q2 and u2 that has equal number

of points in both the regions A and B (which could be 0).

Let r be this ray from q1 in direction u1. And assume the regions A and B each contain

t points. We now prove that this is the required ray by showing that the number of edges

intersected by r is at most those intersected by the curve γ′.

Edges that intersect both r and γ′ or intersect neither, contribute equally, and so they can be

ignored. Consider the remaining edges spanned by S.

Observation 1. Any edge e = {pi, pj} that intersects r (resp. γ′), but not γ′ (resp. r), must

have exactly one endpoint in region A or B.

Proof. We prove the contrapositive. If e has one endpoint in A and the other in B, then it must

57

cross both r and γ′. On the other hand, if no endpoint of e is in A or B, then either e intersects

both, or neither.

Therefore consider each point pi not in A or in B (see Figure 3.7(b)):

• pi ∈ C. Then pi has exactly t edges (to points in B) intersecting γ′ , and exactly t edges

(to points in A) intersecting r .

• pi ∈ D. Then pi has at least t edges (to points in B and possibly in A) intersecting γ′

and at most t edges (to points in A) intersecting r .

• pi ∈ E. Then pi has at least t edges (to points in A and possibly in B) intersecting γ′

and exactly t edges (to points in B) intersecting r .

Summing up over all pi proves the Lemma.

Lemma 8 completes the proof of Theorem 5.

3.5 Conclusion

In this chapter we introduced a new data-depth measure, the line depth and proved the first

bounds on the depth of a median with respect to line depth. We saw that line depth acts as a

conceptual bridge between other well-known data-depth measures and suggests that a funda-

mental relation exists. This was formalized in Conjecture 3. We observe the following hierar-

chy among the data-depth measures in two dimensions: a point of “high” RS-depth has “high”

Tukey and simplicial depth. Lemma 6 shows that a similar hierarchy among the data-depth

measures in R3 doesn’t exist.

This chapter concludes many open questions. There is still a gap between the upper and

lower bounds in the First Selection Lemma in R3. Also the upper bound proved in Theorem 3

for the line depth median is fat from n2/16 the lower bound suggested in Conjecture 3. Fur-

thermore there are no nontrivial lower bounds on the depth of ray-shooting median in three

58

dimensions except for the ones suggested by Theorem 4.

In the next chapter we will focus on the computational problem of computing a point of

“high” ray-shooting depth in R2.

59

Chapter 4

Algorithms for Ray-Shooting Depth

4.1 Introduction

In the previous chapter, we discussed the notion of data-depth measures with respect to their

combinatorial properties. Another important criterion for the utility of a data-depth measure is

the time complexity requirement for its computation. In this chapter we focus on algorithmic

aspects. The new results are for the most recent depth notion, ray-shooting depth where little

work has been done so far on the computational and algorithmic aspects.

We begin by summarizing some computational facts known for Tukey depth and for sim-

plicial depth. Let S be a set of n given data points in R1. By the Centerpoint Theorem there

is always a point in R1 of Tukey depth at least n/2 and this is in fact the maximal possible

Tukey depth. In this case the depth of S is d(n+ 1)/2e, the depth of a median. Its somewhat

surprising that before about 1975 it was not known if a median could be found faster than by

sorting the elements of S and then returning a “middle” value - i.e., in time O(n log n) - but

then the fast selection algorithm of Blum et al. showed this task has complexity O(n) [8].

For d = 2 a centerpoint has depth at least n/3, and Jadhav and Mukhopadyay [31] showed

how to compute one in O(n) time by the prune-and-search paradigm. There is a lower bound

of Ω(n log n) by reduction to set equality [2] to find the depth of S but there is a tantalizing

absence of any lower bound for finding a Tukey median. The current best algorithm for the

depth(S), as well as for finding a median, is due to Langerman and Steiger which runs in

O(n log3 n) time [36]. Also Chan [15] gave an O(n log n) time randomized algorithm using

60

an efficient alternative to the parametric search. In Rd, the current-best algorithms for both

finding a point of depth n/(d+ 1) and the highest-depth point take O(nd−1) time [15].

Tukey depth of the points in Rd is unimodal: for any fixed τ , the set of points with Tukey

depth at least τ is connected and convex. Unfortunately, unimodality of the Tukey depth that

is implicitly used in almost all of the algorithms to search for a Tukey median isn’t there for

the simplicial depth anymore. Thus the best algorithm to find a simplicial median is a trivial

one of computing the simplicial depth of all the points in the plane. Start by constructing an

arrangement of the lines through each pair of the points. The
(
n
2

)
lines cross at

((n2)
2

)
. Euler

formula in the plane implies that this arrangement has O(n4) faces or cells. It is easy to see

that the simplicial depths all the points within a cell of the arrangement is the same. Once the

simplicial depth of a point in a cell has been computed, the depth of all the points in a neighbor

cell can be inferred in the constant time. Therefore the simplicial depth of every point in the

plane and a simplicial median can be computed in O(n4) time.

Gill, Steiger, and Widgerson did give an algorithm to compute the simplicial median when

the search space is limited to the given point set instead of all points in the plane [28]. Their

algorithm runs inO(n2) time. They further showed that their technique can be extended to give

O(n3) algorithm to compute a median among a given point set in R3. Bukh gave a simple proof

of existence of a point with high simplicial depth (at least n
3

27) in the plane [13]. The proof is

constructive in nature and can be implemented to compute the point of high simplicial depth in

O(n log n) time using the algorithms for Ham Sandwich Cut [40].

Now given a set S of n points in Rd, let E be the set of all
(
n
d

)
(d − 1)-simplices spanned

by S. Recall that ray-shooting depth (called RS-depth from now on) of a point z is defined as

the minimum number of simplices in E that any ray from z must intersect. While the problem

of existence of a point with high RS-depth is open in Rd, d ≥ 3, it is shown in [26] that, given

any S in R2, there exists a point with RS-depth at least n2/9. An easy construction shows that

this is optimal.

61

The topological proof given in [26] follows from a variant of Brouwer’s fixed point theorem

and is as such purely existential. Although a straightforward algorithm can be derived from it

with running time O(n5 log5 n) by an exhaustive search. The main goal of this chapter is

to present faster algorithm for computing RS-depth of a planar point set. Admittedly, one

would like an algorithm for computing points of high RS-depth in higher dimensions as well.

However, it is not clear how to extend the current topological machinery that we use for the

d = 2 case to higher dimensions.

We will show that one can compute a point of RS-depth n2/9 in the plane in O(n2 log2 n)

time. We have also implemented some algorithms in a software package, and made it available

in the statistical computing software package called R [52]. This is explained in Section 4.3.

The majority of the contents of this chapter were published in [47].

4.2 Computing a point of ray-shooting depth at least n2/9

In the main part of the chapter, we present an algorithm to compute a point of high ray-shooting

depth. It that takes as input a finite set S of n points in the plane and finds a point p in R2 with

ray-shooting depth at least n2/9. Given a point z ∈ R2 and a vector u ∈ S1, denote by ρz,u the

closed ray emanating from z in the direction u. For any p ∈ R2, p 6= z, denote the closed ray

emanating from z and passing through p as ρz,p. We will denote the unit vector in the direction

of ρz,p as δz,p. A ray ρ is bad if it intersects fewer than n2/9 edges (closed segments) spanned

by the input points, and good otherwise. A pair of rays starting for a point in the plane define

two cones. A cone is closed if it contains both of these rays. The following lemma is from [26].

Lemma 1. For any z ∈ R2 and for any two bad rays ρ1 and ρ2 emanating from z, one of the

two closed cones defined by ρ1 and ρ2 contains fewer than n/3 input points.

Proof. If both cones defined by ρ1 and ρ2 have at least n/3 points, the rays ρ1 and ρ2 together

intersect at least 2n2/9 edges. This is a contradiction to the assumption that both of them are

62

bad rays.

Using the above lemma, we prove the following.

Lemma 2. For any z ∈ R2, there exists a cone Cz with apex z containing more than 2n/3 input

points, and where all the rays emanating from z and contained in Cz are good.

Proof. If there are no bad rays emanating from z then we take Cz as the entire plane. Otherwise,

let ρ be a bad ray emanating from z. Let us pick a ray ρ′ emanating from z such that both the

closed cones defined by ρ and ρ′ contain at least n/2 input points. Note that ρ′ is a good ray

(Lemma 1).

ρ

ρ′2

ρ2
ρ′
ρ1

ρ′1

C1

C2

Figure 4.1: The good rays are solid, bad rays are dashed.

Imagine starting with the ray ρ′, and rotating it in either direction about z as long as it is

good. See Figure 4.1. Let ρ1 (respectively ρ2) be the last good ray before we hit a bad ray, in

the counter-clockwise (resp. clockwise) direction. Clearly ρ1 and ρ2 pass through input points

(recall that we are counting closed segments). Let ρ′1 be a bad ray close-enough to ρ1 so that

there are no points of S between these rays. Similarly let ρ′2 be a close-enough bad ray to ρ2.

The cone C1 defined by ρ and ρ′1 (Figure 4.1) contains fewer than n/3 input points (by

Lemma 1 applied to ρ and ρ′1, as the cone complement to C1 contains at least n/2 points).

Similarly, the cone C2 contains fewer than n/3 points. Consider now the bad rays ρ′1 and ρ′2 .

Let C3 be the cone defined by these rays that contains the ray ρ′. C3 cannot contain fewer than

n/3 points since C1 ∪ C2 ∪ C3 covers R2 and C1 and C2 contain fewer than n/3 points each.

63

Hence the other cone defined by ρ′1 and ρ′2 contains fewer than n/3. Therefore, the cone Cz

defined by ρ1 and ρ2 that contains ρ′ contains more than 2n/3 points. By construction, all rays

in Cz are good.

For any point z ∈ R2, define the good cone at z to be the closed cone C with apex z

containing the maximum number of input points such that all rays emanating from z and lying

in C are good. Clearly, the cone Cz obtained in the proof of the previous lemma is the unique

good cone at the point z since it contains more than 2n/3 > n/2 points and is maximal. For

any u ∈ S1, if ρz,u ∈ Cz , we say that u is a good direction at z. Then the cone Cz defines the

set Dz of good directions at z. We will call the set of input points lying in Cz the good set of z

and denote it by Gz .

