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ABSTRACT OF THE DISSERTATION

Uncertainties in pixel-based source reconstruction for

gravitationally lensed objects and applications to lensed

galaxies

By AMITPAL SINGH TAGORE

Dissertation Director:

Dr. Charles R. Keeton

and

Dr. Andrew J. Baker

Gravitational lens modeling of spatially resolved sources is a challenging inverse problem

that can involve many observational constraints and model parameters. I present a new

software package, pixsrc, that works in conjunction with the lensmodel software and builds

on established pixel-based source reconstruction (PBSR) algorithms for de-lensing a source

and constraining lens model parameters. Using test data, I explore statistical and systematic

uncertainties associated with gridding, source regularization, interpolation errors, noise, and

telescope pointing. I compare two gridding schemes in the source plane: a fully adaptive

grid and an adaptive Cartesian grid. I also consider regularization schemes that minimize

derivatives of the source and introduce a scheme that minimizes deviations from an analytic

source profile. Careful choice of gridding and regularization can reduce “discreteness noise”

in the χ2 surface that is inherent in the pixel-based methodology. With a gridded source,

errors due to interpolation need to be taken into account (especially for high S/N data).

Different realizations of noise and telescope pointing lead to slightly different values for lens
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model parameters, and the scatter between different “observations” can be comparable to

or larger than the model uncertainties themselves. The same effects create scatter in the

lensing magnification at the level of a few percent for a peak S/N of 10.

I then apply pixsrc to observations of lensed, high-redshift galaxies. SDSS J0901+1814,

is an ultraluminous infrared galaxy at z = 2.26 that is also UV-bright, and it is lensed by a

foreground group of galaxies at z = 0.35. I constrain the lens model using maps of CO(3–

2) rotational line emission and optical imaging and apply the lens model to observations

of CO(1–0), Hα, and [NII] line emission as well. Using the de-lensed images, I calculate

properties of the source, such as the gas mass fraction and dynamical mass.

Finally, I examine a serendipitously discovered pair of gravitationally lensed objects with

strikingly different colors. One appears red and compact, while the other appears blue and

extended. I use pixsrc to constrain the lens model using observations of the red object and

present a PBSR as a first step towards understanding its properties.

iii



Acknowledgments

Firstly, I would like to thank Chuck Keeton and Andrew Baker. I have been blessed to

have two wonderful advisors, whose complementary mentoring styles have allowed me grow

in their synergy. Both of them have always been motivating and patient when needed.

They’ve helped me advance my knowledge of astronomy and in my ability to present that

knowledge. Knowingly or unknowingly, they have instilled skills within me that I will take

with me long after Rutgers. Chuck has always challenged me mentally and amazed me

with his poise and grasp of all things lensing. Andrew has, as any mentee of his will surely

tell you, consistently gone above and beyond in my best interests. I owe a great debt to

them both. I thank my other committee members, Jerry Sellwood and Larry Zamick, for

monitoring my progress over the past three years and Leonidas Moustakas, as well, for his

insightful comments and questions. I also thank Ross Fadely for his countless letter-writings

during job season.

I would also like to thank the Rutgers astronomy faculty for creating an open and

friendly environment in which to grow. There has not been a single Monday seminar or

classroom experience I have not enjoyed. I would also like to thank all the astronomy

graduate students. An extra dose of gratitude is owed to Amruta, Mike, Lisa, Jean, Bob,

Curtis, and Brandon for both professional and personal support. I also thank Alexandre

Morozov for my beginnings as a scientist at Rutgers. Lastly, I would like to thank my

undergraduate mentor, Gardo Blado, for monitoring my progress and for his advice on

being a good graduate student.

Portions of this dissertation will soon appear in publication elsewhere. Chapter 2 will

appear in the Monthly Notices of the Royal Astronomical Society. Portions of Chapter 3

will appear in Sharon et al. (2014). I would like to thank my collaborators in this work:

Chelsea Sharon, Andrew J. Baker, Charles R. Keeton, and Jesus Rivera. My thesis work

iv



has been supported by grants AST-0747311, AST-0955810, and AST-1211385 from the

National Science Foundation.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. The Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Strong gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Galaxy evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Systematic and statistical uncertanties in pixel-based source reconstruc-

tion algorithms for gravitational lensing . . . . . . . . . . . . . . . . . . . . . . 19

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2. Bayesian framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3. Test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4. Issues intrinsic to the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5. Practical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3. Three-dimensional source reconstruction of a lensed starburst galaxy at

z = 2.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2. J0901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



3.3. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4. Lens modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5. Applying the lens model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4. A lens model for the CLULESS ring . . . . . . . . . . . . . . . . . . . . . . 93

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2. The rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3. Lens model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4. Discussion and future direction . . . . . . . . . . . . . . . . . . . . . . . . . 99

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Appendix A. Source plane resolution . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1. Resolution of the pixel-based source reconstruction . . . . . . . . . . . . . . 113

vii



List of Tables

2.1. Scatter in best-fit lens model parameters for all four lens configurations . . 55

viii



List of Figures

1.1. Similarity of optical and gravitational lenses. . . . . . . . . . . . . . . . . . 6

1.2. Schematic diagram of gravitational lensing . . . . . . . . . . . . . . . . . . . 7

1.3. Resolved gravitational lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1. Four canonical lens configurations . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2. Test data with varying noise levels . . . . . . . . . . . . . . . . . . . . . . . 28

2.3. Test data with varying pixel scales . . . . . . . . . . . . . . . . . . . . . . . 29

2.4. Adaptive source plane grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5. Construction of fully adaptive grid . . . . . . . . . . . . . . . . . . . . . . . 32

2.6. Interpolation errors in model residuals . . . . . . . . . . . . . . . . . . . . . 35

2.7. Effect of accounting for interpolation errors on the χ2 . . . . . . . . . . . . 36

2.8. Dependence of interpolation errors on pixel scale . . . . . . . . . . . . . . . 38

2.9. Comparison of finite difference methods for computing derivatives . . . . . 39

2.10. Schematic diagram showing FDM calculation . . . . . . . . . . . . . . . . . 41

2.11. Schematic diagram showing DTM calculation . . . . . . . . . . . . . . . . . 43

2.12. PBSR of noisy data using various regularization schemes . . . . . . . . . . . 45

2.13. Effects of regularization on parameter estimation . . . . . . . . . . . . . . . 47

2.14. Dependence of χ2 on gridding and regularization . . . . . . . . . . . . . . . 48

2.15. Best-fit lens models for many realizations of noise . . . . . . . . . . . . . . . 51

2.16. Best-fit lens models for different telescope pointings and pixel scales . . . . 53

2.17. Best-fit lens models for different telescope pointings and PSFs . . . . . . . . 54

2.18. Uncertainty in magnification due to noise and pointing . . . . . . . . . . . . 57

2.19. Posterior probability distributions for lens model parameters . . . . . . . . 58

2.20. Ratio of overall scatter in lens model parameters to scatter between runs . . 60

3.1. Optical imaging of J0901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



3.2. False-color, optical imaging of “Sith” . . . . . . . . . . . . . . . . . . . . . . 67

3.3. Integrated maps of CO(3–2) and CO(1–0) emission from J0901 . . . . . . . 69

3.4. Integrated maps of Hα and [NII] emission from J0901 . . . . . . . . . . . . . 69

3.5. J0901 source reconstruction: singular isothermal ellipsoid . . . . . . . . . . 73

3.6. J0901 source reconstruction: constrained satellite subhalos . . . . . . . . . . 75

3.7. Pixel masking of knots of emission . . . . . . . . . . . . . . . . . . . . . . . 79

3.8. χ2 for pre-screened lens models . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9. Relation between velocity dispersion and luminosity for satellite subhalos . 81

3.10. J0901 CO(3–2) source reconstruction: unconstrained satellite subhalos . . . 82

3.11. J0901 optical source reconstruction: unconstrained satellite subhalos . . . . 83

3.12. Fifth image of J0901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.13. J0901 magnification map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.14. J0901 CO(3–2) reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.15. J0901 CO(1–0) reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.16. J0901 Hα reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.17. J0901 [NII] reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.18. J0901 CO line source plane velocity maps . . . . . . . . . . . . . . . . . . . 91

4.1. Optical imaging of CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2. CRR source reconstruction: SIE . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3. CRR source reconstruction: SIE . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1. Source plane resolution: no lens . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2. Source plane PSF varation with regularization and telescope PSF . . . . . . 119

A.3. Source plane PSFs for lensing case . . . . . . . . . . . . . . . . . . . . . . . 120

A.4. Source plane PSF length scales for lensing case . . . . . . . . . . . . . . . . 121

x



1

Chapter 1

Introduction

1.1 The Universe

When looking at the sky on a clear night, one can see many stars and planets with the

naked eye. These observations, however, only make up a small fraction of the objects in the

universe. With the advent of powerful ground- and space-based telescopes, we have learned

a great deal about these objects, which include stars, galaxies, and groups and clusters of

galaxies,1. To understand their origins, we must study the universe in its earliest form.

The Big Bang theory is currently the most successful theory describing the evolution

of the early universe. According to recent cosmological surveys, the universe began from

a singularity approximately 13.8 Gyr (see Bennett et al. 2013; Planck Collaboration et al.

2013) ago and expanded thereafter. Because the universe is expanding at all times and at all

points in space, the comoving distance to the most distant particles we can observe is larger

than the product of the age of the universe and the speed of light. In fact, the diameter of

the observable universe is approximately 93 billion light years (Gott et al. 2005). As the size

of the universe was smaller in the past, the density, and thus the temperature, was higher.

Soon after the Big Bang, hot elementary particles were able to cool and form composite

particles, such as the nuclei of hydrogen, helium and other trace elements, through what

is known as Big Bang nucleosynthesis (BBN). It is important to note that matter can be

categorized into two forms: ordinary matter, which includes quarks and leptons,2 and dark

matter, which does not emit or absorb in the electromagnetic spectrum and only interacts

with baryonic matter through gravity; BBN accounts for the baryonic matter alone.

1Groups of galaxies may have dozens of member galaxies; clusters have many hundreds.
2Because most of the mass is in the nucleons, ordinary matter is sometimes referred to as baryonic matter

(particles made of three quarks).
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At this stage, the universe was radiation-dominated, and photons and matter were

tightly coupled. During what has become known as recombination, the universe expanded,

and baryons cooled and were able to combine with electrons to form neutral atoms. As these

neutral species are transparent to photons, radiation eventually decoupled from the baryons,

matter was able to begin collapsing into gravitationally bound structures, and photons were

able to free-stream away. These decoupled photons are collectively referred to as the cosmic

microwave background (CMB) and contain information about the structure, geometry, and

composition of the universe at the time of decoupling. BBN, along with constraints from

the CMB, constrains the baryonic mass density to constitute approximately 5% of the total

energy density of the universe. CMB observations, on the other hand, constrain the total

mass energy density to be approximately 32% of the energy density. The difference is

attributed to non-baryonic dark matter, which makes up 27% of the energy density (see

Bennett et al. 2013; Planck Collaboration et al. 2013).

The existence of dark matter must be inferred through observations of its influence on

luminous matter3 and light. Historically, the dynamics of stars in galaxies and galaxies in

clusters have been important in exposing dark matter (Zwicky 1937b; Rubin et al. 1978).

And since gravitational lensing (discussed below) is sensitive to all mass, it has played

an important role in detecting and characterizing dark matter as well. Because the total

mass of dark matter exceeds the mass of baryonic matter by a factor of approximately five,

the dark matter has played the dominant role in large-scale structure (LSS) formation; on

smaller scales, effects from baryonic matter become important. For this reason, theorists

have run large, computationally demanding simulations in which only dark matter particles4

in an expanding universe are allowed to collapse and form gravitationaly bound structures.

From CMB observations, the initial density fluctuations are known to be smooth down

to one part in 105. In order to explain the small-scale clumpiness of the CMB anisotropies,

dark matter cannot be predominantly relativistic. Thus, simulations have assumed cold dark

matter (CDM), particles with speeds much slower than the speed of light. Key goals of the

simulations include reproducing the structure we see throughout time and characterizing

3Luminous mass refers to the matter emitting radiation, which can be stars, dust, etc.
4These are not particles in the particle physics sense; each “particle” represents many solar masses of

dark matter.
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the mass density profile of collapsed, gravitationally bound dark matter structures, or halos.

The density profiles of halos seen in simulations, the Navarro-Frenk-White (NFW) profile

(Navarro et al. 1997) is a three-dimensional mass profile that has widely been used. However,

the Einasto profile (Einasto 1965) seems to best fit simulations, and there exist many more

models that have been proposed (Merritt et al. 2006).

As expected of CDM, small mass overdensities collapse first, forming a filamentary

structure. At the intersections of these filaments, deep gravitational potentials form, where

galaxy clusters, the most massive gravitationally bound structures, are expected to exist.

N-body simulations consistently predict that the number of halos present at a given mass

is inversely proportional to some power of the mass (see, e.g., Klypin et al. 2011; Boylan-

Kolchin et al. 2009). Thus, the number of halos is expected to increase as the mass of

the halo decreases. These halos, however, are not smooth; cluster-scale halos consist of

discrete, smaller halos known as subhalos or substructure. The same can be said of galaxy-

scale halos, which consist of smaller subhalos. In turn, these subhalos are made of subhalos

of their own, and so on.

This ever-increasing number of halos and subhalos is currently in tension with obser-

vations of our own Milky Way galaxy; assuming every dark matter halo hosts a galaxy,

there are fewer dwarf galaxies5 observed than expected from theory (Moore et al. 1999;

Klypin et al. 1999). This discrepancy is known as the “missing satellites problem.” Pos-

sible solutions to the problem are that (1) the halos are simply predominantly dark or

the faint dwarf galaxies are undercounted because of their low luminosities and surface

brightnesses (Simon & Geha 2007), (2) the baryons and/or their halos have been stripped

apart/destroyed due to tidal interactions with other halos, or baryonic matter has been

ejected due to feedback from supernovae6 and active galactic nuclei (AGN)7 within the

galaxies themselves (Barkana & Loeb 2001), (3) the baryons have been photoevaporated

from the background radiation (Haiman et al. 2001), and (4) certain types of dark matter

could be too warm to form dwarf-size halos or could self-annihilate and photoevaporate the

5Dwarf galaxies are faint galaxies with stellar masses orders of magnitude smaller than that of the Milky
Way.

6Stellar explosions caused by runaway fusion reactions and the release of gravitational energy.
7Active galactic nuclei are compact regions around the central supermassive black holes of galaxies,

consisting of an accretion disk that feeds the black hole and (possibly) relativistic jets exiting the black hole.
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baryons (Spergel & Steinhardt 2000). There therefore exist several solutions or combina-

tions thereof that could help solve the apparent shortfall of dwarf galaxies.

It is also worth noting that the current model of the universe contains another form

of energy, in addition to baryons, photons/neutrinos, and dark matter. In 1917, Albert

Einstein introduced a vacuum energy density given by Λ. The vacuum energy density

was thought to serve as a repulsive force that could cancel the attractive nature of gravity.

Although this cancellation is now known to be incorrect, there have been other cosmological

models since that have proposed a repulsive energy density. The idea gained momentum

when supernovae observations (Riess et al. 1998; Perlmutter et al. 1999) discovered that the

expansion of the universe is accelerating, which can be explained by introducing a constant

energy density throughout the universe.8 This permeating energy density has become known

as dark energy and can also be denoted by Λ. However, it has only recently become the

dominant form of energy approximately 4 Gyr ago, presently making up 68% of the total

energy budget. Cosmological models with both dark matter and a constant dark energy

are referred to as ΛCDM models.

1.2 Strong gravitational lensing

Albert Einstein’s general theory of relativity relates the geometry, or curvature, of space-

time to the mass–energy present. Because all particles, including photons, are affected by

this curvature, the path through space-time that light travels is affected by mass near the

path.

As a consequence, if two objects on the sky lie along or near the same line of sight to

an observer on Earth, then light from the background object (the source) can be bent by

the foreground object (the lens). If the distances between the two objects and between the

objects and the Earth are opportune and the lens is massive enough, a phenomenon known

as strong gravitational lensing occurs. Light from the source bends around the lens and

multiple images of the source can be seen.

Strong gravitational lensing is similar to optics encountered in standard physics courses.

8Certain dark energy models incorporate a scalar field whose energy density can vary with time.
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An optical lens can distort and magnify light from an object and (for atypical lenses) can

even form multiple images as seen in Fig. 1.1. Gravitational lensing does the same. The

thin lens approximation is often employed in optics. If the radius of curvature of the lens

is much larger than the thickness of the lens, then it is assumed that light from the source

is bent only once in the plane of the lens. This greatly simplifies the mathematics and

ray-tracing calculations. In astrophysics, because the cosmological distances between the

source, lens, and observer are much larger than the size of the lens projected onto the line

of sight, the bending of light from the source can also be assumed to occur only once in

the plane of the lens. This quasi-Newtonian approximation can still capture the relativistic

nature of the phenomenon. However, for extreme gravitational potentials, such as those

near black holes, nonlinear corrections from the full general relativistic treatment become

important. A standard optical lens describes the amount of light bending through the index

of refraction. Using general relativity, one can ascribe a three-dimensional index of refraction

n = 1 − 2Φ/c2 to the gravitational lens, where Φ is the three-dimensional gravitational

potential of the lens and n is the spatially varying index of refraction (Schneider et al.

1992). Unlike the optical lens, however, gravitational lenses are never dispersive. That is,

the amount of light bending does not depend on the wavelength of the light itself but only

on the mass profile of the lens.

1.2.1 Gravitational lensing theory

Here, we present a theoretical framework for analyzing lensed images. We invoke the thin

lens approximation and assume that the light bending is occurring in a single plane. This

approximation may fail if there are many massive objects along the line of sight at different

redshifts. McCully et al. (2014) and references therein present a multi-plane treatment in

which successive bendings of light from the background source can take place. A schematic

diagram of the lensing phenomenon is shown in Fig. 1.2. ~x and ~u denote angular positions

in the image- and source-planes, respectively. ~α is known as the deflection and relates

image- to source-plane positions. To see this, we focus on a single photon, or light ray,

that leaves the source plane. A lensed light ray will travel a farther distance than a ray

that is unlensed. Additionally, the lensed ray will be affected by Shapiro delay, an increase
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Figure 1.1: Similarity of optical and gravitational lenses. A candle flame is viewed through
the base of a wine glass at different orientations (see Chapter 2 for a description of various
lens configurations). Because of the unique properties of the wine glass, namely the spatially
varying thickness and index of refraction of the glass, this optical lens can mimic some of
the properties of gravitational lenses, and multiple images of the candle flame can be seen.
Figure from Treu (2010), courtesy of Phil Marshall.
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Figure 1.2: Schematic diagram of gravitational lensing, showing the deflection of light from
a distant galaxy by a foreground galaxy lens. The lensed images appear offset from the
true position of the source and the light from each image will be distorted and magnified
by different factors.

in travel time predicted by general relativity. The total excess travel time, relative to an

unlensed light ray, is given by

t(~x) = t0

(

1

2
|~x − ~u|2 − φ(~x)

)

, (1.1)

where

t0 =
1 + zl

c

DolDos

Dls
, (1.2)

c is the speed of light, zl is the lens redshift, φ is the dimensionless lens potential, and Dol,

Dos, and Dls are the angular diameter distances between the observer and lens, observer

and source, and lens and source, respectively. The lens potential is related to the two-

dimensional mass surface density of the lens through the Poisson equation

∇2φ = 2κ = 2
Σ

Σcrit
, (1.3)

where

Σcrit =
c2

4πG

DolDos

Dls
, (1.4)

κ is known as the convergence, Σ is the two-dimensional mass surface density in units of

mass per solid angle, Σcrit is the critical mass surface density for strong lensing (for a

particular configuration of observer, lens, and source), G is the gravitational constant, and

∇2 is the two-dimensional Laplacian operator.
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Not all light rays that leave the source will arrive at the observer. Fermat’s principle

states that images will form at stationary points of the time delay surface, given by Eq. 1.1.

