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U.S. households and commercial buildings consume approximately 40 percent of

total energy conversion in the U.S. and account for 72 percent of total U.S. electric-

ity consumption. Commercial building energy demand, in particular, doubled between

1980 and 2000 and has increased 50 percent since then. Developing innovative tech-

nologies and building energy-efficiency methods are therefore essential for U.S. national

interests and a sustainable energy future.

In this thesis, an optimal framework for forecasting and optimization of energy con-

sumption for building complexes is developed. For forecasting purposes, a hybrid time

series-regression model is introduced to combine regression models and seasonal autore-

gressive moving average models to accurately forecast energy usage at both the building

and the community/campus level. For optimization purposes, this thesis proposes an

optimal control strategy at the building level, which consists of two main phases. In

the first phase, a set of offline data either generated by a whole building simulation

platform or measured from a real building is used to develop models that capture the

dynamic behavior of building energy usage. In the second phase, the models are fed
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into an optimization model that computes the optimal control variables of the building.

The optimization model is a Multi-objective Dynamic Programing model that mini-

mizes total operating energy cost and demand charges as well as total deviation from

thermal comfort bounds. In addition, the proposed control strategy is adaptive, so that

it updates both the estimation and the optimization steps as soon as it receives new

measured data.

A data-driven risk-based framework is also proposed to predict and control industrial

loads in non-residential buildings. In this framework, a set of predictive analysis tools

are employed to allocate industrial load profiles into a particular set of classes. Load

profiles within the same class have lower variance and follow the same pattern. Then,

a generalized linear model (GLM) is used to predict the probability of having stochas-

tic industrial loads coming online over rolling time windows. Finally, for controlling

demand response to avoid demand charges, the proposed framework provides the nec-

essary tools to institute load shedding or load shifting strategies.
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Chapter 1

Introduction

1.1 Motivation

With 19% share of the global energy usage in 2010 the United States is the second

largest energy consumer in the world. U.S. households and commercial buildings, in

particular, account for 41% of all energy consumed in the country. This is 44% more

than the transportation sector and 36% more than the industrial load. In other words,

approximately 7% of the worlds primary global energy is solely consumed in the U.S.

by residential and nonresidential buildings [1]. In addition, commercial building energy

demand doubled between 1980 and 2000 and has increased by 50 percent since then

[2]. Therefore, developing innovative engineering methods and energy-efficient building

technologies are necessary more than ever as the country faces dwindling non-renewable

energy sources [3]. Among all building services and electric appliances, the amount of

energy consumed by cooling and heating systems, at about 50 percent, has the major

contribution [4].

This motivates many researchers and practitioners to pay higher attention to de-

veloping novel technologies and methods for improving building cooling and heating

systems. Heating, Ventilation and Air Condition (HVAC) systems, for example, have

increasingly been moving toward energy-efficient technologies since the 1980s. Com-

bined Cooling, Heating and Power (CCHP) is another example, which is often identi-

fied as an alternative for solving energy-related and environmental issues [5]. Although

new technologies and innovative methods have been significantly contributing to im-

proving energy consumption, there are still many potentials for energy-use reduction.

The problem is that most commercial or residential building loads are highly dynamic
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and complicated, making the existing systems less cost effective and less attractive to

end-users.

With this background in mind, we are motivated to propose a novel framework to model,

forecast and optimally control the dynamic behavior of building electrical, heating and

cooling loads under certain operational constraints. The existing control strategies have

often been driven by two approaches: High fidelity models that are based on physical

characteristics of buildings and load dynamics of the cooling/heating system. These

models are often too complex to be analytically solved or implemented in real cases.

Therefore, researchers often make restrictive assumptions in order to obtain approxi-

mate solutions [8, 9]. In the second approach, an individual metamodel is developed

for whole-building energy consumption using statistical or soft computing techniques.

These models discover and capture the relationship between the energy consumption

and a set of environmental or physical variables. However, the problem is that such

approximate models may not adequately capture a considerable portion of energy dy-

namics, as the physical relationships between building components and environmental

variables are complex [6].

To address these problems, our proposed framework utilizes the advantages of both

approaches and propose a combined physical/statistical model for capturing energy

dynamics separately for each zone. The zonal decomposition significantly simplifies

the calculation of the heat balance equations and building load dynamics. The zonal

calculations are fed into a statistical model that represents the total building energy

use. The same approach is also used for optimization and control purposes, so that

state variables are defined and updated independently for each zone, but the energy

minimization is carried out over the whole building.

A data-driven risk-based framework is also proposed in Chapter 5 to predict and control

industrial loads in non-residential buildings. The proposed framework consists of two

major steps: In the first step, it employs a set of predictive analytics tools to capture

and predict the patterns of industrial load profiles. These tools can also estimate the

probability of the day-ahead load pattern. Once the patterns of industrial loads are
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determined, a risk analysis method is used to evaluate the worst-case, best-case, and

most-likely estimations of energy cost. Any demand response programs can be analyzed

for worst-case, best-case, and most-likely scenarios and the best action can be selected

accordingly.

1.2 Synopsis of Contributions

1.2.1 Modeling and Forecasting Cooling and Electricity Load De-

mands

In Chapter 2, the main objective is to extend a statistical approach to effectively provide

look-ahead forecasts for cooling and electricity demand load over time. The statistical

model proposed in this chapter is a generalized form of the CochraneOrcutt estimation

technique that combines a multiple linear regression model and a seasonal autoregressive

moving average (ARMA) model. It simultaneously fits a linear regression and a time

series model to the load data while maintaining LSE (least square estimate) conditions.

The proposed model is adaptive so that it updates residual and forecast values every

time new information on cooling and electricity load are received. Therefore, the model

can simultaneously take advantage of two powerful statistical methods, time series, and

linear regression in an adaptive way. The performance of the proposed model is shown

through two real examples.

1.2.2 Optimal Control Strategy for Building Cooling/Heating Sys-

tems

In Chapter 3, we propose a framework for modeling, forecasting and optimization of

building cooling/heating systems. This framework integrates a physics-based model

with a data driven time-series model to forecast and optimally manage building energy.

To do this, first a zonal cooling/heating model is proposed based on the energy balance

equations and the least squares estimation (LSE) technique is employed to analytically

estimate the model parameters. The data required to obtain estimation values are
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either collected from an actual building or generated by a whole-building simulation

model. The zonal cooling/heating model is then fed into a forecast model to provide the

look-ahead forecast values of total building energy consumption. The forecast model

is similar to the model presented in Chapter 2. The forecast values are finally used to

find the optimal building set point values for a finite horizon. The optimization model

is a multi-objective mathematical programing that minimizes total operating energy

cost and demand charges as well as total deviation from thermal comfort bounds. In

addition, the optimization model is an adaptive dynamic control, so that the forecast

values are updated and optimization process is repeated, every time that new data on

energy or internal temperature is received. The novelty of the proposed framework is

on the specific combination and application of data-driven methods to optimize energy

control of large buildings, which are subject to stochastic externalities. In particular,

the methodology integrates a physics-based zonal model with an advanced time series

model to ensure enhanced accuracy and sensitivity of energy forecasts to incremental

changes in control variables.

1.2.3 Extensions of Optimal Control Strategy for Building Cooling/heating

Systems

In Chapter 4, several extensions are provided to improve the performance of the optimal

control strategy and to adjust it to a wider range of practical cases. Instead of using

a physical/statistical model, in this chapter, a regression model is proposed to find the

correlation between required cooling/heating power for each zone and a number of input

variables including the current and past zone internal temperatures, external temper-

ature, and time-related variables. By relaxing the physical form of the heat balance

equations, and by adding time-related variables, the proposed model can appropriately

fit with data and can provide accurate forecast values. In addition, we improve the

structure of our multi-objective dynamic programing to be able to adequately consider

daily as-used demand charge. In the kth step of the dynamic programing algorithm,

the maximum energy used in previous hours is obtained based on the highest energy
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usage from time t to t+k, given the optimal cost-to-go at step k.

1.2.4 Predictive Analytics Approach to Modeling Building Industrial

Loads

A predictive analytics approach is proposed in Chapter 5 to capture the behavior of non-

stationary industrial loads in non-residential buildings. The proposed approach consists

of an exploratory data analysis (EDA) to better understand the main characteristics of

industrial load data and to select appropriate statistical tools. It also includes a high-

dimensional clustering method to assign industrial load profiles into smaller groups

with less variability and same patterns. This approach employs a classification method

to estimate the best class that matches with any new load profiles. Ultimately, once

the appropriate classes of future load profiles are determined, the proposed approach

provides a cost-based risk analysis to calculate and evaluate the total risk of energy

decisions for the next day. This is coupled with a utility function structure to help

decision makers to take best demand-side actions.

1.3 Brief Overview of Thesis Accomplishments

The proposed work intends to address the following problems:

1. Statistical modeling and forecast of cooling and electricity demand loads in both

building and community levels. The following models and tools are introduced

and applied:

(a) A hybrid time series-regression model is proposed based on a generalized

Cochran-Orcutt estimation technique to forecast the campus/building en-

ergy consumption.

(b) A set of data visualization techniques, such as box plot, scatter plot, auto-

correlation function (ACF) and partial auto-correlation function (PACF)

plots, are employed to extract the existing patterns of energy data and to

discover useful knowledge and information used for forecast proposes.
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2. Optimal control of building cooling/heating systems to minimize building total

cost of energy as well as total deviation from thermal discomfort. The following

models and tools are introduced and applied:

(a) A zonal cooling/heating model is proposed based on the energy balance

equations and the least squares estimation (LSE) technique to forecast the

zonal internal temperature and the effective power rate.

(b) An energy forecast model is built to provide the k-hour-look-ahead forecasts

(k = 1, 2, ..., 24) for the total building energy use. The models inputs are the

effective cooling power and the external temperature and the output is the

forecasted as total energy consumption.

(c) A Multi-objective Dynamic Programming problem that is formulated to min-

imize total operating energy cost, demand charge as well as total deviation

from thermal comfort bounds.

(d) The weighted lp metric method is implemented to combine both objective

functions of the Multi-objective Dynamic Programming problem (total cost

of energy and total deviation from thermal comfort).

3. Extended optimal control strategy to improve the performance of the proposed

heating/cooling forecast model and the optimal control strategy. The following

revised models and extensions are considered in Chapter 4:

(a) The extended cooling/heating model, including time-related indicator vari-

ables and smaller time slots is proposed to capture more variability within

building cooling/heating data.

(b) The dynamic programing is revised to improve the performance of the opti-

mal control strategy.

4. The data-driven risk analysis approach to predict the industrial load patterns

and to evaluate and select the best demand response program(s). The following

predictive analytics and risk-based tools are developed or used in Chapter 5:
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(a) Predictive analytics methods are proposed to capture the industrial load

patterns and to estimate the probability of having specific pattern.

(b) Cost-based risk analysis is also developed to obtain the most likely, pes-

simistic and optimistic estimations of the building energy cost.

(c) A utility-based approach is proposed to evaluate the risk of different demand

response programs and to select the best scenario based.
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Chapter 2

Modeling and Forecasting of Cooling and Electricity Load

Demand

2.1 Introduction

The objective of this chapter is to extend a statistical approach to effectively provide

look-ahead forecasts for cooling and electricity demand load. The statistical model pro-

posed in this chapter is a generalized form of a CochraneOrcutt estimation technique

that combines a multiple linear regression model and a seasonal autoregressive moving

average model. The proposed model is adaptive so that it updates forecast values every

time that new information on cooling and electricity load is received. Therefore, the

model can simultaneously take advantage of two statistical methods, time series, and

linear regression in an adaptive way. The effectiveness of the proposed forecast model

is shown through two use cases. The first example utilizes the proposed approach for

economic dispatching of a combined cooling, heating and power (CCHP) plant at the

University of California, Irvine. In the second case, the proposed model is treated as

an approximation to EnergyPlus for the APEP building at the University of California,

Irvine. The results reveal the effectiveness of the proposed forecast model. The forecast

values of cooling and electricity demand load can be fed into any optimization model

to minimize the total energy consumption.

Combined Cooling, Heating and Power (CCHP) systems can significantly contribute

to reduction in buildings energy use, curtail pollutant and carbon emission, and help

to reduce risks of blackouts and brownouts in the utility grid [5-7]. CCHP technol-

ogy integrates processes of production and simultaneous use of cooling, heating, and

power at a single site. However, since most commercial and industrial electrical loads
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are highly dynamic and typically not synchronized with local heating and cooling de-

mands, advanced control strategies will be imperative to economic dispatch of CCHP

resources. A wide range of optimal control strategies has been proposed to improve the

CCHP operation based on different objectives including power flow, capacity, opera-

tion, energy-use and environmental considerations [8-17]. A common element in almost

all optimal control strategies is to have an accurate estimation of cooling, heating, and

electricity load demands. Some researchers assume that load demands are known and

available over a specific period [11, 14].The existing works in the literature typically

assume that cooling and electricity demand forecasts are exogenously given [14]. How-

ever, cooling and electricity demands are typically difficult to model mainly because of

the complex interactions between plant facilities and equipment, e.g. HVAC (heating,

ventilation, and air conditioning), chillers and turbines yields. Ref. [11] points out that

in practical applications, the exact future load profile does not exist; and forecasting

methods should be taken into consideration by researchers.

A number of researchers employ building simulation platform to generate building load

demand based on its physical characteristics and other dynamic input variables such as

occupancy, weather, and time information. The cooling and electricity load demands

are outputs of running the simulation and are then fed into the optimization model

[15-17]. However, the quality of results highly depends on quality of the simulation

models and their inputs. In addition, for any CCHP optimization, a detailed building

simulation model needs to be accordingly built and run repeatedly. Another way to deal

with this problem is to consider uncertainty in CCHP optimization model. Hu and Cho

[15] for instance, propose an optimization model with some probabilistic constraints to

guarantee that the model is reliable to satisfy the stochastic load demand. They as-

sume load demands are independent and follow normal distributions in which 95% of

the area is within the range of 20% of the average load demands. Another approach

to this problem is to develop a forecasting model and embed it into the optimization

model. This is the main motivation of this work. In this chapter, CochraneOrcutt es-

timation technique is used as an effective linear model to provide look-ahead forecasts
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for cooling and electricity demand load. It simultaneously fits a regression model and

a time series to the data while maintaining least square estimate (LSE) conditions. In

addition, the forecast values are modified when a new data is received from the real

system. The proposed model is currently working as a part of an integrated optimal

dispatch for CCHP plant at the University of California, Irvine and providing accurate

forecasts for the entire campus cooling and electricity load demand.

2.2 Background Study

In most real cases, cooling and electricity load demands are highly dynamic oscillating

within a wide range of values during course of a day. This is mainly because several

physically explicit or latent factors can instantaneously influence cooling and electric-

ity demand patterns. These factors can be any one of the following types: (i) Static

factors that are usually set at the design stage and only change due to ageing wear and

tear. Building characteristics, CCHP components, chiller types and generator nomi-

nal capacities are examples of such factors; (ii) Environmental variables extrinsic to

the building, such as climate and weather data; (iii) operational variables, e.g. cool-

ing/heating set point values, lighting, time schedule to operate various equipment and

system components within plant or building; and (iv) uncontrollable dynamical vari-

ables, such as number of occupants at any time, noise due to structural variations etc.

It is ideal to know all these factors and their impacts on energy dynamics in order to

optimally forecast and control cooling and electricity demands for single building or a

cluster of buildings. However, a complete forecast model is not practically attainable

due to unknown significant dynamical variables, lack of tools to measure their effects,

or that some of these variables are uncontrollable. Therefore, a wide range of different

methods has been proposed to model and forecast load dynamics. In overall, these

methods can be categorized into three general approaches.

In the first approach, a linear or nonlinear statistical model is used to explain the vari-

ability of response (load or energy dynamics) over time. The most popular example of

such statistical models is Box and Jenkins time series paradigm where load demands
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are estimated based upon a linear combination of their past values [18-20] There are a

large family of different models in this category that can deal with many special cases

including seasonality, non-stationary, and non-homogeneity of variances (see e.g. [21,

22]). The major drawback of such models is that the future values are typically fore-

casted based upon the past and present values of cooling and electricity load demands

without considering any exogenous factors in the model [23-25].

Another example of statistical approach is using regression models (metamodel) where

the variability within response is modeled via a number of exogenous factors [26-30].

The major problem of such models is that they often ignore the complex interactions be-

tween exogenous factors, which may result in less accurate forecast values. To overcome

this problem, a number of studies use a hybrid approach, which employs the main com-

ponents of both above-mentioned approaches [31-33]. Autoregressive with exogenous

variable (ARX) and autoregressive moving average with exogenous variable (ARMAX)

are two examples of this approach. Although these models perform effectively in many

cases, they have many parameters to be estimated since all input and output variables

with their past and current values should appear in the forecast model.

The second approach employs artificial intelligence to find the k-step ahead forecasts

for load demand. A broad range of numerical methods can be included in this cat-

egory. Refs. [34] and [35] a comprehensive review of AI techniques in some areas of

energy. Although their techniques are not directly related to load forecasting, however,

they can easily be used with minor changes. Artificial neural network (ANN) is among

most frequent AI techniques and has been widely used in load or energy forecasting.

ANNs have particularly evolved based upon different settings of neuron arrangement,

neuron connections, training techniques, and internal layers and become a powerful

competitor for statistical methods [36-40]. They can be designed to include both past

observation of cooling and electricity demands and associated exogenous factors. The

main disadvantage of AI approach is that they are often black box and do not show

any explicit relationship between response an input variables. For example, the hidden

layers of ANNs are difficult to explain and cannot be appeared in an explicit forecasting
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equation [41].

In addition, by developing computational methods, a third approach has recently been

developed which is a combination of any abovementioned techniques. The main purpose

of this hybrid approach is to improve the accuracy of the forecast values by combining

different numerical-analytical methods. Some hybrid methods also partially include

the physical aspects of the real system in their computation and come up with a mixed

physical-numerical method, which is often referred to as grey models [41]. A few appli-

cations of hybrid models in the area of energy can be found in [42, 43].

The proposed model can be classified in the statistical groups. It first fits a linear

regression to find the correlation between the cooling and electricity load demands and

exogenous factors. Any variability that cannot be explained by regression models can

be aggregated in residual terms. Then, a seasonal time series model is applied to the

residuals to express the remaining variability. Since, the regression parameters should

be estimated using least square error method, the process of parameters estimation is

applied iteratively and simultaneously. Further details will be explained in the next

section.

2.3 Problem Statement

The common assumption of uncorrelated random error terms ε’s made in basic regres-

sion models is not appropriate to forecast building energy consumption. Historical data

shows that error terms are frequently correlated (often positively) over time [44]. In

particular, this typically happens when there are some uncontrollable, unknown, or non-

measurable input variables. A special case for the regression model with auto-correlated

data can be shown as follows:

yt =

k∑
j=0

βjxtj + εt, εt = ξ(εt−1, ..., εt−q) + αt, (2.1)

where ξ(.) is a function of previous error terms ε’s, yt is the power consumed at

time t and xtj is the j th input variable affecting the building energy consumption

at time t and αt is a white noise. The error terms are typically modeled using Box
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and Jenkins model as a first order auto-regressive model. A preliminary study of our

historical data on cooling and electricity load demands indicates a seasonal pattern with

lag of 24 hours. Therefore, the error terms in Equation (2.1) is generalized to include

seasonal patterns. To do this, assume that p, q, P and Q are the order of non-seasonal

and seasonal autoregressive and moving range parts respectively, and s is the seasonal

order. Then a general ARMA model for error terms can be written as follows:

φp(B)Φs
P (B)εt = θq(B)Θs

Q(B)αt, (2.2)

where φp and Φs
P are autoregressive operators, θq and Θs

Q(B) are moving average op-

erators and B is backward operator. s is set equal to 24 showing the significance of

autocorrelation between loads of same time in two consecutive days. Let

φp(B)Φs
P (B) = 1−Ψ(B),

then

εt = Ψ(B)εt + θq(B)Θs
Q(B)αt, (2.3)

Furthermore, Equation (2.2) can be written as follows:

yt =

k∑
j=0

βjxtj +εt

p∑
i=0

P∑
j=0

(−1)i+j−1φiϕjB
i+s×j +αt

q∑
i=0

Q∑
j=0

(−1)i+jθiΘjB
i+s×j . (2.4)

Note that φ0 = ϕ0 = 0 and θi = Θj = 0. For example, for the ARMA(1, 0)(1, 0)n

we have

yt =
k∑
j=0

βjxtj + εt(φB + ϕ1B
24 − φ.ϕ1B

25)

=
∑
j

βjxtj + φεt−1 + ϕ1εt−24 − φ.ϕ1εt−25

(2.5)

The main significance of Equation (2.4) is that it includes seasonal error and tends

to capture statistical similarities between two periods, which are n hours apart. The

major problem of multiple linear regression with auto-correlated error terms is the es-

timation of coefficients. With auto-correlated error terms, the ordinary least square
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(OLS) procedures can be misleading and does not guarantee estimation with the min-

imum variance [44]. To overcome this problem, Cochrane and Orcutt [45] proposed a

transformation when error terms follow a first order autoregressive process. According

to Cochrane-Orcutt model, one should transform the response values in such a way

that ýt = ϕp(B)Φs
P (B)Yt, x́t = φp(B)Φs

P (B)xt and β́0 = φp(B)Φs
P (B)β0, Therefore,

Equation (2.4) can be replaced by:

y′t = β′0 + x′tβ
′
t + at (2.6)

Equation (2.6) is an ordinal multiple linear regressions with independent error terms

and can be calculated via OLS estimation method. As a result, the fitted linear function

ýt = β′0 + x′tβ
′
t can eliminate the autocorrelation structure of the error terms. The

following algorithm summarizes our approach:

2.3.1 Algorithm

Step 1 Divide the original dataset into two subsets: training dataset and testing

dataset, which are used for model estimation and model verification respectively

and denoted by Ω1 and Ω2. Set i=0.