For computational purposes, we will need a data structure which we now describe. Let

X be a set of n distinct fixed points on a circle C henceforth referred to as locations. Let

x1, x2, · · · , xn be the circular order of the points. (The precise coordinates of these points do

not matter.) Let T = {t1, · · · , tn} be the set of n open interval on C defined by consecutive

locations in X . Let Y = {Y1, · · · , Yn} be a set of n points, each placed at one of the locations

in X . For any points u, v ∈ C, we will denote by Au,v the arc going from u to v counter-

clockwise along C. Note that Au,v is different from Av,u. For any point q ∈ C, we define its

depth as the number of arcs Au,v containing q for all u, v ∈ C. Since each point in any of the

open intervals ti has the same depth, we can define the depth of ti and the depth of any point in

it. We need the data structure to support the following operations:

1. Insert an arc Au,v , u, v ∈ Y

2. Delete an arc Au,v, u, v ∈ Y

3. Move a point y ∈ Y to a neighboring location.

4. Given a query arc Au,v, u, v ∈ C and an integer k report the first and last intervals, if

any, on Au,v with depth smaller than k.

64

5. Given an integer k report an interval, if any, with depth smaller than k.

Notice that the end points of the arcs we add or delete are in Y . When we move a point y ∈ Y

to a neighboring location, the end points of the arcs incident to y move with it. However, in

the fourth operation listed above, the end points of the query arc are arbitrary points in C.

Building such data structures is routine in computational geometry. It is possible to build the

data structure in O(n log n) time such that each of the operations take O(log n) time. We skip

the easy details. Let us see how we can use this data structure to compute the good cone at any

point z ∈ R2.

Lemma 3. The good cone of any point z ∈ R2 can be computed in O(n2 log n) time.

Proof. We take a unit circle and fix X to be any n points x1, · · · , xn, in that order around C.

We put a point yi at the location xi for i ∈ [1, n]. We do an angular sorting of the input points

around the point z and for every input point pi we put a representative point yi in the location

xr where r is the rank of pi in the sorted order. For each pair of input points pi and pj , if the

line li,j through pi and pj does not pass through z, we insert either the arc Ayi,yj or Ayj ,yi

depending on whether z is to the left or right of li,j oriented in the direction from pi to pj . If

li,j passes through z we either add both or none of the arcs depending on whether z lies on the

edge pipj . We then query the data structure to see if there are any intervals of depth smaller

than n2/9. If there are no such intervals, all rays emanating from z are good. If not, the data

structure gives us a an interval I with depth less than n2/9. Let z′ be any point in this interval.

From this, we obtain a bad ray rb = ρz,z′ emanating from x. We then pick the ray rg such that

each of the closed cones defined by rb and rg contain at least n/2 points. We know that the

ray rg is good. As discussed before, we can find the good cone at z by rotating rg to either

side and stopping at the last good ray before we hit bad rays. We can find the first bad interval

(interval of depth smaller than n2/9) in either direction by using queries of type 4. Since we

insert O(n2) arcs and each insertion takes O(log n) time, the time taken for inserting the arcs

65

is O(n2 log n). Once we have inserted all the arcs, it takes only a constant number of queries,

each taking O(log n) time, to determine the good cone. The overall running time is therefore

O(n2 log n).

This is not the best algorithm for computing the good cone at a point. The good cone can

be computed in O(n log n) time as below. But we will not need it for this paper since this is

not the bottleneck for the main algorithm in this paper.

We observe that

Lemma 4. The good cone of any point z ∈ R2 can be computed in O(n log n) time.

We will prove a slightly more general statement from which Lemma 4 follows easily. In

the following E(ρ) denotes the set of edges that intersect a ray ρ, and for a pair of points a and

b on a circle,
−→
ab denotes the arc from a to b in the clockwise direction. Recall that

−→
ab 6= −→ba.

Fact 1. For any point z in the plane, number of edges intersecting ρz,pi for all pi ∈ S can be

computed in O(n log n) time.

Proof. We describe a simple algorithm to compute the number of edges meeting ρz,pi for all

pi ∈ S and having the stated time complexity.

Translate the points in S so that z becomes the origin. Further assume that after sorting

the points of S radially around z = (0, 0) p1, p2, . . . , pn denotes the ordered list of points,

increasing in the counter clockwise direction with p1 lying on the positive horizontal axis. For

a fixed point pi above the horizontal axis, the line through pi and−pi1 determines which edges,

incident on pi, intersect ρz,p1 . Explicitly, an edge pipk meets the ray ρz,p1 if and only if pk lies

to the right of line through pi and −pi and below the horizontal axis. If xi counts the number

of points in S that lie on the arc as we go from pi to −pi in the clockwise direction, number of

1 For a point a = (x, y), −a is the antipodal point of a i.e −a = (−x,−y).

66

such edges is given by xi − i+ 1. We have

|E(ρz,p1)| =
k∑

i=1

xi − i+ 1,

where p1, . . . , pk are the points that lie on or above the horizontal axis. We use following

relation to compute xi’s.

xi+1 = xi + 1− yi,

where yi is the number of points of −S = {−p1,−p2, . . . ,−pn} that lie on the arc −−−→pi+1pi. It

is easy to see that once we have radially sorted points p1, p2, . . . , pn the quantities yi and xi

can be computed in O(n) time for all 1 ≤ i ≤ n. We have the following relation between the

number of edges meeting the rays defined by a pair of consecutive points pi, pi+1 on the unit

circle.

|E(ρz,pi+1)| = |E(ρz,pi)| − xi + n− xi+1.

This is because edges of the form pipk, where pk ∈ −−−→pi−pi, meet ρz,pi but do not meet ρz,pi+1

and edges of the form pi+1p`, where p` ∈ −−−−−−−→−pi+1pi+1, do not meet ρz,pi but do meet ρz,pi+1 .

Edges that are not incident on either pi or pi+1 must intersect both rays.

The time complexity of the algorithm is dominated by the radial sort.

Let L denote the set of the
(
n
2

)
lines passing through the distinct pairs of input points and let A

be the arrangement of the lines in L.

Lemma 5. If z, r ∈ R2 lie in the interior of the same cell of A then Gz = Gr . If z lies in the

interior of a cell and r lies on the boundary of the same cell, Gz ⊆ Gr.

Proof. Let z and r be points in the interior of the same cell of A. The angular order of the

input points is the same around both points. Let p1, · · · , pk be the points in the good set of

z in the angular order. Any ray in the good cone of z intersects some edge pipi+1 formed by

two consecutive points in the good set of z. We will show that for each such edge, any ray

emanating from r and intersecting that edge is also good. This will show that all points in the

67

z r

ρ1

R1

R2

pi+1
pi

o

ρ2

Figure 4.2: The good set is the same for all points in a cell.

good set of z are also in the good set of r i.e. Gz ⊆ Gr. The same argument with the roles of z

and r exchanged shows that Gr ⊆ Gz , implying that Gz = Gr.

Let ρ1 be a ray emanating from r and intersecting the edge pipi+1. Let ρ2 be a ray emanat-

ing from z and intersecting the edge pipi+1 at the same point as ρ1. Since pi and pi+1 are in

the good set of z, we know that the ρ2 is good. We will show that ρ1 intersects all the edges

that ρ2 intersects. Let C1 be the cone defined by ρ1 and ρ2 containing the region R1 and let

C2 be the cone defined by them containing the region R2 (see Figure 4.2). If there is an edge

that intersects, ρ2 but not ρ1 there must be an input point in at least one of these cones. Let

Az (respectively Ar) be the cone with apex z (resp. r), containing pipi+1 and bounded by rays

through pi and pi+1. Since pi and pi+1 are consecutive points in the angular order around the

points z and r, there are no input points in the cones Az and Ar. Therefore, if there are any

input points in the cones C1 or C2, they must lie in the regions R1 or R2. However if there is

any input point p in one of these regions then ppi intersects the segment zr contradicting the

assumption that z and r lie in the interior of the same cell. The same argument goes through

if z lies in the interior of a cell and r lies on the boundary of a cell, except if r lies on the line

through pi and pj . In this case, one can still show that Gz ⊆ Gr but ρ1 may intersect edges

incident to pi or pi+1.

In the following, to any continuous non-self-intersecting curve ω with distinct endpoints

a and b, we associate a continuous bijective function ω̂ : [0, 1] 7→ ω so that ω̂(0) = a and

ω̂(1) = b. Similarly to any continuous non-self-intersecting loop ω, we associate a continuous

68

bijective function ω̂ : S1 7→ ω. We orient [0, 1] from 0 to 1 and S1 in the clockwise direction.

This gives an orientation to ω.

Let J ⊆ R2 × S1 be the set {(w, u) : w ∈ R2, u ∈ Dw} (recall that for a point z, Dz

denotes the set of good directions at z). Let π1 and π2 be projection functions that map a point

(w, u) in J to w and u respectively. Let us also denote by ωi, i ∈ {1, 2}, the curve defined by

the function ω̂i(t) = πi(ω̂(t)). The domain of ω̂i is the same as the domain of ω̂ (either S1 or

[0, 1] depending on whether ω is a closed loop). The orientation of ω gives the orientation of

ωi. When ω is a closed loop, we define the winding number of ω as the winding number of ω̂2.

Let γ be a non-self-intersecting continuous curve in the plane with distinct endpoints and

let ω be a continuous curve in J so that γ = ω1. We call ω a walk along γ. The next lemma

shows that there exists a walk along any line segment in the plane.

Lemma 6. Let s = (w1, u1) and t = (w2, u2) be two points in J . Let σ be the segment joining

w1 and w2. There exists a curve ω in J joining s and t so that ω1 = σ, i.e., ω is a walk over σ

with endpoints s and t. Furthermore, ω can be computed in O(n2 log n) time.

Intuitive meaning: The statement of the lemma uses a lot of notation in order to be precise.

However, since this may make it seem more complicated, here is the intuitive meaning. We

want to move from w1 to w2 along the segment σ always maintaining a ray in the good cone of

the current point. We start with the ray in the direction u1 when we are at w1 and the direction

of the ray changes continuously as we move to w2 and we finish with the direction u2 at w2.

Along the motion from w1 to w2, we are allowed to stand at a point p on σ and move the ray

continuously within the good cone of p.

Proof. We first compute the intersection of σ with each line in L. Let p1, p2, · · · , pk−1 be

these points in the order of intersection. Let p0 = w1 and pk = w2. Let Ii be the interval

[pi, pi+1]. We will traverse σ from w1 to w2, and construct ω as we go along. The events in this

69

traversal will be the intervals Ii and the points pi in the order that they appear in the segment

from w1 to w2. As we sweep, we will maintain a data structure that gives us information

about the good set of the interval or point that we are currently in. Using this information, we

will compute a curve along each of the points pi and each of the intervals Ii which, when put

together, gives us a walk along σ with endpoints w1 and w2. We construct 2k points in J ,

(p1 = w1, s1), (p1, t1), . . . , (pi, si), (pi, ti), . . . , (pk = w2, tk); the curve they define gives the

required walk.

