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Dissertation Director:

Professor Eduardo D. Sontag

In this dissertation we will discuss various techniques related to modeling and identifi-

cation problems arising in complex biological networks, and demonstrate how control

theory approaches can be used to validate mathematical models coming from exhaus-

tive computational experiments or noisy experimental data. The methodology based

on systematic exploration of the basic dynamic processes, feedback control loops, and

signal processing mechanisms in complex networks or their parts provides powerful

tools for guiding the reverse-engineering of networks, and allows one to design artificial

systems that are capable of achieving various objectives.

Adaptation is an essential property of many cellular systems and it means that

the measured variables return to their basal levels after a transient response to a step

increase in stimulus. By definition, neither the concepts of perfect nor approximate

adaptation address the characteristics of the transient signaling which occurs prior

to a return to steady state, which are physiologically relevant. It has been recently

observed that some adapting systems, ranging from bacterial chemotaxis pathways

to signal transduction mechanisms in eukaryotes exhibit an additional feature: scale

invariance, meaning that transient behavior remains approximately the same when the

background signal level is scaled. Recent interest in scale-invariance was triggered by a

pair of papers published in 2009, in which scale-invariant behavior was experimentally
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observed in several highly conserved eukaryotic signaling pathways that play roles in

embryonic patterning, stem cell homeostasis, cell division, and other central processes,

and their misregulation results in diseases including several types of cancer.

In this thesis we will review the biological phenomena of adaptation and scale in-

variance, and present the relevant mathematical results for several classes of systems

that exhibit these properties. We will use a model from the literature which describes

the class of enzyme networks, to prove the impossibility of perfect scale invariance,

and develop the mechanism which gives rise to an approximate scale invariance. We

will demonstrate results on a biological example of soil-living amoeba Dictyostelium

discoideum. Additionally, it has been often remarked in the literature that certain

systems whose output variables respond at a faster time scale than internal components,

give rise to an approximate scale-invariant behavior. We will state a fundamental lim-

itation of such a mechanism, showing that there is a minimal error that cannot be

overcome, no matter how large the separation of time scales is. We will highlight the

extensions and challenges in analyzing adaptation and scale-invariance in a stochastic

setting.

Finally, we will discuss the development of tools for the identification of time-varying

parameters in nonhomogeneous Poisson processes, in applications where discrete mea-

surements such as “spikes” or “tumbles” are observed from the behavior of free swim-

ming bacteria in response to the nutrient (input) signals. The objective is to estimate

the underlying rate of a nonhomogeneous Poisson process that describes these events,

which can then be used to analyze transient behaviors of various species and postulate

a plausible model. This work has been motivated by the novel experimental methods

for assaying various chemotactic bacteria based on microfluidics devices, with the goal

to analyze scale invariance property and model the behavior of different species using

various inputs (nutrients).
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Chapter 1

Introduction

The survival of organisms depends upon their ability to formulate appropriate responses

to sensed chemical and physical environmental stimuli [93]. Signal transduction and

gene regulatory networks in individual cells mediate the processing of measured exter-

nal signals, such as ligand concentrations or stresses, eventually leading to regulatory

changes in metabolism and gene expression.

Research in the field of molecular systems biology seeks to unravel the basic dynamic

processes, feedback control loops, and signal processing mechanisms in single cells and

entire organisms, both for understanding and for guiding drug design [82, 4]. One

of the key questions is: how can one relate phenotype (function) to interaction maps

(gene networks, protein graphs, and so forth) derived from experimentation? Answers

to this question provide powerful tools for guiding the reverse-engineering of networks,

by focusing on mechanisms that are consistent with experimentally observed behaviors,

and, conversely, from a synthesis viewpoint, allow one to design artificial biological

systems that are capable of adaptation [11] and other objectives. In biology, an adapting

system is one that has a property of disturbance rejection with respect to a specific class

of inputs, typically zero inputs [94]. For linear systems and certain classes of nonlinear

systems, the internal model principle says that such systems must have a model of the

disturbance-generating system [57, 96, 37]. For example, if there is adaptation with

respect to constant inputs, one expects to find an integrator, after a suitable coordinate

change (integral feedback). Such systems are also found in biology, see [4, 65]. In this

manner, adaptation is defined as an asymptotic property, and hence does not refer

to transient behavior. In the recent years, the research interest has shifted in part

towards the understanding of physiologically relevant transient behaviors, and more
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specifically on the phenomenon of scale invariance, also referred to as Fold Change

Detection (FCD), which is the invariance of the complete output trajectory with respect

to a rescaling of the input magnitudes.

This thesis discusses these two robust properties that arise in the modeling of biological

systems, namely adaptation and scale invariance, and presents relevant mathematical

results for several classes of systems that exhibit these properties.

Experimental verification of scale invariant behaviors and other relevant physiological

responses for arbitrary inputs and classes of systems is often not an easy task. One

would like to understand and quantify adaptation and scale-invariance property for an

arbitrary class of experimentally controlled stimuli, understand the molecular mecha-

nisms underlying the robust signal detection which these properties entail, [65], and

the novel experimental methods provide powerful tools to design a controlled exper-

iment where a behavior of individual cells and a population of cells can be assayed.

Hence, motivated by experimental challenges, this dissertation tackles estimation prob-

lems arising from modeling biological phenomena in which discrete measurements such

as “spikes” or “tumbles” are measured from free swimming bacteria, with the objective

to estimate the underlying rate of a nonhomogeneous Poisson process (NHPP) that

describes these events, which can then be used to analyze input- output relationship

and postulate a plausible biological model. We here propose an approach based on

observers and Kalman filters.

1.1 Adaptation and scale invariance

Adaptation is an essential property of many cellular systems and it means that the

measured variables return to their basal (steady-state) levels after a transient response

to a step increase in stimulus [4]. This stimulus might be physical or biochemical, such as

a light input to a photoreceptor, or a ligand to an olfactory receptor. Often, a return to

such steady-state values of outputs occurs even in the face of a sustained step or periodic

excitation: the study of such exact (or at least approximate) adaptation to a persistent

input has been the subject of extensive investigations in both the experimental and the
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modeling literature [9, 117, 4].

Physiological adaptation is a trait of many sensory systems, allowing them to accu-

rately detect changes in input signals, and maintain essential variables within accept-

able bounds, distinguish meaningful information from background through a shifting of

dynamic range. Thus, the human eye distinguishes features across nine orders of mag-

nitude, even though its sensors can only detect a three order of magnitude contrast; this

is achieved through both the pupillary light reflex and the adjustment of sensitivity of

rods and cones [23]. Similarly, humans adapt to constant touches, smells, or background

noises, detecting new information only when a substantial change occurs. Physiological

examples of adaptation include also the regulation of key metabolites in the presence

of environmental variations [43]. At the single-cell level, one of the best understood

examples of adaptation is exhibited by the E. coli chemotaxis sensory system, which

responds to gradients of nutrient and ignores constant concentration [12, 86].

By definition, neither the concept of perfect nor the concept of approximate adaptation

address the characteristics of the transient signaling which occurs prior to a return to

steady-state. The amplitude and other characteristics of transient behaviors, however,

are physiologically relevant. In this more general context, we are interested here in

a finer property than mere adaptation, namely logarithmic sensing or scale-invariance

of responses, a phenomenon exhibited by several human and animal sensory systems

[43, 51, 104]. This means that responses are functions of ratios (in contrast to actual

magnitudes), of a stimulus relative to the background. This phenomenon appears in

bacterial chemotaxis [41, 68], in the sensitivity of S. cerevisiae to fractional rather

than absolute pheromone gradients [73], and in two mammalian signaling systems:

transcriptional as well as embryonic phenotype responses to β-catenin levels in Wnt

signaling pathways [29], and nuclear ERK localization in response to EGF signaling

[22]. Scale invariance allows systems to react to inputs ranging over several orders of

magnitude, and is speculated to help make behaviors robust to external noise as well

as to stochastic variations in total expressed concentrations of signaling proteins [88].

Scale invariance implies adaptation, but not every adaptive system is scale invariant
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[88]. To explain this property intuitively, consider two step inputs u1 and u2 which

are scaled versions of each other: u2(t) = pu1(t), for some positive number or “scale

factor” p, see Fig. 1.1(a). Adaptation means that, whether excited by u1 or u2,

the output signal will return to the same value, as shown in Fig. 1.1(b). On the

other hand, scale-invariance means that the entire actual transient response will be

the same under either excitation, as shown in Fig. 1.1(d). An intermediate property

between mere adaptation and scale-invariance is the “Weber-like” property in which the

temporal, transient response may be different, but the peak intensities are the same,

as shown in Figure 1.1(c). The term “Weber-like” is used to draw a connection to the

(a) (b) (c) (d)

Figure 1.1: (a) Scaled step inputs and corresponding responses: (b) perfect adaptation;
(c) Weber-like (same peak amplitude responses); (d) scale-invariance (same transient
responses)

Weber-Fechner law in psychophysics, which relates physical magnitudes of stimuli and

perceived intensities in human sensing. Ernst Weber in the 1840s founded the field

of experimental psychology, performing experiments in which a subject was asked to

hold a weight, and then the weight was gradually increased until a change was first

noticed. It was discovered that the smallest noticeable difference was proportional to

the starting value and not to the absolute weight; in other words, two scaled versions

of the input result in the same reaction. A similar phenomenon has been observed in

other sensory systems, including perception of pitch in sound, light intensity, smell,

pain, and taste. Gustav Fechner went on to establish a logarithmic relation between

physical and perceived quantities [113, 44, 51, 80].

Recent interest in scale-invariance was triggered by a pair of papers [29] and [22] pub-

lished in late 2009, in which scale-invariant behavior was experimentally observed in

a Wnt signaling pathway and an EGF pathway, respectively. These are highly con-

served eukaryotic signaling pathways that play roles in embryonic patterning, stem cell
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homeostasis, cell division, and other central processes, and their misregulation results

in diseases including several types of cancer, see Figure 1.2. The paper [29] focused

Figure 1.2: Various eukaryotic signaling pathways. Open-sourced figure reproduced
from Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc.

on the effect of binding of Wnt ligand on the levels of a key protein in the Wnt signal

transduction pathway, β-catenin, which in turn activates transcription of specific target

genes. It was observed that, in a given population, cells might differ substantially in

the β-catenin level after stimulation by Wnt, but that the effects downstream, mea-

sured either through gene expression or phenotype (in Xenopus embryos), appear to

be a function only of the relative changes in Wnt, and not its absolute amount, Fig.

1.3. Analogous results, for an EGFR pathway, were reported in the paper [22]. Scale-

invariance is also found in certain bacterial signaling systems. A prediction, for the E.

coli chemotaxis sensory circuit in response to the ligand α-methylaspartate, was made

in [87], based on a model proposed by Tu, Shimizu and Berg [86]. This predicition

was later verified in a microfluics population experiment carried out in Stocker’s lab as
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Figure 1.3: Diagram explaining some of the conclusions from [29].

well as an in FRET measurements on genetically altered bacteria in Shimizu’s lab [52].

A mathematical analysis of scale-invariance was initiated in [88], [87]. For consistency

we restate here the main result from [88]. To check for scale invariance we consider a

system with:

ẋ = f(x, y, u)

ẏ = g(x, y, u)

(1.1)

where x represents internal variables, u input signal and y output signal. Scale invari-

ance holds if system (1.1) is stable, shows exact adaptation to a steady state output

y = y0, and if g and f satisfy the following homogeneity conditions for any p > 0:

f(px, y, pu) = pf(x, u, y)

g(px, y, pu) = g(x, u, y)

(1.2)

If f is linear then this condition is also necessary for FCD [88]. More generally, the

mathematical definition of perfect scale invariance [87] imposes the ideal requirement

that the same response invariance property is exhibited if u = u(t), t ≥ 0 is any time-

varying input. While adaptation can be often understood in terms of control-theoretic

tools based on linearizations [95, 117, 96, 37, 57], scale invariance is a genuinely nonlinear

property; as a matter of fact, a linear system can never display scale-invariance, which

will be described in detail the next chapter.
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1.1.1 Robustness to total protein levels is guaranteed by scale invari-

ance of downstream components

Scaled inputs in molecular sensing may arise as follows. Suppose P is a signaling protein,

whose total concentration PT is assumed to be constant at the signaling timescale. This

protein can be found in inactive or active forms Pi and Pa, respectively. The active

form Pa is a transcription factor that controls the level of expression of a target gene

and can be thus viewed as an input to a downstream system. The rates of transition

between these two forms depend, in turn, on a signal w(t) (for example, an extracellular

ligand concentration) through functions kon(w(t)) and koff(w(t)):

Pi
kon(w(t))−−−−−−⇀↽−−−−−−
koff(w(t))

Pa , (1.3)

as shown in Fig. 1.4.

Figure 1.4: Activation and inactivation of a protein by an external signal. Active form
is input to downstream gene expression.

The simplest differential equation model describing the temporal dynamics of this pro-

cess would be given by:

u̇(t) = kon(w(t))(PT − u(t))− koff(w(t))u(t)

(dot indicates time derivative), where we denote by u(t) the amount of active protein

Pa at time t; we use this notation to emphasize that this function u(t) is what will be

sensed by the downstream system as an input. The key observation is that, for any
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number p > 0, the function v(t) := pu(t) satisfies

v̇(t) = kon(w(t))(pPT − v(t))− koff(w(t))v(t) ,

which means that v(t) solves the new differential equation in which the total protein

level PT has been scaled by p. Another way to say this is that if PT changes to some

other value P ′T , then the temporal signal u(t), the input to a downstream system, will

be scaled by the constant factor p = P ′T /PT . This implies that the cell’s response to w(t)

will be robust to uncertainty in PT provided that the response to u be scale-invariant.

(A similar discussion, but based on a much more restrictive Michaelis-Menten quasi-

steady state approximation, can be found in [88].) As total protein concentrations are

highly variable from cell to cell, and even in the same cell over time [77, 89, 25, 40, 103],

this robustness might explain the experimental results in [29, 22].

Scale-invariance means that the downstream system cannot distinguish between an

input u(t) and a scaled version pu(t). For step inputs that jump at t = 0, we can

reformulate this property by saying that the response can only depend on the “fold

change” of the input at time 0:

v(t)

v(0)
=
pu(t)

pu(0)
=
u(t)

u(0)
,

hence motivating the terminology “fold change detection” (FCD), which we will use

interchangeably from now on.

1.1.2 Bacterial chemotaxis as a motivating example of a scale-invariant

system

Chemotaxis is the ability of organisms to sense gradients in their chemical environment

and adjust their motile behavior accordingly [2]. Bacteria are often able to measure

chemical gradients and move towards higher concentrations of a favorable chemical

(“attractants”) or lower concentrations of an unfavorable chemical (“repellents”). E.

coli bacteria possess up to six flagella for movement, propelling themselves using one or
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more of them, in a direction that is determined by chance. Flagella are rotary motors

powered by ion gradients across the plasma membrane. This motor drives a helical

propeller. In the presence of a spatial gradient of chemoeffectors (attractor or repel-

lent inputs), a movement in a favorable direction happens, i.e. either towards higher

concentrations of attractants, or lower concentrations of repellents. E. coli swimming

consists of periods of smooth translation, or “runs” (corresponding to counterclockwise

(CCW) direction of flagellar motor rotation), interrupted by periods of reorientation,

or “tumbles” (corresponding to clockwise (CW) direction) [39, 86]. Swimming direction

is chosen randomly, but swimming in a favorable direction results in longer runs, while

swimming in an unfavorable direction causes a cell to revert to its baseline behavior.

The sensory system responds to chemical cues (inputs) by modulating the fraction of

time spent in each of these two states. E. coli represents the best-studied system of

bacterial chemotaxis, but a wide range of other chemotactic strategies exists among

bacteria. Bacillus subtilis and Salmonella typhimurium swim in a run and tumble

manner, similar to E. coli [2]. On the other hand, some marine bacteria, i.e. Vibrio

alginolyticus swim using a run and reverse strategy. It is of great interest to develop

models of transient behavior for these systems.

1.1.3 E. coli model

On the molecular level, E. coli chemotactic description is very well characterized [39].

In the E. coli system, external stimuli are sensed by membrane-bound chemoreceptors

called methyl-accepting chemotaxis proteins (MCP), which form a functional complex

with two types of cytoplasmic proteins: the adaptor protein CheW and the histidine

kinase CheA. Upon binding to an attractant (repellent) ligand molecule, the recep-

tor suppresses (enhances) the autophosphorylation activity of the attached CheA, and

transduces the external chemical signal to inside the cell. CheA phosphorylates itself

and then transfers phosphoryl group to the two regulator proteins CheY and CheB.

The small protein CheY−phosphate (CheY − P ), before it gets dephosphorylated by

the phosphatase enzyme CheZ, can diffuse from the receptor complex to the flagellar
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motor. CheY −P can bind to the proteins of the flagellar motor, increasing the proba-

bility of changing its rotation from counterclockwise (CCW) to clockwise (CW), which

in turn causes the motion of the E. coli cell to change from run to tumble. After a

brief tumble, the cell runs again in a new random direction. E. coli chemotaxis signal-

ing pathway has the ability to adapt to a wide range of environments. The response

of the E. coli flagellar motor to CheY − P level was measured quantitatively at the

single cell level [21]. Knowledge of the key pathway components can be integrated in

a model of the signaling network to quantitatively study various chemotaxis behaviors

in spatiotemporally varying environments. One such model is Signaling Pathway-based

E. coli Chemotaxis Simulator (SPECS) model developed in [39]. The aim of this model

is to help understand how the chemotaxis motion is controlled by the cell’s internal

molecular signaling processes, in particular to further to explore adaptation and scale

invariance.

The input for the signaling pathway is the instantaneous ligand concentration [L](x(t), t),

at the physical location x(t) of the cell. The internal dynamics is described by the in-

teractions between the average receptor methylation level m(t) and the kinase activity,

a(t) which determines the switching probability p(t) of the flagellar motor. The switch-

ing probability is then used to determine the cell motion (run or tumble), see Fig. 1.5.

Figure 1.5: The schematic representation of the SPECS model

The general SPECS model can be written as:

dm(t)

dt
= F (a,m, [L]),

a = G(m, [L]).

(1.4)
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The kinase activity can be determined by the quasi-equilibrium approximation:

a =
1

1 + exp(Nε(m, [L]))
, (1.5)

ε(m, [L]) = fm(m)− ln

(
1 + [L]/KA

1 + [L]/KI

)
,

fm(m) = α(m0 −m).

(1.6)

The usual ligand input (chemo-attractant) in an experimental setup, MeAsp, yields

typical values KI = 18.2µM , KA = 3mM , N = 6 determined by fitting the pathway

model to the data. The parameters α and m0 for MeAsp are roughly α ≈ 1.7, m0 ≈ 1.

The kinetics of the methylation level can be described by

dm

dt
= F (a) = kR(1− a)− kBa (1.7)

where, kR and kB are linear rates for methylation and demethylation processes. For

simplicity, kR ≈ kB, to fix the steady-state activity a0 = 0.5. The methylation rates

can be estimated by the adaptation time from experiments with step inputs, for MeAsp

kR ≈ 0.0051/sec.

In order to model the E. coli cell motion, let s = 0, 1, represent the tumble and run

states of the cell. For the time period t→ t+ ∆t, a cell switches from state s to state

(1− s) with probability ps([Y ])∆t. From experiments in [21] the ratio between the two

probability rates for one flagellar motor can be found, and tumble time is estimated

to be roughly constant (independent of [Y ]) τ0 ≈ 0.2 sec. It is assumed that [Y ] is

proportional to the kinease activity: [Y ] = Yaa(t) without considering the nonlinear

dependence. In steady-state, a ≈ a0 = kR/(kR + kB) and the average run time is

τ1 ≈ 0.8sec.
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1.2 Assays used for measuring the chemotaxis properties

The classical experimental method to assay the effect of controlled stimuli in controlled

microenvironments on the bacterial behavior is tethering: E. coli is pre-treated chem-

ically, genetically or mechanically to be attached by a single flagellum to a glass slide

and the counterrotation of the bacterial body is visualized at the microscope [12]. The

experimentally measured quantity is the fraction of time spent by the flagellum rotating

CCW or CW (averaged over the population). Limitations of this method are long and

stressful procedure of preparing the bacteria, the fact that dynamics of the flagellar

bundle does not simply reflect the behavior of individual flagella, and the strong noise

which requires averages over tens of bacteria for a good-quality estimate.

Another method used to measure bacterial chemotaxis in immobilized populations is

to measure the activity of CheY − P by using FRET microscopy [99]. FRET assays

rely on nonradiative distance-dependent energy transfer from one fluorescent molecule

(donor) to another (acceptor) and permit study of interactions of fluorescently labeled

proteins in living cells. The major advantages of FRET are that the measurements are

noninvasive, and performed in real time. FRET measurement determines stimulation-

dependent interactions between the response regulator CheY and its phosphatase CheZ

in a population bacteria and can be used to measure intracellular kinase activity or

response times.

1.2.1 Methods for free swimming bacteria

Microfluidics is a method for studying the motile behavior of single cells or the pop-

ulation, by enabling observations at high spatial and temporal resolution in carefully

controlled microenvironments [2]. Spatial coordinates of individual bacteria can be

extracted from acquired images by automated image analysis. These coordinates are

used to construct spatial distribution profiles of bacteria, which can be used to compute

various chemotactic response properties, and hence, chemotaxis can be assessed at the

population level. Additionally, cells can be tracked through a sequence of frames using
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particle-tracking software, and the trajectories thus obtained yield information on swim-

ming speeds, turning angles/frequencies, run lengths, adaptation responses allowing a

quantification of chemotaxis at the single-cell level and help in formulating theoretical

models of bacterial chemotaxis. The main limitation of cell tracking is imposed by the

finite depth of field of the microscope, which only permits acquisition of relatively short

segments of a bacterial trajectory before the cell swims out of focus. The advanced

microdevices are able to generate flow-free, steady gradients of arbitrary shape. Under

steady flow rates, the gradient is steady at each location along the channel.

1.2.2 Generation of high-fidelity temporal signals for free-swimming

bacteria

In order to study the behavior of an unknown system, having full control of the input

allows one to craft stimuli that are maximally informative for distinguishing between

several proposed models of an unknown species. Ultimately, this methodology can be

used for detailed comparisons between experimental data and mathematical models of

transient behaviors. To achieve that goal, our collaborators designed the microfluidic

signal generator (MSG), a microfluidic device, to enable these type of experiments for

freely swimming microorganisms, by generating signals of nutrients that vary quickly

in time, with minimal spatial and flow perturbations.

The goals established by the collaborators in Professor Stocker’s lab located at MIT,

were to achieve reliable, high frequency signal generation and then to proceed to the

measurement portion of the experiment, where the goal is to develop procedures for

reliable tracking of bacteria as they respond to the temporally varying stimuli. In par-

ticular, the focus is on reliable identification of tumble events in chemotactic bacteria.

In turn, from the tumbles we can retrieve the underlying activity, a(t), which is the

ultimate goal, as shown on Fig. 1.5.

With the successful completion of the MSG, the focus has now shifted towards the

measurement of the behavior characteristics of the bacteria in the test chamber. Two

primary behavioral characteristics are the speed and tumbling rate. The collaborators
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have also developed protocols to make decisions on the state of individual bacteria

based on their tracked motion, and are in the last phase of the process, where the

experimental data are collected, and which will allow us to probe the chemotactic

response of a population of bacteria with unprecedented temporal control, and acquiring

unprecedented data for comparison with mathematical models of transient behaviors.

Therefore, there is a need for a good estimation algorithm, which will reconstruct the

underlying activity function, based on the discrete data. The proposed method will be

explained in Chapter 4.

1.3 Thesis Overview

In this dissertation, we analyze and mathematically describe a robust property, termed

the scale invariance property, for several classes of systems found in biology, and demon-

strate how this property can help in model discrimination. Motivated by the experi-

mental limitations and challenges in modeling of bacterial chemotaxis, the contribution

of this thesis also lies in developing an observer-based approach to the problem of

estimation of an unknown rate function of a nonhomogeneous Poisson process.

The thesis is organized in six chapters, as follows.

In Chapter 2, we study the scale invariance property for a class of three-dimensional

nonlinear systems which have been widely studied as a generic model of enzymatic

networks [57], common in eukaryotic as well as prokaryotic systems, and are found in

intracellular signal processing. We start by proving the impossibility of perfect scale in-

variance for these enzymatic networks, so that a purely numerical study of approximate

scale invariance is called for. Computational results are then outlined, and they lead

us to postulate a novel property, “uniform linearizations with fast output” (ULFO):

after a singular perturbation reduction on the output variable, the linearizations of

the obtained two-dimensional system at all steady-states (corresponding to constant

inputs) must all be identical. Numerically, we find that all networks in our study which

are (approximately) scale invariant must necessarily (approximately) satisfy ULFO. In
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converse direction, we prove that the ULFO property implies approximate scale invari-

ance. Additionally, for approximately scale invariant systems, the two states in the

reduced system are computationally found to satisfy an homogeneity property with re-

spect to the input scalings. Conversely, we present a proof that equal linearizations are

necessary for reduced systems to satisfy the homogeneity property. Results are then

demonstrated on a biological example of soil-living amoeba Dictyostelium discoideum.

This example contains an incoherent feedforward (IFFL) motif, in which an external

stimulus u activates a molecular species x, which in turn, activates or represses a

downstream species y (our output of interest). This effect entailed in the IFFL possesses

powerful signal processing properties [4], and has been proposed as one of the two

biomolecular mechanisms that can help produce approximate scale invariance, [30, 88,

87]. Additionally, it was observed that multiple time scales, corresponding to slow

and fast subsystems, are typically inherent in such motifs. The property of time scale

separation for the IFFL’s was in particular analyzed in the generic example of three-

node enzymatic networks in Section 1.4.1, where we concluded through numerical and

theoretical analysis, that every three node enzyme network which has an approximate

scale invariance property must rely on this mechanism of time scale separation.

In Chapter 3, we analyze incoherent feedforward circuits in detail, and show that no

matter how small the time separation parameter ε is, there is always an irreducible

minimal possible difference in the instantaneous values of the outputs when comparing

the response to an input u(t), and to a scaled version of this input pu(t).

In Chapter 4 we discuss challenges in experimental verification and modeling of scale

invariant behaviors and other relevant physiological responses for arbitrary inputs and

classes of systems. Novel experimental techniques based on microfluidics devices provide

powerful tools to design a controlled experiment where a behavior of individual cells

and a population of cells can be assayed, and they require new estimation methods.

Bacterial chemotaxis plays a fundamental role in a broad range of processes, including

disease pathogenesis, biofilm formation, bioremediation, etc [2]. Because of its simplic-

ity, bacterial chemotaxis of E. coli is among the best characterized signaling systems in
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biology, and its molecular level description of how the signal is received, transduced, and

regulated has been well studied [66]. Not much is known nor modelled for chemotaxis

process of other bacterial species such as Bacillus subtilis, Salmonella typhimurium,

Vibrio alginolyticus, etc. It is of great interest to develop models of transient behavior

for these species, as well.

Using the data from the experiments, multiple models can be created, each representing

one of the possible interconnections between the key players in the system. Engineering

tools can then be applied to determine whether there is an optimal input to the system

that can differentiate between the behaviors of the different models, so that if this input

was applied in the laboratory it would result in discrimination [112, 79]. Motivated by

experimental challenges arising from modeling biological phenomena, and novel assays

using microfluidics devices, in Chapter 4 we develop an estimation method for the rate of

a nonhomogeneous Poisson process. Experimentally, discrete events such as “spikes” or

“tumbles” are observed and expracted from the images of free swimming bacteria, and

the objective is to estimate the underlying rate of a nonhomogeneous Poisson process

(NHPP) that describes these events, which can then be used to analyze input-output

relationships and postulate a plausible biological model. The schematic shown in Fig.