Step 2 Fit a multiple regression model to training subset and estimate vector of β̂̂β̂β
i

in

y′i1 = X1β̂̂β̂β
i
, where y1,X1 ∈ Ω1 are response (cooling or electricity load demand)

and independent variables (exogenous variables). Then calculate initial residual

values by ε̂i = y1 − y′i1 = y1 −X1β̂
i.

Step 3 If ε̂̂ε̂εi’s are correlated then fit an ARMA model, i.e. ϕ̂ip(B)Φ̂
si
P (B)εit =

θ̂iq(B)Θ̂
si
Q(B)αt, and find estimation values for ϕ̂ip(B) , Φ

si
P (B) , θ̂iq(B) and Θ̂

si
Q(B)

using least square error technique or other estimators (See [14] for further details

about estimation procedures).

Step 4 Apply following transformations ýi1t = ϕip(B)Φsi
P (B)y1, x́1t = φip(B)Φsi

P (B)x1t

on y1,X1 ∈ Ω1.Then fit a new multiple regression model to transformed subset

and estimate vector β̂̂β̂β′i where y′i1 = X′i1β̂̂β̂β
′i.
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Step 5 Check [
∣∣∣β̂̂β̂β′i − β̂̂β̂β′i−1∣∣∣ < δ ; if true then set β̂̂β̂β

′
= β̂̂β̂β′i and go to Step 6. Otherwise,

calculate the residual values by ε̂̂ε̂εi = y1 − y′i1 = y1 −X′i1β̂̂β̂β
′i and go to Step 3.

Step 6 Apply anti-transformations β′0 = ϕp(B)Φs
P (B)β0 for and β̂6= 0 = β̂′6= 0 and use

them in Equation (2.1).

It is quite common to use the estimated parameters as well as subset Ω2 to check the

adequacy of the given model. In this study, we employ coefficient of determination R2

and adjusted coefficient of determination R2
adj as measures for model adequacy checking.

These measures can be calculated as follows:

R2 =
β̂̂β̂β′TX′T 2(I −H)X′2β̂̂β̂β

′

y′T 2 (I − (1/n)J) y′2
(2.7)

and

R2
adj =

β̂′TX′T 2(I −H)X′2β̂
′/k − 1

y′T 2 (I − (1/n)J) y′2/n2 − k
(2.8)

where k is number of exogenous variables, n2 is sample size for testing dataset , I

is identity matrix and H can be calculated by H = X2(X
T
2X2)

−1XT
2 as well. R2 and

R2
adj are both between 0 and 1 and explain the percentage of variation that is explained

by model. A closer value to 1 depicts a better model.

2.4 Case studies and Experimentation

In this section, the forecast model is employed as a part of optimal dispatching of a

CCHP plant at the University of California, Irvine. Cooling and electricity forecast

values are fed into an optimal control strategy, which searches for optimal set points

for 24 hours ahead. The forecast model then is used to compute optimal control values

to minimize energy consumption during course of a day in a building.
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2.4.1 Combined Cooling, Heating and Power System

The UC Irvine Central Plant consists of eight electric chillers, providing cold water,

a 13.5 MW gas turbine (GT), a 5.7 MW steam turbine (ST), thermal energy storage

(TES) tank, and a heat recovery steam generator (HRSG). It provides heating and

cooling loads for the entire campus as well as the majority of the campus electric loads.

The chillers are able to supply as much as 14500 tons (51 MW) and the steam driven

chiller can provide an additional 2000 tons (7 MW). The TES tank capacity is 60000

ton-hour (211 megawatt-hour) which is able to shift, on average, 65% of the cooling

load during the day to the night when electricity prices are lower and temperature is

cooler.

Figure 2.1 provides a schematic of the plant, where GT is the primary source of electric

power providing electricity for the campus and for the chillers. As a byproduct, the

gas turbine generates the exhaust gas, which can be source of extra thermal energy.

Such energy is then used to produce steam using HRSG unit. HRSG can supply 23500

kg/hour and 54000 kg/hour without and with duct fire, respectively. The generated

steam drives the steam turbine (ST). The steam can also be used to produce hot water

for the campus needs. A portion of the produced steam is also transferred to use in a

steam chiller unit. GT and ST supply about 85% of the total electrical needs on the

campus with the balance being served by utility import (14%) and an 893 kW-fixed

panel solar photovoltaic (1%).

As mentioned, the electricity produced by two generators are either sent directly to the

campus to satisfy electricity demand or supplied as the energy input to the electrical

chiller (see [14] for more details), which is mainly responsible to provide cold water.

Cold water can be either directly supplied to the campus to meet campus cooling needs

or stored in the TES tank for later use. Hence, the chillers and the TES together are

the main sources for the campus cooling demands. Any additional electricity demand

is provided from the grid.

Such a CCHP system is able to produce thermal energy along with electricity over



17

Figure 2.1: Schematic Framework of CCHP plant at University of California, Irvine

time. The Thermal Energy Storage (TES) is a flexible component of the plant, which

allows the campus to reshape the cooling demand particularly in peak hours. There are

many examples of CCHP supervisory control systems in literature ([8], [9], and [15]). A

key element for such optimal control is to have accurate information about the power

(electricity and cooling) demand over the course of a day, which is the central focus of

this study.

Suppose that W k
CHC is the cooling load generated by the kth chiller (kW), and that

is the power consumed by the kth chiller (kW) to generate units of cooling load. Then

W k
CHC is proportional with as follows:

W k
CHW = wkCHC/COP

k (2.9)

where COP k is the coefficient of performance for the kth chiller which is the ratio

between efficient energy acquired by and supplied to the chiller; this is typically de-

termined by the chiller manufacturer. In this study, COP k is fixed and given by the

chillers manufacturer. However, in reality, it is a function of the real operating temper-

ature and reliability of the absorption chiller. This information is not often available.
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Therefore, any variation due to change in COP k is appeared in error term of Equa-

tion (2.1) and should be modeled via time series part of the proposed model. W k
CHW

presents the actual power (electricity) consumed by the kth chiller to produce W k
CHC .

The total power consumed by all chillers is given by:

WCHW =
∑8

k=1
W k
CHW (2.10)

Note that W k
CHW values do not reflect the cooling power supplied to the campus. A

portion of cooling load produced by the chillers is sent to the TES tank and stored for

peak hours. Thus, W k
CHW values cannot be a good measure for determining the total

cooling demand of campus at any time. Instead, the amount of cooling supplied to the

campus can be expressed as follows:

Qcooling = ṁchw × cw × (TCHRw − TCHSw) , (2.11)

where Qcooling is the total amount of cooling (kW) provided by the chillers and supplied

to the campus to meet cooling demands, TCHRw is the temperature of returned water

to chillers (K), TCHSw is the supply water temperature from chillers (K), ṁchw is the

chilled water mass flow rate (kg/s) and is the specific heat capacity of water (kJ/kg-K)

[14]. All above parameters are known and available in the plant. This allows us to

accurately estimate the actual cooling load demands.

Similar to the cooling load, the direct values for the electricity load demand are not

available. However, this can be calculated from the hourly power consumption by the

chillers, the total power generated by gas and steam turbines, and the power provided

by grid. The electricity load at time t is therefore:

W t
electricity = W t

grid +W t
GT +W t

ST − wtCHW , (2.12)

Where WGT and WST are the power produced by gas and steam turbines, respectively,

and Wgrid is the power purchased from grid at any time. wCHW is the total power

consumed by all chillers, which is calculated in Equation (2.10), and Welectricity is the

electricity load demand at time t. In this study, due to lack of data, we ignore the

power consumption by pumps and chiller compressors, which account for a relatively
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negligible portion of the power consumption throughout the campus. The proposed

forecast model is used to forecast both Qcooling and Welectricity using a set of weather

and time variables as well as historical cooling and electricity data.

2.5 Results for the CCHP Plant Data

In this section, the performance of the proposed method is discussed using the CCHP

plant data collected from the UCI campus. In this example, one year (September 2009

through September 2010) and 4 months data (September 2009 through December 2009)

are used for building the forecast models for the cooling and electricity load demands,

respectively. Both datasets are provided by the UCI campus plant based on actual

values of the cooling and electricity consumption. Each dataset is divided into two

subsets. The first set is used for model building and estimation purposes (training

dataset). The rest of the data is used for validation purposes (testing dataset). In this

work, Matlab is employed for creating and testing the proposed forecast model and

plotting and visualization is done by Minitab and R. In this phase, Equations (2.7) and

(2.8) are used to investigate the performance of the forecast models. The testing subset

does not share any information with the training dataset.

Before building the forecast model, an exploratory data analysis is performed to capture

the behavior of data over time. Figure 2.2 depicts the 95% confidence interval plots

for the cooling and electricity load demands categorized by weekdays. It is observed

that both the cooling and the electricity load demands are higher in working days than

weekends.
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Figure 2.2: 95% Confidence Interval Plots Categorized by Weekday for a) Cooling Load

Demand b) Electricity Load Demand

This is particularly obvious for the electricity load demand that is less than 12000

(kW) in weekends and more than 13000 (kW) for weekdays. This implies that mixing

all data and building a global forecast model without considering the factor of day may

result in a less powerful model. Thus, in this work, two different models are constructed

for weekdays and weekends.

Figure 2.3 presents the 95% confidence interval plots for the cooling and the electricity
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Figure 2.3: 95% Confidence Interval Plots Categorized by Hours for a) Cooling Load
Demand b) Electricity Load Demand

load demands categorized by 24 hours of the day. For example, 17 in x -axis means

the 95% confidence interval for the cooling and electricity load demands at time 17:00,

which is constructed by all data collected at this particular time slot. This figure can

easily represent peak time for the cooling and electricity load demands.

For cooling, the load demand increases constantly from 6:00 and reaches its maximum

value at time14:00 then decreases until end of the day. The peak hours for the cooling

load demand are between 11:00 to 17:00. This also implies that the cooling demand

load is highly correlated with the ambient temperature. Similarly, the peak hours for

electricity load demand are between 9:00 to 19:00 as well.
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Figure 2.4: Scatter plots of Cooling and Electricity load demand vs. Site Temperature

Figure 2.4 shows scatter plots of the cooling and electricity load demands versus the

ambient temperature. The cooling load values show higher correlation with ambient

temperature than the electricity load demand. The estimated correlations between

cooling and electricity load demands with ambient temperature are 0.905 and 0.374,

respectively. This means that to find an accurate model for the electricity load demand,

it is required to add more significant exogenous factors than ambient temperature.

For example, the average number of people in the campus at time t would be

a potential exogenous factor for modeling the campus electricity load demand. As

number of people in the campus increases, it is logical to presume that the electricity

load demand increases. However, in this example, since the number of people in the

campus at time t is not available we are not able to analyze its effect. As a result,

those parts of variation that are related to such missing exogenous factor(s) should be

explained and modeled by time series part of the proposed method.

Figure 2.5-a and Figure 2.5-b present the hourly cooling load of the campus and the

residual values given by fitting a linear model of cooling versus ambient temperature.



23

Figure 2.5: a) Time series plot for the cooling load demand, b) the residuals for a

preliminary linear model, c) autocorrelation plot and d) partial autocorrelation plot for

residual values

The residuals are highly autocorrelated over time in different lags ( Figure 2.5-c).

Furthermore, Figure 2.5-d is the partial autocorrelation function (PCAF) for residual

values and can identify the extent of lags in an autocorrelation model. In this figure,

PACF illustrates a strong autocorrelation structure in the first lag and the 24th lag,

which accounts for seasonality in the data. Therefore, a seasonal ARMA(1, 0, 0) ×

(1, 0, 0)24 seems an appropriate candidate for the electricity load dataset.
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Figure 2.6: a) Time series plot for Electricity load demand, b) the residuals for a

preliminary linear model, c) autocorrelation plot d) partial autocorrelation plot

Similarly, figures 2.6-a and 2.6-b are the electricity load demand and its corre-

sponding residual values when applying a linear model to the data. Again, ACF and

PACF in Figure 2.6-c and Figure 2.6-d reveal a correlated structure for the electricity

load dataset. Particularly, PACF illustrates a positive autocorrelation for the first lag

and a remarkable negative correlation for the 24th lag. This means that a seasonal
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Figure 2.7: Comparison of actual and forecasted values for cooling load demand using
a) training dataset (above) and b) testing dataset (below)

ARMA(1, 0, 0)× (1, 0, 0)24 model would be enough for the electricity load demand.

Figure 2.7-a and Figure 2.7-b depict the result of forecast modeling for the cooling load

demand using training and testing datasets. In Figure 2.7-a, the forecast values are

very close to the corresponding actual values. This is because the training dataset is

used for parameter estimation of the forecast model. Therefore, the model includes the

information of actual data. Figure 2.7-b represents the performance of the model with

testing dataset, which does not share any information with the estimated parameters.

It is observed that the model adequately fits with the actual data.

In addition, Table 2.1 provides the estimate values of the model parameter, their stan-

dard errors as well as coefficient of determinations for both cooling and electricity load

demands. For the cooling demand, coefficient of determination R2 and adjusted co-

efficient of determination R2
adj are 88.4% and 88.3%, respectively implying that the

proposed model can explain more than 88% of the total variability within data.

Figure 2.8 and Figure 2.9 present the actual and forecast values of electricity load de-

mand using both training and testing datasets for weekdays and weekends, respectively.

As shown in Figure 2.2-b, the electricity demand patterns are significantly different in
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Table 2.1: The estimates values for cooling and electricity forecast models

Cooling Electricity

All Data Weekdays Weekends

Estimate Std error Std error Estimate Std error
Estimate

β0 -13441.85 1851.1 12783 458.2 9825.557 704.74
β1 357.28 13.98 21.018 6.1137 39.168 8.809
φ1 0.9059 0.016 0.8775 0.0319 1.1882 0.075
φ2 0.0513 0.021 0.0018 0.0425 -0.1848 0.1162
φ3 -0.083 0.02134 -0.1298 0.0423 -0.014 0.1168
φ4 -0.0314 0.02138 0.0606 0.0425 -0.0594 0.1168
φ5 -0.0299 0.02138 -0.1054 0.0425 -0.2021 0.1169
φ6 -0.0405 0.02137 0.0073 0.0425 0.1319 0.1178
φ7 0.0829 0.02138 0.1304 0.0422 0.124 0.116
φ8 -0.0264 0.02142 -0.1095 0.0423 -0.1624 0.117
φ9 -0.0289 0.02142 -0.0625 0.0425 0.114 0.119
φ10 -0.0094 0.0214 0.0484 0.0425 -0.1592 0.1195
φ11 0.0191 0.02136 0.0155 0.0426 0.1565 0.121
φ12 0.0017 0.02135 -0.0777 0.0427 -0.0218 0.1219
φ13 -0.0138 0.02135 0.0466 0.0427 0.139 0.1204
φ14 -0.0112 0.02134 -0.0047 0.0427 -0.145 0.119
φ15 0.0275 0.02134 -0.0287 0.0427 -0.1449 0.1189
φ16 -0.0021 0.02134 0.0276 0.0426 0.0813 0.1194
φ17 0.0012 0.02134 0.0957 0.0425 0.2598 0.1193
φ18 -0.0074 0.02129 -0.1241 0.0424 -0.2818 0.1206
φ19 0.0084 0.02128 0.0501 0.0426 -0.0009 0.1222
φ20 0.0191 0.02128 0.055 0.0425 0.0622 0.1233
φ21 0.0392 0.02128 -0.0531 0.0425 0.0664 0.1228
φ22 0.0728 0.02124 0.0966 0.0423 0.1109 0.1241
φ23 0.0751 0.02125 0.0439 0.0424 -0.0776 0.1239
φ24 -0.0322 0.01576 0.0797 0.0319 -0.0285 0.0814
R2 0.884 0.708 0.43
R2
adj 0.883 0.7 0.405
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Figure 2.8: Comparison of actual and forecasted values for electricity load demand in
weekdays using training dataset (above) and testing dataset (below)

weekends and weekdays, probably because of fewer numbers of people in the campus

in weekends. Therefore, to improve the performance of the proposed method, we built

two separate models for weekdays and weekends.

In addition, It is observed from Figure 2.8 and Figure 2.9 that the performance of

the proposed model for the electricity load demand is still less than the same model

proposed for the cooling load demand. This is mainly due to lack of other exogenous

factors in electricity demand model. As shown in Figure 2.4, the correlation between

electricity load demand and the ambient temperature is moderate. It means that the

ambient temperature can only explain a relatively small portion of variation in electric-

ity demand. This can be confirmed by observing Table 2.1. In this table, R2 and R2
adj

for electricity load demand in weekdays are namely 70.8% and 70% and for electricity

load demand in weekends are namely 43% and 40%. Therefore, the electricity load

model should be enhanced by adding more exogenous factors e.g. occupancy into the

forecast model in order to capture larger amount of variability over time.
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Figure 2.9: Comparison of actual and forecasted values for electricity load demand in
weekends using training dataset (above) and testing dataset (below)

Figure 2.10: Time series plot for electricity load demand grouped by month

Another potential reason for lower performance of the electricity demand forecast

model is shown in Figure 2.10. In this figure, the values of electricity load demand are

plotted over time and are grouped by months. We note that the load demand in the last

month follows different pattern than the other months. This is because the last month

is December and the campus is probably less populated at the last days of December.
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Since, we used the first two months for training and estimation and the rest of data

(including December data) for the testing purposes, the model cannot fit the last part

of December. A solution for this problem is to add the occupancy as another exogenous

variable into the model and re-estimate the model parameters accordingly. This way,

the model can differentiate between those days that more people are in campus from

the days that less people are in campus including weekends. Another idea is to build a

new model solely for December. In doing so, the model switch to a new model that is

designed and built based on December data as soon as December begins.

2.6 Building Energy Consumption characteristics

There are many various buildings inside the campus, which obtain their electricity and

cooling demands through the central CCHP plant. A logical idea is to employ the same

optimal control scheme for buildings alongside with CCHP plant, which results in more

savings in energy consumption. Such optimal scheme can be considered as a subopti-

mal control problem with different input variables than the plant input variables which

leads to further saving and less operating cost over time.

In order to construct a forecast model for the building energy consumption, one should

study many exogenous factors, which directly or indirectly influence building energy

consumption. All factors affecting energy consumption can be categorized into two

major classes: i) Controllable factors, which include operational variables such as cool-

ing and heating air set points; ii) Uncontrollable factors, which include environmental

variables e.g. weather information, uncontrollable dynamic variables e.g. occupancy or

static variables e.g. building characteristics. An effective system framework provides a

modeling and prediction basis in which, for a given environmental and uncontrollable

dynamical variables, the building energy consumption is accurately predicted for a rel-

atively short time horizon. Therefore, one can use Cochrane-Orcutt technique to find

the relationship between building cooling and electricity consumptions with available

controllable and uncontrollable variables. In this study, the actual data associated with

input variables as well as cooling and electricity energy consumptions are not available.
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To approximate these variables we build a simulation model using EnergyPlus that is

a powerful simulation package for building energy management.