Each of the intervals Ii lies entirely within a single cell of A. Therefore, there is some

gi ∈ S so that gi ∈ Gx for all x ∈ Ii. For point i ∈ [1, . . . , k − 1], both gi−1 and gi are in Gpi .

Set si = δpi,gi−1 and ti = δpi,gi ; note that both these directions are in Dpi . Therefore, there is

an interval Ki ⊆ Dpi with endpoints si and ti. We define K0 as the interval contained in Dp0

with endpoints u1 and δp0,g0 and we define Kk as the interval contained in Dpk with endpoints

δpk,gk−1
and u2. For the interval Ii, we define the walk ωIi = {(x, δx,gi) : x ∈ Ii} and for

each point pi we define the walk ωpi = {(pi, x) : x ∈ Ki}. The walk ωp0 starts at the point

(p0, u1) and ends at the point (p0, δp0,g0) which is where ωI0 starts. ωI0 ends at (p1, δp1,g0)

which is where ωp1 starts and so on. Putting together these walks we get the required walk ω

from (w1, u1) to (w2, u2).

In order to compute these walks, we will need to know the good cones in each of the

intervals Ii and at each of the points pi. We start by computing the good cone of p0 and the

good cone of some point z in I0. The good cone at z gives us g0 with which we compute ωp0

and ωI0 . We will update the data structure used to compute the good cone of z and obtain

the good cone of p1. In the data structure we have a representative yi for each input point in

pi whose locations reflect their angular ordering around z. For convenience we will refer to

the representatives by the points themselves. So, when we write “move pi to a neighboring

location”, we mean “move yi to a neighboring location”. The point p1 is the intersection of σ

with some line in L passing through two input points a and b. There are two cases to consider

70

depending on whether p1 lies on the edge ab or not. Assume that p1 lies on the edge ab. In this

case we add the arc joining a and b which is not already in the data structure so that both arcs

are present when we are at p1. This reflects the fact that any ray emanating from p1 intersects

the edge ab. When we move from p1 to I1, we will remove the arc that was added first and

keep the second one. Effectively as we move across p1, we switch from one arc formed by a

and b to the other arc formed by a and b. Assume now that p1 does not lie on the edge ab. In

this case, we move the point a to the location of b as we move from I0 to p1. When we move

from p1 to I1, we move b to the previous location of a. This reflects the fact that as we move

across p1 from I0 to I1, the points a and b switch their positions in the angular order. When we

are at p1, they are at the same position. The rest of the sweep is done in a similar fashion. Each

update takes O(log n) time. Hence the total time required for the sweep is O(n2 log n).

Let ω be a walk along a rectangle R in the plane and p1 = (w1, u1) and p2 = (w2, u2) be

two points on ω such that w1 and w2 lie on different edges of R. Let σ be a chord of R joining

w1 and w2. From Lemma 6, we obtain walk σ̃ joining p1 and p2 in J such that σ̃1 = σ. The

points p1 and p2 split ω into two arcs, one oriented from p1 to p2 and the other oriented from

p2 to p1. The curve σ̃ splits the loop ω into two loops α and β. The loop α traverses the arc

of ω from p1 to p2 followed by the curve σ̃ from p2 to p1. The loop β traverses curve σ from

p1 to p2 followed by the the arc of ω from p2 to p1. Observe that the winding numbers of the

loops α and β add up to the winding number of the loop ω because if we traverse α followed

by β, we traverse σ̃ consecutively in opposite direction canceling its effect with respect to the

winding number. Therefore, if the winding number of ω is non-zero, the winding number of

one of the loops α or β is non-zero. This gives us a way to find, from any loop of non-zero

winding number, a smaller loop of non-zero winding number.

Lemma 7. Let R be a finite volume rectangle with a walk ω of non-zero winding number over

it. There is point p inside R with ray-shooting depth at least n2/9.

71

Proof. Let σ be a vertical or horizontal chord of R that splits R along its longer side, into two

rectangles R1 and R2 of equal area. From the above discussion, it follows that there is a walk

of non-zero winding number along one of the rectangles R1 or R2. We repeat this process with

that rectangle. In this process, we get nested rectangles with smaller and smaller longer side

and hence converge to a point p which has a non-zero winding number over it. This means that

any ray emanating from p is good and hence p has ray-shooting depth at least n2/9.

The above lemma remains true even if R is any closed curve instead of a rectangle. We

state it in terms of a rectangle because that is what we use for computational purposes.

Summary of the Algorithm

Let R be a rectangle containing S. We will show that there is a walk ω along R with a non-

zero winding number. We will then split R into two rectangles R1 and R2 using a vertical

chord σ of R which bisects the set of vertices of A within R. We will find a walk σ̃ along

σ that splits ω into two walks α and β along R1 and R2 respectively. One of these will have

a non-zero winding number. We will replace R by the rectangle that has a walk of non-zero

winding number along it and repeat the process. In each iteration, we reduce the number of

vertices of A in R by a factor of two. Since there are at most O(n4) vertices to begin with, in

O(log n) iterations, we will find a rectangle R so that there is walk ω along R with non-zero

winding number and R has at most one vertex of A. From Lemma 7, we can conclude that

there is a point p of ray-shooting depth at least n2/9 in the region bounded by R. Since all

points in the region bounded by R belong to a cell intersecting R, we can just check the O(n2)

cells intersecting R to find the required point. We will finally show that each iteration can be

implemented in O(n2 log n) time. The overall running time of the algorithm will therefore be

O(n2 log2 n).

We now show that there is a walk of non-zero winding number along any non-self-intersecting

continuous loop γ enclosing the input point set. Let µ = (3−
√

5)/6 so that µ(1−µ) = 1/9. It

72

is easy to see that for any point p on γ, a ray ρ emanating from p is good if and only if it has at

least µn input points on either side of the line containing ρ. This means that any point z ∈ R2

with Tukey depth more than µn (w.r.t. S) is in the good cone of every point p on γ. Since

µ < 1/3, the Centerpoint theorem guarantees that there is such a point o. For any point p on γ,

let up ∈ S1 be the direction δp,o. Consider the walk ω along γ such that ω̂(t) = (γ̂(t), uγ̂(t)).

Clearly the winding number of ω is either +1 or −1 depending on whether γ itself has a wind-

ing number +1 or −1 around o.

For the purpose of our algorithm, we will start with a rectangle R which encloses the input

points and none of the lines in L intersect the horizontal sides of A. We can assume without

loss of generality that no two of the input points lie on the same vertical line. Therefore, such a

rectangle always exists and can be computed inO(n2) time. We then compute a point of Tukey

depth at least µn. This can be done in O(n) time [31]. This gives us a walk ω over R.

We can compute the number of vertices of A between any two vertical lines l1 and l2 by

comparing the top to bottom order of the intersection of the lines in L with these two lines.

Finding a vertical chord σ of R that splits the number of vertices evenly is therefore a simple

slope selection problem and can be done in O(n log n) time [17]. Let a and b be the endpoints

on σ and let R1 and R2 be the rectangles that σ splits R into.

Using Lemma 6, we compute a walk σ̃ over σ joining some points (a, ua) and (b, ub) on

ω. σ̃ splits ω into two walks α and β along R1 and R2 respectively. Each of the walks consists

of O(n2) pieces which form σ̃ and one piece along ω. The curve α2 (and similarly β2) is

monotonic on each of these pieces. Hence the winding number of the walks α and β can easily

be computed from these pieces. We pick one of the rectangles R1 or R2 which has a walk

of non-zero winding number along it and recurse. We do this until we have a rectangle that

contains at most one vertex ofA. From Lemma 7, we know that there is a point of ray-shooting

depth at least n2/9 inside the rectangle. Since the rectangle contains at most one vertex there is

no cell contained completely in the interior of R. In our divide and conquer process, we have

73

already checked all the cells crossed by R and computed a good cone for a point in it. One of

those points must have ray-shooting depth at least n2/9. We have therefore shown that:

Theorem 1. Given a set S of n points in the plane, a point of ray-shooting depth at least n2/9

with respect to S can be computed in O(n2 log2 n) time.

4.3 Implementation

We have implemented some of the algorithms presented here into a software package. The

software package includes a program to compute the ray-shooting depth of a query point, and

a program to find the ray-shooting median of a given point set, an approximate median, as

well as some visual data representation tools in the two dimensions. The computation of an

approximate RS-median is based on the following theorem by Mustafa et al.

Theorem 2. [47] Given a set P of n points in the plane, a point z of ray-shooting depth at

least (1− ε)d, where d is the maximum ray-shooting depth of any point with respect to P , can

be computed in O(1/ε8 log5 1/ε+ n) time.

This has been integrated as a package in the popular statistical computing software R [52],

and is available on the R public repository here:

http://cran.r-project.org/web/packages/rsdepth/.

One of the tools called rsrings gives a visual description of the contours of the points and is

perfect for a study of bivariate spacing. For a description on theory and applications of spacings

in statistics see [51]. In Figure 4.3 we use it on three sets of 500 points drawn from bivariate

uniform, normal and exponential distributions at random. Observe that in all cases the rings

drawn provide a near optimal estimate of the underlying distribution. Also provided in the

software is rsplot, another graphical tool. Rsplot can be used to picture the properties of data

including the location, outliers, skewness etc independent of affine transformation in the plane.

The graphs constructed using rsplot include

74

• Median bag: This is the convex hull of the median points, the points with the highest

ray-shooting depth in the plane. In the figure 4.4 this is represented as the small dark

blue convex polygon containing a red point.

• RS-median point: This is the red point in the figure 4.4 - a point of the highest ray-

shooting depth. If there are more than one points of highest depth, the centroid is chosen

to represent this point as a convention.

• Half bag: a convex polygon that contains 50% of the data points with the highest RS-

depth, i.e., η(z) ≥ η(z′) for all z in Half bag and all z′ not in Half bag.

• Fence: A convex polygon that identifies outliers in the data. Outliers are the points that

so far away from the rest of the points that they are considered as corrupt data resulted

from the errors in the measurements. The precise definition of an outlier is dependent on

the individual applications and can be adjusted in the software.

Similar plots have appeared before in the statistics literature - for example Bagplot provides

a visual depiction of data as rsrings and rsplot but uses Tukey depth is the underlying tool

[27]. We note that relative to other similar software in statistics development environments, our

implementation is quite efficient for practical purposes, for example, it took less than 3 seconds

to compute and draw 100 rings on a set of 500 points on 2GHz Intel processor. A Bagplot

implementation that uses Tukey depth to draw contours, took more than a minute on the same

set of points on same machine [27]. Unfortunately we could not find any reliable software for

drawing the contours based on simplicial depth for large data.