1.5 depicts the basic idea behind the estimation problem: the same inputs are fed to

a population of chemotactic bacteria, and microscope based observations of tumbling

events will be used for the estimation of the tumbling rate (a function of chemotactic

protein concentrations). We propose an approach based on observers and Kalman filters

and compare these to other methods (not model-based) in the literature.

This alternate method of collecting measurements allows to collect the measurements

for a large class of inputs, where both single cells and populations of bacteria can be

assayed under the same conditions, the experiments can be repeated and applied to

different classes of bacteria. Additionally with the advancement in the experimental

setup various types of environments where bacteria live could be mimicked and the

effect on the dynamics modeled appropriately.

In Chapter 5 we provide some remarks regarding the adaptation and scale invariance
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properties in stochastic setting.

The final conclusions are drawn in Chapter 6, which also contains a brief section on

passible avenues for the extension of the presented work.

1.4 Thesis Contribution

The major contributions of this thesis are summarized as follows.

1.4.1 Scale invariance in enzymatic networks

We developed a novel mathematical property termed “uniform linearization with fast

output” (ULFO) on a study of three-node enzyme networks, that explains approximate

scale invariance for the class of enzyme networks. Then we mathematically prove that

ULFO yields approximate scale invariance, and extend the results of this study to

examples relevant in systems biology. Finally, we show how we can use scale invariance

and our developed mechanism for model invalidation, on an example of a published

model of soil-living amoeba Dictyostelium discoideum. This work was published in a

journal and a conference paper, [93, 94].

1.4.2 Feedforward circuits and a fundamental limitation of time-scale

based scale-invariance

Another key contribution to this topic of scale invariance is in the analysis of feedforward

circuits, a motif commonly used in the biological research community as a “signal

processing” mechanism that gives rise to an approximate scale invariance, due to the

presence of different time scales in its dynamics. We provide a fundamental limitation

to this mechanism, and give a lower bound result for the scale invariance error. This

work was published in a journal article [90].
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1.4.3 Estimation of a rate function of a nonhomogeneous Poisson pro-

cess (NHPP)

Motivated by the work with our experimental collaborators who are designing novel ex-

perimental methods, our contribution lies also in developing tools for the identification

of time-varying parameters in nonhomogeneous Poisson processes based on observers

and Kalman filters. Experimentally, discrete events such as “tumbles” or “spikes” are

observed, based on images of swimming bacteria in response to the nutrient signal,

and the goal is to identify a hidden continuous time variable that drives the tumbling

behavior. The method we developed is novel in its application to biology, but it is also

superior to other methods commonly used in the literature, for instance in communi-

cation networks, or neural science, where estimation of a NHPP arises as well, in the

sense that our method takes into account the fact that we are using information about

the inputs to our estimator. We support this claim on several examples. The results

are published in a conference article [92].

1.4.4 Adaptation property in stochastic setting

We remark that commonly used structures in deterministic setting, such as incoherent

feedforward loop, and a feedback loop fail to exhibit adaptation (and hence, the scale

invariance property) assuming that “copy numbers” of species (ions, atoms, molecules,

individuals) are very small, which is a realistic assumption in molecular biology at the

single-cell level. In such cases the occurrence of chemical reactions in this setting, in-

volves discrete and random events, and in order to predict the progress of chemical

reactions in terms of observables such as copy number, we generate sample paths of

the stochastic process for the copy number, which is referred to as a stochastic simula-

tion. For our two typical motifs, we analytically and numerically demonstrate that the

adaptation of the moments in the stochastic setting is lost. This work is accepted for

publication, see [91].
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Chapter 2

Approximate scale invariance for a class of enzymatic

networks

In this chapter, we focus on enzymatic signal transduction systems, which involve the

activation/deactivation cycles that typically mediate transmission of external signals

(inputs) to transcription factors and other effectors. Networks involving such enzy-

matic cycles are involved in signal transduction networks from bacterial two-component

systems and phosphorelays [10, 31] to actin treadmilling [19], guanosine triphosphatase

cycles [24], glucose mobilization [42], metabolic control [100], cell division and apoptosis

[101], cell-cycle checkpoint control [56], and the eukaryotic Mitogen-Activated Protein

Kinase (MAPK) cascades which mediate growth factor inputs and determine prolifer-

ation, differentiation, and apoptosis [8, 18, 36, 114, 6].

2.1 Dynamic model for three-node enzymatic networks

We are interested in exploring which enzymatic networks do not merely adapt, but also

display scale invariance. To analyze this problem we first consider networks consisting

of three types of enzymes, denoted respectively as A, B, and C. Each of these enzymes

can be in one of two states, active or inactive. The fractional concentration of active

enzyme A is represented by a variable xA = xA(t), so x̃A = 1 − xA is the fraction of

inactive enzyme A. Similar notations are used for B and C. Only enzyme A is directly

activated by an external input signal, and the response of the network is reported by

the fraction of active C. Enzyme B acts as an auxiliary element.

Each enzyme may potentially act upon each other through activation (positive reg-

ulation), deactivation (negative regulation), or not at all. If a given enzyme is not
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deactivated by any of the remaining two, we assume that it is constitutively deacti-

vated by a specific enzyme; similarly, if a given enzyme is not activated by any other,

there is a constitutively activating enzyme for it.

One represents networks by 3-node directed graphs, with nodes labeled A, B, C, and

with edges between two nodes labeled + and − (or “→” and “a”) to denote positive or

negative regulation respectively; no edge is drawn if there is no action. There are 32 = 9

potential directed edges among the three nodes (A to A, A to B, etc.), each of whose

labels may be +, −, or “none” if there is no edge. This gives a total of 39 = 19, 683

possible graphs. One calls each of these possible graphs a topology. Discarding the

3,645 topologies that have no direct or indirect links from the input to the output,

there remain 16,038 topologies.

We quantify the effects of each existing regulatory interaction by a Michaelis-Menten

term and write a three-variable ordinary differential equation (ODE) that describes the

time evolution of xA(t), xB(t), and xC(t):

ẋA =
∑
i

kViAvi · x̃A
x̃A +KViA

−
∑
i

kWiAwi · xA
xA +KWiA

(2.1a)

ẋB =
∑
i

kViBvi · x̃B
x̃B +KViB

−
∑
i

kWiBwi · xB
xB +KWiB

(2.1b)

ẋC =
∑
i

kViCvi · x̃C
x̃C +KViC

−
∑
i

kWiCwi · xC
xC +KWiC

(2.1c)

The K’s denote Michaelis-Menten, and the k’s catalytic rate constants associated to

each regulatory interaction. All the summations range over i = 1, . . . , 6. Each “Vi”

represents one of A, B, C, EA, EB, EC , the activating enzymes in the respective

equations, and each “Wi” one of A, B, C, FA, FB, FC , the deactivating enzymes; E

and F are the constitutively activating and deactivation enzymes, buffered at constant

concentrations. (Lower-case variables vi, wi = xA, . . . , xFC
denote active fractions) As

an exception, the equation for node A does not include an EA term, but instead includes

a term kUAu
x̃A

x̃A+KUA
that models activation of A by an external input whose strength

at time t is given by u = u(t) and whose values u(t) stay within a range [u, u]. No

enzyme appears both an activator and as a deactivator of any given component, that
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is, kXiAkYiA = 0, kXiBkYiB = 0, and kXiCkYiC = 0, and constitutive enzymes are

included only if the reaction would be otherwise irreversible.

For example, the topology shown in Figure 2.1 is described by the following set of

ODE’s:

ẋA =
kUAu · x̃A
x̃A +KUA

− kBAxB · xA
xA +KBA

− kCAxC · xA
xA +KCA

(2.2a)

ẋB =
kABxA · x̃B
x̃B +KAB

− kFBBxFB
· xB

xB +KFBB
(2.2b)

ẋC =
kACxA · x̃C
x̃C +KAC

− kBC · xBxC
xC +KBC

− kCCxC · xC
xC +KCC

(2.2c)

Figure 2.1: An example of a topology

The term circuit is used to refer to a given topology together with a particular choice

of the K and k parameters. The three-node model in (2.1) was employed by Ma

et al. [57], in order to classify the minimal enzymatic circuits that (approximately)

adapt. (With the model in [57] that we adopted, there is no direct connection from

the input to the output node, and two-node networks are not sufficient for adaptation,

while larger adapting networks contain these three-node networks [57]. If one allows

direct connections from input to outputs, then two-node networks are able to display

adaptation.)

The same paradigm has since been used to investigate other network characteristics as

well [84], [116].

The restriction to three-node networks is made for both practical and biological reasons.

As argued in several papers that use a similar approach [57, 84, 116], even though

adaptation (as well as scale invariant) behaviors can, and do, arise in larger networks,

the coarse-graining involved in restricting the computational search to minimal networks
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leads to a tractable search problem, and allows also one to intuitively understand the

basic principles. The same motifs are observed in larger networks, in which several

nodes may represent a single node in the three-node networks that we study.

Before we proceed to the description and results of a numerical study we performed on

all three-node enzyme networks, in the next section, we will revisit and demonstrate the

concepts of (approximate) adaptation and (approximate) scale invariance, and motivate

our analysis using an example that demonstrates that adaptation is not sufficient for

scale invariance.

2.2 Adaptation and scale invariance metrics

We will see in the consequent sections that examples of three-node networks should be

analyzed only in terms of approximate adaptation and scale invariance metrics.

Following the methodology introduced in [28], we define approximate adaptation in

terms of two metrics: adaptation precision and signal detection or sensitivity.

The first metric quantifies the following effect: if we start at steady-state, and then step

the input at time t = 0 from a value u0 to a different constant value u1, then the system’s

output, as reported by a response variable y(t) (where y(t) = xC(t) in (2.1)), should

return asymptotically to a value that is close to the original value y(0). The relative

difference in initial and final response ∆∞y = |y(+∞)− y(0)| provides a measure of

adaptation precision. We say that a system is (approximately) adaptive provided that,

for all inputs in the valid range, ∆∞y /∆u < 0.1, where ∆u = |u1 − u0| / |u0| is the

relative change in input.

In particular, exact or perfect adaptation means that ∆∞y = 0. The 10% error

tolerance is natural in applications, and the qualitative conclusions are not changed by

choosing a smaller cutoff [57].

A second metric relies upon the maximal transient difference in output, normalized by

the steady-state output, ∆max
y = max |y(t)− y(0)| / |y(0)|. A signal-detection property

for adaptation [96], [5], should be imposed in order to rule out the trivial situation

∆max
y ≈ 0 in which a system’s output is independent of the input. To avoid having to
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pick an arbitrary threshold, in this study we follow the convention in [57] of requiring

the sensitivity ∆max
y /∆u to be greater than one.

Scale invariance is the property that if a system starts from a steady-state condition that

was pre-adapted (t < 0) to a certain background level u0, and the input is subsequently

set to a new level u at t = 0, then the entire time response of the system yu0,u(t) is the

same as the response ypu0,pu(t) that would result if the stimulus had changed, instead,

from pu0 to pu. This property should hold for scale changes p > 0 that respect the

bounds u ≤ u ≤ u on inputs. More generally, the mathematical definition of (perfect)

scale invariance [87], imposes the ideal requirement that the same response invariance

property is exhibited if u = u(t), t ≥ 0 is any time-varying input. The experiments in

[52] included excitation by certain oscillatory inputs, for example. In practice, however,

this property will always break down for high-frequency inputs, since there are limits

to the speed of response of biological systems. In this study, for an approximate scale

invariance, we will ask that the relative difference between the responses ypu0,pu(t), and

yu0,u(t) be at most 10%: maxt {|ypu0,pu(t)− yu0,u(t)| /max(ypu0,pu(t)− yu0,u(t))} < 0.1,

with bounds u ≤ u ≤ u on the input, and for p > 0.

Adaptive systems need not be scale invariant

As an illustration of a (perfectly) adaptive yet not scale invariant system, consider the

following equations:

ẋA = k1u− k2xB (2.3a)

ẋB = k3xA − k4xB (2.3b)

ẋC = k5xA − k6xBxC (2.3c)

which is a limiting case of the system described by (2.2) when kCA, kCC ,KUA,KBA,KAB,

KAC ≈ 0, kBC = k6KBC , KBC � 1 (so −kBCxBxC/(xC + KBC) ≈ −k6xBxC), and

kFBBxFB
= k2KFBB and KFBB � 1.

This network perfectly adapts, since at steady state the output is xC = xC = k4k5/(k3k6),
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no matter what is the magnitude of the constant input u, and in fact the system returns

to steady state after a step change in input u, with xC(t) → xC as t → ∞ (general

stability properties of feedforward circuits shown in [98]).

On the other hand, the example in Eq.2.3 does not display scale invariance. Indeed,

consider the solution from an initial state pre-adapted to an input level u0, that is

xA(0) = k1k4u0/(k2k3), xB(0) = k1u0/k2, and xC(0) = k4k5/(k3k6), and the input

u(t) ≡ u1 for t ≥ 0. Then, xC(t) = k4k5/(k3k6) + k1k5(u1 − u0)t2/2 + O(t3) for small

t ≥ 0. Since the t2 coefficient in this Taylor expansion gets multiplied by p when u0 is

replaced by pu0 and u1 is replaced by pu1, it follows that the transient behavior of the

output xC(t) depends on p.

Interestingly, if the equation for the third node is replaced by ẋC = k5xA/xB − k6xC ,

that is to say the activation of C is repressed by B, instead of its de-activation being

enhanced by A, then scale invariance does hold true, because xA(t) and xB(t) both

scale by p when u0 7→ pu0, u1 7→ u0, and xC(t) depends on the ratio of these two

functions (in particular, the t2/2 term is k2k5(u1−u0)/u0). Such a repression is typical

of genetic interaction networks, but is not natural in enzymatic reactions.

It fact, the example described by Eq.2.3 is typical: no enzymatic network described by

Eq.2.1 can display perfect scale invariant behavior, and this fact is a consequence of

the equivariance theorem proved in [87].

Thus, a meaningful study of enzymatic networks, even for perfectly adaptive ones, must

rely upon a test of approximate scale invariance, as explained in Section 2.2. Instead

of asking that yu0,u(t) = ypu0,pu(t), as was the case in the theory developed in [88, 87],

and given by (1.2), one should require only that the difference be small, as given in the

Section 2.2. We next prove the impossibility of a perfect scale invariance for this class

of systems.
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2.3 Impossibility of perfect scale invariance

Consider any system with state x = (xA, xB, xC), output xC , and equations of the

general form:

ẋA = f(x) +G(xA)u

ẋB = g(x)

ẋC = h(x) = xAa(xC) + xBb(xC) + c(xC) .

It is assumed that a(xC) 6= 0 for all xC , G(xA) 6= 0 for all xA, G := supxG(x) < ∞,

and the system is irreducible [87]. We now prove that such a system cannot be scale

invariant. Suppose by way of contradiction that it would be, and pick any fixed p 6= 1.

The main theorem in [87] insures that there are two differentiable functions α(x) and

β(x) such that the algebraic identities:

αx(x)[f(x) +G(xA)u] + αy(x)g(x) + αz(x)h(x) = f(α(x), β(x), xC) +G(α(x))pu,

βx(x)[f(x) + u] + βy(x)g(x) + βz(x)h(x) = g(α(x), β(x), xC)

α(x)a(xC) + β(x)b(xC) + c(xC) = xAa(xC) + xBb(xC) + c(xC)

hold for all constant x = (xA, xB, xC) and u, and the vector function x 7→ (α(x), β(x), z)

is one-to-one and onto, which implies in particular that

sup
x
G(α(x)) = G .

Dividing by u and taking the limit as u → ∞ in the first identity, we conclude that

αx(x)G(xA) ≡ pG(α(x)). Doing the same in the second identity, we conclude that

βx(x) ≡ 0. Finally, taking partial derivatives with respect to xA in the third identity:

a(xC)pG(α(x))/G(xA) = αx(x)a(xC) + βx(x)b(xC) = a(xC)
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is true for all x. Since a(xC) 6≡ 0, it follows that

pG(α(x)) = G(xA)

for all x. We consider two cases: (a) p < 1 and (b) p > 1. Suppose p < 1. Pick any

sequence of points x(i) with G(x(i)) → G as i → ∞. Then G(α(x(i))) → G/p > G,

contradicting G(x) ≤ G. If p > 1, picking a sequence such that G(α(x(i))) → G as

i→∞ gives the contradiction G(x(i))→ pG > G. This shows that the scale invariance

property cannot hold.

2.4 Numerical study

Given that we proved that no enzymatic network described by (2.1) can display perfect

scale invariant behavior, we perform an exhaustive computational study of all 3-node

networks, finely sampled in parameter space, to see if there are those that exhibit an

approximate scale invariance as we described in Section 2.2.

We generalized and extended the computational protocol developed for adaptation in

[57] to an investigation of approximate scale invariance. MATLAB® scripts were used,

in conjunction with the software developed in [57].

To investigate this issue, we computationally screened all 160,380,000 circuits, obtained

from the 16,038 nontrivial 3-node topologies, each one with 10,000 parameters sampled

in logarithmic scale using the Latin hypercube method [38], testing for small differences

in responses to scaled steps. (We picked the ranges kcat=0.1-10 and Km=0.001-100. A

finer sampling does not affect the conclusions in any significant way [57].) In order to

test inputs in ranges of the form a ≤ u(t) ≤ 2a, redefining the constant kUA if needed,

we take simply u = 0.3 and u = 0.6.
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We found that approximately 0.01% (16,304) of the circuits showed adaptation, mean-

ing that, as in [57], when making a 20% step from u0 = 0.5 to u1 = 0.6 the pre-

cision is 10% or better, and the sensitivity is at least unity. Of the adapting cir-

cuits, about 0.15% (25 circuits, classified into 21 different topologies) were deter-

mined to be approximately scale invariant. Approximate scale invariance (ASI) was

then tested by also performing a 20% step experiment from u0 = 0.3 to u1 = 0.36

and requiring that the relative difference between the responses be at most 10%:

maxt {|y0.6(t)− y3.6(t)| /max(y0.6(t)− y3.6(t))} < 0.1

We provide the graphs for 21 topologies, together with their parameter sets that cor-

respond to the identified 25 circuits. As an example of the behavior of one of these,

Fig. 2.2 shows a response resulting from a 20% step, from 3 to 3.6, compared to the

response obtained when stepping from 5 to 6; the graphs are almost indistinguishable.

In the following discussion, we will refer to these surviving circuits, an their topologies,

as being “approximately scale invariant”.

Figure 2.2: Scale invariance: plots overlap, for responses to steps 3→1.2∗3 and 5→1.2∗5.
Network is the one described by 2.2. Random parameter set: KUA=0.093918 kUA=11.447219,
KBA=0.001688 kBA=44.802268, KCA=90.209027 kCA=96.671843, KAB=0.001191 kAB=1.466561, KFB

=

9.424319 kFB
=22.745736, KAC=0.113697 kAC=1.211993, KBC=0.009891 kBC=7.239357, KCC=0.189125

kCC=17.910182

Once that this small subclass was identified, we turned to the problem of determining
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what network characteristics would explain the results of these numerical experiments.

2.5 Approximate scale invariance (ASI)

Continuing with the example in (2.3), let us suppose that k1, k2, k3, k4 � k5, k6, so

that the output variable y = xC reaches its steady-state much faster than xA and

xB do. Then, we may approximate the original system by the planar linear system

represented by the differential equations for xA and xB together with the new output

variable ỹ(t) = h(xA(t), xB(t)) = kxA(t)/xB(t), where k = k5/k6. This reduced planar

system, obtained by a quasi-steady state approximation (or time-scale separation, which

is the term we will be using in the next chapter), has a perfect scale invariance property:

replacing the input u by pu results in the solution (pxA(t), pxB(t)), and thus the output

is the same: h(xA(t), xB(t)) = h(pxA(t), pxB(t)). The exact invariance of the reduced

system translates into an approximate scale invariance property for the original three-

dimensional system because, except for a short boundary-layer behavior (the relatively

short time for xC to reach equilibrium), the outputs of both systems are essentially the

same, y(t) ≈ ỹ(t). The assumption k1, k2, k3, k4 � k5, k6 is often written symbolically

as ẋA = k1u− k2xB, ẋB = k3xA − k4xB, εẋC = k5xA − k6xBxC , where 0 < ε� 1 and

where k5, k6 are now the original k5, k6 multiplied by ε. The quality of approximate

scale invariance will depend on how small “ε” is. In the next chapter, we will look

at this example, which is entails a motif called an incoherent feedforward loop more

closely, and elaborate on the “smallness” of the parameter ε, as well as the error one

makes by assuming the quasi-steady state approximation for the output variable.

Generality of the planar reduction

We found that, just as in the example of (2.3) when k1, k2, k3, k4 � k5, k6, in every

ASI circuit the time scale of node C is much shorter than that of A and B. Therefore,

the same two-dimensional reduction is always valid. It follows that one can drop the

last equation, approximating these circuits by planar systems that are described by

only the two state variables xA and xB, where every occurrence of xC in the first two
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equations of the right-hand side of (2.1) is replaced by h(xA, xB), the function obtained

by setting the right-hand side of the third equation in (2.1) to zero and solving for

the unique root in the interval [0, 1] of the quadratic equation. This reduced system,

with ỹ(t) = h(xA(t), xB(t)) as an output, provides an excellent approximation of the

original dynamics. Fig. 2.3 compares the true response with the response obtained by

the quasi-steady state approximation, for one ASI circuit. The parameter sets for all

ASI circuits are given in 2.8 and their graphical representations are given on Fig. 2.7.

Figure 2.3: QSS quadratic approximation. Network is the one described by (2.2).
Random parameter set is as in Fig. 2.2

.

2.5.1 Generality of dependence on xA/xB

In the example given by (2.3), there were two additional key mathematical properties

that made the planar reduction scale invariant (and hence the original system approx-

imately so). The first property was that, at equilibrium, the variable xC must be a

function of the ratio xA/xB, and the second one was that each of xA and xB must

scale by the same factor when the input scales by p. Neither of these two proper-

ties need to hold, even approximately, for general networks. Surprisingly, however,

we discovered that both are valid with very high accuracy for every ASI circuit. The
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equilibrium value of xC is obtained from setting the last right-hand side of (2.1) to

zero and solving for xC . A solution xC = h(xA, xB) in the interval [0, 1] always exists,

because at xC = 0 one has x̃C = 1 and thus the term is positive, and at xC = 1 one

has x̃C = 0 and so the term is negative. This right-hand side has the general form

xAφ(xC) + xBγ(xC) + κ(xC , xEC
, xFC

), where φ and γ are increasing functions, each a

constant multiple of a function of the form x̃C/(x̃C+K) or −xC/(xC+K). If the term κ

is negligible, then xAφ(xC)+xBγ(xC) = 0 means that also (xA/xB)φ(xC)+γ(xC) = 0,

and therefore xC at equilibrium is a (generally nonlinear) function of the ratio xA/xB.

There is no a priori reason for the term κ to be negligible. However, we discovered that

in every ASI circuit, κ ≈ 0. More precisely, there is no dependence on the constitutive

enzymes, and this “self-loop” link, when it exists, contributes to the derivative ẋC much

less than the xA and xB terms, see Fig. 2.4.

Figure 2.4: Relative contribution of terms in the equation for node C. The first two
terms range in [−0.25, 0.25] but self-loop magnitude is always less than 10−3. i.e.
contribution or self-loop to ẋC is less than 1%. Similar results hold for all ASI circuits.
Network is the one described by (2.2). Random parameter set is as in Fig. 2.2.

2.5.2 Generality of homogeneity of xA, xB

The last conclusion from (2.3) that plays a role in approximate scale invariance is that

each of xA and xB must scale proportionately when the input is scaled. In that example,

the property holds simply because the equations for these two variables are linear. In

general, however, the dynamics of (xA, xB) are described by nonlinear equations. We

tested the property by plotting xA(t)/xB(t) in a set of experiments in which a system

was pre-adapted to an input value u0 and the input was subsequently set to a new level
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u at t = 0. When going from pu0 to pu, we found that the new value xA(t)/xB(t) was

almost the same, meaning that xA and xB scaled in the same fashion. A representative

plot is shown in Fig. 2.5.

Figure 2.5: Constant A/B ratio in responses to 3→1.2 ∗ 3 and 5→1.2 ∗ 5. Network is
the one described by (2.2). Random parameter set is as in Fig. 2.2. Similar results are
available for all ASI circuits.

2.5.3 Emerging motifs

We found that all ASI networks possess a feedforward motif, meaning that there are

connections (positively or negatively signed) A → B → C and as well as A → C.

Such feedforward motifs have been the subject of extensive analysis in the systems

biology literature [4] and are often involved in detecting changes in signals [60]. They

appear in pathways as varied as E. coli carbohydrate uptake via the carbohydrate

phosphotransferase system [47], control mechanisms in mammalian cells [58], nitric

oxide to NF-κB activation [59, 62], EGF to ERK activation [81, 70], glucose to insulin

release [67, 71], ATP to intracellular calcium release [78], and microRNA regulation

[107]. The feedforward motifs in all ASI networks are incoherent, meaning such that

the direct effect A → C has an opposite sign to the net indirect effect through B.

An example of an incoherent feedforward connection is provided by the simple system
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described by (2.3), where the direct effect of A on C is positive, but the indirect effect is

negative: A activates B which in turn deactivates C. Not every incoherent feedforward

network provides scale invariance; a classification of those that provide exact scale

invariance is known [87]. The study of a scale invariance property of an incoherent

feedforward motif, given by its various molecular representations will be done in detail

in the next chapter.

It is noteworthy that all ASI circuits have a positive regulation from A to B and a

negative regulation from B to A. Thus, they all include a negative feedback loop which

is nested inside the incoherent feedforward loop. In addition, as discussed below, all

ASI circuits have only a weak (or no) self-loop on the response node C.

2.6 A new property: uniform linearizations with fast output

The (approximate) independence of xA(t)/xB(t) on input scalings is not due to linearity

of the differential equations for xA and xB(t). Instead, the analysis of this question led

us to postulate a new property, which we call uniform linearizations with fast output

(ULFO). To define this property, we again drop the last equation, and approximate

circuits by the planar system that has only the state variables xA and xB, where

every occurrence of xC in their differential equations shown in (2.1) is replaced by

h(xA, xB). We denote by f(xA, xB, u) = (f1(xA, xB, u), f2(xA, xB, u)) the result of

these substitutions, so that the reduced system is described in vector form by ẋ =

f(x, u), x = (xA, xB). We denote by σ(u) the unique steady-state corresponding to a

constant input u, that is, the solution of the algebraic equation f(σ(u), u) = 0. We

denote by A(u) = (∂f/∂x)(σ(u), u) the Jacobian matrix of f with respect to x, and by

B(u) = (∂f/∂u)(σ(u), u) the Jacobian vector of f with respect to u.

The property ULFO is then defined by requiring the following properties:

1. time-scale separation for xC ;

2. h(xA, xB) depends only on the ratio xA/xB;
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3. for every u , v, and p such that u, v, and pu are in the range [u, u]:

σ(pu) = pσ(u), A(u) = A(v), B(u) = B(v) (2.4)

Notice that we are not imposing the far stronger property that the Jacobian matrices

should be constant. We are only requiring the same matrix at every steady state.