2.6.1 Results for Building Energy Consumption

We investigate the performance of the proposed model for forecasting the whole-building

energy consumption. Our case study is the Advanced Power and Energy Program

(APEP) building at the University of California, Irvine (UCI). APEP consists of the

National Fuel Cell Research Center, the UCI Combustion Laboratory, and the Pacific

Rim Consortium on Combustion, Energy, and the Environment that require many in-

dustrial equipment. This occasionally causes a remarkable industrial load alongside the

building normal load consumed for lighting, cooling, heating etc. In this chapter, we

only consider normal load in our analyses and parameter estimations. The building

industrial load requires additional input information and different modeling approach

that will be discussed later in another chapter. Since we do not have enough actual

data to build the forecast model, we employ the APEP building EnergyPlus to generate

the required data. In fact, our proposed forecast model is a meta-model for the APEP

EnergyPlus model that provides energy information faster with less computational ef-

forts. This is particularly important for optimization purposes, where it is required to

run many various scenarios and investigate a large number of different solutions. In

addition, EnergyPlus provides more weather outputs that can be used in forecasting

energy consumption. In this study, using a variable selection method, we use the follow-

ing variables as exogenous factors in the model: outdoor dry bulb, outdoor wet bulb,

outdoor humidity ratio and Luminous Efficacy of Sky Diffuse Solar Radiation.

Table 2.2 presents the estimate values of the forecast model and their correspond-

ing standard errors for the electricity and cooling energy consumption of the APEP

building. It is observed that the proposed model can be adequately applied for both

datasets. Coefficient of determination is used to evaluate both models. R2 and R2adj

for the cooling energy consumption are 91.6% and 91.1% and for the building electricity

are roughly 79.6% and 78.7% representing that the forecast model is capable to explain
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Table 2.2: The estimates values and corresponding standard errors for APEP cooling
and electricity model

Cooling Electricity

Estimate Standard error Estimate Standard error

β0 -534201.7 37415.11 77788.96 23887.95
β1 80546.7 7108.92 N/A N/A
β2 -148695.1 16921.3 -925.45 316.35
β3 159606617.5 17459325 N/A N/A
β4 -7.2 18.22 N/A N/A
β5 -534201.7 37415.11 N/A N/A
β1 0.865 0.041 0.187 0.0329
β2 0.098 0.055 0.395 0.0334
β3 -0.228 0.055 0.087 0.0365
β4 -0.053 0.056 0.036 0.0365
β5 0.085 0.056 0.01 0.0363
β6 -0.053 0.056 -0.185 0.0362
β7 0.012 0.056 -0.166 0.0352
β8 0.017 0.055 -0.152 0.0355
β9 -0.044 0.055 0.056 0.0355
β10 -0.033 0.048 0.232 0.0349
β11 0.049 0.041 0.133 0.0357
β12 0.042 0.041 0.048 0.036
β13 0.01 0.041 -0.04 0.036
β14 -0.132 0.041 -0.143 0.0357
β15 0.028 0.041 -0.17 0.0348
β16 0.053 0.041 -0.151 0.0354
β17 -0.028 0.041 0.112 0.0355
β18 0.002 0.041 0.275 0.0352
β19 0.037 0.041 0.065 0.0362
β20 0.015 0.041 0.108 0.0362
β21 0.003 0.041 -0.067 0.0364
β22 0.063 0.04 -0.166 0.0364
β23 0.003 0.04 -0.14 0.0332
β24 0.093 0.032 0.609 0.0327
R2 0.916 0.796
R2
adj 0.912 0.7868
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majority of variation in dataset. In addition, by adding the information of occupancy

(number of people in each zone at any time), one can improve the performance of the

electricity consumption model.

Figure 2.11: Time series plot of cooling and electricity consumptions and their forecast

values for APEP building based on EnergyPlus results: cooling consumption using a)

training dataset, b) testing dataset; and electricity consumption using c) ) training

dataset d) testing dataset.

Figure 2.11 consists of a set of time series plots associated with both cooling and

electricity energy consumptions of the APEP building using both training and testing
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datasets. It is observed that the forecast values are very close to the actual values for

both the cooling and the electricity energy consumption.

One reason for such good performance is the structure of the building simulation model.

Since datasets are output of an EnergyPlus model, the forecast model highly depends

on the level of complexity considered in the building simulation model as well as the

assumptions i.e. linearity applied to the model. The APEP building example shows

that the proposed forecast model can accurately provide same results as EnergyPlus,

but with much less computational effort. The majority of simulation optimization

approaches requires running many replications to evaluate a wide range of scenarios

and seek for the optimal solution [46].

By directly using EnergyPlus, it may be time consuming or even impractical to generate

enough scenarios. Instead, one can employ the proposed statistical model as a meta-

model and produce many scenarios in a time-efficient way. Particularly, the proposed

model can be used in the initial steps of optimization, where it is required to evaluate

a large number of different scenarios, while the optimization algorithm is still far from

the optimal solution. In this case, a simple yet fast model can be applied to evaluate

many solutions in shorter time.
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Chapter 3

Optimal Control Strategy for Building Cooling/Heating

Systems

3.1 Introduction

In this chapter, we introduce an approach for modeling of building cooling/heating

system and present our optimal control strategy to optimize the heating/cooling en-

ergy consumption over time. In this approach, physical characterization of the building

is partially captured by a collection of zonal energy balance equations with parame-

ters estimated using a least squares estimation (LSE) technique. The data required

to estimate energy balance equations are either collected from an actual building or

generated by a whole-building simulation model. The zonal cooling/heating model is

then fed into a forecast model to provide the look-ahead forecast values of total building

energy consumption. The forecast model is similar to the model presented in Chapter

2. The combined forecast model is then used in a model predictive control (MPC)

framework to manage heating and cooling set points. The formulation of the MPC

algorithm includes a multi-objective mathematical programming model that minimizes

total operating energy cost and daily as-used demand charges as well as total deviation

from thermal comfort bounds. This work is motivated by the practical limitations of

simulation-based optimization. Once the forecast model is established capturing suffi-

cient statistical variability and physical behavior of the building, there will be no more

need to run EnergyPlus in the optimization routine.

In practice, the initial training of the model parameters can be carried out using building

simulation data. But, as soon as, the real building energy usage data becomes avail-

able, the forecast model updates its parameters with real data. This in turn adjusts
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optimal control strategies (i.e., zonal set points) over time (e.g., on hourly basis) and

ensures that internal zone tempratrues remain within prespecified limits. The practical

significance of this model are two-fold: (i) The model is adaptive to real time building

energy performance and directly incorporates internal temperature in its optimization,

(ii) The use of EnergyPlus or similar simulation models, which are computationally too

expensive for optimization, is reduced only to the initial training.

The novelty of this work is on the specific combination and application of different

methods to optimize energy control of large buildings which are subject to stochastic

externalities. In particular, the methodology integrates a physics-based zonal model

with an advanced time series model to ensure enhanced accuracy and sensitivity of

energy forecasts to incremental changes in control variables. Internal temperature mea-

surements of different zones in the building are used in calculations. Initial training of

the model parameters is carried out using highly granular building energy simulation

(EnergyPlus or similar models). Unlike the current practices that run different scenar-

ios to deal with stochastic externalities, the proposed forecasting model is adaptive and

uses actual measurements to refine and update its forecast values.

3.2 Literature Review

The basic idea of MPC is to form a model that is able to represent the future behav-

iors of building cooling/heating dynamics and to provide optimal control actions for a

specific time horizon [47-50]. Different modeling approaches can be employed for im-

plementation of an MPC strategy. The first approach is based upon detailed physical

modeling of cooling and heating dynamics. In this approach, physical characteristics of

a building as well as HVAC components are extracted and fed into a series of energy

balance equations. The balance equations are then used for prediction of the future

evolution of cooling/heating dynamics. For instance, the authors in [50-54] model the

cooling/heating dynamics using resistancecapacitance (RC) network analogy. In these

works, thermal resistance and capacitor between different components of a building or

a zone, such as air, inside and outside surfaces of walls, windows and ceilings as well as
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heat flux due to solar radiation are represented through RC-network diagrams and heat

transfer equations. The equations are then employed for prediction of cooling/heating

dynamics and optimization of setpoint values. Other works [53-56] account for the

effect of other dynamic variables or physical components such as occupancy, relative

humidity, chilled/hot water temperature supplied or returned from building/zone, ther-

mal storage equipment etc.

The physical MPC approach is typically too complex to solve analytically for large

granular building models. Therefore, researchers often apply physical MPC models for

simpler problems, e.g., a single zone or a single room [49, 51]. An alternative is to use

a data-driven approach to MPC by simply fitting a metamodel to the cooling/heating

data regardless of the particular physical structure of the building. A number of studies

have focused on linear statistical models where input and output data have linear forms.

Autoregressive with exogenous variable (ARX) and autoregressive moving average with

exogenous variable (ARMAX) are two examples of this approach [57,58]. State-space

modeling is another example of such an approach where model parameters are estimated

over a number of specified system states [59, 60]. In other studies, researchers employ

soft computing techniques, particularly artificial neural networks (ANN), to address

the complexity of building energy forecast modeling and optimization [60, 61]. Artifi-

cial neural networks provide linear or nonlinear model-free structures for prediction of

energy demand using different input vectors, i.e., weather conditions or wall insulation

thickness [63]. These predictions can then be used for optimization of cooling/heating

loads [61].

Although data-driven models are typically simple to use, their implementation is often

accompanied by a number of problems that may negatively influence their performance.

ARX and ARMAX models, for instance, follow linear autoregressive structures that are

not necessarily able to explain full variations of load dynamics. In addition, most soft

computing techniques cannot guarantee full capture of complex interactions amongst

building components, dynamic variables, and cooling/heating load, especially when the
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available real data is limited and the building includes a complicated multi-zone struc-

ture. To overcome such problems, a number of researchers employ a simulation-based

approach to capture the dynamic behavior of buildings and thereby optimize energy

use [64-66]. In this approach, first a highly granular physics-based simulation model

of the building is developed. Then, by designing and running different experiments,

the behavior of building energy systems is captured over time. Simulation-based opti-

mization techniques are applied to minimize the energy used to meet cooling/heating

loads. However, this is costly and time consuming particularly for larger models where

simulation optimization must run over a large spectrum of possible scenarios and run

in near real time. Consequently, a number of recent works combine the benefits of both

simulation and data-driven approaches to provide fast and effective control solutions

[57]. These approaches are similar to that developed and used herein.

3.3 Model Framework

Our proposed framework for optimal control of a building heating/cooling system is

presented in Fig. 3.1. Model execution consists of two main phases: an offline phase

and an online phase. The offline phase includes analysis using a set of historical data

either generated by EnergyPlus, or directly gathered from building with the objective

of constructing and training a heating/cooling dynamic model for the building. This

heating/cooling model is then used in a building energy forecast model to calculate

the 24-hour look-ahead forecast values for building energy consumption. In the online

phase, both the heating/cooling model and energy forecast model are fed into an MPC

scheme that is designed to provide the optimal cooling/heating set points for the next

24 hours ahead. The MPC scheme is based on a dynamic programming approach, which

runs every time that it receives new actual data from the building under study. Figure

3.1 provides a schematic model for our proposed framework. It consists of four major

steps as follows:
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Figure 3.1: General framework of the proposed control strategy

1) Create an EnergyPlus model for building energy management :

For newly designed buildings this step is self-explanatory. For existing buildings, there

are often not sufficient data available to capture operational variations. A valid Energy-

Plus model running under a statistically proper design of experiments can provide the

initial base for reducing statistical noise in the estimation of model parameters [67-69].

2) Develop heating/cooling model and estimate its parameters :

This is a set of heat balance equations, which provides explicit relationships between

zonal internal temperatures and effective power rate. The effective power rate repre-

sents the amount of cooling/heating rate in kW that the HVAC system supplies to

each building zone during any specific time period. The model is used to forecast the

k-step-ahead internal temperature for each zone.

3) Create an energy forecast model :

This combines the model from Step 2 with a time series model, and returns 24-hour

look-ahead forecast values for building total energy demand. We apply a generalized
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form of Cochran-Orcutt technique to estimate the model parameters [44]. Once the

total energy demands for the next 24 hours are forecasted, then one can calculate the

total energy operating costs, which are then used in the next step.

4) Develop MPC based optimal control of set points :

We formulate a multi-objective dynamic programming code to search for optimal con-

trol set points for the next 24-hours. The total operating costs of Step 3 as well as

the total penalty for exceeding the thermal comfort bounds define the objective func-

tions, and the heat balances in Step 2 form the state constraints. In conjunction with

the thermal comfort objective function, an additional set of constraints are imposed to

maintain the thermal comfort between specified bounds. As shown in Figure 3.1, at

time t, we find the optimal control set point values for times t+1, t+2,, t+24. Then in

the next hour, we update the optimal solutions for t+2,,t+25, when we receive feedback

of new information on the building (i.e., from the building energy management system

or real building).

3.3.1 Heating/Cooling Model

Assume that a day is divided into a set of discrete time slots, k = 0, 1, 2 N -1. Then

according to the first law of thermodynamics, the total energy exchange associated with

the ith thermal zone, i = 1, 2, , Z, at time step t+ k + 1 is given by:

∆Qt+k+1(i) = Qt+kin (i)−Qt+kout (i), (3.1)

where Qt+kin (i) and Qt+kout (i) are the amounts of input and output energy at step t+k,

and is the amount of energy gained or lost at time t+k+1 by Zone i. In this study, we

assume that ∆Qt+k+1(i) is a function of internal and external temperatures [49] and

can be calculated as follows:

Qt+kout (i) = φi(T
t+k
in (i)− T t+kext (i)). (3.2)

T t+kin (i) and T t+kin (i) are the internal and the external temperature of the ith zone at

time t+k, respectively. Assuming that the ith zone is air conditioned by a heating,
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ventilation, and air condition (HVAC) system with effective power rate of Ṙt+kext (i) (in

kW) at time t+k, we can rewrite Equation (3.1) as follows:

∆Qt+k+1(i) = Ṙt+k(i)− φki
(
T t+kin (i)− T t+kext (i)

)
+ αt+k, (3.3)

where αt+k is a white noise representing the additional unpredictable effects of con-

vective internal loads, convective heat transfer from the zone surfaces, inter-zone air

mixing effects and occupancy. In this study, we assume that such additional effects

are negligible and are normally distributed. In addition, according to [70], the internal

temperature of the ith zone at time t+k+1 can be written as:

T t+k+1
in (i) = T t+kin (i) +

∆Qt+k+1(i).∆t

Cair.mair
, (3.4)

where ∆t is the duration of time slot which is set one hour in this study. Furthermore,

Cair and mair are the heat capacity and the mass of air in the ith zone in J
kg.Co and

Kg, respectively. The unit of ∆Q is J and T t+kin (i) is ◦C. ∆Qt+k+1(i), in Equation (3.4)

can be replaced by its corresponding value in Equation (3.3) and rewritten as follows:

T t+k+1
in (i) = T t+kin (i) +

Ṙt+k(i)∆t

Cair.mair
−
φki

(
T t+kin (i)− T t+kext (i)

)
∆t

Cair.mair
+ εt+k. (3.5)

εt+k = ∆t.αt+k/Cair.mair are independently and identically distributed. Cair and mair

cannot easily and accurately be determined in practice, since the mass of air and heat

capacity are different for different points at a zone. Rather, the thermal balance model

presented in Equation (3.5) can be explained in terms of lost and delivered energy and

the internal and external temperatures of the ith zone as follows:

T t+k+1
in (i) = T t+kin (i) + αki .Ṙ

t+k(i) + ϕki

(
T t+kin (i)− T t+kext (i)

)
+ εt+k, (3.6)

where αki represents the amount of unit increase (decrease) in the ith zone internal

temperature by one unit increase (decrease)in effective energy over a time slot. Hence,

the effects of Cair and mair are hidden in αki and ϕki , which are explicit and can be

estimated using statistical techniques. For cooling seasons, it is logical to assume that

αki , ϕ
k
i ∈ R+ and for heating seasons αki , ϕ

k
i ∈ R−. Equation (3.6) can be used to
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forecast the ith zone internal temperature at time t+k given that T tin(i) and T tin(i) are

known [70]. The forecast values are calculated by:

T̂ t+k+1
in (i) = T̂ t+kin (i) + α̂ki .Ṙ

t+k(i) + ϕ̂ki

(
T̂ t+kin (i)− T̂ t+kext (i)

)
, (3.7)

where T t+k+1
in (i) is the forecast of internal temperature for the ith zone at time

t+k+1, k=1,2,...,23. Assume that νi is the set point value of the ith zone and that [li ui] ;

where li and ui are the lower and upper values for the possible set points.In optimization

phase, we set T t+k+1
in (i) = νi and find the corresponding Ṙt+k(i) by Equation 3.7. α̂ki

and ϕ̂ki are the least squared estimates for model parameters which can be given by

minimizing Qk
i = ‖Tk

in − T̂k
in‖, where Tk

in are the vectors of actual and forecasted

internal temperature values for the ith zone and ‖x‖ is the l2-norm of x. α̂ki and ϕ̂ki can

be calculated using numerical methods (See e.g. [70]). However, we find it analytically

by solving the following equation set:

∂Qki
∂α̂ki

=
n−1∑
t+k=1

{(Ṙt+k(i)
(
T t+k+1
in (i)− T t+kin (i)

)
−

α̂ki .Ṙ
t+k(i)2 − ϕ̂ki

(
T̂ t+k+1
in (i)− T̂ t+kext (i)

)
.Ṙt+k(i)}) (3.8)

∂Qki
∂ϕ̂ki

=
n−1∑
t+k=1

{
(
T t+kin (i)− T t+kext (i)

)(
T t+k+1
in (i)− T t+kin (i)

)
−

α̂ki Ṙ
t+k(i)

(
T t+kin (i)− T t+kext (i)

)
− ϕ̂ki

(
T̂ t+kin (i)− T̂ t+kext (i)

)2
}) (3.9)

Let ∆T t+k+1
i = T t+k+1

in (i)−T t+kin (i) and ∆τ t+ki = T t+kin (i)−T t+kext (i) and let both above

equations are set equal to zero then it can be written as follows:


n−1∑
t+k=1

(
Ṙt+k(i)

)2 n−1∑
t+k=1

∆τ t+ki Ṙt+k(i)

n−1∑
t+k=1

∆τ t+ki Ṙt+k(i)
n−1∑
t+k=1

(
∆τ t+ki

)2

 αki

ϕki

 =


n−1∑
t+k=1

∆T t+k+1
i Ṙt+k(i)

n−1∑
t+k=1

∆T t+k+1
i ∆τ t+ki

 (3.10)
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Let define Xk
i = [ Ṙt+k(i) ∆τ t+ki

] and Yk
i = [∆T t+k+1

i ], then Equation (3.10) can

be rewritten in matrix form:

(X′
k
iX

k
i )
−1(X′

k
iX

k
i )b

k
i = (X′

k
iX

k
i )
−1(X′

k
iY

k
i ) (3.11)

where bki is the 21 vector of coefficients, αki and ϕki . Equation (3.11) is given by

multiplying both sides of Equation (3.10) by the inverse of (X′kiX
k
i ) . Using Equation

(3.11), αki and ϕki i=1,2,...,Z and k=1,2,...,N, are obtained as follows:

bki = (X′
k
iX

k
i )
−1(X′

k
iY

k
i ) (3.12)

αki and ϕki can equivalently be calculated as follows:

α̂ki =

n−1∑
t+k=1

∆T t+k+1
i Ṙt+k(i)

n−1∑
t+k=1

(
∆τ t+ki

)2
−

n−1∑
t+k=1

∆T t+k+1
i ∆τ t+ki

n−1∑
t+k=1

∆τ t+ki Ṙt+k(i)

n−1∑
t+k=1

(
Ṙt+k(i)

)2 n−1∑
t+k=1

(
∆τ t+ki

)2
−

(
n−1∑
t+k=1

∆τ t+ki Ṙt+k(i)

)2

(3.13)

ϕ̂ki =

n−1∑
t+k=1

∆T t+k+1
i ∆τ t+ki

n−1∑
t+k=1

(
Ṙt+k(i)

)2
−

n−1∑
t+k=1

∆T t+k+1
i Ṙt+k(i)

n−1∑
t+k=1

∆τ t+ki Ṙt+k(i)

n−1∑
t+k=1

(
Ṙt+k(i)

)2 n−1∑
t+k=1

(
∆τ t+ki

)2
−

(
n−1∑
t+k=1

∆τ t+ki Ṙt+k(i)

)2

(3.14)

As mentioned in the previous section, the effective power rate, Ṙt+k(i) supplied to

the ith zone is not often measurable directly in real world applications. We note that

Ṙt+k(i) can be different from the electrical power that can be computed from Energy-

Plus or metered from real devices. In fact, summing up the delivered heating/cooling

to all zones,Ṙt+k(i)’s will not necessarily give the total electrical energy consumption of

the building. Therefore, in this article, we will use a combined statistical and Energy-

Plus approach to estimate the actual energy consumed by the building. The approach

will be discussed in the next section.