In Figure 4.4 we show an application of rsplot on the plasma readings of 60 patients. The

plot on the left is an approximate one, where the Half bag is constructed by the convex hull of

the n/2 deepest datapoints with respect to their RS-depth.

75

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

0 1 2 3 4 5 6

0
1

2
3

4
5

6

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y ●

Figure 4.3: Five rings of RS-depth for sets of 500 points of random bivariate data. For the left-
most figure the points were drawn from standard normal distribution with mean 0 and standard
deviation 1. The points from the exponential distribution with mean 1 feature in the middle
figure. And the datapoints in the rightmost figure are drawn uniformly from the unit square.

0 20 40 60 80 100

0
50

10
0

15
0

20
0

dia. Blood Pressure

hd
l C

ho
le

st
er

ol

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0

Triglyceride

ld
l C

ho
le

st
er

ol

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.4: The plot on the left is rsplot of Triglyceride, and ldl Cholesterol readings of 60
patients showing the median, the region around median, the Half bag, and the fence. On the
right we have a similar rsplot for diabolic BP and hdl Cholesterol readings of the patients.
While studying effects of a drug, it is helpful to classify the subjects depending on how much
their numbers conform to the normal or the expected behavior.

76

Chapter 5

Decontaminating Network

5.1 Introduction

A network is a collection of nodes and links. Goals of a robust network system include distri-

bution and management of tasks and resources among nodes along with reliable and efficient

transport of objects and information through the links. Network systems with complex struc-

tures and behaviors are ubiquitous for example neural networks, social networks, and telecom-

munication networks. Characteristic of a network to be able to efficiently propagate a subject,

for example information, also poses as the greatest threat to the functioning of a network sys-

tem; that is a network also serves as a mechanism to transport and propagate things that a

system would rather want to contain. For example a network may want to detect and isolate

errors, viruses, misinformation or rumors once they are introduced in the system.

Faults and viruses often spread in networked environments by propagating from site to neigh-

boring site through the links in the network. The process is called network contamination. Once

contaminated, a network node might behave incorrectly, and it could cause its neighboring

nodes to become contaminated as well, thus propagating faulty computations. The propagation

patterns of faults can follow different dynamics, depending on the behavior of the affected node,

and topology of the network. At one extreme we have a full spread behavior: when a site is

affected by a virus or any other malfunction, the malfunction can propagate to all its neighbors.

Other times, faults propagate only to sites that are susceptible to be affected. The definition of

susceptibility depends on the application but often it is based on local conditions. For example,

77

a node could be vulnerable to contamination if a majority of its neighbors are faulty, and im-

mune otherwise (e.g., see [34], [35], [41]); or it could be immune to contamination for a certain

amount of time after being repaired (e.g., see [20], [25]).

In this chapter we consider a propagation of faults based on what we call temporal immu-

nity: a clean node can sustain to be exposed to contaminated nodes for a predefined amount

of time after which it becomes contaminated. Actual decontamination is performed by mobile

cleaning agents which move from host to host over network connections.

5.1.1 Previous Work

Graph Search

The decontamination problem considered in this paper is a variation of a problem extensively

studied in the literature known as graph search. The graph search problem was first introduced

by Breish in [12], where an approach for the problem of finding an explorer that is lost in a

complicated system of dark caves is given. Parsons ([49][50]) proposed and studied the pursuit-

evasion problem on graphs. Members of a team of searchers traverse the edges of a graph in

pursuit of a fugitive, who moves along the edges of the graph with complete knowledge of

the locations of the pursuers. The efficiency of a graph search solution is based on the size

of the search team. The size of smallest search team that can clear a graph G is called the

search number, and is denoted in the literature by s(G). In [45], Megiddo et al. approached

the algorithmic question: Given an arbitrary G, how should one calculate s(G)? They proved

that for arbitrary graphs, determining if the search number is less than or equal to an integer

k is NP-Hard. They also gave algorithms to compute s(G) where G is a special case of trees.

For their results, they used the fact that recontamination of a cleared vertex does not help

reduce s(G), which was proved by LaPaugh in [37]. A search plan for G that does not involve

recontamination of cleared vertices is referred to as a monotone plan.

78

Decontamination

The model for decontamination studied in literature is defined as follows. A team of agents is

initially located at the same node, the homebase, and all the other nodes are contaminated. A

decontamination strategy consists of a sequence of movements of the agents along the edges

of the network. At any point in time each node of the network can be in one of three possible

states: clean, contaminated, or guarded. A node is guarded when it contains at least one agent.

A node is clean when an agent passes through it and all its neighboring nodes are clean or

guarded, contaminated otherwise. The solution to the problem is given by devising a strategy

for the agents to move in the network in such a way that at the end all the nodes are clean.

The tree was the first topology to be investigated. In [6], Barrière et al. showed that for a given

tree T , the minimum number of agents needed to decontaminate T depends on the location of

the homebase. They gave the first strategies to decontaminate trees.

In [24], Flocchini et al. consider the problem of decontaminating a mesh graph. They present

some lower bounds on the number of agents, number of moves, and time required to decon-

taminate a p × q mesh (p ≤ q). They showed that at least p agents, pq moves, and p + q − 2

time units are required to solve the decontamination problem. Decontamination in graphs with

temporal immunity, which is similar to the model of decontamination used in this paper, was

first introduced in [25] where the minimum team size necessary to disinfect a given tree with

temporal immunity τ was derived. The main difference between the classical decontamination

model, and the new model in [25] is that once an agent departs the decontaminated node is

immune for a certain τ ≥ 0 (where τ = 0 corresponds to the classical model studied in the pre-

vious work) time units to viral attacks from infected neighbors. After the temporal immunity

time τ has elapsed, recontamination can occur.

Some further work in the same model was done in [21], where a two dimensional lattice is

considered.

79

5.1.2 Definitions and Terminology

We will only deal with connected finite graphs without loops or multiple edges. For a graph

G = (V,E), and a vertex v ∈ V let N(v), the neighborhood of v, be the set of all vertices w

such that v is connected to w by an edge. Let deg(v) denote the degree of a vertex v which is

defined to be the size of its neighborhood. The maximum and minimum degrees of any vertex in

G are denoted by ∆(G) and δ(G) respectively. The shortest distance between any two vertices

u, v ∈ V is denoted by dist(u, v) and the eccentricity of v ∈ V is the maximum dist(u, v)

for any other vertex u in G. The radius of a graph, rad(G), is the minimum eccentricity of

any vertex of G and the vertices whose eccentricity is equal to rad(G) are called the center

vertices. The diameter of a graph, diam(G), is the maximum eccentricity over all the vertices

in G.

Kn is the complete graph on n vertices. Km,n denotes the complete bipartite graph where

the size of two partitions ism and n. An acyclic graph is known as a tree and a vertex of degree

1 in a tree is known as a leaf of the tree. The rest of the tree terminology used is standard. A

star graph, Sn, is a tree on n + 1 vertices where one vertex has degree n and the rest of the

vertices are leaves. Sometimes a single vertex of a tree is labeled as the root of the tree. In

this case the tree is known as a rooted tree. If we remove the root vertex from a rooted tree it

decomposes into one or more subtrees; each such subtree along with the root is called a branch,

denoted by Bi, of original tree. Similarly, an arm is the set of vertices that lie on the path from

root to a leaf, denoted by Ai.

Other classes of graphs will be defined as and when needed.

5.1.3 Decontamination Model Specification

Our decontamination model is a synchronous system. We assume that initially, at time t = 0,

all vertices in the graph are contaminated. A decontaminating agent (henceforth referred to as

an agent) is an entity, or a marker, that can be placed on any vertex. A concept similar to this

80

is referred to in the literature as a pebble [16]. Assume that at some time step k, an agent is

at v ∈ V . Then at the next time step, we may move the agent to any of the neighbors of v.

Vertices visited in this process are marked decontaminated, or disinfected. Any vertex that the

agent is currently placed on is considered to be decontaminated.

A decontaminated vertex can get contaminated by uninterrupted exposure, for a certain

amount of time, to a contaminated vertex in its neighborhood. For decontaminated v if there

is no agent placed on v but some neighbor of v is contaminated, we say that v is exposed. For

a decontaminated vertex v we define the exposure time of v, Ξ(v), as the duration of time v

has been exposed. Every time an agent visits v, or all vertices in N(v) are decontaminated, we

reset Ξ(v) = 0. We say that G has temporal immunity τ(G) if a decontaminated vertex v ∈ V

can only be recontaminated if for uninterrupted τ(G) time units, there is a neighbor of v (not

necessarily unique) that is contaminated and an agent does not visit v during that time period.

Note that for any decontaminated vertex v we have that 0 ≤ Ξ(v) ≤ τ(G)− 1. Given a graph

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

Ξ(b) = − Ξ(b) = 0 Ξ(b) = 0

Ξ(b) = 0 Ξ(b) = 1 Ξ(b) = −

a a a

a a a

b

b b b

bb

cc c

ccc d d d

d d d

e e e

e e e

f f f

f f f

Ξ(a) = − Ξ(a) = 0 Ξ(a) = 1

Ξ(a) = − Ξ(a) = − Ξ(a) = −

Figure 5.1: Figure illustrates variation in exposure times of vertices a and b at different time
steps as the agent tries to decontaminate G, with τ(G) = 2.

G, a temporal immunity τ and n agents, our goal is to devise a decontamination strategy, which

consists of choosing an initial placement for the agents and their movement pattern so that we

can reach a state where all the vertices of G are simultaneously decontaminated and we call

the graph fully decontaminated. A strategy is called monotone if a decontaminated vertex is

81

Graph Topology Upper Bound on ι Lower Bound on ι
Path Pn 0 [Proposition 1] 0 [Proposition 1]
Cycle Cn 2 [Proposition 2] 2 [Proposition 2]
Complete Graph Kn n− 1 [Theorem 1] n− 1 [Theorem 1]
Complete Bipartite Graph Km,n, with m ≤ n 2(m− 1)[Theorem 2] 2(m− 1)[Theorem 2]
Spider Graph on n+ 1 vertices 4

√
n [Corollary 1] -

Tree on n vertices 30
√
n [Theorem 6] -

Mesh m× n m [Theorem 4] m
2 [Theorem 5]

Planar Graph on n vertices n− 1 [Theorem 8] Ω(
√
n) [Corollary 4]

General Graphs n− 1 [Theorem 8] n− 1 [Theorem 1]

Table 5.1: A summary of our results.

never recontaminated and is called nonmonotone otherwise. The Immunity number of G with

k agents, ιk(G), is the least τ for which full decontamination of G is possible. It is trivial to

see that ιk(G) is always finite for k ≥ 1. In particular for a connected graph G on n vertices,

ιk(G) ≤ 2(n− 1) for k ≥ 1 as the depth first traversal of the spanning tree of G takes exactly

2(n − 1) steps. However, in this paper we focus on the decontamination of graph by a single

agent; this gives us the liberty to use shortened notation ι(G), and just ι when the graph is

obvious from context, to mean ι1(G), the immunity number of a graph using a single agent. In

section 5.2 we prove bounds on ι for some simple graphs. In section 5.3 we give asymptotically

sharp upper and lower bounds on ι(G) where G is a mesh graph. We also give algorithms to

decontaminate several graph topologies. Results are outline in the table below.