The first condition in (2.4) means that the vector σ(u)/u should be constant. We

verified that this requirement holds with very high accuracy in every one of the ASI

circuits. With u = 0.3 and u = 0.6, we have the following σ(u)/u values, rounded

to 3 decimal digits: (0.195, 0.239), (0.193, 0.237), (0.192, 0.236), (0.191, 0.235) when

u = 0.3, 0.4, 0.5, and 0.6 respectively, for the network described by (2.2) and the

random parameter set in Fig. 2.2. Similar results are realized for all ASI circuits.

The Jacobian requirements in (2.4) are also verified with high accuracy for all the

ASI circuits. We illustrate this with the same network and parameter set. Let us we

compute the linearizations A0.3 = A(0.3), A0.4 = A(0.4), . . . , B0.6 = B(0.6) and the

average relative differences

Aerr
ij =

∑
u=0.3,0.4,0.5,0.6

∣∣∣∣(Au)ij − (A0.45)ij
(A0.45)ij

∣∣∣∣
and we define similarly Berr. These relative differences are very small (shown to 3

decimal digits):

Aerr =

0.069 0.004

0 0.005

 , Berr =

0.002

0

 ,

thus justifying the claim that the Jacobians are practically constant. Similar results

are available for all ASI circuits.
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Tables

The following three tables for the 25 identified ASI circuits are shown:

• Table 1. Relative differences in linearization matrices corresponding to different

linearizations, A0.3 = A(0.3), A0.4 = A(0.4), . . . , B0.6 = B(0.6), rounded to 3

decimal places. The corresponding expressions are given by:

Aerr
ij =

∑
u=0.3,0.4,0.5,0.6

∣∣∣∣(Au)ij − (A0.45)ij
(A0.45)ij

∣∣∣∣
and similarly for Berr. These relative differences are very small. The entries in

the table are of the following form: Aerr displayed as [a11 a12; a21 a22] and Berr

displayed as [b1 b2]T .

• Table 2. Relative error between original (nonlinear) system with an initial state

ξ = (xA, xB) corresponding to u = 0.3, and applied input u = 0.36, and the

approximation is ξ+z(t), where z solves the linear system with an initial condition

of zero and a constant input of 0.06. Additionally, we provide relative errors

between the original (nonlinear) system with an initial state corresponding to

u = 0.5, and applied input of u = 0.6, and the approximation given by ξ + z(t),

where z solves the linear system with an initial condition of zero and a constant

input of 0.1. The corresponding expressions are given by:

xA
err
max,u=0.36 = maxt≥0

∣∣∣xAL
0.36(t)−xAN

0.36(t)

xA
N
0.36(t)

∣∣∣ ,
xA

err
max,u=0.6 = maxt≥0

∣∣∣xAL
0.6(t)−xAN

0.6(t)

xA
N
0.6(t)

∣∣∣ ,
where N denotes a nonlinear system, and L denotes a linear system.

We define similarly for xB
err
max,u=0.36 and xB

err
max,u=0.6.

• Table 3. Homogeneity property of the states xA and xB. For a constant input u,

it holds that σ(pu) ≈ pσ(u), where σ(u) is a unique steady state (xA, xB).
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Circuit Aerr Berr

1 [0.069 0.004; 0 0.005] [0.002 0]T

2 [0.084 0.006; 0.019 0.015] [0.004 0]T

3 [0.069 0.004; 0 0.005] [0.002 0]T

4 [0.114 0.007; 0.011 0.003] [0.002 0]T

5 [0.045 0.003; 0.01 0.033] [0 0]T

6 [0.075 0.012; 0.021 0.012] [0.015 0]T

7 [0.057 0.012; 0.021 0.012] [0.012 0]T

8 [0.055 0.012; 0.019 0.009] [0.016 0]T

9 [0.069 0.004; 0 0.005] [0.002 0]T

10 [0.037 0.022; 0.009 0.0707] [0.002 0]T

11 [0.037 0.022; 0.007 0.009] [0.002 0]T

12 [0.025 0.029; 0.007 0.006] [0.012 0]T

13 [0.037 0.022; 0.009 0.007] [0.002 0]T

14 [0.036 0.022; 0.007 0.009] [0.002 0]T

15 [0.07 0.004; 0 0.005] [0.002 0]T

16 [0.07 0.004; 0 0.005] [0.002 0]T

17 [0.073 0.012; 0.017 0.009] [0.015 0]T

18 [0.051 0.004; 0 0.005] [0.002 0]T

19 [0.066 0.013; 0.018 0.009] [0.015 0]T

20 [0.048 0.013; 0.018 0.009] [0.016 0]T

21 [0.051 0.004; 0 0.005] [0.002 0]T

22 [0.233 0; 0.011 0.003] [0.002 0]T

23 [0.069 0.004; 0 0.005] [0.002 0]T

24 [0.051 0.004; 0 0.005] [0.002 0]T

25 [0.233 0; 0.011 0.003] [0.002 0]T

Table 2.1: Relative error in linearization matrices
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Circuit xA
err
max,u=0.36 xB

err
max,u=0.36 xA

err
max,u=0.6 xB

err
max,u=0.6

1 0.055 0.011 0.028 0.005

2 0.008 0.007 0 0.002

3 0.055 0.010 0.028 0.005

4 0.03 0.007 0.012 0.004

5 0.031 0.006 0.003 0

6 0.015 0.016 0.011 0.005

7 0.023 0.021 0.005 0.004

8 0.023 0.021 0.004 0.004

9 0.055 0.01 0.028 0.005

10 0.097 0.020 0.081 0.016

11 0.010 0.020 0.084 0.016

12 0.033 0.021 0.024 0.010

13 0.097 0.020 0.081 0.016

14 0.010 0.02 0.084 0.016

15 0.056 0.010 0.028 0.005

16 0.056 0.010 0.028 0.005

17 0.027 0.022 0.004 0.004

18 0.047 0.010 0.028 0.006

19 0.027 0.023 0.005 0.004

20 0.023 0.021 0.005 0.004

21 0.04 0.009 0.034 0.004

22 0.116 0.027 0.05 0.013

23 0.055 0.010 0.028 0.005

24 0.045 0.01 0.027 0.005

25 0.117 0.03 0.05 0.013

Table 2.2: Relative error between nonlinear and linearized system
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Circuit σ(u0.3)/0.3 σ(u0.4)/0.4 σ(u0.5)/0.5 σ(u0.6)/0.6

1 (0.195, 0.239) (0.193, 0.237) (0.192, 0.236) (0.19, 0.234)

2 (0.199, 0.364) (0.197, 0.359) (0.194, 0.356) (0.192, 0.353)

3 (0.195, 0.239) (0.193, 0.237) (0.192, 0.236) (0.191, 0.234)

4 (0.132, 0.172) (0.131, 0.170) (0.131, 0.169) (0.13, 0.168)

5 (0.591, 0.11) (0.58, 0.109) (0.57, 0.109) (0.561, 0.108)

6 (0.206, 0.526) (0.198, 0.507) (0.192, 0.493) (0.188, 0.481)

7 (0.208, 0.529) (0.2, 0.512) (0.194, 0.498) (0.19, 0.486)

8 (0.206, 0.530) (0.199, 0.512) (0.193, 0.499) (0.189, 0.486)

9 (0.195, 0.239) (0.194, 0.237) (0.192, 0.236) (0.190, 0.234)

10 (0.078, 0.083) (0.075, 0.08) (0.073, 0.078) (0.071, 0.076)

11 (0.077, 0.083) (0.074, 0.08) (0.072, 0.078) (0.071, 0.076)

12 (0.153, 0.09) (0.145, 0.086) (0.139, 0.082) (0.135, 0.08)

13 (0.078, 0.083) (0.075, 0.08) (0.073, 0.078) (0.071, 0.076)

14 (0.077, 0.083) (0.074, 0.08) (0.072, 0.078) (0.071, 0.076)

15 (0.195, 0.239) (0.193, 0.237) (0.191, 0.235) (0.190, 0.234)

16 (0.195, 0.239) (0.193, 0.237) (0.191, 0.236) (0.19, 0.234)

17 (0.204, 0.526) (0.197, 0.508) (0.191, 0.494) (0.186, 0.48)

18 (0.196, 0.24) (0.193, 0.238) (0.192, 0.236) (0.19, 0.235)

19 (0.205, 0.528) (0.197, 0.509) (0.192, 0.494) (0.187, 0.481)

20 (0.206, 0.532) (0.199, 0.513) (0.193, 0.5) (0.189, 0.487)

21 (0.196, 0.24) (0.194, 0.237) (0.192, 0.236) (0.191, 0.235)

22 (0.136, 0.177) (0.134, 0.173) (0.133, 0.171) (0.132, 0.17)

23 (0.195, 0.239) (0.193, 0.237) (0.192, 0.236) (0.191, 0.234)

24 (0.196, 0.240) (0.194, 0.237) (0.192, 0.236) (0.190, 0.235)

25 (0.136, 0.178) (0.134, 0.173) (0.133, 0.171) (0.132, 0.17)

Table 2.3: σ(u)/u for constant inputs u = 0.3, 0.4, 0.5, 0.6

The key theoretical fact is that the property ULFO implies approximate scale invari-

ance, which will be proved in Section 2.6.1. The term “uniform” refers to the fact that

the linearizations at every steady state are the same, and proved in Section 2.6.2. If

the linearizations are not all the same, it is easy to see that scale invariance does not

hold. The uniformity of linearizations provides a “global” way to tie together behav-

iors at different scales. The conditions give us the approximate homogeneity property

f(px, pu) ≈ pf(x, u) when near steady states, because, for u ≈ u∗ and x ≈ σ(u∗):

f(px, pu) ≈ A(pu∗)(px− σ(pu∗)) + B(pu∗)(pu− pu∗)

= A(u∗)(px− pσ(u∗)) + B(u∗)(pu− pu∗) ≈ pf(x, u) .
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These conditions are satisfied in various combinations of parameter regimes. As a purely

theoretical example, consider the following system (denoting x = xA, y = xB, z = xC):

ẋ = − x

1 + x/K
z + u

ẏ = x− y

εż = x− zy,

which can be viewed as a limiting case of the system described by (2.2) when

kUA = 1, kAB = 1, kCC ,KUA, kBA,KAB,KAC ≈ 0, kBC = KBC ,KBC � 1,

kAC = 1, kFBBxFB
= KFBB,KFBB � 1,KBA ≈ 0, kCA/KCA = 1.

Substituting z = x/y in the first equation, we have:

ẋ = f1(x, y, u) = − x2

y + xy/K
+ u

The linearization of the system evaluated at a steady state corresponding to a constant

input u has

A(u) =

−2 + 3u/K − u2/K2 0

1 −1


(and B(u) constant), and is therefore approximately constant provided that K is large

or that the input u is small in relative magnitude. Similarly, if we use σ(pu) as initial

state and pu as inputs, we get a similar expression (with o(pu) instead of o(u) and the

p’s in the fraction canceling out).

2.6.1 ULFO implies approximate scale invariance, for any number of

nodes

Consider a system of n differential equations with input signal u,

ẋ = f(x, u)
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with the variables x evolving on some closed bounded set and f differentiable, and

suppose that for each constant input ū∗ there is a unique steady state x̄∗ = σ(ū∗) with

the conditions in (2.4) and an output

y(t) = h(x(t))

such that h is differentiable and homogeneous of degree zero (h(px) = h(x) for nonzero

p). We view 3-node enzymatic networks as obtained from a set of n+ 1 equations

ẋ = F (x, z, u)

εż = G(x, z)

with n = 2, x = (xA, xB), and z = xC (0 < ε � 1 represents the faster time scale

for xC), and we are studying the reduced system ẋ = f(x, u) = F (x, α(x), u) obtained

by solving G(x, z) = 0 for z = α(x) and substituting in F . Consider a time interval

[0, T ], a constant input ū∗, and a possibly time-varying input u(t), t ≥ 0, as well as

a scaling p > 0, such that all values ū∗, pū∗, u(t), pu(t) are in the input range [u, u].

The solutions of ẋ = f(x, u) with initial condition x(0) = σ(ū∗) and of ż = f(z, pu)

with initial condition z(0) = σ(pū∗) are denoted respectively by x(t) and z(t), and the

respective outputs are y(t) = h(x(t)) and yp(t) = h(z(t)). We wish to show that these

two responses are approximately equal on 0 ≤ t ≤ T .

More precisely, we will prove that the relative error

supt |yp(t)− y(t)|
supt |u(t)− ū∗|

→ 0

as a function of the input perturbation u(t)− ū∗.

Proof. Write δ(t) = u(t)− ū∗. From Theorem 1 in [95] we know that

x(t) = x(0) + ξ(t) + o(‖δ‖)
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where ‖δ‖ = sup0≤t≤T |δ(t)| and ξ is the solution of the variational system

ξ̇(t) = Aξ(t) + Bδ(t)

with ξ(0) = 0, and that

z(t) = z(0) + ζ(t) + o(‖pu− pū∗‖) = z(0) + ζ(t) + o(‖δ‖),

where

ζ̇ = Aζ(t) + Bpδ(t)

with ζ(0) = 0. Recall that A(u) = (∂f/∂x)(σ(u), u) is the Jacobian matrix of f with

respect to x, and B(u) = (∂f/∂u)(σ(u), u) is the Jacobian vector of f with respect to u,

and the assumptions are that these matrices are in fact independent of u. By linearity,

ζ = pξ. Using z(0) ≡ σ(pū∗) = pσ(ū∗) = px(0), we have that px(t) − z(t) = o(‖δ‖).

Thus,

y(t) = h(x(t)) = h(px(t)) = h(z(t) + o(‖δ‖)) .

If K is an upper bound on the gradient of h, then

|yp(t)− y(t)| = |h(z(t))− h(z(t) + o(‖δ‖))| ≤ Ko(‖δ‖).

Thus, the relative error supt |yp(t)− y(t)| / supt |u(t)− ū∗| converges to zero as a func-

tion of the input perturbation u(t)− ū∗, as claimed.

As a numerical illustration, we consider again the the network described by (2.2) and

the random parameter set in Fig. 2.2. We compare the relative error between the

original nonlinear system, with initial state ξ = (xA, xB) corresponding to u = 0.3,

and applied input u = 0.36, and the approximation is ξ + z(t), where the z solves

the linear system with initial condition zero and constant input 0.06. The maximum

approximation error is about 5% (to 3 decimal places, 0.055 for xA and 0.01 for xB).

When stepping from u = 0.5 to u = 0.6, the error is less than 3% (0.028 and 0.005
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respectively). Similar results are available for all ASI circuits.

2.6.2 Equilinearization in scale invariant systems

We consider systems of the form:

ẋ = f(x, u) , y = h(x)

(more generally, one may consider y = h(x, u)). The input values u(t), states x(t), and

output values y(t) have dimensions m,n, p respectively.

We suppose that for each ū constant, there is a unique steady state x̄ = σ(ū):

f(σ(ū), ū) = 0 .

Let F x̄t (u) be the output at time t ≥ 0 if the initial state is x̄ and the input is u.

We say that the system is homogeneous if

F
σ(pū)
t (pu) = pF

σ(ū)
t (u)

for each p > 0 and t > 0, each constant ū, and each input function u.

This is the property satisfied by our enzymatic systems when a singular perturbation

analysis has already been performed and we are reduced to a two-dimensional system

describing the dynamics of A and B, with C substituted by its quasi-steady state values.

Observe that in that example, x has dimension 2 and the output is y = x, i.e. C is an

identity matrix.

We prove next that, for such systems, the linearizations at all steady-state conditions

are the same. This is consistent with the results of our numerical exploration.

Consider the linearizations at each steady-state x̄ = σ(ū) and respective input ū:

Aū =
∂f

∂x
(x̄, ū) , Bū =

∂f

∂u
(x̄, ū) , Cū =

∂h

∂x
(x̄)
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and the respective Hankel parameters

Hū(k) = CūA
k−1
ū Bū , k = 1, 2, . . . .

Lemma 1. For homogeneous systems, H
(k)
u is independent of u and for each k (same

input/output behavior of all linearizations).

Proof. Consider any ū and let x̄ = σ(ū). Let v be any input function. Fix any t ≥ 0.

Expanding around ū, and for h small:

F x̄t (ū+ hv) = F x̄t (ū) + hJ x̄t (ū)v + o(h) (2.5)

where J x̄t (ū) is the Jacobian of F x̄t , seen as mapping inputs on the interval [0, t] to the

last output y(t), and evaluated at ū. This Jacobian maps inputs v(·) into states.

Pick any p > 0 and let z̄ = σ(pū). Then, by the same argument,

F z̄t (pū+ phv) = F z̄t (pū) + hJ z̄t (pū)pv + o(h) . (2.6)

We also know, by the homogeneity property, that

F z̄t (p(ū+ hv)) = pF x̄t (ū+ hv) and F z̄t (pū) = pF x̄t (ū) . (2.7)

Combining (2.5)-(2.7), dividing by h, and taking the limit as h→ 0, we conclude that:

J x̄t (ū)v = J z̄t (pū)v . (2.8)

Now, Theorem 1 in [95] says that J x̄t (ū)v is the solution y(t) at time t of

ẋ = Aūx+Būv , x(0) = 0

y = Cūx
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and J z̄t (pū)v is the solution y(t) at time t of

ẋ = Apūx+Bpūv , x(0) = 0

y = Cpūx .

Since (2.8) holds for any v, we conclude, by elementary linear systems theory [95], that

CūA
k−1
ū Bū = CpūA

k−1
pū Bpū , (2.9)

as we wanted to prove.

Corollary 1. Suppose that, for all ū. The triplet (Aū, Bū, Cū) is reachable and observ-

able, m = 1, n = p, and Cū = I. Then (Aū, Bū, Cū) = (Av̄, Bv̄, Cv̄) for all ū > 0 and

v̄ > 0.

Proof. Pick any two positive ū and v̄. Since we can use p = v̄/ū in (2.9), we know that

CūA
k−1
ū Bū = Cv̄A

k−1
v̄ Bv̄ for all k, and hence by elementary linear systems theory [95]

we know that there is an invertible matrix T such that

T−1AūT = Av̄ , T
−1Bū = Bv̄ , CūT = Cv̄ .

Using that Cū = Cv̄ = I, we have that T = I.

2.6.3 Extensions of three-node enzymatic networks

The conditions that we obtained for three-node networks are also sufficient for an ar-

bitrary number of nodes [93], in the following sense. Suppose that we consider a set

of n + 1 nodes, where n nodes are described by variables x = (x1, . . . , xn) and an ad-

ditional node is described by a variable z. Suppose that the z variable evolves at a

faster time scale than the x variables. Then, the ULFO property implies approximate

scale invariance. A variation of this situation is that in which a three-node network

already displays scale invariance through an output node xC , and this output feeds

into an additional node xD which evolves in a linear mode; then the entire four-node
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network will display scale invariance as well. Yet another variation is that in which an

input is processed linearly before being fed into a three-node network. The example

of a published chemotaxis pathway in Dictyostelium discoideum that we provide in the

next Section combines these variations.

A full numerical study as performed for three-node networks is already infeasible for

four-node networks, due to the combinatorial explosion in the number of possible net-

works and of parameters to be randomly tested. A theoretical proof is also very difficult

to envision, because (a) exact scale invariance is impossible for enzymatic networks, as

shown in this paper, and (b) approximate adaptation and scale invariance are mathe-

matically very hard to formalize in such a manner that impossibility can be rigorously

proved for systems that do not satisfy our characterizations. In any event, as has been

argued in other recent papers dealing with biological adaptation by enzymatic networks

[57, 84, 116], a restriction to three-node networks is biologically reasonable, both as a

coarse-graining of the problem and because many eukaryotic biological pathways, such

as MAPK pathways, have at their core a three-component architecture.

2.7 A concrete biological model

In a recent paper [102] Takeda and collaborators studied the adaptation kinetics of

a eukaryotic chemotaxis signaling pathway, employing a microfluidic device to expose

Dictyostelium discoideum to changes in chemoeffector cyclic adenosine monophosphate

(cAMP). Specifically, they focused on the dynamics of activated Ras (Ras-GTP), which

was in turn reported by RBD-GFP, and showed almost perfect adaptation of previously

unstimulated cells to cAMP concentrations ranging from 10−2nM to 1µM. Furthermore,

inspired by [57], the authors proposed alternative models for adaptation, and concluded

that the best fit was obtained by using an incoherent feedforward structure. The model
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that they identified is given by:

dR1

dt
= kR1(v + r1)(Rtot

1 −R1)− k−R1R1

dR2

dt
= kR2(v + r2)(Rtot

2 −R2)− k−R2R2

u = R1 +R2

dGEF

dt
= kGEF u− k−GEFGEF

dGAP

dt
= kGAP u− k−GAPGAP

dRasGTP

dt
= kRAS GEF (RAStot −RasGTP )− k−RAS GAP RasGTP

dRBDcyt

dt
= koff

RBD (RBDtot −RBDcyt)− kon
RBD Ras

GTP RBDcyt .

The symbol v stands for the chemoeffector cAMP, and the authors assumed the exis-

tence of two different receptor populations (R1 and R2, with very different Kd’s) which

when bound pool their signals to downstream components (through u). The constants

r1 and r2 represent levels of constitutive activation. The variables GEF and GAP

represent activation and deactivation of RasGEF and RasGAP, RasGTP represents the

activated Ras, and RBDcyt describes the cytosolic reporter molecule RBD-GFP.

The best-fit parameters obtained in [102] are as follows: Rtot
1 = 0.1, Rtot

2 = 0.9,

r1 = 0.012nM, r2 = 0.115nM, kR1 = 0.00267nM−1sec−1, k−R1 = 0.16sec−1, kR2 =

0.00244nM−1sec−1, k−R2 = 1.1sec−1, kGEF = 0.04sec−1, k−GEF = 0.4sec−1, kGAP =

0.01sec−1, k−GAP = 0.1sec−1, RAStot = 1, kRAS = 390sec−1, k−RAS = 3126sec−1,

RBDtot = 1, koff
RBD = 0.53sec−1, kon

RBD = 1.0sec−1. With these parameters, and

cAMP concentrations which are small yet also satisfy r1 � v(t) and r2 � v(t), it fol-

lows that Ṙ1 ≈ kR1R
tot
1 v − k−R1R1 and Ṙ2 ≈ kR2R

tot
2 v − k−R2R2, so we may view

u(t) as an input (linearly dependent on the external v(t)) to the three-variable system

described by xA = GEF , xB = GAP , xC = RasGTP . Since RBDcyt depends only on

xC , we may view xC as the output. This three-variable system (interpreted as having

limiting values of Michaelis-Menten constants) has the ULFO property provided that

the dynamics of xC are fast compared to xA and xB, which the identified parameters

insure. So, we expect scale invariant behavior. Indeed, Fig. 2.6 shows a simulation
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of the entire six-dimensional system (not merely of our 3-dimensional reduction) when

using a step from 1 to 2 nM of cAMP, and shows that essentially the same response is

obtained when stepping from 2 to 4 nM.

Figure 2.6: Scale invariance computed when using the model in [102]: Responses to
steps 1→2 and 2→4 coincide.

This prediction of scale invariant behavior was tested experimentally, and the experi-

mental resuts do not indicate scale invariant behavior. Hence, based on the mathemat-

ical model, one can suggest viable experiments to verify a mechanism that a certain

organism may possess, and by doing so validate or (in this case) invalidate a mathe-

matical model. Hence, our contribution lies in the model invalidation of [102].
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2.8 Parameters for the identified ASI Circuits

Circuit 1.

KAB = 0.001191; kAB = 1.466561; KAC = 0.113697; kAC = 1.211993; KBA =

0.001688; kBA = 44.802268; KBC = 0.009891; kBC = 7.239357; KuA = 0.093918; kuA =

11.447219; kAC = 1.211993; KAC = 0.1136927; KFB
= 9.424319; kFB

= 22.745736

Circuit 2.

KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268; KCA =

90.209027; kCA = 96.671843; KAB = 0.001191; kAB = 1.466561; KFB
= 9.424319;

kFB
= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357

Circuit 3.

KAA = 7.633962; kAA = 86.238263; KAB = 20.265158; kAB = 5.428752; KAC =

0.258375; kAC = 62.416585; KBA = 0.003960; kBA = 17.705166; KBB = 31.604578;

kBB = 3.692326; KBC = 44.386408; kBC = 65.027941; KCB = 0.701052; kCB =

26.091557; KuA = 0.464248; kuA = 1.882348

Circuit 4.

KAA = 7.633962; kAA = 86.238263; KAB = 20.265158; kAB = 5.428752; KAC =

0.258375; kAC = 62.416585; KBA = 0.003960; kBA = 17.705166; KBC = 44.386408;

kBC = 65.027941; KCB = 0.701052; kCB = 26.091557; KuA = 0.464248; kuA =

1.882348

Circuit 5.

KAB = 63.277600; kAB = 6.638959; KAC = 0.133429; kAC = 55.731406; KBA =

0.011188; kBA = 2.749793; KBC = 0.013374; kBC = 45.175191; KCB = 1.457975;

kCB = 2.114949; KuA = 24.589517; kuA = 5.346875

Circuit 6.

KAA = 7.633962; kAA = 86.238263; KAB = 20.265158; kAB = 5.428752; KAC =

0.258375; kAC = 62.416585; KBA = 0.003960; kBA = 17.705166; KBB = 31.604578;

kBB = 3.692326; KBC = 44.386408; kBC = 65.027941; KCA = 26.714681; kCA =

2.806080; KCB = 0.701052; kCB = 26.091557; KuA = 0.464248; kuA = 1.882348
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Circuit 7.

KAA = 7.633962; kAA = 86.238263; KAB = 20.265158; kAB = 5.428752; KAC =

0.258375; kAC = 62.416585; KBA = 0.003960; kBA = 17.705166; KBC = 44.386408;

kBC = 65.027941; KCA = 26.714681; kCA = 2.806080; KCB = 0.701052; kCB =

26.091557; KuA = 0.464248; kuA = 1.882348

Circuit 8.

KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268; KAB =

0.001191; kAB = 1.466561; KFB
= 9.424319; kFB

= 22.745736; KAC = 0.113697; kAC =

1.211993; KBC = 0.009891; kBC = 7.239357; KCB = 30.602013; kCB = 3.811536;

KCC = 0.189125; kCC = 17.910182

Circuit 9.

KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268; KCA =

90.209027; kCA = 96.671843; KAB = 0.001191; kAB = 1.466561; KFB
= 9.424319;

kFB
= 22.745736; KAc = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357;

KCB = 30.602013; kCB = 3.811536; KCC = 0.189125; kCC = 17.910182

Circuit 10.

KAA = 24.989065; kAA = 53.174082; KAB = 0.444375; kAB = 12.053134; KFB
=

1.716920; kFB
= 11.601122; KAC = 0.013988; kAC = 8.521185; KBA = 0.005461; kBA =

7.103952; KBC = 51.850148; kBC = 80.408137; KCB = 5.392001; kCB = 3.086740;

KCC = 1.962230; kCC = 17.382010; KuA = 4.387832; kuA = 19.638124

Circuit 11.

KAB = 0.444375; kAB = 12.053134; KFB
= 1.716920; kFB

= 11.601122; KAC =

0.013988; kAC = 8.521185; KBA = 0.005461; kBA = 7.103952; KBC = 51.850148;

kBC = 80.408137; KCB = 5.392001; kCB = 3.086740; KCC = 1.962230; kCC =

17.382010; KuA = 4.387832; kuA = 19.638124

Circuit 12.

KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268; KCA =

5.026318; kCA = 45.803641; KAB = 0.001191; kAB = 1.466561; KFB
= 9.424319;

kFB
= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357;
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KCB = 30.602013; kCB = 3.811536; KCC = 0.189125; kCC = 17.910182

Circuit 13.

KAA = 24.989065; kAA = 53.174082; KAB = 0.444375; kAB = 12.053134; KFB
=

1.716920; kFB
= 11.601122; KAC = 0.013988; kAC = 8.521185; KBA = 0.005461;

kBA = 7.103952; KBC = 51.850148; kBC = 80.408137; KCB = 5.392001; kCB =

3.086740; KCC = 1.962230; kCC = 17.382010; KuA = 4.387832; kuA = 19.638124;

KCA = 15.479253; kCA = 4.903430

Circuit 14.

KAB = 0.444375; kAB = 12.053134; KFB
1.716920; kFB

= 11.601122; KAC = 0.013988;

kAC = 8.521185; KBA = 0.005461; kBA = 7.103952; KBC = 51.850148; kBC =

80.408137; KCB = 5.392001; kCB = 3.086740; KCC = 1.962230; kCC = 17.382010;

KuA = 4.387832; kuA = 19.638124; KCA = 15.479253; kCA = 4.903430

Circuit 15.

KAB = 0.709169; kAB = 7.445605; KFB
= 1.495375; kFB

= 7.282827; KAC = 0.002566;

kAC = 1.115065; KBA = 0.002522; kBA = 5.753075; KBC = 0.017051; kBC = 2.777794;

KCC = 0.195997; kCC = 1.480130; KuA = 0.225814; kuA = 2.492872

Circuit 16.

KAB = 0.001191; kAB = 1.466561; KFB
= 9.424319; kFB

= 22.745736; KAC =

0.113697; kAC = 1.211993; KBA = 0.001688; kBA = 44.802268; KBC = 0.009891;

kBC = 7.239357;KCC = 0.189125; kCC = 17.910182;KuA = 0.093918; kuA = 11.447219

Circuit 17.

KAB = 1.620877; kAB = 2.306216; KFB
= 2.012565; kFB

= 2.700847; KAC = 0.010933;

kAC = 8.968091; KBA = 0.001812; kBA = 10.039221; KBC = 0.014199; kBC =

17.762333; KCC = 2.686891; kCC = 4.139044; KuA = 0.161715; kuA = 1.933303

Circuit 18.

KAA = 17.569120; kAA = 2.198366; KAB = 9.435176; kAB = 3.134007; KFB
=

0.469083; kFB
= 1.934194; KAC = 0.062914; kAC = 2.742206; KBA = 0.003245; kBA =

75.352905; KBB = 27.463128; kBB = 10.551155; KBC = 0.041615; kBC = 61.333818;

KCC = 0.039332; kCC = 4.756637; KuA = 0.005167; kuA = 8.186533
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Circuit 19.

KuA = 4.387832; kuA = 19.638124; KBA = 0.005461; kBA = 7.103952; KAA =

24.989065; kAA = 53.174082; KAB = 0.444375; kAB = 12.053134; KFB
= 1.716920;

kFB
= 11.601122; KBC = 51.850148; kBC = 80.408137; KAC = 0.013988; kAC =

8.521185; KCC = 1.962230; kCC = 17.382010

Circuit 20.

KuA = 4.387832; kuA = 19.638124; KBA = 0.005461; kBA = 7.103952; KAB =

0.444375; kAB = 12.053134; KFB
= 1.716920; kFB

= 11.601122; KBC = 51.850148;

kBC = 80.408137; KAC = 0.013988; kAC = 8.521185; KCC = 1.962230; kCC =

17.382010

Circuit 21.

KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268; KCA =

5.026318; kCA = 45.803641; KAB = 0.001191; kAB = 1.466561; KFB
= 9.424319;

kFB
= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357;

KCC = 0.189125; kCC = 17.910182

Circuit 22.

KAB = 1.620877; kAB = 2.306216; KFB
= 2.012565; kFB

= 2.700847; KAC = 0.010933;

kAC = 8.968091; KBA = 0.001812; kBA = 10.039221; KBC = 0.014199; kBC =

17.762333; KCA = 0.002690; kCA = 1.506954; KCC = 2.686891; kCC = 4.139044;

KuA = 0.161715; kuA = 1.933303

Circuit 23.

KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268; KCA =

90.209027; kCA = 96.671843; KAB = 0.001191; kAB = 1.466561; KFB
= 9.424319;

kFB
= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357;

KCC = 0.189125; kCC = 17.910182

Circuit 24.

KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268; KCA =

5.026318; kCA = 45.803641; KAB = 0.001191; kAB = 1.466561; KFB
= 9.424319;

kFB
= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357
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Circuit 25.

KAB = 1.620877; kAB = 2.306216; KFB
= 2.012565; kFB

= 2.700847; KAC = 0.010933;

kAC = 8.968091; KBA = 0.001812; kBA = 10.039221; KBC = 0.014199; kBC =

17.762333; KCA = 0.002690; kCA = 1.506954; KuA = 0.161715; kuA = 1.93330
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(a) Circuit 1. (b) Circuit 2. (c) Circuit 3.

(d) Circuit 4. (e) Circuit 5. (f) Ciircuit 6.

(g) Circuit 7. (h) Circuit 8. (i) Circuit 9.

(j) Circuit 10 (k) Circuit 11. (l) Circuit 12.

(m) Circuit 13. (n) Circuit 14. (o) Circuits 15 -17

(p) Circuit 18. (q) Circuit 19. (r) Circuit 20.

(s) Circuit 21 - 22 (t) Circuit 23. (u) Circuit 24 - 25

Figure 2.7: Identified ASI Circuits



53

Chapter 3

Scale Invariance in singularly-perturbed systems

The material in this chapter is based on joint work with Dr. Evgeni Nikolaev in the

laboratory of Dr. E. Sontag.

It has been often remarked in the systems biology literature that certain systems whose

output variables respond at a faster time scale than internal components, give rise to an

approximate scale invariant behavior, allowing approximate scale invariance in stimuli.

We have seen such examples on the study of three-node enzyme networks in Chapter

2, and also on a model of Dictyostelium discoideum in [102]. Both models contain an

incoherent feedforward loop (IFFL), a pattern known to play a central role in processing

external stimuli and signals by myriads of molecular circuits inherent in various cellular

systems ranging from bacteria to mammalian cells. It was observed that multiple time

scales, corresponding to slow and fast subsystems, are typically inherent in such motifs.

Among many physiologically relevant properties that this motif can achieve, it has

been experimentally shown that certain incoherent feedforward molecular circuits can

(approximately) exhibit scale invarance property.

3.1 Feedforward circuits

In this section, we present the IFFL motif, as represented generically by the directed

graphs in Fig. 3.1, which has been proposed as one of the two main biomolecular

mechanisms (the other is integral feedback) that can help produce scale-invariance or

FCD [30, 88, 87]. In IFFL’s, an external cue or stimulus u activates a molecular species

x which, in turn, activates or represses a downstream species y. Through a different

path, the signal u represses or activates, respectively, the species y. This antagonistic

(“incoherent”) effect endows the IFFL motif with powerful signal processing properties
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?
- x yu - -x yu

(a) (b)

Figure 3.1: Two incoherent feedforward motifs: (a) Input activates and intermediate
species represses output; (b) Input represses and intermediate species activates output.

[4].

The conceptual diagrams shown in Fig. 3.1 describe, in fact, various alternative molec-

ular realizations. Different molecular realizations of the given motif can differ signifi-

cantly in their dynamic response and, ultimately, biological function. Two realizations

of the diagram in Fig. 3.1(b) are shown in Fig. 3.2, and similar alternatives exist for

the diagram in Fig. 3.1(a).

- -

- -
?

?

u

x∅ ∅

∅ ∅y

- -

- -
?

?

?

u

x∅ ∅

∅ ∅y
(a) (b)

Figure 3.2: Two realizations of the “input repressing output” motif in Fig. 3.1(b): (a)
Input inhibits the formation of output; (b) Input enhances the degradation of output.

These two realizations differ in a fundamental way in regards to their scale invariance

properties. The biological mechanism in Fig. 3.2(a) exhibits scale invariance, but the

one in Fig. 3.2(b) does not.

3.2 Time scale separation in IFFL models

We analyze the simplest ordinary differential equation (ODE) models for these IFFL

processes, in which the concentrations of the input u and species x and y are described

by scalar time-dependent quantities.

Suppose that (x(t), y(t)) is any solution corresponding to the input u(t), for the system

described by Fig. 3.2(a). Then, (px(t), y(t)) is a solution corresponding to the input
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pu(t):

ẋ = αu− δx ⇒ ˙(px) = α(pu)− δ(px),

ẏ = β xu − γy ⇒ ẏ = β
/px
/pu
− γy .

(3.1)

In particular, given a step input that jumps at time t = 0 and an initial state at time

t = 0 that has been pre-adapted to the input u(t) for t < 0 (that is, x(0) = αu0/δ, where

u0 is the value of u for t < 0), the solution is the same as when instead applying pu(t)

for t > 0, but starting from the respective pre-adapted state (pαu0/δ). A simulation

showing this effect is shown in Fig. 3.3.

Figure 3.3: Dynamic response of the circuit in Fig. 3.2(a) and described by the model
(3.1) and all parameters set to 1. Pre-adaptation value of input is u0 = 0.1, stepping
to u∗ = 0.5 at t = 0. Original and p-scaled responses (p = 20) overlap perfectly. Here,
α = β = δ = γ = 1.

On the other hand, the scale invariance property fails for the system in which the

input enhances the degradation of output, shown in Fig. 3.2(b). The same “trick” of

scaling states x by p does not work for this second system, when modeled in the obvious

manner:

ẋ = αu− δx,

ẏ = βx− γuy,

because the scaling x 7→ px and u 7→ pu does not leave the y equation invariant. More-

over, one can prove that no possible equivariant group action on states is compatible
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with output invariance, which means that no possible symmetries are satisfied by the

input/output behavior of the system [88].

However, it has been observed that systems such as the one in Fig. 3.2(b) satisfy

an approximate scale invariance property provided that the parameters β and γ are

large enough so that a time-scale separation property holds. Multiple time scales,

corresponding to slow and fast subsystems, are typically inherent in cellular systems

[33]. Let us nondimensionalize all variables and parameters as follows:

x = X0x̄, y = Y0ȳ, u = U0ū, t = X0
α0U0

t̄, α = α0ᾱ,

β = β0β̄, δ̄ = δX0
α0U0

, γ̄ = γU0Y0
β0X0

, ε = α0
β0
· Y0U0

X2
0
.

(3.2)

Here, X0, Y0, and U0 are some mean or typical values of the variables x, y, and u, respec-

tively, and x̄, ȳ, and ū are the corresponding dimensionless variables. The parameters

α and β can be interpreted as the dimensionless rates of formation or activation, while

δ̄ and γ̄ can be interpreted as the dimensionless rates of degradation or inactivation of

the species x and y, respectively. In what follows, the bar used in the notations will

be omitted, and we think of t̄ as the original time scale, so that we simply write the

system in the following “singular perturbation” form:

ẋ = αu− δx,

εẏ = βx− γuy .
(3.3)

Assuming that the corresponding pairs of parameters, α ∼ δ and β ∼ γ are of the

same order of magnitude, while the ratio α/β � 1 is small, we can think of 0 < ε� 1

in (3.2) and (3.3) as a small parameter, where the remaining parameters are all O(1).

When viewed at a slow time-scale, we may assume that y(t) quickly equilibrates (set

ε = 0 in the second equation) so that, in effect, the resulting system is given by a one-

dimensional differential equation together with a readout which is an instantaneous



57

ratio of states and inputs:

ẋ = αu− δx,

y(t) ≈ βx(t)

γu(t)

(we include the time argument in y to emphasize the instantaneous nature of the quasi-

steady state dependence). Now a scaling u 7→ pu and x 7→ px results in (approximately)

the same output, since

y =
β/px

γ/pu
.

The property of time-scale separation for IFFL’s can be traced back to work in [55, 115]

and [30], and systems of this form were theoretically analyzed in [98].

3.3 Limitations of time-scale based (approximate) scale invariance

We were particularly motivated to look at the question of time scale separation by the

analysis described in the Chapter 2, in which we concluded, that every three node enzy-

matic network (as studied in [57]) which has an approximate scale invariance property

must rely upon this mechanism of time scale separation.

The study of this time-scale separation for scale invariance, and the dependence of the

magnitude of the scale invariance error on the input scaling, not only for feedforward

systems but in a general context, is to be shown next.

Our main result is that, no matter how small ε is, there is always an irreducible minimal

possible difference in instantaneous values of outputs when comparing the response to

an input u(t) and to a scaled version of this input, pu(t).

This claim is illustrated by the simulation shown in Fig. 3.4.

We call such an irreducible difference an scale invariance error. As a matter of fact, one

can show that the scale invariance error (difference between the original output y1(t)

and the output yp(t) arising from a p-scaled input) is not merely nonzero, but is in

fact bounded below by a positive number that is independent of the value of the small

parameter ε. Fig. 3.5 shows this effect.
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Figure 3.4: Dynamic response of the circuit in Fig. 3.2(b) and described by the model
(3.3) with all parameters except ε set to 1. Original (blue) and p-scaled (red) responses.
Pre-adaptation value of input is u0 = 0.1, stepping to u∗ = 0.5 at t = 0. The p-scaled
output is denoted by yp(t). Here ε = 0.01 and p = 20. The maximal magnitude of the
scale invariance error is depicted by a black segment (inset). Here, α = β = δ = γ = 1.

(a) (b)

Figure 3.5: System with input-dependent degradation. Heat-map and a 3D plot repre-
senting the largest absolute value of the difference between the two outputs yp(t) and
y1(t). Observe that, for any fixed p, except for the trivial case p = 1, the values ap-
proach a positive number as ε → 0. Pre-adaptation value of input is u0 = 1, stepping
to u∗ = 2 at t = 0. The parameter ε was sampled in the range [0.0005, 0.002]. The
parameter p was sampled in the range [0.5, 3.5]. 100 different samples for each were
selected. Here, α = β = δ = γ = 1.
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An entirely analogous situation holds for systems in which the state degrades the out-

put, modeled by switching the roles of u and x in the y equation:

ẋ = αu− δx,

εẏ = βu− γxy,
(3.4)

and error behavior is illustrated by Fig. 3.6.

(a) (b)

Figure 3.6: System with state-dependent degradation. Heat-map and a 3D plot repre-
senting the largest absolute value of the difference between the two outputs yp(t) and
y1(t). Pre-adaptation value of input is u0 = 1, stepping to u∗ = 2 at t = 0. Observe
that, for any fixed p, except for the trivial case p = 1, the values approach a positive
number as ε → 0. The parameter ε was sampled in the range [0.0005, 0.002]. The
parameter p was sampled in the range [0.5, 3.5]. 100 different samples for each were
selected. Here, α = β = δ = γ = 1.

This irreducible error, no matter how small ε > 0 is, establishes a fundamental limi-

tation to fold-sensing systems based on time-scale separation, such as those proposed

in the context of state-degradation or input-degradation feedforward systems. The

existence of such an irreducible error can also be understood through a geometric in-

terpretation based on singular perturbation theory [72, 45, 111]: a step change in the

input changes the ODE, with the net result that, even though the output remains the

same, the internal state, whose activity is hidden from the output measurement, has in

fact “jumped” away from the slow manifold. A derivation of estimates from that point

of view, establishing asymptotic expansions to obtain precise bounds on the error for

specific systems, will be conducted in Section 3.6.
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3.3.1 A motivating example

We start by considering the input-induced degradation IFFL circuit under time-scale

separation described in (3.3), the ODE model which we repeat here for convenience:

ẋ = αu− δx,

εẏ = βx− γuy ,

where α, β, δ and γ are positive constants and we think of ε as a small parameter. We

wish to study the response of this system to a step input u(t) which switches from the

value u(t) = u0 for t < 0 to a different value u(t) = u∗ for t > 0, under the assumption

(“pre-adaptation”) that the states x and y had converged to a steady state by time

t = 0, and want to compare this response to the response to the input pu(t).

In the first case, the steady state at time t = 0 can be found by setting αu0 − δx = 0

and βx−γu0y = 0, and then solving for (x, y). The response for t > 0 will be, therefore,

given by the solution of the ODE with initial condition x(0) = α
δ u0 and y(0) = αβ

δγ , and

input u(t) ≡ u∗ for t > 0.

In the second (p-scaled) case, the initial state will be x(0) = α
δ pu0, and the same y(0),

now using the input u(t) ≡ pu∗ for t > 0.

We will take α = β = δ = γ = 1 in our subsequent analysis. This involves no loss

of generality, because a change of scale in x, u, y and time via: u = δu′/γ, x = αx′/γ,

y = αβy′/(δγ), and t = t′/δ reduces to that case.

The main result for this example given in Proposition 1 below.

We use the notation ‖y − w‖[0,T ] = maxt∈[0,T ] |y(t)− w(t)| to denote the largest possible

value of the difference |y(t)− w(t)| between two functions defined on an interval [0, T ].

In particular, when quantifying scale invariance error, w will be the output when the

input is scaled.
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Proposition 1. Consider solutions (xεi (t), y
ε
i (t)) of the following two initial value prob-

lems:

ẋ1 = u∗ − x1, x1(0) = u0 ẋ2 = u∗ − x2, x2(0) = pu0

εẏ1 = x1 − u∗y1, y1(0) = ȳ εẏ2 = x2 − pu∗y2, y2(0) = ȳ ,
(3.5)

where ε, u∗, u0, and p are nonzero positive numbers, and we assume that p 6= 1, u0 6= u∗.

Define M = M(u∗, u0, p) > 0 by:

M :=
∣∣∣ȳ − u0

u∗

∣∣∣ p p
1−p |1− p| . (3.6)

Then, for any 0 < M ′ < M < M ′′, there exist two numbers ε0 = ε0(u∗, u0, p,M
′,M ′′),

and δ = δ(u∗, u0, p,M
′,M ′′) > 0, such that:

M ′ ≤ ‖yε1 − yε2‖[0,δ] ≤ M ′′ ∀ 0 < ε ≤ ε0 . (3.7)

Since M ′ and M ′′ can be taken arbitrarily close to M , this result tells us, in particular,

that ‖yε1 − yε2‖[0,δ] ≈ M for all 0 < ε � 1, and δ small. In other words, the positive

number given in (3.6), which does not depend on ε, provides a fundamentally irreducible

error as ε→ 0, for any nontrivial scaling (p 6= 1) and any nontrivial step input (u0 6= u∗).

Proof of Proposition 1

We start with a number of technical results leading to the proof of Proposition 1.

Lemma 2. For any nonzero positive numbers u∗, u0, p such that p 6= 1 and u0 6= u∗,

define M = M(u∗, u0, p) > 0 and T = T (p, u∗) > 0 by:

M :=
∣∣∣ȳ − u0

u∗

∣∣∣ p p
1−p |1− p| , T :=

ln p

(p− 1)u∗
.
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Consider the initial value problems:

εẇ1 = u0 − u∗w1, w1(0) = ȳ,

εẇ2 = pu0 − pu∗w2, w2(0) = ȳ,

(3.8)

Then,

‖w1 − w2‖∞ = |w1(εT )− w2(εT )| = M . (3.9)

Proof. The solutions of equations (3.8) can be found in an explicit form as:

w1(t) =
u0

u∗
+
(
ȳ − u0

u∗

)
e−u

∗t/ε , w2(t) =
u0

u∗
+
(
ȳ − u0

u∗

)
e−pu

∗t/ε . (3.10)

Using (3.10), we obtain

|w1(t)− w2(t)| =
∣∣∣1− u0

u∗

∣∣∣ · |ϕ(t; ε, p)| , (3.11)

where

ϕ(t; ε, p) = e−u
∗t/ε − e−pu∗t/ε. (3.12)

We see that ϕ(0; ε, p) = 0 and ϕ(t; ε, p) → 0 as t → ∞. Then it follows that ϕ(t; ε, p)

has its absolute extrema at 0 < t∗ <∞ which can be found using the derivative tests,

ϕ′(t∗; ε, p) = 0, and ϕ′′(t∗; ε, p) 6= 0.

From the first derivative test ϕ′(t; ε, p) = 0 we obtain

ϕ′(t; ε, p) = −u
∗

ε
e−u

∗t/ε +
pu∗

ε
e−pu

∗t/ε = 0, (3.13)

t∗ = ε
ln p

(p− 1)u∗
= εT.

Using the value for t∗ in (3.12) we obtain

ϕ(t∗; ε, p) = p
p

1−p · (p− 1). (3.14)
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Using the second derivative test, we obtain

ϕ′′(t∗; ε, p) =
(u∗
ε

)2
p

1
1−p · (1− p). (3.15)

From (3.15), it follows that ϕ′′(t∗; ε, p) > 0 if p < 1, and ϕ′′(t∗; ε, p) < 0 if p > 1, which

correspond respectively to the absolute minimum, ϕ(t∗; ε, p) < 0, and the absolute

maximum, ϕ(t∗; ε, p) > 0, of the function ϕ(t; ε, p). In both cases, |ϕ(t∗; ε, p)| is the

absolute maximum of ϕ(t; ε, p).

The following two results allow one to obtain tighter bounds, for the special example of

the IFFL in Proposition 1, and also for generalizations in which the scalar x1 subsystem

is replaced by a generic linear system, than those assured by Theorem 1.

Proposition 2. Consider a system

ẋ = qAx+ qBv, x(0) = 0

y = Cx,

(3.16)

where A ∈ Rn×n is Hurwitz, B ∈ Rn×r, C ∈ Rp×n, q > 0, S > 0, and |v(t)| ≤ ∆̄ for all

t ∈ [0, S]. Then, there exists a c > 0 independent of q such that

max
t∈[0,S]

|y(t)| ≤ ∆̄ · c. (3.17)

In fact, we may pick c =

∫ ∞
0

∥∥CeAsB∥∥ ds.
Proof. From (3.16)

|y(t)| ≤ ∆̄

∫ t

0

∥∥∥CeqA(t−τ)B
∥∥∥ qdτ , ∀t ∈ [0, S].

Introducing the change of variables s = q(t− τ), the previous expression becomes:

|y(t)| ≤ ∆̄

∫ qt

0

∥∥CeAsB∥∥ ds ≤ ∆̄

∫ ∞
0
‖K(s)‖ ds = ∆̄ · ‖K‖1 .
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Define c = ‖K‖1 <∞. Then,

sup
t∈[0,S]

|y(t)| ≤ ∆̄ · c,

as desired.

Proposition 3. For any nonzero positive numbers u∗, u0, r, p such that r < 1, p < 1,

and u0 6= u∗, let M = M(u∗, u0, p) > 0 and T = T (p, u∗) > 0 be as defined as earlier,

and let δ = δ(u∗, u0, p, r) > 0 be given by:

δ :=


min

{
ln

(
2 |u∗ − u0|

2 |u∗ − u0| −M(1− r)u∗
)
,

ln p
p− 1

}
, if

M(1− r)u∗
2 |u∗ − u0|

< 1,

ln p
p− 1 , otherwise.

(3.18)

Finally, define ε0 = ε0(u∗, u0, p, r) > 0 by:

ε0 := δ/T .

Consider any solution (x(t), y1(t), y2(t)), t ≥ 0, of the following initial-value system of

three differential equations:

ẋ = −x+ u∗, x(0) = u0,

εẏ1 = x− u∗y1, y1(0) = ȳ,

εẏ2 = px− pu∗y2, y2(0) = ȳ,

(3.19)

where 0 < ε ≤ ε0. Then,

rM ≤ ‖y1 − y2‖[0,δ] ≤ (2− r)M .

Proof. Consider the following equations:

εẇ1 = u0 − u∗w1, w1(0) = ȳ,

εẇ2 = pu0 − pu∗w2, w2(0) = ȳ.
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By Lemma 2, ‖w1 − w2‖∞ = ‖w1 − w2‖[0,εT ] = M , and, since εT ≤ ε0T = δ, this

implies that

‖w1 − w2‖[0,δ] = M (3.20)

as well. Let ∆(t) := x(t)−x(0) = x(t)−u0 on the interval t ∈ [0, δ], and ∆̄ := ‖∆‖[0,δ].

Defining e1(t) := y1(t)− w1(t), we have that

εė1(t) = εẏ1(t)− εẇ1(t) = −u∗e1(t) + ∆(t)

or, equivalently:

ė1(t) = −u
∗

ε
e1(t) +

∆(t)

ε
.

Applying Proposition 2 with A = −u∗, B = 1, C = 1, S = δ, and q = 1/ε, we obtain:

|e1(t)| ≤ ∆̄/u∗ for t ∈ [0, δr], and thus:

‖y1 − w1‖[0,δ] ≤
∆̄

u∗
. (3.21)

Similarly, to determine |y2(t)− w2(t)| we apply Proposition 2 with the same matrices

A, B and C, and q = p/ε, and obtain:

‖y2 − w2‖[0,δ] ≤
∆̄

u∗
. (3.22)

By the triangle inequality for norms,

‖w1 − w2‖[0,δ] ≤ ‖w1 − y1‖[0,δ] + ‖y1 − y2‖[0,δ] + ‖y2 − w2‖[0,δ]

and therefore, using (3.20), (3.21), and (3.22), we conclude

‖y1 − y2‖[0,δ] ≥ M − 2∆̄

u∗
. (3.23)

Similarly, from

‖y1 − y2‖[0,δ] ≤ ‖y1 − w1‖[0,δ] + ‖w1 − w2‖[0,δ] + ‖w2 − y2‖[0,δ]
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we obtain that

‖y1 − y2‖[0,δ] ≤ M +
2∆̄

u∗
. (3.24)

We next show that:

∆̄ ≤ M(1− r)u∗

2
, (3.25)

which will imply that

rM = M −M(1− r) ≤ ‖y1 − y2‖[0,δ] ≤ M +M(1− r) = (2− r)M ,

which is what the proposition asserts. To estimate ∆̄, we compute the explicit solution

x(t) = u∗ + (u0 − u∗)e−t, so that ∆(t) = x(t) − u0 = (u∗ − u0)(1 − e−t). This means

that:

|∆(t)| = |u∗ − u0| (1− e−t) .

As |∆(t)| is an increasing function on [0, δ], showing that (3.25) is the same as showing

that

∆(δ) = |u∗ − u0| (1− e−δ) ≤
M(1− r)u∗

2
, (3.26)

so we prove this last statement.

To prove (3.26), we first look at the case where δ = ln p
p−1 , under the condition

M(1− r)u∗

2 |u∗ − u0|
≥ 1. (3.27)

Since 1− p
1

1−p < 1, indeed from (3.27) we have that

M(1− r)u∗

2
≥ |u∗ − u0| ≥ |u∗ − u0|

(
1− p

1
1−p

)
= |u∗ − u0| (1− e−δ) .