Thus, multiple images may form at local extrema and saddle points. Solving ~∇t(~x) = 0

gives the lens equation

~u = ~x − ~α(~x), (1.5)

where ~α is the same seen in Fig. 1.2 and is given by

~α(~x) = ~∇φ(~x). (1.6)

A robust measurement of the strength of a lens and a characteristic length scale for the lens

is usually given by the Einstein radius:

θE =

(

4GM

c2

Dls

DolDos

)
1
2

, (1.7)

where M is the mass enclosed within the Einstein radius. 2θE is a characteristic scale for

the image separation of doubly imaged systems. For example, a source and circular lens

that are perfectly aligned with the observer, light from the source will form a ring, called

an Einstein ring, with radius equal to the Einstein radius.

Lensing also magnifies these images by different amounts. The magnification tensor ~µ

is given by the inverse of the Jacobian of the lens equation:

µ(~x) =

(

∂~u

∂~x

)−1

, (1.8)

and the spatially varying magnification µ(~x) is given by the determinant of the magnification

tensor, µ(~x) = det(µ(~x)). In the absence of any attenuation from dust or other effects,

lensing conserves surface brightness, and so any increase in the flux of an image is directly

attributable to the magnification, which is determined by the lens. The total magnification

of the source is found by summing the magnification of each image. There are certain regions

in the lens plane where the magnification can become infinite. These regions trace closed

curves in the lens plane called critical curves. Fortunately, these curves are vanishingly thin

and no source is truly a point source. So, the critical curves do not present a problem in

practice. They are, however, useful for a number of reasons. Via the lens equation, critical

curves in the lens plane map to curves in the source plane called caustics, which separate
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regions of different multiplicity. That is, point sources placed on two sides of a caustic

will produce different numbers of images. Sources near a caustic will produce images near

critical curves (as well as in other locations). These images will be highly magnified. In

the case of extended sources, the distortion of the images will be clearly visible, as long

gravitationally lensed arcs usually follow critical curves.

Two illustrative lenses are the point mass and the singular isothermal sphere (SIS,

described below). The gravitational deflection due to a point mass is given by

~α =
4GM

bc2
êr, (1.9)

where M is the mass and b is the impact parameter of the light ray, which in this case is

the projected distance from the mass. Because the point mass is symmetric, the deflection

is directed radially inwards. Because of the 1/b dependence, the deflection asymptotes to

zero far from the source.

For modeling more extended lenses, the SIS, is a popular choice. Observations of lensed

systems show that many early-type lenses are (on average) well-described by a SIS (Kron-

awitter et al. 2000; Koopmans et al. 2009; Treu 2010), whose density profile is gven by

ρ(r) =
σ2

v

2πGr2
, (1.10)

where σv is the velocity dispersion of the lens. This density profile predicts flat rotation

curves for stars on circular orbits. Observations of the outer regions of spiral galaxies are

in agreement with this prediction and reveal that stellar velocities remain flat out to many

effective radii (see, e.g., Rubin et al. 1980; Verheijen 2001).

The SIS is called singular because the density diverges as the radius approaches zero.

Although this leads to an infinite mass, it is still a useful lens model, and softened isothermal

models alleviate this issue by introducing a core radius. Moreover, the SIS is referred to as

isothermal because, in this potential, a gas in hydrostatic equilibrium will reach a constant

temperature.

The gravitational deflection of a SIS lens is given by

~α = 4π

(

σv

c

)2( Dls

Dos

)

êr, (1.11)



10

where the radial unit vector indicates that for a spherical lens, the deflection is radially

inwards. As the deflection has no position dependence, it is constant in magnitude, and

the Einstein radius is equal to the magnitude of the deflection. This form of the Einstein

radius is more practical for observers, as the velocity dispersion is more easily measurable

than the total mass of the system.

1.2.2 Observations of lensed systems

The gravitational deflection of light has been predicted since the early 1800s (Soldner 1801).

Einstein (1916) correctly predicted the bending of light by the Sun, and Einstein (1936)

predicted the lensing of one star by another. Zwicky (1937a) extended this idea and noted

that galaxies could act as lenses. Because galaxies are much more massive than individual

stars, the lensing cross section is much larger, increasing the possibility of observing such a

lensed system. Decades later, Walsh et al. (1979) observed the first lensed system through

observations of QSO 0957+561 A/B, also known as the “twin quasar.” Originally, there was

uncertainty as to whether the two quasi-stellar objects (QSOs), or quasars,9 were images of

the same background source, but similar spectra from the two objects and later identification

of the galaxy cluster lens confirmed the lensing phenomenon. Since then, many more lensed

systems have been discovered.

In addition to single galaxy lenses, groups and clusters of galaxies also exist. Galaxy

lens masses typically range from 1011–1012 M⊙, corresponding to Einstein radii on the order

of arcseconds. At the other mass end, clusters of galaxies can have masses ranging from

1014–1015 M⊙. As the Einstein radius is proportional to the square root of the mass enclosed

(see Eq. 1.7), it can reach arcminute scales for cluster lenses. These lenses may also differ

in the form of the mass profiles that best describe them. Indeed, a major effort in lensing

analyses is to characterize the mass profile of the lens. Single galaxy lenses usually consist

of massive elliptical galaxies.10 It has been discovered that the total mass profile of elliptical

lenses, which includes the dark matter halo, is (on average) close to isothermal and well-

described by SIS/SIE profiles. Cluster lenses, on the other hand, are dark matter dominated

9Quasars are a subset of AGN that emit strongly across a broad region of the electromagnetic spectrum.
10Elliptical galaxies are predominatly featureless galaxies that are spheroidal or ellipsoidal in shape and

poor in gas. Thus, star-formation has decreased, and old stellar populations dominate.
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and well-described by NFW halos. However, perturbations will exist, and individual cluster

members will have subhalos of their own.

Key science questions revolve around how the baryons interact with the dark matter to

shape the total mass profile. Observations from gravitational lensing can be compared to

N-body simulations, including smaller Milky Way-sized simulations that include baryons, to

test theoretical models. These simulations suggest that the baryonic feedback is important

and can significantly change the total mass profile (Brooks et al. 2013).

1.2.3 Lens and source plane science

Not long after the discovery of the twin quasar, Turner et al. (1984) developed an analytic

framework for calculating lensing probabilities. That is, given the redshift of a distant

quasar, they calculate the probability of it being strongly lensed by a foreground galaxy.

Although the authors consider lenses that are point-like and more extended (isothermal),

they assumed a constant comoving density of lenses across the universe. In order to explain

observations of lensed systems (numbers of lensed systems and image separations), other

studies (see, e.g., Mao 1991; Sasaki & Takahara 1993; Rix et al. 1994) allowed the comoving

number of lenses to vary with redshift. In these galaxy evolution models, the comoving

numbers and masses of deflectors increase over time due to mergers and mass accretion

with the possibility of a cutoff at some point. By comparing these results to observations

in a statistical sense, constraints can be placed on cosmological parameters and galaxy

evolution models. For example, a dark matter dominated universe or fast merger models of

galaxy evolution predict too many lensed system with small image separations and can be

ruled out (Jain et al. 2000).

As the number of known lenses began to increase, surveys such as the CfA-Arizona Space

Telescope LEns Survey (CASTLES) (Muñoz et al. 1998) followed up on these systems. Since

the massive amount of data from the Sloan Digital Sky Survey (SDSS) (Ahn et al. 2014) was

released, the number of known lensed systems has increased dramatically. Surveys such as

the Sloan Lens ACS (SLACS) Survey (Bolton et al. 2008) and the SDSS Quasar Lens Search

(SQLS) (Inada et al. 2012) have followed up on possible gravitational lenses identified in the

SDSS. Searches for radio lenses, such as the Cosmic Lens All-Sky Survey (CLASS) (Browne
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et al. 2003), have uncovered large numbers of systems ready to be followed up with higher

resolution imaging. Today, there are hundreds of known lenses, and future surveys will

undoubtedly push this number into the thousands.

Generally, lensed images fall into one of two categories: unresolved or resolved. In

the case of objects that are compact, such as quasars, lensed images are very likely to be

pointlike. That is, they are unresolved and any distortions in the shapes of the sources are

not detectable. Most lensed quasars to date have been either doubly or quadruply imaged.

If the source is more extended, as is the case with high-redshift star-forming galaxies,

the images may become resolved. Long arcs across the sky, such as those in Fig. 1.3,

become visible, and the stretching and distortion of the images are discernable. In the

case of cluster lenses due to the much larger lensing cross section, there may be several

background objects that have been lensed. Although it is possible to identify a flux and

position for each image, there is much more information contained in how the flux changes

from pixel to pixel. To take full advantage of the many observational constraints from the

data, many authors have developed advanced techniques that have evolved over the past

two decades into a Bayesian framework in which the data are modeled pixel by pixel (see,

e.g., Wallington et al. 1996; Warren & Dye 2003; Suyu et al. 2006; Brewer & Lewis 2006;

Vegetti & Koopmans 2009). Likewise, the source’s surface brightness can simultaneously be

modeled nonparametrically,11 while trying to maximize the source plane resolution. Such

an approach is called a pixel-based source reconstruction (PBSR), and the details of such

methodologies will be discussed in Ch. 2.

Using PBSR and the constraints from individual pixels, the properties of the lens can

be probed in greater detail. For instance, Suyu et al. (2009) show that astrophysical ef-

fects such as dust reddening can be constrained, while Vegetti et al. (2010a,b) and Suyu

et al. (2012) demonstrate that dark matter and luminous matter can be disentangled and

detected, even when the dark matter subhalos have no luminous counterparts. Moreover,

Suyu et al. (2010) have been able to use strong lensing to constrain the Hubble constant,

spatial curvature, and dark energy. In combination with WMAP data, the PBSR analysis

11The source is modeled pixel by pixel, as opposed to being described by a functional form, such as a
Gaussian profile.
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Figure 1.3: Resolved gravitational lens: SDSS J120602.09+514229.5 (the Clone). Because
the source being lensed is a galaxy and has extended surface brightness features, long arcs
are visible. Image was made by Vegetti et al. (2010a) using HST WFPC2 filters F450W,
F606W, and F814W.
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constrains the curvature parameter with precision comparable to that afforded by current

Type Ia supernovae (SNe), and it also constrains the dark matter equation of state with pre-

cision comparable to baryonic acoustic oscillations. Thus, PBSR algorithms are well-poised

to take advantage of the many observational constraints that lie in the data.

Finally, although gravitational lenses are themselves interesting, the sources they lens

can provide information about high-redshift galaxy populations, which is crucial to un-

derstanding galaxy evolution. Over the past two decades, PBSR algorithms have been

developed and improved upon to resolve the structure of lensed objects. Typically, these

high-redshift objects exhibit complex morphologies and peaks and troughs in surface bright-

ness. Recent works (Riechers et al. 2008; Sharon et al. 2012; Dye et al. 2014) have begun to

focus on the properties of the source. In Chapter 3, we perform multi-wavelength PBSRs

to uncover the physical and dynamical properties of a de-lensed source.

1.3 Galaxy evolution

As noted in §1.1, dark matter overdensities in the early universe grew and attracted baryons.

Because all we can observe is the luminous matter, understanding how gas collapsed into

stars and formed galaxies, how the baryons in a galaxy interacted with each other and

with their dark matter halo, and how galaxies and halos interacted with each other are all

important questions in astrophysics. The study of galaxy formation and evolution seeks

to answer these questions. Star formation is a key element of this evolution. There are

many different methods which are used to estimate star formation rates (SFRs), and each

has its own advantages and disadvantages. Rest-frame ultraviolet (UV) measurements

contain emission mainly from the most massive (O and B) stars. The fraction of massive

stars (in fact, the fraction of stars within any mass bin) that are born in a galaxy is

empirically described by a power law probability distribution known as the initial mass

function (IMF). Galaxies with higher fractions of massive stars are said to have a “top-

heavy” IMF, and constraining the slope at low and high stellar masses is an ongoing area

of research. Moreover, many star-forming galaxies contain significant amounts of dust. The

dust will absorb the UV radiation from massive stars and re-radiate it in the infrared (IR)
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spectrum, making the IR another option for measuring SFRs. Ionizing radiation12 that

is not absorbed by dust can also be absorbed by hydrogen clouds. However, as hydrogen

atoms are ionized, they will begin to recombine as well, and the resulting recombination

lines, including Hα lines, offer another indirect measurement of the SFR. Moreover, high

mass X-ray binaries, supernovae, and hot interstellar gas contribute to radio and X-ray

luminosities. Scaling relations between these two bands and SFR have been constrained

using local star-forming galaxies. Observations show that the cosmic SFR density peaks at

z ∼ 2 − 3 (e.g., Hopkins 2004; Reddy & Steidel 2009).13

In order to compare observations to theory, numerical simulations that reproduce the

formation and evolution of galaxies have been developed and refined. These simulations

can be grid-based (e.g., Euler methods14) or grid-free (e.g., smoothed particle hydrody-

namics15) and can directly solve the physical equations governing motion (N-body) or

use pre-determined physical relationships to guide the simulation (semi-analytic models).

Whichever route is taken, these models take basic physics, such as fluid dynamics, and

various astrophysical effects, such as gas cooling, star formation, metal enrichment, and su-

pernova feedback, into account to try and reproduce observations of star-forming galaxies

and quiescent galaxies.

As a galaxy evolves, many observable quantities of interest will change. Gas may flow

into a galaxy through dark matter filaments, increasing the mass of the galaxy. Gas may also

be ejected from the galaxy through supernova explosions and AGN jets16. By measuring

rotation curves, the (assumed) circular velocities of stars and gas in galaxies as a function

of radius, an estimate of the dynamical mass of the galaxy can be made. Estimating the

masses of galaxies at different redshifts puts important constraints on cosmology, through

the inferred merger and gas accretion rates necessary to reach such masses. Moreover, by

comparing high redshift galaxies to their well-understood local counterparts, the evolution

12Photons with energies ≥ 13.6 eV
13Assuming a flat universe with h0 = 0.7, this redshift range corresponds to approximately 2–3 Gyr after

the Big Bang, with the current age being 13.8 Gyr.
14Motion is discretized onto a grid and finite differences are used to compute the next iteration.
15The fluid (the particles) is split into a set of regions and allowed to follow the equations of motion. The

resolution is set by the region sizes, which are set by some physical quantity, such as density.
16Jets are highly directional streams of matter that can escape a galaxy. They are often formed within

accretion disks and are directed along the spin axis of a black hole.
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of the gas mass fraction of galaxies can be estimated as well. The gas mass fraction gives

an estimate of how much star formation has occurred and will continue to occur before the

gas supply runs out. A quantity closely related to star formation is color, which is usually

defined as the difference in luminosity between “redder” and “bluer” filters. Blue galaxies

produce more energetic photons, which suggests higher SFRs, while the opposite is true for

red galaxies. However, there can be other reasons why a galaxy appears red; e.g., extinction

effects due to dust in the galaxy could change the peak of the galaxy’s spectrum to longer

wavelengths.17 As a final case, the presence of metals18 will increase as star formation takes

place. The primordial gas contained mostly hydrogen and helium. This gas is converted

to elements as heavy as nickel in the fusion reactions of stars and to even heavier elements

in the violence of supernova explosions. Thus, tracking the metallicity of a galaxy is a

proxy for tracking its integrated star formation history. Many of the observed properties

of galaxies, including those mentioned here, are not independent. There are complicated

empirical relations and theories that can relate to one another. Thus, understanding the

details of star formation and galaxy evolution is key to understanding why galaxies at all

epochs appear as they do.

Numerical simulations depend heavily on the cosmological model assumed. Currently,

a popular choice is ΛCDM. However, this choice affects how fast dark matter, and thus

baryonic matter, will collapse into gravitationally bound structures. Dark matter/galaxy

merger histories and gas accretion rates will then determine the structure of the universe.

Because major mergers19 are thought to trigger the most luminous of star-forming galaxies

called ultraluminous infrared galaxies (ULIRGs),20 theorists must be aware of the effects the

choice of cosmology has on simulations. On the other side, observers must also make consis-

tent choices for cosmological parameters when comparing to simulations because converting

observables into physical quantities often requires knowledge of the expansion history of the

universe.

Many times, we are interested in regions in which stars are born. As gas cools, it

17Dust extinction refers to the absorption and scattering of light by dust particles, which preferentially
scatter bluer wavelengths stronger than redder wavelengths.

18In this context, metals and heavy elements refer to anything heavier than helium.
19Mergers in which both parties have comparable mass.
20ULIRGs are galaxies with integrated luminosities from 8–1000 µm above 1012L⊙.
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contracts and can collapse to form stars. This cooler gas will also form molecules, such as

H2, CO, HCN, HCO, CN, and CS. The most abundant molecule, H2, is symmetric and has

no permanent electric dipole moment, The extremely weak, higher multipole emission is

difficult to observe. Molecular hydrogen will, however, collisionally excite other molecules;

we therefore rely on CO as a proxy for inferring what the local H2 density is. In the

local universe, we find that carbon monoxide (CO) is a good tracer of molecular hydrogen.

Depending on various factors, such as the local metallicity and SFR, the conversion factor

from CO to H2, XCO, can vary.21 For the Milky Way, the Galactic conversion factor is

XCO ≈ 2 × 1020 cm−2/(K km s−1)−1. Observations of the local universe also suggest that

CO is closely related to SFR. As stars are born from cool molecular clouds, the Kennicutt–

Schmidt Law (Schmidt 1959; Kennicutt 1998) empirically relates the local surface density

of the star formation rate to the local mass surface density density of molecular gas:

ΣSFR ∝
(

Σgas

)n
, (1.12)

where there is no agreed upon value for n and 0.5 . n . 1.5 (see, e.g., Shetty et al.

2014; Leroy et al. 2013; Momose et al. 2013). Finally, physical conditions in the interstellar

medium (ISM) can be estimated from molecular line ratios. Depending on whether the gas

is near star-forming regions or AGN, or whether it has been shocked, the line ratios will

differ. Careful modeling using radiative transfer codes can be used to match observations.

Dusty star-forming galaxies (DSFGs) are high-redshift galaxies selected in observations

at far-IR through millimeter wavelengths. Many of them are star-forming galaxies obscured

by large amounts of dust. Gravitationally lensed DSFGs are being increasingly uncov-

ered (Dowell et al. 2014; Marsden et al. 2014; Spilker et al. 2014). The magnification boost

from lensing makes them more easily observable and detectable to higher redshift. For re-

solved images, a PBSR can resolve the spatial distributions of gas in the galaxies. Then, one

can infer dynamical properties, painting a more vivid picture of the galaxies’ stellar mass

assembly histories and allowing the Kennicutt–Schmidt Law to be constrained at higher

redshift. Additionally, lensing effects that can bias results can now be accounted for nat-

urally. For example, lensing may magnify certain regions of the galaxy more than other

21NH2 = XCO ICO, where NH2 is the molecular hydrogen column (surface) density, and ICO is the velocity-
(wavelength-) integrated CO intensity.
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regions. If two molecular lines do not emit over the same region, then the line ratio will

be biased (see, e.g., Serjeant 2012). A PBSR will de-lens the source, allowing for a proper

analysis. One such analysis of a DSFG will be presented in Ch. 3.
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Chapter 2

Systematic and statistical uncertanties in pixel-based source

reconstruction algorithms for gravitational lensing

2.1 Introduction

The gravitational deflection of light produces a variety of observable effects that can be

used to study the mass distributions of deflectors (e.g., galaxies and clusters of galaxies)

and the structure of light sources (e.g., distant quasars and star-forming galaxies), and to

constrain cosmological parameters (see the review by Schneider et al. 2006). In this paper,

we focus on strong gravitational lensing in which light bending creates multiple images of

the source.

If the source is compact and unresolved, the images and source are each characterised

by just three numbers: two position coordinates and a flux. If the source is extended,

the resolved images provide many constraints but the structure of the source must be

included in the modeling. One approach is to assume the source has elliptical symmetry

and analyse isophotal shapes (e.g., Blandford et al. 2001) or peak surface brightness curves

(e.g., Kochanek et al. 2001) in Einstein rings. A more general approach is to reconstruct

the source on a grid in order to permit complex structure and reproduce the data pixel

by pixel. Pixel-based source reconstruction (PBSR) algorithms take full advantage of the

information in the lensed images, but the large numbers of constraints (image pixels) and

free parameters (source pixels) demand advanced techniques and more computational effort.