5.2 Some Simple Graphs

We begin with the simple case when the graph that we want to decontaminate is a path.

Proposition 1. Let Pn be a path on n vertices, then ι(Pn) = 0, for all n ≥ 1.

It is easy to see that we do not need any temporal immunity to decontaminate the entire

path if we start with our agent at one leaf vertex and at each time step we move it towards the

other end until we reach it at t = n− 1.

82

A cycle can be decontaminated using a similar strategy.

Proposition 2. If Cn is a cycle on n vertices, ι(Cn) = 2, for all n ≥ 4.

Proof. To see that ι(Cn) ≤ 2 set the temporal immunity τ = 2 and begin with the agent at any

vertex of the cycle. At t = 1 choose one of it neighbors to move to. Henceforth, for t = k ≥ 2,

we always move our agent in a fixed, say clockwise, direction. It is straightforward to verify

that we will end up with a fully decontaminated graph in at most 2n time steps. Note that this

is a nonmonotone strategy.

If we set temporal immunity τ = 1 then we will show that we can never decontaminate

more than two (adjacent) vertices of the cycle. Suppose that four vertices vn, v1, v2, v3 appear

in the cycle in that order. Assume that at time step t = 0 the agent is placed at v1 and, without

loss of generality, it moves to v2 at the next time step. At t = 2 if the agent moves to v3

then v1 becomes contaminated due to its exposure to vn and we end up with only v2 and v3

decontaminated which is the same as not having made any progress. If, on the other hand,

the agent had moved back to v1 at t = 2 we would again have ended up with no progress

since the agent would still have the same constraints on proceeding to its next vertex, therefore

ι(Cn) > 1.

Remark 1. The bound presented in Proposition 2 is only tight because of our definition of τ as

an integer. Otherwise we observe that there always exists a strategy to decontaminate Cn with

τ = 1 + ε for any real number ε > 0 in finite time; in fact the same strategy as outlined in the

proof of the upper bound above will work.

Path and cycle happen to be the simplest possible graphs that can be decontaminated easily

with optimal constant immunity numbers as seen above. We now consider some dense graphs

and show that they may require a much larger value of τ .

Theorem 1. Let Kn be a complete graph on n vertices, then ι(Kn) = n− 1 for all n ≥ 4.

83

Proof. Let the vertex set V = {v1, v2, . . . , vn}. Since the graph is fully connected, we can

decontaminate Kn by making the agent visit all the vertices sequentially in any order giving us

ι(Kn) ≤ n− 1.

To see that this bound is actually tight we need to show that temporal immunity of n − 2 is

not good enough for full decontamination. For this purpose set τ = n − 2 and suppose that

at time step t = k we have somehow managed to decontaminate all the vertices of Kn except

one last vertex, say, vn. Assume without loss of generality that the agent is at vn−1. As long

as the complete graph is not fully decontaminated, all the vertices which do not have the agent

placed on them are exposed. This implies that the vertices v1, . . . , vn−2 have all been visited

by the agent in the last n − 2 time steps, that is, Ξ(vi) < n − 2 for 1 ≤ i ≤ n − 2. It also

implies that since there is one agent, all these vertices have different exposure times, meaning

that there is one vertex, say v1, such that Ξ(v1) = n− 3. At time step k+ 1, if the agent moves

to vn and decontaminates it, then v1 becomes contaminated hence we make no progress; there

is still one contaminated vertex remaining in the graph. If on the other hand agent x is moved

to v1 to avoid its contamination, we will again have not made any progress. Moving the agent

to any other vertex at t = k + 1 actually increases the number of contaminated vertices in the

graph.

The immunity number of complete bipartite graph depends upon the size of smaller parti-

tion.

Theorem 2. Let G be a complete bipartite graph on the vertex sets A and B where |A| =

m, |B| = n such that 3 ≤ m ≤ n, then ι(G) = 2m− 1.

Proof. Let A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn}. Set the temporal immunity τ =

2m− 1 and place an agent at a1 at t = 0. Now we cycle through the vertices in A and B in an

interleaved sequence as follows:

a1, b1, a2, b2, a3, b2, . . . , am, bm, a1, bm+1, a2, bm+2, . . . , bn.

84

When t < 2m none of the vertices are exposed long enough to be recontaminated. At

t = 2m the agent returns to a1, and thereafter none of the decontaminated vertices in B remain

exposed while the vertices of A keep getting visited by the agent before their exposure time

reaches τ . It follows that this monotone strategy fully decontaminates G in 2n− 1 time steps.

Our claim is that if τ < 2m − 1 then it is not possible to fully decontaminate a partition

during any stage of a given decontamination strategy. Consider a strategy that aims to fully

decontaminate A at some point (and B is never fully decontaminated before that). Suppose

that at time t = k there remains exactly one contaminated vertex in A (and that there were two

contaminated vertices in A at t = k− 1). Note that this implies that the agent is at some vertex

in A at t = k − 1. Since B has never fully been decontaminated, it follows that there exists a

vertex aj ∈ A such that Ξ(aj) = 2m− 3. Since it is a bipartite graph, it will take at least two

additional time steps to reach the last contaminated vertex of A, and if the temporal immunity

is less that 2m− 1 the agent will fail to decontaminate A fully.

In the case where the decontamination strategy requires that B is fully decontaminated

beforeA, similar argument gives us a lower bound of 2n−1 on ι(G) but we have already given

a strategy that decontaminates A first which gives a better upper bound.

5.3 Spiders, k-ary Trees, and Mesh Graphs

Two important network topologies are star and mesh. They are extreme examples of centraliza-

tion and decentralization respectively. In the following we study our problem on star, spider (a

generalization of star), k-ary trees, and mesh graphs. Some of the ideas and proof techniques

developed in this section will feature again in the proof of the upper bound on immunity number

for general trees that will be treated in the next section.

85

5.3.1 Spider and k-ary Trees

Let S be a star graph. The simple strategy of starting the agent at the center vertex and visiting

each leaf in turn (via the center) gives us the best possible bound on ι(Sn).

Lemma 1. Temporal immunity τ = 1 is necessary and sufficient for any star graph.

Proof. The strategy outlined above gives us the upper bound of ι(Sn) ≤ 1. The matching lower

bound argument is straightforward and we omit the details.

The spider is a graph that is structurally similar to a star graph. A spider is a tree in which

one vertex, called the root, has degree at least 3, and all the rest of the vertices have degree at

most 2. Equivalently a spider consists of k vertex disjoint paths all of which have one endpoint

that is connected to the root vertex. Such a spider is said to have k arms.

Let S be a spider such that the degree of the root is ∆. If m is the length of the longest

arm of S then using a naive monotone strategy of visiting each arm sequentially, starting at the

root and traversing each arm to the end and returning to the root shows that temporal immunity

τ = 2m is enough to fully decontaminate S. A better bound may be obtained if we allow

nonmonotonicity. Set τ := m. Give arms an arbitrary order A1, . . . A∆ and decontaminate

arms in this order. If the agent has visited all ∆ arms and there is still some contaminated

vertices in the graph we repeat this process of decontaminating arms in order. It is easy to

verify that eventually (after possibly multiple rounds) this process ends. However one can

obtain an even better estimate on ι(S).

Theorem 3. Let S be a spider on n vertices such that the degree of the root is ∆. If m is the

length of the longest arm of S then ι(S) ≤ ∆ +
√

∆2 + 4m.

Proof. Arbitrarily order the arms of the spider A1, A2, . . . , A∆ and let the temporal immunity

τ = t0. Thus the agent, when starting from the root, can decontaminate t0 vertices on an arm

before the exposed root gets recontaminated. Our strategy is going to be an iterative one and in

86

each iteration, we are going to let the root get contaminated just once in the beginning, and after

we decontaminate it, we will make sure that it does not get recontaminated during the course of

that iteration. At the end of iteration, j, we will have decontaminated all the arms of the spider

from A1 to Aj along with the root. Since this is going to be a nonmonotone strategy, parts

or whole of these arms may be recontaminated during the course of the rest of the algorithm.

At the first iteration we start from the root, traverse A1 to the end and return to the root. We

proceed to decontaminate the rest of the spider using the following strategy. At the beginning of

jth iteration, our agent is at the root of the spider and all the arms from A1, . . . , Aj−1 are fully

decontaminated whereas Aj , . . . , l∆ are all fully contaminated (except for the root). The agent

traverses each arm of the spider up to the farthest contaminated vertex and returns to the root in

sequence starting from Aj down to A1. Recall that we will allow the root to get contaminated

just once in this iteration, that is, when our agent is traversing Aj . We want to fine tune our the

temporal immunity τ such that once the agent returns after visiting all the vertices inAj , during

the rest of the iteration when the agent is visiting other arms, the root never gets contaminated

again.

Let t1 be the total time needed to traverse the arms Aj , . . . , A2 after the root has been

recontaminated (when the agent reached vertex t0 of Aj). Then

t1 < 2m+ 2(j − 1)× t0
2

(5.1)

where the last term is the result of the constraint that the root may not be recontaminated in

the current iteration. Now during the time t1 at most t0/2 vertices of A1 could have been

contaminated (once again to avoid recontamination of the root when we visit A1). But that

would have taken t20/2 time units. Therefore:

t1 =
t20
2
≤ 2m+ 2(j − 1)× t0

2
. (5.2)

Solving (5.2) and using the fact that we get the worst bound at j = ∆ we conclude that

τ = t0 < ∆ +
√

∆2 + 4m.

87

A1

A2

A3

A4

A5

A6

A7

Figure 5.2: The agent is at the root. ArmsA1, . . . , A6 are decontaminated, represented as white
dots. Dotted line segments show the path followed by the agent in 7th iteration to decontaminate
A7.

Corollary 1. If S is a spider on n vertices then ι(S) = O(
√
n).

Proof. Let S be rooted at a vertex r. If deg(r) = ∆ ≤ √n, if follows from Theorem 3 that

ι(S) ≤ ∆ +
√

∆2 + 4m ≤ 4
√
n which gives the claim. So, without loss of generality, assume

that ∆ >
√
n.