Next we consider the two cases for

M(1− r)u∗

2 |u∗ − u0|
< 1 . (3.28)
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depending on what the minimum between

ln

(
2 |u∗ − u0|

2 |u∗ − u0| −M(1− r)u∗

)

and

ln p

p− 1

is. (Observe that (3.28) only plays a role in guaranteeing that the expresision inside

the logarithm is positive, and hence, the logarithm is well-defined.) Consider first the

case

ln p

p− 1
≤ ln

(
2 |u∗ − u0|

2 |u∗ − u0| −M(1− r)u∗

)
. (3.29)

With δ selected as a minimum of these two expressions, we again have that ∆(δ) =

|u∗ − u0|
(

1− p
1

1−p

)
. Working with the condition given by (3.29) we have that

− ln p

p− 1
≥ ln

(
2 |u∗ − u0| −M(1− r)u∗

2 |u∗ − u0|

)
,

p
1

1−p ≥ 1− M(1− r)u∗

2 |u∗ − u0|
,

|u∗ − u0|
(

1− p
1

1−p

)
≤ M(1− r)u∗

2
,

(3.30)

which is exactly what we were supposed to prove. Finally, consider the case when

ln

(
2 |u∗ − u0|

2 |u∗ − u0| −M(1− r)u∗

)
<

ln p

p− 1
. (3.31)

In this case

|∆(δr)| = |u∗ − u0|
(

1− e− ln(
2|u∗−u0|

2|u∗−u0|−M(1−r)u∗ )
)

= |u∗ − u0|
(

1− 2 |u∗ − u0| −M(1− r)u∗

2 |u∗ − u0|

)
= |u∗ − u0|

(
M(1− r)u∗

2 |u∗ − u0|

)
=
M(1− r)u∗

2
,

which proves the claim asserted in (3.26). This completes the proof of the proposition.
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We can now use the above results to prove the main Proposition 1.

Proof of Proposition 1

Proof. Without loss of generality, we may take p < 1. Indeed, if p > 1, we simply

exchange the roles of y1 and y2, and the result is the same. Pick any r ∈ (0, 1) such

that M ′ < rM and (2 − r)M < M ′′. Such an r can be found because 2 − r → 1 as

r → 1. and define ε0(u∗, u0, p, r) as in Proposition 3. Fixing any 0 < ε ≤ ε0, we have

that xε1 = x and xε2 = px in that Proposition, so yε1 = y1 and yε2 = y2 are as there. It

follows that

rM ≤ ‖y1 − y2‖[0,δ] ≤ (2− r)M .

Thus, ‖y1 − y2‖[0,δ] ≥ rM ≥M ′ and ‖yε1 − yε2‖[0,δ] ≤ (2− r)M < M ′′, as desired.

3.4 A general comparison theorem

We now formulate a general comparison theorem that generalizes Proposition 1 to

arbitary systems. The bounds obtained are not as explicit as with the example, yet

they again show the existence of a positive number M that lower-bounds the difference

between outputs under scaling of inputs.

To achieve the greatest possible generality, our theorem will be formulated and proved

for two arbitrary singularly-perturbed non-autonomous initial-value problems (IVPs),

as follows:

(S1)


ẋ1 = f1(x1, y1, t), x1(0) = ξ1,

εẏ1 = g1(x1, y1, t), y1(0) = κ1,

(S2)


ẋ2 = f2(x2, y2, t), x2(0) = ξ2,

εẏ2 = g2(x2, y2, t), y2(0) = κ2.

(3.32)

Here, (xi, yi), (ξi, κi) ∈ X × Y , where X and Y are open sets, X ⊆ Rn and Y ⊆ Rs.

The functions fi and gi are of class C1 with respect to x, y, and t, i = 1, 2.
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The main result will be that a minimal difference exists between y1 and y2, indepen-

dently of ε > 0, provided only that the following two associated ODE systems:

(A1) Y ′1 = g1(ξ1, Y1, 0), Y1(0) = κ1, (A2) Y ′2 = g2(ξ2, Y2, 0), Y2(0) = κ2, (3.33)

have different solutions. These are the systems obtained when ε is ignored but x1 and

x2 are replaced by their initial values ξ2 and ξ1 in S1 and S2, respectively. (We use

primes ′ instead of dots to indicate time derivatives, for reasons to be clear below.) We

now explain how we can apply the theorem to scale invariance.

Suppose given a system of the generic form

ẋ = f(x, y, u),

εẏ = g(x, y, u) ,

where, generally speaking, the input as well as the state vector (x, y) are of arbitrary

dimensions. We think of the components of y as an output, and want to compare

the outputs associated to two inputs u(t) and pu(t), for t > 0, when initial states

might themselves depend on the values of u(t) and pu(t) for t < 0. This latter de-

pendence is encapsulated in the initial states (ξ1, κ1) and (ξ2, κ2) respectively. To

apply the theorem, we let f1(x1, y1, t) := f(x1, y1, u(t)), g1(x1, y1, t) := g(x1, y1, u(t)),

f2(x2, y2, t) := f(x2, y2, pu(t)), and g2(x2, y2, t) := g(x2, y2, pu(t)). The systems consid-

ered are quite arbitary, and allow for feedback and not merely feedforward structures,

as will be evident when we study examples.

Our analysis starts from the observation that the transient scale invariance error occurs

within a thin boundary layer adjacent to the perturbation moment t = 0, as can be

seen in the example shown in Fig. 3.4. To analyze nonlinear effects occurring within

small time intervals, it is convenient to use the stretched time τ = t/ε. Substituting
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t = ετ into (3.32), we obtain

(R1)


X ′1 = εf1(X1, Y1, ετ), X1(0) = ξ1,

Y ′1 = g1(X1, Y1, ετ), Y1(0) = κ1,

(R2)


X ′2 = εf(X2, Y2, ετ), X(0) = ξ2,

Y ′2 = g(X2, Y2, ετ), Y (0) = κ2,

(3.34)

where (·)′ = d(·)/dτ , and all functions are continuously-differentiable with respect to

the variables, the initial conditions and the parameter ε > 0 as discussed above.

In contrast to the singularly-perturbed systems (S1) and (S2), both systems (R1) and

(R2) are regularly-perturbed with respect to ε. It follows that the scale invariance error

should be already detected at ε = 0 in which case the systems (R1) and (R2) can be

further reduced to the associated systems described by (3.33). Observe that the system

(Ai) is obtained from (Ri), where Xi is replaced by its initial condition ξi, using the

reference IVP X ′i = 0, X(0) = ξi at ε = 0, i = 1, 2. We will denote the solutions of the

systems (Ri) by Xε
i (τ) and Y ε

i (τ), i = 1, 2.

Theorem 1. Assume that the solution (xεi (t), y
ε
i (t)) of the system (Si) is defined on

[0,∞) for all ε ∈ (0, ε0] with some ε0 > 0, i = 1, 2. Let Y 0
i (t) be the solution of the

associated system (Ai), i = 1, 2. Then, for each ε ∈ (0, ε0] and each 0 ≤ τ0 < ∞, we

have:

Mτ0 − εNτ0 ≤ ‖yε1 − yε2‖[0,ετ0] ≤ Mτ0 + εNτ0 , (3.35)

where Mτ0 and Nτ0 are defined as follows:

Mτ0 =
∣∣Y 0

2 (τ0)− Y 0
1 (τ0)

∣∣ , Nτ0 = max
0≤ε≤ε0

∥∥∥∥∂Y ε
1 (·)
∂ε

∥∥∥∥
[0,τ0]

+ max
0≤ε≤ε0

∥∥∥∥∂Y ε
2 (·)
∂ε

∥∥∥∥
[0,τ0]

.

(3.36)

Proof of the comparison theorem

Let (X0
i (τ), Y 0

i (τ)) be the solution of the system (Ri) in (3.34) at ε = 0. Then, ob-

viously, Y 0
i (τ) is the solution of the associated system (Ai) in (3.33). The following

lemma, which will be used to prove Theorem 1, relates the solution of the associated

system (Ai) with the solution of the regularly-perturbed system (Ri), i = 1, 2.
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Lemma 3. Consider the solution (Xε
i (τ), Y ε

i (τ)) of the system (Ri) in (3.34) on

a closed interval [0, τ0] for some fixed τ0 > 0. Let (Xε
i (τ), Y ε

i (τ)) be continuously-

differentiable with respect to the parameter ε ∈ [0, ε0], ε0 > 0. Then,

‖Y ε
i − Y 0

i ‖[0,τ0] ≤ Nτ0,i ε , (3.37)

where

Nτ0,i := max
0≤ε≤ε0

∥∥∥∥∂Y ε
i (·)
∂ε

∥∥∥∥
[0,τ0]

(3.38)

for all ε ∈ [0, ε0] and i = 1, 2.

Proof. The statement is an immediate consequence of the differentiability of solutions

with respect to parameters, as a function with values in the space of continuous functions

with supremum norm, which in turn follows from the Lagrange form of the Mean Value

Theorem, see for example Theorem 1 in [95]. We here provide the details. Fix any

ε0 > 0. Because the system (Ri) is of class C1 with respect to x, y, ε, and t, the solution

of the system (Ri) is also of class C1 with respect to ε, see for instance [32]. We have:

Y ε
i (τ)− Y 0

i (τ) =

(∫ 1

0

∂Y θε
i (τ)

∂ε
dθ

)
ε . (3.39)

Taking norms, and using that θε ∈ [0, ε0] when 0 < θ < 1,

∣∣∣∣∂Y ε
i (·)
∂ε

∣∣∣∣ ≤ Nτ0,i ,

(3.39) yields (3.37).

Using Lemma 3, Theorem 1 can now be proved as follows.

Proof. Consider solutions (Xε
i (τ), Y ε

i (τ)) of the system (Ri), and the corresponding

solutions Y 0
1 (τ) and Y 0

2 (τ) of the associated systems (Ai). Fix τ0 and ε0 > 0, and pick

Nτ0,i, i = 1, 2, as in Lemma 3. Let Nτ0 = Nτ0,1 + Nτ0,2. Then, it follows from (3.37)
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that

‖Y ε
1 −Y ε

2 ‖[0,τ0] ≥ ‖Y 0
1 −Y 0

2 ‖[0,τ0]−‖Y ε
1 −Y 0

1 ‖[0,τ0]−‖Y ε
2 −Y 0

2 ‖[0,τ0] ≥Mτ0−Nτ0ε (3.40)

and also

‖Y ε
1 −Y ε

2 ‖[0,τ0] ≤ ‖Y 0
1 −Y 0

2 ‖[0,τ0] +‖Y ε
1 −Y 0

1 ‖[0,τ0] +‖Y ε
2 +Y 0

2 ‖[0,τ0] ≤Mτ0 +Nτ0ε (3.41)

for all 0 < ε ≤ ε0. Let τ = t/ε, and let (xεi (t), y
ε
i (t)) = (Xε

i (t/ε), Y ε
i (t/ε)), where

t ∈ [0, ετ0]. By uniqueness of solutions, we immediately obtain that (xεi (t), y
ε
i (t)) is the

solution of the singularly-perturbed problem (Si) on the time interval [0, ετ0] for all

ε ∈ (0, ε0], so ‖yε2 − yε1‖[0,ετ0] = ‖Y ε
2 − Y ε

1 ‖[0,τ0]. It follows from (3.40) and (3.41) that

Mτ0 −Nτ0ε ≤ ‖yε2 − yε1‖[0,ετ0] ≤ Mτ0 + εNτ0 (3.42)

for all ε ∈ (0, ε0].

3.5 Examples

To illustrate Theorem 1, we consider three examples of increasing complexity: first, we

revisit the example of an incoherent feedforward loop, then study a more complicated

system in which there is feedback, and finally we look at a published model of the

chemotaxis signaling pathway of Dictyostelium discoideum.

3.5.1 Applying the general theorem to the IFFL

We first apply the results of Theorem 1 to the input-induced degradation IFFL circuit

under time-scale separation described in (3.3). To emphasize the value of the scaling p,

we shall denote the solution of the p-scaled system by (xp(t), yp(t)). The systems (S1)
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and (S2) from (3.32) become, in this example:

(S1)


ẋ1 = u∗ − x1, x1(0) = u0,

εẏ1 = x1 − u∗y1, y1(0) = 1,

(S2)


ẋp = pu∗ − xp, xp(0) = pu0,

εẏp = xp − pu∗yp, yp(0) = 1.

(3.43)

Here, u0 = u(0−) and u∗ = u(0+) = u(t), t ≥ 0. The associated systems (A1) and (A2)

in (3.33) are:

(A1) Y ′1 = u0 − u∗Y1, Y1(0) = 1, (A2) Y ′p = p(u0 − u∗Yp), Yp(0) = 1. (3.44)

In what follows we will apply Theorem 1 to the systems (R1) and (R2) in (3.34) with

the fixed values for ε0 and τ0 given by:

ε0 = min{u∗, u∗p}/2 , τ0 =
ln p

(p− 1)u∗
. (3.45)

The constants Mτ0 and Nτ0 in (3.36) guaranteed by Theorem 1 satisfy, for these choices

of ε0 and τ0:

Mτ0 =
∣∣∣1− u0

u∗

∣∣∣ |p− 1| p
p

1−p , (3.46a)

Nτ0 ≤ Ñτ0 =
4

u∗

∣∣∣1− u0

u∗

∣∣∣ (2(p+ 1)

p
+

ln p

p− 1

)
. (3.46b)

The expression for Mτ0 in (3.46a) is obtained in Lemma 2. Next we compute Nτ0 ,

using the fact that, for this example, where the dynamics are linear, each system (Ri)

in (3.34) can be solved analytically.

Denote by (x1(t; ε), y1(t; ε)) and (xp(t; ε, p), yp(t; ε, p)) the solutions of the systems (S1)

and (S2), respectively. We can find the solutions of (Ri) as:

Xε
1(τ) = u∗ + (u0 − u∗)e−ετ , Y ε

1 (τ) = 1 +
(u0 − u∗)
u∗ − ε

(
e−u

∗τ − e−ετ
)
, (3.47a)

Xε
2(τ) = p

(
u∗ + (u0 − u∗)e−ετ

)
, Y ε

2 (τ) = 1 +
p(u0 − u∗)
pu∗ − ε

(
e−pu

∗τ − e−ετ
)
. (3.47b)



74

Differentiating Y ε
2 (τ) by ε yields

∂Y ε
2 (τ)

∂ε
=

p(u0 − u∗)
pu∗ − ε

(e−pu∗τ − e−ετ
pu∗ − ε

+ τe−ετ
)
, (3.48)

and hence when p = 1 we have:

∂Y ε
1 (τ)

∂ε
=

(u0 − u∗)
u∗ − ε

(e−u∗τ − e−ετ
u∗ − ε

+ τe−ετ
)
. (3.49)

Observe that

∥∥∥∂Y ε
1 (τ)

∂ε

∥∥∥
[0,τ0]

≤ |1− u0/u
∗|

1− ε/u∗
( 2

u∗(1− ε/u∗)
+ τ0

)
, (3.50a)∥∥∥∂Y ε

2 (τ)

∂ε

∥∥∥
[0,τ0]

≤ |1− u0/u
∗|

1− ε/(pu∗)

( 2

pu∗(1− ε/(pu∗))
+ τ0

)
. (3.50b)

Since ε0 is fixed according to (3.45), then, for all 0 ≤ ε ≤ ε0, we obtain 1− ε/u∗ ≤ 1/2

and 1− ε/(pu∗) ≤ 1/2, and, hence, the estimates (3.50) can be simplified as

∥∥∥∂Y ε
1 (τ)

∂ε

∥∥∥
[0,τ0]

≤ 2
∣∣∣1− u0

u∗

∣∣∣ ( 4

u∗
+ τ0

)
, (3.51a)∥∥∥∂Y ε

2 (τ)

∂ε

∥∥∥
[0,τ0]

≤ 2
∣∣∣1− u0

u∗

∣∣∣ ( 4

pu∗
+ τ0

)
. (3.51b)

Finally, we can use the sum of the right hand sides from (3.51) to obtain Ñτ0 as:

Nτ0 ≤ Ñτ0 := 4
∣∣∣1− u0

u∗

∣∣∣ ( 2

u∗
(p+ 1)

p
+ τ0

)
. (3.52)

Using (3.45) in (3.52) followed by simple algebraic rearrangements, we obtain (3.46b).

Note that Theorem 1 gives ‖yε1 − yε2‖∞ ≥Mτ0 − εNτ0 ≥Mτ0 − εÑτ0 .

Let us next analyze this example numerically, to see how tight the estimate from the

theorem is. With the values of u0 and u∗ used in Fig. 3.3, we have:

Mτ0 = 0.2 and Ñτ0 = 23.636, for p = 2,

Mτ0 = 0.64914 and Ñτ0 = 13.169, for p = 20.

(3.53)
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Tables 3.1 and 3.2 show numerically computed estimates of maximal error obtained by

simulation of the system. This numerically computed magnitude of the scale invariance

error belongs to the interval

Mτ0 − εÑτ0 ≤ Eε ≤Mτ0 , (3.54)

where Eε is the magnitude of the scale invariance error, that is, Eε = ‖yε1 − yε2‖[0,T ] on

a short time interval. We see that Eε = Mτ0 +O(ε). The theoretical predicition is seen

numerically to be very tight.

ε Eε M −Nε
10−2 0.19803 -0.03636
10−3 0.199800 0.176364
10−4 0.199980 0.197636
10−5 0.199997 0.199763
10−6 0.199999 0.199976

Table 3.1: A numerical estimation of the magnitude Eε of the scale invariance error, as
a function of the parameter ε, and its comparison with the theoretical prediction lower
bound Mτ0 − εNτ0 , where the values of Mτ0 and Nτ0 are given in (3.53). The scaling is
p = 2.

ε Eε M −Nε
10−2 0.647580 0.517450
10−3 0.648983 0.635971
10−4 0.649124 0.647823
10−5 0.649138 0.649008
10−6 0.649139 0.649126

Table 3.2: A numerical estimation of the magnitude Eε of the scale invariance error, as
a function of the parameter ε, and its comparison with the theoretical prediction lower
bound Mτ0−εNτ0 , where the values of Mτ0 and Nτ0 are given in (3.53). The parameter
p is selected as p = 20.
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3.5.2 A simple feedback system

The next example is the nonlinear system (3.55) obtained by adding a feedback term

to the IFFL already analyzed, in the form of a y-dependent degradation of x:

ẋ = −xy + u∗, x(0) = u0, (3.55a)

εẏ = x− u∗y, y(0) = 1. (3.55b)

Since an analytical solution cannot be obtained for the nonlinear system (3.55), we

perform a numerical study. Remarks on how one would proceed to analyze the solution

of this system using the boundary function method from [111] are given in Section 3.6,

and this example will be revisited in Section 3.6.4. Here, we wish to compute the

scale invariance error as a function of the parameter ε at the given fixed value of the

scaling factor p. Because the scale invariance error is a function of two equally important

parameters ε and p, the values of ε and p have been sampled in the ranges [0.0005, 0.002]

and [0.5, 3.5], respectively. The corresponding 2D and 3D plots are presented in Fig. 3.7.

(a) (b)

Figure 3.7: Heatmap and a 3D plot representing the largest absolute value of the
difference between the two outputs y2(t) and y1(t). The parameter ε was sampled
in the range [0.0005, 0.002] and p was sampled in the range [0.5, 3.5]. 100 different
parameters for each were selected.

We observe from Fig. 3.7 that independently of the value of the parameter ε, the

magnitude of the scale invariance error remains finite as ε → 0, as predicted by the
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Theorem.

3.5.3 A chemotaxis signaling pathway of D. discoideum

The analysis of the approximate scale invariance property can also be carried out for a

more complex mathematical model describing the adaptation kinetics in a eukaryotic

chemotaxis signaling pathway of Dictyostelium discoideum [102]. The system has been

previously introduced in Chapter 2. Conceptually, and ignoring intermediates, we may

think of this signaling pathway as an incoherent feedforward loop as shown in Fig. 3.8.

Figure 3.8: A simplified representation of the adaptation signaling pathway for D.
discoideum.

As the parameter ε is not explicitly given, we sampled parameters kRAS and k−RAS

in the range [100, 5000] sec−1, and simulated the six-dimensional system when using

a step from 1 to 2 nM of cAMP, and also when stepping from 2 to 4 nM. For the

sampled parameters we computed |y1(t)− y2(t)|, where y1(t) is a response of RasGTP

when stepping from 1 to 2 nM and y2(t) stepping from 2 to 4 nM (scale factor p = 2).

The numerical results are shown on Figures 3.9 and 3.10. Observe that, as expected

from theory, there is a minimal value of the error, for each fixed p, as ε→ 0.
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Figure 3.9: 3D plot representing the largest absolute value of the difference between
the two outputs y1(t) and y2(t). The parameters kRAS and k−RAS were each sampled
in a manner described in Fig. 3.10.
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Figure 3.10: Heatmap representing the largest absolute value of the difference between
the two outputs y1(t) and y2(t) (middle panel). Top and bottom corners were plotted
separately to demonstrate the effect of no-zero scale invariance error. The parameters
kRAS and k−RAS were each sampled in the range [100, 5000], with a sampling rate
5000−100

400 .

3.6 Asymptotic expansions

The previous analysis is useful when one can compute explicitly solutions to both the

original and the p−scaled system. We next sketch briefly how one may obtain estimates

through the use of tools from singular perturbation theory.

Consider solutions (x(t; ε), y(t; ε)) and (z(t; ε, p), w(t; ε, p)) of the following two initial
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value problems:

ẋ = f(x, y, u(t)), x(0) = σ1(u0),

εẏ = g(x, y, u(t)), y(0) = σ2(u0),
(3.56)

and

ż = f(z, w, pu(t)), z(0) = σ1(pu0),

εẇ = g(z, w, pu(t)), w(0) = σ2(pu0).
(3.57)

where the assumptions are the same as before, and σ1(u0) and σ2(u0) are the pre-

adapted steady states for x and y, when an input u0 has been applied. Similarly, for z

and w. As before, our goal is to investigate the behavior of the scale-invariance error

function E(t; ε, p) defined as:

E(t; ε, p) = w(t; ε, p)− y(t; ε) (3.58)

on t, p, and ε as ε → 0+. More precisely, our objective will be to obtain accurate

asymptotic series for the difference E(t; ε) in the small parameter ε.

As in [87], we study the class of systems which satisfy the following homogeneity prop-

erties:

σ(pu) = pσ(u),

f(px, y, pu) = pf(x, y, u),

g(px, y, pu) = pg(x, y, u).

(3.59)

Then (3.57) can be rewritten in the form:

ż = f(z, w, pu(t)), z(0) = pσ1(u0),

εẇ = g(z, w, pu(t)), w(0) = σ2(u0).
(3.60)

To estimate a lower bound for the scale invariance error in cases where an analytical

solution of the system of ODEs cannot be found, it is convenient to employ the theory

of singular perturbations [72, 111, 45], and in particular, make use of the method of

boundary functions [111]. We begin the analysis of the error by stating some basic results

from this method, in Sections 3.6.2 and 3.6.3, and also we introduce results concerning

the scaling relationship between solutions of the original and p-scaled systems in Section
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3.6.1.

3.6.1 Scaling relationships between solutions in reference and p-fold

perturbed systems

Since our objective will be to obtain accurate asymptotic series for the difference E(t; ε)

in the small parameter ε, we consider the original (or reference) system (3.56), where

the parameter ε is replaced by a new p-scaled parameter εp = ε/p for some p > 0.

Lemma 4. I. Let (x(t; ε), y(t; ε)) be the solution of the original system (3.56), depending

continuously on the parameter ε, that is, x(t; ε) and y(t; ε) are continuous functions of

two arguments, t and ε. Assume that we seek the solution (z(t; ε), w(t; ε)) of the p-

scaled system (3.57). Then (z(t; ε), w(t; ε)) can be found from the following scaling

transformations applied simultaneously to the state variable x and the parameter ε,

z(t; p, ε) = px(t; p−1ε),

w(t; p, ε) = y(t; p−1ε).
(3.61)

II. Conversely, given the solution (z(t; ε), w(t; ε)) of the p-scaled system (3.57), the

scaling relationships (3.62) can be used to find the corresponding solution (x(t; ε), y(t; ε))

of the original system (3.56),

x(t; ε) = p−1z(t; pε),

y(t; ε) = w(t; pε).
(3.62)

Proof. After differentiation of the first equality in (3.61) with respect to t, and then

using both (3.56), where ε is replaced by ε/p, and (3.59), we obtain

ż(t; p, ε) = pẋ(t; p−1ε)

= pf(x(t; p−1ε), y(t; p−1ε), u(t))

= f(px(t; p−1ε), y(t; p−1ε), pu(t))

= f(z(t; ε), w(t; ε), pu(t)).

(3.63)

We immediately conclude from (3.63) that z(t; ε) satisfies the first equation in (3.60).
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By analogy, after differentiation of the second equality of (3.61) with respect to t, we

obtain

ẇ(t; p, ε) = ẏ(t; p−1ε)

= g(x(t; p−1ε), y(t; p−1ε), u(t))/(ε/p)

= ε−1pg(x(t; p−1ε), y(t; p−1ε), u(t))

= ε−1g(px(t; p−1ε), y(t; p−1ε), pu(t))

= ε−1g(z(t; ε), w(t; ε), pu(t)).

(3.64)

After multiplication of (3.64) with ε, we can immediately conclude that w(t; ε) satisfies

the second equation of the IVP (3.60). The proof of Lemma 4 follows.

3.6.2 Asymptotic expansions

For any fixed integer N > 0, we seek asymptotic expansions in the standard form [111],

xN (t; ε) =

N∑
k=0

εk
(
x̄k(t) + X̄k(t/ε)

)
, (3.65)

yN (t; ε) =

N∑
k=0

εk
(
ȳk(t) + Ȳk(t/ε)

)
. (3.66)

Here, x̄k(t) and ȳk(t) are called regular terms. Let τ be a stretched time, τ = t/ε.

Then, X̄k(τ) and Ȳk(τ) are called boundary functions (or, singular terms). All terms

are independent of ε.

Lemma 5. A formal expansions in ε for the p-scaled system (3.60) can be obtained

from (3.65)-(3.66) obtained for the original system (3.56), using the change of variables

(3.61) as defined in Lemma 4,

zN (t; p, ε) =
N∑
k=0

(ε
p

)k(
x̄k(t) + X̄k(pt/ε)

)
, (3.67)

wN (t; p, ε) =
N∑
k=0

(ε
p

)k(
ȳk(t) + Ȳk(pt/ε)

)
. (3.68)

Proof. The proof follows immediately from (3.61), see Lemma 4.
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The theory of singular perturbations [111] provides conditions under which (3.65)-(3.66)

and (3.67)-(3.68) approximate asymptotically the solution (x(t; ε), y(t; ε)) of (3.56) and

(z(t; p, ε), w(t; p, ε)) of (3.60), respectively, with the accuracy O(εN+1) as ε→ 0. Using

the boundary function algorithm one can show that these are asymptotic series, under

reasonable regularity assumptions on f and g. We will also assume that the equation

g(x, y, u) = 0 has a unique solution y = h(x, u) for all (x, u) in an open domain of

interest.

3.6.3 The boundary function method

We customize the asymptotic expansion algorithm from [111, Sect.2.1.2, p.20] with

the objective to derive all asymptotic estimates adapted to our problem explicitly.