We estimate the building total power energy as a function of Ṙt+k(i) and T t+kext (i) with

the latter one usually having sufficient simulated or historical data. Lets denote yt+k as

the total energy consumption at time t; then the relationship between aforementioned
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variables can be written as yt+k = f(Tt+k
ext ,R

t+k.J) , where Rt+k is a 1×p vector of and

J is a 1× p vector of ones. Next, we will present how to estimate f using a generalized

form of Cochrane-Orcutt estimation technique.

3.3.2 Energy Forecast Model

The relationship between total energy consumption, Rt and Tt
ext can be modeled

through a simple linear regression as follows:

yt = β0 + β1R
tJ + β2T

t
ext + εt (3.15)

where εt is he error term at time t, βj ’s are linear model parameters and is response

variable (total energy consumption). If the assumption of linearity were met, then εt

would typically be assumed independent and the model parameters, βj ’s , would be

estimated using Least Squares Error (LSE) technique. However, the actual relationship

between total power consumption at time t with effective cooling power and external

temperature may follow an unknown nonlinear model. In addition, there are more

variables such as occupancy and cooling fans power that can affect the total power

consumption. These effects cannot be explained through the linear structure of Equa-

tion (3.15), and as a result, they emerge into the error terms. In this situation, the

assumption of independency is no longer met and the ordinary LSE technique cannot

be applied [44]. To avoid this problem, we employ the Cochran-Orcutt technique by

rewriting Equation (3.15) as follows:

yt = β0 + β1R
tJ + β2T

t
ext + εt, εt = ξ(εt−1, εt−2...) + et. (3.16)

Similar to Chapter 2,et is an independent and identical white noise and ξ is a function of

past error terms representing the structure of autocorrelation and yt is response variable

(total energy consumption). According to Section 2.2.1, the transformed variables can

be rewritten as follows:

ýt = ϕp(B)Φs
P (B)Yt, x́t = φp(B)Φs

P (B)xt, β́0 = φp(B)Φs
P (B)β0. (3.17)
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where,ϕp(B) and Φs
P (B) are autoregressive operators with orders of p and P that are

applied to both the external temperature and the vector of zonal effective power to

find the building total energy demand (See Chapter 2). Hence Equation (3.16) can be

replaced by

y′t = β′0 + x′tβ
′
t + at (3.18)

Now Equation(3.18) is an ordinal multiple linear regressions with independent error

terms and can be calculated via OLS estimation method. The same algorithm discussed

in Section 2.3.1 is applied to estimate the parameters. In addition, Equation(2.7) and

Equation(2.8) are used to investigate the adequacy of the proposed model.

3.4 Optimal Control Strategy

In the previous sections, we introduced two models that are coupled to capture dy-

namic behavior of building energy consumption. In this section, we propose an optimal

control strategy by developing a mathematical programming formulation that is solved

dynamically over time. The cooling/heating model presented in Equation (3.6) is a dy-

namic model that describes how the state variables, T t+kin (i)’s, are evolved over time by

starting from an initial condition T 0
in(.) and by manipulating control variables, Ṙt+k(i).

At time t+k -1, the actual internal temperature, T t+kin (i) is unknown and is specified

by replacing it with any arbitrary set point value, i.e. T t+kin (i) = νi ∈ [li ui]. Then

Ṙt+k−1(i) can be calculated accordingly using Equation (3.7). Ṙt+k−1(i) is then fed

into Equation (3.15) to calculate the corresponding building total energy use. This is

repeated for the next 24 hours and for all combination of set point values between li

and ui and all zones to find the optimal combination of set points that minimize total

energy use and total deviation from the thermal comfort.

The dynamic model requires a dynamic programming scheme to find the optimal con-

trol variables in such a way that the objective function is optimized over a specific

time horizon N. In this study, we set N =24, so that the control scheme can provide

the optimal control variables for any 24 look-ahead periods (hours in the current case).
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At any given hour, the optimization procedure is repeated for the next 24 hours by

updating the state variables T t+kin (i)’s, and external temperature values. At each time

step, the optimal control scheme solves the following multi-objective problem:

min
Rt+k

G1(N,R
t+k,Tt+k

ext ,T
t+k
in ) ≡ (3.19)

N−1∑
k=0

ct+kyt+k(R
t+k,Tt+k

in ).∆t+ υ.max
k∈td

{
yt+k(R

t+k,Tt+k
in )∆t

}

min
δut+k,δ

l
t+k

G2(N, δ
u
t+k, δ

l
t+k) ≡ pt+k

N−1∑
k=0

(δut+k + δlt+k) (3.20)

subject to

T t+kmin(i)− δlt+k ≤ T̂ t+kin (i) ≤ T t+kmax(i) + δut+k, k = 1, 2, ..., N − 1, i = 1, 2, ..., Z (3.21)

T̂ t+k+1
in (i) = T̂ t+kin (i) + α̂i.R

t+k(i) + ϕ̂i(T̂
t+k
in (i)− T̂ t+kext (i)), (3.22)

k = 1, 2, ..., N − 1, i = 1, 2, ..., Z

T 0
in(i) = T0, i = 1, 2, ..., Z (3.23)

δlt+k ≥ 0, δut+k ≥ 0, Rt ≥ 0, k = 1, 2, ..., N − 1

where T t+kmin(i) and T t+kmax(i) are the thermal comfort upper and lower bounds for the

ith zone internal temperature at time t+k. δlt+k is the temperature violation below the

lower bound and δut+k is the temperature violation above the upper bound. T0 is the

internal temperature at time 0 and ∆t is the length of the time period that is set equal

to one hour. The thermal comfort constraint is imposed to each single zone based on

the current zone temperature. There are two objective functions: (i) G1(.) is the total

cost of energy, which includes Total Usage Cost (cost per kWh) and Daily As-used

Demand Charges. The latter cost is determined for each weekday in the billing period

and applied to the daily peak demand during each time period. The Monthly as-used

demand charges for the billing period are equal to the sum as-used daily demand charges

for the time periods [71]. Here, ct+k is unit price of electricity at time t+k and (ii) G2(.)
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is the total penalty for exceeding the thermal comfort bounds. This function penalizes

any deviation from the predefined comfort bounds at any given time. υ is the penalty

applied on peak energy demand, is a set representing the on-peak period, and pt+k is

the penalty that is applied to any violation from the comfort bounds at time t+k. The

latter parameter indicates different discomfort costs for different hours of a day.

Since G1(.) and G2(.) do not match in units and scale, it is not possible to integrate

them into a single objective function by simply adding their values. Hence, we build

a Multiobjective Mathematical Programming (MMP) structure using a weighted lp

metric method and discuss it in the next section.

3.4.1 Weighted Metric Method

It is typically impossible to find a single optimal solution that simultaneously optimizes

all the objective functions. Pareto analysis is a preferred technique used by many. In

this study, we use a classical MMP technique called weighted lp metric method. The

reason we use this method is that it requires less restrictive assumptions (See e.g. [72]

and [73]). The lp metric method scales G1(.) and G2(.) into a single objective function

that is in an lp metric form as follows:

G(N,Rt+k,Tt+k
ext ,T

t+k
in ,δut+k, δ

l
t+k) = (3.24){

w1(
G1(N,R

t+k,Tt+k
ext ,T

t+k
in )−Gmin1

Gmax1 −Gmin1

)

p

+ w2(
G2(N, δ

u
t+k, δ

l
t+k)−Gmin2

Gmax2 −Gmin2

)

p}1/p

Both G1(.) and G2(.) in Equations (3.19) and (3.20) are replaced with (3.24). In this

equation, w1 and w2 are the non-negative weights for G1(.) and G2(.), respectively, such

that w1 + w2 = 1. w1 and w2 represent the relative importance of the objective func-

tions and are determined by the decision maker. p ∈ [1,∞) indicates the type of metric

we use in our problem. For example, p=1 is equivalent to solving the weighted sum of

deviations from ideal values, whereas, p=2 means minimizing the weighted Euclidean

distance of any point in the objective space from its ideal point. It is proven that if

there exist bounded solutions for G1 and G1(.) and G2(.), then for any combinations of

wi’s and p(> 1) values, there is one or more Pareto solutions [72-74]. A Pareto solution
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has the property that, for any point in the Pareto set, there does not exist another

point that results in better performance for both objectives simultaneously [74].

Gmin
j and Gmax

j are the minimum and maximum possible values of the jth objective func-

tion. It is easy to find the minimum and maximum possible values for the second ob-

jective function. The minimum penalty for exceeding the thermal comfort bounds is 0,

when the internal temperature is within thermal comfort
(
T t+kmin(i) ≤ T̂ t+kin (i) ≤ T t+kmax(i)

)
or equivalently δlt+k = δut+k = 0. The maximum penalty for exceeding thermal comfort,

Gmax
2 , can be calculated by multiplying the maximum penalty, pt+k’s and the maximum

deviation form thermal comfort as follows:

Gmax
2 = max

1≤k≤N
{pt+k} × max

1≤k≤N

{
δlt+k, δ

u
t+k, k = 1, 2, .., N

}
(3.25)

Similarly, the minimum value of the first objective function, Gmin
1 , is set equal to zero.

This is because the first objective function is the total energy consumption cost, and

when there is no consumption, the cost is zero. Gmax
1 can be found using EnergyPlus

by calculating the maximum energy consumed by HVAC. That is,

Gmax
1 (t+ k) ≡ max

1≤k≤N
{ct+k}yt+k(Rmax, T̂max

ext (i))∆t+ υ.max
k∈td

{
yt+k(R

t+k,Tt+k
in )∆t,

}
(3.26)

k = 1, 2, ..., N

where Rmax is the maximum load that can be generated by HVAC at any time and

Tmax
ext (i)) is the highest external temperature. Note that Equation (3.26) calculates

the maximum cost for the maximum energy consumed by HVAC in the highest daily

temperature. This gives an upper limit for total energy consumption cost at any time.

Both components of Equation (3.24) are normalized between 0 and 1 and as a result

the metric function G(N,Rt+k,Tt+k
ext ,T

t+k
in ,δut+k, δ

l
t+k) varies between 0 and 1. One

disadvantage of the weighted metric method compared to those methods that normalize

objective functions is that its performance highly depends on the values of Gmin
j and

Gmax
j . For example, in this study, calculating the maximum HVAC capacity and the

highest external temperature may result in extremely large value of Gmax
1 . In this
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case, the first component of Equation (3.24) is much smaller than the second component

(thermal comfort). This means that the thermal comfort can always influence the result

of optimization.

To tackle this problem, it is required to modify Gmax
1 value by using domain specific

knowledge or historical information on the building. In addition, a potential alternative

for the weighted metric method would be using desirability functions, which further

depend on the Decision Maker preferences. These will be discussed in the next chapter.

3.4.2 Dynamic Programing Model

The proposed MMP Equations (19-24) can be rewritten as follows:

min
Rt+k

G(N,Rt+k,Tt+k
ext ,T

t+k
in ,δut+k, δ

l
t+k) (3.27)

subject to

T t+kmin(i)− δlt+k ≤ T̂ t+kin (i) ≤ T t+kmax(i) + δut+k, k = 1, 2, ..., N − 1, i = 1, 2, ..., Z (3.28)

T̂ t+k+1
in (i) = T̂ t+kin (i) + α̂i.R

t+k(i) + ϕ̂i(T̂
t+k
in (i)− T̂ t+kext (i)), (3.29)

k = 1, 2, ..., N − 1, i = 1, 2, ..., Z

T 0
in(i) = T0, i = 1, 2, ..., Z (3.30)

δlt+k ≥ 0, δut+k ≥ 0, Rt ≥ 0, k = 1, 2, ..., N − 1

The model is now an ordinary mathematical programing with single objective function

and can be solved using Dynamic Programming algorithm. At time t, the model is

solved and the optimal control values for the next 24-hour are obtained. Then, in

the next hour, once some new data from zones internal temperature are received, we

update all state variables and solve the model with updated parameters. This process

is repeated every hour and once we receive new information about state variables.
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3.5 Numerical Example

In this section, we evaluate the performance of our proposed control strategy through

an illustrative building. We follow our proposed framework presented in Section 3.3

and Figure 3.1. The example uses a large office model, which represents a commercial

reference-building developed by the he U.S. Department of Energy (Further details can

be found in [75]). In Offline phase, we select twelve main zones of the building and

run the simulation using 2009 Phoenix weather data. We collect one-month hourly

data (July 2009) and extract 744 hourly basis simulated output data on the following

variables: zonal internal temperatures, building external temperature, zonal cooling

power rate values as well as the building total energy consumption. Similarly, we mimic

Online Phase (see Figure 3.1), by using one-month simulation data for August 2009. In

this phase, at each hour, the simulation model is run one time, the model parameters

and optimization model are repeated, and optimal set point values are updated. The

outputs are as follows: the total energy consumption cost including usage cost, demand

charge and thermal discomfort penalty are calculated in a daily and the set of optimal

set point values for each zone at time t+ l to time t+k.

3.5.1 The Heating/Cooling Model Results

As shown in Figure 3.1, in Offline Phase, we construct two models used for forecast-

ing internal temperature (the heating/cooling model) as well as building total energy

consumption (the energy forecast model). In this section, we will investigate the per-

formance of both models. The estimated parameters of the proposed cooling/heating

model are presented in Table 3.1. In this chapter, we assume that α̂ki and ϕ̂ki are fixed

over time or equivalently α̂ki = α̂i = and ϕ̂ki = ϕ̂i for k = 1, 2, ..., 24. It implies that

during simulation the overall weather pattern does not change significantly. This as-

sumption may work for a short time, however, for a long-term optimal control strategy;

one should estimate the parameters adaptively. This assumption will be relaxed in

Chapter 4.
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Table 3.1: The least square error (LSE) estimates for cooling/heating model parameters

Zone

1 2 3 4 5 6 7 8 9 10 11 12
-0.38 -0.18 -0.32 -0.28 -0.37 -0.16 -0.3 -0.27 -0.38 -0.14 -0.32 -0.28
-0.26 -0.1 -0.22 -0.19 -0.25 -0.09 -0.21 -0.18 -0.26 -0.09 -0.22 -0.19

As shown in Table 3.1, α’s are all (< 0) showing negative correlations between the

next hour internal temperature and zonal effective power rate. This is because the

simulated dataset is run in a summer month and the effective power is used for cooling

of the building. Similarly, ϕ’s (< 0) show negative correlation between current inter-

nal temperature and external temperature. Figure 3.2 displays a radar chart for the

correlations between the actual internal temperature values and their corresponding k -

step-ahead forecast values for each zone. In this figure, the ith radius represents the ith

zone and the kth irregular polygon represents the correlation between the k-step-ahead

forecasted internal temperature and its corresponding actual temperature. It shows

that the correlations between actual internal temperature values and its 1-step-ahead

forecast values ( k=1) vary between 0.75 and 0.85. This also shows that the proposed

cooling/heating model can appropriately provide the one-step-ahead forecast for the

zonal internal temperature. Furthermore, it is observed that the performance of the

proposed heating/cooling model decreases as the lag increases. For instance, the corre-

lation between the actual and forecasted internal temperature for the third lag (k=3)

varies around 0.5, which is expected.

[H] This also can be seen in Figure 3.3. In this figure, we plot the first zones actual and

forecasted internal temperature values for the first and fifth lags. The one-step-ahead

forecast values are approximately close to the actual data while the 5-step-ahead forecast

values are relatively far from the actual internal temperature. As previously discussed,

this is mainly because we assume that α̂ki = α̂i = and ϕ̂ki = ϕ̂i for k = 1, 2, ..., 24. It

means that the structure of balance equations does not change as time passes. The per-

formance of the proposed forecast values will be increased by applying a time-dependent

parameter estimation method in the next chapter.
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Figure 3.2: Correlation values between actual internal temperature and its correspond-
ing k-step-ahead forecasted values

Figure 3.3: Comparison of simulated and forecasted values for the first zone internal

temperature

3.5.2 The Energy Forecast Model Results

According to the proposed framework shown in Figure 3.1, the energy forecast model

is employed the cooling power rate data and external temperature values to forecast

total energy consumption. In this section, we evaluate the performance of the energy
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forecast model using simulated data. Again, to construct the energy forecast model

we use the 2009 July data, which is generated by EnergyPlus in Offline Phase. Table

3.2 represents the estimated parameters of the proposed energy consumption model as

well as performance measure values. The correlation values for all lags are greater than

0.95. The coefficient of determination R2 and the adjusted coefficient of determina-

tion R2
adj for the 24th lag are 95.9% and 95.7%, respectively. This indicates that the

proposed model can provide high quality 24-hour-step-ahead forecast values for total

energy demand, which are very close to the actual energy demand.

Table 3.2: The estimates values for energy consumption forecast model

Parameters

β1 β2 φ1 φ2 φ3 φ4 φ5 φ6 φ7
Estimates 4.3528 0.4808 0.078 -0.012 0.014 0.019 -0.028 0.002 -0.002
Std. Error 0.3922 0.1015 0.0238 0.0243 0.0242 0.0239 0.024 0.0241 0.024

Hour - - 1 2 3 4 5 6 7
R2 - - 96.37 96 96.03 96.01 95.95 96.018 96.02

R2
adj - - 96.18 95.8 95.83 95.8 95.74 95.81 95.81

Parameters

φ8 φ9 φ10 φ11 φ12 φ13 φ14 φ15 φ16
Estimates -0.006 -0.003 -0.012 0.005 -0.027 0.026 -0.018 0.016 0.004
Std. Error 0.0237 0.0239 0.0241 0.0241 0.0241 0.0242 0.0242 0.0241 0.024

Hour 8 9 10 11 12 13 14 15 16
R2 96.02 96.02 96.02 96.03 96.02 96.04 96.02 96.02 96.01

R2
adj 95.81 95.81 95.81 95.82 95.81 95.83 95.81 95.8 95.8

Parameters

φ17 φ18 φ19 φ20 φ21 φ22 φ23 φ24
Estimates -0.009 -0.004 0.003 0.002 -0.022 -0.026 0.007 0.936 -
Std. Error 0.0239 0.0237 0.0237 0.0238 0.0238 0.0237 0.0239 0.0239 -

Hour 17 18 19 20 21 22 23 24 -
R2 96.01 96 95.99 96 95.99 95.98 95.96 95.97 -

R2
adj 95.8 95.79 95.78 95.78 95.78 95.76 95.75 95.75 -

Figure 3.4 presents a comparison between the actual and forecasted total energy

consumption for the 24th lag. The forecast model can capture the majority of the

variations. Thus, the proposed forecast model is deemed a reasonable replacement for

the simulation, particularly well-suited for optimization purposes.



53

Figure 3.4: Comparison of simulated and forecasted values for the building total energy
consumption

3.5.3 The Optimization Model Results

In this section, we investigate the performance of the proposed optimal control strat-

egy for the above illustrative model. Table 3.3 presents the input parameters of the

proposed mathematical model (Equations 3.19-3.25). Note that p̂t+k , the thermal dis-

comfort penalty, is a normalized multiplier, defined by the decision maker, to weigh

the importance of keeping the internal temperature within the thermal comfort at time

t+k. In this study, p̂t+k is normalized based on the number of people working in each

zone such that the total thermal discomfort penalty over 24 hours is equal to 1.0. Also,

Table 3.3: The cost coefficients and thermal discomfort penalty values

k

1 2 3 4 5 6 7 8 9 10 11 12
ct+k 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.21
p̂t+k 0 0 0 0 0 0 0.009 0.037 0.093 0.093 0.093 0.093

k

13 14 15 16 17 18 19 20 21 22 23 24
ct+k 0.25 0.35 0.45 0.35 0.35 0.35 0.25 0.25 0.25 0.11 0.11 0.11
p̂t+k 0.093 0.093 0.093 0.093 0.074 0.037 0.037 0.019 0.019 0.019 0.009 0

it is assumed that the internal temperature values can vary between 62F and 76F with

an increment rate of 0.5 units. However, T t+kmin(i) and T t+kmax(i) in Equation (3.28) are

fixed and set equal to 68 and 72, respectively. Therefore, any internal temperature

value less than 68 or greater than 72 is penalized by applying thermal discomfort cost.
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Besides, w1 and w2, the importance factors associated with objective functions G1(.)

and G2(.) are set equal to 0.7 and 0.3 indicating that the energy consumption cost is

relatively more important than thermal discomfort penalty. Without loss of generality,

we assume p =1 which turns the problem into a weighted sum of normalized deviations.

