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ABSTRACT OF THE DISSERTATION

Solutions of Inverse Convection Problems by a

Predictor-Corrector Technique

by Joseph R VanderVeer

Dissertation Director: Dr. Yogesh Jaluria

A predictor-corrector technique for solving inverse convection problems was developed,

tested, and refined. The methodology was tested against three inverse problems: in-

verse plume in a crossflow, inverse jet in a crossflow, and inverse plume in a cavity.

The goal of the inverse plume in a crossflow was to solve for the strength and location

(x, y) of the source. After refinement, the methodology was able to predict all three

goals, utilizing three sample points to within 2.5%. Error analysis demonstrated that

three sample points was unable to tolerate any simulation-experimental error. There-

fore, when handling experimental data, an increase in the number of sample points is

required, to a minimum of five. The error analysis also showed that the methodology,

with five or more sample points, is remarkably stable in its prediction capability. The

location prediction was minimally affected, less than 0.1%, by an artificial error of 10%.

The goal of the inverse jet in a crossflow was to solve for the strength (velocity and

temperature) and location (x, y) of the source. After testing, the methodology was not

able to predict all four goals. The elevation location of the jet needed to be known

to adequately solve the inverse problem. The methodology was able to predict the

source velocity and temperature to within 10% and 3.3% respectively. The goal of the

inverse plume in a cavity was to find the strength and location (x, y) of the source.
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Sensitivity analysis demonstrate it is very difficult, if not impossible, to resolve source

location using this methodology. The method was able to predict the source strength

within 5% using only one sample point. With future work, this approach could be ex-

tended to applied areas of interest, such as environmental flows, room fires, and thermal

management systems.
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Chapter 1

Introduction

Modern thermal systems are more complicated than ever before. Whether these systems

are building ventilation units or internal combustion engines, understanding the internal

physical phenomena is paramount to high energy efficiency and safety. From new

experimental diagnostics to concurrent computer simulation-experiment methods have

been developed to enhance our understanding of the underlying physics of thermal

systems [20, 24].

Traditional heat transfer problems are forward type, but many thermal problems are

of the inverse heat transfer type. These problems often require novel means of finding

a solution. One such example of an inverse heat transfer problem is determination of

the wall temperature of an optical fiber draw tower furnace.

Issa et al. [23] wanted to determine the internal wall temperature of an optical

fiber draw tower furnace. Measuring the wall temperature directly is difficult due

to limited accessibility, geometry, and high temperatures. The only easily accessible

furnace location is where the optical fiber is drawn, the centerline of the cylindrical

furnace. An instrumented ceramic rod was set to measure the centerline temperature.

This, however, is an inverse heat transfer problem. Knowing the centerline temperature,

Issa et al. [23] was able to use a regularization technique to accurately predict the

boundary conditions (i.e. the furnace wall temperature) [23].

1.1 Ideal Inverse Heat Transfer Solution

A traditional forward heat transfer problem solves the energy equation in a direct

fashion, utilizing initial conditions and boundary values. The inverse problem uses

incomplete or limited information about the problem domain, boundary conditions,
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and/or initial conditions to solve for the complete boundary conditions and/or the

initial conditions. This situation is ill-posed and traditional mathematics fail [41].

In 1902, Jacques Hadamard defined the well-posed problem as a problem with a

continuous unique solution [14]. Other than a very firm mathematical definition this

definition remains unchanged [42]. Tikhonov and Arsenin [41] defines a well-posed

problem as: for y = F (x)

1. for every x there must exist a solution y

2. the solution is unique

3. the problem is stable on the space F

Any problem not strictly adhering to these rules is considered ill-posed [41], which

is often also the case with the inverse heat transfer problem. The ideal inverse heat

transfer solution is a direct consequence of the ill-posed nature of the problem.

The ideal inverse heat transfer solution would have a methodology applicable to

100% of cases, converting the ill-posed problem into a well-posed problem utilizing one

data point within the domain or on the domain boundary. This extreme idealization

should not be seen as a goal, but a motivation.

1.2 Engineering Motivation

The inverse heat transfer problem (IHTP) is of interest to many engineering disciplines.

Such problems include: estimation of heat source strength in a forced convection duct,

estimation of the temperature of a heat shield during space vehicle atmospheric reentry,

estimation of heat generation due to friction, etc... [37]

Unfortunately, the ideal inverse heat transfer solution does not exist. There are

many methods to solving IHTPs, and they are classified into fifteen categories or

combination of categories [37]. There have been many books written on the subject

[36, 37, 41, 42]. Two popular categories are Tikhonov regularization and conjugate

gradient method ([4, 8–10, 34]).
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The inverse heat convection problem, covers topics such as: determining the location

of fires in rooms, locating a fire in a vehicular tunnel, tracking pollutants back to their

source, tracking fires in an urban environment, etc... [6, 7, 19, 36].

1.3 Previous Work

Examining previous work starts with an investigation into a relatively new capability

made available due to the ever increasing processing power of computers, dynamic data

driven application systems. Powerful modern computers open a new realm of investiga-

tion, a combined experimental-numerical solution brought together intelligently using

parameters and suggestions from previous iterations. The new technique is “Dynamic

Data Driven Application Systems” or DDDAS. The topic of interest for Ma et al. [29]

was the inverse jet in a crossflow problem.

Laser light at 761nm is absorbed by oxygen at a rate, which is a function of the

oxygen temperature within the flow. Utilizing this knowledge the linearly integrated

temperature can be determined within the wind tunnel by passing light from a diode

laser through the wind tunnel and measuring the resulting intensity on the other side

[29].

The methodology was to select a series of monitored locations within the simulation

set. A response surface model would be generated based upon the monitored location

simulation data. A small subset of monitored locations would be chosen for experimen-

tal monitoring. Using the response surface model, the source velocity and temperature

would be predicted. From the prediction, a new set of experimental monitoring locations

would be determined, and a new set of predictions would occur. More experimental

monitoring locations may be used if necessary, however, during the process Knight et al.

[25] did not proceed passed a second iteration.

Using this method Knight et al. [25] were able to predict the jet velocity to within

the experimental accuracy. However the jet temperature proved a little more elusive,

with error of the first pass jet temperature prediction of 9% and the second pass of 23%.

This method demonstrates its fundamental capabilities while showing its flaws. That



4

being said, many capable methods exist for solving the inverse heat transfer problem,

all of which have a list pro et contra

1.3.1 Literature Survey

Inverse heat transfer is a relatively new field in engineering, but that does not mean

there is a shortage of methods and solutions to the inverse problems. Methods start

with a mathematical model designed to solve inverse problems, then force the physics

to fit the model. Alternatively, some methods start with the physics and attempt to

massage a mathematical model onto the physics.

Many solution methods have been developed for the solution of the inverse heat

transfer problems. For example, Beck et al. [4] compared the capabilities of the function

specification method, Tikhonov’s regularization, iterative regularization, and Green’s

functions for the case of an inverse conduction problem. The setup consists of a sym-

metric system with a central mica heater covered with a carbon-carbon composite layer

and a thick ceramic insulation. The goal was to calculate the transient input heat flux

with two thermocouples located at the heater - composite layer and at the composite

- insulation layer. They note that each of the methods tested were equally capable in

effectively predicting the time varying heat flux, but differed vastly when considering

the computation time. The function specification method was marginally quicker, and

vastly easier to program than the iterative regularization method. The iterative regu-

larization method and Tikhonov’s regularization method proved to be equally difficult

to program, but the iterative method was between two and four times faster. The

Green’s functions were significantly slower and more difficult to program than all the

other methods.

Similarly, Erturk et al. [9] tested several methods developed for the solution of in-

verse radiation problems. The methods they tested were the conjugate gradient method

or CGM, biconjugate gradient method or Bi-CGM, and truncated singular value de-

composition or TSVD. The methods were used to solve a set of Fredholm equations of

the first kind, a known ill-posed problem. CGM and the truncated singular value de-

composition tended to be quicker, less memory intensive, easier to program, and more
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accurate than the Bi-CGM. However, CGM and the TSVD would fail in certain cases

where the Bi-CGM would usually give meaningful results.

CGM was applied to the inverse boundary conditions of a thermometry test bed

by Erturk et al. [10]. The test bed consists of an axi-symmetric vacuum chamber de-

signed to reproduce the rapid thermal process used in silicon wafer processing. Due to

the vacuum environment and thermal conductivity insulation the problem is primar-

ily thermal radiation only. The inverse predictions were less than 3.5% error of the

boundary condition temperature.

Continuing with the conjugate gradient theme, it is a very popular and effective

means for solving inverse convection problems as well (e.g. [17, 28, 38, 49]). Zhao et al.

[49] used CGM to solve the IHTP of a slot vented differentially heated enclosure with

mixed mode heat transfer. They were able to accurately predict the input heat flux, but

had difficulty resolving the solution when the Reynolds number or Richardson number

became large. Follow up work by Liu et al. [28] refined the effective limits to a Grashoff

number below 1010.

Hong et al. [17] used CGM to solve the IHTP of a differentially heated enclosure

with constant temperature walls. They showed that even within the small confines

of the problem (0.1m × 0.1m), that at least nine samples were needed to accurately

resolve the input heat flux. However, even for the case of nine samples the accuracy of

the method went down, because the samples were further away from the heat source.

Park and Chung [38] used CGM to attempt to solve a convection IHTP with a

transient heat flux source in an enclosure. They were able to accurately resolve the

transient source, but the solution required 400 sample points and as many as 100

iterations.

An alternative to the already mentioned methods is the artificial neural network,

which was used successfully by Ghosh et al. [13], and Kumar and Balaji [26]. Ghosh

et al. [13] inversely solved for both the source strength and location of a circular source

within a rectangular cavity. The only a priori knowledge was temperature from four

thermocouples located near each corner.

Kumar and Balaji [26] demonstrated that the artificial neural network could be
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applied to inverse convection problems as well. The inverse convection problem was a

differentially heated rectangular enclosure with unknown heat flux in and a constant

temperature wall. The neural network required many simulation sets to train the three

layers of twenty neurons each network and a set of 124 thermal sample points within the

domain. The major advantage this method has over the alternatives is that after the

neural network is thoroughly trained, it is a non-iterative solver and thus, is generally

quicker.

1.4 Present Work

The overall goal of this work is to develop a method for solving inverse convection

problems where the location of the source is unknown. To eventually make the method

most useful for finding and tracking fires, it must use a limited amount of sampled data,

a limited amount of simulation data, handle experimental error, and lastly work “far”

downstream of the source.

The work focus’s on the development, progress, optimization, and lastly, testing of

the methodology. The development starts with a simpler case than previously used, but

with the goal of finding the location as well. The methodology is applied three separate,

but similar inverse convection problems. Some of the methodologies’ capabilities and

limitations are demonstrated and discussed.