The history of extended image lens modeling is rich. Early implementations of PBSR

algorithms (e.g., Wallington et al. 1996; Koopmans 2005) used a two-loop method in which

an outer loop varied the lens model parameters, while an inner loop varied source parameters

to find the best fit given a lens model. The lens was described parametrically, typically

using standard galaxy and halo mass profiles. The source, by contrast, was constructed on
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a Cartesian grid, and a penalty function was used to disfavor source models that seemed

too unphysical. Varying all of the source pixels independently was a costly step. Warren &

Dye (2003) simplified the inner loop by showing that the lensing equation can be written

as a matrix equation, allowing the optimal source to be found in a single, analytic step (see

§2.2). To improve the spatial resolution, Dye & Warren (2005) and Vegetti & Koopmans

(2009) introduced irregular source grids while keeping the inner loop linear (see §2.4.1).

As the number of approaches to lens modeling grew, Brewer & Lewis (2006) used a

Bayesian framework to argue that the methods are basically equivalent and differ only in

the choice of priors. Suyu et al. (2006) extended the framework, further developing the

idea of using a penalty function to “regularise” the source, and determining the strength

of regularisation using Bayesian inference. Both Brewer & Lewis (2006) and Suyu et al.

(2006) showed that the choice of prior depends on the data and the unlensed source.

To date, there have been many applications of PBSR for both lens-plane and source-

plane science. Suyu et al. (2009, 2010) simultaneously reconstruct the mass distribution of

the lens B1608+656 and combine the lens model with the measured time delays to constrain

the Hubble constant. Suyu et al. (2012) disentangle the disk, bulge, and halo components

in the lens B1933+503. Suyu & Halkola (2010), Vegetti et al. (2010a), and Vegetti et al.

(2010b, 2012) all show that mass substructure in lenses can be detected through its effects

on lensed images. Sharon et al. (2012) and Dye et al. (2014) explore the intrinsic properties

of lensed high-redshift sources galaxies.

We note that additional techniques have been developed for analysing radio observations

of lensed systems. Because radio interferometers sample the visibility function (the Fourier

transform of the sky brightness), radio astronomy has put much effort into developing

reliable reduction algorithms. The CLEAN algorithm (Högbom 1974) fits the “dirty” map

of observed surface brightnesses with point sources. It finds the brightest region in the map

and subtracts a point source convolved with the instrumental beam, and then iterates until

a stopping criterion is met. LensClean (Kochanek & Narayan 1992) adds a step in which

the point source is gravitationally lensed before the images are subtracted, allowing the lens

model and source to be fit simultaneously.
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In this paper, we present a new software called pixsrc that performs PBSR in conjunc-

tion with the established lensmodel software (Keeton 2001) for exploring the lens model

parameter space. We present the methodology behind pixsrc and then discuss issues that

arise during the lens modeling process. In particular, we investigate statistical uncertainties

and systematic biases inherent in PBSR methods by analysing representative galaxy-galaxy

strong lensing events. We examine the effects of noise and telescope pointing on the lens

model analysis, as well the effects of different choices of gridding and priors.

2.2 Bayesian framework

For a given data set, there may be lens models that fit the data well but require a source

that seems unrealistic. (A model with no mass can fit the data perfectly if the source looks

exactly like the image.) There may also be models for which the source fits the noise in

addition to the lens data. Using Bayesian inference, priors can be used to reject models that

are unphysical or overfit the noise. This section reviews the formal framework for PBSR,

which has been discussed in detail by Suyu et al. (2006) and Vegetti & Koopmans (2009).

We reproduce only the key aspects here.

2.2.1 Most likely solution

In the absence of dust or other attenuation, lensing conserves surface brightness. The

mapping between the source plane and image plane can therefore be written as1

d = Ls + n, (2.1)

where L is a linear “lensing operator” that acts on surface brightness values. This opera-

tor can encode not only the gravitational deflections of the lens but also effects from the

atmosphere and telescope. For example, if G characterises the lens while B is a “blur-

ring operator” that characterises the point spread function (PSF) of the observations, we

can define L ≡ BG to capture the combined effects. s and d are vectors containing the

surface brightness values in the source plane and image plane, respectively, and n is the

1We adopt the following conventions: one-dimensional vectors are denoted by bold lower-case letters,
two-dimensional matrices are denoted by bold capital letters, and scalars are unbolded.
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noise present in the data. If the source and data are two-dimensional images with surface

brightness values specified on a Cartesian grid, the one-dimensional vectors s and d can

be constructed by column- or row-stacking the two-dimensional images. If the source grid

is irregular, the structure of s can be more complicated, but the formal framework still

applies. For reference, we note that the numbers of pixels in the source and image plane

maps are Ns and Nd, respectively.

If the noise is Gaussian, we can write the likelihood of observing data d given a lensing

operator L and source s as

P (d | L, s) ∝ exp

(

− Ed(d | L, s)

)

, (2.2)

where

Ed(d | L, s) =
1

2
χ2(s) =

1

2
(Ls − d)⊤C−1

d (Ls − d), (2.3)

and Cd is the symmetric noise covariance matrix, which contains pixel-to-pixel noise corre-

lations. For the case of uniform, pixel-independent noise, Cd is diagonal with entries equal

to σ2, where σ is the standard deviation of the noise.

Suyu et al. (2006) define the most likely solution, sml, as the source model that maximises

the likelihood and thus minimises Ed. Setting ∇Ed(s) = 0, we find that sml satisfies

Fs = f , (2.4)

where F = L⊤C−1
d L and f = L⊤C−1

d d. Because F is square and invertible by construction,2

sml is given by

sml = F−1f . (2.5)

If the left-inverse, L−1
left, of L exists,3 then Eq. 2.5 reduces to what one might näıvely expect:

sml = L−1
leftd. (2.6)

2
F

−1 will fail to exist if there are source pixels that cannot be constrained by the image pixels (i.e., there
are too many source pixels overall, or source pixels that do not map to regions of the image plane with useful
data), or if there are image pixels that lack corresponding source pixels. Those situations can generally be
avoided with reasonable choices of grids. It is conceivable that certain grid configurations could also create
problems for F

−1, but those should be rare.
3
L

−1
left will exist and be unique if L is square and non-singular. If L is rectangular, L

−1
left will exist if

there are more image pixels than source pixels and L has full column rank. These conditions may not be
satisfied if two or more image pixels map to the same point (within machine precision), or if other similar
coincidences occur.
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2.2.2 Most probable solution

Unfortunately, sml will fit the noise in the data in addition to the lensed images. There

are several different ways to avoid such overfitting. Maximum entropy methods (MEMs;

Wallington et al. 1994) favor sources whose pixel values follow broad distributions expected

from information theory, as opposed to sources with some pixels that are very different from

the rest. MEMs also prohibit negative surface brightness values. They do not constrain

surface brightness variations between adjacent pixels, however, and can lead to large fluc-

tuations over small scales. To favor sources that are smooth, we might introduce a function

that penalises large values of the first or second derivative (the particular choice depends

on the data and underlying source; see Brewer & Lewis 2006; Suyu et al. 2006). If the

penalty function is quadratic in the source surface brightness, the source that maximises

the likelihood while minimising the penalty is still given by a linear equation.

Suppose, for example, that we want to introduce a function Es(s) that penalises large

surface brightness gradients. We can define a derivative operator H that acts on a source

vector s to produce a vector Hs containing the gradient of the surface brightness at each

pixel. Then we put

Es(s) =
1

2
(Hs)⊤Hs =

1

2
s⊤(H⊤H)s =

1

2
s⊤Rs, (2.7)

where R ≡ H⊤H. In other words, when sandwiched between two source vectors, R returns

the square of the gradient summed over source pixels. A similar construction can return

the sum of the squares of the curvature (see §2.4.3).

It is important to strike a balance between fitting the data and regularising the source

(especially since any given regularisation scheme may not accurately represent the true

source surface brightness). This can be done by writing the full posterior probability dis-

tribution for the source model as

P (s | L,R,d, λ) ∝ exp

(

− M(s)

)

, (2.8)

where

M(s) ≡ Ed(s) + λEs(s), (2.9)
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and λ is a dimensionless parameter that determines which term in Eq. 2.9 dominates. When

the “regularisation strength” λ is small, the Bayesian framework will primarily fit the data;

while when λ is large, the framework will enforce strong priors on the source.

Suyu et al. (2006) define the most probable solution smp as the source model that

maximises the posterior and thus minimises M(s). To find this model, we Taylor expand

Ed to second order about its minimum,

Ed(s) = Ed(sml) +
1

2
(s − sml)

⊤F(s − sml). (2.10)

The matrix F that appears here is the Hessian4 of Ed, but from Eq. 2.3 this is the same as

F defined in Eq. 2.4. Setting ∇M(s) = 0, we find that smp satisfies

As = Fsml, (2.11)

where A = F + λR is the Hessian of M from Eq. 2.9. Because A is square and invertible

by construction, smp is given by

smp = A−1Fsml = A−1f . (2.12)

It remains to determine the regularisation strength λ seen in Eq. 2.9. In the Bayesian

framework, the optimal value of λ is found by maximising (see Suyu et al. 2006 for a full

discussion)

P (λ | d,L,R) ∝ P (d | L, λ,R)P (λ). (2.13)

We assume a uniform logarithmic prior, P (λ) ∝ λ−1, because we do not know the scale of

λ a priori. The optimal regularisation strength, λ̂, can then be found numerically.

Formally, smp is a biased estimator of the true source surface brightness strue. Suyu

et al. (2006) show that averaging over many realisations yields

〈smp〉 = A−1Fstrue, (2.14)

which differs from strue to the extent that A−1 = (F + λR)−1 differs from F−1. The

simulations presented in §2.5 allow us to quantify the extent to which the bias translates

into errors on recovered lens model parameters.

4The Hessian of a function is a matrix that contains the second order partial derivatives of the function.
In this case, the derivatives are taken with respect to the source vector. For example, the (i, j) entry of F

would hold the second order derivative of Ed with respect to the ith and jth source pixels.
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2.2.3 Model ranking

Once we solve for the source at a fixed lens model, we must rank different models by

evaluating the posterior probability

P (L,R | d) ∝ P (d | L,R) × priors on L and R. (2.15)

If the priors on the lens models and regularisation scheme are flat, then we can just evaluate

the Bayesian evidence5 P (d |L,R) =
∫

P (d |L, λ,R)P (λ) dλ. Suyu et al. (2006) suggest

that the distribution for λ can be expected to have a sharp peak, so instead of computing

the full integral we can just evaluate the integrand at its peak.

Examining Eqs. 2.2 and 2.15, we can infer that

−2 ln E = χ2 + V, (2.16)

where E is shorthand for the evidence and V is a constant that depends on the available

prior volume of the parameter space. Thus, we will use χ2 and −2 ln E interchangeably.

For a more detailed discussion on the connection between evidence and χ2, see Jenkins &

Peacock (2011).

2.3 Test data

To explore possible uncertainties and biases in PBSR algorithms, we construct test data

using a simple but realistic lens and source. The lens is a singular isothermal ellipsoid (SIE),

which is a popular choice for modeling elliptical galaxies. Although the dark and luminous

mass profiles are not simple power laws individually, the total density profile appears to be

close to isothermal (Kronawitter et al. 2000; Koopmans et al. 2009; Treu 2010). The SIE is

placed at the origin and fixed with an Einstein radius of 3′′, ellipticity of 0.3, and position

angle of 60◦ east of north. The source luminosity profile is an elliptical Gaussian with a

half-light radius of 0.125′′ and peak surface brightness of 5 (in arbitrary units). The position

and orientation of the source are varied to create four canonical lens configurations that let

us assess whether uncertainties in PBSR algorithms are sensitive to the image morphology.

5Strictly speaking, this is not the full evidence because the lens model parameters are not marginalised,
but the terminology is standard.
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Fig. 2.1 shows a 2-image configuration along with three configurations that nominally have

four images: a source near the center of the caustic produces a “cross” configuration with

four distinct images; a source just inside the caustic curve produces two short arcs and a

long arc from two merging images (a “fold” configuration); and a source inside a cusp in

the caustic produces one long arc from three merging images along with an isolated image

on the other side (a “cusp” configuration). In the following sections we vary the amount of

noise in the mock data (Fig. 2.2) and the resolution (i.e., the pixel scale; Fig. 2.3).

2.4 Issues intrinsic to the algorithm

Some of the practical challenges in PBSR are inherent to the algorithm itself. We have

already mentioned the need for regularisation. Dealing with gridded data makes some

degree of interpolation unavoidable. Also, different parts of the image plane probe different

spatial scales in the source plane, depending on the lensing magnification. Using an adaptive

source plane grid helps take full advantage of the information contained in a lensed image,

but leads to challenges with interpolating and calculating derivatives on an irregular grid.

In this section we examine how these issues affect the source reconstruction and lens model

ranking.

2.4.1 Gridding

In PBSR, the image and source grids do not have to be the same. Image pixels have

definite dimensions set by the instrument and data processing. But source “pixels” are

more general; they refer loosely to positions (and small regions around them) where one

chooses to reconstruct the surface brightness of the source. The shape and density of source

pixels are arbitrary, and they can vary across the source plane. The source pixel density

directly limits the resolution of the reconstruction.

If source pixels outnumber image pixels, the reconstruction problem will be undercon-

strained. The regularisation strength will be driven to high values, effectively decreasing

the number of independent source pixels.6 In each of the gridding schemes discussed below,

6Strong regularisation introduces correlations between nearby pixels, smoothing the surface brightness
and decreasing the effective resolution in the source plane.
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Figure 2.1: Test data in four canonical configurations. Clockwise from top left: cusp,
fold, cross, and 2-image lens configurations. For each panel, the diamond-shaped curve (the
caustic) and object (source galaxy) inside the red square are in the source plane, while the
elliptical curve (the critical curve) and the other features (the arcs) outside the red square
are in the image plane. The lensing galaxy used to create the data is the same in all cases:
a SIE with Einstein radius of 3′′, ellipticity of 0.3, position angle of the semi-major axis
60◦ east of north. The colour scale is linear and identical in all panels. The source galaxies
used to create the data share the same size and luminosity profile; only the positions and
orientations differ.
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Figure 2.2: Test data for the cusp configuration shown with varying noise levels. Peak S/N
clockwise from top left: 1, 10, 25, 500. The pixel scale is 0.1 arcsec/pixel. The colour scale
is linear and consistent except for the S/N = 1 case.
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Figure 2.3: Test data for the cusp configuration shown with varying pixel scales. Only a
subsection of the long arc is shown so that the differences in resolution are visible. Clockwise
from top left: 0.1, 0.05, 0.03, and 0.02 arcsec/pixel.
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the grid is constructed so the number of source pixels is approximately half the number of

image pixels.

The size and shape of the grid can be limited to specific regions on the sky. Using all

image pixels may be computationally expensive, and it can make the regularisation less

effective (because most of the source pixels would just contain noise). Therefore it may be

useful to construct masks around regions that contain lensed images. Wayth et al. (2005)

comment on the importance of careful pixel masking, because pixels that do not contain

flux can be as important as those that do. If a model fits the observed surface brightness

but also puts flux where no light is observed, the model should be penalised but overly

aggressive masking might cause the faulty pixels to be ignored. As a precaution, pixsrc can

find and include all pixels that are “sisters” to the pixels in the masked region(s).7 Doing

so requires some care because the number of image pixels that get used can vary with the

lens model.

We describe three different schemes for gridding the source plane: one Cartesian and two

adaptive. Fig. 2.4 shows examples of the two adaptive grids. We compare the performance

of the two adaptive gridding schemes in §2.4.4.

Cartesian grid

We begin with a simple Cartesian grid. The pixel density and resolution in the source

plane are uniform. The grid dimensions and pixel scale can be set manually or chosen

to achieve Ns ≈ Nd/2, as this seems to adequately reconstruct the source without being

underconstrained. Benefits of the Cartesian grid lie in its simplicity: the grid, lensing

operator, and regularisation operator are easily and quickly constructed. However, the

uniform resolution means that small scales cannot be probed without incurring a large

number of source pixels and a correspondingly large regularisation strength.

Fully adaptive grid

Vegetti & Koopmans (2009) introduced a gridding scheme in which some of the image plane

pixels are mapped to the source plane and used to construct the source grid (see Fig. 2.5).

7Heuristically, image pixels are sisters if they come from the same source pixel.
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Figure 2.4: Triangulation of a fully adaptive grid (top) and an adaptive Cartesian grid
(bottom). The lens model used is specified in §2.4.1: a SIE located at the origin with
Einstein radius 3′′, ellipticity 0.3, and position angle 60◦ east of north.
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Figure 2.5: A demonstration of the fully adaptive grid construction. The left and right
panels show the image and source grids, respectively. Filled circles in the image plane are
mapped to the source plane, and a Delaunay triangulation (Shewchuk 1996) is used to
construct the source grid. Open circles in the image plane are then mapped to the source
plane and set to values interpolated from the surrounding source pixels. Each filled circle
has a row in the unblurred lensing operator with a single entry of 1, while each open circle
has a row with three non-negative entries that sum to 1. This figure is inspired by Fig. 1
in Vegetti & Koopmans (2009).

By default we choose to use every other pixel to construct the grid, which helps to ensure

that Ns ≈ Nd/2. The advantage of this “fully adaptive” grid is that the density of pixels

in the source plane is set directly by the lens mapping, so it automatically achieves the

natural resolution of lensing. The challenge is that computing the derivatives needed for

regularisation can be difficult on an irregular grid (see §2.4.3 and Fig. 2.9).

Adaptive Cartesian grid

The adaptive Cartesian grid builds from the Cartesian grid. An initial two-dimensional

grid is refined, adding or removing pixels, so the pixel density varies according to some

criterion. Such adaptive mesh refinement algorithms have been used in many fields of

research, including star formation modeling, radiative transfer codes, and magnetohydro-

dynamic simulations. For PBSR, we implement an adaptive Cartesian grid similar to that

used by Dye & Warren (2005), which is designed to place more source pixels in regions of

higher magnification. We first give a heuristic description of the gridding scheme, and then

provide more details.

An initial, zeroth level grid is constructed as a box just large enough to contain all of

the ray-traced image pixels, with five grid points (at the corners and center). A zeroth
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level magnification, µ0, is ascribed to this grid. Then each quadrant is examined, and if

the magnification in this quadrant, µ1, is larger than four times the magnification of the

parent grid (µ1 ≥ 4µ0), the quadrant is split into a (first level) subgrid, itself consisting of

four quadrants. The factor of four here is necessary because as we add a subgrid, we split a

quadrant into four more quadrants, increasing the spatial resolution by a factor of four (in

area). Then, for each of these first level quadrants, we add a second level of subgridding if

µ2 ≥ 4µ1 = 16µ0. This process is repeated for every quadrant and subquadrant.

In practice, it would be computationally expensive to examine every quadrant and sub-

quadrant, and it would be undesirable to do so since many source pixels would be unused

in the lensing operator. Instead, every image pixel is ray-traced back to the source plane,

the local magnification at that location is computed, the appropriate level of subgridding is

determined based on the ratio of the local magnification to the zeroth level magnification,

and only the minimum number of source pixels (three or fewer) needed are created.

It still remains to determine µ0. Because the size of the zeroth level grid is arbitrary, µ0

is also arbitrary. This freedom is what Dye & Warren (2005) encapsulate in their “splitting

factor.” We note that Dye & Warren (2005) allow their splitting factor to vary in the source

reconstruction. We have not explored this additional freedom. Instead, we fix µ0 so that

Ns ≈ Nd/2.

The appeal of the adaptive Cartesian grid lies in its use of the magnification as a physical

motivation for adaptive gridding. As we will see in §2.4.4 and Fig. 2.14, the noise in the

χ2 surface is larger using the adaptive Cartesian grid. The higher noise is thought to be

due to the discrete change in magnification required to trigger the subgridding. However,

as discussed in §2.4.3 and Fig. 2.9, derivatives seem to be computed more accurately.

2.4.2 Interpolation

The surface brightness of an image pixel is calculated by ray-tracing the pixel to the source

plane and linearly interpolating over up to three adjacent source pixels. Such interpolation

amounts to treating the source as a collection of small planes, which may or may not provide

an accurate approximation to the true surface brightness distribution (depending on the

pixel scale). Errors from the interpolation can be important if they are large compared
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with the random noise in the data.