Additionally, we would like to obtain a lower bound for the scale invariance error, for

both reference (3.56) and p-scaled (3.60) systems. To estimate a lower bound for the

error, it is enough to compute the zeroth order terms:

x(t; ε) ∼ x̄0(t) + X̄0(t/ε) +O(ε),

y(t; ε) ∼ ȳ0(t) + Ȳ0(t/ε) +O(ε),
(3.69)

where x̄0(t) and ȳ0(t) are the zeroth-order regular terms, and X̄0(τ) and Ȳ0(τ) are

called boundary functions (or, singular terms). Similar considerations would apply to

higher-order expansions. One can then show, using the homogeneity properties (3.59),

that

z(t; ε, p) ∼ x̄0(t) + X̄0(pt/ε) +O(ε),

w(t; ε, p) ∼ ȳ0(t) + Ȳ0(pt/ε) +O(ε),
(3.70)

We start from:

x0(t; ε) = x̄0(t) + X̄0(t/ε),

y0(t; ε) = ȳ0(t) + Ȳ0(t/ε).
(3.71)

Because we seek singular boundary functions X̄0(t/ε) and Ȳ0(t/ε) rapidly decaying as

t→∞, the corresponding boundary conditions at infinity are required,

X̄0(∞) = 0 and Ȳ0(∞) = 0. (3.72)
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For simplicity, we separate slow and fast time scales in (3.71) explicitly by formally

introducing the stretched time τ = t/ε for the singular terms in (3.71), and obtain

x0(t; τ) = x̄0(t) + X̄0(τ),

y0(t; τ) = ȳ0(t) + Ȳ0(τ).
(3.73)

To compute x̄0(t), X̄0(τ), ȳ0(t), and Ȳ0(τ), we substitute (3.73) into (3.56),

˙̄x0(t) + ε−1X̄ ′0(τ) = f(x̄0(t) + X̄0(τ), ȳ0(t) + Ȳ0(τ, u(t)),

ε ˙̄y0(t) + Ȳ ′0(τ) = g(x̄0(t) + X̄0(τ), ȳ0(t) + Ȳ0(τ), u(t)).
(3.74)

Here ˙(·) = d(·)/dt and (·)′ = d(·)/dτ . Using (3.72), we additionally obtain

x̄0(0) + X̄0(0) = x0, X̄0(∞) = 0,

ȳ0(0) + Ȳ0(0) = y0, Ȳ0(∞) = 0.
(3.75)

Rewrite (3.74) in the equivalent form, see [111],

˙̄x0(t) + ε−1X̄ ′0(τ) = f̄(t; ε) + F̄ (τ ; ε),

ε ˙̄y0(t) + Ȳ ′0(τ) = ḡ(t; ε) + Ḡ(τ ; ε),
(3.76)

f̄(t; ε) = f(x̄0(t), ȳ0(t), u(t)),

F̄ (τ ; ε) = f(x̄0(ετ) + X̄0(τ), ȳ0(ετ) + Ȳ0(τ), u(ετ))

−f(x̄0(ετ), ȳ0(ετ), u(ετ)),

(3.77)

ḡ(t; ε) = g(x̄0(t), ȳ0(t), u(t)),

Ḡ(τ ; ε) = g(x̄0(ετ) + X̄0(τ), ȳ0(ετ) + Ȳ0(τ), u(ετ))

−g(x̄0(ετ), ȳ0(ετ), u(ετ)).

(3.78)

We expand f̄(t; ε), F̄ (τ ; ε), ḡ(t; ε), and Ḡ(τ ; ε) into the corresponding Taylor series at

ε = 0 in the right-hand sides of (3.76), and, then, equate coefficients at like powers of

ε on both sides of (3.76), separately for the coefficients depending on t and τ .

It follows from (3.76) and (3.75) that X̄0(τ) ≡ 0. For the regular leading terms x̄0(t)
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and ȳ0(t), we obtain

˙̄x0 = f(x̄0, y0, u(t)), x̄0(0) = x0,

0 = g(x̄0, y0, u(t)).
(3.79)

Let ȳ0 = h(x̄0, u(t)) be the unique root of the scalar algebraic equation in (3.79) .Using

ȳ0 = h(x̄0, u(t)) in the differential equation (3.79), we obtain the reduced system

˙̄x0 = f(x̄0, h(x̄0, u(t)), u(t)), x̄0(0) = x0, t ∈ [0, T ]. (3.80)

Let x̄0(t) be the unique solution of the IVP (3.80). Then, y0(t) = h(x̄0(t), u(t)).

After setting ε = 0 and equating terms depending on τ in the second equation of (3.76),

we obtain

Ȳ ′0 = g(x0, y
∗ + Ȳ0, u

∗)− g(x0, y
∗, u∗), Ȳ0(0) = y0 − ȳ0(0). (3.81)

Recall that ȳ0(0) = h(x(0), u(0)) = h(x0, u
∗) = y∗ and u∗ = u(0+). Hence, Ȳ0(0) =

y0−y∗ = ∆y in (3.81). We know, in general, that y0 is the preadapted initial condition,

and hence obtained from y0 = h(x0, u0). To have (3.71), we need to replace τ by t,

τ = t/ε, in the solution of (3.81), that is, Ȳ0(τ). Additionally, we obtain

z̄0(t; ε, p) = px̄0(t),

w̄0(t; ε, p) = ȳ0(t) + Ȳ0(pt/ε).
(3.82)

Using (3.69) and (3.70), and recalling the definition (3.58) of the SI-error E(t; ε, p), we

conclude that the zeroth-order approximation E0(t; ε, p) of E(t; ε, p) is:

E0(t; ε, p) = E0(t/ε; p) = Ȳ0(pt/ε)− Ȳ0(t/ε). (3.83)

Obviously, E(t; ε, 1) ≡ E0(t/ε) ≡ 0 at p = 1. Under uniform stability assumptions on g,

one can derive, using the theory of asymptotic expansions, an estimate of the following

form:

‖E0(·; ε, p)‖T ≥M0, (3.84)
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where

M0 = sup
τ∈[0,∞]

∥∥Ȳ0(pτ)− Ȳ0(τ)
∥∥ , (3.85)

and

M0 = O
(
φ(u0, u

∗) |αp− 1| (αp)αp/(1−αp)
)

(3.86)

where α is a positive constant independent of ε and p, φ(u0, u
∗) is a factor that equals

zero when u0 = u∗. It follows that E = E0 +O(ε) always satisfies an estimate similar

to the one in our simple example (3.6). This is guaranteed also by our general Theorem

1 in Section 3.4.

3.6.4 Feedback example revisited

Consider a system given by:

dx
dt = −xy + u,

εdydt = x− uy,
(3.87)

with the initial conditions: x(0) = u0, y(0) = y0. For this example we will derive

both the first- and the second-order terms in the expansions, to demonstrate the how

complexity of the calculations increases drastically even for this simple example, and to

point out the power of the application of our Thoerem 1 in estimating the irreducible

error. The solutions of (3.87) can be represented in terms of expansions as:

x(t, ε) = x̄0(t) + εx̄0(t) + X̄0( tε) + εX̄1( tε),

y(t, ε) = ȳ0(t) + εȳ1(t) + Ȳ0( tε) + εȲ1( tε).
(3.88)

Applying the expansions (3.88) to (3.87), and denoting t
ε = τ we have

˙̄x0(t) + ε ˙̄x1(t) + 1
ε

˙̄X0(τ) + ˙̄X1(τ) =

−
(
x̄0(t) + εx̄1(t) + X̄0(τ) + εX̄1(τ)

)(
ȳ0(t) + εȳ1(t) + Ȳ0(τ) + εȲ1(τ)

)
+ u =

−
[
ȳ0(t)x̄0(t) + εx̄1(t)ȳ0(t) + ȳ0(ετ)X̄0(τ) + εȳ0(ετ)X̄1(τ) + εȳ1(t)x̄0(t) +O(ε2)

+εȳ1(ετ)X̄0(τ) +O(ε2) + Ȳ0(τ)x̄0(ετ) + εȲ0(τ)x̄1(ετ) + Ȳ0(τ)X̄0(τ) + εȲ0(τ)X̄1(τ)

+εȲ1(τ)x̄0(ετ) +O(ε2) + Ȳ1(τ)X̄0(τ) +O(ε2)
]

+ u
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Clearly, 1
ε

˙̄X0(τ) = 0, and therefore:

X̄0(τ) = 0. (3.89)

The system simplifies to:

˙̄x0(t) + ε ˙̄x1(t) + ˙̄X1(τ) = −
[
ȳ0(t)x̄0(t) + εx̄1(t)ȳ0(t) + εȳ0(ετ)X̄1(τ) + εȳ1(t)x̄0(t)

+Ȳ0(τ)x̄0(ετ) + εȲ0(τ)x̄1(ετ) + εȲ0(τ)X̄1(τ) + εȲ1(τ)x̄0(ετ)
]

+ u =

−
[
ȳ0(t)x̄0(t) + εx̄1(t)ȳ0(t) + εȳ0(0)X̄1(τ) + εȳ1(t)x̄0(t) + Ȳ0(τ)[x̄0(0) + εx̄′0(0)]

+εȲ0(τ)x̄1(0) + εȲ0(τ)X̄1(τ) + εȲ1(τ)x̄0(0)
]

+ u

The previous equation is equivalent to the following set of ODEs:

˙̄x0(t) = −ȳ0(t)x̄0(t) + u,

˙̄x1(t) = −x̄1(t)ȳ0(t)− ȳ1(t)x̄0(t),

˙̄X1(τ) = −x̄0(0)Ȳ0(τ).

(3.90)

Using the initial conditions for x we have:

x̄0(0) + εx̄1(0) + X̄0(0) + εX̄1(0) = u0, (3.91)

which decouples into:

x̄0(0) + X̄0(0) = u0,

x̄1(0) + X̄1(0) = 0.

Since we already know from (3.89) that X̄0(0) = 0 we have that:

x̄0(0) = u0,

X̄1(0) = −x̄1(0).
(3.92)

Now let’s solve the set of equations for y :

ε ˙̄y0(t) + ε2 ˙̄y1(t) + ˙̄Y0(τ) + ε ˙̄Y1(τ) =

x̄0(t) + εx̄0(t) + X̄0(τ) + εX̄1(τ)− uȳ0(t)− εuȳ1(t)− uȲ0(τ)− εuȲ1(τ)
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Thus, we get the following set of differential equations:

x̄0(t)− uȳ0(t) = 0 , ˙̄y0(t) = x̄1(t)− uȳ1(t),

˙̄Y0(τ) = −uȲ0(τ) , ˙̄Y1(τ) = X̄1(τ)− uȲ1(τ),
(3.93)

which yield:

ȳ0(t) = x̄0(t)
u , ȳ1(t) = x̄1(t)− ˙̄y0(t)

u ,

Ȳ0(τ) = Ȳ0(0)e−uτ .
(3.94)

Using the initial conditions for y we have:

ȳ0(0) + εȳ1(0) + Ȳ1(0) + εȲ1(0) = y0,

which decouples into:

ȳ0(0) + Ȳ0(0) = y0 , ȳ1(0) + Ȳ1(0) = 0.

Hence,

ȳ0(0) + Ȳ0(0) = y0 , Ȳ1(0) = −ȳ1(0). (3.95)

From (3.90) we have:

˙̄x0(t) =
x̄20(t)
u + u =

x̄20(t)+u2

u ,

dx̄0(t)
u2−x̄20(t)

= dt
u ⇒

x̄0(t)∫
x̄0(0)

dx̄0(t)
(x̄0(t)−u)(x̄0(t)+u) =

t∫
0

−dt
u

Using that x̄0(0) = u0,

x̄0(t) = u(e2t+k)
(e2t−k)

=
u(e2t+

u0−u
u0+u

)

(e2t−u0−u
u0+u

)
, k = u0−u

u0+u . (3.96)

Applying the second equation from (3.94) to (3.90) we obtain:

˙̄x1(t) = −2ȳ0(t)x̄1(t) + x̄0(t) ˙̄x0(t)
u2

(3.97)
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From (3.96),

˙̄x0(t) = − 4uke2t

(e2t−k)2
and x̄0(t) ˙̄x0(t)

u2
= −4ke2t(e2t+k)

(e2t−k)3

Substituting in (3.97), and using (3.94) and (3.96)

˙̄x1(t) = −2(e2t+k)
(e2t−k)

x̄1(t)− 4ke2t(e2t+k)
(e2t−k)3

x̄1(t) =
e2t(x̄1(0)−2x̄1(0)k+4k ln(1−k)+4kt+x̄1(0)k2−4k ln(e2t−k))

(k−e2t)2
(3.98)

From (3.94):

ȳ1(t) =
x̄1(t)+ 4ke2t

(e2t−k)2

u

Using (3.98):

ȳ1(t) =
e2t
(
x̄1(0)(1−k)2+4kt+4k ln( 1−k

e2t−k
)
)

+4ke2t

u(k−e2t)2
(3.99)

The initial condition for ȳ1 and ȳ0 can be expressed as:

ȳ1(0) = x̄1(0)(1−k)2+4k
u(1−k)2

= x̄1(0)
u + 4k

u(1−k)2
, ȳ0(0) = x̄0(0)

u = u0
u

(3.100)

Using (3.94), (3.95):

Ȳ0(τ) = Ȳ0(0)e−uτ = (y0 − ȳ0(0))e−uτ = (y0 − u0
u )e−uτ (3.101)

˙̄X1(τ) = −x̄0(0)Ȳ0(τ) = −u0(y0 − u0
u )e−uτ ,

X̄1(τ) = −x̄1(0) + u0
u (y0 − u0

u )(e−uτ − 1).
(3.102)

Combining (3.93) and (3.102)

˙̄Y1(τ) = k3 + k2e
−uτ − uȲ1(τ) (3.103)

where k2 = u0
u (y0 − u0

u ) and k3 = −x̄1(0)− k2. The solution is given by:

Ȳ1(τ) = Ȳ1(0)e−uτ + x̄1(0)+k2
u e−uτ + k2τe

−uτ − x̄1(0)+k2
u

(3.104)
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From (3.95):

Ȳ1(0) = −ȳ1(0) = − x̄1(0)
u − 4k

u(1−k)2
(3.105)

Next, in order to find the missing initial condition x̄1(0) we need to take into account

that the boundary functions vanish as τ →∞. For Ȳ1(τ) from (3.104) we have Ȳ1(∞) =

− x̄1(0)+k2
u = 0. Hence,

x̄1(0) = −k2 = u0
u (u0u − y

0). (3.106)

Similarly, if we require X̄1(∞) = 0 the same result follows. From (3.106), and the

expressions for k, k2 and k3, the complete solution of the problem can be written as:

ȳ0(t) = (u0+u)e2t+u0−u
(u0+u)e2t−(u0−u)

, Ȳ0( tε) = (y0 − u0
u )e−

ut
ε ,

ȳ1(t) =
4e2t
[
u0u(

u0
u
−y0)+((u0)2−u2)

{
t+ln

(
2u

(u0+u)e2t−(u0−u)

)
+1

}]
u((u0+u)e2t−(u0−u))2

,

Ȳ1( tε) =
(
− u0

u2
(u0u − y

0)− (u0−u)(u0+u)
u3

)
e−

ut
ε + u0

u (y0 − u0
u ) tεe

−ut
ε .

(3.107)

Applying Lemma (5) we additionally obtain

z̄(t; p, ε) = px̄0(t) +
ε

p

(
x̄1(t) + X̄1(pt/ε)

)
, (3.108)

w̄(t; p, ε) = ȳ0(t) + Ȳ0(pt/ε) +
ε

p

(
ȳ1(t) + Ȳ1(pt/ε)

)
. (3.109)

Ignoring the first order terms, we

ȳ0(t) =
(u0 + u)e2t + u0 − u

(u0 + u)e2t − (u0 − u)
, x̄0(t) = uȳ0(t) ,

Ȳ0(
t

ε
) = (y0 − u0

u
)e−

ut
ε ,

z̄(t; p, ε) = px̄0(t) , w̄(t; p, ε) = ȳ0(t) + Ȳ0(pt/ε).
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Chapter 4

Estimation of a rate function of a nonhomogeneous

Poisson process (NHPP)

It is of great importance to quantify adaptation and scale-invariance properties for an

arbitrary class of experimentally controlled stimuli, to help us understand the molecular

mechanisms which these properties entail, [65]. Novel experimental methods based on

microfluidics devices provide powerful tools to design a controlled experiment where a

behavior of individual cells and a population of cells can be assayed.

Hence, motivated by experimental challenges, and the current work we are pursuing

with our experimental collaborators in the design of microfluidic devices that will allow

the same (designed) inputs to be fed to a population of chemotactic bacteria, we use

microscope-based observations of tumbling events for estimation of the tumbling rate

(which is a function of chemotactic protein concentrations). In the case of bacteria

E. coli, the schematic representing the estimation problem we are posing here is given

on Fig. 1.5, where we are interested in estimating the concentration of CheY − P ,

and consequently due to linear relationship between them, the concentration of active

kinease CheA, a(t), in the model (1.4). Unlike in the example for E. coli, where direct

input/output relationship has already been established through experiments based on

FRET, for many bacterial species of interest FRET experiments which require extensive

genetic modifications are not available, and alternative methods for assessing their

behavior must be used.

In this chapter we are looking at the estimation problem arising from modeling such

biological phenomena in which discrete measurements such as “spikes” or “tumbles”

are measured, and the objective is to estimate the underlying rate of a nonhomogeneous

Poisson process (NHPP) that describes these events.
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In our applications, a small number of realizations is available, through single-cell

measurements of a population of bacteria. Current microfluidic technology, described

in Chapter 1, allows us to assume that internal variables (protein concentrations) in

the system behave reasonably identically, so that the only source of randomness is in a

jump process driven by these internal variables. Superficially analogous problems have

been studied in various disciplines.

In the statistics and signal processing literature, this problem has been studied for

certain special classes of signals. We will discuss several groups of commonly used

methods from the literature, divided into subgroups: methods using the cumulative

intensity function (nonparametric methods), parametric models, and methods from

neuroscience which use a Bayesian framework.

Parametric models for the rate of a nonhomogeneous Poisson process, λ(t), have been

very frequently assumed in the literature. In that case, one could look for a maximum

likelihood (ML) estimate of parameters. This amounts essentially to a maximum a

posteriori (MAP) estimate with a uniform distribution on parameters as prior [46].

However, there is no natural probabilistic structure in our applications to suggest the

most natural prior; even a conjugate prior to the given Poisson model would not be

necessarily justified.

On the other hand, often the ultimate objective is control, in which case estimates of

current states (and specifically of the current λ(t)) are more important than estimates of

the entire history. This suggests the use of observers, or more generally Kalman filters,

as done routinely in control theory, to obtain estimates that asymptotically improve.

A problem in which a diffusion (stochastic differential equation) describes the evolution

of internal parameters and a NHPP is observed, is analyzed in [110], [13]. Our problem

is substantially different, because no randomness is assumed in the internal variables,

but repeated realizations are observed.

In the next subsections, we highlight most commonly used approaches, and indicate

the reasons why we could not adapt them for our purposes.
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4.1 Methods used in the literature

4.1.1 Maximum likelihood results

In statistics literature, (see for instance [50]) the unknown rate function λ(t) of a NHPP

is modeled as an exponential-polynomial-trigonometric function with multiple periodic-

ities. Long term evolutionary trends are represented by polynomial terms, and potential

periodic effects are introduced by the appropriate number of harmonics of the corre-

sponding phases, frequencies and magnitudes. The positivity condition of is guaranteed

by taking an exponential of it; i.e.

λ(t) = eh(t;m,p,Θ),

h(t;m, p,Θ) =
m∑
i=0

αit
i +

p∑
j=1

γksin(ωkt+ φk)
(4.1)

with Θ = [α0, α1, · · · , αm, γ1, · · · γp, φ1, · · ·φp, ω1, · · ·ωp]. Then one looks for log-likelihood

function of Θ, given N(T ) = n, total number of event by time T , and t = (t1, t2, · · · tn),

event (arrival) times.

L(Θ|n, t) =

m∑
i=0

αiT
i +

p∑
k=1

n∑
j=1

γksin(ωkt+ φk)−
∫ T

0
eh(z;m,p,Θ)dz

The authors in [50, 48, 49] provide a method for the inference of the initial parameter

estimates; initial estimates for (γ’s and φ’s ) were found using Fourier analysis, moment

matching procedure were used for identifying the polynomial coefficients, and a likeli-

hood ratio test is used to decide on the number of polynomial terms. The importance

of good choice of initial guesses lies in the fact that Newton-Raphson method can be

unstable when it is applied to the system of likelihood equations outside a small neigh-

borhood of the optimal solution. However, the methods applied in [50] do not guarantee

that the initial estimates will converge to a global extremum of the log-likelihood func-

tion.

In the communications literature, the problem of estimating the rate function of a
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NHPP arises in problems of modeling call arrival processes based on hundreds of mil-

lions of calls, which is of great importance for dynamic resource allocation, and mini-

mization of call blocking probability [63, 3]. Similarly to [50, 48, 49] the authors propose

a parametric form of the rate function λ(t), specifically the one that describes Poisson

regression model, with the positivity condition satisfied by taking the logarithm. Call

arrival data are aggregated into m non overlapping time intervals of a predefined du-

ration in seconds. Assuming that total number of calls within each time interval are

denoted by n1, n2, · · · , nm, where the intervals (a1, a2], (a2, a3], · · · , (am−1, am), then

the likelihood, and the log-likelihood functions are given by

L = exp

{
−

m∑
i=1

∫ ai+1

ai

λ(t)dt

}
m∏
i=1

(
∫ ai+1

ai
λ(t)dt)ni

ni!
,

l =
m∑
i=1

nilog

∫ ai+1

ai

λ(t)dt−
m∑
i=1

∫ ai+1

ai

λ(t)dt

(4.2)

4.1.2 Methods that use cumulative intensity function of NHPP

Numerous papers, see for example [54, 7, 53] propose nonparametric techniques for

estimating the cumulative intensity function of a NHPP, Λ(t) =
∫ t

0 λ(s)ds, on the time

interval [0, T ], as a variable of interest. In [53] the authors propose the piecewise-linear

estimator of the cumulative intensity function between the time values t(1), t(2), · · · , t(n),

which represent the order statistics of the superposition of the k realizations, as

Λ̃(t) =
i

k
+

t− t(i)
k(t(i+1) − t(i))

,

where λ(t) > 0, ∀t ∈ (0, T ], and λ(t) continuous for almost all t ∈ (0, T ]. The cu-

mulative intensity function Λ(t) is estimated from k (overlapping or non-overlapping)

realizations on (0, T ], with ni i = 1, 2, · · · k being the number of observations in the

i−th realization, and n =
∑k

i=1 ni being the total number of observations. For this es-

timator, a strong consistency result and an asymptotically valid 100(1−α)% confidence
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interval for Λ(t), ∀t ∈ (0, T ] were shown, as

Λ̃(t)→ Λ(t),

with probability one as k →∞,∀t ∈ (0, T ], and

Λ̂(t)− zα/2

√
Λ̂(t)

k
< Λ(t) < Λ̂(t) + zα/2

√
Λ̂(t)

k
,

where zα/2 is the 1 − α/2 fractile of the standard normal distribution. However these

methods fail to provide good estimates of the derivative of Λ(t), shown on the right

panel of Fig. 4.1. Our interest, recall, is on λ(t), computed as 1
k(t(i+1)−t(i))

. Similar

(a) Cumulative Intensity function (b) Rate of a Poisson Process

Figure 4.1: Piecewise linear estimator of the Cumulative Intensity function that uses
k=8 realizations. mesh size= 10−4,n = 143, i.e ni = {16, 22, 23, 16, 19, 20, 15, 12},
i = 1, · · · , 8

results, that we have initially attempted, can be obtained by finely sampling the time

axis, and for every time point on the grid, find the closest spike, and compute the

average wait time until a spike occurs across all realizations. Then the rate λ(t) can

be found for every time point on the grid by computing the inverse of the average wait

time at that time point, shown on Fig. 4.2a.

The method developed in [63] deals with the estimation of an arrival rate function λ(t) =

a + bt, t ∈ [0, T ] by dividing the entire time interval into M equispaced subintervals

(bins), and observing an average number of events in each. The authors propose several
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methods for finding the estimates â and b̂, namely, ordinary least squares, iterative

weighted least squares and maximum likelihood method, and elaborate on the effect

of the time interval length T, and number of measurement subintervals M , but do

not provide the optimal length of the subinterval. This method works well for slowly

changing λ(t), however it fails in cases of fast-varying signals and would not be a good

starting choice, especially in cases where we have some prior information about the

signal we are estimating. Another possibility, we have developed, is to use what we

(a) (b)

Figure 4.2: Modified piecewise-linear method, k = 20 realizations (a), and Naive (piece-
wise constant) method, k = 20, M = 50 (b)

will call “the naive method,” in which one observes the average number of events r

in a bin containing a time t, and estimate λ(t) as r
bt , where b is a predetermined bin

size. As an example of an application of this method, we obtain an estimate shown

in Fig. 4.2b. In general, finding an optimal bin size is a difficult problem (see [85]).

Estimation of the mean-value function of NHPP with the rate parametrized as (4.1)

has also been analyzed in [48]. The mean-value function of NHPP, µ(t) represents the

expected number of arrivals of the Poisson Process for all t ≥ 0,

µ(t) = E[N(t)] =

∫ t

0
λ(s)ds.

A weighted least square method was used, i.e. µ(τi; Θ) = E[µ(τi; Θ)]+εi , i = 1, 2, · · ·

where τi are random arrival times, and εi random errors, and assumed identically

distributed, and independent, standard method of minimization of the error of the
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weighted sum of squares can be applied to find the underlying parameters, namely

SSE(Θ̂) = εT (Θ̂)V −1ε(Θ̂)

with

εi(Θ̂) = µ(τi; Θ̂)− E[µ(τi; Θ̂)] , i = 1, 2, · · · , N(T ).

Denoting by u(Θ̂) = V −1/2ε(Θ̂) the vector of transformed residuals, the weighted least-

square estimate of the NHPP parameter vector Θ is given by:

Θ̂WLS = arg min
Θ̂

N(T )∑
i=1

u2
i (Θ̂).

Looking at the i−th and the last transformed residual

ui(Θ̂) = µ(τi; Θ̂)

√
i+ 1

i
− µ(τi+1; Θ̂)

√
i

i+ 1
,

uN(T )(Θ̂) =

√
1

N(T )

(
µ(τN(T ); Θ̂)−N(τN(T )

)
,

(4.3)

we see that all the information about the discrepancy between the empirical and the

and the fitted mean-value of the is completely eliminated from the first N(T )− 1. The

error in the estimate was demonstrated on examples. The proposed method is based on

ordinary least squares and variance stabilizing transformations. The variance-stabilized

OLS estimate is

Θ̂OLS = arg min
Θ̂

N(T )∑
i=1

(√
µ(τi; Θ)−

√
i− 1

4

)2

.

Again, looking for the numerical MLE estimate can be a tedious procedure leading to

potentially incorrect estimates. Also, looking for the integral of the obtained quantity,

which is our ultimate goal, introduces noise, so this method is also inadequate for the

purpose of our application.
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4.1.3 Methods from the neuroscience literature

Linear Nonlinear Poisson (LNP) method

In the literature on sensory systems in neuroscience, the ultimate goal is to construct

a model for neural response, by measuring the spike rate for a period during and after

stimulation (where stimulus is a vector of dimension k) [20, 83]. A class of solutions

commonly used is “spike triggered analysis”. The assumptions of these models are that

the probability of a neuron eliciting a spike is governed only by the recent stimuli, the

response model is a Poisson process whose rate is a function of a stimuli presented dur-

ing a recent temporal window of fixed duration. In a forward neural response model,

the stimuli are mapped to a scalar value that determines the instantaneous firing rate

of a Poisson spike generator. Based on the available data, a backward approach is

more plausible: from the stimuli that elicited spikes, the goal is to estimate the firing

rate function. Assumptions these papers are making are that the response of a neuron

is modeled with a small set of linear filters whose outputs are combined nonlinearly

to generate the instantaneous firing rate The linear filter may be estimated by com-

puting the spike triggered average stimulus (the mean stimulus that elicited a spike),

then using experimental data determine the nonlinearity. This model is called LNP

(Linear-Nonlinear-Poisson Model). A typical experiment in the field of neural science

is represented on Fig. 4.3.