1.4.1 Chapter Layout

The next chapter covers the inverse heat transfer problem in a general sense. The

chapter covers the difficulties of inverse heat transfer problems as well as a few of the

broad approaches successfully used previously.

Chapter 3 covers the complete development of the methodology from the very be-

ginning to its final form. The optimization of the search shape is covered in chapter 4.

Three example problems demonstrate the capability of the methodology. The plume

in a crossflow is described in chapter 5. Chapter 6 covers the jet in a crossflow. Lastly,

chapter 7 describes the plume in a sealed chamber.
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Chapter 8 is the last of the main text covering the conclusions.

The appendix starts with the equations and setup of the computation fluid dynamics

used in appendix A. Next, is a chapter on the calibration of the experimental apparatus

in appendix B. Appendix C covers the data acquisition hardware and software. In ap-

pendix D describes the options and configurations of the Matlab genetic algorithm used

in the methodology. The last chapter in the text is appendix E and covers experimental

plume data. The last pages are of the bibliography.
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Chapter 2

The Inverse Heat Transfer Problem and Solutions

The problem with inverse solutions arises from the forward problem’s mathematical

model of the underlying physics. Simpler mathematical models allow one to rewrite

the equation such that a discrete inverse solution is easily (or relatively so) attainable.

Such as:

y = f(x) (2.1)

x = f−1(y) (2.2)

Where f−1 is defined as the inverse of f . For the more complicated case of differential

equations, the exact equation f−1 is impossible to solve for without initial values and

boundary conditions. Even with the initial values and boundary conditions known, it

is still unlikely to be possible to solve for the exact solution f−1. Often we must settle

for an approximate solution to the inverse problem.

2.1 Infinite Solutions

To make matters worse, the inverse solution (if it can be found) may have an infinite

number of solutions to the initial values and boundary conditions. This results in an

ill-posed problem. Fortunately, mathematicians have been working on this problem for

many decades.

2.2 Fifteen Options

Ozisik and Orlande [37] determined that there are fourteen effective (loosely grouped)

methods for solving inverse heat transfer problems. A newer method should be added

to their list, that being the artificial neural network. The rapid development of faster
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computers has spurred research into the areas needing more computational processing

power, such as iterative regularization or genetic algorithm. The methodology proposed

in this text utilizes features from many of these options, making it difficult to classify.

The basis of the inversion is an interpolation of a polynomial, but requires an additive

term like that of the Tikhonov’s regularization. However, the minimization occurs via a

genetic algorithm and for this this method must be classified into the genetic algorithm

regularization option.

1. Integral Equation Approach

2. Integral Transform Technique

3. Series Solution Approach

4. Polynomial Approach

5. Hyperbolization of the Heat Conduction Equation

6. Numerical Methods (Finite Difference, Finite Element, etc...)

7. Space marching Techniques

8. Iterative Filtering Techniques

9. Steady State Techniques

10. Beck’s Sequential Function

11. Levenberg-Marquardt Method

12. Tikhonov’s Regularization

13. Iterative Regularization

14. Genetic Algorithm Regularization

15. Artificial Neural Network
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2.3 Regression Analysis

The basis of many of the inverse heat transfer methods, including Tikhonov’s regular-

ization and genetic algorithm regularization, is a form of regression analysis. Regression

analysis is the statistical method for determining the relationship between variables. An

M - estimator is a type of regression analysis method for minimizing (although origi-

nally developed for maximizing) residuals of a function. Probably the most well known

and most used M - estimator is the least squares method, which is a minimization of

the square of residuals. A paper by Zhang [48] discusses several M - estimators and

other regression analysis methods, their effectiveness and their robustness. Table 2.1

shows a few sampled regression algorithms.

Classical statistical methods tend to have problems accurately fitting data with

outliers. Even as little as one outlier can adversely affect the outcome. The field of

robust statistics is a field of statistics specifically developed to minimize the affects of

outliers [30].

Regression Method Formula Comment

least squares min
∑
i

(r2i )/2 not robust, but stable

least absolute min
∑
i
|ri| not stable

Cauchy min
∑
i

c2

2 log
(

1 + (ri/c)
2
)

theory errors

least median of squares minm
i
edian r2i stable, robust, poor variance

Table 2.1: Regression analysis methods

The least squares method is by far the most common, but demonstrates a very poor

response to outliers. However, it is extremely stable and since it does not discard any

data, is useful for very small sets of data.

The least absolute method is very robust, but unfortunately the method is unstable

due to its discontinuity in its first derivative. This may cause the solution to become

indeterminate. The Cauchy method is extremely stable and robust. However, the

Cauchy method’s weighting function tends to be more lenient on very bad outliers and

thus may have a large effect on the result.



11

The least median of squares method is stable, robust, and tends to do poorly with

extremely noisy data sets. This poor result is due to the nature of the median function

and discards a significant amount of information.

Due to the requirements of having as minimal sampled data as possible the least

squares method will be used, since it is stable and does not throw out any data. If the

quantity of data needs to increase it may be prudent to consider alternative options,

such as the least median of squares.

2.4 Conjugate Gradient Method (cgm)

The conjugate gradient method is a special form of an iterative regularization, which

deserves brief special attention as it is an especially effective method for solving the

inverse heat transfer problem. CGM was originally developed to solve a system of

linear equations, similar to the Gaussian elimination. The major benefit of CGM is its

ability to solve the equations quickly and accurately, even if the set of linear equations

was exceptionally large. The method monotonically approaches the solution with each

advancing iteration, which permits solutions as accurate as needed. This is in contrast

to the Gaussian elimination, which does not monotonically approach the solution and

thus needs to be solved completely to have an accurate result [15].

The conjugate gradient method utilizes a stepping method in orthogonal directions.

The length of the step is the location where the gradient becomes zero in the direction

of the step. At which point the method makes a new step orthogonal to the previous.

This process repeats until the step is a very small value.

While it is relatively easy to program CGM, it requires both the the function and

the first derivative of the function of which you are interested in searching. The inverse

convection problems of interest we have neither and thus CGM cannot be used.

2.5 Regularization Parameters

Tikhonov’s regularization uses a parameter to assist in determining the inverse solution.

The regularization parameter is related to the subset of all possible solutions, not just
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the correct solution. Determining said parameter is difficult often requiring knowledge

of the correct solution a priori. If similar inverse problems arise the parameter may be

used again.

In this case however, it is easier to use the genetic algorithm to make guesses at pos-

sible solutions, than actually trying to determine the regularization parameter. Luckily

the exact value of the parameter has no bearing on the methodology of which will be

explained in the next chapter.
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Chapter 3

Methodology

For the methodology to be useful, it needs to accurately solve the inverse heat transfer

problem in a variety of conditions. The problem the methodology was developed for

is the inverse plume in a crossflow. The only information known a priori is the free

stream velocity and temperature, which means the plume location (rS) and plume

strength (TS) are unknown. The flow configuration is briefly shown here in figure 3.1,

all dimensions are in millimeters. The depth into the page is 305mm and the flow is

upto a maximum of 5.0m/s. The heated section has a maximum temperature of 450K.

A full description of the problem and experimental setup is explained in chapter 5.

3.1 Initial Development

The development of the methodology starts with the assumption that we can neglect

variations in density and thermal buoyancy effects in the energy equation1. Due to this

1A significant portion of this chapter was rewritten from [44]

Figure 3.1: Schematics of the wind tunnel and the computational domain [43]
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assumption, the energy equation becomes decoupled from the continuity and momen-

tum equations. The net result is that the relation between the source temperature and

the local static temperature becomes linear if thermal radiation is negligible. Equa-

tion (3.1a) demonstrates this relation. m and b are inverse interpolation functions and

are defined in equations (3.1b) and (3.1c), where A and B indicate different simulation

conditions. While m and b are linear regression parameters for TS and T (r), the val-

ues for each location r can vary significantly. An example of how the functions m(r)

and b(r) vary is shown in figures 3.2 and 3.3. The equations are all vector based and

the methodology was originally developed with only two dimensions in mind, such as

equation (3.1d).

TS = m (r)T (r) + b (r) (3.1a)

m (r) =
TSA − TSB

TA (r)− TB (r)
(3.1b)

b (r) = TSA −m (r)TA (r) (3.1c)

r = r (x, y) (3.1d)

ri = r0 + ∆i (3.1e)

The assumption of neglecting variations in density and thermal buoyancy is reason-

able if the resulting relationship between source temperature and local static tempera-

ture is linear. A sensitivity analysis was performed with constant source temperature

versus the local static temperature at various free stream velocities. The results at a

random location within the flow r = (50mm, 4mm) can be seen in figure 3.4. While

this plot is of one particular location, all locations within the domain have a coeffi-

cient of determination of R2 = 1− 10−6 or better. This indicates a near perfect linear

regression across the entire domain, thus justifying the original assumption.

3.2 Development of Unknown Location

The application of equation (3.1a) lets you solve the inverse problem directly if you

know the location of the heat source with respect to the location of the sampled local
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temperature. However, if the location is not known, then the problem becomes more

difficult. To clarify the following text, a few definitions are needed.

• sample point: local static temperature from within the domain at a particular

location

• datum point: a selected sample point whose location will be defined as ∆0 =

(0mm, 0mm)

• search shape: relative location and pattern between a set of sample points and a

datum point

• error map: source temperature error as a function of datum point location

• source strength: temperature of a plume, or temperature and velocity of a jet

Conjecture 1 If a domain is not self-similar in local static temperature, then a search

shape of sufficient size has only one location where that pattern predicts the same source

temperature for all sample points.
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This conjecture is mathematically very difficult to solve, however, evidence based

proof will be demonstrated along with the procedure to apply it. The easiest way to

demonstrate how this idea may work is that we can look at the error associated with

source temperature when we predict a wrong location, i.e. an error map. A sample

error map for a single sample point is in figure 3.5. The error is calculated using

equation (3.2). From this figure we can see that there are several locations where the

error decrease significantly and indicate a local solution. Since the goal is to converge

on the correct solution, we try adding more sample points in an attempt to reach that

goal. How an error map is calculated is discussed in detail in section 4.2.

errortemp(%) =
TSP − TS
TS − T∞

× 100 (3.2)

Figure 3.6 shows a new error map with two sample points. The multitude of false

local solutions was not reduced, however, the error near these local solutions has signif-

icantly increased. This decreases the likelihood that these solutions will be converged

to. This is better than the error map shown in figure 3.5, but still not guaranteeing a

unique solution. If we take this to the next logical step of three sample points, we end

up with figure 3.7. At three sample points the number of local solutions is decreased

slightly. Four sample points (figure 3.8) significantly reduces the number of possible

solutions (three in this case). Five points typically results in a unique solution, however

this is not always the case. In this particular case, as shown in figure 3.9, there is

a small second point of convergence possible, and thus the solution is not completely

unique. The error map for six and seven data points was not particularly useful as the

contour plot was too small to be readable. However, the results were that with seven

data points, a unique solution was always possible in the domain of interest.