Let A1, A2, . . . , A∆ denote the arms of S with |Ai| ≤ |Aj |, for all i ≤ j. Again without loss

of generality for some k the number of vertices in Ai is less than
√
n for i ≤ k and more than

or equal to
√
n for all k < i ≤ m. Now consider a modified spider S∗ = S \⋃1≤i≤k Ai with

r as root. By the pigeon hole principle, ∆(S∗) ≤ √n. So we can apply the technique used in

the proof of Theorem 3 to decontaminate S∗ with τ ≤ 4
√
n. Once S∗ is decontaminated, we

use the following Lemma to decontaminate (S \ S∗) ∪ {r}.

Lemma 2. Any k-ary tree T with height h can be decontaminated with τ = 2h − 1 using a

monotone algorithm.

88

The bound will follow because the height of this tree is less than
√
n and an already decon-

taminated S never gets recontaminated by the monotonicity in Lemma 2.

Proof. First label the leaf vertices of T so that l1, l2, l3, . . . represents the order in which the

leaves are visited if an in-order depth-first traversal is performed on T , starting from the root

vertex. It is straightforward to verify that if we start with the agent at the root, and visit each leaf

in order l1, l2, l3, . . . returning to the root every time before visiting the next leaf, then τ = 2h−

1 would be enough to decontaminate the entire k-ary tree. Also note that once decontaminated

any leaf li is never exposed again, and all non-leaf vertices, once decontaminated, are exposed

for at most 2h− 1 time units. Monotonicity follows.

The proof of Lemma 2 completes the proof of Corollary 1.

A perfect or full k-ary tree is a rooted tree where every node has k children except the

leaves. We observe the following corollary of Lemma 2.

Corollary 2. Let T be a perfect k-ary tree on n vertices, then ι(T) = O(log n).

In case of a binary tree the bound on temporal immunity can be slightly improved if we use

the above strategy to first fully decontaminate the subtree rooted at the left child of the root,

and then use the same method to decontaminate the subtree rooted at the right child of the root.

Thus,

Observation 1. A binary tree with height h can be decontaminated with an temporal immunity

of 2h− 3.

5.3.2 Decontaminating a Mesh

A p × q mesh is a graph that consists of pq vertices. It is convenient to work with planar

drawing of the graph where the vertices of G = (V,E) are embedded on the points with the

integer coordinates of Cartesian plane. The vertices are named v(i,j) for 1 ≤ i ≤ q, 1 ≤ j ≤ p

89

corresponding to their coordinates in the planar embedding. There is an edge between a pair

of vertices if their euclidean distance is exactly 1. We can partition V into the column sets

C1, C2, . . . , Cq so that Ci = {v(i,j) : 1 ≤ j ≤ p} for all 1 ≤ i ≤ q. Row sets R1, R2, . . . , Rp

are defined analogously, i.e., Rj = {v(i,j) : 1 ≤ i ≤ q} .

A simple approach to fully decontaminate a p×q mesh would be to place our agent at v(1,1)

at t = 0, proceed to visit all vertices in the column till we reach v(1,p), move right one step to

v(2,p) and proceed all the way down to v(2,1). This process may now be continued by moving

the agent to v(3,1) and going on to decontaminate the entire graph column by column until we

reach the last vertex. Clearly a temporal immunity of 2p − 1 is enough for this strategy to

monotonically decontaminate the entire graph. In [19] the same strategy was used, albeit under

a slightly different notion of temporal immunity, to get a similar upper bound. However, once

again we can improve this bound by resorting to a nonmonotone strategy.

Theorem 4. Let G be a p× q mesh where p ≤ q. Then ι(G) ≤ p.

Proof. We will describe a strategy to decontaminateG in which we decontaminate each column

nonmonotonically. However, once we declare a column to be decontaminated, we do not allow

any of its vertices to be contaminated again.

Set the temporal immunity τ = p and start with the agent at v(1,1). Proceed all the way up to

v(1,p), move the agent to the next column onto v(2,p), and then start traversing down the column

until we reach v(2,d p
2
e+1). Note that the vertices of C1 had started getting recontaminated when

the agent reached v(2,p−1) because the exposure time of v(1,1) became equal to τ at that point.

Now move the agent back to C1 onto v(1,d p
2
e+1) and proceed all the way down back to v(1,1).

We declare that C1 has been decontaminated and none of its vertices will be recontaminated

during the course of decontamination of the rest of the graph. It is pertinent to note that at this

point, Ξ(v(2,p)) = τ−1 = p−1. To decontaminate the rest of the columns we use the following

scheme. Assume that we have declared all the columns C1, C2, . . . , Ck to be decontaminated

and our agent is at v(k,1). We also know that Ξ(v(k+1,p)) = τ − 1. We move the agent to the

90

v(1,1)

v(1,8) v(10,8)

v(10,1)

Figure 5.3: Dotted line segments outline the path agent to decontaminate mesh graph with
τ = 8. Once agent returns to v(1,1), we declare first column decontaminated, and proceed to
first vertex of second column, and henceforth.

next column onto v(k+1,1). At this point v(k+1,p) becomes contaminated leaving v(k,p) exposed.

We follow the same strategy as the one that we followed when we were decontaminating C1.

We move the agent all the way up to v(k+1,p), move to Ck+2, traverse all the way down to

v(k+2,d p
2
e+1), revert back to Ck+1 and move back down to v(k+1,1) declaring column Ck+1 to

be decontaminated. None of the vertices in Ck will be recontaminated since v(k,p) had the

maximum exposure time due to v(k+1,p), and we were able to decontaminate v(k+1,p) before

v(k,p) got contaminated. Similarly, it is not difficult for the reader to verify that none of the rest

of the vertices of Ck are exposed long enough to be recontaminated.

Corollary 3. Let G be a mesh on n vertices, then ι(G) ≤ √n.

Remark 2. Strategy used in proof of Theorem 4 can also be used to decontaminate a cylinder

graph (a mesh graph with an edge between the leftmost and the rightmost vertices on each

row).

In the following we present an asymptotically sharp lower bound for mesh graphs, but first

we would like to establish a graph isoperimetric result that we use in proof of lower bound.

91

Lemma 3. Let G = (V,E) be an
√
n×√n mesh graph, then for any W ⊂ V, |W | = n

2 , size

of a maximum matching between W and its complement has size at least
√
n.

Proof. For ease of understanding let us say that a vertex is colored white if it is in set W , and

black otherwise. An edge is monochromatic if both its endpoints have the same color, and bi-

chromatic otherwise. Let R1, R2, . . . , R√n, and C1, C2, . . . , C√n be the row and column sets

respectively. We observe following four possible cases:

Case 1. For each row Ri, 0 < |Ri ∩W | <
√
n:

Since Ri contains vertices of both colors, it is clear that there will be at least one bi-chromatic

edge. We pick one such edge from each Ri. As these edges are disjoint, we have a matching of

size at least
√
n.

Case 2. There exist two rows Ri, Rj , such that |Ri ∩W | = 0, and |Rj ∩W | =
√
n:

We interchange the roles of rows and columns. The claim then follows from Case 1.

Case 3. There exists a row Ri, such that |Ri∩W | = 0, and for every row Rj , |Rj ∩W |6=
√
n:

We present below a scheme to match vertices in this case.

We will use two markers b (for bottom row), and c (for current row). In the beginning, both

point to the first row of the mesh, i.e, b := c := 1.

1. Locate the minimum x ≥ c ≥ b, such that Rx ∩W = ∅. If we can not find such an x, go

to Step 3.

(a) Now locate the maximum y < x ≤ b, such that |Ry ∩W | ≥ x− y + 1. For all the

white vertices in Ry we have black vertices in corresponding columns of Rx. So

for each such column there exists a pair of rows Ri, Ri+1 with a bi-chromatic edge

in that column where y ≤ i < x. We set c := x + 1, and call rows Rj matched if

y ≤ j ≤ x.

(b) If we cannot find such a y, then we look for a minimum z > x, such that the row cor-

responding to z contains at least z−x+1 points fromW , i.e., |Rz ∩W | ≥ z − x+ 1.

92

For all the white vertices in Rz , we can find bi-chromatic edges as above. We set

c := z + 1 and b := x+ 1 and we call rows Rj matched if x ≤ j ≤ z.

2. Repeat Step 1. Failure to find both y and z at any step would imply a contradiction be-

cause there are not enough black vertices as assumed. In the worst case

∣∣∣∣∣
x−1⋃

i=1

Ri

∣∣∣∣∣ ≤ (x− 1)

√
n

2

(alternating complete black and white rows), and

∣∣∣∣∣∣

√
n⋃

j=x+1

Rj

∣∣∣∣∣∣
< (
√
n− (x+ 1))

√
n

2
.

3. Match all unmatched rows as in Case 1.

Case 4. There exists a row Ri, such that |Ri ∩W | =
√
n and for every row Rj , |Rj ∩W | 6= 0:

The claim in this case follows directly from the proof of Case 3 by reversing the roles of W

and W .

This concludes the proof of Lemma.

Note that bound in Lemma 3 is tight when W is a rectangular subgrid. We do not know

of a tight example which is not rectangular in shape. We observe that since ∆ = 4 for mesh,

Lemma 3 also follows from vertex and edge isoperimetric inequalities proved in [9][10] up to

a constant factor.

Theorem 5. If G is a p× q mesh with p ≤ q, then ι(G) > p
2 .

Proof. Let us assume the opposite, i.e, that a decontaminating algorithm exists with τ = p
2 . For

simplicity assume thatG is a p×pmesh and ignore the agent’s moves for the remaining p×(q−

93

p) vertices if any. Let n = p2, then at some time step during this algorithm we will have exactly

n
2 decontaminated vertices. Lemma 3 implies that at this stage at least p vertices of G are

exposed through at least p disjoint edges to contaminated vertices. By considering all possible

moves of the agent for next p
2 steps it is clear that at least p

2 vertices will be recontaminated,

and no matter what the agent does this can decontaminate at most p2 vertices and thus make no

progress at all. It already gives that number of decontaminated vertices can never exceed n
2 + p

2 .

It follows that no decontaminating algorithm exists with assumed temporal immunity.

5.4 General Trees

To upper bound ι for general trees, we will try to adapt the strategy used to decontaminate k-ary

trees. The simplest approach is to apply naively the same strategy on a given tree T as before,

this time considering the center vertex (choose one arbitrarily if there are two center vertices)

of the tree to be the root and then visiting each of the leaves of T in the depth first search

discovery order, every time returning to the center vertex, as in the previous case. It is clear that

a temporal immunity τ = 2 · rad(T) = diam(T) + 1 is sufficient to fully decontaminate T but

the diameter of a tree on n vertices can easily be O(n). However, we can use nonmonotonicity

to our advantage by letting a controlled number of vertices get recontaminated so that we get a

much stronger bound even for trees with large diameters.