As an illustration, Fig. 2.6 shows data, model, and residuals for a high-quality image

of a source in the cusp configuration. The peak S/N is 500, and the image resolution is

0.03 arcsec/pixel. The lens model was fixed at the correct model, and the fully adaptive

grid was constructed as usual, but the source surface brightness was fixed at the known

value for the cusp source (rather than being reconstructed). By visual inspection, the data

and model seem to agree well, but the residuals show clear structure. Also, the χ2 value

is 13,236, which corresponds to a reduced χ2 of 1.60. This is troubling since the lens

and source models were fixed at the true values. The residuals, and hence the large χ2

value, arise from interpolation errors. To see this, Fig. 2.6 shows the difference between

an image constructed directly from the analytic source and an image constructed from the

interpolated version. The structure of the interpolation errors clearly explains the structure

of the model residuals.

We need to find a way to account for these errors. Strictly speaking, we would have to

know the true surface brightness of the source in order to determine interpolation errors

in the first place. As an approximation, we fit an analytic model (comprising one or more

Sérsic profiles) to the pixelated source.8 We use this analytic model to compute a map of

interpolation errors, as shown in the top right panel of Fig. 2.6. (The error map can be

blurred by the PSF as needed.) We then modify the noise covariance matrix (Cd in Eq. 2.3)

with the substitution

Cd → Cd + Cinterp. (2.17)

We make Cinterp a diagonal matrix containing the squares of the interpolation errors (which

omits any correlations in errors among pixels but is a simple and effective approach). This

modification lowers the χ2 value for the case shown in Fig. 2.6 to 8275, which corresponds

to a reduced χ2 of 0.999.

Accounting for interpolation errors in this way is a conservative practice, as the effect

is to broaden the χ2 surface. As an example, Fig. 2.7 shows a one dimensional cut of the

Bayesian evidence for a cusp configuration with a pixel scale of 0.05 arcsec/pixel and a

peak S/N of 100. All lens model parameters except the Einstein radius are fixed at their

8If the fit to the pixelated source is poor, we do not account for interpolation errors.
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Figure 2.6: Visualisation of interpolation errors for a source in the cusp configuration
with a peak S/N of 500 and a resolution of 0.03 arcsec/pixel. From top left, clockwise:
data, interpolation errors, model residuals, model. The lens and source models were fixed
at their correct values, but there are significant residuals with the same structure as the
interpolation errors. Accounting for interpolation errors lowers the χ2 from 13,236 to 8275,
corresponding to a change in reduced χ2 from 1.60 to 0.999.
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Figure 2.7: Effect of interpolation errors, when the errors are comparable to the noise level.
The test data have a source in the cusp configuration with a peak S/N of 100 and a reso-
lution of 0.05 arcsec/pixel. Red, solid lines and blue, dashed lines correspond to curvature
regularisation and ASR, respectively (see §2.4.3 for a discussion of regularisation schemes).
The upper lines do not account for interpolation errors, while the lower lines do. Because
we focus on differences in χ2, vertical offsets have been applied, but differences between
same colour curves are meaningful. Qualitatively, we see that accounting for interpolation
errors broadens the χ2. Quantitatively, the ranges of χ2 change by factors of 1.8 and 1.2
for curvature regularisation and ASR, respectively.

true values. The curves show the Bayesian evidence as a function of RE for two forms of

regularisation (discussed in §2.4.3), when we do or do not account for interpolation errors.

Although the location of the minimum does not appear to change, the χ2 curve becomes

shallower when interpolation errors are addressed, reflecting a larger uncertainty in the

Einstein radius.

The scale of interpolation errors depends on the lens configuration and image resolution.

Fig. 2.8 shows the minimum and maximum interpolation errors as a function of the pixel

scale for all four lens configurations, using both the fully adaptive and adaptive Cartesian

grids. The lens model and source brightness are again fixed at their true values. As the

image resolution improves, the interpolation errors decrease. The doubly-imaged source is

not as highly magnified as the other cases, so the effective resolution in the source plane is
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lower and the interpolation errors are larger (reaching about 20% of the peak flux). The

quad configurations show interpolation errors up to about 7%.

2.4.3 Regularisation

In §2.2.2 we discussed regularising the source by penalising large values of the first or second

derivative of the surface brightness distribution. In this section we explore two methods

for computing the required numerical derivatives: a finite difference method (FDM) and a

divergence theorem method (DTM). Note that the formulae in this section are deliberately

written so that each source pixel receives equal weight in the regularisation; the formulae

would have to be modified to weight pixels by the area they subtend in order to obtain

true derivatives of the source surface brightness distribution. We use equal weighting to

take advantage of the fact that lensing effectively gives higher resolution in regions that are

more highly magnified (see Vegetti & Koopmans 2009 for more discussion). This choice

makes the regularisation sensitive to the lens model through the density of source pixels,

so in principle it might introduce model-dependent biases into the regularisation. The

simulations presented in §2.5 suggest that such biases are small in practice.

Fig. 2.9 shows how the two methods perform on both the fully adaptive and adaptive

Cartesian grids. The source is an elliptical Gaussian with ellipticity 0.3, and the magni-

tude of the gradient is shown. It is important to note that only relative magnitudes are

meaningful, because the regularisation strength can absorb multiplicative factors. For the

fully adaptive grid, DTM yields much better results. For the adaptive Cartesian grid, the

difference is less significant but there is still some improvement going from FDM to DTM.

We also introduce a regularisation scheme that penalises the source model for deviations

from an analytic source profile and refer to this method as analytic source regularisation

(ASR).

Finite difference method

Using Taylor’s theorem, we can calculate derivatives on a grid using the finite difference

method (FDM). For a simple Cartesian grid, the gradient at a particular pixel m can be

approximated by taking directional finite differences of the surface brightness along the grid
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Figure 2.8: Minimum and maximum interpolation errors are shown as a function of the
pixel scale for both gridding schemes. (The pixel scale is quoted for the image plane because
that is the quantity known from data, but bear in mind that interpolation occurs in the
source plane.) From top left, clockwise: cusp, fold, cross, and 2-image configurations. The
lens and source models were fixed at their correct values. The percent error in any given
image pixel is calculated by taking the ratio of the interpolation error in that pixel to the
peak signal in the image. The doubly-imaged configuration shows the largest errors, because
the magnification is lower and hence the number of source pixels that cover the source is
smaller.
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Figure 2.9: Comparison of FDM and DTM on both adaptive grids. Top left: fixed source
model (an elliptical Gaussian with ellipticity 0.3), placed in the cusp configuration. Top
right: exact magnitude of the gradient of source. The remaining panels show the mag-
nitude of the gradient computed with various grids and derivative schemes. The middle
row corresponds to the fully adaptive (FA) grid, while the bottom row corresponds to the
adaptive Cartesian (AC) grid. The left column corresponds to FDM, while the right column
corresponds to DTM. The colour scale is linear. Only relative changes within a panel are im-
portant, because multiplicative constants can be absorbed into the regularisation strength.
The spurious peaks sometimes seen when using the FDM are likely due to unfortuitous
alignment of “virtual pixels” with the pixel at which the derivative is evaluated. For a more
detailed discussion, see §2.4.3 and §2.4.3.
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axes at the pixel m. This can be written as

~g[m] =
1

2

∑

n

(

s[n] − s[m]

)

~r[n] −~r[m]

| ~r[n] −~r[m] |2

∝
∑

n

(

s[n] − s[m]

)

r̂nm,

(2.18)

where ~g is a vector containing the derivatives at each source pixel, ~r is a vector containing

the position vectors of each source pixel, r̂nm is a unit vector pointing from n to m, and

the sums are over the four nearest pixels. The last proportionality holds because, for a

Cartesian grid, the distances between adjacent pixels are identical and can be absorbed

into the regularisation strength. To approximate the second derivative across the source

plane, we write down the Laplacian as

h[m] = ~∇ · ~g[m]

∝ ~∇ ·
∑

n

(

s[n] − s[m]

)

r̂nm

∝
(

∑

n

s[n]

)

− N s[m],

(2.19)

where h is a vector containing the second derivative at each source pixel and the sum is

again over the N = 4 nearest pixels. In both cases, if the pixel is not on the edge of the grid

then the sums include the four pixels to the immediate left, right, top, and bottom of the

pixel in question. If the pixel is on the edge, the “missing” pixels are assumed to contain

zero flux. This effectively assumes the surface brightness outside the source grid is zero,

which can lead to ineffective regularisation if the grid is small enough that the edges are

close to the region of interest. Suyu et al. (2006) note that the derivative calculations can

be modified to avoid assuming zero surface brightness outside the grid, but that can lead

to problems for ranking lens models.9

The preceding discussion can be extended to adaptive grids, although some care is

needed because there may be more than four pixels nearby and it may not be immediately

obvious which ones should be used. Vegetti & Koopmans (2009) compute the derivative

for a particular pixel m using the triangles that surround m in the Delaunay triangulation

9As Suyu et al. (2006) explain, dropping the zero surface brightness assumption causes the Hessian of
R to become singular. The singularity can be removed by introducing a renormalisation constant, but the
constant will vary with the lens model, complicating the model comparison.
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Figure 2.10: Diagram illustrating the derivative calculation using the FDM on an irregular
grid. The blue point indicates the pixel m where we seek to compute the derivative. The
grid is the same as that shown in Fig. 2.5. The black, solid lines form a quadrilateral Q
connecting the surrounding pixels (labeled np, where p = {1, 2, 3, 4}). The points where Q
intersects the horizontal and vertical lines through m are called virtual pixels (labeled vp,
where p = {1, 2, 3, 4}). The flux at each virtual pixel is a linear combination of the fluxes
at the two surrounding pixels that are colinear with that virtual pixel. The virtual pixels
are used to compute the derivative at m.

of the grid. In pixsrc, we instead identify four pixels (hereafter referred to as surrounding

pixels) as follows. Transforming to a coordinate system centered on m, we select the sur-

rounding pixels so that each pixel lies in a different quadrant, each pixel is near m, and

the quadrilateral Q formed by the pixels deviates the least from a square. We use the sur-

rounding pixels to calculate the surface brightness at the intersections of the x and y axes

with Q, which we refer to as virtual pixels. (A schematic diagram of the surrounding and

virtual pixels is shown in Fig. 2.10.) From the surface brightnesses at the virtual pixels, we

can compute the derivatives using Eq. 2.18 and a modified version of Eq. 2.19. After some

algebra, the first derivative at m can be expressed as

~g[m] =
∑

n

(

D[vn−1, sn−1]

D[vn−1, m]D[sn−1, sn]
r̂vn−1

+
D[vn, sn+1]

D[vn, m]D[sn+1, sn]
r̂vn

)

s[sn]

−
(

∑

n

1

D[m, vn]
r̂vn

)

s[m],

(2.20)
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and the second derivative at m is given by

h[m] =
∑

n

(

D[vn−1, sn−1]

D[vn−1, m]D[sn−1, sn]

+
D[vn, sn+1]

D[vn, m]D[sn+1, sn]

)

s[sn]

−
(

∑

n

1

D[m, vn]

)

s[m],

(2.21)

where the sums run from n = 1 to n = 4, D[r, s] is a functional that returns the distance

between points r and s, vp is the pth virtual pixel, and r̂vp is a unit vector pointing toward

the pth virtual pixel. For simplicity of notation, we let the indices wrap around (e.g., v0 = v4

and v5 = v1).

Fig. 2.9 suggests that derivatives calculated with the FDM can be inaccurate. Certain

configurations of points on the fully adaptive grid can cause virtual pixels to lie very close

to m, leading to an anomalously high estimate for the derivative. Such events are rare and

do not have a dramatic effect on the source reconstruction. The adaptive Cartesian grid is

less susceptible to such gridding issues.

Divergence theorem method

The method described here is developed in Xu & Liu (2006); we reproduce some of the key

elements. It is called by the authors an irregular grid finite difference method based on the

Green-Gauss theorem (as Green’s theorem reduces to Gauss’ theorem in two dimensions).

The theorem states that for a scalar function F defined on R
2 with continuous partial

derivatives, we can relate the surface integral over some region Ω to a line integral along

the boundary of Ω:
∫ ∫

Ω

~∇F dΩ =

∮

∂Ω

Fn̂ ds, (2.22)

where n̂ is a unit normal vector on the boundary, pointing outwards. Suppose Ω is a region,

called a stencil, small enough that ~∇F is approximately constant across the region. Then

we can pull the gradient out of the integral and write

~∇F =
1

Ω

∮

∂Ω

Fn̂ ds, (2.23)

from which it follows that

~∇ · (~∇F ) =
1

Ω

∮

∂Ω

n̂ · ~∇F ds, (2.24)
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nn

Ω

Figure 2.11: Diagram illustrating the derivative calculation using the DTM. The blue point
again indicates the pixel m where we seek to compute the derivative. The black, solid lines
form a polygon surrounding m. The square points are placed at the midpoints between m
and the surrounding pixels. The triangle points are placed at the centroids of the triangles.
The stencil Ω is formed by connected midpoints to adjacent centroids. The unit vector n̂,
denoted by the magenta arrows, is orthogonal to the edges of the stencil, points outwards,
and changes direction as the stencil is traced along its edges. This figure is inspired by
Fig. 1 in Xu & Liu (2006).

For implementation, the integrals are converted to sums, and Ω is defined by connecting

centroids of Delaunay triangles to adjacent midpoints of the sides of the triangles (see

Fig. 2.11). Depending on the density of source pixels, the stencil Ω may not be small

enough for ∇F to be constant. We nevertheless take Eq. 2.23 to define an effective gradient

for each pixel.10

Unlike the FDM, the DTM does not assume the flux vanishes outside the grid. Eq. 2.23

and 2.24 can be applied to the grid edges, as long as care is taken in closing the line integrals.

Thus, edge effects in the regularisation are minimal. Fig. 2.9 suggests that derivatives

computed with the DTM are more accurate than those computed with the FDM, because

the DTM uses all nearby pixels.

Analytic source regularisation

As an alternative to derivative-based regularisation, we have developed a quadratic form

of regularisation that penalises the source for deviations in surface brightness from one or

more analytic profiles. We find that analytic source regularisation (ASR) is especially useful

in recovering the surface brightness of the source in noisy data. Currently, the reference

10Implementation of the second derivative requires additional correction terms found in Xu & Liu (2006);
it is still under refinement in pixsrc.
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surface brightness distribution has a Sérsic profile,

I(~r) = I0 exp

[

−
( |~r|

rs

)1/n
]

, (2.25)

where I0 is the normalisation, rs is the scale radius, and n is the Sérsic index. Elliptical

models are created from a linear transformation of coordinates. More complicated sources

can be built from a combination of Sérsic profiles that represent multiple, blended sources

(such as “knots” in star-forming galaxies).

To implement ASR, we first find the analytic source sa that best fits the data. We vary

the position, normalisation, scale radius, Sérsic index, ellipticity, and position angle of the

analytic source using a downhill simplex optimisation routine (Press et al. 2002). We then

use the best-fit analytic source to construct a regularisation matrix, H, that acts on a source

vector, s, to produce a deviation vector, ∆ = Hs, whose value at pixel m is given by

δ[m] =

(

∑

n

s[n]

sa[n]

)

− N
s[m]

sa[m]
, (2.26)

where sa[p] is the flux at p from the analytic source, and the sum is over N pixels that

share a Delaunay triangle with pixel m. The deviation vector vanishes if the source vector

agrees completely with the analytic profile, or indeed if s is any real multiple of sa.
11 More

generally, ∆ quantifies the degree to which s does not match a multiple of sa. Because

the inverse brightness values in Eq. 2.26 can become large toward the outer regions of the

analytic profile, we set the analytic source flux to 10% of the noise level once it falls below

this value. Fig. 2.12 suggests that ASR is more effective than derivative-based regularisation

at recovering the source from noisy data. This result is perhaps not surprising; because

ASR assumes a functional form for the source, it is a stronger prior than derivative-based

regularisation. It is important to note that ASR will yield accurate source reconstructions

only if the true source is well described by the assumed functional form.

At this point we should consider whether regularisation introduces any biases in the val-

ues or uncertainties for recovered lens model parameters. Because the noise is Gaussian and

centered on zero, we conjecture that analysing many different realisations of the noise can

uncover the true underlying likelihood function (as an alternative to explicitly regularising

11Because ASR can obtain a minimum for s 6= 0, some of the algebra in §2.2 is modified. However, the
key results (specifically Eqs. 2.12–2.16) are unchanged.
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Figure 2.12: Comparison of sources reconstructed from noisy data. The test data have a
source in the cusp configuration with a peak S/N of 1 (see the top left panel of Fig. 2.2)
and a resolution of 0.05 arcsec/pixel. Clockwise from top left: the true source surface
brightness followed by sources reconstructed from gradient-based regularisation, curvature-
based regularisation, and analytic source regularisation. The source recovered using ASR
best matches the true source brightness. In the case of blended sources (not shown), ASR
also outperforms derivative-based regularisation.
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the source surface brightness). We construct thousands of “observations” of a cusp lens with

a peak S/N of unity and a resolution of 0.1 arcsec/pixel. We vary the ellipticity of the lens

while holding other parameters fixed at their true values. The χ2 curves from individual

runs vary significantly, but stacking the results washes away the fluctuations from noise (see

the red curve in Fig. 2.13). The stacked curve from ASR (shown in blue) matches the un-

derlying χ2 curve well. The results from curvature regularisation, by contrast, show a small

bias toward lower ellipticity and underestimate the uncertainties for this parameter. This is

yet another indication that ASR can outperform derivative-based regularisation when the

data are noisy and the true source follows an analytic profile. At higher S/N (not shown),

there is less difference between the regularisation schemes.

2.4.4 Effect on χ2

When exploring the lens model parameter space, we find that the likelihood surface can be

jagged even for our clean test data. Wallington et al. (1994) remarked on “glitches” in χ2

for their maximum entropy analysis, but noted that the glitches disappeared as the PSF

and noise vanished. In our analysis, the jaggedness is reduced but not eliminated in that

limit. It arises, we suspect, from the discrete nature of PBSR itself. A small, continuous

change in the lens model parameters can shift the source pixels in a way that causes the

Delaunay algorithm to connect the pixels in a different way, leading to abrupt changes in

the lensing operator and regularisation matrix.

To probe these issues, we examine one-dimensional cuts of the χ2 surface for various

gridding and regularisation schemes. We focus on test data for the cusp configuration with

a peak S/N of 25 and pixel scale of 0.05 arcsec/pixel. We fix all lens model parameters

at their correct values and vary only the ellipticity of the lensing galaxy. We consider

different combinations of grids (fully adaptive or adaptive Cartesian) and priors (gradient

regularisation with FDM or DTM, or ASR). The results are shown in Fig. 2.14.

Qualitatively, we find that the fully adaptive grid shows less small-scale fluctuation in

χ2 than the adaptive Cartesian grid. Since the fully adaptive grid is constructed by ray

tracing image pixels to the source plane, it more naturally accommodates small changes in

the lens model. The adaptive Cartesian grid, by contrast, either remains fixed or changes
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Figure 2.13: Effects of regularisation on parameter estimation. The y-axis label “statistic”
denotes χ2 and −2 ln E for cases without and with regularisation, respectively, but for
simplicity we refer to both as χ2. (We have applied a vertical offset to facilitate comparing
the curves.) We construct many realisations of a cusp lens with a peak S/N of unity and
a resolution of 0.1 arcsec/pixel. After stacking the results, we expect the χ2 curve without
regularisation (shown in red) to represent the true errors on the ellipticity. ASR (shown
in blue) seems to agree well with the reference case. By contrast, curvature regularisation
(shown in green) has a minimum that is shifted away from the true value e = 0.3. Also, the
χ2 curve rises rapidly away from the minimum, causing the parameter uncertainties to be
underestimated. For each case, the dark, thick line corresponds to the median value, and
the bands are 68% confidence intervals, estimated from bootstrapping.