Thus far, nothing has been said about the shape of the “search shape”. The pre-

ceding figures all used the same search shape. That shape is in the form of an ‘L’ with

1mm spacing, as shown in figure 3.10. The methodology was originally developed with

this search shape. The topic is discussed further in chapter 4.
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Figure 3.5: Contours of source prediction error, utilizing 1 point of information indicated

by the ‘x’ (% error)
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the datum point (% error)
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Figure 3.7: Contours of source prediction error, utilizing 3 sample points, ’x’ indicating

the datum point (% error)

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

Normalized Axial Distance

N
or

m
a
li

ze
d

D
is

ta
n

ce
A

b
ov

e
S

u
rf

ac
e

0 5 10 15 20
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3.3 Predictor - Corrector Approach

In an effort to reduce the total number of sample points n, the methodology was divided

into two steps, the predictor and the corrector steps. This approach first utilizes a set of

a sample points to determine an approximate source temperature. The corrector step

then utilizes the rest of the sample points n − a to “correct” the source temperature

and predict the source location.

The predictor step starts by minimizing equation (3.3). The solution to the min-

imization of equation (3.3) happens to be the mathematical description of conjecture

1. Since the possibility of local minimums is significant, a global minimization method

must be used, such as the genetic algorithm [35]. Using the intermediate location,

r∗SP , we can use equation (3.4) to solve for the intermediate source temperature T ∗SP .

Equation (3.4) is nothing more than a sample averaged version of equation (3.1a).

The equation (3.3) is then modified to handle the new information from the predictor

step, resulting in equation (3.5). The corrector step then utilizes T ∗SP to find the solution

to the minimization of equation (3.5), which should be the source location rSP . Finally,

to solve for the source temperature a similarly modified equation (3.6) may be used.

F (r) =
a∑
i=1

[m (r + ∆i)T (ri) + b (r + ∆i)−m (r)T (r0)− b (r)]2 (3.3)

T ∗SP =
1

a
{

a∑
i=0

[m (r∗SP + ∆i)T (ri) + b (r∗SP + ∆i)]} (3.4)

Fmod (r) =

n∑
i=a

[m (r + ∆i)T (ri) + b (r + ∆i)− T ∗SP ]2 (3.5)

TSP =
1

n− a
{
n−a∑
i=a

[m (rSP + ∆i)T (ri) + b (rSP + ∆i)]} (3.6)

3.4 Procedure

The procedure starts with acquiring n sample points from the domain. From there,

the sample points are divided into two groups of size a and n − a. A datum point is

arbitrarily chosen from the first set of sample points and is given the identifier ‘0’. A set

of d simulations need to be performed, spanning the thermal domain of interest. Once
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Acquire n samples of unknown

source strength and location

Simulate d test domains span-

ning thermal region of interest

Calculate m(r) and b(r)

Find minimization of F (r) where

F (r)|min = F (r∗SP ) using a acquired samples

Calculate T ∗SP

Find minimization of Fmod(r) where Fmod(r)|min =

Fmod(rSP ) using n-a acquired samples

Calculate TSP

Figure 3.11: Flow chart of the predictor - corrector methodology

this is achieved, we can calculate the inverse interpolation functions m(r) and b(r) for

the entire physical domain. The size of the groups is typically such that a = n− a, to

ensure that both the predictor and corrector halves always have data to work with.

We can then use the predictor - corrector approach previously described. First,

find the solution to the minimization of equation (3.3), followed by calculating the

intermediate source temperature from equation (3.4). Then, find the solution to the

minimization of equation (3.5), which should be the source location. Lastly, calculate

the source temperature from equation (3.6).

A simple flow chart depicting these steps is presented in figure 3.11.
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Chapter 4

Search Shape

The search shape as defined previously is the relative location and pattern between a

set of sample points and a datum point. The search shape effectively determines the

accuracy and capabilities of the described methodology, and as such, a significant effort

went into determining what is the most effective search shape. Unfortunately, intuition

does not indicate what should be chosen for the search shape, other than some form of

separation in all dimension wishing to be resolved. The simplest place to start would

be to do a sensitivity analysis.

4.1 Sensitivity Analysis

A simple sensitivity analysis was performed, comparing the number of sample points

and spacing versus the strength and location error of the solution1. Figure 4.1 is a plot

of perpendicular spacing versus error in the plume source strength. Figure 4.2 is nearly

identical, but with axial spacing. The predicted source temperature error tends to be

larger in the perpendicular case than it is in the axial case. This trend led the use of a

axial arrangement of sample points for predicting the source temperature.

Figures 4.3 and 4.4 are similar to the previous two figures, but these are for the

error in location prediction. The location prediction error in the axial direction is very

erratic, which led to the decision to use the perpendicular direction even though the

axial direction may give slightly better results.

From the figures 4.1 to 4.4, the decision was made to use four sample points in the

axial direction at 1mm spacing, and four sample points in the perpendicular direction

1A significant portion of this section was rewritten from [43]
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Figure 4.1: Temperature prediction error vs perpendicular spacing between samples
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Figure 4.2: Temperature prediction error vs axial spacing between samples
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Figure 4.3: Location prediction error vs perpendicular spacing between samples
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at 1.5mm spacing for correcting the location. However, the spacing of 1.5mm ran into

experimental boundary issues (with the plume case chapter 5) and it was decided to

use 1mm spacing instead. Since the datum point calculations are easier if that sample

point is reused, the search shape shown in figure 4.5 was settled upon. This is the

same result shown earlier. That is to say four horizontal and four vertical, with the

intersection sample point being reused, for a total of seven sample points.

0 1 2 3

4

5

6

1mm

1mm

Corrector Phase

Predictor Phase

1mm 1mm

1mm

1mm

Figure 4.5: Original search shape

The source temperature prediction error was calculated using equation (4.1) and

the source location prediction error was calculated using equation (4.2).

errortemp(%) =
TSP − TS
TS − T∞

× 100 (4.1)

errorlocation(%) =
‖rSP − rS‖

rS
(4.2)

The range of parameters used to create these sensitivity analysis is shown in table 4.1.
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Parameter Value

axial range (mm) 0 − 80

perpendicular range (mm) 0 − 10

T∞ (K) 293

P∞ (kPa) 101.32

TSmin, TSmax (K) 350, 450

Table 4.1: Parameters for original sensitivity analysis

It was quickly identified that using the described seven sample points could be

reduced to three horizontal and three vertical without significantly increasing the error.

Actually, in the case of the perpendicular direction, the error is reduced, which is

something that was initially missed. A more robust method for determining the search

shape is needed.

4.2 Optimization

In an effort to decrease the total number of sample points, decrease the error, and

increase the range, a method was developed to determine an optimum search shape2.

The development of this method starts with identifying the objective function. The

predictor step sets the stage for the accuracy of the rest of the algorithm and thus

minimizing the error of the predictor step will reduce the overall error. Thus we need

to minimize the error associated with equation (3.4), which is rewritten here with some

modifications as equation (4.3). Equation (4.3) is used to create error maps.

TSO =
1

n
{
n∑
i=0

[m (r0 + ∆i + δ)T (r0 + ∆i) + b (r0 + ∆i + δ)]} (4.3)

The vector r∗SP is changed to r0, indicating that r0 is fixed prior to the optimization.

To force the search shape to stay the same during each step of the optimization process,

∆ is included in the local temperature function. The addition of δ allows the search

shape to be used to calculate the error spatially throughout the entire domain.

2A significant portion of this section was rewritten from [45]
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Equation (4.3) does not actually calculate the error that is calculated in equa-

tion (4.4), where ε is the percent error. The effectiveness of a sample point in de-

termining the source temperature is given by the area defined by equation (4.4) at a

specified error level. This is due to the desire to reduce the error at the test location,

but increase the error everywhere else, increasing the gradient of the convergence.∣∣∣∣TSO − TSTS − T∞

∣∣∣∣× 100 = ε (4.4)

4.2.1 Optimization Methodology

The optimization methodology attempts to minimize the area enclosed by equation (4.4)

at a specified error level ε. To perform the optimization, an initial point is selected as r0,

which yields the next sample point, r1. This method repeats, yielding the next sample

point r2. To increase the accuracy of the inverse methodology, this optimization may

be repeated indefinitely, yielding as needed. In the particular case of the plume in a

crossflow only three total sampling points were needed to achieve the desired accuracy

of 2%, which is better than the accuracy of the experiment. Many iterations were

performed, varying U∞, TS , and r0 to cover the domain. Table 4.2 is a list of the

parameters covered, which total to 1050 optimization conditions.

Parameter Minimum Maximum Increments

U∞ (m/s) 0.0 1.0 0.2

TS (K) 350 450 25

raxial (mm) 0 150 25

rperp (mm) 0 10 2.5

Table 4.2: Variable domain parameters used for optimization

This optimization process is non-linear with multiple local solutions, therefore a

stochastic method is recommended to ensure a global solution. The genetic algorithm

from the Mathworks Matlab[32] optimization toolkit was utilized. The Matlab function

utilizes standard genetic algorithm methods, such as elitists, crossovers, and mutations.

The parameters used are shown in table 4.3. Other parameters were kept at their Matlab
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default values. The population size was kept small to reduce computation time. The

computation time required approximately 2 weeks running on a twin processor, twelve

core computer at 3.2GHz with 32GB of RAM.

Parameter Value

PopulationSize 60

Generations 200

Table 4.3: Genetic algorithm parameters

The sample point relative locations from each iteration were averaged in a closest fit

averaging method. The datum point is always at the same location, ∆0 = (0, 0). Sam-

ple point 1 and sample point 2 relative locations are swapped to maintain a minimum of

standard deviation of the relative location average. That is to say, from equation (4.5),

if S1 > S2, then sample point 1 and sample point 2 were swapped.

S1 =
∣∣∆1 −∆1

∣∣+
∣∣∆2 −∆2

∣∣ (4.5a)

S2 =
∣∣∆1 −∆2

∣∣+
∣∣∆1 −∆2

∣∣ (4.5b)

A flow chart of the search shape optimization methodology is shown in figure 4.6.

4.2.2 Results and Error Maps

The end result of all of the optimization is to have three points in the odd arrangement

listed in table 4.4 and displayed graphically in figure 4.7.

Sample Point ∆ (mm)

0 (0.0, 0.0)

1 (1.7, 3.5)

2 (2.8, 0.6)

Table 4.4: Search shape results of averaging over the domain

The error maps for the optimized search shape show a remarkable improvement

over the original search shape. Figure 4.8 is an error map utilizing only one sample
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Select U∞, TS , and r0

Minimize the area bounded by∣∣∣TSO−TS
TS−T∞

∣∣∣ × 100 = ε to determine ∆i

Repeat until desired accuracy is achieved

Repeat process until entire domain is completed

Average sample point locations for ∆i

Figure 4.6: Flow chart of the search shape optimization methodology
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point, which will be identical to the previous one sample point error map figure 3.5.