Figure 3.5 illustrates the effect of the proposed weighted metric method in combining

both objective functions. The figure plots the minimum cost-to-go values (minimum

total cost from step 1 to step k) in dynamic programming. The x -axis shows the feasi-

ble set point values ranging between 62 ◦F to 78 ◦F and the y-axis shows the minimum

values of the combined function, G(.), over the reduced horizon from t+1 to t+k when

k < N . For the first six hours, as set point values increase, the minimum cost-to-go

value decreases. This is because we set the thermal discomfort penalty equal to zero

for the first six hours (see Table 3.3). This implies that for the first six hours, the only

active objective function is G1(.). In this case, higher temperature values result in lower

demands without increasing the thermal discomfort objective function.

Figure 3.6 presents values of optimal set point, energy demand, and operating costs

versus time for a period of 72 hours. Figure 3.6.a for instance, depicts the optimal set

point values and their corresponding values of internal temperature that is an average

value over all building zones. It is worth noting that in an ideal HVAC system, the

optimal set points and internal temperature are same values. However, in real world,

many unknown or uncontrollable factors can significantly cause the actual internal tem-

perature to be deviated from the set point values. This is particularly obvious when

the proposed control scheme select a very low set point at time t after a higher set

point value at time t-1(e.g. see t=11 in Figure 3.6.a). In this situation, HVAC system

cannot reach the optimal set point value in such a short time frame. In fact, this is one

reason that the model is updated when new information from internal temperature is

received.
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Figure 3.5: The minimum cost-to-go profile over different internal temperatures for

k = 1, 2, ..., 24. For each subplot x -axis is the feasible set point values ◦F) and y-axis

is the sum of the minimum values of the combined function, G(.), over the reduced

horizon from t+1 to t+k for k < 24.
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Figure 3.6: The results of the proposed control strategy: a) The optimal set point values

and average internal temperature, b) Optimum energy consumption profile over time c)

Optimum total operating cost profile including variable cost and demand charge cost.

Figure 3.6.b illustrates that total building energy demand oscillates according to

the zone effective power and set point values. Figure 3.6.c includes separate profiles

for total use cost per kWh, the daily as-used demand charge cost and total energy

cost. Note that in this example, it is assumed that the daily as-used demand charge is

applied once in a day to the maximum energy consumed in peak hours between 1:00

p.m. and 6:00 p.m. Therefore, the pre-cooling time is immediately before 1:00 p.m.

and is applied to lower the maximum energy demand after 1:00 and as a result reduce

the daily as-used demand charge cost.
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Figure 3.7: The results of the proposed control scheme: a) Total Energy Consumption,

b) the temperature violations below or above the thermal comfort bounds, c) Combined

weighted metric values.

Figure 3.7 presents further details about how the two different objective functions

are combined to shape the single measure that is optimized. Figure 3.7.a is the total en-

ergy cost including energy costs and daily as-used demand charges. Figure 3.7.b depicts

the temperature violation from the thermal comfort bounds over time. As shown in

this figure, the maximum and minimum values for each of these functions are different.

Although the violation from thermal comfort is slightly higher in off-peak periods, when

less people are in the building, there are still large violations in on-peak periods. This

is because, in on-peak periods, the energy demand is very high and the proposed model

attempts to reduce the costs by allowing some violations above or below the thermal

comfort bounds. A normalized version of this figure is presented in Figure 3.8. These

plots present the normalized profiles associated with total energy cost, G1(.), as well as

the total thermal comfort violation penalty G2(.). The maximum values of these two
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Figure 3.8: a) The normalized energy cost profile, b) the normalized thermal discomfort
penalty profile, c) the normalized combined metric profile

functions are slightly different. The maximum values of G1(.) are in peak hours while

the maximum values of G2(.) occur immediately before peak hours. This configuration

leads to the minimum combined metric profile that is G1(.).

We also compare our proposed control scheme with a number of simple alternative

control schemes as shown in Figure 3.9. These configurations are set to cover different

scenarios and provide good insights about the proposed control scheme. The Constant

Controller 1 and the Highest Value control schemes have fixed set point values that

do not change during the 24 hour period shown. The Highest Value controller is set

equal to be76 ◦F and as a result, returns the lowest total energy cost but the maximum

thermal discomfort cost for this particular day that requires cooling. The dynamic

controllers vary over time using different patterns. For example, Dynamic Controller 2

allows HVAC to provide more cooling before peak hours and then during peak hours

it increases the set point values. We use different controllers to understand the charac-

teristics of the proposed control scheme.



59

Figure 3.9: Alternative Control Schemes

Table 3.4 depicts the results of running different control schemes for the Medium Of-

fice Model. It shows that the proposed scheme is superior to other alternatives in total

combined metric value, G(.), that is the combined objective function for this problem.

It means that the proposed control scheme is able to find the best compromise between

energy consumption costs and thermal comfort. The energy consumption cost is mini-

mal for the Highest Value controller. This is obvious, because it provides the minimum

possible cooling load and keeps the internal temperature around 76 ◦F. However, the

normalized thermal discomfort penalty G2(.), for such controller is 0.81 that is signifi-

cantly greater than the other controllers. Such an extreme controller provides internal

temperature values are often beyond the upper thermal comfort bound and are imprac-

tical in real world. Note that the maximum thermal discomfort penalty, G2(.), is one

implying that the internal temperature would never go below the maximum thermal

discomfort value.

On the other hand, the normalized energy consumption cost, G1(.) for the constant

controller (Set point = 69 Fahrenheit) is 0.27, which is the highest energy cost among

the alternatives. The minimum normalized energy consumption cost is associated with

the proposed control scheme as well as the Highest Value Controller and is equal to
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Table 3.4: Comparison between the Proposed Control Strategy and Other Control
Schemes

Control Schemes

Proposed
Controller

Constant
Controller1

Constant
Controller2

Highest
Value

Daily Energy Cost 2450.12 2639.72 2508.73 2312.6
Daily Usage Cost 1462.29 1613.27 1517.32 1399.2
Daily Demand Charge 987.83 1026.45 991.41 913.37
Normalized Cost, G1 0.2 0.27 0.26 0.25
Violation from Comfort, 0.06 0.02 0.02 0.81
Normalized Discomfort, G2 0.01 0 0 0.22
Combined Metric, G 0.08 0.11 0.11 0.17

Control Schemes

Dynamic
Controller1

Constant
Controller2

Constant
Controller3

Daily Energy Cost 2622.52 2410.23 2658.9
Daily Usage Cost 1598.66 1457.31 1624.27
Daily Demand Charge 1023.86 952.92 1034.63
Normalized Cost, G1(.) 0.24 0.2 0.24
Violation from Comfort, 0.02 0.45 0.02
Normalized Discomfort, G2(.) 0 0.08 0
Combined Metric Value, G(.) 0.1 0.11 0.1

0.20. This implies that the proposed control scheme offers the set point values with

minimum cost and maintains the thermal comfort in an appropriate level, thus G(.) is

minimized.

Although the energy consumption costs for control schemes are clearly different, their

normalized values of energy cost G1(.) are very close to each other (from 0.20 to 0.26).

This is because the maximum value of energy consumption cost, Gmax1 (.) is very large.

If is large, then the first component of Equation (3.24) (the normalized energy cost)

becomes very small. To tackle this problem, one can propose better choices for Gmax1 (.)

or apply other multi-objective techniques to combine the two objective functions. Fur-

ther details will be discussed in the next chapter. Table 3.4 reveals that the proposed

framework can adequately be employed to minimize building energy-use costs and at

the same time keep the internal temperature in an acceptable thermal comfort bounds.

The example presented in this section provides a clear insight about the performance of

the proposed model. The results and analyses can be summarized as: (i) The proposed
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heating/cooling model can appropriately forecast the next hour internal temperature,

but needs more extensions for other lags; (ii) The energy forecast model works quite

well for total energy consumption; (iii) the proposed control scheme provides the set

point values which minimize both total energy consumption cost and thermal discom-

fort penalty at the same time. Although the proposed framework can be used to control

the energy consumption costs of building complexes, further extensions and potential

improvement can be done to improve the performance of the proposed framework and

to address the real world challenges. We will discuss some of these improvements in

the next chapter.



62

Chapter 4

Extensions of Optimal Control Strategy for Building

Cooling/Heating Systems

4.1 Introduction

In Chapter 3, a physics-based statistical model was developed to capture the variability

of energy dynamics within each zone. The model assumed that the effective power rate

and the internal and external temperatures did not significantly change over a short

period of time. Therefore, the model parameters were set to be fixed for the hours of a

day. This assumption is relaxed in this chapter by including time-dependent variables

and using a more generalized statistical model.

In addition, although the optimal control strategy presented in Chapter 3 can directly be

used to reduce total building energy cost, several extensions and potential improvements

can still be done to improve its performance. In this chapter, the of the proposed

dynamic programming is revised to highlight the role of the daily as-used demand

charge in calculating total building energy cost.

4.2 The Extended Cooling/Heating Model

The cooling/heating model presented in the previous chapter is a physics-based data

driven model and is written as follows:

T t+k+1
in (i) = T t+kin (i) + αki .Ṙ

t+k(i) + ϕki

(
T t+kin (i)− T t+kext (i)

)
+ εt+k, (4.1)

where αki represents the amount of unit increase (decrease) in the ith zone internal

temperature by one unit increase (decrease) in effective power rate at time t+k (for
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k = 1, 2, ..., 24). ϕki represents the amount of unit increase (decrease) in the zone in-

ternal temperature by one unit increase (decrease) in the difference between inside and

outside temperature. In the previous chapter we assume that αki and ϕki are fixed for

different hours of a day or equivalently αki = αi and ϕki = ϕi for k = 1, 2, ..., 24. This

assumption would be reasonable if the ambient temperature has a stationary pattern

over time or in other words, if the weather does not radically change during the day.

In addition, in the previous chapter, the time interval between two samples is set to

be one hour. Therefore, any dynamic change less than an hour is completely or par-

tially lost in the proposed model. Also, there is less control on zones set point values

during the process of optimization. In the extended model, the time interval is set to

be 15 minutes, so that short-term variability can be captured. Furthermore, shorter

time intervals provide smother models that can appropriately fit with the lower-order

models (e.g. Linear models). On the other hand, smaller time interval can decrease the

computational efficiency of the optimization algorithm.

There are two approaches to extend the cooling/heating model presented in Equation

(4.1): The first approach is to directly estimate all αki and ϕki parameters and obtain

their values using the same method presented in Chapter 3 (equations 3.13 and 3.14).

To do this for the ith zone, 24 values of αki and ϕki should be obtained using historical

data. Therefore, for a building with N zones,24N values of αki and 24N values of ϕki

must be estimated. For 15-minute time interval, number of estimated values will be

96N . This needs a large sample size of historical data for parameter estimating the

parameters.

The second approach is to pool all data together and define a set of time-based indi-

cator variables representing the dynamics of system over time. In this approach, a set

of indicator variables (time variables) are defined to represent different time parame-

ters (month, day, hour, etc.). These variables assigns a unique set of binary values for

each specific time and date that is able to differentiate between hours of day, days of

week, weekdays or weekends, month etc. To do so, we define zqt+k,p as the qth indicator

variable representing the pth time component at time t+k. zt+k can be represented in
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a vector form as [zqt+k,p] .

For example, assume that two components are selected for representing time and date

as follows: hours of a day and days of a week (p=2)). Then 23 variables can be used

to show 24 hours of a day and 6 variables can be used to show 7 days of a week. In

this case, zt+k is a vector with 23+6 = 29 components. It is worth noting that for

any p-level time variable, p-1 binary variables are required. For example, 6 indicator

variables can represent 7 days of a week as follows: Sunday [100000], Monday [010000],

Tuesday [001000], Wednesday [000100], Thursday [000010], Friday [000001] and Satur-

day [000000]. Using the same way, 23 indicator variables are required to show 24 hours

of a day. The main reason to use p-1 variables to show a p-level time variable is that

it prevents any linear dependency in further matrix calculation [44].

Another advantage of the above model is that, the indicator variables can appropri-

ately capture the effects of any latent factors that are effective in zonal cooling/heating

system or zone internal temperature. There are many factors that significantly affect

cooling/heating system, but are not directly observe or measured. For example, oc-

cupancy of a zone may affect the heat transfer balances and internal temperature of

a particular zone. However, such information cannot be easily collected especially in

many public buildings. The idea is that occupancy, as a latent variable, changes over

time and as a result, the time-dependent indicator variables can capture their effect in-

directly. Many other factors such as equipment, interconnectivity between zones, break

time, lunch time, etc. that i) are either unknown or cannot be measured or controlled

and ii) change over time can be potentially modeled using indicator variables.

With the above indicator variables, cooling/heating dynamics can be modeled using

three quantities: i) The difference between the zone internal temperature at time t, and

t+1 ; ii) the difference between zone internal temperature and outside temperature at

time t, and iii) a vector of time-dependent indicator variables. In Chapter 3, the first

two items are used to build a physical model for the zone internal temperature and the

sensible cooling/heating power (Equation 3.7). Here, a more general model is used as
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shown in Equation 4.2;

Ṙt+k(i) = Φi
(
T t+k+1
in (i)− T t+kin (i)

)
+ Πi

(
T t+kin (i)− T t+kext (i)

)
+ Θ (zt+k) + at+k (4.2)

where Ṙt+k(i) is sensible cooling/heating rate generated by HVAC system and supplied

to the ith zone at time t+k, T t+k+1
in (i) and T t+kin (i) are the internal temperature of the ith

zone at time t+k+1 and t+k, respectively, T t+kext (i) is the external temperature at time

t. Φi(.) ,Πi(.) and Θ(.) are arbitrary functions that can be computed from historical

or simulated data. at+k’s are random noises of the ith zone that are identically and

independently distributed over time. For linear Φi(.) ,Πi(.) and Θ(.) we have:

Ṙt+k(i) = βi0 + βi1

(
T t+k+1
in (i)− T t+kin (i)

)
+ βi2

(
T t+kin (i)− T t+kext (i)

)
+ θizt+k + at+k(i),

(4.3)

where, βi1 and βi2 are parameters that represent the effect of changes in internal and

external temperature for the ith zone, respectively. θi are the vector of parameters

for indicator variables. The above linear approximation seems to fit well energy data

obtained from EnergyPlus simulations.

Equation (4.3) can be written in a matrix form by reshaping the independent variables

and responses by their own matrix forms:

Bi =

[
βi0 βi1 βi2 θi

]
p×1

Ri =
[
Rt+k(i)

]
N×1

ai = [at+k(i)]N×1

Bi =

[
e T t+k+1

in (i)− T t+kin (i) T t+kin (i)− T t+kext (i) zt+k

]
N×p

when t+ k = 1, ..., N . Equation (4.4) can then be rewritten as follows:

Ri = BiXi + ai (4.4)

Bi is a p× 1 vector of parameters and is calculated using the least square error method

for statistical linear model. Unlike the model presented in Chapter 3, in Equation

4.3, there is no pre-determined physics-based model. Therefore, the parameters can be

freely estimated to minimize the sum of square errors between actual cooling/heating
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loads and their predictions. This implies that Equation 4.3 is able to outperform the

physics-based model presented in Chapter 3, when there are physical characteristics

that are not appeared in the model.

The predicted cooling/heating values can be obtained instantly and fed into another

forecast model to estimate the total energy supplied to the HVAC system. In other

words, by knowing the external temperature and the current internal temperature for

each zone, the heating/cooling model (Equation 4.3) estimates the cooling/heating loads

required to reach a specific set point in the next hours. Then the second model (Equa-

tion 3.15) is employed to calculate the total energy needed by HVAC system to generate

the required cooling/heating loads. For the second model, in Chapter 2, we present a

regression-time series model that is the direct generalization of the Cochrane-Orcutt

estimation technique. According to Figure 3.3 and Table 3.2, this forecast model per-

forms well and does not need to be improved for this chapter. We also do some minor

revisions in the optimization model presented in Section 3.5 and discuss it in the next

section.

4.3 Mathematical Modeling for Optimal Control Strategy

In Chapter 3, we proposed a mathematical dynamic programing for minimizing total

building energy-related costs and at the same time minimizing the deviations from

thermal comforts. The proposed model includes two objective functions as follows:

min
Rt+k

G1(N,R
t+k,Tt+k

ext ,T
t+k
in ) ≡ (4.5)

N−1∑
k=0

ct+kyt+k(R
t+k,Tt+k

in ).∆t+ υ.max
k∈td

{
yt+k(R

t+k,Tt+k
in )∆t

}

min
δut+k,δ

l
t+k

G2(N, δ
u
t+k, δ

l
t+k) ≡ pt+k

N−1∑
k=0

(δut+k + δlt+k) (4.6)

where Rt+k,Tt+k
ext and Tt+k

in are the vectors of heating/cooling load, external tem-

perature and zone internal temperature given from cooling/heating model (Equation

(4.3)). ct+k and υ are cost of each unit of energy per kWh and cost of daily as-used
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demand charge. yt+k(R
t+k,Tt+k

in ) is energy used at time t+k in order to generate Rt+k,

the vector of cooling/heating load values for all zones. pt+k is the penalty that is ap-

plied to any violation from the comfort bounds at time t+k ; δut+k and δlt+k are the total

violation from thermal comfort at time t+k.

Since there are two objective functions in the proposed control strategy, weighted met-

ric method is proposed to solve the optimization problem. The weighted metric method

minimizes a weighted combination of all objective functions from their minimum values:

G(N,Rt+k,Tt+k
ext ,T

t+k
in ,δut+k, δ

l
t+k) = (4.7){

w1(
G1(N,R

t+k,Tt+k
ext ,T

t+k
in )−Gmin1

Gmax1 −Gmin1

)

p

+ w2(
G2(N, δ

u
t+k, δ

l
t+k)−Gmin2

Gmax2 −Gmin2

)

p}1/p

As mentioned in Chapter 3, Gmini and Gmaxi i = 1,2 are the maximum and minimum

values for the ith objective function used for normalizing the combined function of

G(.). If there are m objective functions, then Gmini would be found by solving m single

mathematical programming. However, in this study, since we solve a real time dynamic

programming, it is not possible to obtain the optimal solutions of individual mathe-

matical problems. The reason is that in dynamic programing any optimal solution at

any stage depends on the previous stages and one should find the optimal solutions for

all combinations which is practically impossible. In previous chapter, we set Gmini = 0,

which is justifiable. It means that when no equipment is functioning in the building,

then the total cost of energy is zero. Furthermore, to find Gmax1 , we first calculate, the

maximum energy required to reach the lowest possible set points, when the internal

and external temperature values are maximum. This means that it is expected that

Gmax1 becomes very large and at as a result, the denominator of Equation 4.7 becomes

very small. In other words, comparing to the second objective function, the first part

of Equation 4.7, which is related to the first objective function becomes very small and

does not significantly contribute in the combined objective function.

One practical way to tackle this problem is to choose moderate values for Gmax1 . For

example, one can set Gmax1 equal to the maximum energy use during the last month.

The second approach is to use utility function instead of metric function and choose
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Gmini and Gmaxi based on the highest and lowest preferences of the decision maker. Util-

ity function varies between 0 to 1. It returns zero for G1(N,R
t+k,Tt+k

ext ,T
t+k
in ) < Gmini

and returns one for G1(N,R
t+k,Tt+k

ext ,T
t+k
in ) > Gmaxi . The only problem of this ap-

proach is to find a way to create an appropriate functional form for utility, which fits

the decision makers preferences.

In this Chapter, we still use Weighted Metric Method, to combine both objective func-

tions. However, instead of Equations (3.25) and (3.24), we sample the past and current

energy consumption of a specific period and calculate Gmaxi based on the records. The

value is then added by a constant to prevent any objective function value greater than

one.