48

 430

 840

 1250

 1660

 2070

 0.28  0.29  0.3  0.31  0.32

-2
 ln

 E

ellipticity

FA
TSEM

 510

 545

 580

 615

 650

 0.298  0.302

 940

 1000

 1060

 1120

 1180

 0.28  0.284

 555

 965

 1375

 1785

 2195

 0.28  0.29  0.3  0.31  0.32

-2
 ln

 E

ellipticity

AC
TSEM

 650

 685

 720

 755

 790

 0.298  0.302

 1045

 1105

 1165

 1225

 1285

 0.28  0.284

 1720

 2130

 2540

 2950

 3360

 0.28  0.29  0.3  0.31  0.32

-2
 ln

 E

ellipticity

FA
DTM

 1910

 1945

 1980

 2015

 2050

 0.298  0.302

 2230

 2290

 2350

 2410

 2470

 0.28  0.284

 1285

 1695

 2105

 2515

 2925

 0.28  0.29  0.3  0.31  0.32

-2
 ln

 E

ellipticity

AC
DTM

 1390

 1425

 1460

 1495

 1530

 0.298  0.302

 1760

 1820

 1880

 1940

 2000

 0.28  0.284

-1405

-995

-585

-175

 235

 0.28  0.29  0.3  0.31  0.32

-2
 ln

 E

ellipticity

FA
ASR

-1430

-1395

-1360

-1325

-1290

 0.298  0.302

-820

-760

-700

-640

-580

 0.28  0.284

-1830

-1420

-1010

-600

-190

 0.28  0.29  0.3  0.31  0.32

-2
 ln

 E

ellipticity

AC
ASR

-1840

-1805

-1770

-1735

-1700

 0.298  0.302

-1235

-1175

-1115

-1055

-995

 0.28  0.284

Figure 2.14: Effective χ2 as a function of ellipticity for various gridding and regularisation
schemes. The test data have a source in the cusp configuration with a peak S/N of 25
and a resolution of 0.05 arcsec/pixel. The columns correspond to different grids (left is
fully adaptive, right is adaptive Cartesian). The rows correspond to different regularisation
schemes (top is gradient regularisation with FDM, middle is gradient regularisation with
DTM, bottom is analytic source regularisation [ASR]). The different panels have the same
vertical range (and the vertical offsets are not meaningful). In general, the fully adaptive grid
leads to less noise in χ2 than the adaptive Cartesian grid. ASR produces the smoothest curve
over large scales, presumably because the regularisation matrix does not change discretely
and the deviation from an analytic profile is measured in a dimensionless way.
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discretely (if the magnification crosses the criterion for subgridding; see §2.4.1). Thus,

even though the adaptive Cartesian grid yields more accurate derivative calculations (recall

Fig. 2.9), that benefit seems to be outweighed by gridding noise in χ2. It may be possible to

improve the performance of the adaptive Cartesian grid by developing a different criterion

for subgridding, but such modifications have not yet been explored.

Turning to regularisation, the DTM yields somewhat smaller fluctuations than the FDM,

at least for the fully adaptive grid (with the adaptive Cartesian grid, the noise is dominated

by the gridding anyway). ASR leads to the smoothest χ2 curves for both types of grids. As

the lens model parameters vary, the best fit analytic source and the corresponding weights in

the regularisation matrix can vary smoothly as well. It is interesting that the fully adaptive

grid with the DTM does not show a similar level of smoothness, because that method also

changes continuously with lens model parameters. The difference may occur because the

deviation vector δ in Eq. 2.26 is a dimensionless ratio of surface brightnesses, whereas the

derivatives used for gradient or curvature regularisation have units of surface brightness

divided by distance or squared distance. Using a dimensionless measure of deviation allows

each pixel to have equal weight in the regularisation matrix, a quality that the derivative-

based methods do not necessarily have.

Finally, we note that the χ2 curve is flatter near the minimum for ASR than it is for

gradient regularisation (focusing now on the fully adaptive grid). This causes ASR to yield

larger uncertainties in the ellipticity of the lensing galaxy, as we saw already in Fig. 2.13.

If the ASR is taken to represent the true posterior probability distribution, then the errors

reported using the fully adaptive grid with gradient regularisation are being underestimated.

In summary, we find that the gridding and regularisation schemes both affect the level of

noise in the Bayesian evidence. These two algorithmic issues need to be considered carefully

in applications of PBSR.

2.5 Practical issues

In real data, the image resolution is typically fixed by the observational equipment, but

the telescope pointing and the noise in the data are particular realisations; on a different
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day, the same observation would not actually be identical.12 We now consider whether such

chance events introduce any statistical or systematic uncertainties into conclusions derived

from lens modeling. We examine noise and pointing both separately and jointly, with and

without a PSF,13 sometimes just optimising the parameters and sometimes performing a

full parameter space exploration. We assume Gaussian noise with zero mean, which can

be considered to represent electron read-out noise, Poisson noise (in the large mean limit),

or sky noise. As a fiducial case, we use a lens in the cusp configuration with a pixel scale

of 0.05 arcsec/pixel and a peak S/N of 10, but we examine different choices as discussed

below. Since ASR is computationally expensive, and curvature regularisation is well suited

for initial parameter space explorations (see §2.6 for more discussion), we use the fully

adaptive grid with curvature regularisation and FDM here.

2.5.1 Effects of noise

While the noise level will affect the uncertainty in lens model parameters, the particu-

lar noise realisation will also affect the best-fit values of the parameters. To explore this

possibility, we create 100 “observations” with the same data but different realisations of

the noise, for the various noise levels shown in Fig. 2.2. We optimise the parameters and

examine the scatter among best-fit values (at this point we are not fully quantifying the

parameter uncertainties). The pixel scale is fixed at the high resolution of 0.02 arcsec/pixel

(see Fig. 2.3) so that effects due to pixel size are minimised.

Fig. 2.15 shows the results in terms of different two-dimensional parameter projections,

along with the median and 68% confidence intervals for individual parameters. There is

no significant bias in the parameter values. Empirically, the scatter among best-fit values

appears to have a power law dependence on S/N with a slope of ∼ −0.8 across all lens

model parameters.

12Observations often include multiple exposures to handle cosmic rays, bad pixels, dithering, and subsam-
pling the PSF. We imagine our analysis being applied to the final image after data reduction.

13The PSF is used both in creating the mock data and in modeling the lens.
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Figure 2.15: Best-fit lens model parameters for different realisation of noise in the data.
The source is in the cusp configuration. Red, green, and blue points correspond to peak
S/N levels of 1, 10, and 25, respectively. The points marked correspond to optimal lens
model parameters; this analysis does not include full parameter uncertainties. The quoted
uncertainties indicate the ranges that enclose 68% of the best-fit values. The pixel scale is
fixed at 0.02 arcsec/pixel so the effects of pixel size are minimal. Dashed, yellow lines mark
the true values.
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2.5.2 Effects of pointing

Telescope pointing affects how photons are collected into pixels, so small shifts may influence

the data and hence the recovered model parameters. To explore this issue, we again create

100 “observations” in which the pointing is shifted randomly. The shifts are drawn from

a uniform distribution that is one pixel in each direction,14 for image resolutions of 0.03,

0.05, and 0.1 arcsec/pixel. pixsrc requires some amount of noise, but the noise map is kept

identical and the noise level is minimal (the peak S/N is 5×105) so the effects are negligible.

Fig. 2.16 shows two-dimensional projections of the best-fit parameter values. The median

values reveal biases that are small (a fraction of a pixel for the Einstein radius and position

of the lens galaxy) but statistically significant. The biases become less significant, however,

when a PSF is included (see Fig. 2.17). For the case with no PSF, the scatter in the best-fit

parameter values follows a power law with a slope of ∼ 3.3 in terms of the linear pixel scale,

and it increases further with the addition of a PSF.

2.5.3 Effects of noise and pointing

Now we consider noise and telescope pointing together, and we extend the analysis to

all four test image configurations. We again create multiple “observations” but now each

contains both a different realisation of the noise and a different random pointing. Table

2.5.3 quantifies the spread in best-fit parameter values for all four image configurations and

peak S/N values of 1, 10, and 500.

In general, the scatter decreases as the S/N increases. The 2-image case tends to have

more scatter than the other cases because a 2-image configuration provides weaker con-

straints than configurations that have additional images and/or long arcs. The high-S/N

cases show some small formal biases in the parameters, but we expect those would be

reduced if a PSF were included.

For some applications we are interested in the intrinsic properties of the source galaxy

(e.g., Sharon et al. 2012; Dye et al. 2014). Depending on the information available, it may be

possible to estimate the luminosity, dynamical mass, mass-to-light ratio, gas mass fraction,

14Ignoring edge effects, shifts of N + ∆x are equivalent to shifts of ∆x, where N is an integer.
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Figure 2.16: Best-fit lens model parameters for different realisations of the telescope point-
ing. The source is in the cusp configuration. The shifts are drawn from a uniform distri-
bution that is one pixel in each direction. Red, green, and blue points correspond to image
resolutions of 0.1, 0.05, and 0.03 arcsec/pixel, respectively. The peak S/N is 5× 105 so that
effects related to noise are negligible. Dashed, yellow lines mark the true values.
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Figure 2.17: Similar to Fig. 2.16 but including a PSF. The source is placed in the cusp
configuration, and the image resolution is fixed at 0.05 arcsec/pixel. The red points have
no PSF, while the green and blue points have circular Gaussian PSFs with FWHM equal
to 0.059 and 0.12 arcsec, respectively.
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S/N = 1 S/N = 10 S/N = 500

lower median upper lower median upper lower median upper

cusp

RE 2.99328 2.99564 2.99762 2.99746 2.99919 3.00102 3.00005 3.00014 3.00023

R.A. -0.01945 -0.01232 -0.00487 -0.00904 -0.00372 -0.00032 -0.00249 -0.00177 -0.00100

Dec. -0.00182 0.00290 0.00665 -0.00001 0.00291 0.00624 -0.00146 -0.00084 -0.00001

e 0.29112 0.29323 0.29523 0.29384 0.29620 0.29828 0.29987 0.30019 0.30046

P.A. 58.53260 58.84365 59.13420 59.07300 59.43300 59.71600 59.96060 59.99050 60.02560

fold

RE 2.99380 2.99665 3.00037 2.99795 2.99983 3.00218 2.99936 2.99944 2.99957

R.A. -0.00199 0.00135 0.00526 -0.00170 0.00118 0.00322 -0.00125 -0.00108 -0.00093

Dec. -0.01047 -0.00417 0.00234 -0.00402 0.00008 0.00250 -0.00213 -0.00194 -0.00168

e 0.29785 0.30296 0.30593 0.29769 0.29949 0.30265 0.30081 0.30096 0.30108

P.A. 60.20580 60.47370 60.73450 59.93500 60.07180 60.25280 59.99680 60.00150 60.00790

cross

RE 2.99555 2.99761 2.99968 2.99678 2.99856 3.00088 2.99965 2.99976 2.99985

R.A. -0.00175 0.00071 0.00426 -0.00266 0.00006 0.00230 -0.00009 0.00005 0.00019

Dec. -0.00738 -0.00386 -0.00125 -0.00347 -0.00163 0.00037 -0.00002 0.00007 0.00017

e 0.30288 0.30509 0.30734 0.30090 0.30237 0.30458 0.30031 0.30037 0.30046

P.A. 59.89760 60.18280 60.38430 59.94060 60.05030 60.16430 59.99650 60.00070 60.00500

2-image

RE 2.97860 2.99953 3.01204 2.99677 3.00013 3.00300 2.99906 2.99990 3.00028

R.A. -0.01245 -0.00311 0.01188 -0.00307 0.00033 0.00429 -0.00198 -0.00029 0.00102

Dec. -0.01217 -0.00199 0.01642 -0.00356 -0.00058 0.00329 -0.00276 -0.00076 0.00013

e 0.28867 0.30182 0.31261 0.29752 0.29995 0.30272 0.29957 0.30005 0.30073

P.A. 59.25010 60.40420 62.02710 59.71070 60.01155 60.46840 59.95650 60.00555 60.07990

Table 2.1: Best-fit lens model parameters when we consider different noise realizations and
telescope pointings simultaneously. The observations correspond to peak S/N values of 1,
10, and 500, and the resolution is 0.05 arcsec/pixel. For each set of observations, the middle
column corresponds to the median value recovered, and the lower and upper bounds of the
68% CI are shown in the first and third columns, respectively.
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and star formation rate for the source. Such applications require knowledge of the lensing

magnification, so we examine uncertainties in the magnification associated with noise and

pointing. Specifically, for each lens model in Table 2.5.3 we compute the total magnification

of the source. We quantify the scatter using the 68% confidence interval, and then divide

by the true magnification to obtain the fractional uncertainty for each lens configuration.

(We are still just examining the scatter among best-fit models for different realisations of

noise and pointing; we are not yet characterising the full uncertainties in individual lens

models.)

Fig. 2.18 shows the results. At low S/N, the cusp configuration has the largest uncer-

tainties, presumably because the source lies in a region where small changes in the model

can lead to large changes in the magnification. At higher S/N, the 2-image case fares worst

because the lens model is not highly constrained. At all S/N values, the cross case has the

smallest fractional uncertainties because the source is in a region where the magnification

gradient is small. All told, for S/N & 10 the scatter in magnification associated with noise

and pointing is . 10% for all lens configurations.

2.5.4 Full parameter space exploration

To this point we have only examined how the best-fit lens model parameters change with

different realisations of the noise and telescope pointing. Now for each “observation” we use

an adaptive Markov Chain Monte Carlo (MCMC) algorithm to explore the full parameter

space and characterise the posterior distribution of parameters. The width of the posterior

depends on the noise level, while the peak location depends on the particular realisation

of the noise and pointing. By comparing the width of each posterior to the scatter across

realisations, we can investigate how the scatter from pointing compares to the scatter from

noise. Note that noise contributes to this analysis twice: to the width of each posterior,

and to the scatter between them. We consider this “double counting” when interpreting

the results, as discussed below.

Fig. 2.19 shows the 68% and 95% confidence intervals for lens model parameters when

we combine all of the realisations. The noise level is fixed so the peak S/N is 10, and

the image resolution is fixed at 0.05 arcsec/pixel. We analyse the cusp configuration, both
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does not take full lens model parameter uncertainties into account.) Statistical errorbars
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respectively.
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without a PSF and with a PSF that has a FWHM of 0.12 or 0.24 arcsec. Adding a PSF

causes the distributions to shift and broaden to some degree, but the true values always lie

within the 95% confidence interval. Parameter inference, in other words, is robust.

Let Stot be the width of the posterior from the combined analysis.15 For comparison,

let Si be the width from an individual “observation.” Since Si only accounts for noise while

Stot accounts for both noise and pointing, we generally expect Stot > Si. Indeed, Fig. 2.20

shows that this ratio typically has values between 1 and 2. To understand what we might

expect, consider that if the distributions were Gaussian then the total scatter would be the

quadrature sum of the width of each run and the scatter between runs:

σtot ≈
(

σ2
width + σ2

scatter

)1/2 ≈
(

2σ2
noise + σ2

pointing

)1/2
, (2.27)

where σwidth ≈ σnoise while σscatter ≈ (σ2
noise+σ2

pointing)
1/2. In other words, we might näıvely

predict that the ratio in Fig. 2.20 has the form

Stot

Si
≈

(

2σ2
noise + σ2

pointing

σ2
noise

)1/2

. (2.28)

If the scatter from pointing is negligible compared with the scatter from noise, the ratio

Stot/Si would have a value near
√

2 ≈ 1.4. As the scatter from pointing increases, the ratio

would likewise increase. We could therefore interpret scatter ratios above
√

2 as evidence

that scatter due to pointing contributes significantly.

Fig. 2.20 does not provide such evidence, however. The cusp lens configuration scatter

ratios that are all consistent with
√

2. The 2-image configuration has values that are

nominally higher but still consistent with
√

2 given the uncertainties. Therefore, we do

not see strong evidence for significant pointing scatter. While our analytic argument relies

on Gaussianity, which may not strictly apply to our distributions, the results suggest that

the statsitical properties of our runs are sensible. We note that these conclusions may

depend on the pixel scale and noise level, which we have not explored in detail.

15We quantify the width in terms of the 68% confidence interval, and use the symbol S to distinguish this
scatter from the standard deviation.
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and the 2-image configuration with a PSF. The pixel scale is 0.05 arcsec/pixel, and the peak
S/N is 10.



61

2.6 Conclusions

We have introduced a new pixel-based source reconstruction (PBSR) software called pixsrc

and applied it to mock data in order to investigate statistical and systematic uncertainties in

modeling lenses with extended sources. We have examined several issues that are intrinsic

to the pixel-based approach:

• The χ2 surface contains “discreteness noise” that is influenced by the gridding and

regularisation schemes.

• Errors associated with interpolating surface brightness values in the source plane need

to be taken into account, especially for high-S/N data.

• Adaptive grids are often used to achieve good resolution in the source plane, but they

require some care when computing numerical derivatives.

• A new regularisation scheme called analytic source regularisation (ASR) reconstructs

a source with more fidelity than derivative-based regularisation when the data are

noisy.

• Compared to ASR, curvature regularisation may underestimate parameter uncertain-

ties for noisy data.

We have applied ASR to sources that are fairly regular, but it could be extended to blended

sources or galaxies with star-forming regions by writing the analytic source as a collection

of Sérsic profiles. Differences between ASR and derivative-based regularisation are smaller

when the S/N ratio is higher.

We have also examined statistical issues that arise because any given data set has a

particular realisation of the noise and telescope pointing. For the cusp configuration, we

find that different realisations of the noise lead to scatter in the best-fit model parameters

that scales as a power law in S/N with a slope of ∼ −0.8. Different realisations of the

pointing lead to scatter that scales as a power law in the pixel scale with a slope of ∼ 3.3.

Some parameters show small but statistically significant biases, but those can be washed

out with the inclusion of a PSF. When we fully characterise the model uncertainties, the
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95% confidence intervals always include the true parameter values, with or without a PSF.

These results are not highly sensitive to the image configuration, except that our 2-image

lens has more scatter than our 4-image lenses because the constraints on the lens model are

weaker.

The scatter in noise and pointing lead to scatter in the lensing magnification, which is

important for determining the intrinsic properties of the source. The magnification scatter

does vary with the lens configuration because it is sensitive to how rapidly the magnification

changes at the location of the source. This scatter decreases with increasing S/N, but more

slowly for the 2-image configuration than for the 4-image cases. For S/N & 10 the scatter

in magnification associated with noise and pointing is . 10% for all lens configurations.

We note that real data may have complications beyond the issues we have addressed.

Examples include irregular structure in the source, differential extinction by dust in the

lens galaxy, departures from a smooth lensing potential, incomplete knowledge of the PSF,

and intricate aspects of image reduction. Such issues will be specific to particular data sets

and need to be examined in conjunction with the algorithmic issues presented here.

We have discussed a number of different approaches to PBSR, so let us summarise our

suggestions for modeling that is both efficient and effective. If the images can be separated,

it may be useful to take their positions and fluxes and perform an initial parameter search

assuming point-like images. Then using an analytic source characterised by a small number

of free parameters can help identify the appropriate region of parameter space. When

undertaking full PBSR, derivative-based regularisation is good for computational efficiency,

but analytic source regularisation is a valuable step if the source is reasonably well described

by an analytic profile or a collection of such profiles. Finally, it is a good idea to find the

best-fit lens and source models and create many realisations of similar observations (as in

§2.5.4). That is an effective way to understand the uncertainties and biases in model results

given the specific characteristics of the data.
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Chapter 3

Three-dimensional source reconstruction of a lensed

starburst galaxy at z = 2.26

3.1 Introduction

The study of gravitational lensing is a relatively new technique in astronomy, beginning in

the late in the 1900s. Early surveys, such as the CASTLES, followed up known gravitational

lenses with high resolution imaging. Since then, the vast amount of data from the SDSS

has dramatically increased the number of gravitationally lensed systems. Surveys such as

the SLACS, the Cambridge And Sloan Survey Of Wide ARcs in the skY (CASSOWARY)

(Stark et al. 2013), and the Red Sequence Cluster Survey (RCS) (Gladders & Yee 2005)

have contributed to a growing catalog of known lenses. There have been and are a number

of lens searches from the far-IR to the radio as well, including the CLASS and the Herschel

Astrohysical Terahertz Large Area Survey (ATLAS) (Eales et al. 2010; Negrello et al. 2014).