Figure 4.9 is an error map consisting of two sample points, and figure 4.10 is an error

map consisting of three sample points. It should be noted that the three sample point

error map is similar in gradient to that of the original search shape at five sample points.

One key difference between them would be that the optimized search shape does not

have any alternative local minimums, which means the inverse solver does not require

the use of a stochastic optimization algorithm.

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

Normalized Axial Distance

N
or

m
al

iz
ed

D
is

ta
n

ce
A

b
ov

e
S

u
rf

a
ce

0 5 10 15 20

Figure 4.8: Contours of source prediction error, utilizing 1 sample point of information

indicated by the ‘x’

4.2.3 Experimental Concerns

During testing of the optimized search shape, the method functioned as expected. When

the sample points exactly correlate to the simulated data then the predictions are

accurate. That is to say the methodology can in essence solve three equations for three

unknowns (TS , xS , yS). If there is any error present in the sample data, then the

problem becomes insurmountable with only three sample points. For this reason more

sample points were needed for the experimental data. Nine optimized sample points
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Figure 4.9: Contours of source prediction error, utilizing 2 sample points from the

optimized search shape
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Figure 4.10: Contours of source prediction error, utilizing 3 sample points from the

optimized search shape
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were determined and are listed in table 4.5. The experimental results did not benefit

from using all nine sample points and is discussed further in chapter 5.

Sample Point ∆ (mm)

0 (0.0, 0.0)

1 (1.7, 3.5)

2 (2.8, 0.6)

3 (0.5, 1.1)

4 (2.1, 1.0)

5 (2.3, 2.0)

6 (1.2, 0.8)

7 (3.1, 0.7)

8 (0.8, 2.1)

Table 4.5: Search shape results of averaging over the domain with increasing the sample

size to 9
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Chapter 5

Example Problem: Plume in a Crossflow

5.1 Introduction

A plume in a crossflow is as exactly as it sounds; a thermal plume (constant temper-

ature or constant heat flux) rises from a surface and a free stream flow, perpendicular

to the plume bends, the plume in the direction of the free stream. The plume in a

crossflow of interest has relatively strong crossflow velocity compared to the plume ve-

locity (Uplume/Uinfty), therefore the plume tends to form a boundary layer close to

the surface1.

Several engineering problems may be interpreted, at least simplistically, as a plume

in a crossflow. Some such applications are: environmental flows[7, 33], fires in urban

environments[19], fires in tunnels[6] and thermal management systems[39]. The goal

of this particular inverse problem is to solve for the location and the strength of the

source using only a small set of sample points down stream.

5.1.1 Physics of the Forward Problem

The possible flow regimes are governed via several non-dimensional numbers. A list of

the important non-dimensional parameters is shown in table 5.1. A thorough explana-

tion of the flow parameters is in appendix A.1. From this we can determine that the

flow is usually in the transitional turbulent regime. The flows are too slow to fall into

the compressible regime. Lastly, viscous effects must be modeled to allow turbulence

to develop, propagate, and dissipate.

1A significant portion of this chapter was rewritten from [44]
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Non-Dimensional

Parameter Symbol Range Flow Regime

Grashoff no. Gr ≈ 105 − 106 ratio of buoyancy to viscous forces

Rayleigh no. Ra ≈ 107 plume stability

Reynolds no. Re ≈ 103 − 3× 103 ratio of inertial to viscous forces

Richardson no. Ri ≈ 0.1− 4 ratio of buoyancy to inertial forces

Table 5.1: Non-dimensional parameters for plume in a crossflow

Figure 5.1: Schematics of the wind tunnel and the computational domain [43]

5.2 Experimental Apparatus

The primary experimental apparatus is the wind tunnel with test section dimensions

of 54.5× 305× 254mm (H ×D×L). Due to the large aspect ratio of the wind tunnel

(≈ 5 : 1), a two dimensional flow may be assumed. A diagram of the apparatus and

the simulated domain is shown in figure 5.1. All dimensions are in millimeters and the

depth into the page is 305mm. The flow is from left to right in the diagram and is

generated by a pair of 12 Volt DC brushless fans. The fans are located at the anterior

of the tunnel to reduce the turbulence induced by the spinning blades. In an attempt

to generate uniform flow, four flow straighteners are used. Three straighteners are

upstream and one downstream. The velocity range is 0− 5.0m/s.

The heated section is a copper block heated with a resistance type electric heater.

The high thermal conductivity of the copper block encourages a uniform heated surface
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25.4mm wide. Material properties limit the temperature of the copper block to TS ≤

450K. This limitation creates a new limitation on the maximum velocity of the wind

tunnel. Above 1.0m/s, the plume gets overwhelmed by the free stream. That is to say

the thermal plume blends into the flow boundary layer and is difficult to detect using

the thermocouple probe describe here.

The free stream velocity is measured via a Pitot-static tube and a differential pres-

sure sensor. The pressure sensor is the NIST traceable sensor from Omega (PX655-

0.1DI), which has full scale reading of 0.1 inches of water. The pressure sensor has an

error of 0.05% of full scale reading, which results in a maximum of 3% error with at

most 0.018m/s error across the range of applicable velocities.

The local temperatures are measured using a K-type thermocouple probe of 40 gauge

wire mounted on a two-dimensional stage for motion within the plane of the diagram.

Sampling over several days indicate a maximum error of 7% outside the plume and 2%

error within the plume. The origin of the domain is located at the upstream edge of the

heat source on the surface. Ambient temperature was measured using both a K-type

thermocouple with error of approximately ±2.0K and a calibrated mercury glass bulb

thermometer with an error of ±0.5K.

The calibration of the thermocouples, two dimensional translation stages, and the

hot-wire anemometer are described in appendix B. The data acquisition hardware and

software is described in appendix C.

5.3 Methodology

The methodology described in chapter 3 is applied here in incremental steps. The steps

start with the simplest case of known location and end with source location and source

strength unknown. In an effort to determine the error of the algorithm, the data sets

are simulation based only. Each step was repeated with the optimized search shape to

show the effect that the optimized search shape has on the prediction error. The results

of this incremental stepping is shown at the end of this chapter in section 5.6.
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5.4 Simulation

The simulations were performed using the software package Ansys Fluent version 13

[2]. The Navier-Stokes equations were solved using a three-dimensional, steady-state,

realizable k− ε model with enhanced wall effects. The exact governing equations solved

is documented in appendix A.8.3. The three-dimensional model is employed due to a

limitation of Fluent, which is solid-solid conduction is not modeled in two-dimensional

conjugate heat transfer problems.

The origin is located at the upstream edge of the heated surface. The axial down-

stream direction is +x. Normal to the heated surface is +y. Gravity acts in the −y

direction.

The working fluid is air and is modeled as an ideal gas at atmospheric pressure.

Fluid properties such as viscosity were calculated according to the model described in

appendix A.5.

The boundary conditions at the free stream inlet are described as:

u = U∞, v = 0, T = T∞, P = P∞, l = 4mm, I = 5% (5.1a)

k =
3

2
(U∞I)2 (5.1b)

ε = C3/4
µ

k3/2

l
(5.1c)

The upper boundary was chosen to be symmetric to reduce the possibility of errors

introduced by the experimentally accurate no-slip condition. This is acceptable since

the upper boundary is very far from the plume and thus should have negligible effect

on the numerical result. The exit boundary is a simple pressure outflow set to P∞.

The bottom boundary consists of seven zones. The geometric boundaries of the

zones are shown in figure 5.1, from left to right: acrylic, ceramic, heated copper, ce-

ramic, unheated copper, ceramic, and acrylic. All solid material properties are set as

constant. The ceramic is in actuality a composite material made from an aerogel and

ceramic. It has an effective density of 2330 kg/m3. The composite has a specific heat

of 1138 J/(kg−K). It also has a thermal conductivity of 0.1W/(m−K). The density

was determined by weighing the mould before and after the composite was added, and
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knowing the mould volume. The specific heat is that of the ceramic obtained by the

manufacturer(Coitronics), as it makes up most of the mass and volume. Lastly, the

thermal conductivity was determined via an approximation between the ceramic and

the aero-gel.

All solid boundaries are simulated with conjugate heat transfer with an effective

layer width of 25.4mm, except of the acrylic walls which has a width of 12mm. All

external solid boundary conditions are iso-thermal with a temperature of T∞. Similarly,

the external solid-boundary of the heated copper region is TS .

5.5 Simulation Validation

As with all simulations, they mean nothing unless you can verify they accurately model

the experiment. There are several ways to accomplish the verification, each having

varying degrees of validness. Various flow models can give significantly different re-

sults, a consensus may be used to validate the simulation. Grid independence is an

absolute must, as the solution can not ever be a function of the discretization of the

simulation. A comparison against a benchmark solution may be used. A comparison

against experimental results may also be used. If possible it is best to perform all of the

above, to ensure the best validation. The conditions in the following validation tests

are shown in table 5.2.

Parameter Value

U∞ (m/s) 0.6

T∞ (K) 294.5

P∞ (kPa) 101.6

TS (K) 433

Table 5.2: Validation test conditions [43]
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5.5.1 Flow Model

Three flow models have been used to help validate the simulation. The three are

Spalart-Allmaras, k− ε, and k−ω. The methods and solved equations are described in

appendix A.8. Two figures are used to demonstrate the flow models response. The data

contained therein is normalized using equation (5.2). The two slices of the temperature

domain are at X = 1.6 and X = 2.25 and shown in figure 5.4 and figure 5.5 respectively.

φ =
T − T∞
TS − T∞

(5.2a)

X =
x

L
(5.2b)

Y =
y

L
(5.2c)

V =
U

U∞
(5.2d)

Both of the figures show good agreement between k − ε and k − ω, with Spalart-

Allmaras varying slightly. The Spalart-Allmaras model has difficulties solving this type

of problem and is expected to deviate from the other models. The relatively close

agreement of all three models gives credence to the simulations.

5.5.2 Grid Independence

The simplest way to demonstrate grid independence is to show that the solution does

not vary with cell count[47]. This is exactly what is shown in table 5.3. Cell count and

location is varied with the results of the temperature tabulated. With the temperature

varying only a fraction of a percent over the range of cell counts, it is inferred that the

solution is independent of the grid. The grid here is an unstructured, hexagonal mesh

with an emphasis near the plume source and down stream of the plume.