4.4 Structure of the Proposed Dynamic Programing Model

Our proposed optimal control strategy is explicitly represented in equations 3.27 through

3.30. At time t, the state variables Tt
in =

[
T tin(1), ..., T tin(Z)

]
and Tt

ext = [T text(1), ...,

T text(Z)] are known and Rt+k =
[
Rt+k(i)

]
i = 1, 2, ..., Z; k = 1, 2, ..., N , is the ith,

zones cooling/heating loads required to reach to a specific set point at time t+k. In

fact, the optimal control strategy searches for a set of set point values, which minimize

total energy consumption as well as deviation from thermal comfort over 24 hours a

day. Therefore, T∗t+1
in ,T∗t+2

in , ...,T∗t+Nin are the optimal set point values associated with

R∗t+1,R∗t+2, ...,R∗t+N for time t+1 through t+N. The principle of optimality can be

met by using Bellmans dynamic programming algorithm to find the optimal set point

values [47, 76]. It states that for T∗t+1
in ,T∗t+2

in , ...,T∗t+Nin to be optimal, the set point

values starting from any intermediate set point T∗t + j
in , j = 1,2, ...,N should be optimal.

To do this, let us define J1
0→j(.) and J2

0→j(.) as the cost over the reduced horizon from

0 to j for the first and second part of Equation (4.5):

J1
0→j(R

t...Rt+j ,Tt
ext...T

t+j
ext ,T

t
in) =

j−1∑
k=0

ct+kyt+k(R
t+k,Tt+k

in ).∆t



69

J2
0→j(R

t...Rt+j ,Tt
ext...T

t+j
ext ,T

t
in) = υ. max

k∈{td}∩{0,...,j−1}
k∈td

{
yt+k(R

t+k,Tt+k
in )∆t

}
(4.8)

These are also called cost-to-go functions. Now the optimal cost-to-go is defined as

follows:

J∗0→j+1(R
t, ...,Rt+j ,Tt

ext...T
t+j
ext ,T

t
in) =

min
Rt+j+1

ct+kyt+j+1(R
t+j+1,Tt+j+1

in )∆t+ J∗11→j(R
t...Rt+j ,Tt

ext...T
t+j
ext ,T

t
in)

υ.max
Rt+j+1

{
yt+j+1(R

t+j+1,Tt+j+1
in )∆t, J∗21→j(R

t...Rt+j ,Tt
ext...T

t+j
ext ,T

t
in)
}
, (4.9)

where J∗10→j(R
t...Rt+j ,Tt

ext...T
t+j
ext ,T

t
in), and J∗20→j(R

t...Rt+j ,Tt
ext...T

t+j
ext ,T

t
in) are

the first and second parts of optimal cost to go at time t+j that is J∗0→j(R
t, ...,Rt+j ,Tt

ext,

Tt
in). The principle of optimality states that the optimal cost-to-go from time 1 to time

j+1, J∗0→j+1(R
t, ...,Rt+j ,Tt

ext,T
t
in), can be calculated by minimizing two components

of Equation (4.9). In other words, at any time J∗10→j(.), J
∗2
0→j(.) and J∗0→j(.) are cal-

culated and the results are updated using Equation (4.9) until j = N. Similarly, the

optimal cost-to-go for the second objective function (Equation 4.6) is calculated as

follows:

I∗0→j+1(R
t, ...,Rt+j ,Tt

ext...T
t+j
ext ,T

t
in) = min

Rt+j+1
pt+j+1yt+j+1(δ

u
t+k + δlt+k)

+ I∗0→j(R
t, ...,Rt+j ,text ...T

t+j
ext ,T

t
in)

(4.10)

In equations (4.9) and (4.10) the decision variable for stage j +1 is R∗t+j+1 that is

given by the set point value at time t+j +1 for all zones. Also,R∗t+1, ...,R∗t+j have al-

ready been selected optimally and calculated within J∗10→j(R
t...Rt+j ,Tt

ext...T
t+j
ext ,T

t
in)

and J∗20→j(R
t...Rt+j ,Tt

ext...T
t+j
ext ,T

t
in).

Assume that there are m different candidate set points (say s1, ...sm), at time t+j +1,

and that J∗0→j+1(R
t, ...,Rt+j+1,Tt

ext,T
t
in) is a m-vector showing the optimal cost-to-go

at step j +1, given that = Tt+j
in = si where i=1,2,, m’. In other words, J∗0→j+1(.) is the

lowest value of a table in which there are m’ rows, each corresponded to a specific set

point in previous time of t+j ; and m columns, each corresponded to a specific set point

at current time of t+j +1. Therefore, to calculate J∗0→j+1(R
t, ...,Rt+j+1,Tt

ext,T
t
in),
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we need to have a set of tables for J∗0→k(R
t, ...,Rt+j+1,Tt

ext,T
t
in)k = 1, 2, ..., j. For

example, suppose that at stage j +1, we are searching for T∗t+j+1
in that minimizes

J∗0→j+1(R
t, ...,Rt+j+1,Tt

ext,T
t
in) given that the optimal set point value at time j is

= T∗t+j+1
in = s∗i . In fact, = T∗t+j+1

in = s∗i has already been given by minimizing

J∗0→j(R
t, ...,Rt+j+1,Tt

ext,T
t
in) for a given value of set point at stage j -1 –say for ex-

ample, T∗t+j−1in = s′∗i that minimizes J∗0→j−1(R
t, ...,Rt+j+1,Tt

ext,T
t
in) .

Therefore, at time t+j +1, when we are checking a specific set point (say = Tt+j+1
in = s1),

the cost-to-go function at time t+j +1 is related to previous optimal cost-to-go func-

tions that are minimized over time to reach to s1 at time t+j+1. Again for any other

value of set point at time t+j+1 (say = Tt+j+1
in = s2), there is another set of previous

optimal cost-to-go values that are minimized over time to reach to s2 at time t+j +1.

For calculating the second part of Equation 4.9, we draw all optimal cost-to-go values

and their corresponding set points. This method results in real optimal cost-to-go for

daily as-used demand charge.

4.5 Numerical Example and Comparisons

In this section, the performance of the modified optimal control strategy is evaluated

using a numerical example. We use the same simulation model presented in Chapter

3, which is the Large Office model developed by U.S. Department of Energy [75]. In

addition, we follow our proposed framework presented in Section 3.3 and Figure 3.1.

We select the same zones and run the simulation using 2011 Phoenix weather data.

The training dataset includes one-month data (from 2011/07/1 through 2011/07/31)

followed by a one-month testing dataset (from 2011/08/1 through 2011/09/01). The

data are sampled every 15-minute. Therefore, total sample size is 5952 that is 31×(2

months) ×4(every 15 minutes) ×24 (hours a day).
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4.5.1 Results of The Extended Cooling/Heating Model

Table 4.1 depicts the estimated parameters of our proposed cooling/heating model

presented in Equation (4.3). The ith column of Table 4.1 corresponds to Bi =

[ βi0 βi1 βi2 θi ]p×1, the ith vector of Equation (4.4). The estimated values of βi1

and βi2 are all negative. This is because these two parameters are coefficients of

T t+k+1
in (i) − T t+kin (i) and T t+k+1

in (i) − T t+kext (i) in Equation (4.3). In summer time, to

lower the temperature at time t+k+1, more cooling power must be supplied. In this

situation should be negative and a negative value of βi1 can guarantee that the cooling

load will be greater than zero (Rt+k(i) > 0).

With the same intuition, in summer time, the warmer external temperature needs more

Table 4.1: The estimated values of the extended cooling/heating model

Zone

βij 1 2 3 4 5 6 7 8 9 10 11 12

0 4.02 2.88 4.39 2.65 3.97 3 4.31 2.76 4.02 3.16 4.39 2.65
1 -2.53 -1.67 -2.58 -1.62 -2.53 -1.68 -2.59 -1.65 -2.53 -1.72 -2.58 -1.62
2 -0.28 -0.2 -0.25 -0.27 -0.27 -0.18 -0.24 -0.24 -0.28 -0.18 -0.25 -0.27
3 -1.28 -0.08 -0.97 -0.21 -1.23 -0.04 -0.91 -0.7 -1.28 -0.09 -0.97 -0.21
4 -0.39 -0.1 -0.45 -0.28 -0.26 -0.04 -0.31 -0.3 -0.39 -0.16 -0.45 -0.28
5 -1.33 -0.15 -1.07 -0.36 -1.21 -0.07 -0.94 -0.74 -1.33 -0.25 -1.07 -0.36
6 -0.83 -0.2 -0.91 -0.43 -0.59 -0.09 -0.67 -0.59 -0.83 -0.33 -0.91 -0.43
7 -1.43 -0.26 -1.2 -0.52 -1.25 -0.14 -1.01 -0.81 -1.43 -0.43 -1.2 -0.52
8 -0.66 0.54 -1.13 -0.57 -0.32 0.69 -0.84 -0.74 -0.66 0.47 -1.13 -0.57
9 -0.45 3.11 -1.21 -0.72 -0.2 3.27 -0.96 -0.85 -0.45 3.68 -1.21 -0.72
10 3.01 8.69 1.42 0.47 3.46 8.98 1.9 0.77 3.01 10.03 1.42 0.47
11 0.89 7.83 0.86 0.49 1.09 7.84 1.13 0.35 0.89 9.75 0.86 0.49
12 4.09 11.5 4.03 0.82 4.37 11.43 4.47 1.9 4.09 13.63 4.03 0.82
13 1.13 7 2.27 0.6 1.25 6.62 2.46 0.44 1.13 8.87 2.27 0.6
14 4.83 7.97 7.16 1.32 4.93 7.56 7.37 2.34 4.83 9.36 7.16 1.32
15 1.12 3.29 3.34 0.68 1.15 2.93 3.4 0.46 1.12 4.18 3.34 0.68
16 5.06 5.44 8.04 3.61 4.99 4.97 7.95 4.54 5.06 6.23 8.04 3.61
17 1.14 2.7 2.9 4.77 1.07 2.44 2.75 4.81 1.14 3.56 2.9 4.77
18 4.98 4.73 6.82 11.01 4.8 4.37 6.52 10.22 4.98 5.53 6.82 11.01
19 0.85 2.03 1.74 8.46 0.7 1.83 1.51 8.8 0.85 2.82 1.74 8.46
20 3.16 2.16 3.25 9.16 2.89 1.82 2.81 8.06 3.16 2.67 3.25 9.16
21 0.04 0.75 0.07 3.42 -0.13 0.57 -0.18 2.84 0.04 1.16 0.07 3.42
22 2.13 1.13 2.07 2.95 1.82 0.84 1.66 2.48 2.13 1.18 2.07 2.95
23 -1.08 0.2 -0.65 0.51 -1.23 0.1 -0.81 -0.38 -1.08 0.37 -0.65 0.51
24 0.79 0.38 0.83 0.78 0.6 0.24 0.62 0.67 0.79 0.29 0.83 0.78
25 -1.21 0.04 -0.84 0.05 -1.25 0.02 -0.88 -0.61 -1.21 0.1 -0.84 0.05
26 0.01 -0.15 0.03 0.12 0.01 -0.14 0.02 0.09 0.01 -0.15 0.03 0.12
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power to cool down the building, therefore a negative coefficient for T t+kin (i) − T t+kext (i)

seems logical. It is also worth noting that, the model needs to be estimated again in

wintertime, and the parameters should be updated.

We evaluate the performance of the extended cooling/heating model using coefficient

of determination, R2 and adjusted coefficient of determination, R2
adj (See equations 2.7

and 2.8). As discussed in Chapter 2, these measures quantify the amount of total vari-

ability within all data that is explained using the model. A model with coefficient of

determination of one shows an ideal model that can explain all the variations within

the data. Table 4.3 presents R2 and R2
adj for both training and testing datasets. These

measures are provided with and without using the time-dependent indicator variables

discussed in Section 4.2.Therefore, R2 and R2
adj for testing dataset indicate the perfor-

mance of the extended heating/cooling model for any future occasions.

It is observed that the extended cooling/heating model can appropriately explain total

variations within the simulated data. The model is able to explain more than 90% of

all variations for most zones when the time indicator variables are added to the model.

However, R2 and R2
adj for the model without indicator variables vary for different zones.

Table 4.2: Coefficient of determinations and adjusted coefficient of determinations for

the extended cooling/heating model; Tr: Training dataset, Ts: Testing dataset

Zone 1 2 3 4 5 6 7 8 9 10 11 12

R2(Tr) 0.975 0.863 0.982 0.935 0.974 0.866 0.982 0.938 0.975 0.858 0.982 0.935

R2
adj(Tr) 0.975 0.862 0.982 0.934 0.973 0.864 0.982 0.937 0.975 0.857 0.982 0.934

R2(Te) 0.95 0.877 0.925 0.91 0.953 0.881 0.93 0.916 0.95 0.876 0.925 0.91

R2
adj(Te) 0.949 0.876 0.924 0.909 0.952 0.88 0.93 0.916 0.949 0.875 0.924 0.909

Zone 1 3 4 5 6 7 8 9 10 11 12 12

R2(Tr) 0.808 0.209 0.748 0.574 0.784 0.195 0.72 0.547 0.808 0.153 0.748 0.574

R2
adj(Tr) 0.808 0.208 0.748 0.574 0.784 0.195 0.72 0.546 0.808 0.152 0.748 0.574

R2(Te) 0.774 0.164 0.501 0.428 0.752 0.158 0.491 0.413 0.774 0.123 0.501 0.428

R2
adj(Te) 0.774 0.163 0.501 0.428 0.752 0.158 0.491 0.412 0.774 0.123 0.501 0.428
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Figure 4.1: The simulated and predicted internal temperature for a selected number of

zones and average of all zones (Time unit = 15 minutes)

These measures range between 0.156 to 0.808, which show that the time variables

significantly contribute in zonal cooling and heating models. The main reason for the

importance of time variables was discussed in Section 4.2. Many latent factors directly

or indirectly affect the heat balance transfer of a zone. Occupancy, interconnectivity of

heat between different zones, equipment, the structure of walls, windows, doors, chairs,

desks, etc., are only a small number of such factors. A perfect model should directly

consider the effects of all these factors. However, many of these factors are not mea-

surable, or not easy to calculate. The time indicator variables are replaced by all those
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unknown or immeasurable variables that dynamically change with time. Time indica-

tor variables can model a portion of total variability that is caused by any systematic

time patterns. They do not provide any information about the nature of the factors.

Instead, the indicator variables tell us about those systematic patterns that are hidden

in the data. It is worth mentioning that only the factors that are totally known and

controllable can be considered for optimization purposes.

Figure 4.1 illustrates a sample data from the predicted and simulated internal tem-

perature for a number of zones also for the average of all zones. In order to generate

data using EnergyPlus; we intentionally keep changing set point values between 22 ◦C

and 28 ◦C every 30 minutes. In doing so, the internal temperature values, and other

heating/cooling variables change accordingly. Therefore, more variability can be poten-

tially captured using the proposed model. This is the main reason that data oscillates

between 22 ◦C and 28 ◦C during daytime in Figure 4.1.

4.5.2 Results of the Extended Cooling/Heating Model

The performance of the proposed optimal control strategy is investigated in this sec-

tion. We use the same parameters presented in Table 3.3 to run this model. Again,

the differences between the models presented in Chapters 3 and 4 are as follows: i) this

model employs an extended cooling/heating model that is able to predict the required

loads and the zone internal temperature more accurately; ii) the optimization model

is repeated every 15 minutes, so that the optimal control strategy can manipulate the

set point variables in shorter time; iii) this model employs an improved method to

effectively consider the impact of demand charge in optimal control strategy. In this

example, the parameters of Equation (4.7) are set as follows: w1 = w2 = 0.5 and p = 2.
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Figure 4.2: The results of the proposed control strategy: a) The optimal set point values

and average internal temperature, b) Optimum energy consumption profile over time

c) Optimum total operating cost profile including variable cost and demand charge cost

Figure 4.2 illustrates the results of the proposed control strategy over a range of

approximately two days. Figure 4.3.a presents the optimal set point value, the average

internal temperature, as well as the lower and upper control limits. The on-peak period

starts from the 48th time slot (12:00 p.m.) and ends at the 72nd time slot (6:00 p.m.).

It is observed from Figure 4.3.a that during the precooling period, the optimal control

strategy keeps the temperature lower so that more cooling air can be saved for the on-

peak period. The unit cost of energy ($/kWh) before 12:00 p.m. (before peak hours)

is set to be lower, so that the overall cost of energy is less expensive during precooling
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time. In addition, there is no daily as-used demand charge applied before or after peak

hours. It is also shown that during the precooling period, the set point never goes below

68 ◦F. The reason might probably be related to the second objective function, thermal

comfort. Although, the set point value can get the values smaller than 68 ◦F during the

precooling time, the thermal comfort objective function is active and does not allow

the set point to reach lower values. According to Table 3.3, from 9:00 a.m. to 4:00

p.m. the penalty for deviation from thermal comfort has its highest value. Therefore,

it does not allow the set point to be very small. This example shows how two objective

functions work together and compromise over time. Figure 4.2.b presents the total

energy use (kWh) for the optimal control strategy. Note that the energy-use sharply

increases during precooling time in order to provide enough cooling power. Then in the

first hours of the on-peak period, the energy-use slightly decreases, probably because

it uses the remaining cooling power generated in precooling time. The highest energy

use occurs in the last hour of on-peak period (70th time slot 5:30 p.m.).

Figures 4.3.a and 4.3.b presents the total energy cost and the average deviations from

thermal comfort. It can be shown from Figure 4.3.a that most deviations from thermal

comfort occur during peak hours that seems reasonable. During these hours, unit cost

of energy ($/kWh) is a higher and demand charge is available. Therefore, the proposed

optimal control model allows some deviations from the thermal comfort bound, in order

to significantly decrease the total cost of energy. Figure 4.3.b depicts the combined

normalized objective function. It shows that the maximum combined function occurs

during peak hours when there are both higher variable costs as well as higher deviation

from thermal comfort. After 4:00 p.m. (time slot 64), although, it is still in on-peak

period, the combined normalized objective function decreases. This is probably because

of the less penalty value for deviation from thermal comfort after 4:00 p.m.
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Figure 4.3: The results of the proposed control scheme: a) Total Energy Consumption,

b) the temperature violations below or above the thermal comfort bounds, c) Combined

weighted metric values (Time unit = 15 minutes).

Figure 4.4 presents G1(.), the normalized values of the first objective function, G2(.)

the normalized values of the second objective function and combined normalized ob-

jective function. The highest values of G1(.) and G2(.) are both within the on-peak

period, but not exactly at the same time. In addition, in Figure 4.4.a, G1(.) values

are sometimes greater than one. The reason is the new modification that is added

in this chapter. Gmax1 in Equation (4.7) is calculated using the method presented in

this chapter. Gmax1 is calculated by obtaining the maximum energy consumption for

the optimal control set points from time 0 to j which does not necessarily include the

demand charge cost.
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Figure 4.4: the normalized energy consumption cost profile, b) the normalized thermal

discomfort penalty profile, c) the normalized combined metric profile (Time unit = 15

minutes).

We also compare the proposed control strategy with various configurations appeared

in Figure 3.9. A number of configurations are fixed over time and do not change during

the 24 hours. They provide an insight about upper and lower energy consumptions as

well as upper and lower penalties for deviations from thermal comfort. Other dynamic

controls are logical controllers that try to minimize either total energy related cost or

thermal comfort. For example, Dynamic Control 1 in Figure 3.9 picks larger set point

values around on-peak hours and smaller values in off-peak hours when there is smaller

cost energy per unit. All other parameters, simulation runs, environmental variables
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are fixed.

Table 4.3: Comparison between the Extended Control Strategy and Other Control
Schemes

Control Schemes

Proposed
Controller

Constant
Controller1

Highest
Value

Dynamic
Controller 1

Dynamic
Controller2

Dynamic
Controller3

Daily Energy Cost 418.35 451.38 401.20 436.04 428.49 438.61
Daily Usage Cost 367.38 389.35 351.39 383.13 374.22 385.10

Daily Demand Charge 50.97 55.33 49.81 52.91 54.26 53.51
Normalized Energy Cost, G1(.) 0.40 0.59 0.38 0.41 0.41 0.42

Violation from comfort 0.20 0.02 1.07 0.02 0.34 0.02
Normalized comfort, G2(.) 0.03 0.00 0.23 0.00 0.02 0.00

Combined Metric Value, G(.) 0.25 0.37 0.30 0.27 0.28 0.29

It is observed from Table 4.3 that the proposed control strategy provides lowest

energy consumption cost after the Highest Value controller, which selects a constant

set point value of 76 ◦F. The table also includes the average daily demand charge for

which our proposed control performs as good as the Highest Value controller. From

the thermal comfort viewpoint, the proposed control strategy outperforms Dynamic

Controller 2, and Highest value. The proposed method is however, larger than Constant

Controller 1, which has a constant set point value of 69 ◦F, as well as Dynamic Controller

3. The performance of the proposed strategy is very close to Dynamic Controller 1 as

well as Dynamic Controller 2. Note that the proposed controller has the lowest value

of the total combined metric. It implies that the proposed control strategy can provide

optimal set point values with lower energy cost than other dynamic controllers can, and

at the same does not significantly violates from the thermal comfort bounds.