In the past two decades, there has been significant progress in modeling the extended

structure seen in lensed images (e.g., Riechers et al. 2008). PBSR methods have become

increasingly sophisticated, allowing for a thorough lens potential reconstruction (Vegetti

et al. 2010a; Suyu et al. 2012; Tagore & Keeton 2014) but also allowing for a detailed study

of the lensed source as well (Sharon et al. 2012).

Observing high-redshift populations using the magnification boost from lensing has

proved to be a useful tool for studying galaxy evolution. Reconstructing these lensed objects

across multiple wavebands improves the lens model fit (Dye et al. 2014) but can also give

detailed information about the physical conditions in the de-lensed source. In the case of

three-dimensional data cubes, reconstructing individual velocity channels permits dynami-

cal analyses of the source (Hezaveh et al. 2013). Imaging over a wide range of wavelengths,

from radio to optical, would paint a near-complete picture of a high-redshift, lensed galaxy.
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In this chapter, we present such a multi-wavelength PBSR of a high-redshift star-forming

galaxy that is bright at both rest-UV and rest-FIR wavelengths.

3.2 J0901

Using a systematic search of the Sloan Digital Sky Survey (SDSS) for lensed systems, Diehl

et al. (2009) report the discovery of four strongly lensed galaxies. They follow up the

lensed systems with optical imaging using the Astrophysical Research Consotrium (ARC)

3.5m telescope at Apache Point Observatory and publish spectroscopy as well, using the

Dual-Imaging Spectograph (DIS III). One of these objects, J090122.37+181432.3 (hereafter,

J0901), is a z = 2.26 star-forming galaxy being lensed by a luminous red galaxy (LRG) at

z = 0.35. There are on the order of a dozen galaxies within two Einstein radii of the

lensed images, as can be seen from Fig. 3.1. For reference, any offsets in right ascension

or declination (quoted in arcseconds) will be relative to 09:01:22.366 +18:14:31.57, unless

otherwise noted.

J0901 is quadruply imaged. However, we will see below that only certain regions of J0901

are quadruply imaged, while the other regions are doubly imaged. The images towards the

south (the southern image) and the west (the western image) are complete images of J0901.

That is, they contain emission from all of J0901. The longer arc, extending from the east to

the north (the northern image) is actually two merging images, but it only contains emission

from the fraction of the source plane that is quadruply imaged.

Observations of J0901 paint a picture of a messy, but typical, starburst galaxy at high

redshift. While optical spectra suggest the presence of an AGN in J0901 (Hainline et al.

2009; Diehl et al. 2009), Fadely et al. (2010) find that the contribution of the AGN to the

mid-IR flux is not significant. Moreover, strong polycyclic aromatic hydrocarbon (PAH)

features suggest vigorous star-formation activity, and J0901 is, indeed, UV-bright. At the

same time, the large dust content of J0901, combined with this star-formation, classify

J0901 as a ULIRG. This implies that J0901 has a patchy distribution of dust, with some

sightlines being dust-obscured and others allowing us to see the optical and UV light from

star-formation and the AGN. Recent work (Rhoads et al. 2014) suggests that J0901 is a
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Figure 3.1: Optical imaging of J0901. North is upwards and east is leftwards. Left: SDSS
imaging. Image is one arcminute on each side and is taken from Diehl et al. (2009). Right:
HST imaging using filters F814W, F606W, and F475W. The image is 0.5 arcminute on
each side.

rotating disk with a rotation speed of 120 ± 7 km s−1.

In addition to J0901, we have discoverd another object, hereafter Sith,1 being lensed by

the same group of galaxies, although it appears much fainter than J0901 (see Fig. 3.2). Sith

is quadruply lensed, and the position of Sith in the source plane is such that the positions of

the lensed images of Sith are complementary to those of J0901. While the three more highly

magnified images of J0901 lie towards the east in a north-south direction, the images of Sith

lie towards the west in a north-south direction. Because constraints on the lens model are

best in the vicinity of the images, the azimuthally well-sampled distribution of lensed images

is certainly fortuitous. Unfortunately, given its slightly larger separation between images

and its color (it is brighter in the IR), Sith may be located at a higher redshift than J0901

is. This redshift difference adds a layer of complexity to the lens modeling, as Sith’s redshift

is unknown and pixsrc is not yet able to optimize both the lens model and the difference in

source redshift simultaneously.

1Because of J0901’s contrasting brightness, we refer to this object as Sith, a reference to the antagonists
in Star Wars, who are dedicated to the “dark” side.
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Figure 3.2: False-color imaging of “Sith” using filters F475W, F160W, and F110W. North
is upwards and east is leftwards. The lensed images of Sith are outlined in white boxes.
J0901 and Sith are in a complementary lens configuration, such that the long arc of J0901
and the three more highly magnified images of Sith are on opposite sides of the lens. The
image is 0.35′ on each side.
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3.3 Data

Sharon et al. (2014) have observed CO(3–2) and CO(1–0) emission from J0901 using the

Institut de Radioastronomie Millimétrique (IRAM) Plateau de Bure Interferometer (PdBI)

and the Very Large Array (VLA), respectively. Both of these instruments are arrays of

radio telescopes and are capable of performing continuum or spectral line observations. In

the former case, the signal from the source is averaged over the bandwidth of the receiver,

and a two-dimensional map of the sky surface brightness can be created. In the latter case,

the signal is measured over many channels across the bandwidth of the receiver, allowing

the line profile to be measured. As we are observing CO lines here, the data are three-

dimensional data cubes. Two axes are the normal spatial dimensions, and the third

corresponds to wavelength. Because we are observing a single spectral line and objects

moving towards/away from us are blueshifted/redshifted, the wavelength corresponds to

the velocity of the light emitter. Fig. 3.3 shows the integrated velocity maps. As mentioned

in §1.3, the CO observations give information about the internal state of the ISM. A great

deal can be done with the data as they are, but more can be learned through a proper

lensing analysis.

Sharon et al. (2014) have also obtained observations of the Hα and [NII] lines using

the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the

Very Large Telescope (VLT). The Hα emission gives information about the SFR, while the

[NII]/Hα ratio gives details about the AGN and metallicity. Fig. 3.4 shows the integrated

maps for these two emission lines. The CO and Hα data can be combined to constrain

the Kennicutt–Schmidt law at high redshifts. Existing Hubble Space Telescope (HST )

WFC3 data are especially important in identifying the many galaxies in the vicinity of the

lensed images and constraining their positions down to sub-pixel precision, greatly aiding

the lensing analysis. J0901 has been observed using the F475W, F606W, F814W, F110W,

and F160W filters.
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Figure 3.3: Integrated CO(1–0) (left) and CO(3–2) (right) intensity maps (with primary
beam correction applied). Contours are multiples of ±2σ, where negative contours are
dashed. σ = 0.68 mJy beam−1 for the CO(1–0) map and σ = 2.89 mJy beam−1 for the
CO(3–2) map. Image taken from Sharon et al. (2014).

Figure 3.4: Integrated Hα (left) and [NII ](right) intensity maps of J0901. Due to SINFONI’s
small field of view, the three images of J0901 were observed separately and have been
smoothed to the same PSF, shown in the bottom left of the panels. Contours are multiples
of ±3σ, where negative contours are dashed. σ = 6.34 × 10−16 erg s−1 cm−2 µm−1. Image
taken from Sharon et al. (2014).
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3.4 Lens modeling

From the SDSS imaging, it can be seen that J0901 is lensed by a group of galaxies. It

appears as though there is a single luminous red galaxy (LRG) at redshift 0.35 responsible

for the bulk of the lensing. Examining the HST imaging reveals that the central LRG is

actually two merging galaxies. Although these two galaxies could be modeled individually,

we will model them as a single component. This approximation is appropriate if the mass

distribution of the dark matter halo dominates the masses of the individual galaxy subhalos

and/or the galaxies themselves, and this is what we find.

There are many more galaxies in the field of view that will need to be modeled individ-

ually. Although there are no redshift estimates for these additional galaxies, HST imaging

suggests that they have similar colors and luminosities. Because, for a fixed redshift, early-

type galaxies in overdense regions exhibit a tight correlation between brightness and color

(see, e.g., Gladders & Yee 2000), we assume that that these satellite galaxies are all apart

of the same group. We therefore assume that the main lensing galaxies and the satellites

all lie in one plane, simplifying the lensing analysis.

HST data were not available at the start of the lens modeling. For this reason, the CO(3–

2) line emission was used to constrain the lens model. We primarily used the integrated

CO(3–2) map, as discussed below, and the best lens model was then applied to the other

data sets.

As mentioned above, the CO data were obtained using radio interferometers. These

arrays of telescopes do not directly observe emission from astronomical objects. Instead,

they make measurements of the two-dimensional Fourier transform of the surface brightness

on the sky. A Högbom CLEAN algorithm is used to reconstruct a model of the true surface

brightness. Given the sampling of the Fourier components, we expect that we have not

resolved out any extended structure or surface brightness, which is important for analyzing

the gravitationally lensed images. The details of the data reduction can be found in Sharon

(2013).

A complication of using interferometric data, however, is that the noise in the CO map

will be correlated. As Riechers et al. (2008) note, the lensed images cannot be fit down
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to the RMS noise level. Instead, the authors note that artificially increasing the standard

deviation of the noise by a factor that depends on the noise correlation length scale leads to

lens model residuals that have the same noise characteristics. Specifically, the variance of

the noise is increased by the inverse of the fraction of pixels that are statistically independent

of one another. We also scale the noise, using trial and error, so that the noise correlation

length scale in the model residuals matches that in the data.2

Lastly, for exploring the parameter space and creating PBSRs, we use the fully adaptive

grid presented in Chapter 2, as it appears to produce less noise in the χ2 surface. Because

there are not multiple, strong peaks of emission (except for the optical HST data; see

Fig. 3.7 below), we use curvature regularization to impose priors on how we expect the

source to appear, with the regularization strength being optimized for every lens model.

3.4.1 A simple model

As mentioned in Chapter 2, observations suggest that the mass distributions of lensed

systems are, on average, close to isothermal (Kronawitter et al. 2000; Koopmans et al.

2009; Treu 2010). Thus, as a first attempt, we treat the halo and the whole group of

galaxies as a single SIE, and we will refer to this lens model as Q. Because measurements

of the Einstein radius and the mass enclosed within this radius (the two quantities are not

independent; see Eq. 1.7) are robust against changes in the lens model, the SIE provides

a useful starting point. However, as we begin to account for the satellites, the notion of a

single Einstein radius for the lens becomes less meaningful, as each individual satellite will

have its own Einstein radius.

The single SIE model prefers a large ellipticity for the halo. Although this is possible,

it is important to remember that inclusion of the satellite galaxies and/or their subhalos

could alter this result significantly. The PBSR and model images are shown for the best fit

SIE lens model in Fig. 3.5. Overplotted on the figures are the caustics and critical curves

in the source plane and image plane, respectively. As can be seen, J0901 lies on a caustic,

between two cusps, in what is known as a fold configuration.

As noted in §1.2, caustics separate regions of different image multiplicities. Specifically,

2For clarification, the data remain unaltered; only the 1-σ noise level that pixsrc is given is changed.
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the number of lensed images decreases or increases by two every time a caustic is traversed.

Because of J0901’s extended structure, certain regions of J0901, as mentioned before, will

be doubly imaged, while others will be quadruply imaged. This implies that only half of

the four images will contain surface brightness emanating from all of J0901. Indeed, the

northern image is actually two merging images that contain emission from only certain

regions of J0901.

The source reconstruction shows two peaks in the surface brightness. A single source

could possibly have such a morphology, or it could be that the “source” is really two galaxies

that may or may not be gravitationally interacting with one another. Another possiblility

is that the lens model is simply not adequate, and that at least two lensed images are not

mapping to the same region in the source plane. These three possibilities will significantly

affect our scientific conclusions, and so we turn to more complex lens models to differentiate

between them.

As noted in Chapter 2, the lensing analysis is done in a Bayesian framework, and the

evidence values calculated are not the true Bayesian evidence but correspond to maxima of

the posterior probability distribution of the lens model parameters. The Bayesian evidence

could be obtained, for a given class of lens models, by marginalizing over all lens model

parameters, but this is a lengthy process. Instead, we interpret the quantity given by −2 ln E

as a χ2 with some unknown offset. This offset is uninteresting, however, since we are only

concerned with differences in the χ2 between models.

Q yields ln E = 72, 570, which we let correspond to χ2 = 0. That is, Q will serve as a

reference χ2. For example, ∆χ2
QZ would refer to the difference in χ2 between models Q and

Z.

3.4.2 Modeling the satellites

To try and account for the effect of these satellites while not drastically increasing the

number of lens model parameters, we can use the observed luminosities of the galaxies to

constrain their relative masses. The Faber-Jackson (FJ) relation (Faber & Jackson 1976)

is an empirical power law that relates the luminosities of elliptical galaxies to their central
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Figure 3.5: Pixel-based source reconstruction of integrated CO(3–2) emission from J0901
using model Q: a single SIE. From top left, clockwise: image data, image model, recon-
structed source, model residuals. Critical curves are overplotted on image plane figures,
and caustics are overplotted on the reconstructed source. Intensity units are Jy beam−1.
The beam here is an elliptical Gaussian, with major and minor axes of 1.33” and 0.985” at
FWHM. The major axis is positioned 41.1◦ east of north, and north is upwards.
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velocity dispersions. The nominal relation has the form

L ∝ σγ , (3.1)

where L is the luminosity over some range of wavelengths, σ is the velocity dispersion,

and γ is a constant that is observed to be approximately four. The FJ relation is actually

the projection of a more general scaling relation that holds for elliptical galaxies, known

as the fundamental plane, which can be motivated analytically for gravitationally bound,

virialized systems (Djorgovski et al. 1988; Dressler et al. 1987) and relates the luminosity,

size, and central velocity dispersion to one another.

Looking at Eq. 1.11, we see that the Einstein radius for a SIS is proportional to the

square of the velocity dispersion. Combining this relation with 3.1, we have that

θE ∝ σ2 ∝ L
2
γ ≈ L

1
2 . (3.2)

It is observed, however, that there is significant scatter in the FJ relation. Some of

the scatter is a projection effect, as the FJ relation is not a perfectly edge-on view of the

fundamental plane. Still, the exact origins of the scatter are unknown, and there have

been several observed correlations that aid in refining galaxy evolution models to match the

observed FJ relation. For example, at fixed luminosity, velocity dispersion increases with age

of the galaxy (Bernardi et al. 2005). On the other hand, for a given velocity dispersion, the

luminosity decreases with age (Gallazzi et al. 2006). In these cases, however, the evolution of

luminosity with time alone cannot explain the observed scatter. We also note that although

there is debate concerning the effect of environment, there is some evidence that early-type

galaxies in denser populations exhibit a smaller scatter in the FJ relation than do those in

less densely populated environments (Focardi & Malavasi 2012).

Nevertheless, the relative strengths of the satellite subhalos can be constrained. For this

lens model (hereafter, R) these relative strengths are not fixed, but instead, we penalize

models whose subhalo strengths deviate from the nominal values predicted by the FJ relation

by introducing an additional χ2 term:

χ2
FJ =

(θ − θFJ)2

σ2
FJ

, (3.3)



75

50510
R.A. [arcsec]

10

5

0

5

10

15

De
c.

 [a
rc

se
c]

0.009

0.000

0.009

0.018

0.027

0.036

0.045

0.054

0.063

50510
R.A. [arcsec]

10

5

0

5

10

15

De
c.

 [a
rc

se
c]

0.0072

0.0000

0.0072

0.0144

0.0216

0.0288

0.0360

0.0432

0.0504

0.0576

50510
R.A. [arcsec]

10

5

0

5

10

15

De
c.

 [a
rc

se
c]

0.0144

0.0108

0.0072

0.0036

0.0000

0.0036

0.0072

0.0108

0.0144

0.0180

21012
R.A. [arcsec]

3

2

1

0

1

2

3

4

5

De
c.

 [a
rc

se
c]

0.030

0.015

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

Figure 3.6: Similar to Fig. 3.5, except the fit is performed using model R.

where θ is the strength of a particular subhalo in the model, θFJ is the nominal strength,

and σFJ is set by the observed scatter in the FJ relation (Gallazzi et al. 2006).

In another effort to decrease the overall number of lens model parameters, the positions of

the perturbing satellites are fixed at the centroids of their light profiles. Because dark matter

particles do not feel all forces felt by baryons, such as those due to ram pressure, the centroids

of the two mass components may not coincide. Nevertheless, it is a useful approximation

in limiting the number of free parameters. The model images and the reconstructed source

for the best-fit lens model are shown in Fig. 3.6.
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Qualitatively, the model images and the source do not seem to have changed significantly.

The two peaks in the source may, arguably, be more pronounced for R. Quantitatively as

well, the Bayesian evidence has not changed significantly, as ∆χ2
QR = −204. Although there

is a slight improvement, it is not statistically significant. As can be seen from Fig. 3.8, the

fluctuations in the χ2 surface, primarily due to discreteness noise discussed in Chapter 2,

can be on the order several 100 units alone. Because these χ2 are actually maxima of

the posterior probability distribution, a small decrease in the χ2 compared to the intrinsic

fluctuations should be interpreted cautiously.

3.4.3 Letting the subhalos roam free

Pre-screening the lens models

The lack of significant improvement from Q to R may be because the nominal lens model

inferred from the Faber-Jackson relation does not adequately describe this group of galaxies.

Removing the relative constraints between subhalos allows for a more thorough search of the

lens model parameter space. However, this comes at the cost of increased computational

effort. With the number of input data pixels and the resulting number of source pixels

both on the order of 103, it can take minutes on the central/graphics processing units

(CPUs/GPUs) of modern computers to perform a single PBSR. Although this does not seem

like a long time, many thousands of PBSRs will be performed during a lensing analysis. For

example, to explore a three-dimensional parameter space, with 100 steps in each parameter

would take 1003 s = 12 days.

To combat the increase in runtime, we pre-screen each lens model that is tried. We

carefully and conservatively mask each lensed image with separate masks. For every image,

the pixels inside the mask and the boundary of the mask itself are mapped back to the

source plane. If there were no instrumental PSF, if every image contained flux from all

of J0901, and if the image masking were perfect, then there would be a nearly complete

overlap of the ray-traced images. Although this is not reality, we can compute the fractional

overlap for every pair of lensed images and impose penalties on the model for deviations

from complete overlap.
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Alternatively, we can use the criterion that there must be some, however small, amount

of overlap between all pairs of images to quickly reject models that fail the test. Models

that pass will undergo a more computationally expensive PSBR and be ranked using the

Bayesian evidence. An example of the effectiveness of such a prior is shown in the next

section.

We use several other methods of rejecting lens models as well. Typically, the images of

a lensed object are larger than the un-lensed object itself.3 So, if the area of the union of all

ray-traced images exceeds some threshold, then an additional penalty can be introduced.

However, this should be used only as a relatively weak prior and monitored carefully.

We may also expect that the un-lensed object will have modest ellipticity, especially

if there is prior information from other astrophysical observations or inferences. Galaxies

inclined with respect to the plane of the sky do appear elliptical, but we can quickly reject

models if the ellipticity of the ray-traced images exceeds some large threshold. For example,

if the major:minor axis ratio of the union of all ray-traced images is larger than ∼ 10, models

can be safely rejected.

Constraining the galaxies in front of the southern image

From Fig. 3.1 we can see that there is a galaxy (hereafter, G1) lying in front of the southern

image of J0901. Although G1 is not the most massive in the group, its proximity to the

southern image significantly perturbs the morphology of the arc. The curvature of the

arc due to the macromodel (the main lensing halo) is such that the center of curvature is

northwest of the image. G1 deflects the image slightly so that there is a small, local curvature

in the opposite direction. Furthermore, G1 will contribute an additional magnification boost

to the southern image. All these effects make characterizing the mass profile of G1 that

much more crucial but also achievable.

The IR camera and the high resolution (0.05 arcsec/pixel) UVIS camera allow for the

properties of the perturber to be well-constrained. The F475W filter, the bluest of the

three filters used for HST imaging, captures a number of emission peaks, or “knots” (see

Fig. 3.7). Also visible are the LRGs and the satellite galaxies that comprise the lens itself.