5.5.3 Iterative Convergence

Iterative convergence is achieved through increasing the residual requirements to typi-

cally absurd values and comparing. In this case absurd is 10−7 for all parameters. In

reality, only the continuity residual is needed to be modified, as this always sets the
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Figure 5.2: Validation of the simulation: local temperature using three flow models at

X = 1.6
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Figure 5.3: Validation of the simulation: local temperature using three flow models at

X = 2.25
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Location (x,y) (mm) 30,2 35,3 40,1 50,10

Cell Count

67399 360.3 338.5 352.9 295.6

94378 360.2 338.6 352.7 295.6

130292 360.2 338.5 352.7 295.6

153290 360.1 338.8 352.6 295.8

Table 5.3: Grid Independence Study [43], local static temperature (K)

convergence requirement. Similarly to the flow models comparison, two slices of the

domain are used. In this case, the absurd case is subtracted from the other residual

cases so that the small differences are more discernible. Again, the location of the slices

are normalized using equation (5.2) and are at X = 1.6 and X = 2.25 in figure 5.4 and

figure 5.5. Both figures show small differences between the residual cases. Even at the

normal 10−3, case the error compared to a residual of 10−7 is only 0.005K. The plots

do not cover the entire domain because the values identically correlate with the 10−7

case, and therefore the result is 0 and cannot be plotted on a logarithmic plot. Barring

further evidence, it is safe to assume iterative convergence has been achieved.

5.5.4 Comparison to Experiment

The last test of the simulation is comparison against experimental results. Two slices of

the comparison of local temperatures are shown in figures 5.6 and 5.7. The figures are

normalized using equation (5.2). The simulation tends to overshoot the experimental

results by a small margin 2%, but typically less. The conditions of the comparisons are

listed in table 5.4.

Another comparison against the experiment may be done. Hot-wire anemometer

data may be compared against the simulation with no thermal plume. This comparison

is made in figure 5.8, with the only significant error at 1mm above the plate of 36%

error. This near wall error is expected, because near wall conditions are difficult to

simulate and difficult to model perfectly.
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Figure 5.6: Validation of the simulation: local temperature - experiment versus simu-

lation at X = 1.6 [44]
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Figure 5.7: Validation of the simulation: local temperature - experiment versus simu-

lation at X = 2.25 [44]
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Figure 5.8: Validation of the simulation: velocity - experiment versus simulation, no

thermal plume

Parameter Value

U∞ (m/s) 0.6± 0.15

T∞ (K) 294.5± 0.5

P∞ (kPa) 101.6± 0.2

TS (K) 433± 2.0

Table 5.4: Validation Test [43]
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5.6 Results

The previously described methodology is applied in a step-by-step fashion. The error

associated with each step is calculated using equation (5.3). The location vector is

decomposed into X and Y to make it easier to demonstrate.

errortemp(%) =
|TSP − TS |
TS − T∞

× 100 (5.3a)

errorx−location(%) =
|xSP − xS |

xS
× 100 (5.3b)

errory−location(%) =
|ySP − yS |

yS
× 100 (5.3c)

5.6.1 Source Location Known

This step is the “source location is known” step and only the source strength is un-

known. That is to say rS is known while TS is not known. Examining equation (3.1),

substituting in a constant r results in a dramatic simplification of the equation. If the

temperature at one location is known, equation (3.1) can be used to directly calculate

the source strength.

There are twenty-four selected cases labeled A-X. The conditions are shown in ta-

ble 5.5. Case J for example, has a free stream velocity of U∞ = 0.6m/s, source temper-

ature of TS = 425K, and a datum location of r0 = (60mm, 1mm). The non-varying

simulation conditions are listed in table 5.6.

The results presented here in figure 5.9 requires only one sample point, which is

listed. The prediction error of the source temperature is negligible for all cases within

the plume. The small error most likely consists of machine error and neglecting vari-

ations in density and buoyancy, although this was not verified. Since this table was

generated using only simulated data, other error such as radiation was not considered.

5.6.2 Source Elevation and Strength Known

This incremental step is both a step forward and backwards to achieving the goal of

location and strength unknown. Axial location is unknown, but the source strength is
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U∞ (m/s) 0.6 0.6 1.0 1.0

TS (K) 375 425 375 425

Location (x,y)

40 mm, 1 mm A B C D

40 mm, 2 mm E F G H

60 mm, 1 mm I J K L

60 mm, 2 mm M N O P

80 mm, 1 mm Q R S T

80 mm, 2 mm U V W X

Table 5.5: Several sampled case parameters

Parameter Value

T∞ (K) 293

P∞ (kPa) 101.3

Table 5.6: Simulation test conditions

A B C D E F G H I J K L M N O P Q R S T U V W X
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Figure 5.9: Error in the prediction of TS from several sampled cases within the plume

with rS known
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known. If the source strength is known a priori, then the methodology breaks down

to only the corrector half. Figure 5.10 is a similar plot to the previous, and follows

the same cases shown in table 5.5. The plot is of the percent error in predicting the

axial location of the source, utilizing a pre-optimized search shape of 5 sample points.

Even with the pre-optimized search shape, the error is less than 1.0% for all cases.

Figure 5.11 is the exact same plot utilizing the optimized search shape. The optimized

search shape reduces the error to 0.1% or less in all test cases.
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Figure 5.10: Error in the prediction of axial location from several sampled cases within

the plume with TS and elevation known, pre-optimized search shape

5.6.3 Source Strength Known

This step is conceptually no different than the previous one. The methodology is

reduced to the corrector half only. As might be expected, the error shown in figure 5.12

is similar to that shown in the previous step, figure 5.10. The elevation prediction error

shown in figure 5.13 is larger, as might be anticipated because it is more sensitive than

the axial direction and the values are numerically smaller. Both of these figures show

the error using the pre-optimization search shape.
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Figure 5.11: Error in the prediction of axial location from several sampled cases within

the plume with TS and elevation known, optimized search shape
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Figure 5.12: Error in the prediction of axial location from several sampled cases within

the plume with TS known, pre-optimized search shape
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Figure 5.13: Error in the prediction of elevation location from several sampled cases

within the plume with TS known, pre-optimized search shape

5.6.4 Source Strength and Source Location Unknown

This step assumes no a priori knowledge. The first set of figures(figures 5.14 to 5.16) are

the errors associated with the prediction of the source location and strength utilizing

the pre-optimized search shape. While the second set of figures(figures 5.17 to 5.19)

utilized the optimized search shape. All of the figures utilize the same configuration

shown in table 5.5.

The errors between the pre-optimized and optimized search shape are of similar

order, but usually favors the optimized case. Just to re-iterate, the major benefit of

the optimized search shape was to reduce the number of sample points required, while

reducing the number of local minimums existing in the search space. The optimized

search shape does generally improve accuracy, but it was not the goal of the optimiza-

tion.

A plot of actual source temperature and predicted source temperature is shown in

figure 5.20. The line of zero error is plotted for reference. The data in figure 5.20

consists of more sets than shown in the previous plots, and is demonstrative of the

capabilities of the methodology.



50

A B C D E F G H I J K L M N O P Q R S T U V W X
0

0.2

0.4

0.6

0.8

1

0.
28

0
.2

8 0.
37

0
.1 0
.1

1
0.

1
1

0
.2

4
0.

0
4

0
.0

1
0.

0
1 0.

09
0
.0

4
0.

2
7

0
.2

7
0.

7
4

0.
5
9

0
.0

7
0.

07 0
.1

2
0.

07
0.

3
6

0
.3

6
0.

8
6

0
.7

3

Selected Cases

A
x
ia

l
lo

ca
ti

on
p

re
d

ic
ti

o
n

er
ro

r
(%

)

Figure 5.14: Error in the prediction of axial location from several sampled cases within

the plume, pre-optimized search shape
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Figure 5.15: Error in the prediction of elevation location from several sampled cases

within the plume, pre-optimized search shape
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Figure 5.16: Error in the prediction of source strength from several sampled cases within

the plume, pre-optimized search shape
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Figure 5.17: Error in the prediction of axial location from several sampled cases within

the plume, optimized search shape
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Figure 5.18: Error in the prediction of elevation location from several sampled cases

within the plume, optimized search shape
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Figure 5.19: Error in the prediction of source strength from several sampled cases within

the plume, optimized search shape
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Figure 5.20: Actual vs predicted source temperature for several cases within the plume,

optimized search shape

5.6.5 Experimental Results

The very last step on this step-by-step approach is solving the problem with exper-

imental results. As in the previous situation, no previous knowledge is known and

the cases follow those of table 5.5. Due to the severely increased error, the previously

used bar plot was dispensed with, and a table of the information is used. Non-varying

experimental parameters are listed in table 5.7. The larger error bounds are due to

experimental sampling occurring over the course of two days. Table 5.8 consists of the

error associated with the source location and source strength using experimental data

and the pre-optimized search shape. The significant increase in error is explained by

experimental error, and simulations not accurately portraying the experiment.

Parameter Value

T∞ (K) 294.5± 4.0

P∞ (kPa) 101.6± 0.8

Table 5.7: Experimental test conditions

Table 5.9 is nearly identical to the previous table, except it was generated using
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the experimental optimized search shape with five sample points(table 4.5). The errors

are generally reduced, however, utilizing the optimized search shape did not adequately

resolve the cases which previously had large errors.

Table 5.10 increases the sample point count to nine, utilizing all of the sample points

determined in the optimization. Overall the error was decreased, except for a select few

minor increases. The difficult to resolve cases were significantly improved, and again,

not adequately. This leads credence to the possibility of experimental error in these

cases.

Lastly, a plot of actual versus predicted source temperature is shown in figure 5.21.