4.1.4 Bayesian decoding and particle filtering

In [14] the authors consider the reconstruction of signals coming from multiple neurons,

and propose a recursive Bayesian algorithm for determining the firing rate of a neuron.

This method consists of a state model for a process vt, which is the state we are trying to

estimate and an observation model, specifying the probability distribution of the data

yt given the underlying state vt, p(yt|vt). The objective is to find, for each time t, the

distributions of the unobserved signal vt, given observations {y1, y2, · · · yt}. yt represents

vectors of spike counts during the respective time bins. After defining the state and

the observation model, one implements the particle filter to estimate the unobserved
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Figure 4.3: (A) An eight-channel electrode array positioned under the nerve cord
for measurement. (B) The cross-section of the ventral nerve cord. (C) The stimu-
lus.Trajectory consisting of connected 0.25 s segments within which the spot moves at
constant velocity (D) A short section of the recording from the electrode array. (E)
The response plot to the repeated stimuli for cell A. The stimulus is repeated 30 times,
and the spike times are indicated.Adapted from [1]

sequence vt. Typically, given vt, vt+1 has a Gaussian distribution with mean vt and

covariance matrix Σ given by

p(vt+1|vt)−dim(vt)/2detΣ−1/2exp
(
− (vt+1 − vt)T Σ−1 (vt+1 − vt) /2

)
.

To construct the covariance matrix Σ one constructs a number of “typical paths” for the

unobserved signal, computes the sample covariance matrix of all the steps (vt+1−vt) in

all the paths, and uses this as Σ. The initial distribution p(v0) must also be specified.

In many cases, v0 is unknown, and this distribution is chosen to represent an initial

guess of the signal.

The additional assumptions are that in a time bin, a neuron generates a Poisson dis-

tributed spike count, with mean specified by the number of spikes in that bin, and the

spike counts are independent of each other. Hence,

p(yt|vt) = ΠN
i=1

e−λi(vt)[λi(vt)]
y
(i)
t

yt(i)!
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where λi(vt) is the rate for the i−th neuron, evaluated with state vt, and y
(i)
t repre-

sents the spike count for the i−th neuron, in the t−th time bin. The set of posterior

distributions, for t = 1, 2, · · · is determined by

p (vt|y1, y2, · · · yt) ∝ p(yt|vt)p(vt|y1, y2, · · · yt−1)

p (vt|y1, y2, · · · yt−1) =

∫
p(vt|vt−1)p(vt−1|y1, y2, · · · yt)dvt−1

(4.4)

The two recursive equations cannot be solved analytically, and one has to resort to

usually very slow numerical methods to approximate these integrals. The PF algorithm

computes numerical approximations to the distributions in the recursions (4.4).

4.2 Problem formulation using observers and Kalman filters

As an alternative we propose observer based methods, that we summarize in the sub-

sequent sections.

Let Nt be a counting process with rate λ(t), i.e Nt is a Poisson random variable with

rate y(t) =
∫ t

0 λ(s)ds. The probability of having j events until time t is

Py(t)(Nt = j) = P (j events on [0, t]) =
y(t)je−y(t)

j!
.

Observe that, E[Nt] = var[Nt] = y(t).

Fix an integer k > 0, which denotes the number of realizations of a counting pro-

cess Nt and consider k IID N ’s. For a fixed t, each N t
i , i = 1 . . . k, is an IID random

variable with rate y(t) that gives the number of events until time t for a realization i. Let

Nk(t) :=
1

k
(N t

1 +N t
2 +N t

3 + · · ·+N t
k),

be the average number of events (across all realizations) until the time t. Then

E[Nk(t)] = y(t),

var[Nk(t)] =
1

k2
var(N t

1 +N t
2 +N t

3 + · · ·+N t
k) =

y(t)

k
.
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The random variables, Nk(t), are computed from the data, and we can rewrite them in

the form

Nk(t) = y(t) + (Nk(t)− y(t)),

and our goal is to find an estimate of λ(t). The schematic representation of the problem

is shown on Fig. 4.4.

Figure 4.4: The schematic representation of the problem formulation

Denote

∆k(t) := Nk(t)− y(t),

so that

Nk(t) = y(t) + ∆k(t),

which is represented in Fig. 4.5.

Figure 4.5: Exact problem formulation in terms of key system variables. ∆k(t) :=
Nk(t)−

∫ t
0 λ(s)ds

By the central limit theorem, for large k, ∆k(t) ∼ N(0, y(t)
k ). Due to the independent

increments in N , and the fact that Ni are IID, it follows that ∆k is approximately a
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Figure 4.6: Problem formulation using an approximation of ∆k(t) with Brownian mo-
tion, in case when k is sufficiently large

Brownian motion, ∆k ≈ Bk (Fig. 4.6). Purely formally, we define

ξk(t) :=
dBk(t)

dt
,

and think of ξk(t) as a white noise, normally distributed with zero mean and variance,

var[ξ(t)] = var[Nk(t)]
t = y(t)

kt . Thus,

Nk(t) = y(t) + ∆k(t) ≈ y(t) +Bk(t),

Ṅk(t) ≈ λ(t) + ξk(t).

See Fig. 4.7.

Figure 4.7: Formally writing ξk(t) = dBk(t)
dt , where Bk was introduced on Fig. 4.6.

Suppose now that we have a deterministic system,

ẋ = f(x),

which we will at first assume is linear

ẋ = Fx.

The observation that is available for estimation is a non-homogeneous Poisson random

process Nt, whose rate is λ(t) = h(x(t)) = Gx. We assume that λ(t) is always positive.
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This will be guaranteed if the matrix F is Metzler, G > 0, and x(0) has positive

coordinates. The objective is to obtain an estimate of the state x, or more specifically,

of the rate λ(t).

Assume next that we have access to k realizations of the process, with the same x(0),

so that the rate of the process, λ(t) is the same in every realization.

Let’s rewrite the full state-space model for the approximate system on Fig. 4.7 as:

dx

dt
= Fx,

Ṅk(t) = Gx+ ξ,

(4.5)

with unknown initial condition x(0). Notice that if we estimate (x,Nk), we will have

in particular an estimate of λ(t) = Gx(t). In order to more compactly describe the ex-

tended system (4.5), we introduce the state z1 =

 x

Nk

, with the output y being equal

to the last variable Nk(t). Since Nk(t) will typically be very noisy, we do not want our

estimator to compute numerical derivatives, so the output that we would like to feed

as the input to the state estimator is Nk(t), which contains colored noise.

The extended system can be written in the form:

dz1

dt
=F1z1 +G1ξ , with F1 =

F 0

G 0

 ∈ R(n+1)×(n+1) , G1 =

0n

1

 . (4.6)

The output of this system corresponds to the last state of (4.6), namely

y1(t) = Hz1(t) , with H =

[
0n 1

]
. (4.7)

If we would attempt to build a Kalman filter for the estimation of the state z1, in (4.6),

we would encounter a singular problem with zero output noise covariance matrix. To

avoid this case, we apply the method developed in [15, 16, 69] and look for the derivative

of y1

ẏ1 = H1z1(t) + v1(t),
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whereH1=HF1, v1(t)=HG1ξ, and E[v1(t)vT1 (t)] = HG1m(t)GT1 H
T with cov[ξ(t)ξT (t)] =

m(t). Now the estimate of z1(t) is ẑ1 obtained as

˙̂z1 = F1ẑ1 + L(t)(ẏ1 − ˙̂y1) = F1ẑ1 + L(t)(ẏ1 −H1ẑ1), (4.8)

where L = L(t) is time varying gain. Since differentiation introduces the noise in the

filtering problem, introduce the following change of variables

g(t) = ẑ1 − Ly1. (4.9)

If we differentiate g

ġ = ˙̂z1 − Lẏ1 − L̇y1

ġ = (F1 − L(t)H1)g(t) + [F1L(t)− L(t)H1L(t)− L̇(t)]y1(t)

(4.10)

from where we can find ẑ1(t) = g(t) + L(t)y1(t).

In order to find the time-varying gain L(t) we now solve a routine Kalman filtering

problem for (4.8).

Define the observation error as e(t) = z(t)− ẑ(t), so its derivative is

ė(t) = ż1(t)− ˙̂z1 = F1z1 +G1ξ − F1ẑ1 − Lẏ1 + L ˙̂y1,

Therefore,

ė(t) = (F1 − LHF1)e(t)− (LHG1 −G1)ξ(t) (4.11)

where ˙̂y1=HF1ẑ1. Denote the covariance of e(t) by Σ:=E[e(t)eT (t)], and Var[e(t)] =

E[(e(t)− ē(t))(e(t)− ē(t))T ], with ē(t) = E[e(t)]. Also, cov[ξ(t)ξT (t)] = m(t), where ξ(t)

is the white noise, E[ξ(t)] = 0. The covariance matrix Σ satisfies the Riccati equation:

Σ̇ = (F1 − LHF1)Σ + Σ(F1 − LHF1)T + (LHG1 −G1)m(t)(LHG1 −G1)T (4.12)



105

with

Lopt = [ΣF T1 H
T +G1G

T
1 H

Tm(t)](HG1G
T
1 H

T )−1m(t)−1 (4.13)

L̇opt = Σ̇F T1 H
T (HG1G

T
1 H

T )−1m(t)−1 − ΣF T1 H
T (HG1G

T
1 H

T )−1
( ṁ(t)

m2(t)

)
(4.14)

In the computation of the optimal gain L(t) from the Riccati equation we use m(t),

which we will estimate from the sample variance, which, in turn is estimated from the

data. However in the expression (4.10), the derivative of m(t) will appear through the

term L̇(t), but this numerical derivative does not affect the estimate directly.

The complexity of the filter led us to study an alternative approach, where we simply

look for any stabilizing, not necessarily optimal, gains; in other words, we studied the

use of Luenberger observers. We now turn to this approach, based on picking a suitable

constant stabilizing L, and show that results also look satisfactory. For the Luenberger

observer design we observe the system defined by (4.6) and (4.7), and ignore the noise,

ξ.

4.3 Examples

4.3.1 Periodic input-periodic based estimator

In this section we will demonstrate the advantage of model based methods in cases

where we have some prior information about the system or about the inputs acting

upon the system. Consider an output λ(t) generated by the following system with a

known frequency ω0 :

ẋ0 = 0 , x0(0) = 2.5,

ẋ1(t) = x2 , x1(0) = 0.15,

ẋ2(t) = −ω2
0x1 , x2(0) = 0.25,

λ(t) = x0(t) + x2(t),

where the initial conditions are such that λ(t) > 0 (∀t), and ω0 = 10. If we use the prior

information of the frequency, an oscillatory estimator for this system can be represented
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as

ẋ =

[
ẋ0 ẋ1 ẋ2

]T
= Fx , F =


0 0 0

0 0 1

0 −w2
0 0

 ,
λ(t) = Gx , G =

[
1 0 1

]
,

Ṅ = Gx,

(4.15)

where we introduced another state, N, to represent the counting process. The extended

system is now

ż1 =

[
ẋ0 ẋ1 ẋ2 Ṅ

]T
= F1z1 ,

F1 =

F 0

G 0

 =



0 0 0 0

0 0 1 0

0 −w2
0 0 0

1 0 1 0


,

with the output

ẏ1 = Hz1 , H =

[
0 0 0 1

]
.

Thus, we can build an observer for the system as

dẑ1

dt
= F1ẑ1 + L(y1 −Hẑ1). (4.16)

We picked the observer gains L so that the observer poles are arbitrarily chosen as

−10,−9,−8 and−7. The simulation results and comparison with the piecewise constant

estimator are shown on Fig. 4.8. We have challenged the “naive method” by increasing

and decreasing the bin size, b, while keeping the same number of realizations k as in

our model-based approach, and the simulation results do not indicate any improvement

of the naive, piecewise constant method, in comparison to the
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(a) Observer Method, k = 50 (b) Naive method, k=50 M=100

Figure 4.8: Comparison of estimates obtained using piecewise constant estimator and
a model-based oscillatory observer

4.4 A biological example

This work was motivated by current work we are pursuing with experimental collabo-

rators in the design of microfluidics devices that will allow the same inputs to be fed to

a population of chemotactic bacteria, and microscope-based observations of tumbling

events will be used for estimation of the tumbling rate (a function of chemotactic pro-

tein concentrations). Since these data are not available yet, we use here experimental

data from the paper [52], which measured the actual rates through FRET techniques

for a particular strain of E. coli bacteria. Since FRET measurements are very noisy, we

first low-pass filtered this data in order to simulate λ(t) and generate artificial events,

see Fig. 4.9. There are numerous methods for the generation of a NHPP known in

the literature [74]. In our work, we use the following modified method of inversion.

Suppose y is a given function and we want to generate the Poisson process with rate

y(t). We pick a small step size h, and on each time ih generate a spike with probability

P = F (ih)h + o(h). We will briefly remark on the other methods for generation in

Section 4.4.3.

We see from Fig. 4.10 that a simple observer-based method recovers the FRET mea-

surement with roughly the same amount of noise. Of course, if FRET data is available,
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there would be no need for our observers. The goal, however, is to study similar ques-

tions for other bacterial species for which FRET measurements, which require extensive

genetic modifications, are not available. Note that since we did not have a priori infor-

mation about the nature of the output, we have tested the zeroth-order observer, which

is essentially an observer designed to estimate constant signals, and also a first-order

or linear observer which would be optimal for linear or piecewise linear signals. We see

an improvement of our proposed method compared to the “naive” method, shown on

Fig. 4.11.

(a) (b)

Figure 4.9: (a) Input (ligand concentration) and (b) Measured output and a filtered
output used for the estimation process

(a) (b)

Figure 4.10: Estimation using the observer method of zeroth order (i.e. constant esti-
mator) (a) and first order (i.e. linear estimator) (b) k = 50
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(a) M = 50 (b) M = 100

Figure 4.11: Naive piece-wise constant estimator with subinterval width M

4.4.1 Estimation using SPECS model forE. Coli chemotaxis

As an alternative example, we use model from [86] to generate the spike data, introduced

in Chapter 1, which we repeat here for convenience:

dm(t)

dt
= kR(1− a)− kBa ,

a(t) =

(
1 + exp

(
N

[
α(m0 −m)− ln

(
1 + L/KA

1 + L/KI

)]))−1

,

(4.17)

with KI = 18.2, KA = 3000, N = 6, α = 1.7, m0 = 1, KR = 0.005, KB = KR. The

state m(t) represents the methylation of the receptors, the output is the activity of the

kinease CheY − P , and the input to the system, L(t) is the ligand concentration. It is

known from the literature that the FCD regime can be expected for inputs in the range

KI < L(t) < KA.

We test if the system (4.17) exhibits scale invariance, by applying several plausible

input signals, and their scaled versions. We show the results of the experiments from

the model simulations, and also from our estimation procedure, where we again used

the model to generate the artificial experiments, “spikes”, that we feed to our observer.

In addition to reconstructing the rate of the NHPP that underlies the “spike” or tumble

data, we also show its integral as well. If the objective is to test only whether or not

the system exhibits scale invariance behavior the integral would have been sufficient
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to estimate. However for the modeling purposes of distinguishing between the models

of various species, input-output data are necessary, and hence the intensity function is

required.

First, we test for the response to constant inputs, in which the system is preadapted

to a constant input L0, and then presented to a new input L∗. Then one repeats the

experiment using the p-scaled inputs, where the scale factor p was picked to be 2, 5 and

15, to cover both the scale invariance and the non-scale invariance regime. The values

for L0, and L∗ were fixed to 200 and 400, respectively.

Figures 4.12 and 4.13 show estimation result for scale invariant case, where scaling

factor p = 2. Three estimators were presented: zeroth (“piecewise constant”), first

(“piecewise linear”), and second (“quadratic”) oder. As expected, zeroth order estima-

tor in this case performs the best, given that the signal we are estimating is piecewise

constant. The estimator for the integral of the rate function is more robust to number

of realizations, whereas the rate function itself is better estimated with a higher num-

ber of samples, N = 100. Figures 4.14 and 4.15 show estimation result for non- scale

invariant case, with p = 5. The loss of scale-invariance is even more striking when scale

is chosen to be p = 15, and it can be seen on Figures 4.16, 4.17 and 4.18.

Additionally, we tested for the response to oscillatory inputs. In these experiments,the

system is preadapted to the ligand concentration L0(t) = 200, and then presented

to L∗(t) = 200 + 100 sin(0.1πt) or L∗(t) = 200 + 100 sin(5t). Two different scaling

parameters were tested; p = 3, which should yield the scale-invariance property, and

p = 20 which should not, based on the experimental results and previous modeling

efforts. On examples we demonstrate the application of the oscillatory, model-based

estimator (periodic input-periodic model estimator), and its advantage in cases where

one has prior information about the inputs to the system. The frequency content of

the estimated output is matched to that of the input, and this assumption is justified

by looking at the amplitude spectrum of the output, and recognizing that its spectrum

is matched to the input one. We demonstrate that the oscillatory observer is superior

to the other methods, for instance we will compare it with the “naive” estimator, and
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the second-order, high-gain model based observer.

Figure 4.19 shows the expected scale invariant behavior from the model, and the

frequency content of the actual output. The input signal is given by L∗(t) = 200 +

100 sin(0.1πt), and the scaling factor is p = 3. Figures 4.20 and 4.21 show the

advantageous results of the oscillatory estimator for different number of realizations.

Figure 4.22 shows the loss of scale invariant behavior, when the scaling factor is p = 20.

Oscillatory observer also “sees” the loss of scale invariance.

We demonstrate the advantage of the oscillatory based observer to second order es-

timator and the “naive” estimator on an example of fast-varying signal. The sys-

tem is preadapted to the ligand concentration L0(t) = 200, and then presented to

L∗(t) = 200 + 100 sin(5t). Two different scaling parameters were tested; p = 3, which

should yield the scale-invariance property, and p = 20 which should not.

Figures 4.23 (c) and (d) show the advantageous results of the oscillatory observer, and

Fig. 4.24 shows the failure to estimate the fast-varying output of the “naive” method.

Figures 4.25, 4.26, and 4.27 show poor performance of the quadratic, first and zeroth

order observer. Finally for p = 20, the same example fails to exhibit scale invariant

behavior, and our observer detects the loss of scale invariance as well (see Fig. 4.28.
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(a) Intensity function (b) Integral of the intensity function

(c) Intensity function (d) Integral of the intensity function

(e) Intensity function (f) Integral of the intensity function

Figure 4.12: Scale invariant system. Scaling factor is p = 2, N = 100 experiment
repetitions were used for estimation of a NHPP arising from the model (4.17). The
plots show the estimation results using the zeroth, first- and second-order estimators.
The eigenvalues were selected to all be 1.
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(a) Intensity function (b) Integral of the intensity function

(c) Intensity fcn (d) Integral of the intensity function

(e) Intensity fcn (f) Integral of the intensity function

Figure 4.13: Scale invariant system. Scaling factor is p = 2, N = 50 experiment
repetitions were used for estimation of a NHPP arising from the model (4.17). The
plots shows the estimation results using the zeroth, first- and second-order observer
based estimators. The eigenvalues were selected to all be equal to 1.
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(a) Intensity function (b) Integral of the intensity function

(c) Intensity function (d) Integral of the intensity function

(e) Intensity function (f) Integral of the intensity function

Figure 4.14: Not a scale invariant system. Scaling factor is p = 5, N = 100 experiment
repetitions were used for estimation of a NHPP arising from the model (4.17). The
plots show the estimation results using the zeroth, first- and second-order observer
based estimators. The eigenvalues were selected to all be equal to 1.
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(a) Intensity function (b) Integral of the intensity function

(c) Intensity function (d) Integral of the intensity function

(e) Intensity function (f) Integral of the intensity function

Figure 4.15: Not a scale invariant system. Scaling factor is p = 5, N = 50 experiment
repetitions were used for estimation of a NHPP arising from the model (4.17). The
plots show the estimation results using the zeroth, first- and second-order observer
based estimators. The eigenvalues were selected to all be equal to 1.
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(a) Intensity function (b) Integral of intensity function

(c) Intensity function (d) Integral of intensity function

(e) Intensity function (f) Integral of intensity function

Figure 4.16: Not a scale invariant system. Scaling factor is p = 15, N = 100 experiment
repetitions were used for estimation of a NHPP arising from the model (4.17). The plots
depict the estimation results using the zeroth, first- and second-order observer based
estimators. The eigenvalues were selected to all be equal to 1.
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(a) Intensity function (b) Integral of intensity fcn

(c) Intensity function (d) Integral of intensity function

(e) Intensity function (f) Integral of intensity function

Figure 4.17: Not a scale invariant system. Scaling factor is p = 15, N = 50 experiment
repetitions were used for estimation of a NHPP arising from the model (4.17). The
plots show the estimation results using the zeroth, first- and second-order observer
based estimators. The eigenvalues were selected to all be equal to 1.
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(a) Intensity function (b) Integral of intensity function

(c) Intensity function (d) Integral of intensity function

(e) Intensity function (f) Integral of intensity function

Figure 4.18: Not a scale invariant system. Scaling factor is p = 15, N = 500 experiment
repetitions were used for estimation of a NHPP arising from the model (4.17). The plots
show the estimation results using the zeroth, first- and second-order observer based
estimators. The eigenvalues were selected to all be equal to 1.
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Example 1.

In this example the input signal is periodic with frequency f = 0.05Hz. The sys-

tems exhibits scale invariant behavior when when comparing the output corresponding

to L∗(t) = 200 + 100 sin(0.1πt) (previously preadapted to L0(t) = 200), and then is

presented to 3L∗(t) (p = 3).

(a) (b)

Figure 4.19: Scale invariant system. (a) Original and p-scaled outputs and their corre-
sponding spectra, (b). The input frequency is f = 0.05Hz.

(a) Intensity function (b) Integral of the intensity function

Figure 4.20: Scale invariant system, p = 3, N = 50 repetitions. The plots depict
the estimation results using oscillatory estimator. The observer gains are given in the
figures.
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(a) Intensity function (b) Integral of the intensity function

(c) Intensity function (d) Integral of the intensity function

(e) Intensity function (f) Integral of the intensity function

Figure 4.21: Scale invariant system. Scaling factor is p = 3, N = 100, 200, 1000 experi-
ment repetitions were used for estimation. The plots show the estimation results using
oscillatory observer based estimator. The observer gains are given in the figures.
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(a) Intensity function (b) Integral of the intensity function

(c) Intensity function (d) Integral of the intensity function

(e) Intensity function (f) Integral of the intensity function

Figure 4.22: A non-scale invariant system. Scaling factor is p = 20, N = 100, 200, 1000
experiment repetitions were used for estimation. The plots depict the estimation results
using oscillatory observer based estimator. The observer gains are given in the figures.
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Example 2.

In this example, the input signal is periodic with frequency f = 0.8Hz. The system

exhibits scale invariant behavior when comparing the output corresponding to L∗(t) =

200 + 100 sin(5t) (previously preadapted to L0(t) = 200), and then is presented to

3L∗(t).

(a) Time domain output and scaled output (b) Spectra of the outputs

(c) Integral of the intensity function (d) Intensity fcn

Figure 4.23: SI system with the input containing frequency of 0.8Hz. Scaling factor is
p = 2, N = 200 experiment repetitions were used for estimation. The plots depict the
estimation results using oscillatory observer based estimator.
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Figure 4.24: Application of the “naive method” to the estimation of a highly oscillating
unknown output. In comparison, oscillatory method performs significantly better.

(a) Intensity function (b) Integral of the intensity function

Figure 4.25: Scale invariant system. Scaling factor is p = 2, N = 100 experiment
repetitions were used for estimation. The plots depict the estimation results using
second-order observer estimator. The observer gains are given in the figures
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(a) Intensity function (b) Integral of the intensity function

Figure 4.26: Scale invariant system. Scaling factor is p = 2, N = 100 experiment
repetitions were used for estimation. The plots depict the estimation results using
first-order observer estimator. The observer gains are given in the figures

(a) Intensity function (b) Integral of the intensity function

Figure 4.27: Scale invariant system. Scaling factor is p = 2, N = 100 experiment
repetitions were used for estimation. The plots depict the estimation results using
zeroth-order observer estimator. The observer gains are given in the figures
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A non scale invariant example, p = 20

(a) Plot of the output and the p-scaled output (b) Spectra of the output and p-scaled output

(c) Intensity function (d) Integral of the intensity function

Figure 4.28: A non-scale invariant system. Scaling factor is p = 20, N = 100 experiment
repetitions were used for estimation. The plots depict the estimation results using
oscillatory estimator. The observer gains are given on the figures. Obviously, both the
plot for the intensity function and the plot for the integral of the intensity function,
predict the loss of FCD.
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4.4.2 A simple nonlinear observer model of an E. coli chemotactic

pathway

As we have seen in the previous examples, the naive method does not take advantage

of the known input signal. Consider a system given by

ẋ = f(x, u),

y = h(x, u),

(4.18)

where y(t) ∈ R1 corresponds to the measured output (“activity”) in a simple but

realistic model of the E. coli chemotactic pathway, see for example [52], [86], [93], [88].

Here, x(t) ∈ Rn is the unknown internal state, and u(t) is a known input signal. As

before, we introduce the extended (n+1)−dimensional system that models the counting

process by adding an integrator:

ẋ = f(x, u),

ż = h(x, u).

(4.19)

Specifically, we take a simplified version of the model from [86], by picking the Hill

coefficients in the model equal to 1, and all coefficients set to unity. Thus, we consider

the following model:

ẋ =
1

2
− 1

1 + u
x

ż =
1

1 + u
x

,

(4.20)

with output z. An observer for this n− dimensional system can be obtained as follows:

˙̂x =
1

2
− 1

1 + u
x̂

˙̂z =
1

1 + u
x̂

− L(ẑ − z).
(4.21)

Define the errors

e1(t) = x̂(t)− x(t),

e2(t) = ẑ(t)− z(t).
(4.22)
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Then,

ė1(t) = ˙̂x− ẋ(t) =
u(x− x̂)

(x+ u)(x̂+ u)
=

−ue1

(x+ u)(x̂+ u)
.

ė2(t) = ˙̂z − ż(t) = −
( 1

1 + u
x

− 1

1 + u
x̂

)
− L(ẑ − z)

=
e1u

(x+ u)(x̂+ u)
− Le2.

(4.23)

It can be shown that if 0 < α ≤ u(t) ≤ β ∀t, then both x̂(t) and x(t) are bounded, and

e1(t)→ 0 and e2(t)→ 0 as t→∞.

For the system defined by (4.20) we have applied an input signal given by u(t) =

2+sin(5t)+0.5sin(t)−0.2cos(3t−20) and generated k = 20 realizations of the process,

shown on left panel of Fig. 4.29. Then we applied the observer-based method described

above to estimate the output of the process. We assumed that the model has an initial

state x0 = 3 and that the observer initial state was picked to be 0. The results indicate

(a) (b)

Figure 4.29: Spikes (events) used as an input to the observer (a), and comparison
between the true output and an estimate obtained by using a nonlinear observer (b).
k = 20 realizations were used. L was picked to be 1.

that the observer performs extremely well.