3This may not be the case for every lensed image for complex, multi-component lens models.
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We have used GALFIT (Peng et al. 2010) to subtract light that is contaminating the lensed

images of J0901. We use careful pixel masking and inspection by eye to subtract G1, whose

proximity to the southern image complicates its subtraction.

Because of the high resolution of the UVIS camera, J0901 fits in a 350 by 500 pixel box.

After masking pixels to include only those that are necessary for the lensing analysis, more

than 60,000 pixels remain. Because the PBSR requires linearly and non-linearly solving

matrix equations, using all the information in the data becomes impractical with regard to

computational time and memory availability.

Instead, we use the positions of the star-forming regions in the F475W filter to try and

constrain the profile of G1. Because the southern and western images are complete images

of J0901, a star-forming knot that appears in one image is likely to appear in the other. In

Fig. 3.7, we have identified matching pairs of knots.

Each outlined knot is ray-traced to the source plane, and the amount of overlap between

pairs of knots is calculated as described above. Models can be rejected completely if there

is no overlap at all between a pair of knots and a χ2 can be computed for the remaining

models. Or, if every pair of knots has some degree of overlap, a PBSR is performed on a

lower resolution data set. This approach allows some of the information from the higher

resolution data sets still to be used, while saving computational time.

To show the effectiveness of pre-screening lens models using only position information

from the star-forming knots, in Fig. 3.8 we present one-dimensional cuts of the χ2 surface

computed using only position information and using the more accurate PBSR. As mentioned

before, data from the UVIS camera are too high in resolution to allow a search of parameter

space; we instead use the IR data. We see that the shape of the position χ2 curve is similar

to that of the true χ2 curve, in that they both achieve a minimum in roughly the same

region of parameters space. The position χ2 is much broader, or less constraining, than the

true χ2.

Successes and shortcomings of the model

Results from this more complex model, S, are shown in Fig. 3.10. The double peak feature

is less prominent here. There is, however, an asymmetry in the surface brightness. This



79

Figure 3.7: HST imaging of the southern (top) and western (bottom) images of J0901 using
the F475W filter. Peaks in emission are outlined, and like colored pixel masks in the two
panels correspond to one another. (Some color are used more than once.)



80

Figure 3.8: χ2 curves for the position of G1, the perturbing satellite galaxy on the the
southern image of J0901. The dashed, blue curves correspond to the χ2 computed using
only position information about the emission knots seen in the HST F475W filter. The
solid, red curves correspond to the χ2 as computed after performing a PBSR on data
obtained using the HST F110W filter. Note that the axis for the PBSR χ2 is units of 103.
The numbers are large here due to the large number of image and source pixels. As only
differences in χ2 here are important, vertical offsets in the χ2 are not meaningful.

may be a real feature, or once again, it may represent an inadequacy in the lens model.

Regardless, the fit has significantly improved, as this model gives ∆χ2
QS = −20, 442. In

Fig. 3.11, we show the model and PBSR for IR imaging of J0901. The source is compact

and singly peaked, while providing a good fit to the data.

From Eq. 3.2, we saw that the FJ relation predicts a correlation between the luminosities

and central velocity dispersions of elliptical galaxies. In Fig. 3.9, we compare the recovered

velocity dispersion to the observed magnitude in the HST WFC3 F606W filter for each

satellite galaxy. We also overplot the FJ relation with the observed scatter. The brighter

galaxies tend to lie above the nominal FJ relation, while there are several fainter galaxies

that lie significantly below the relation. Some of these galaxies, especially those that lie

very close to one another, may be degenerate in their subhalo masses. This degeneracy

could account for groups of galaxies, such as the three galaxies which overlap (on the sky)

towards the north, in which one or more galaxies lie above the relation, while others lie

below. Still, some of the fainter galaxies lie more than an Einstein radius away from the

center of the lens and may not be very well constrained. A full lens model parameter space

exploration will resolve these issues.

Another source of error in Fig. 3.9 lies in the estimations of the observed magnitudes.

We have used Source Extractor (SExtractor), which uses the flux and size of a galaxy, as
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Figure 3.9: Relation between velocity dispersion (recovered using model S) and absolute
magnitude (measured in the F606W filter). The solid black line marks the nominal FJ
relation with the 2–σ uncertainty band denoted by the red, dashed lines. Uncertainties on
the magnitudes, as determined by SExtractor, are marked on the data points. However,
these uncertainties are too small to see, with the possible exception of the faintest satellite
galaxy. h70 = 0.70 here refers to the dimensionless Hubble parameter.

well as the instrument response, to compute its magnitude (Bertin & Arnouts 1996). The

algorithms used for computing the magnitudes are known to be biased and may exclude

6–10% of the flux for Gaussian PSFs.4 Furthermore, the error estimates do not take into

account errors due to inaccurate background modeling or blending of multiple galaxies in

crowded fields. The errors on the magnitudes in Fig. 3.9 only represent uncertainties due

to the flux and size of the galaxy, noise in the data, and the instrument response.

After substracting emission from the foreground galaxies and re-examining the HST

imaging, there appears to be faint emission (hereafter, J5) in the northern region of J0901’s

field (see Fig. 3.12). Given the S/N of the CO data, J5 is not expected to be seen in these

data, but the lens model does predict an image in this region. Although the position of the

4See https://www.astromatic.net/pubsvn/software/sextractor/trunk/doc/sextractor.pdf
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Figure 3.10: Similar to Fig. 3.5, except the fit is performed using model S.
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Figure 3.11: Similar to Fig. 3.5, except the fit is performed using model S and applied to
data obtained using the HST F110W filter. The surface brightness values are in units of
4.12 µJy arcsec−2.
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Figure 3.12: HST F475W imaging of J0901, showing a possible fifth image of J0901 in the
white box. The image is approximately 0.35′ on each side.

image of J5 that the model predicts does not line up exactly with the image seen in the

optical, its presence is promising. It is further evidence that the lens is not dominated by a

single halo and that the group of galaxies in the northern region have significant subhalos

of their own. The incorrect positioning of J5 that S predicts is, on the other hand, a clue

that the lens model is not adequate in this region.

3.4.4 Discussion of models

For Q and R, the southern and western images map to the same regions in the source plane,

while the northern image maps elsewhere. This gives rise to the double peaked nature of
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the PBSRs. The PBSR from S, however, does a better job mapping all three images to

the same region in the source plane, allowing for a single peak in the reconstructed surface

brightness. Because of the priors placed on the source (that the second derivative of the

surface brightness should not be large), this decrease in surface brightenss fluctuations leads

to a better model performance. Additionally, because S yields a smaller total integrated

surface brightness in the source plane, it predicts a higher overall magnification factor for

J0901. Indeed, Q, R, and S yield magnification factors of 5.3, 7.3, and 14.1, respectively.

Because S performs the best, we will use it exclusively when performing PBSRs for

the remaining data sets and, hereafter, unless otherwise noted, any lens model refers to

S. S was constrained primarily using the integrated CO(3–2) line map, but there was a

significant contribution from the optical data as well.

Although S seems to fit the data well, there still may be deficiencies in the lens model.

Regions of the source plane that are highly magnified will be more distorted than less

magnified regions. It is likely that highly magnified images will stretch across larger regions

of the sky and, hence, may be more sensitive to errors in the lens model. Looking at a source

plane magnification map of J0901, shown in Fig. 3.13, we see find the well-known result that

regions inside the diamond-shaped tangential caustic are more highly magnified than regions

outside. In the case of J0901, the highly magnified region inside the caustic corresponds to

the northern image, which is actually composed of two merging images. While the southern

and western images contain information about all of J0901, the northern image only contains

light from the small region inside the caustic, and it requires a more accurate lens model

for performing a PBSR. Thus, although the northern image would allow for a better source

plane resolution (over a small region of J0901), we will neglect the northern image for the

purpose of reconstructing J0901 and focus on the southern and western images.

3.5 Applying the lens model

Using the best lens model from §3.4.3, we reconstruct J0901 as seen in its CO(3–2), CO(1–

0), Hα, and [NII] emission, shown in Fig. 3.14–3.17, and find magnification factors of 13.5,

13.2, 10.9, and 10.5, respectively. To be certain that we are making fair comparisons across
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Figure 3.13: Source-plane magnification map for the lens of J0901, computed using model
S. The smaller, diamond-shaped caustic stretching from aproximately (0′′,-1′′) to (-1′′,0′′)
corresponds to G1, the perturbing galaxy on the southern image.
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Figure 3.14: Pixel-based source reconstruction of integrated CO(3–2) emission from J0901
using model S, applied to the southern and western images. From top left, clockwise: image
data, image model, reconstructed source, model residuals. Critical curves are overplotted
on image plane figures, and caustics are overplotted on the reconstructed source. Intensity
units are Jy beam−1. The beam here is an elliptical Gaussian, with major and minor axes
of 1.33′′ and 0.985′′ at FWHM. The major axis is positioned 41.1◦ east of north, and north
is upwards.

all data sets, we have smoothed all of them to match the lowest resolution data, which is

the CO(3–2) map. Differences in the surface brightness distributions and the S/N of the

data will lead to different regularization strengths. Because the source plane regularization

depends on a number of factors, including regularization, these differences will, in turn, lead

to varying source plane resolutions across the PBSRs. However, matching the resolution of

the data sets will minimize these variations.

We have also applied the lens model to the individual velocity channels of both CO

lines. In Fig. 3.18, we show the reconstructed velocity maps for the CO(1–0) and CO(3–2)

emission lines. There are clear velocity gradients across both maps, suggesting that J0901
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Figure 3.15: Similar to Fig. 3.14 but for the integrated CO(1–0) map.
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Figure 3.16: Similar to Fig. 3.14 but for the integrated Hα map.
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Figure 3.17: Similar to Fig. 3.14 but for the integrated [NII]map.
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Figure 3.18: Source plane velocity maps of CO(1–0) (left) and CO(3–2) (right) emission
from J0901. The lens model was constrained using the integrated CO(3–2) map and applied
to the individual velocity channels. The velocity gradient across the source suggests that
J0901 is a rotating disk galaxy. The “beam” plotted in the bottom left of the panels are
not meaningful. Images taken from Sharon et al. (2014).

is a rotating disk galaxy. From the velocity maps, we estimate an enclosed dynamical mass

of 5 × 1011M⊙ within a radius of 3.2 kpc. In addition, as carbon monoxide is an excellent

tracer of molecular hydrogen, we use a CO-to-H2 conversion factor appropriate for ULIRGs

(see, e.g., Bolatto et al. 2013) and the CO(1–0) PBSR to find a gas mass fraction of 25% for

J0901, consistent with what has been observed in other high-redshift star-forming galaxies

(Tacconi et al. 2010). Joint analysis of de-lensed CO, Hα, and [NII] properties will be

featured in Sharon et al. (2014), based on Chelsea Sharon’s thesis research, on which I will

be a coauthor.

3.6 Conclusions

3.6.1 Reconstructed source resolution

As noted in Chapter 2, gravitational lensing magnifies certain regions of extended sources

more than others. For this reason, the effective resolution in the source plane will vary across

the reconstructed source. Here, we have smoothed the data sets to make a fair comparison

across all wavelenghts. However, we have made efforts to try to characterize an effective

PSF for the PBSR. The details of the theoretical approach are given in the Appendix.
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3.6.2 Future direction

Model S adequately predicts the southern and western images of J0901. Using the various

data sets and the individual velocity channels to constrain the lens model simultaneously,

we will be able to better constrain the lens model, so that it can be applied to the northern

image as well. We can then determine if J5 is truly a fifth image of J0901; if it is a

distinct object, we can look for other images of it in the field of view. Additionally, with

modifications to the code to handle multiple sources at unknown redshifts, Sith will provide

useful and complementary constraints on the lens model, breaking degeneracies between the

masses of the satellite subhalos. We will also be able to study the lensed Sith and determine

its redshift using only the effects of gravitational lensing.

After we have characterized the source PSFs (see the appendix), we will be able to

make comparisons across the various data sets without the need for smoothing them to the

same resolution. This will allow us to take advantage of the information lost in the higher

resolution data sets. Finally, we will also use our PBSRs to constrain the spatially-resolved,

Kennicutt–Schmidt law at high redshifts, which will appear in Sharon et al. (2014).
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Chapter 4

A lens model for the CLULESS ring

4.1 Introduction

Hundreds of gravitationally lensed systems are known, but only a small fraction are nearly

complete or complete Einstein rings. These rare events are of interest for a number of

reasons. First, the diameters of such rings provide a direct probe of the mass contained

within. Because of the importance of measuring the masses of dark and luminous matter,

astronomers have invested much effort in discovering such systems. With the release of

the SDSS, lens searches, such as the SLACS and the CASSOWARY, have contributed to a

growing catalogue of mostly galaxy-galaxy lenses, including some that produce partial and

full Einstein rings. However, classifying Einstein rings is not a well-defined task, as many

of them are incomplete with variations in surface brightness along the arc. Nevertheless,

to indicate the current state of lens surveys, we note that as of 2010, approximately 200

galaxy-galaxy lenses have been discovered (Treu 2010). Second, because constraints on lens

models are strongest near the images themselves, Einstein rings provide information over

all 360◦. Degeneracies between the light profile of the source and the mass profile of the lens

can be broken over all angles. Determining the shape of the dark matter halos, assessing

the presence of substructure, and disentangling luminous from dark mass are all possible

benefits of observing Einstein rings.

4.2 The rings

The CLUster and LEnsed Supernova Survey (CLULESS) is an ongoing effort to find super-

novae in and behind galaxy clusters (Matheson et al. 2009). Using the Magellan IMACS

imager and spectrograph, the survey expects to image and obtain spectroscopy for a large
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number of SNe, including lensed SNe, in the optical and infrared. The survey aims to

constrain SN models, as well as mass models for the galaxy clusters. In the field of view

of the CLULESS, my collaborators have serendipitously discovered a gravitationally lensed

system (see Fig. 4.1), which we refer to as CLULESS-RING-1 (CR1) (Jha et al. 2014). The

lensed images are actually due to two objects that have been gravitationally lensed and have

strikingly different colors. Because the redshifts of the objects are unknown, it is uncertain

whether they are physically interacting with one another. We refer to the redder of the

two lensed objects as CRR and to the bluer object as CRB. CRR appears to be in a cusp

configuration (see Chapter 2 for a description of lensing configurations). CRB, on the other

hand, forms a nearly complete Einstein ring with a large Einstein radius of approximately

10′′ at maximum, making it one of the largest gravitationally lensed systems known. The

lens itself consists of a massive cluster elliptical galaxy, along with of order one dozen other

early-type galaxies.

For spherical lenses and compact sources, Einstein rings can be formed if the source and

lens are well-aligned. As a lens gains ellipticity, the ring quickly begins to split into four

distinct images. If we assume that the lens potential is dominated by a single mass profile,

then from visual inspection of the rings, we see that the lens has significant ellipticity. Yet,

the images of CRB form a nearly complete Einstein ring with little variation in surface

brightness over the ring. This implies that CRB is large enough to cover the caustic in the

source plane. Thus, we expect that CRB will likely provide stronger constraints on the lens

model.

There are several additional interesting features of the lensed images. First, many of

the satellite galaxies lie on or very near the rings. This complicates the lens modeling, but

it also opens the possibility of finding interesting structure in these more highly magnified

regions. Second, the northern arc suggests an interesting relationship between CRR and

CRB. Where the northern image of CRR peaks, there is a corresponding decrease in emission

in the image of CRB. A proper lensing analysis will reveal the exact relationship between

the two objects.



95

Figure 4.1: Magellan MegaCam (optical) and FourStar (infrared) grH, gri, and Y JH color
composite images of CLULESS-RING-1. North is up, and east is to the left.
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4.3 Lens model

Although we have obtained imaging in several bands, we will first focus on H-band imaging

of (primarily) CRR. Because the lensed images cover a smaller area on the sky and extend

over a smaller angle, the lens model will be less constrained than if we were to use imaging

of CRB. However, the results from analyzing CRR will provide a preliminary lens model

that can be used as a starting point for modeling CRB. We will refer to the northern image

of CRR as CRR-1 and to the lower arc simply as the arc.

A complication of cluster lenses is that there are many galaxies in the field, and in

this case, several directly on top of the lensed images. We use GALFIT to subtract such

galaxies manually. This may introduce error or bias in to the lens modeling that we are not

taking into account at the moment.

Besides many smaller galaxies, there is a relatively large galaxy on the western portion

of the arc, whose light is contaminating the arc. Because subtracting the perturbing galaxy

is difficult in this region, we do not include this region of the arc in the initial lensing

analysis. After a preliminary lens model is reached, the resulting image model can be used

iteratively to subtract the perturbing galaxy more accurately.

Lastly, as was the case with J0901, we use the fully adaptive grid to perform PBSRs.

Because the data do not show multiple, strong peaks of emission, we use curvature regular-

ization to enforce the priors that we expect the source’s surface brightness to be smoothly

varying.

4.3.1 Singular isothermal ellipsoid

As noted in previous chapters, observations suggest that the mass distributions of lensed

systems are, on average, close to isothermal (Kronawitter et al. 2000; Koopmans et al. 2009;

Treu 2010). Thus, we begin by modeling the entire lens by a singular isothermal ellipsoid,

which neglects the individual subhalos of the satellite galaxies, and refer to this model as

model T . T should be an accurate representation of the lens if its mass is dominated by

the main halo.

Fig. 4.2 shows results from the PBSR. The recovered SIE has an Einstein radius of 8.0′′
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Figure 4.2: Pixel-based source reconstruction of CRR using the SIE model, T . From top
left, clockwise: image data, model images, reconstructed source, model residuals.

along the major axis, a major:minor axis ratio of 1.7, and a position angle of the major axis

of 17◦. These parameters seem reasonable for the orientation and shape of the arc. The

model residuals, on the other hand, show sharp residuals near the bottom of the arc, which

coincide with the position of one of the cluster galaxies. The residuals are most likely due to

improper image subtraction of that particular perturber. The reconstructed source lies near

a cusp of the caustic, which is expected from the morphology of the lensed images. It has

a somewhat patchy structure which is not uncommon for high-redshift galaxies (Conselice

et al. 2008). The Bayesian evidence calculated for model T is -71,700. However, as we

did in Chapter 3, we will let the χ2 for this simple model correspond to zero and report

differences in χ2 relative to model T henceforth.

4.3.2 Including the satellite galaxies

To try and account for the effects of the satellite galaxies while minimizing the number of

extra lens model parameters we add to the model, we follow our strategy from Chapter 3.
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Figure 4.3: Pixel-based source reconstruction of CRR using the multi-component model, U .
From top left, clockwise: image data, model images, model residuals, reconstructed source.

In this model U , we add 21 satellite galaxies to the lens model, which all lie within roughly

two Einstein radii from the main lensing galaxy. Because of the large number of galaxies in

this model, we fix the positions of these subhalos to those of their luminous counterparts

and use the FJ relation to constrain their relative lensing strengths. Unlike with J0901,

however, we do not impose an additional χ2 term for models that deviate from the nominal

FJ relation. Instead, we fix the relative strengths and only vary the normalization. Because

we treat all the satellites as SISs, this adds only one additional parameter to the lens model.

Fig. 4.2 shows results from the PBSR. The model residuals have not changed signifi-

cantly, as there are still strong residuals near the bottom of the southern arc, which likely

correspond to the imperfect image subtraction of a foreground galaxy. The patchiness of

the source’s surface brightness distribution that is more evident in this reconstruction is

most likely a result of the simple treatment of the satellite galaxies. A significant difference

between models T and U is that the level of noise in the PBSR for model U has decreased.

The peak S/N (for the source) from model T is 12, while the peak S/N from model U has
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increased to 18, showing an improvement in the quality of the reconstruction. The Bayesian

evidence has improved moderately as well: ∆χ2
T U = −526. However, as noted in previous

chapters, these corresponding Bayesian evidence values are actually maxima of the poste-

rior probability distributions. Computing the true Bayesian evidence would require more

computationally expensive methods.