A line of zero error is shown for convenience. This plot contains more sets of data than

shown in the previous plots.
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Figure 5.21: Actual vs predicted source temperature for several cases within the plume,

optimized search shape, utilizing experimental data

5.6.6 Error Analysis

To perform the error analysis of the methodology, an artificial error was added to the

sample points. This artificial error ranged from 0.1% to 10%. Figures 5.22 to 5.24

plot this error analysis for the axial location, elevation location, and source strength,

respectively. These figures show the median error of the 24 cases used previously from
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U∞ (m/s) 0.6 0.6 1.0 1.0

TS (K) 375 425 375 425

Location (x,y)

40 mm, 1 mm X 0.0% 2.5% 5.0% 0.0%

Y 0.0% 10.% 2.0% 10.%

T 1.2% 1.8% 0.0% 1.1%

40 mm, 2 mm X 2.5% 2.5% 2.5% 2.5%

Y 10.% 10.% 10.% 5.0%

T 1.7% 2.0% 0.7% 1.9%

60 mm, 1 mm X 0.0% 3.3% 6.7% 0.0%

Y 0.0% 8.0% 5.0% 2.0%

T 1.1% 4.2% 3.3% 4.9%

60 mm, 2 mm X 6.7% 6.7% 3.7% 3.3%

Y 10.% 10.% 10.% 10.%

T 1.5% 4.9% 3.2% 3.2%

80 mm, 1 mm X 0.0% 7.5% 3.7% 0.0%

Y 1.0% 40.% 10.% 10.%

T 6.1% 38.% 54.% 32.%

80 mm, 2 mm X 5.0% 12.% 2.5% 1.2%

Y 25.% 35.% 10.% 5.0%

T 8.8% 29.% 41.% 54.%

Table 5.8: Error in predicting source location (xS , yS) and source strength(TS) from

several sample cases within the plume, pre-optimized search shape, utilizing experimen-

tal data [44]
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U∞ (m/s) 0.6 0.6 1.0 1.0

TS (K) 375 425 375 425

Location (x,y)

40 mm, 1 mm X 0.0% 1.2% 5.0% 0.8%

Y 0.0% 4.2% 1.2% 1.3%

T 0.8% 0.2% 0.0% 0.7%

40 mm, 2 mm X 1.5% 2.5% 2.5% 2.4%

Y 5.0% 5.0% 5.0% 4.8%

T 1.6% 0.0% 0.6% 1.7%

60 mm, 1 mm X 0.1% 1.0% 6.3% 0.0%

Y 0.3% 4.0% 2.0% 1.0%

T 1.0% 1.0% 3.1% 2.7%

60 mm, 2 mm X 1.4% 4.7% 1.1% 2.8%

Y 3.1% 5.0% 1.1% 3.3%

T 1.1% 2.9% 0.7% 2.4%

80 mm, 1 mm X 0.0% 2.5% 1.8% 0.2%

Y 1.1% 15.% 5.0% 5.0%

T 4.2% 20.% 16.% 19.%

80 mm, 2 mm X 3.0% 6.0% 2.4% 0.7%

Y 8.0% 18.% 5.0% 4.0%

T 4.8% 20.% 21.% 18.%

Table 5.9: Error in predicting source location (xS , yS) and source strength(TS) from

several sample cases within the plume, optimized search shape with 5pts, utilizing

experimental data
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U∞ (m/s) 0.6 0.6 1.0 1.0

TS (K) 375 425 375 425

Location (x,y)

40 mm, 1 mm X 0.0% 0.8% 3.0% 0.7%

Y 0.0% 4.1% 1.1% 1.2%

T 0.7% 0.2% 0.0% 0.7%

40 mm, 2 mm X 0.8% 2.4% 2.0% 1.9%

Y 1.2% 4.2% 4.1% 2.4%

T 1.6% 0.0% 0.6% 1.7%

60 mm, 1 mm X 0.1% 0.9% 0.7% 0.2%

Y 0.3% 3.1% 1.1% 0.8%

T 1.0% 0.8% 0.7% 1.7%

60 mm, 2 mm X 1.2% 2.7% 0.6% 1.9%

Y 1.9% 3.8% 0.9% 2.7%

T 0.8% 1.7% 0.5% 2.1%

80 mm, 1 mm X 0.2% 2.4% 1.6% 0.7%

Y 1.0% 8.8% 3.7% 3.0%

T 3.4% 12.% 8.9% 13.%

80 mm, 2 mm X 2.1% 4.1% 0.8% 0.5%

Y 6.6% 16.% 2.2% 2.3%

T 2.8% 18.% 9.8% 10.%

Table 5.10: Error in predicting source location (xS , yS) and source strength(TS) from

several sample cases within the plume, optimized search shape with 9pts, utilizing

experimental data
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table 5.5. The three sample point conditions do not fair particularly well, which is

expected as the three sample points offer no error correction capability. That is to say,

three sample points solve for three unknown parameters, there is no more information

left to correct for errors.

The maximum error obtained for the axial location prediction was less than 0.5%

(except for the three sample point condition). Similarly, the maximum error for eleva-

tion was less than 1.0%. The source strength prediction error seems to be of the same

order as the artificial error. This is to be expected, as the source strength is linearly

related to the temperature at a given location, as described previously in chapter 3.
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Chapter 6

Example Problem: Jet in a Crossflow

6.1 Introduction

Similar to the plume in a crossflow, the jet in a crossflow problem includes a stream

of air perpendicular to the free stream. This adds to the momentum of the thermal

buoyancy driven plume. It also adds another parameter needing to be solved for US .

Unlike the plume case, the jet can have a momentum of similar magnitude or greater

than that of the crossflow.

The jet in a crossflow is probably best envisioned as a smoke stack, however, many

other industrial applications exist. Another such application is a gas turbine burner[40].

The goal of this inverse problem is to solve for the location, strength, and velocity of

the source.

6.1.1 Physics of the Forward Problem

The jet in a crossflow physics are nearly identical to those of the plume in a crossflow.

A list of the important non-dimensional parameters is shown in table 6.1. A thorough

explanation of the flow parameters is in appendix A.1. From this we can determine that

the flow is usually in the turbulent regime, and that the flows are too slow to fall into

the compressible regime. Viscous effects, again, must be modeled to allow turbulence

to develop, propagate, and dissipate.

6.2 Experimental Apparatus

The experimental apparatus consists of the same wind tunnel and all accompanying

hardware. The test section floor is removable and was replaced with a two-dimensional
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Non-Dimensional

Parameter Symbol Range Flow Regime

Grashoff number Gr ≈ 105 − 106 ratio of buoyancy to viscous forces

Rayleigh number Ra ≈ 107 plume stability

Reynolds number Rej ≈ 103 − 104 ratio of inertial to

viscous forces (jet)

Reynolds number Re∞ 6× 103 ratio of inertial to

viscous forces (free stream)

Richardson number Ri ≈ 103 − 3 ratio of natural to

forced convection

Table 6.1: Non-dimensional parameters for jet in a crossflow

jet, which is diagrammed in figure 6.1. The new floor of the test section is made from

a 25.4mm thick sheet of acrylic. The jet is produced via compressed air, which passes

through two 700 W cartridge heaters, model Omega AHP-7561. The jet has a maximum

temperature of 425K due to material limitations. The maximum jet velocity is up to

5m/s due to air delivery restrictions.

The jet velocity is calculated from volumetric flow rates into the chamber and verified

with a Pitot-static probe. The maximum error utilizing the volumetric flow rate method

is 0.2m/s. The error associated with the differential pressure sensor connected to the

Pitot-static tube results in a maximum error of 0.018m/s.

6.3 Methodology

Due to the extra parameter needing to be solved for, the jet in a crossflow methodology is

slightly different from the plume methodology described in chapter 3. Knight et al. [25]

used a quardratic response surface model to determine the source strength(temperature

and velocity). This method, however, is not easily applied to the situation of unknown

source location. The response surface model equation (6.1) (rewritten from [25], utiliz-

ing this works nomenclature) cannot be rewritten such that both TS and US are on the
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Figure 6.1: Schematics of the wind tunnel with the jet installed

left hand side of the equation. Therefore, a slightly different approach is needed: the

complete separation of temperature and velocity.

T (r)− T∞ = (TS − T∞)
(
β0(r) + β1((r) [US/U∞] + β2(r) [US/U∞]2

)
(6.1)

The method starts similar to that described previously, where n samples of unknown

source strength(temperature and velocity) and location are acquired, followed by simu-

lating d test domains spanning the thermal and velocity region of interest. This is where

this new method deviates. A guess of the source velocity(US) so m(r) and b(r) are not

dependent upon an unknown US . Calculate m(r) and b(r) from equation (3.1). Find

the minimization of F (r) from equation (3.3) and calculate the source temperature TSP

from equation (3.4).

If we neglect variations in density and thermal buoyancy effects, the local temper-

ature should be a quadratic function of the jet velocity. After many samples and tests,

this assumption is proven to be errant. Unfortunately, no other simply defined curve-fit

follows the function with better accuracy than a quadratic curve-fit and thus, it will be

used.

If we hold the source temperature constant, then equation (6.2) can be used to

calculate the source velocity, but only if we can determine the coefficients α0, α1,

and α2. Following the same logic used in developing F (r), we can develop G(r) in
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equation (6.3) based upon equation (6.2). The minimization of G(r) results in rSP ,

which can then be used to calculate USP from equation (6.4). This process is repeated

until ∆USP < εU and ∆TSP < εT , where εU and εT are some small values such as

0.1K and 0.01m/s respectively. As an extra check, one can compare the values r∗SP

and rSP . These values should be in agreement with each other. A flowchart of this

modified methodology is shown in figure 6.2.

US = Γ2 (r)T (r)2 + Γ1 (r)T (r) + Γ0 (r) (6.2)

G (r) =
n∑
i=a

[Γ2 (r + ∆i)T (ri)
2

+ Γ1 (r + ∆i)T (ri)

+ Γ0 (r + ∆i)

− Γ2 (r)T (r0)
2

− Γ1 (r)T (r0)

− Γ0 (r)]2

(6.3)

USP =
1

n− a
{
n−a∑
i=a

[Γ2 (rSP + ∆i)T (ri)
2

+ Γ1 (rSP + ∆i)T (ri)

+ Γ0 (rSP + ∆i)]}

(6.4)

6.4 Simulation

The jet simulation settings and conditions are nearly identical to the plume simula-

tions, but repeated here for completeness. The simulations were performed using the

software package Ansys Fluent version 13 [2]. The Navier-Stokes equations were solved

using a three-dimensional, steady-state, realizable k − ε model with enhanced wall ef-

fects. The exact governing equations solved are documented in appendix A.8.3. The

three-dimensional model is employed due to a limitation of Fluent, which is solid-solid

conduction is not modeled in two-dimensional conjugate heat transfer problems.

The origin is located at the upstream edge of the jet. The axial downstream direction

is +x. Normal to the heated surface is +y. Gravity acts in the −y direction.
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Acquire n samples of unknown

source strength and location

Simulate d test domains span-

ning thermal region of interest

Guess USP

Calculate m(r) and b(r)

Find minimization of F (r) where

F (r)|min = F (r∗SP ) using a acquired samples

Calculate TSP

Calculate Γ2(r), Γ1(r), and Γ0(r)

Find minimization of G(r) where G(r)|min =

G(rSP ) using n-a acquired samples

Calculate USP

Repeat until ∆USP < εU and ∆TSP < εT

Figure 6.2: Flow chart of the predictor - corrector methodology for a jet in a crossflow
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The working fluid is air and modeled as an ideal gas at atmospheric pressure. Fluid

properties such as viscosity were calculated according to the model described in ap-

pendix A.5.

The boundary conditions at the free stream inlet are described as:

u = U∞, v = 0, T = T∞, P = P∞, l = 4mm, I = 5% (6.5a)

k =
3

2
(U∞I)2 (6.5b)

ε = C3/4
µ

k3/2

l
(6.5c)

The jet is modeled as a velocity inlet with constant velocity at the bottom of a 25.4mm

deep channel with a width of 3.2mm. All of the parameters of the jet are listed below:

u = 0, v = US , T = TS , P = P∞, l = 4mm, I = 5% (6.6a)

k =
3

2
(U∞I)2 (6.6b)

ε = C3/4
µ

k3/2

l
(6.6c)

The upper boundary was chosen to be symmetric to reduce the possibility of errors

introduced by the experimentally accurate no-slip condition. This is acceptable since

the upper boundary is very far from the jet and thus, should have negligible effect on

the numerical result. The exit boundary is a simple pressure outflow set to P∞.