4.6 Conclusions

The following results can be concluded from this chapter: The proposed control strategy

presented in this chapter is a direct extension of the method explained in Chapter 3.

It can accurately predict the required cooling/heating load and internal temperature.

The model performs well for any lags within a day. In addition, the proposed control

strategy can be implemented for any actual or simulated building in order to minimize

total energy consumption while minimizing any deviation from a pre-specific thermal
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comfort.

Currently, at each time, the proposed control strategy provides the same optimal set

point value for all zones. It means that at any time it seeks for a unique set point

value that minimizes the total cost of energy as well as penalty for deviation from

thermal comfort. Once, it finds the optimal value, the proposed control strategy sets

all setpoint values equal to the optimal value. Then it updates the results over time as

soon as new information is available. This method is particularly effective when there

are relatively large numbers of zones with the same functionality in a building, such

as offices, university buildings, etc. One potential extension is to propose a control

strategy, which seeks for different set point values for different zones. This can be

considered as a large-scale optimization model as the algorithm needs to search in a

much bigger feasible region. For example, for a building with 25 zones, and 10 set

point candidates, the total combinations of set points and zones would be 1025 for each

time step. Therefore, if the time step is set to be one hour, 24× 1025 combinations are

potentially available. It means that the algorithm should search for optimal solutions

among 24×1025 possible solutions in every single hour (or 15 minutes). In this situation,

many other solvers including exhaustive search and evolutionary algorithms do not

effectively work.

To overcome this problem, one idea is to decrease the search spaces. An effective method

would merge similar zones into a bigger zone and reduce the dimension of the problem.

To do this, a zone selection approach is required to classify similar zones. This can

be done by either using the engineering knowledge of building or using computational

algorithms that compare all combinations and provide the best classes of zones based

on a number of features. The second idea is to develop an optimal control strategy that

can fit with large-scale dynamic problems. Dynamic programing is typically considered

as an efficient algorithm to search for optimal solution. For many cases, the algorithm

process time is polynomial in the number of states (number of zones) as well as number

of actions (number of available set point values) [77]. However, it is not yet practical
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for very large problems. Approximating methods can also be chosen to solve large-

scale dynamic programming (See for example, feature-based methods in [78], parallel

computing methods [79], and other numerical methods [80]). This is a potential topic

for future researches.
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Chapter 5

Predictive Analytics Approach to Modeling Building

Industrial Load

5.1 Introduction

In previous chapters, several models were proposed for forecasting and optimization

of energy use in residential or office buildings. Industrial sector also significantly con-

tributes in total energy use and accounts for about 50% of the worlds total energy

conversion [81,82]. In addition, from 41% energy used in the U.S. buildings, 19% are

delivered to non-residential buildings, which accounts for 3.6% of total world energy

consumptions combined. However, more attention seems to be directed toward res-

idential or office buildings by researchers. One main reason would be the complex

nature of non-residential buildings. The main source(s) for energy usage in different

non-residential buildings are often different from one industry to another. Another

reason would be the characteristics of industrial loads in non-residential buildings that

are often extremely large, non-stationary with random fluctuation over time. This is

different with the energy usage data in residential buildings that are often function of

occupancy and temperature. Overall load in non-residential buildings typically consists

of two components: i) the baseline load, which is the normal load due to daily activities,

cooling, heating, and lighting and is often function of temperature and occupancy; 2)

the industrial load, which is mainly due to the operation of equipment and machinery

and is often larger than the baseline load. In this chapter, a data-driven risk analy-

sis approach is proposed to evaluate and control of demand response actions, such as

load shedding and load shifting strategies in non-residential buildings. The proposed

methodology consists of two major steps: In the first step, it employs a set of predictive
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analytics tools to capture and predict the patterns of industrial load profiles. These

tools can also estimate the probability of the day-ahead load pattern. Once the pat-

tern(s) of industrial loads is determined, a risk analysis method is used to evaluate the

worst-case, best-case, and most-likely estimations of energy cost. Any demand response

programs can be analyzed for worst-case, best-case, and most-likely scenarios and the

best program can be selected accordingly.

Unlike, the load forecasting methods discussed in Chapters 2 and 3, the predictive ana-

lytics methods do not provide online hourly forecast values for the building energy-use.

Instead, they identify the hidden patterns of industrial load data and use them to cal-

culate the risk of energy scenarios. In addition, unlike Chapter 3, the proposed method

does not provide an optimal control strategy to minimize total cost of energy in an

hourly-basis. But, it calculates the risk of different demand response programs, so that

the users can select the program(s) with minimum risk.

5.2 Background Study

There has been little attention paid to modeling and control of industrial loads in

non-residential buildings. Westphal and Lamberts employ a simplified weather data to

model and analyze the thermal loads of non-residential building using average, maxi-

mum and minimum of monthly energy data. However, in their study, the building peak

electric load is not extremely large. In addition, weather data is not always a good

representative for energy-use patterns in the buildings with industrial load. Coughlin

et al. investigate the impacts of building characteristics as well as weather data for

estimation of baseline load profiles in non-residential buildings [84]. Their method is

particularly useful to measure the load impacts from certain types of load-reduction

programs. Again, in their case studies, they do not report the effect of extremely large

industrial loads.

In addition, to avoid the complexity of industrial loads in non-residential buildings, a

number of researchers integrate the energy-use data into a longer horizon and propose

long-term forecasting models (See e.g. [85-88]).
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Furthermore, the correlation between power consumption and the operations of the

manufacturing systems has also been investigated by several researchers [89]. Energy-

aware scheduling (EAS) is a popular approach to deal with modeling and optimization

of energy dynamics in manufacturing systems. The EAS approach proposes a set of

mathematical models to optimally schedule manufacturing operations by considering

energy-related parameters such as cost of energy, carbon footprint, etc. The energy-

related parameters can be presented as a constraint or objective function in EAS ap-

proach [90-93]. The only drawback of EAS models is that the traditional scheduling

problems are often complex problems. They are mathematical programing models that

determine the optimal schedule of manufacturing machinery and equipment to mini-

mize total manufacturing costs. EAS problems add further decision variables and/or

constraints into the traditional scheduling problems, which even make it more complex.

Our proposed methodology is different with the above researches in different aspects.

First, it is proposed for buildings with extremely large loads over time. In addition,

it does not provide the optimal solution e.g. the optimal demand response program.

Instead, it evaluates the risk of different demand response programs and selects the

program that lowest risk and best predicted performance.

5.3 Problem Statement

In this chapter, the proposed data-driven risk-based approach is explained through an

example. Although the magnitude and forms of industrial load profiles may vary from

one building to another based upon the operations and functionalities of the building;

the proposed framework is generic and can be applied with minor changes. Again,

since industrial load patterns have much larger variance compared to the baseline load

patterns, the models presented in the previous chapters do not work well to predict

and control energy consumption. Figure 5.1 shows the total building power loads (kW)

for three non-residential buildings in Colorado. It is observed that power consumption

values for Building II are extremely large–greater than 850 kW in some cases. This

obviously shows that there are extremely large industrial loads in this building, which



85

Figure 5.1: Total power consumption for three non-residential buildings (Time unit =
15 minutes)

affect the building baseline loads.

Building I and Building III are non-residential building as well; however, they are not

affected by large industrial loads. These buildings can be analyzed using the approaches

discussed in the previous chapters. In this chapter, we apply our proposed framework

to Building II. Figure 5.2 presents the daily load profiles of Building II. It has 208

daily profiles collected every 15 minutes from the building. Each profile includes 96

load samples so the overall sample size is 19968 (24 (hours) × 4 (15 minutes) × 208

(days) =19968). The average daily profile and 2-sigma upper and lower limits are also

presented. It is observed from Figure 5.2 that the total variability of daily load profiles

is very large. In other words, patterns of daily load are significantly different from one

day to another. Since, the variance of the load profile data is very large, it is reason-

able to use a clustering method and classify the load profiles into groups with smaller

variance. This is beneficial for the risk analysis purposes, when the decision maker can

calculate the probability of each class for the day ahead. In the next section, we will

describe the proposed framework.
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Figure 5.2: Daily Load Profile Data for Power Consumption of Building II (Time unit
= 15 minutes)

5.4 The Proposed Data-Driven Risk-based Framework

Figure 5.3 illustrates a general framework for the proposed data-driven risk-based

methodology. First, a sample of historical load profiles, weather, and time data are

required to create and validate the statistical models. Then a preliminary data anal-

ysis is applied to capture the general characteristics of load profile data. A clustering

method is also required to assign load profiles to a particular number of groups with

lower variability. The clustering method is followed by a classification model that is

built to determine the appropriate group of any future load profile. The classification

model assigns a probability to each group, which determines the chance of having a load

profile from a particular group in the day ahead. Once the probabilities of the day-

ahead industrial load are obtained, the risk of industrial load profile is calculated using

the expected cost of energy. A cost-based risk analysis can be applied to investigate

the effect of demand response programs. It investigates how any particular demand

response program can decrease risk of the day-ahead industrial load.
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Figure 5.3: The proposed data-driven risk-based framework for industrial load profiles

The first three steps of the proposed data-driven risk-based approach is often referred

to as Predictive Analytics. Predictive analytics is a variety of statistical and machine

learning techniques that analyze historical data to make prediction or inference about

future events [94, 95]. In this study, the predictive analytics (steps 1-3) is applied to

obtain the probabilities of load profile groups in the day ahead. In this next subsection,

technical details of the predictive analytics are explained.

5.4.1 Exploratory Data Analysis

Exploratory data analysis (EDA) was first introduced by John Tukeythe famous Amer-

ican statistician as an approach to explore historical data [96, 97]. It is typically de-

fined as a set of quantitative and graphical tools that are employed to summarize the

main characteristics of data, and to select appropriate statistical models. A number

of researchers use EDA in the area of energy, particularly when there are enough data
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Figure 5.4: Box Plot for industrial load profile categorized by hours of a day

available [98-100]. In this section, we employ EDA to understand the behavior of indus-

trial load profiles in Building II. Figure 5.4 shows a boxplot drawn from the daily load

profile data of Building II. It is observed that the largest consumptions (peak loads)

occur in the following hours: 8:00 a.m. to 10:00 a.m., 1:00 p.m. to 3:00 p.m. as well

as 7:00 p.m. This is significantly different with a typical building where peak hours are

usually between 12:00 p.m. to 4:00 p.m.

In addition, there are many outliers in 5:00 a.m., 6:00 a.m., 10:00 p.m. and 11:00 p.m.

The large number of outliers shows that in some hours the load distribution is heavy-

tailed with many extreme load values. This could be a major source of load variation

within load data. In Figure 5.5, the load profiles are categorized by weekdays. It is

observed that the load profile cannot be distinguished based on the weekdays. There

is not any specific pattern that is different with overall load profile. Again, this result

is different with residential buildings and many non-residential buildings, particularly

office buildings. It is interesting to note that weekdays load profiles is approximately

similar to the weekends load profiles.
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Figure 5.5: Industrial load profiles categorized by days of a week

Figure 5.6 presents load profile data categorized by months. Unlike weekdays, the

patterns of load profiles are different for different months. Particularly, Months 2, 3

and 4 are different with Months 5 and 6. In addition, Months 5 and 6 are slightly

different from Months 7, 8 and 9. This figure shows that the activities in this building

can potentially change in a monthly basis. Therefore, a set of variables should be added

to the model, which represent the month that the load profile is collected.
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Figure 5.6: Industrial load profiles categorized by months

Figure 5.7 demonstrates a visual summary of load profile data based on month,

weekdays, and weekends. Figure 5.7.a presents the variation of power consumption

values by months. Variation is larger in the first third months. The load profile data

for weekdays and weekends are illustrated in Figure 5.6.b. From clustering viewpoint,

it seems ineffective to classify load profiles based on days of a week.
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Figure 5.7: visual summary of load profile data: a) Load profile data categorized by

month, b) load profile data for weekends and weekdays, c) The average of load profile

data categorized by month and d) the scatter plot between power consumption (kW)

In addition, Figure 5.7.c plots the power consumption values with different colors

for different months. This figure also includes the average load profile for each month.

The overall monthly patterns and average load profiles are slightly different with each

other suggesting that data can be separated by month. Again, note that the maximum

power consumption in this building occurs between 9:00 am, 2:00 p.m., 6:00 p.m., and

7:00 p.m. These hours are very close to breakfast, lunch, and dinner times, respectively.

Therefore, it can be guessed that Building II might be a restaurant or some activities

that occur during eating hours. It is also observed that since the load profiles for

this building are extremely large, the building probably serves food for a large crowd

of people. Finally, Figure 5.7.d depicts a scatter plot between temperature (◦C) and

power (kW). It reveals a small correlation between power consumed in Building II and
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the ambient temperature. Therefore, the power consumptions in Building II is only

slightly related to the building cooling/heating systems. In overall, based on the above

analysis, months of the year is an important factor that should be an input for the

classification model.

5.4.2 High-Dimensional Clustering Analysis

In this section, a clustering analysis technique is employed to allocate load profile data

into smaller number of homogenous groups. As mentioned before, in this study, each

sample is a daily load profile, which consists of a vector of power consumptions collected

every 15 minutes. Therefore, there are 208 vectors of daily profile data and each profile

consists of 96 load values. In other words, the total sample size is 208; each sample is a

vector of 96 observations. As a result, the dimension of load profile vectors is relatively

large compared to the sample size. In this situation, the ordinary clustering methods do

not perform well. Instead, we employ a high-dimensional clustering analysis that can

be applied to data with high dimensions from a number of dozens to many thousands.

In general, there are two approaches for data clustering problems [101]: i) model-based

clustering methods, which aim to partition data into groups that presumably follow

the same distributions; ii) nonparametric clustering methods, which define similarity

metrics (distances); and partition data with the highest similarity into the same groups.

In this study, we use a model-based approach.

To do this, let us assume that the vector of load profile data is denoted by y and we

have a dataset of size n {y1, ...,yn}, where yi ∈ Rp. In addition, assume that yis come

from K different populations each with a multivariate distribution, φ(y;µk,Σk) . The

mixed distribution of xis can be shown as:

f (y, θ) =
K∑
k=1

πkφk (y;µk,Σk) (5.1)

where πk is the mixture proportion of the kth class and φk is a multivariate density

function, presumably Gaussian density function parameterized by a vector mean of µk

and variance matrix of Σk for the kth component. The problem is that in many cases,
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the dimension of data, p is very large even in some cases bigger than the sample size, n–

curse of dimensionality. This causes some mathematical problems (e.g. ill-conditioned

covariance matrix) and unexpected behaviors in clustering methods [101]. Most model-

based high-dimensional clustering methods typically propose methods to project the

p-dimensional problem into a smaller subset of p′ < p (See [102] and [103] to review

model-based high-dimensional clustering methods). In this research, we investigate a

well-known clustering model which is referred to as High-Dimensional Data Clustering

HDDC algorithm. The algorithm is available in CRAN server and can be downloaded

and used in R. It assumes that in high-dimensional spaces, data accommodate in dif-

ferent subspaces with lower dimensionality. In the HDDC algorithm, a constraint is

imposed to Gaussian mixture models through the covariance matrix Σk as follows:

Σk = QkΛkQ
′
k (5.2)

where Qk is the orthogonal matrix with eigenvectors of Σk as column andΛk is a di-

agonal matrix which contains the eigenvalues of Σk and can be presented as Λk =

diag(ak1, ..., ak,dk, bk..., bk) [103,104].akis parameterize the within-variance of subspace

and bks account for variance of the noise. The algorithm offers to select any combi-

nations of model [aki, bk, Qk, dk] to reduce the spaces and use the classical Gaussian

mixture model with a full-rank covariance matrix [105].

By applying the HDDC algorithm, the load profiles can be classified into three groups

that are shown in Figure 5.8. This figure presents the load profiles allocated to each

group together with their average, upper and lower load profiles. Before applying the

clustering method, there are no pre-determined classes for the load profile dataset, there-

fore, it is not possible to evaluate the performance of the HDDC algorithm. However,

in order to have an insight about the results, Figure 5.8 illustrates that the clustering

algorithm successfully allocates same load profiles into the same class. It is observed

from Figures 5.8.a and 5.8.b that all load profiles within same class follow the same

patterns, while the patterns of different classes are completely different. Finally, HDDC

algorithm allocates the remaining profiles that do not follow the patterns of the first
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Figure 5.8: Load profiles categorized by classes given through the high-dimensional
cluster analysis method.

or second classes, into a third class. Comparing to other classes, the third class has

much more variability. This shows that the algorithm compromises between selecting

minimum number of classes and minimum variability within each class.

5.4.3 Classification

Once the classes are obtained, it is useful to develop a model that can predict the

appropriate class of any future load profile. Classification technique is typically used to
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find the probability that the day ahead profile belongs to a particular class given that

a set of input variable such as weather and time variables. The classification method

calculates the correlation between a particular set of input variables with available

classes, and then tries to guess the best class that fit data.

To do classification, a wide range of methods and techniques are available. In this

section, we employ a Multinomial Logistic Regression model to identify to which of

classes a new load profile belongs. A training dataset is randomly selected to train the

model and the rest of data is used to evaluate the performance of the models.

Multinomial logistic regression

Assume that zt = 1, 2, 3 showing the class that the tth load profile belongs to; and that

πit = Pr(zt = i) is the probability that the tth load profile data belongs to the ith class,

then a multinomial logistic model can be shown as follows:

log
pr(zt = i|Xt)

pr(zt = 3|Xt)
= log

πit
π3t

= βiXt; i = 1, 2, ..., c− 1 (5.3)

Where Xt is the vector of input variables, including temperature and time variable. As

mentioned in Chapter 4, time variables are indicator variables defined to differentiate

between different months of a year, day of a month, hours of a day, etc. As clearly shown

in figures 5.5 and 5.6, months and weekdays are time indicator variables in this study

and together with the ambient temperature create the vector of Xt . c is number of

classes, which is 3 in this study. Multinomial distribution is a special form of generalized

exponential family, which can be used to obtain the Maximum Likelihood Estimation

(MLE) of βi values. To do this, βi should be found to maximize the following function

[106]:

lik(βi) =
n∏
t=1

pr(zt = i|Xt) ∼=
n∏
t=1

πz1t1t .π
z2t
2t .π

1−z1t−z2t
2t

∼=
n∏
t=1

exp (β1Xt)
z1t . exp (β2Xt)

z2t .
(

1
1+exp (β1Xt)

z1t+exp (β2Xt)
z2t

)3 (5.4)

By taking log, Equation 5.4 can be written as follows:

log (lik(βi)) =

n∑
t=1

z1tβ1Xt + z2tβ2Xt − 3 log(1 + exp(β1Xt) + exp(β2Xt)) (5.5)
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then βi can be found by finding the derivation of log (lik(βi)) with respect to each

element of βi and by setting the result equal to zero [107].

∂ log(lik(βi))
∂βi

∼=
n∑
t=1

[zitβ1Xt −
(

1
1+exp (β1Xt)

z1t+exp (β2Xt)
z2t

)
×

∂
∂βi

3 log(1 + exp(β1Xt) + exp(β2Xt)

(5.6)

By simultaneously solving the above equations, the MLE estimated values of βi can

be obtained. Since these equations are often difficult to solve analytically, researchers

typically employ numerical method. For example, package nnet in R, obtains the MLE

estimated values of βi via neural networks [108]. Once βi values are estimated,πit =

Pr(zt = i) can be found as follows:

π̂it = exp (βiXt)
z1t

1+exp (β1Xt)
z1t+exp (β2Xt)

z2t , i = 1, 2

π̂3t = 1− π̂1t − π̂2t = 1
1+exp (β1Xt)

z1t+exp (β2Xt)
z2t

(5.7)

π̂its estimates can then be used to determine the class of each observation. In the

simplest case, the tth observation is assigned to the kth class, if π̂kt = max{π̂it; i =

1, 2, 3}. To evaluate the performance of the proposed method, we divided the load

profiles data into the training and testing datasets. Sample size for both subsets is 104

and the training and testing samples are drawn randomly. We also tried Support Vector

Machine another classification method, in order to compare with the MLR method

presented in this chapter. Table 5.1 summarizes the results of classification methods.