4.4 Discussion and future direction

The results from this analysis are promising. The model residuals appear to be noise-

dominated (excluding features related improper image subtraction), but the patchiness of

the PBSR across the caustic may be an artificial. Going forward we will allow for more

complex lens models, varying the subhalos individually and allowing their functional forms

to differ from an SIS. With respect to the global model, depending on the data, it may be

preferable to separate the lens into luminous and dark components. Including imaging from

additional filters and analyzing them simultaneously, we will include CRB in the lensing

analysis. This will undoubtedly shed light on the interaction between the two components.

Additionally, we have applied for and received time for optical and IR imaging of CR1

in HST Cycle 22. Given the higher spatial resolution HST offers and its sensitivity, we

will be able to resolve small-scale structure in CR1 and CR2, as well as identify further

(possible) images of CR1 or other objects.
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Chapter 5

Conclusions

Gravitational lensing provides a means for studying individual high-redshift galaxies in

detail. Proper interpretation of the data requires modeling the lens and source correctly.

This is a challenging task with many observational and model parameters. I present a

new software package, called pixsrc, which works in conjunction with the existing software

package lensmodel and uses established and new techniques to reconstruct gravitationally

lensed objects pixel by pixel. Such pixel-based source reconstruction (PBSR) algorithms

have begun to become widely used in the literature (see, e.g., Vegetti & Koopmans 2009;

Suyu et al. 2006; Dye & Warren 2005). I therefore use test data for four canonical lens

configurations to explore systematic and statistical uncertainties associated with gridding,

source regularization, interpolation errors, noise, and telescope pointing.

Specifically, I compare two gridding schemes in the source plane: a fully adaptive grid

that follows the lens mapping but is irregular, and an adaptive Cartesian grid that fol-

lows the magnification less closely. I also consider regularization schemes that minimize

derivatives of the source (using two finite difference methods) and introduce a scheme that

minimizes deviations from an analytic source profile.

There are issues with the methodology that could potentially be sources of bias or error.

I find that, in general, the χ2 surface is not smooth, but is bumpy, due to what I call “dis-

creteness noise”; careful choice of gridding and regularization, however, can mitigate this

noise. Additionally, with a gridded source, some degree of interpolation is unavoidable, and

errors due to interpolation need to be taken into account. If the interpolation errors become

comparable to or larger than the noise in the data, then they can significantly affect the χ2;

this is especially true for high S/N data. With respect to regularizing the source, computing

derivatives on irregular grids is often necessary, and I find that traditional finite difference
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methods can compute artificially high derivatives if there is an unfortuitous alignment of

source pixels. I have introduced a more accurate method of computing derivatives that

relies on an application of the divergence theorem. However, the noise in the χ2 surface

does not seem to be strongly affected by the choice of derivative calculator alone. A new

regularization scheme called analytic source regularization (ASR), on the other hand, seems

to reconstruct the source with more fidelity in the case of noisy data. ASR penalizes the

source model if it deviates from an analytic functional form, such as a Sérsic profile. Com-

pared to ASR, derivative-based regularization schemes appear to produce more discreteness

noise and may underestimate parameter uncertainties for noisy data. These results hold, at

least, for the case where the source is well-described by a single or a combination of analytic

functions, and the differences between ASR and derivative-based regularization schemes are

smaller when the S/N is higher.

I also examine statistical issues that might arise because any given data set has a partic-

ular realization of the noise for a particular telescope pointing. Different realizations of the

noise and telescope pointing lead to slightly different values for lens model parameters, and

the scatter between different “observations” can be comparable to or larger than the model

uncertainties themselves. For the cusp configuration, I find that the scatter due to different

realizations of the noise follows a power law in S/N with a slope of ∼ −0.8. Different point-

ings of the telescope lead to a scatter that follows a power in the pixel scale with a slope

of ∼ 3.3. Of the four canonical lens configurations tested, the doubly-imaged configuration

shows the most scatter, as there are fewer pixels to constrain the lens model. Although

some parameters show a small but statistically significant bias, the biases disappear with

the inclusion of a telescope PSF, and the true lens parameters are recovered within 95%

confidence.

An important quantity for determining properties of the de-lensed source is the magni-

fication, which will be affected by these same effects, noise and pointing. Unlike the lens

model uncertainties, however, the magnification uncertainties depend more sensitively on

the lens configuration. The scatter is higher in regions of the source plane where the mag-

nification is changing more rapidly, such as for cusp and fold configurations. As expected,

for all configurations, the scatter decreases for increasing S/N, albeit more slowly for the
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doubly-imaged configuration.

Although I have addressed several issues inherent to PBSR algorithms and data aqui-

sition, there are other issues that will complicate the lensing, such as irregularities in the

source structure and lensing potential, incomplete knowledge of the telescope PSF, redden-

ing due to dust, and image processing. These complications will need to be understood and

dealt with, in addition to the issues addressed above.

In addition to using pixsrc to explore uncertainties in lens modeling, I have also per-

formed PBSRs of two gravitationally lensed galaxies. SDSS J0901+1814 (J0901) is a UV-

bright, ultraluminous infrared galaxy (ULIRG) at a redshift of z = 2.26 and is being lensed

by a group of galaxies at z = 0.35 (Diehl et al. 2009; Fadely et al. 2010). There are over one

dozen satellite galaxies within two Einstein radii of the center of the main lensing galaxies,

which must be accounted for appropriately in the lens model. There is high-resolution HST

imaging of J0901, which allows the positions of the satellite galaxies to be well-constrained.

Our team has observed CO(3–2), CO(1–0), Hα, and [NII] emission from J0901 (Sharon

et al. 2014). Using the integrated CO(3–2) map and HST imaging, I have constrained

the lens model. Beginning from a simple singular isothermal ellipsoid (SIE) lens, I have

expanded the model to include effects of the satellite galaxies. At first, I constrain the

relative masses of the satellites using the nominal Faber-Jackson (FJ) relation (Faber &

Jackson 1976), but I relax these constraints and let the lensing strengths of the satellite

subhalos vary more. I find that a group of galaxies near the northern tip of the northern

image have masses larger than what is predicted by the FJ relation and may be responsible

for a possible fifth image of J0901 near that region. Additionally, there is a satellite galaxy

that lies directly on top of the southern image of J0901. I use positional constraints from

high-resolution HST optical imaging and other data to constrain the mass profile of this

particular perturber.

Because the the northern image of J0901 is the most highly magnified (and thus contains

the most uncertainty) and because it only contains flux from a small region of J0901, I do

not use it perform a PBSR. I apply the lens model to the southern and western images of

all four integrated maps and to individual CO velocity channels. The CO emission has been

magnified by factors of ∼ 13, and the Hα and [NII] have been magnified by ∼ 11. From the
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reconstructed velocity maps, I estimate an enclosed dynamical mass of 5× 1011M⊙ withing

a radius of 3.2 kpc. Using a ULIRG CO-to-H2 conversion factor, I find a gas mass fraction

of 25% for J0901.

Going forward, I will use all the multi-wavelength data to simultaneously constrain the

lens model and apply it to the northern image as well. In addition, there is another galaxy,

nicknamed Sith, that is being lensed by the same group of galaxies lensing J0901. Because

it is in a lensing configuration complementary to J0901, I will make a modification to pixsrc

that will allow me to include Sith in our lensing analysis.

Lastly, I examine a serendipitously discovered pair of gravitationally lensed objects with

strikingly different colors. One of the objects appears to be more red, while the second

appears more blue. The latter of these two forms a nearly complete Einstein ring, which

will aid crucially in constraining the lens model over a large range of angles. The redshifts

to the lensed objects are unknown, and thus, it is unknown whether they are physically

interacting or not.

As a starting point, I use the more red object to constrain the lens model. I model

the data using a SIE model, but because there are over 20 galaxies within two Einstein

radii of the main lensing galaxy, I also use the FJ relation to, once again, constrain the

relative lensing strengths of the satellite subhalos. Unlike in the case of J0901, however, I

do not let the subhalos vary individually. That is, I only vary an overall normalization to

the nominal FJ relation. I find that both models report similar Bayesian evidences, and the

model residuals are dominated by what are likely image subtraction errors. The S/N of the

PBSR from the more complex lens model, however, is 1.5 times larger than that obtained

using the single SIE model. Going forward, I will use the emission from the blue object to

tighten constraints on the lens model, while allowing the satellite subhalo lensing strengths

to vary within the scatter of the FJ relation (Gallazzi et al. 2006).

Gravitational lensing is well-suited to observe galaxies that might otherwise be too small

or faint to observe. As a final note, it is worth remarking on how faint a galaxy can be

analyzed using the framework presented in Chapter 2. I explore the possibility of detecting a

hypothetical, gravitationally lensed starburst galaxy, hereafter J0901-H, that is very similar

to J0901. Assuming that J0901-H is, in fact, identical to J0901 (except in the overall scale
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of its surface brightness), both galaxies lie at the same redshift, and a S/N ≥ 3 is required in

all velocity channels, I vary the brightness of J0901-H. I find that J0901-H can be observed

and analyzed properly if its surface brightness is at least 1/4 that of J0901. Assuming

that the mass-to-light ratios of J0901 and J0901-H are the same, then this implies that a

three-dimensional source reconstruction can be performed on starburst galaxies down to

dynamical masses of approximately 1011M⊙ and gas masses of approximately 3 × 1010M⊙.

More realistically, we can allow the size of J0901-H to vary with its brightness. If we

assume a constant mass-to-light ratio, then, for rotationally supported disks, we have that

the L ∝ Mdyn ∝ rsv
2
c , where L is the luminosity, Mdyn is the dynamical mass, rs is the

scale radius of the disk, and vc is the circular velocity. If we further assume a Tully-Fisher-

like relation between the luminosity and velocity, L ∝ v4
c , then we can expect that the

rs ∝ Lv−2
c ∝ LL−1/2 ∝ L1/2. We can thus account for the changing size of J0901-H as it

luminosity varies.

J0901-H could also lie at a higher redshift. This situation, however, is complicated by

the changing distances between the Earth, lens, and source, which will affect the angular size

of the lensed images and the variation of the magnification across the source. More impor-

tantly, as this lens has many components, the critical curves of the individual components

of the lens will begin to overlap with one another or separate. Significant topological differ-

ences, such as the number of lensed images formed, can occur as well; a lens configuration

similar to that of J0901 may not exist.
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Appendix A

Source plane resolution

A.1 Resolution of the pixel-based source reconstruction

A.1.1 Examining the covariance matrix

Data obtained using telescopes often have well-understood properties, which allow the noise

and resolution of observed images to be determined. For PBSRs, the pixels themselves are

irregular, and the resolution of the reconstruction is governed by the resolution of the data,

the lensing phenomenon, and the regularization as well.

Suyu et al. (2006) have derived the noise covariance matrix for the reconstructed source.

As noted in Chapter 2, smp is a biased estimator of the true source surface brightness

distribution strue. As such, the covariance matrix is computed relative to the true source

surface brightness and not relative to the expected value of smp. Under certain assumptions,

we have that the average source covariance matrix is

Σ̂smp ≡ E[(smp − strue)(smp − strue)⊤] = A−1 (A.1)

Information about pixel-to-pixel correlations between the source pixels is contained in Σ̂smp .

Thus, given a source pixel covariance matrix, we have attempted to extract an effective

source plane PSF.

Starting from a random (noise) vector x, its covariance matrix Σx can be calculated by

averaging over many realizations of x:

Σx = E[xx⊤] − E[x]E[x⊤] = E[xx⊤] = σ2
xI, (A.2)

where E is the expected value, I is the identity matrix, the penultimate equality holds for

random vectors drawn from a zero-mean probability density function (PDF), and the last

equality holds because all elements of x are assumed to be drawn from the same PDF.
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If x is now convolved with a PSF, denoted by P, then the individual elements of the

resulting vector x̂ ≡ Px will no longer be independent. The new covariance matrix is given

by

Σx̂ = PΣxP⊤ = Pσ2
xIP

⊤ ∝ PP⊤. (A.3)

The last equality in the above equation reflects the fact that the noise level σx is unimportant

if we interested in recovering a normalized PSF. Thus, given a covariance matrix, it is

possible to gain information about the PSF.

Unfortunately, if we find a PSF Q such that Σx̂ = QQ⊤, we can find an infinite number

of PSFs that will also satisfy Eq. A.3. For a given unitary matrix U, we have

(QU)(QU)⊤ = QUU⊤Q)⊤ = QQ⊤ = Σx̂, (A.4)

and so QU will also satisfy Eq. A.3.

To eliminate this ambiguity, we can make the additional assumption that P is symmetric

and does not vary with position. This assumes that the fraction of flux that flows from the

ith pixel to the jth is the same as the fraction that flows from jth to ith. Although this will

not be the case if the PSF is asymmetric or varies with position, this first attempt may be

sufficient in characterizing the scale of the PSF. Thus, we see that

Σx̂ ∝ PP⊤ = P2, (A.5)

and we must now find a matrix R such that

Σx̂ = RR. (A.6)

Like Q, R will not be unique in general. However, because Σx̂ is positive-semidefinite,

there exists only one R that is also positive-semidefinite.

First, we factorize Σx̂ using its eigenvalue decomposition:

Σx̂ = VΛV−1, (A.7)

where the columns of V are the eigenvectors of Σx̂ and Λ is a diagonal matrix whose entries

are the eigenvalues of Σx̂. Then, we have

R = VΛ
1
2 V−1, (A.8)
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where Λ
1
2 contains square roots of the eigenvalues. Becuase these square roots can be either

negative or positive, there are many R that exist, but as implied above, we can choose only

the positive square roots so that the solution is unique. Once we have calculated R, we can

reconstruct the PSF at each pixel.

A.1.2 Examining the source reconstruction equations

Although the previous analysis is promising, it makes a number of assumptions about the

form of the source plane PSF. Additionally, the action of the PSF as implied by Eq. A.3 is

to blur the noise in the image, and the PSF inferred from the above analysis, R, recovers

correlations in the random noise vector that are introduced due to the PSF.

Instead, if noise is added to the image after the PSF has acted on the image, then the

noise covariance matrix will not contain information about the PSF. Taking a more direct

approach, we can examine the equations governing the source reconstruction. The lensing

equation is given by Eq. 2.1:

d = Lstrue + n, (A.9)

and the source reconstruction is given by Eq. 2.12:

smp = A−1L⊤C−1
d d. (A.10)

Combining these two equations, we see that

smp = A−1L⊤C−1
d (Lstrue + n). (A.11)

If we are only concerned about regions of high S/N, then we can neglect the noise term

n. Alternatively, we can average over many realizations of noise and, as Suyu et al. (2006)

find, we recover Eq. 2.14:

E[smp] = A−1L⊤C−1
d Lstrue = A−1Fstrue. (A.12)

If we identify the PSF as any linear operator that acts on the true source to produce

the reconstructed source, then we can identify an “average” PSF as

P
smp

= A−1F. (A.13)



116

A.1.3 The simplest lens

Before examining these results in detail, it is useful to consider the two different source plane

PSF estimators (Eq. A.8 [hereafter, PSF1] and Eq. A.13 [hereafter, PSF2]) in limiting cases.

For simplicity, we assume the number of source pixels equals the number of image pixels

and that each image pixel maps directly to a source pixel. That is, the lensing operator

is the identity matrix. Furthermore, we assume there is no regularization, or priors, being

enforced on the source.1 We consider the very specific case in which there is no gravitational

lensing occurring. Thus, if the telescope with which the data were taken had no PSF, then

we would expect the image and the PBSR to look the same.

To compare the two PSF estimators, however, we require the fictitious telescope to have

a PSF described by an elliptical Gaussian with a full width half-maximum (FWHM) along

the major axis of 9.4 pixels, a minor:major axis ratio of 0.5, and a major axis position

angle of 45◦ (measure E of N). The source used to create the data (the source before being

convolved with the PSF of the telescope) was a circular Gaussian, and the noise level in

data is negligible. Fig. A.1 shows the results of the PBSR. We note that although the true

source is circular, the image data appear to be an elliptical object because of the highly

elliptical PSF of the instrument. Because the PBSR accounts for this PSF, it reconstructs

a circular object, and the source residuals (the true source subtracted from the PBSR)

show that the source is reconstructed accurately. Thus, because the only source of pixel-to-

pixel correlations (the telescope PSF) that could have propagated into the PBSR has been

accounted for properly, one might expect the source plane PSF to be completely unresolved.

That is, we might expect P
smp

= I.

For this particular lens, source, and instrument, numerical tests indicate that PSF1

predicts that R is the inverse of the true instrumental PSF P. Analytically, PSF2 predicts

that P
smp

= A−1F = F−1F = I, which is in agreement with what we might expect from

Fig. A.1.

1In practice, we achieve this by setting the regularization strength to a value many orders of magnitude
below the variance of the noise in the data.
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Figure A.1: Comparison of PBSR to actual source used to create test data. Clockwise from
top left: image data, true source, source residuals (PBSR − true source).
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A.1.4 A more complex lenses

We now shift our focus to include gravitational lensing but let everything else remain the

same; we still assume an equal number of image- and source-plane pixels and no regular-

ization. PSF2 still predicts that P
smp

= A−1F = F−1F = I. However, this does not imply

that the source plane resolution in this case is the same as that from the previous case of

no lens. P
smp

= I simply means that the resolution is set by the local density of source

pixels. In the case of no lens, this means that the resolution is set by the pixel scale of the

data. In the lensing case, because lensing creates an irregular source plane grid, this implies

that the (planar, not linear) resolution scales inversely with the magnification. That is, the

resolution is finer in areas of the source plane that are more highly magnified.

As we begin to model more realisic situations, however, the source-plane PSF will become

more interesting. We include gravitational lensing, and the number of source pixels is set to

half the number of image plane pixels. Because the surface brightness in half of the image

plane pixels will now depend on up to three source pixels, there will be correlations between

neighboring pixels introduced due to the gravitational lensing alone. With the numbers of

pixels fixed, in Fig. A.2 we vary the regularization strength and the instrumental PSF.

When the regularization strength is small, we recover our previous results; the PSF is

essentially the identity matrix. At the other extreme where the regularization strength is

large, we find that

P
smp

= A−1F = (F + λC)−1F ≈ (λC)−1F ∝ C−1F. (A.14)

The PSF becomes constant, independent of the regularization strength. We do, in fact, see

this behavior; when the regularization strength becomes large compared to the reciprocal

of the variance of the noise in the data, P
smp

does not change significantly.

Over the more interesting regime −15 . log(λσ2) . 0, we see reasonable behavior. For

fixed regularization strength, as the instrumental PSF becomes larger, P
smp

does the same.

And for a fixed instrumental PSF, increasing the regularization strength leads to a larger

P
smp

as well.

Finally in Fig. A.3, we show sample PSFs across the source grid. As before, the number

of source pixels is chosen to be half the number of image pixels. The regularization strength
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Figure A.2: Source plane PSF varation with regularization and telescope PSF. For a partic-
ular source pixel chosen randomly, we show the standard deviation of the source plane PSF,
σs, along the major axis as a function of the regularization strength, λ, and the FWHM of
the telescope PSF. As the strength of regularization is relative to the inverse of the variance
of the noise in the data, σ2

d, we plot σs as a function of λσ2
d. σs is plotted in pixel units.

We also note that although σs does not reach zero for the case of no regularization (bottom
left of the plot), this is a numerical artifact; we have verified that the PSF is the identity
matrix.
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Figure A.3: Source plane PSFs for the lensing case. A sample of source PSFs at varying
positions in the source plane are shown. So that multiple PSFs can be plotted without
overlapping, they are truncated so that 10% of the integrated flux is lost. Overplotted are
black dots that denote positions of source pixels.

is set so that λσ2 = 1; this allows structure and variation of the PSF to be easily noticed.

We also calculate the first and second moments of the PSFs. In Fig. A.4, we show char-

acteristic length scales of the PSF, inferred from P
smp

. From these preliminary results, it

appears that the PSF typically gets larger near the cusp of the caustic, where the magnifi-

cation is the largest. If this is a real feature, it would imply that the source plane resolution

is not necessarily the finest in regions where the source pixels are most dense.
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Figure A.4: Source plane PSF length scales for the lensing case. We plot the square root of
the product of the major and minor axes (standard deviations, not FWHM) of the source
PSF at every source pixel. The scale lengths are plotted in pixel units. Overplotted are
black dots that denote positions of source pixels.