The bottom boundary consists of wind tunnel flooring and test section flooring. The

wind tunnel flooring is made from 12mm thick acrylic, while the test section flooring

is 25.4mm thick acrylic. All external solid boundary conditions are iso-thermal with a

temperature of T∞, except for the test section, which is iso-thermal with a temperature

of 1
2 (TS + T∞).

6.5 Simulation Validation

A simulation validation study for the jet in a crossflow was performed covering the

typical studies: flow model, grid independence, iterative convergence, and a comparison

with experimental results. The conditions of the validation study are shown in table 6.2.
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Parameter Value

U∞ (m/s) 2.0± 0.02

US (m/s) 2.0± 0.2

T∞ (K) 305± 0.5

P∞ (kPa) 101.3± 0.01

TS (K) 350± 2.0

Table 6.2: Validation test conditions

6.5.1 Flow Model

Three flow models were used to validate the flow model selection: Spalart-Allmaras,

k − ε, and k − ω. A complete description of each model is described in appendix A.8.

The data is normalized using equation (6.7), where D is the width of the jet. Two

plots are used to demonstrate the differing flow models, figures 6.3 and 6.4. They are

located at X = 3.15 and X = 4.75 respectively. Both plots have k − ε and k − ω in

close agreement with Spalart-Allmaras varying greatly. The Spalart-Allmaras model

does have a similar trend, but is incapable of properly modeling this particular type of

problem. Since k − ε and k − ω are in such close agreement, we can say that the flow

models most likely capture all of the relevant physics.

φ =
T − T∞
TS − T∞

(6.7a)

X =
x

D
(6.7b)

Y =
y

D
(6.7c)

V =
U

U∞
(6.7d)

VS =
US
U∞

(6.7e)

6.5.2 Grid Independence

As was done with the plume in a crossflow, the cell count will be varied and the

temperature at a number of locations will be checked do demonstrate their values to
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Figure 6.3: Validation of the simulation: local temperature using three flow models at

X = 3.15
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Figure 6.4: Validation of the simulation: local temperature using three flow models at

X = 4.75
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Location (x,y) (mm) 0,1 10,5 15,5 30,10

Cell Count

57660 337.7 323.3 321.6 310.1

83888 337.7 323.3 321.6 310.1

166352 337.7 323.2 321.5 310.1

366168 337.7 323.2 321.5 310.1

Table 6.3: Grid Independence Study, local static temperature (K)

not change. Table 6.3 shows four different cell counts at four different locations. The

temperature varies no more than 0.1K, and therefore, we can conclude the domain does

not depend upon the grid. The grid is an unstructured, hexagonal mesh with a focus

upon the area inside the jet entrance and downstream of the jet.

6.5.3 Iterative Convergence

The typical method of proving iterative convergence is to increase the residual require-

ments. In the case of the jet in a crosswind problem, large differences in grid sizing

requires that limit to be at least 10−8 for all parameters. Figures 6.5 and 6.6 are two

slices of the domain, located at X = 3.15 and X = 4.75. The slices are errors with

respect to the 10−8 case. Due to issues with the extremely small elements inside the

jet, the system does not adequately converge until 10−5 and probably should use 10−6

to be safe. If we use 10−6 residual requirements, it is safe to assume that the jet in a

crossflow is likely to have converged iteratively.

6.5.4 Comparison to Experiment

As with the previous validation studies, two slices of the experiment versus simulation

are used to validate the simulation. Again, both slices are at X = 3.15 and X = 4.75 for

figures 6.7 and 6.8 respectively. Both slices give good agreement between the experiment

and the simulation, although not as accurate as one would want. One area of concern is

the trend near the wall in figure 6.8 where the experiment and the simulation diverge.
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Figure 6.5: Validation of the simulation: local temperature error vs residuals set to

10−8 at X = 3.15
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Figure 6.7: Validation of the simulation: local temperature - experiment versus simu-

lation at X = 3.15

This issue is most likely due to the problems with resolving near wall fluid conditions

within the models chosen.

Hot-wire anemometer data for the wind tunnel was already covered in section 5.5.4.

Simulation data versus the hot-wire anemometer data for the jet is shown in figure 6.9,

where X = 0 is the center of the jet. The simulation and experiment compare favorably

and we can assume the simulation properly models the important jet physics. The jet

velocity test conditions are in table 6.4. Due to the expansion of the compressed air,

additional heat was needed to bring the jet temperature back up to ambient tempera-

ture.

6.6 Results

An incremental approach to solving the jet problem was used. Starting with the simplest

cases working towards the most difficult, and finally adding in the complexity that is

the experimental results. There are twenty-four selected cases used to demonstrate
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Figure 6.8: Validation of the simulation: local temperature - experiment versus simu-

lation at X = 4.75
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Figure 6.9: Validation of the simulation: jet velocity - experiment versus simulation,

no crossflow, ambient jet temperature. Axial slice at Y = 0.63
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Parameter Value

U∞ (m/s) 0

US (m/s) 2.0± 0.05

T∞ (K) 298.5± 0.5

P∞ (kPa) 102.6± 0.01

TS (K) 298.5± 2.0

Table 6.4: Jet velocity validation test conditions

US (m/s) 1 1 2 2 4 4

TS (K) 375 425 375 425 375 425

Location (x,y)

10 mm, 1 mm A B C D E F

10 mm, 3 mm G H I J K L

20 mm, 1 mm M N O P Q R

20 mm, 3 mm S T U V W X

Table 6.5: Several sampled case parameters

the capabilities of the described methodology. The cases are labeled A-X, and the

conditions are listed in table 6.5. Non-varying parameters are listed in table 6.6.

Parameter Value

U∞ (m/s) 2

T∞ (K) 293

P∞ (kPa) 101.3

Table 6.6: Simulation test conditions

The next two steps utilize a single sample point, however, the rest use the nine

sample points listed in table 4.5. The search shape used here is the optimized search

shape for a plume with all nine sample points included. Utilizing a jet optimized search

shape may yield better results.
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Figure 6.10: Error in the prediction of TS from several sampled cases within the jet

with rS and US known

6.6.1 Source Location and Velocity Known

The first step is unknown source temperature, the methodology breaks down to a simple

linear equation similar to that of the plume case. The linear equation allows the use

of a single sample point to solve the inverse problem. The results of the selected cases

are shown in figure 6.10. The error is typically less than 0.1%, except in four cases.

The four cases with large error are located outside or near the edge of the jet. The

temperature at these locations is near ambient and the Matlab polynomial curve fit has

issues with the data points very similar to each other, often giving results of magnitude

10±10 or worse. What this means is that the error for these four points is essentially

caused by machine error.

6.6.2 Source Location and Temperature Known

Another simple case is that of the when the source velocity is not known. This step

also breaks down to a relatively simple equation, but this time the equation is that of

equation (6.2) and thus quadratic. This particular equation does not perfectly model

the velocity profile, but as is seen in figure 6.11, it is still good. The error associated
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Figure 6.11: Error in the prediction of US from several sampled cases within the jet

with rS and TS known

with this is never more than ≈ 1%, which is likely less than that of any experimental

error. In this case, it is certainly less than the experimental error. Again, the simulation

parameters are described in tables 6.5 and 6.6.

6.6.3 Source Location Known

Step three is a bit more complicated. The method would ideally breakdown to that of

the response surface model of Knight et al. [25]. This however, cannot be the case as

the methodology has the two equations separated and thus, they still need to be solved

iteratively. The selected cases are shown in figures 6.12 and 6.13, and are of the error

in predicting the source temperature and velocity. A few of the selected cases improved

in accuracy due to the increase in the number of sample points.

6.6.4 Source Elevation Known

This is the next logical step, and only the source elevation is known a priori. Fig-

ures 6.14 to 6.16 are bar charts containing the error associated with predicting the

source temperature, velocity, and axial location, respectively. The charts are of the
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Figure 6.12: Error in the prediction of TS from several sampled cases within the jet

with rS known
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Figure 6.13: Error in the prediction of US from several sampled cases within the jet

with rS known
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Figure 6.14: Error in the prediction of TS from several sampled cases within the jet

with source elevation known

same selected cases of table 6.5. The error is significantly increased to higher than

9% for predicting the source velocity. Even an error of 9% is still reasonable, but the

methodology does not seem to function as well for the jet in a crossflow problem. This

is likely due to not utilizing an optimized search shape for the jet, even though nine

sample points were used.

6.6.5 Source Location and Strength Unknown

The last step with source location and strength unknown is not possible with the current

search shape and methodology. The issue in this case is the self-similar nature of a jet

in a crossflow, where there are multiple solutions to the problem. That is to say that

the nine point search shape can converge on multiple solutions.

This is similar to the problem with the plume in a crossflow prior to using the new

optimized search shape. In that problem, the solutions all had the same predicted

source temperature, with different locations with the same search shape. This problem

has completely unique solutions with the same search shape.

When searching the domain for alternative solutions, a search space of 350− 450K
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Figure 6.15: Error in the prediction of US from several sampled cases within the jet

with source elevation known
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Figure 6.16: Error in the prediction of xS from several sampled cases within the jet

with source elevation known
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Axial Elev. Jet Jet Search Shape

Loc. (mm) Loc. (mm) Temp. (K) Vel. (m/s) Error (%)

20.0 3.0 425 2.0 0.00

10.0 3.7 375 2.5 0.60

12.0 5.1 375 3.0 0.34

14.8 2.7 400 2.0 0.30

16.3 4.5 400 2.5 0.26

19.5 5.9 400 3.0 0.29

21.8 5.0 425 2.5 0.24

25.6 6.5 425 3.0 0.34

25.2 3.2 450 2.0 0.13

26.8 5.4 450 2.5 0.25

Table 6.7: Example alternative solutions

in 25K increments and 0−4m/s in 0.5m/s increments were used. Take the ‘V’ case for

example, there are nine alternative solutions with less than 1% error difference between

the search shape temperatures. Table 6.7 is a list of all of the alternatives, including

the ‘V’ case at the top of the table. The alternatives seem to be discernible knowing

the elevation, which is why the previous step was able to be resolved.

6.6.6 Experimental Results

Due to the issue in determining the four unknowns, the experimental results are limited

to finding only axial location and source strength. The conditions of the experiments

are shown in table 6.8. The results from a few select cases are shown in table 6.9. Due

to the severe addition of error to the experimental results, the results are shown in a

table format rather than the previously used bar graphs.

The error predicting the axial location is as high as 18.7%. The error in predicting

source velocity is as high as 21.8%. The error for source temperature is as high as 13.7%.