We will need the following lemma which describes a monotone strategy to decontaminate

trees with small height.

Lemma 4. Any rooted tree T with height h can be decontaminated with temporal immunity

τ ≥ αh, in time cn, where n is the number of vertices in T , and c ≤ 4α−1
α−2 for any positive

number α > 2.

Proof. Assuming an arbitrary tree with height and temporal immunity τ as above, we present

an algorithm with claimed time complexity.

94

Define level of a node as the distance between the root and the node. Without loss of

generality we choose a node r to be the root such that every vertex in the tree is at level less

than h. Let l be the maximum integer such that there exists a subtree P1 rooted at p1 with

|P1| > hα2 − h at level l, and let s1, s2, . . . , sm be the children of one such subtree. For all i

let Si be subtrees rooted at si, then |Si| < hα2 − h by maximality of l. Now let j be the largest

integer such that |S1 ∪ · · · ∪ Sj ∪ {p1}| < hα2 − h, we define X1 := S1 ∪ · · · ∪ Sj ∪ {p1}. We

similarly defineX2, · · · , Xk, as maximal subtrees all rooted at p1 making sure that 1
2h(α2−1) <

|Xi| < h(α2 − 1), with possible exception of Xk which might be of smaller cardinality.

S

S1 S2

S3

S4

S5
︸ ︷︷ ︸

X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

p

h

l = 2

r

s

Figure 5.4: Example illustrating grouping of Si into Xj

For the decontamination process, the agent starts at the root of T , walks its way to p1 and

performs a depth-first search traversal on each Xi one by one. We can afford this because the

immunity is strictly greater than the amount of time it takes to perform the traversal on each

Xi; in fact its easy to see that any τ ≥ hα− 2h is enough to completely clean P1.

The next step is to walk up to p2, the parent of p1. The plan is to make sure that p2 never gets

recontaminated. Let P2 be the subtree rooted at p2. Arbitrarily choose any subtreeR ⊆ P2\P1,

at minimum possible distance from P2 (e.g., potentially R = P2), with the property that for

95

all subtrees Ri of R, |Ri| < hα2 − h as before. We will group Ri’s into Xj’s as before but

this time after performing a depth-first search traversal on each Xj , we will pay a visit to p2,

making sure it remains decontaminated. Once P2 is decontaminated, we proceed to p3 the

parent of p2 and repeat the process until pj becomes the root of T , and we are done with the

decontamination process. From the fact that each Xi is small enough, it is easy to see that

τ = αh is enough for the process. We can always group any tree into at most 2nq subtrees each

of size (hα2 − h) ≤ |Xi| ≤ h(α − 2) where q = h(α − 2). The agent spends at most 2q time

units on depth first traversal and 2h time units on visiting some pj potentially at distance h for

each such subtree. The total amount of time spent in the process is

≤ 2
n

q
× 2(q + h)

≤ 2
n

q
× 2(q +

q

α− 2
)

= 2n× 2(1 +
1

α− 2
)

= 4n× α− 1

α− 2

Theorem 6. Let T be a tree on n vertices, then ι(T) = O(
√
n).

Proof. We start with the following observation.

Observation 2. The decontamination strategy in Lemma 4 is a monotone strategy.

Now let c be a center vertex of T and letm be the number of leaves in T . Recall that an arm

Ai is a set of vertices that lie on the path from c to a leaf li for all 1 ≤ i ≤ m. Given a tree T

rooted at v, we denote by Tx(v) a subtree of T that is attained by removing all vertices from T

that are at distance more than x from v i.e, Tx is T truncated at depth x. Assume without loss

of generality that leaves li are sorted in their depth first search discovery ordering. This implies

96

an ordering on arms Ai. Note that Ai \ {c} are not disjoint in general. Once we have an order,

the agent will start decontaminating arms one by one according to the following algorithm.

• For i = 1 to m

– Perform an auxiliary step and apply Lemma 4 on T√n(c) with α = 3.

– Move the agent from c towards leaf li until it reaches a vertex vj with deg(vj) > 2.

We will apply Lemma 4 on T10
√
n(vj) again with α = 3. After performing an

auxiliary decontamination step, we will not perform any more auxiliary steps for

next 5
√
n time units of this walk. Since li can be at distance at most n2 from c, the

total number of auxiliary steps we perform on this walk is bounded above by n
10
√
n

.

It also follows that no vertex lies in more than two T10
√
n(vj)’s. We return to c

along the shortest path.

To analyze this scheme, we find the following definition useful.

Definition 1. A vertex v in tree T is called secured at some time step i, if it never gets contam-

inated again.

The agent decontaminates a new arm Ai in the ith iteration of the algorithm. We observe

that

Lemma 5. The following invariants hold for every step of the algorithm:

(i) Root c is secured at iteration 1.

(ii) For any secured vertex v, and a contaminated vertex w, which is in same branch as Ai,

dist(v, w) >
√
n at start of iteration i+ 1.

(iii) All vertices vj ∈ Ai are secured at start of iteration i+ 1.

Proof. We fix τ = 30
√
n. Let Γ(i) be the time spent by the algorithm at iteration i. Then Γ(i)

can be broken down into three parts: (1) the time spent performing auxiliary decontamination

97

at c, (2) the time spent visiting li, and (3) time spent at each auxiliary step on the way to li,

which is 8aj where aj denotes size of the tree used in the auxiliary step. We have

Γ(i) ≤ 8n+ n+ 8Σjaj

≤ 8n+ n+ 16n

= 25n,

where we use the fact that Σjaj cannot be more than twice the number of total vertices, since

each vertex is used in at most two such auxiliary steps. Since τ = 30
√
n, after performing an

auxiliary decontamination step on tree with
√
n height, it takes ≥ 30n for the contamination to

creep back to the root which is less than the time spent in one iteration. This fact along with

Observation 2 gives the first invariant (i).

Now a vertex v is secured only if v ∈ Aj for some j ≤ i. If v lies in a different branch than the

one Ai lies in then invariant (ii), and (iii) follow from (i) i.e. if c is secured then contamination

has no way to spread from one branch to another, and if a branch has been decontaminated,

it will not get recontaminated. For any contaminated vertex w, dist(c, w) >
√
n implies that

dist(v, w) >
√
n, for any v in a fully decontaminated branch. So we assume without loss of

generality that v lies in the same branch as Ai. By the order in which we decontaminate leaves,

it is clear that after iteration i, the closest secured vertex to any contaminated vertex, lies in arm

Ai. A direct consequence of performing auxiliary decontamination during iteration i is that

any contaminated vertex is at distance more than 5
√
n from closest v ∈ Ai. When we have

completed iteration i, it is still more than 4
√
n distance away, and this implies invariant (ii).

For any contaminated vertex w, any u ∈ Ai, and any v ∈ Aj , for j < i all contained in the

same branch it holds that dist(u,w) < dist(v, w). It follows that v ∈ Aj for j < i never

get contaminated during decontamination process of their branch. This along with (i) implies

(iii).

The claim completes the proof of Theorem with ι = 30
√
n.

98

Remark 3. Although the constant 30 in the proof above can be improved to 6, but the resulting

structure of the proof is messier and doesn’t yield any further insight into the problem.

5.5 Discussion

While we presented some interesting results, we would like to mention that there are still some

very basic questions that seem to be open for further investigations. For example, although we

showed that for any tree T , ι(T) = O(
√
n), it is not clear if this is asymptotically optimal.

Using somewhat involved argument, it can be shown that there exist trees T on n vertices

for which ι(T) = Ω(n
1
3

+ε) for any constant ε > 0. It’s also noteworthy that if we limit the

algorithms to be monotone, its easy to see that ι(T) = Θ(n), e.g., consider a spider with three

arms of equal length.

Another interesting topology is that of planar graphs. Since meshes are planar graphs, it directly

follows from Theorem 5 that

Corollary 4. There exist planar graphs on n vertices with immunity number ι >
√
n

2 .

We believe that

Conjecture 4. Any planar graphG on n vertices can be decontaminated with τ(G) = O(
√
n).

The search number, s(G), of a graphG is the minimum number of agents needed to decon-

taminate a graph with τ = 0. In [1], Alon et al. proved the following statement, but we give

here a simpler, shorter, more intuitive proof.

Theorem 7. Any planar graph G = (V,E) on n vertices can be decontaminated with s(G) =

O(
√
n) agents where vertices of G don’t have any immunity.

Proof. We partition V into three sets V1, V2, and S using the Planar Separator Theorem [38]

[23], where |Vi| ≤ 2n
3 , |S| ≤ 3

√
n, and for any v ∈ V1, and any w ∈ V2, edge vw /∈ E. We

place 3
√
n agents on S to make sure that contamination can not spread from V1 to V2, or vice

99

versa. Let G1 and G2 be the subgraphs of G induced on the vertices in V1 and V2 respectively.

Now let’s say it takes s(G1) agents to decontaminate G1. Once G1 is fully decontaminated, we

can moving all those agents to decontaminate G2. Since both G1 and G2 are also planar graph,

this gives us an obvious recurrence for s(G):

s(G) ≤ max(s(G1), s(G2)) + 3
√
n.

So the total number of agents required is at most 3
√
n+3

√
2n
3 +. . . = O(

√
n) which completes

the proof.

Technique used in proof of Theorem 7 may help devise a similar proof for the conjectured

bound on immunity number of planar graph. In any case, we do have a hunch that Planar

Separator Theorem may be beneficial in that case as well.

Also it’s not hard to show that Kn has the maximal immunity number among all graphs on n

vertices.

Theorem 8. Any connected graph G = (V,E) on n vertices can be decontaminated with

τ = n− 1.

Proof. For an arbitrary graph G we present a strategy to decontaminate G with the claimed

immunity. Our strategy is a modified depth first search traversal of the graph.

Start with an agent on an arbitrary vertex v1, and at each time step keep walking the agent

to successive unvisited neighbors in the depth first fashion. If we exhaust all V then we are

done since we visited all vertices before first vertex got recontaminated. Otherwise the agent

follows some path v1, . . . , vk−1, vk such that all neighbors of vk have already been visited. We

label a vertex as a terminal vertex and plan never to visit it again. So for the rest of the decon-

tamination process, we will assume that vk does not exist. We traverse the agent back along

vk, vk−1, . . . , v1 to reach v1, and then come back along same path to reach vk−1. This time

the agent moves to some other neighbor of vk−1 if any, and continue as before either finding

another another terminal vertex and deleting it too or finding a cycle on rest of the vertices. In

100

either case, process completes in finite time. Since the agent decontaminated the terminal ver-

tices, they cannot contaminate any other vertex after they have been visited. And since, every

time the agent encounters a terminal vertex it goes back to v1, and visits all its neighbors (all

of which lie on agent’s path back to v1) in the next less than n − 1 steps, the terminal vertices

cannot get contaminated again. Vertices that are not terminal are decontaminated at the end of

the process because they are visited in the traversal on cycle which takes at most n − 1 steps

after we leave v1. The claim follows.