Rows and columns present the actual class and predicted class of profiles. It is observed

that both methods are able to correctly predict Class 1 and Class 2. This rate is 100%

for Class 1, for both training and testing datasets. MLR method is also able to identify

Class 2 with the accuracy rate of more than 94%. The overall accuracy rates for

multinomial logistic regression (MLR) method are 92.31% and 87.5% for the training

and testing datasets, respectively. The corresponding accuracy rates for support vector

machine (SVM) are 99.04% and 86.54%, respectively. Both classifiers are not able to

accurately determine the load profiles in the third class. This is mainly because the

sample size of Class 3 is very small, so that the algorithms cannot be perfectly trained.

Another reason would be the variance of load profiles in Class 3. It can be seen from
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Table 5.1: The accuracy of the proposed classification methods: multinomial logistic
regression (MLR) and support vector machine (SVM). Rows: Real classes, Columns:
Predicted classes

Real classes

Predicted classes

1 2 3 frequency

MLR (Training)
1 100.00% 0.00% 0.00% 60
2 0.00% 94.30% 5.70% 35
3 0.00% 66.70% 33.30% 9

1 2 3 frequency
SVM 1 100.00% 0.00% 0.00% 60

(Training) 2 0.00% 100.00% 0.00% 35
3 0.00% 11.10% 88.90% 9

1 2 3

MLR (Testing)
1 100.00% 0.00% 0.00% 58
2 0.00% 80.00% 20.00% 40
3 0.00% 83.30% 16.70% 6

1 2 3

SVM (Testing)
1 100.00% 0.00% 0.00% 58
2 0.00% 77.50% 22.50% 40
3 16.70% 66.70% 16.70% 6

Figure 5.8 that the variance of load profiles of Class 3 are large without a particular

distinguishable pattern. To improve the results one should merge Class 3 with another

class, or more effectively, should collect more samples.

5.5 Risk Analysis

Thus far, we have proposed a methodology i) to create load profiles; ii) to propose a

method to classify the load profiles into classes with lower within-variability and iii)

to build a classifier to predict the actual classes of the future load profiles. In this

section, we propose a cost-based risk approach to calculate risk of energy decisions in

non-residential buildings. Equation (5.7) estimates π̂it, the probability that the next

load profile belongs to the ith class, given that the input variables (weather and time)

is equal to a specific vector of Xt = xt . At time t, π̂it’s are calculated for all classes.

If µki and ωki are the average and standard deviation of load profiles in the ith class at

the kth hours of a day (k = 1, 2, ..., 24), then the most likely, lower, and upper values
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Figure 5.9: The upper, lower, and most likely estimates of load profiles for each class

of load profiles are µ̂ki ,µ̂
k
i −mŵki , µ̂ki + mŵki ; where m is a multiplier that adjusts the

upper and lower values and µ̂ki and ŵki can be obtained as follows:

µ̂ki =

ni∑
j=1

yki (j)

ni
, wki =

√√√√√ ni∑
j=1

(
yki (j)− µ̂ki

)
ni

(5.8)

yki (j) is the jth power consumption value associated with kth hour at the ith class.

Figure 5.9 presents µ̂ki , µ̂
k
i −mŵki , µ̂ki + mŵki for the ith class. As mentioned before,

the proposed classification method provides the estimation of the probability of the ith

class for any given input value. Therefore, the total risk of energy-use can be calculated

based on the cost of energy. To do so, assume that ck is the unit cost of energy per
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kWh at time k, and is the cost of daily as-used demand charge. The most likely,

lower (worst-case) and upper limits (best-case) of total energy cost can be calculated

as follows:

TCti =
N∑
k=1

ck.µ̂
k
i .∆t+ υ.max

k∈td

{
µ̂ki

}
(5.9)

TCLti =

N∑
k=1

ck.(µ̂
k
i −mŵki ).∆t− υ.max

k∈td

{
µ̂ki −mŵki

}
(5.10)

TCU ti =
N∑
k=1

ck.(µ̂
k
i −mŵki ).∆t+ υ.max

k∈td

{
µ̂ki −mŵki

}
(5.11)

TCti, TCL
t
i and TCLti are most likely, worst-case, and best-case estimations of the

energy cost for the ith class and the tth load profile. Then cost-based risk can be

calculated by combining these values for all classes:

CRt ≡
c∑

k=1

π̂i,tTC
t
i (5.12)

CRLt ≡
c∑

k=1

π̂i,tTCL
t
i (5.13)

CRU t ≡
c∑

k=1

π̂i,tTCU
t
i (5.14)

where c is the number of classes and π̂i,t is the probability that the tth load profile

belongs to the ith class. CRt, CRLt and CRU t are realistic, optimistic and pessimistic

cost-based risk values for the tth profile (at day t). In this section, an example is

presented to show how the proposed risk model works. Cost of energy per kWh and

demand charge cost per unit are similar to Table 3.3. Table 5.2 presents an example

of a particular load profile for which the realistic, optimistic and pessimistic risk values

are calculated. The first row presents the estimated probability that the load profile

belongs to the ith class. The lower, upper and most likely cost of energy presented in

other rows. They provides an insight about the lower and upper energy cost that the

decision maker expects to see during the day ahead. To evaluate the accuracy of these

values, we compare the estimated load daily energy cost using Equation 5.10 and their

corresponding actual costs. To do so,π̂i,t values are first calculated using the proposed
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Table 5.2: Cost-based risk values for a sample load profile

Class

i 1 2 3 Total

π̂i,t 23.50% 71.00% 5.50%
CRt $324.03 $289.15 $199.97 $292.45
CRLt $248.13 $214.87 $155.03 $219.39
CRU t $400.08 $363.97 $246.97 $366.02

classification technique. Then the estimated cost of energy for each load profile is

calculated and compared with the actual cost of energy using the actual profile values

in the testing dataset.

Figure 5.10: The Relative differences between the actual and estimated cost of energy

for proposed method (red line) and the average load profile (blue line)

Figure 5.10 shows the relative differences between the actual and estimated cost of

energy using the proposed cost-based risk method (red line) as well as total average of

load profiles. It shows that the proposed cost-based risk method is often deviated from

the actual cost values less than 10% and is superior to the total average load profile.

This shows that the cost-based risk method proposed in this chapter is able to provide

accurate information about the actual cost of energy.
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Figure 5.11: Lighting schedule scenarios for the building under study including sched-
ules with k% reduction in total lighting power in peak hours (k=0, 10%, 15%,20%,
25%, 30%, 35%,50%)

Another application of the proposed cost-based risk model is in demand response man-

agement. Industrial loads in nonresidential buildings are stochastic and often uncon-

trollable. In addition, the magnitude of industrial loads is usually much larger than

baseline loads. However, since the baseline load is typically controllable, it can still

decrease total building power consumption. For example, in a large non-residential

building complex, when majority of people are in the dining hall, the heating/cooling

or lighting in other buildings (or floors) can be significantly lowered to save a portion

of energy and as a result, cost of energy. For example, Figure 5.11 presents a few

simple demand response scenarios for reducing the lighting powers in peak hours. In

each scenario, a portion of scheduled lighting load is reduced in peak hours in order

to lower the total load profile. For each scenario, the most-likely, the best-case and

worst-case estimated cost of energy are calculated and their corresponding risk values

are evaluated.

Table 5.3 presents the percentage of reduction in risk values for different lighting sce-

narios presented in Figure 5.11. It is observed that the total cost-based risk values can

be reduced by up to 4% by reducing 50% of lighting power in peak hours. This is a

small saving compared to the total cost of energy; however, it is directly saved from the
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baseline load, which is much smaller than an industrial load. In addition, since daily

as-used demand charge is based upon the highest energy consumption over peak hours,

even a small portion of saving can have an acceptable impact in total energy costs.

Heating/cooling loads can also be minimized to lower consumption in peak hours when

there is an industrial load.

Table 5.3: percentage reduction in risk value for different lighting scenarios

Lighting schedule scenarios

0% 10% 15% 20% 25% 30% 35% 50%

Class 1 200.67 199 198.33 197.5 196.67 195.83 194.33 192.67
0.00% 0.80% 1.20% 1.60% 2.00% 2.40% 3.20% 4.00%

Class 2
270.33 268.33 267.33 266.33 265.5 264.67 263.5 262.5
0.00% 0.60% 1.00% 1.30% 1.60% 1.90% 2.50% 3.00%

Class 3
433.75 430.75 429 427.5 426 425 423.75 422.5
0.00% 0.70% 1.10% 1.40% 1.80% 2.00% 2.30% 2.60%

Expected Cost 262.9 261 260 259 258.2 257.3 256.1 254.9
0.00% 0.70% 1.10% 1.40% 1.80% 2.10% 2.50% 2.90%

It is worth noting that, reducing lighting or cooling/heating loads can negatively

affect those who live and work in the building. Therefore, it is important to measure

the satisfactions of people who are influenced by the demand response programs.

In the previous chapters, we proposed a method to quantify thermal comfort and di-

rectly used it in the proposed mathematical models. In this chapter, we use utility

theory, which measures and quantifies the preferences of users over a particular good,

service, or activity. Researchers often propose different ways to infer underlying rela-

tive utilities from observed choice(s) [109, 110]. In most studies, utility functions return

values between 0 and 1 representing lowest and highest preferences of the user or the

decision maker. For example, Figure 5.12 shows the utility functions associated with

total cost of energy (percentage of decrease in energy cost) and lighting scenarios. The

x-axis represents: i) the percentage of reduction in peak hours load and ii) the percent-

age of decrease in total cost of energy. The left y-axis represents the utility values of

both cost of energy and lighting scenarios. For example, a 25% reduction in lighting

load will result in utility value of 0.82 (see blue line in figure 5.12) for lighting and

utility value of 0.5 for cost of energy (see red line in figure 5.12). It is observed that as
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Figure 5.12: An example of utility function for amounts of reduction in cost of energy
and in lighting load.

the cost of energy decreases, the utility function increases (blue line). In addition, as

lighting load decreases, the utility values decreases.

The right y-axis represents the combined utility that is obtained by taking the geomet-

ric average of both utility functions of lighting and total cost of energy. For example,

the combined utility value for a 25% reduction in lighting is 0.42. If the 50%-reduction

scenario is selected, then the utility function of lighting and cost would be 0.19 and

0.98, respectively. In this situation, the combined utility is 0.2, which is less than the

25%-reduction scenario (that is 0.42). Note that different functional forms can be pro-

posed to build utility models. One way to find utility function is to interactively use the

opinion of the user(s) (manager, decision maker etc.). Questionnaire, interview, and

other forms of interactions are typically used to find the appropriate utility functions.

In Figure 5.12, the maximum combined utility is obtained when 30% of the current light-

ing schedule is reduced. In this case, the combined utility function is 0.46. Therefore,

for this functional form of utility, a 30% reduction in lighting load may not significantly

decrease the user satisfaction and at the same time can save more than 2% in total

daily cost of energy. A systematic way to create and calculate utility can be a direct
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extension of this work.

5.6 Conclusions

The proposed framework utilizes the information of historical data to predict the future

patterns of industrial loads. In addition, the risk analysis approach presented in this

framework, can be implemented to calculate risk of industrial load in the day ahead.

The result shows that the estimated risk is not significantly deviated from the actual

cost. In addition, the proposed framework can potentially be used to evaluate different

demand response programs and select program with the highest combined utility value.
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Chapter 6

Concluding Remarks and Future Researches

6.1 Introduction

In the final chapter, conclusions and a number of potential future researchers are re-

viewed. In general, this research aims to develop and employ a set of data-driven

analytical techniques to capture the behavior of energy dynamics in both building and

community levels. Three main problems (questions) have been addressed in this work:

i) Modeling and Forecasting: there are many factors (covariates) that affect building

energy dynamics over time: weather-related factors, time-related factors, occupancy,

equipment, building characteristics, machinery, cooling, heating systems, set points,

and many other exogenous factors. The question is how to find the effect of such fac-

tors on patterns of energy dynamics over time? How to select a limited number of

factors to effectively capture variability within energy data? How to develop a statisti-

cal model to forecast stochastic patterns of energy dynamics? ii) Optimization: Given

the statistical forecast model for building energy dynamics, how to manipulate the con-

trollable decision variables (namely, heating, cooling set points) to minimize building

total cost of energy as well as total deviations from thermal comfort. iii) Predictive

Analytics/Risk Analysis: Assuming there are extremely large industrial loads in a non-

residential building, how to calculate a realistic, pessimistic and optimistic estimations

of total energy costs in the day ahead? In this chapter, we provide brief conclusions for

each chapter and discuss how we address the above research questions. In addition, we

provide several potential researches that can be done to improve the methods proposed

in this study.
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6.2 Forecasting of Energy Dynamics

As we discussed in Chapter 2, our proposed forecast model is a hybrid time-series re-

gression model that can be applied to a wide range of energy measures including cooling,

heating and electricity load demands, total building energy usage, short-term or long-

term community energy usage, HVAC power consumption etc. First, it fits a regression

model based on several input variables such as weather data (ambient temperature,

relative humidity, wind speed and direction, etc.), occupancy, equipment dynamic in-

formation, etc. Then, the residuals (the difference between actual data and predicted

values) are calculated. In the next step, a time series model is fitted to explain the

variability of the remaining values. The two-step hybrid model does not guarantee to

obtain the least square estimation (LSE). To revise it, Cochran-Orcutt estimation al-

gorithm is generalized to achieve LSE values. This algorithm is able to estimate the

parameters of both regression component and time series component iteratively and

sequentially until it gets very close to the LSE condition.

A number of direct extensions can be done to generalize our proposed forecasting model.

In this study, we use a multiple linear regression to start the algorithm. It means that

it is assumed the relationship between input variables and energy dynamics is linear.

This assumption can be relaxed by using any non-linear models. To the best of our

knowledge, Cochran-Orcutt estimation technique has not been developed for nonlinear

model, since finding appropriate nonlinear transformation is often difficult. To do this,

one can propose a pre-defined structure for both time-series as well as nonlinear regres-

sion model and finds the least-square estimators simultaneously for both components

using a numerical minimization algorithm. Meta-heuristic and evolutionary algorithms

can alternatively be employed to search for LSE estimates.

In addition, we illustrate the effectiveness of our proposed model using a set of training

and testing datasets. One can also compare the performance of the proposed model

with other competing methods. Gaussian process regression, wavelet transformation

techniques, splines, semi-parametric models, and artificial neural network are some of
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the competing methods. All of these methods fit a set of input variables to a response

(energy data).

Furthermore, the proposed model is appropriate for forecasting purposes. However, for

optimization purposes, users should implement it cautiously. In the process of optimiza-

tion, we manipulate decision variables, to find the best setting that can optimize one

or more specific objective functions e.g. total energy cost, or total power consumption.

However, the relationship between decision variables and response value is only defined

through the first component (regression part). It means that the optimization model

can only control the first component of the forecast model. If the regression model is

poor or ill-conditioned while the time series component is good, then we can still get

good forecast values. However, the model may not work appropriately for optimization.

This is also a case for other competing methods.

In order to avoid this problem, one should find the ratio of variability explained by the

regression model to that part explained by the time series model. If this ratio is large

enough, then the regression part is significantly effective in the process of optimization.

6.3 Forecasting of Energy Dynamics

In Chapters 3 and 4, a cooling/heating model was proposed to forecast the zones inter-

nal temperature and/or their corresponding cooling/heating power to reach a specific

set point. The model presented in Chapter 3 was originally developed from the first law

of thermodynamics. Then the model was improved through use of a statistical model to

minimize the distance between the forecast and actual values. Although the proposed

model was effective for short-term forecasting, for larger lag it did not perform well.

Therefore, in Chapter 4, the model was revised and extended using an ordinary regres-

sion structure. The numerical example showed that the extended model was able to

adequately forecast the zones internal temperature as well as the zones effective power.

In addition, in the heating/cooling model presented in Chapter 3, the parameters were

fixed over time. This assumption was relaxed in Chapter 4, by defining a set of time-

related indicator variables. The results of the forecast model presented in Chapter 4
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were promising. However, in Chapter 4, we used the simulated data to build the model

and to evaluate it performance. A future potential research would be to check the result

of the proposed cooling/heating data using actual (measured) data.

The model can potentially be extended using more input variables if data are available.

For example, the interconnectivity between different zones, number of equipment and

their operating status over time, occupancy etc. are some variables that can improve

the performance of the proposed model.

6.4 Optimal Control Strategy

In Chapters 3 and 4, we proposed an optimal control strategy to minimize both building

total energy cost as well as total deviation from thermal comfort. In both chapters, the

decision variables were zones cooling/heating set point values for the next 24 hours.

As mentioned in Chapter 4, the proposed control strategy searched for the same op-

timal set points for all zones at any time. This was particularly effective when there

were relatively large numbers of zones with the same functionality in a buildingsuch as

offices, university buildings etc.

One potential extension is to propose a control strategy, which seeks for different set

point values for different zones. This can be considered as a large-scale optimization

model and the algorithm needs to search in a much bigger feasible region. For a build-

ing with r zones, and n possible set point values, at any time algorithm should search

for 24nr different combinations. Considering that the process of optimization should

be repeated every hour, it is not practical to do an exhaustive search method to seek

for the optimal combinations of set point values.

To overcome this problem, one idea is to decrease the search spaces. There are many

physical characteristics in building, which can be used to reduce the search space. For

example, if there are two similar zones, both offices in a large building with almost

same number of people, then it is logical to assume that their set point values should

be identical. A zone selection method can be applied to divide zones into a smaller

group of zones with similar characteristics.
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Another potential extension of our proposed control strategy is to develop an opti-

mization method that is able to deal with large-scale dynamic problems. Dynamic

programing is typically considered as an efficient algorithm to search for optimal solu-

tion. For many cases, the algorithm process time is polynomial in the number of states

(number of zones) as well as number of actions (number of available set point values).

However, it is not yet practical for very large problems. Approximating methods can

also be chosen to solve large-scale dynamic programming. In such methods, instead of

calculating objective functions, one can use a fast approximation that is computation-

ally efficient. In other versions, some algorithms may not search all the combinations

of set point values. It means that several algorithms search for a sub-optimal strategy,

which provides promising results and is yet computationally efficient.

Another potential research is related to the proposed multi-objective dynamic program-

ing. In this thesis, we used a weighted metric method, which minimized the deviation

of each objective function from its ideal value. However, in practical cases, it is not

always possible to know the ideal values of objective functions. In addition, in Chapter

4, we discussed that the ideal value could significantly affect the importance of each

objective function. Smaller or larger values of ideal values could potentially decrease

or increase the importance of objective functions.

Therefore, another multiobjective programing methods can be proposed to deal with

this problem. Multiobjective dynamic programing based on the theory of utility can be

considered as an alternative. For both total building energy cost and thermal comfort,

decision makers often know their preferences and as a result can use it to form a utility

function structure.

6.5 Predictive Analytics

In Chapter 5, we illustrated one application of predicative analytics approach to reduce

cost-based risk of load consumption in non-residential buildings. A general framework

was introduced to combine predictive analytics approach and cost-based risk analysis

to evaluate the demand response programs.
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Furthermore, this chapter opens up a wide range of potential researches in the area of

building energy analytics. Nowadays, technology allows us to extract big amount of

real data from all equipment within a building. There is no limitation for the volume

and type of data collected over a very short period of time. These data include pat-

terns with assignable causes, consumption behavior, and other useful information that

can effectively be used to reduce energy use. One potential extension for Chapter 6,

is to develop an integrated framework that determine all input, output and method-

ologies to develop a data-driven recommendation system. This data-driven structure

determines the type of input data, source of input data, data collection equipment,

methods for analyzing datapredictive analytics, output format, reporting system, opti-

mization techniques, list of actions and all other required information. The proposed

energy-analytics structure can then collect energy data, learns the pattern, and pro-

vides optimal actions/recommendation to reduce cost of energy, deviation from thermal

comfort, carbon footprint etc. The data-collector and controllers can be implemented in

any buildings and can feed into the proposed energy-analytics structure. This structure

can also be hosted online so that users can track their energy information in real time.
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