4.4.3 Methods used for generation of a NHPP

There are numerous methods for the generation of a NHPP known in the literature.

Most commonly used in the literature are generation by inversion, order statistics

method, and acceptance-rejection method. A detailed overview of these methods can
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be found in [74]. In our work, we use the following modified method of inversion. Sup-

pose y is a given function and we want to generate the Poisson process with rate y(t).

We pick a small step size h, and on each time ih generate a spike with probability

P = F (ih)h+ o(h).

Another method we will briefly describe is Monte Carlo based method. To explain this

method, let is suppose that a spike happened at time t0 and we wish to generate the

time for the next spike. Let T be the random variable that gives the time t until the

next spike, so that the spike will happen at time t+ t0. Then,

P (next spike will happen at t+ t0) = 1− e−
∫ t
t0
λ(τ)dτ

.

We write y(t) :=
∫ t
t0
λ(τ)dτ , as before.

The two methods are equivalent in the following sense:

Let X be the time of the next spike. Then,

FX(t) = P (first spike is at time ≤ t) = 1− e−
∫ t
0 f(s)ds

Proof. Let G(t) = 1− F (t) = P (no spikes in [0, t]). Then,

G(t) = P (no spikes in [0, h])P (no spikes in [h, 2h]) · · ·P (no spikes in [(Nh− 1), Nh])

G(t) = [1− f(0)h+ o(h)][1− f(h)h+ o(h)] · · ·

lnG(t) =

T
h
−1∑
i=0

ln(1− f(ih) + o(h)) =

T
h
−1∑
i=0

(−f(ih) + o(h))

= −T
h

∑
f(ih) +N

o(h)

h

Taking the limit of the expression above

lim
h→0

lnG(t) = −e−
∫ T
0 f(s)ds
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Chapter 5

Remarks on stochastic adaptation and scale-invariance

Introduction

In the analysis of biochemical networks one can proceed with two modeling strategies, a

deterministic and a stochastic one [108, 109]. In the deterministic approach, the reaction

rate equations are ordinary differential equations, with states being the continuous

variables representing the concentrations. A pathway is therefore decomposed into set

of elementary reactions, and then the law of mass action is applied to each elementary

reaction to obtain the ODEs. The incoherent feedforward motif presented in Chapter 2

and further analyzed in Chapter 3, and given by (3.3) was analyzed in a deterministic

setting, and was shown to exhibit exact adaptation and an approximate scale invariance.

However, deterministic models represent an aggregate (mean) behavior of the system,

and are not accurate when the “copy numbers” of species (ions, atoms, molecules,

individuals) are very small, which is sometimes the case in molecular biology at the

single-cell level [97].

The occurrence of chemical reactions in the stochastic setting involves discrete and

random events, and in order to predict the progress of chemical reactions in terms

of observables such as copy number, X(t), we consider a chemical reaction network

consisting of m reactions which involve n species Si, i ∈ {1, 2, . . . n}, [109]. We use

notation as in [97] and here we provide the details to make the thesis self-contained.

The reactions Rj , j ∈ {1, 2, . . .m} are described by the combinations of reactants and

products:

Rj :
n∑
i=1

aijSi →
n∑
i=1

bijSi, (5.1)

where aij and bij are nonnegative integers. Additionally,
∑n

i=1 aij is the order of the
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reaction Rj .

From (5.1) the n×m stochiometry matrix Γ = {γij} of the network can be found, and

it has entries that describe the net change in the number of units of species Si each

time the reaction Rj takes place; γij = bij−aij , i = 1, . . . n, j = 1, . . .m. In addition to

the stochiometry matrix, the rates at which various reactions take place are specified

through propensity functions, ρ.

To illustrate the probabilistic aspect in this setting, we assume that starting at time

t = 0 from an initial state X(0), every sample path stays in state X(0) for a random

amount of time T1, until an occurrence of a reaction takes the process to a new state

X(T1). The process stays at this state for another random amount of time T2, until

the occurrence of another reaction takes the process to a new state X(T1 + T2), and so

on. Hence, the copy number X is a jump process, [109]. For the sake of notation, we

write this process as X=(X1, X2, . . . Xn)′, indexed by time t ≥ 0, and for each t, X(t)

is a random variable. The interest is to compute the probability that, at time t there

are k1 units of species S1, k2 units of species S2, k3 units of species S3, and so forth:

pk(t) = P [X(t) = k], (5.2)

for each k. We call the vector k the state of the process. Abusing the notation we will

denote the outcome of the random variable on a realization of the process for a species

Si as:

Xi(t) = # of units of species i at time t. (5.3)

A chemical master equation (CME) gives a system of linear differential equations for

the pk’s in the following form:

dpk
dt

=
m∑
j=1

ρj(k − γj)pk−γj −
m∑
j=1

ρj(k)pk , k ∈ Zn≥0. (5.4)

It can be seen from (5.4) that there is one equation for each state k, so this is an infinite

system of linked equations. We assume that the initial probability vector p(0) is given,

and that there is a unique solution of (5.4) defined for all t ≥ 0. We also introduce a
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n-column vector:

f(k) :=

m∑
j=1

ρj(k)γj = ΓR(k) , k ∈ Zn≥0 (5.5)

where R(k) = (ρ1(k), · · · ρm(k))′, and ρj(k)h+ o(h) is the probability that the reaction

Rj takes place during an interval of length h, if the current state is k. When studying

steady state properties we define the steady state distribution π = (πk) of the process

X as any solution of the equations:

m∑
j=1

ρj(k − γj)πk−γj −
m∑
j=1

ρj(k)πk = 0 , k ∈ Zn≥0. (5.6)

In order to solve the CME, one usually generates sample paths of the stochastic process

{X(t)}, which is referred to as a stochastic simulation algorithm, SSA (for reference,

see [26]). The algorithm addresses two questions: when is the next reaction going to

occur, and what type of reaction will it be? The mean and the higher moments can

be obtained by averaging the results of such stochastic simulations. Assuming that the

probability density of X(t) is given by (5.4), it can be shown that one can derive exact

or approximate differential equations satisfied by the mean and the variance of X(t).

The expression for the mean satisfies:

d

dt
E[X(t)] = E[f(X(t))], (5.7)

where f(k) is given by (5.5). If all reactions are mass-action of order zero or one, then

(5.7) simplifies to:

d

dt
E[X(t)] = f(E[X(t)]). (5.8)

For reactions of order higher than one, one can prove the following expression

d

dt
E[X(t)] = E[f(X(t))] = f(E[X(t)]) +G(t),

G(t) = E[gµ(t)(X(t)− µ(t))],

giµ(t)(x) =
1

2
(x− µ(t))′Hi(µ(t))(x− µ(t)) + o(x− µ(t)2),

(5.9)

where x = X(t), µ(t) = E[X(t)], Hi(µ(t)) is the Hessian of the i-th component of the
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vector field f . For the matrix of the second moments we first introduce the n × n

diffusion matrix B(k) = (Bpq(k)) with entries as:

Bpk(k) =
m∑
j=1

ρj(k)γpjγqj , p, q = 1, . . . , n, (5.10)

and then the second moment can be solved from

d

dt
E[X(t)X(t)′] = E[X(t)f(X(t))′] + E[f(X(t))X(t)′] + E[B(X(t))]. (5.11)

The expression for the variance can be obtained as:

d

dt
Var[X(t)] = E[(X(t)− µ(t))f(X(t))′] + E[f(X(t))(X(t)− µ(t))′] + E[B(X(t))] ,

E[B(X(t))] = Γdiag (E[ρ1(X(t))], . . . ,E[ρm(X(t))]) Γ′ ,

f(X(t)) = f(µ(t)) + J(µ(t))(X(t)− µ(t)) + gµ(t)(X(t)− µ(t)),

(5.12)

where J(x) is the Jacobian matrix of f evaluated at x = µ(t). Thus,

d

dt
Var[X(t)] = Var[X(t)]J(µ(t))′ + J(µ(t))Var[X(t)] + E[B(X(t))] + α(t) ,

α(t) = E[(X(t)− µ(t))gµ(t)(X(t)− µ(t))′ + (X(t)− µ(t))gµ(t)(X(t)− µ(t))′].

(5.13)

Dropping the term α(t) one has the fluctuation-dissipation (FD) formula

d

dt
Var[X(t)] = Var[X(t)]J(µ(t))′ + J(µ(t))Var[X(t)] + E[B(X(t))]. (5.14)

If the higher-order moments of X(t) are small, then α(t) = o(X(t)− µ(t)2). For mass-

action kinetics, and all reactions of order at most two, the fluctuation equation says

that the mean µ(t) = E[X(t)], and covariance matrix Σ(t) = Var[X(t)] satisfy:

d

dt
µ(t) = f(µ) + LΣ,

d

dt
Σ ≈ ΣJ(µ)′ + J(µ)Σ +H0 +H1µ+H2Σ.

(5.15)

The FD formula is exact for zero and first order mass-action reaction, because in that
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case the Hessian, and therefore gµ(t) are zero. Then the mean and the covariance matrix

are the solutions of the coupled system of differential equations:

d

dt
µ(t) = f(µ),

d

dt
Σ = ΣJ(µ)′ + J(µ)Σ +B(µ) ,

(5.16)

where

B(µ) = Γdiag (ρ1(µ), . . . , ρm(µ)) Γ′.

We explored a deterministic setting for analyzing and describing adaptation and scale

invariance properties, and in particular we discussed a molecular representation for the

model which gave rise to exact adaptation and an approximate scale invariance, (3.3).

In addition, a structure in which the state degrades the output also possesses the same

properties, as given by (3.4).

We next revisit these examples in the light of stochastic adaptation. The numerical

study of effects of stochasticity for a minimal “two state protein scheme” was previously

analyzed in [61]. In this Section we will give an analytical explanation of this example

as well, and also revisit it in the light of adaptation of the mean and the higher order

moments.

5.1 Adaptation of feedforward model

We study here the model represented by the following reactions:

Ø
u−→ X

1−→ Ø

X
1/ε−→ X + Y , Y

u/ε−→ Ø

The set of ODEs for the deterministic setting are given by ẋ = u−x, and εẏ = x−uy,

and was previously analyzed in Section 3.1. The state transition diagram corresponding

to this circuit is given on Fig. 5.1.
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Figure 5.1: State transitions corresponding to an IFFL chemical reaction network

.

The stochiometry matrix for this system is given by Γ =

1 −1 0 0

0 0 1 −1

, and the

propensities for the four listed reactions are

ρ1(k) = u , ρ2(k) = k1 , ρ3(k) =
1

ε
k1 , ρ4(k) =

1

ε
uk2,

where we denote

R(k) =

[
u X X

ε
1
εuY

]T
, f(X,Y ) = ΓR(k) =

 u−X
1
εX −

1
εuY

 .
The following equations for the means can be obtained:

µ̇x(t) = u− µx , µ̇y(t) =
1

ε
µx −

u

ε
µy. (5.17)

Since all reactions are of order zero or one, first moments are the same as the determin-

istic ones. At the steady state µssx = u, and µssy = 1. Hence, moment of y (the output)

adapts perfectly.

In order to find differential equations for the second moments we find the diffusion
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B(X) and E[B(X)]:

E[B(X(t))] = Γ · diag

{
u,E[X],

1

ε
E[X],

u

ε
E[Y ]

}
· ΓT =

u+ µx 0

0 1
εµx + u

εµy

 .

The linearization J is given by J =

−1 0

1
ε −u

ε

.

Using (5) the following system of equations can be obtained:

Σ̇ =

Σ̇xx Σ̇xy

Σ̇yx Σ̇yy

 = ΣJT + JΣ +B

Σ̇xx = −2Σxx + u+ µx , Σ̇xy =
1

ε
Σxx −

u

ε
Σxy − Σxy,

Σ̇yy =
2

ε
Σxy −

2u

ε
Σyy +

1

ε
µx +

u

ε
µy.

(5.18)

We denoted cov(X,Y ) by ΣXY . At the steady state we obtain that:

Σss
xx =

u+ µssx
2

= u, Σss
xy =

1
εΣss

xx
u
ε + 1

=
u

u+ ε
,

Σss
yy =

1

2u

(
2Σss

xy + µssx + uµssy
)

= 1 +
1

u+ ε

(5.19)

From (5.19), we notice that for large u, u� 1, and small ε, Σss
yy ≈ 1, which is indepen-

dent of u. Morever, for ε� 1 the system (with output y) also shows approximate scale

invariance. To show that this is true, we suppose that (µx(t), µy(t)) is any solution cor-

responding to the input u(t), for the system described by (5.17). Then, (pµx(t), µy(t))

is a solution corresponding to the input pu(t):

µ̇x = u− µx ⇒ ˙(pµx) = (pu)− (pµx),

εµ̇y = µx − uµy ,

ε ≈ 0 ⇒ µy =
/pµx
/pu

.

(5.20)

Hence the scaling µx 7→ pµx and u 7→ pu leaves the µy equation (approximately)
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invariant. Similarly, from (5.18),

Σ̇xx = −2Σxx + u+ µx ⇒ (pΣ̇xx) = −2(pΣxx) + (pu) + (pµx),

εΣ̇xy = Σxx − uΣxy − εΣxy ⇒ εΣ̇xy = pΣxx − (pu)Σxy − εΣxy ,

εΣ̇yy = 2Σxy − 2uΣyy + µx + uµy ⇒ εΣ̇yy = 2Σxy − 2(pu)Σyy + (pµx) + (pu)µy .

(5.21)

The last two expressions in (5.21) can be solved by using their quasi-steady state ap-

proximation as:

ε ≈ 0 ⇒ Σxy ≈ pΣxx

pu = Σxx
u ,

ε ≈ 0 ⇒ Σyy ≈ Σxx
pu2

+ 1
2uµx + 1

2µy .
(5.22)

For large u, the first two terms in the second expression of (5.22) are negligible, so

we finally obtain that under these assumptions the variance of the output y does not

depend on the scale p, and the approximate scale invariance (of the mean and the

variance of y) can be obtained.
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5.2 Another feedforward model (IFFL2)

We also consider the following feedforward model in which the state degrades the output

(IFFL2), for which an approximate scale invariance can also be shown in the determin-

istic setting. The chemical reactions underlying this model are given by:

Ø
u−→ X

1−→ Ø , Ø
u/ε−→ Y

X + Y
1/ε−→ X

In the deterministic setting the model is described by the following ODEs: ẋ = u− x,

εẏ = u − xy, given in Chapter 3. The state transition diagram corresponding this

circuit is given on Fig. 5.2, and the CME for this case is given by (5.23).

Figure 5.2: State transitions corresponding to an negative feedback chemical reaction
network

.

∂

∂t
P (nx, ny, t) = −1

ε
P (nx, ny, t) +

1

ε
(ny + 1)nxP (nx, ny + 1, t)

+ uP (nx − 1, ny, t)− nxP (nx, ny, t)− uP (nx, ny, t) + (nx + 1)P (nx + 1, ny, t)

− 1

ε
nxnyP (nx, ny, t) +

1

ε
uP (nx, ny − 1, t)

(5.23)
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The stochiometry matrix for this system is given by Γ =

1 −1 0 0

0 0 1 −1

 with the

propensities:

ρ1(k) = u , ρ2(k) = k1 , ρ3(k) =
u

ε
, ρ4(k) =

1

ε
k1k2.

We denote

R(k) =

[
u X u

ε
1
εXY

]T
, f(X,Y ) = ΓR(k) =

 u−X
1
εu−

1
εXY

 .
The following moment equations can be obtained:

µ̇x(t) = u− µx , µ̇y(t) =
1

ε
u− 1

ε
ΣXY −

1

ε
µxµy, (5.24)

where we use the notation cov(X,Y )= ΣXY . It can be seen from (5.24) that the

equation for the first moment of the output y does not match the corresponding de-

terministic ODEs. Notice also that the reactions are of order two, unlike the previous

example where the reactions were at most order one. Hence the expressions for the

second moments (FD equation) will only be approximate. At the steady state µssx = u,

and in order to solve the second equation in (5.24) we need to use the second moment

equations. We find the diffusion B(X), its expectation, E[B(X)], and the Jacobian:

E[B(X(t))] = Γ · diag{u,E[X],
u

ε
,
1

ε
E[XY ]} · ΓT =

u+ µx 0

0 u
ε + 1

εE[XY ]

 ,

J =

 −1 0

−1
ε Ȳ −1

ε X̄

 .
Then the problem simplifies to solving

Σ̇ =

Σ̇xx Σ̇xy

Σ̇yx Σ̇yy

 ≈ ΣJT + JΣ +B,
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which decouples into:

Σ̇xx ≈ −2Σxx + u+ µx , Σ̇xy ≈ −
Ȳ

ε
Σxx −

X̄

ε
Σxy − Σxy,

Σ̇yy ≈ −
2Ȳ

ε
Σxy −

2X̄

ε
Σyy +

u

ε
+

1

ε
E[XY ] = −2Ȳ

ε
Σxy −

2X̄

ε
Σyy +

u

ε
+

1

ε
(Σxy + µxµy).

At the steady state the following expression for the means and the variances can be

obtained:

µssx = u , µssy = 1 +
ȳ
ε

x̄
ε + 1

,

Σss
xx = u , Σss

xy ≈
−ȳu
ε

x̄
ε + 1

, Σss
yy ≈

ȳ2u
ε

x̄2

ε + x̄
+
u

x̄
,

(5.25)

and where x̄ and ȳ could be chosen to be (i) equal to the deterministic means for x(t)

and y(t), or (ii) solved for using the stochastic means, as in equation (5.24). The two

methods are demonstrated in the subsequent figures. From (5.25), it follows that for

large x̄, x̄� ȳ, which can be obtained using large values for the inputs, u� 1, one can

obtain approximate adaptation. Moreover, if additionally small values of the parameter

ε, ε� 1 are picked, one can obtain approximate scale invariance as well.

Figures 5.3 and 5.4, show that the FD approximation does not approximate the true

result from the SSA well, and, moreover, neither the mean nor the variance of the

output adapt.

Figures 5.5, 5.7 and 5.9 illustrate the approximate adaptation of both moments for

certain ranges of parameters. We also zoom into these figures to compare which method

gives a better solution for x̄, ȳ (see Figures 5.6, 5.8, 5.10). Note also that for the

parameters in Fig. 5.7 (and Fig. 5.8) we also have approximate scale invariance.

The results presented so far in this Chapter are summarized in Table 5.1.

ydet adapts µy adapts Σyy adapts FD exact

IFFL1 yes yes no yes

IFFL2 yes no no no

Table 5.1: Summary of adaptation results in a stochastic and a deterministic setting:
ydet denotes the deterministic solution for y, µy and Σyy are its mean and variance.
“FD exact” means that the differential equations for the first two moments are exact.
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(a) SSA for the original system (b) SSA for the p-scaled system

(c) Mean of y (d) Mean of x

(e) Standard deviation of y (f) Standard deviation of x

Figure 5.3: Feedforward model in which the state degrades the output. Loss of adapta-
tion: note that neither the value of µy, nor the value of Σyy approach 1. Note also that
the FD is not a good approximation of the SSA. Parameters used in the simulation are:
u0 = 1 (preadapted input), u∗ = 2, p = 2, ε = 0.1.
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(a) SSA for the original system (b) SSA for the p-scaled system

(c) Mean of y (d) Mean of x

(e) Standard deviation of y (f) Standard deviation of x

Figure 5.4: Feedforward model in which the state degrades the output. Loss of adapta-
tion: note that neither the value of µy, nor the value of Σyy approach 1. Note also that
the FD is not a good approximation of the SSA. Parameters used in the simulation are:
u0 = 1 (preadapted input), u∗ = 4, p = 1.5, ε = 0.1
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(a) SSA for the original system (b) SSA for the p-scaled system

(c) Mean of y (d) Mean of x

(e) Standard deviation of y (f) Standard deviation of x

Figure 5.5: Feedforward model in which the state degrades the output. Approximate
adaptation of the mean and the variance of y for certain ranges of parameters. Note
also that the FD approximation of the SSA has improved. Parameters used in the
simulation are: u0 = 1 (preadapted input), u∗ = 20, p = 1.5, ε = 0.1
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(a)

(b)

Figure 5.6: Means and standard deviation using various methods
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(a) SSA for the original system (b) SSA for the p-scaled system

(c) Mean of y (d) Mean of x

(e) Standard deviation of y (f) Standard deviation of x

Figure 5.7: Feedforward model in which the state degrades the output. Approximate
adaptation and approximate scale invariance of the mean and the variance of y for
certain ranges of parameters. Note also that the FD can be used as an approximation
of the SSA. Parameters used in the simulation are: u0 = 4 (preadapted input), u∗ = 20,
p = 1.5, ε = 0.1
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(a)

(b)

Figure 5.8: Means and standard deviation using various methods
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(a) SSA for the original system (b) SSA for the p-scaled system

(c) Mean of y (d) Mean of x

(e) Standard deviation of y (f) Standard deviation of x

Figure 5.9: Feedforward model in which the state degrades the output. Approximate
adaptation of the mean and the variance of y, for certain ranges of parameters. Note
also that the FD can be used as an approximation of the SSA . Parameters used in the
simulation are: u0 = 4 (preadapted input), u∗ = 20, p = 5, ε = 0.1



147

Figure 5.10: Means and standard deviation using various methods.
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5.3 The two state protein model

To identify a minimal network that adapts, we modify the example discussed in [61].

We study the following reaction system:

Ø
k−→ Y

α−→ Ø , Y
u/ε−→ Z

Z
c/ε−→ Y

The stochiometry matrix for this system is given by Γ =

1 −1 −1 1

0 0 1 −1

, with the

propensities:

ρ1(k) = k , ρ2(k) = αk1 , ρ3(k) =
u

ε
k1 , ρ4(k) =

c

ε
k2.

We denote

R(k) =

[
k αY u

εY
c
εZ

]T
,

f(X,Y ) = ΓR(k) =

k − αY − u
εY + c

εZ

u
εY −

c
εZ

 .
Equations for the mean are given by:

µ̇y(t) = k − (α+
u

ε
)µy +

c

ε
µz,

µ̇z(t) =
u

ε
µy −

c

ε
µz,

(5.26)

where Y is the output of interest. At the steady state µssy = k
α , and µssz = uk

αc . We next

find the diffusion B(X), E[B(X)], and the Jacobian matrix J :

E[B(X(t))] = Γ · diag{k, αE[Y ],
u

ε
E[Y ],

c

ε
E[Z]} · ΓT

=

k + αµy + u
εµy + c

εµz −
u
εµy −

c
εµz

−u
εµy −

c
εµz

u
εµy + c

εµz

 .
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J =

−α− u
ε

c
ε

1
ε − c

ε

 .
Then the problem simplifies to solving

Σ̇ =

Σ̇yy Σ̇yz

Σ̇zy Σ̇zz

 = ΣJT + JΣ +B,

which decouples into

Σ̇yy = −2Σyy(α+
u

ε
) + 2

c

ε
Σyz + k + αµy +

u

ε
µy +

c

ε
µz,

Σ̇yz =
u

ε
Σyy − Σyz(

c

ε
+ α+

u

ε
) +

c

ε
Σzz −

u

ε
µy −

c

ε
µz,

Σ̇yy =
2u

ε
Σyz −

2c

ε
Σzz +

u

ε
µy +

c

ε
µz.

At the steady state the system simplifies to:

− 2Σyy(α+
u

ε
) + 2

c

ε
Σyz + k + αµy +

u

ε
µy +

c

ε
µz = 0,

u

ε
Σyy − Σyz(

c

ε
+ α+

u

ε
) +

c

ε
Σzz −

u

ε
µy −

c

ε
µz = 0,

2u

ε
Σyz −

2c

ε
Σzz +

u

ε
µy +

c

ε
µz = 0,

and we obtain:

Σyy =
cΣyz

αε+ u
+
k

α
, Σzz =

uΣyz

c
+
uk

αc
, Σyz = 0.

Hence,

Σyy =
k

α
, Σzz =

uk

αc
, Σyz = 0.

Since y was taken as the output to the system, we notice that the variance of the output

also adapts. Moreover if k = c = α = 1 then Σyy = 1, Σzz = u, Σyz = 0.
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Chapter 6

Conclusions and Future Work

Motivated by questions arising in the field of molecular systems biology, with the goal to

better understand and model transient behaviors of various species, this thesis’ research

represents a significant step towards a better understanding of two robust properties:

scale invariance and adaptation, for several classes of systems found in biology. Adap-

tation is an essential property that many cellular systems possess, and allows them

to detect changes in their environments, and readjust themselves accordingly. In ad-

dition to the asymptotic behavior that adaptation entails, we are also interested in

understanding physiologically relevant transient behaviors, which we analyze through

the property termed scale invariance. This property represents the invariance of the

complete output trajectory with respect to rescaling of the input magnitudes, and is

experimentally observed in many signaling pathways, that play roles in cell division,

growth, cell death (apoptosis), etc. The misregulation of these pathways can lead to

diseases, including several types of cancer.

The major contribution of this thesis lies in developing a mathematical mechanism

termed “uniform linearizations with fast output”, ULFO, on a study of enzyme net-

works. We mathematically prove that ULFO yields scale invariance, and extend the

results of this study to examples relevant in systems biology. We show how on can use

scale invariance and our developed mechanism for model invalidation.

Another key contribution to this topic is in the analysis of feedforward circuits, motifs

commonly used in the research community as “signal processing” mechanisms that give

rise to an approximate scale invariance, due to the presence of different time scales in

their dynamics. We provide a fundamental limitation to this mechanism, and give a

lower bound result for the scale invariance error.
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Motivated by the work with our experimental collaborators who are designing novel

experimental methods based on microfluidics devices that are able to generate signals of

arbitrary inputs that are fed to a population of chemotactic bacteria, our contribution

lies also in developing tools for the identification of time-varying parameters in nonho-

mogeneous Poisson processes based on observers and Kalman filters. Experimentally,

discrete events such as “tumbles” or “spikes” are observed, based on images of swim-

ming bacteria in response to the nutrient signal, and the goal is to identify a hidden

continuous-time variable that drives the tumbling behavior.

The method we developed is novel in its application to biology, but it is also superior

to other methods commonly used in the literature, for instance in communication net-

works, or neural science, where the estimation problem of a NHPP arises as well, in the

sense that our method takes into account the fact that we are using information about

the inputs to our estimator. We support this claim on several examples.

Topics discussed in this dissertation create several open problems that are of interest to

the research community. Further analysis of scale invariance and adaptation properties

in a stochastic setting is relevant to both biological and chemical problems, where it is

of great interest to analyze complicated networks of simultaneously occurring chemical

reactions, and understand for instance the origin of oscillations in such networks, in the

light of developments in systems and synthetic biology.

Proposed method for the estimation of the rate function of a nonhomogeneous Poisson

process (NHPP) can be naturally extended to finding an optimal estimator for an initial

state of an unknown system, where the observations are k realizations of a NHPP, with

the same initial state. Additionally, by feeding various inputs to the various species,

and estimating the unknown underlying rate function (output of interest), one can look

at the system identification problem based on the input-output data, and eventually

a classification problem, where one would be able to discriminate between models of

different species. Inspired by problems arising in pharmacy, and easily other experimen-

tal disciplines as well, questions regarding the number of necessary data points needed

for a reliable model identification, and number of identifiable parameters are in their
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own right an important research topic, and should be addressed in the further steps

of this project. Even though the current focus of the estimation project are biological

applications, many of the same mathematical principles apply to engineering systems.
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