This might tempt one to conjecture that ι(G) is an increasing graph property i.e. if we

add new edges to G then the immunity number can only go up. But as the following claim

illustrates, this is not the case.

Observation 3. Immunity number is not an increasing graph property. [32]

For completeness sake we include the proof here.

Proof. Consider the following counter-example: let G be a spider with 2
√
n arms labeled

A1, A2, . . . , A2
√
n, where |Ai| :=

√
n− 1 when i is even; otherwise Ai has just one vertex.

G
√
n−1︷ ︸︸ ︷

G∗

√
n−1︷ ︸︸ ︷

Figure 5.5: (Left) G is a spider tree, and can’t be decontaminated with small temporal immu-
nity. We getG∗ (on right) by adding dashed edges, and its easy to see that we can decontaminate
G∗ with τ = 2.

Now construct G∗ by adding edges vw where v ∈ Ai, w ∈ Ai+1, for all i ≡ 1 (mod 2)

then we can decontaminate G∗ with τ(G∗) = 2. We leave it as an exercise for the reader to

101

verify that ι(G) > 2.

Other interesting problems related to the topic covered in this chapter include natural gen-

eralizations of the problem to directed graphs and weighted graphs. One can also look at the

behavior of immunity number of random graphs.

102

References

[1] Noga Alon and Abbas Mehrabian. Chasing a fast robber on planar graphs and random
graphs. Draft., 2013.

[2] Greg Aloupis, Stefan Langerman, Michael Soss, and Godfried Toussaint. Algorithms for
bivariate medians and a fermat–torricelli problem for lines. Computational Geometry,
26(1):69–79, 2003.

[3] Nina Amenta, Marshall Bern, David Eppstein, and S-H Teng. Regression depth and
center points. Discrete & Computational Geometry, 23(3):305–323, 2000.

[4] Boris Aronov, Franz Aurenhammer, Ferran Hurtado, Stefan Langerman, David Rappa-
port, Carlos Seara, and Shakhar Smorodinsky. Small weak epsilon-nets. Computational
Geometry, 42(5):455–462, 2009.

[5] Imre Bárány. A generalization of carathéodory’s theorem. Discrete Mathematics,
40(2):141–152, 1982.

[6] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Capture of an
intruder by mobile agents. In Proceedings of the Fourteenth Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 200–209. ACM, 2002.

[7] Abdul Basit, Nabil H. Mustafa, Saurabh Ray, and Sarfraz Raza. Hitting simplices with
points in R3. Discrete & Computational Geometry, 44(3):637–644, 2010.

[8] Manuel Blum, Robert W Floyd, Vaughan Pratt, Ronald L Rivest, and Robert E Tarjan.
Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461,
1973.

[9] Béla Bollobás and Imre Leader. Compressions and isoperimetric inequalities. Journal of
Combinatorial Theory, Series A, 56(1):47–62, 1991.

[10] Béla Bollobás and Imre Leader. Edge-isoperimetric inequalities in the grid. Combinator-
ica, 11(4):299–314, 1991.

[11] Endre Boros and Zoltán Füredi. The number of triangles covering the center of an n-set.
Geometriae Dedicata, 17(1):69–77, 1984.

[12] Richard Breisch. An intuitive approach to speleotopology. Southwestern Cavers,
6(5):72–78, 1967.

[13] Boris Bukh. A point in many triangles. Journal of Combinatorics, 13(2):N10, 2006.

103

[14] Boris Bukh, Jiřı́ Matoušek, and Gabriel Nivasch. Stabbing simplices by points and flats.
Discrete & Computational Geometry, 43(2):321–338, 2010.

[15] Timothy M Chan. An optimal randomized algorithm for maximum tukey depth. In Pro-
ceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages
430–436. Society for Industrial and Applied Mathematics, 2004.

[16] Fan RK Chung. Pebbling in hypercubes. SIAM Journal on Discrete Mathematics,
2(4):467–472, 1989.

[17] Richard Cole, Jeffrey S Salowe, William L. Steiger, and Endre Szemerédi. An optimal-
time algorithm for slope selection. SIAM Journal on Computing, 18(4):792–810, 1989.

[18] Richard Cole, Micha Sharir, and Chee K Yap. On k-hulls and related problems. SIAM
Journal on Computing, 16(1):61–77, 1987.

[19] Yassine Daadaa. Network Decontamination with Temporal Immunity. PhD thesis, Uni-
versity of Ottawa, 2012.

[20] Yassine Daadaa, Paola cchini, and Nejib Zaguia. Network decontamination with temporal
immunity by cellular automata. In Cellular Automata, pages 287–299. Springer, 2010.

[21] Yassine Daadaa, Paola Flocchini, and Nejib Zaguia. Decontamination with temporal im-
munity by mobile cellular automata. In International Conference on Scientific Computing
(CSC), pages 172–178, 2011.

[22] Tamal K Dey. Improved bounds for planar k-sets and related problems. Discrete &
Computational Geometry, 19(3):373–382, 1998.

[23] Hristo Nicolov Djidjev. On the problem of partitioning planar graphs. SIAM Journal on
Algebraic Discrete Methods, 3(2):229–240, 1982.

[24] Paola Flocchini, Flaminia L Luccio, and L Xiuli Song. Size optimal strategies for cap-
turing an intruder in mesh networks. In Proceedings of the International Conference on
Communications in Computing (CIC), Las Vegas, USA, pages 200–206, 2005.

[25] Paola Flocchini, Bernard Mans, and Nicola Santoro. Tree decontamination with tempo-
rary immunity. In Algorithms and Computation, pages 330–341. Springer, 2008.

[26] Jacob Fox, Mikhail Gromov, Vincent Lafforgue, Assaf Naor, and János Pach. Overlap
properties of geometric expanders. Journal für die Reine und Angewandte Mathematik
(Crelles Journal), 2012(671):49–83, 2012.

[27] Maxime Genest, Jean-Claude Masse, and Jean-Francois Plante. depth: Depth functions
tools for multivariate analysis, 2012. R package version 2.0-0.

[28] Joseph Gil, William Steiger, and Avi Wigderson. Geometric medians. Discrete Mathe-
matics, 108(1):37–51, 1992.

[29] Mikhail Gromov. Singularities, expanders and topology of map. part 2: From combina-
torics to topology via algebraic isoperimetry. Geom. Func. Anal., 20:416–526, 2010.

104

[30] David Haussler and Emo Welzl. ε-nets and simplex range queries. Discrete & Computa-
tional Geometry, 2(1):127–151, 1987.

[31] Shreesh Jadhav and Asish Mukhopadhyay. Computing a centerpoint of a finite planar set
of points in linear time. Discrete & Computational Geometry, 12(1):291–312, 1994.

[32] Jeff Kahn. Personal communication, 2013.

[33] Daniel Kral, Lukáš Mach, and Jean-Sébastien Sereni. A new lower bound based on Gro-
movs method of selecting heavily covered points. Discrete & Computational Geometry,
48(2):487–498, 2012.

[34] Shay Kutten and David Peleg. Fault-local distributed mending. Journal of Algorithms,
30(1):144–165, 1999.

[35] Shay Kutten and David Peleg. Tight fault locality. SIAM Journal on Computing,
30(1):247–268, 2000.

[36] Stefan Langerman and William Steiger. Optimization in arrangements. In STACS 2003,
pages 50–61. Springer, 2003.

[37] Andrea S LaPaugh. Recontamination does not help to search a graph. Journal of the
ACM (JACM), 40(2):224–245, 1993.

[38] Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

[39] Regina Liu. A notion of data depth based upon random simplices. The Annals of Statis-
tics, 18:405–414, 1990.

[40] Chi-Yuan Lo, Jiřı́ Matoušek, and William Steiger. Algorithms for ham-sandwich cuts.
Discrete & Computational Geometry, 11(1):433–452, 1994.

[41] Fabrizio Luccio, Linda Pagli, and Nicola Santoro. Network decontamination with lo-
cal immunization. In Proceedings of the 20th International Conference on Parallel and
Distributed Processing, pages 264–264. IEEE Computer Society, 2006.

[42] Jiřı́ Matoušek. Computing the center of planar point sets. Computational Geometry:
Papers from the DIMACS special year, pages 221–230, 1991.

[43] Jiřı́ Matoušek. Lectures in Discrete Geometry. Springer-Verlag, New York, NY, 2002.

[44] Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algo-
rithms. Journal of the ACM (JACM), 30(4):852–865, 1983.

[45] Nimrod Megiddo, S Louis Hakimi, Michael R Garey, David S Johnson, and Christos H
Papadimitriou. The complexity of searching a graph. Journal of the ACM (JACM),
35(1):18–44, 1988.

[46] Nabil H Mustafa and Saurabh Ray. An optimal extension of the centerpoint theorem.
Computational Geometry, 42(6):505–510, 2009.

105

[47] Nabil H Mustafa, Saurabh Ray, and Mudassir Shabbir. Ray-shooting depth: Computing
statistical data depth of point sets in the plane. In Algorithms–ESA 2011, pages 506–517.
Springer, 2011.

[48] Nabil H Mustafa, Saurabh Ray, and Mudassir Shabbir. k-centerpoints Conjectures for
Pointsets in Rd. Under revision to International Journal of Computational Geometry &
Applications, 2014.

[49] Torrence D Parson. Pursuit-evasion in a graph. theory and applications of graphs. Lecture
Notes in Mathematics, Springer-Verlag, pages 426–441, 1976.

[50] Torrence D Parsons. The search number of a connected graph. In Proc. 9th South-Eastern
Conf. on Combinatorics, Graph Theory, and Computing, pages 549–554, 1978.

[51] Ronald Pyke. Spacings. Technical report, DTIC Document, 1965.

[52] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2014.

[53] Richard Rado. A theorem on general measure. Journal of the London Mathematical
Society, 1(4):291–300, 1946.

[54] Géza Tóth. Point sets with many k-sets. Discrete & Computational Geometry,
26(2):187–194, 2001.

[55] Uli Wagner. On k-Sets and Applications. PhD thesis, ETH Zurich, 2003.