These high error rates should be expected, as there are many contributing factors. The
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Parameter Value

T∞ (K) 297.6± 8.0

P∞ (kPa) 100.6± 0.6

U∞ (m/s) 2.0± 0.02

Table 6.8: Experimental test conditions

search shape is not optimized for the jet, the number of sample points may not be

enough, and the simulations do not exactly follow the experiment. Even with these

issues, the methodology was able to predict close to, if not within, experimental error.

Realize that 20% of 1.0m/s is the accuracy of the experimental jet velocity.

US (m/s) 1.0 1.0 4.0 4.0

TS (K) 375 425 375 425

Location (x,y)

10 mm, 0 mm X 10.9% 11.7% 11.1% 13.8%

U 21.8% 18.6% 10.4% 11.9%

T 8.70% 9.87% 10.7% 12.9%

20 mm, 0 mm X 8.65% 7.65% 5.40% 9.81%

U 18.7% 19.8% 11.5% 12.1%

T 8.81% 10.7% 9.65% 10.2%

30 mm, 0 mm X 10.6% 10.4% 18.7% 9.78%

U 15.8% 17.9% 12.3% 13.7%

T 9.61% 8.64% 13.7% 10.1%

Table 6.9: Error in predicting source axial location (xS), source strength(US and TS)

from a few sample cases within the jet, search shape with 9pts, utilizing experimental

data
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Figure 6.17: Source prediction error(%) produced from artificially adding error to sam-

ple points

6.6.7 Error Analysis

The error analysis was performed similarly to that of the plume error analysis. An

artificial error was added to the sample points and the median error of the twenty-four

selected cases was taken. For the jet in a crossflow, only the condition of nine sample

points was used. The results are graphed in figure 6.17. The axial direction prediction

error is affected similarly to that of the plume case, that is, very little. The source

temperature prediction error also follows similarly, the error follows the same order of

magnitude of that of the added error.

The error analysis applied to the source velocity is expected, as the interpolation

function is quadratic and thus, any error should propagate in such a fashion. Indeed,

the error for the source velocity is of similar magnitude as the square of the additive

error. In all three of the error analysis source unknowns, the methodology seems to be

remarkably stable in the sense that the error does not significantly affect the results.
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Chapter 7

Example Problem: Natural Convection from a Finite

Heat Source in an Enclosure

7.1 Introduction

The plume in a sealed cavity is taking a step back in complexity from the plume in a

crossflow. Essentially, this is the special case of a plume with no crossflow, which is

achieved through isolation of the plume. This special case arises most often via fires in

closed rooms.

If the goal is for eventual use for determining the strength and location of fires in

a sealed room, then the sample data must come from the boundaries only. The heat

source and the entire domain is off limits and the only access is through a small “sensor

wall”. This could be a door or a window.

7.1.1 Physics of the Forward Problem

The physics of the plume in a sealed cavity is relatively straight forward. The only non-

dimensional number having an important impact on the flow is the Rayleigh number.

The Rayleigh number’s range is between 105 and 108. Thus, the problem would likely

be laminar.

7.2 Experiment

The experimental apparatus is a sealed cavity of variable dimensions, with 50mm thick

extruded polystyrene(XPS) walls, which has a thermal conductivity of 0.03W/m−K.

The cavity can vary in size from 50mm to 250mm on any given side. The cavity

dimensions are kept such that it is always a cube in shape. The size is allowed to
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Figure 7.1: Diagram of the sealed cavity

vary to increase the range of Rayleigh numbers capable of being produced, due to the

material thermal limitations of approximately 400K. A diagram of the sealed cavity

is shown in figure 7.1. The individual blocks are movable such that the heater can be

placed in a number of indicated locations. The blocks are also removable to allow for

the variable size, one to five blocks wide and high.

The heater consists of a resistance type heater mounted to the bottom of a 12mm

copper block. The copper block is flush mounted inside the same ceramic material used

in the plume heater. The heater is rated for a maximum of 50W/in2. As previously

said, the XPS material limits the temperature to 400K.

A heat flux sensor was placed between the heater and the copper to determine

exactly how much energy was entering the copper block. The heat flux sensor is Omega

model HFS-3, with an error of less than 1% of indicated heat flux.

The aforementioned “sensor wall” is 6mm acrylic window, with ports for a thermo-

couple to be mounted. The thinner material, and much higher thermal conductivity,

result in a substantial amount of the input heat leaving through the acrylic wall. The
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thermocouple probe is a K-type thermocouple, the same one used in the plume and jet

experiments. Its calibration is shown in appendix B.

7.3 Methodology

Starting from the methodology for the plume, we need to determine if there is any

relationship between temperature at a boundary and location of the heat source. As it

turns out, the function relating wall temperature and source location is not constant,

but very close to constant. So close in fact, that the function will not be useful while

utilizing experimental data. Figure 7.2 is a sensitivity analysis of source location versus

local temperature. The variation of local temperature to source location is less than

1K as the heater moves from one side to the other of the enclosure. The sensitivity

analysis is based upon experimental data.
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Figure 7.2: Sensitivity analysis: source location vs local temperature at x =
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If the location of the source is known, using the same logic used in the plume, the

source strength can be calculated. If we neglect the changes in density and buoyancy

effects upon the energy equation, then the internal boundary temperature is a linear

function of source temperature. This was previously discussed in chapter 3 and the

equations are rewritten here, equation (7.1).

TS = m (r)T (r) + b (r) (7.1a)

m (r) =
TSA − TSB

TA (r)− TB (r)
(7.1b)

b (r) = TSA −m (r)TA (r) (7.1c)

7.4 Simulation

Unfortunately, after many attempts, the simulation and the experiment would not agree

enough to justify the simulation-experiment comparison. It is unclear exactly why the

simulations don’t match the experiment. That being said, one key issue identified is

that the convection losses to the walls is much higher in the experiment than they are

in the simulations. This is possibly to do with the surface of the XPS material. It is

not perfectly smooth and slightly porous, although, it is a closed cell foam. Due to the

issues described, all of the data must be generated by the experiment.

7.5 Results

The results for the inverse plume in a cavity is overly simple. All of the data needed is

contained within figure 7.2. From that figure, m and b can be calculated and thus only

the local temperature is needed. A list of m and b is shown in table 7.1.

The error associated with solving the inverse problem becomes just the error asso-

ciated with the linearity of the function. The results are listed in table 7.2. The error

is at a maximum of 4.62%, but typically much less than that, as would be expected.
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Heater

Location (mm) m b

25 245.8 −7.365× 104

75 232.9 −6.976× 104

125 226.6 −6.784× 104

175 236.2 −7.082× 104

225 226.0 −6.767× 104

Table 7.1: Inverse parameters for the sealed cavity

Heater

Location (mm) 1000W/m2 2000W/m2 3000W/m2 4000W/m2

25 0.76% 0.43% 0.18% 0.16%

75 4.62% 3.55% 0.36% 0.35%

125 2.20% 0.99% 0.82% 0.56%

175 1.44% 1.39% 0.37% 0.05%

225 0.36% 0.51% 0.31% 0.07%

Table 7.2: Inverse results for the sealed cavity
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Chapter 8

Conclusions

A technique combining many aspects of several inverse solution methodologies was

developed for the specific use for inverse convection problems. The methodology was

applied to and tested against a simple plume in a crossflow. The goal was to predict

both the strength and location of the source. It originally used an intuition based

search shape, which while proving accurate, required seven sample points to achieve

the desired accuracy. The source strength prediction error was better than 1.1% for

twenty-four selected cases.

To increase the capabilities, decrease the required sample points, and possibly in-

crease accuracy, a search shape optimization was performed. This optimization reduced

the required number of sample points to three. Three sample points proved to be ac-

curate with simulated data to better than 1% for source strength prediction. The

number of sample points needed to be increased, from three, to properly handle the

error associated with experimental data, to at least five. Utilizing five points, the max-

imum prediction error was 21%, and for nine sample points, the maximum prediction

error dropped to 18%. Although, the median prediction error for the source strength

is substantially better at 1.65%, the median prediction error for the axial location and

elevation is 0.85% and 2.35%. Error analysis demonstrated that adding 10% error to

five sample points would result in a marginal increase in error for location prediction

and a source strength error of similar magnitude to the additive error.

The same methodology was applied to another problem, the jet in a crossflow. The

goal in this example problem was to predict the velocity, temperature and location

of the source jet. In this particular case, the plume in a crosswind optimized search

shape was utilized. After some checking, the methodology with this search shape is
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incapable of distinguishing all four of the goals. It was determined that the source

elevation needed to be known to solve for the other three. The source velocity was

predicted to within 1.5% error and source temperature within 3.5% error for selected

cases. Utilizing experimental data, the median source velocity was predicted at 14.75%

and median source temperature was 9.98%. The median axial location error was 10.5%.

Even with a non-optimized search shape, the methodology performed acceptably. Error

analysis again demonstrated the stability of the methodology.

The methodology was attempted to be applied to a plume in a sealed cavity. Due

to how plumes rise in a chamber, the location prediction was determined not to be

possible, at least with this method. Determining the plume source strength breaks

down to the simplest of cases of solving an equation. Using a single sample point, the

source strength was determined within 5%, utilizing only experimental data. While the

methodology is technically being applied, the heart of the methodology is not being

tested in this example problem.

There are many paths of continuation of this work. Two of the most important and

yet most difficult avenues are three-dimensional and transient capabilities. The third

dimension adds complexity in determining where to place the sample points, while

increasing the cost of computation significantly. If the third dimension is capable of

being added, then it also opens up the possibility of differentiating multiple sources.

Transient analysis requires considerable redesign of the methodology. The sample

points would need to be spread across time and thus, adding significant overhead to

the algorithm.

A more simple but worthwhile task is to find the optimal search shape for the jet

in a crossflow. It would significantly decrease the error associated with that example.

Determining an accurate interpolation function for the jet velocity would also decrease

the error.

A slightly more daunting task is to find the spatial limiting factors. The method-

ology applied to the plume in a crossflow functioned so well that the methodology

was able to accurately resolve problems at the limits of the simulation. A significant

redesign in the experiment and simulation domain is required to continue this work.
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The methodology proposed in this work has demonstrated itself to be capable and

extremely robust. It has also shown that it is sensitive to the experiment-simulation

agreement. A potential drawback of the methodology is that to benefit fully, an opti-

mized search shape must be used, which requires significant computation time. It is

possible that this technique could be extended to many applied areas such as environ-

mental flows, room fires, and thermal management systems.
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Appendix A

Computational Fluid Dynamics

Computational fluid dynamics, or CFD, covers a wide variety of methodologies to solve

fluid flow domains. Currently there aren’t any all encompassing algorithms which may

be used to solve for every domain in every situation. This is mostly due to the limited

computational resources available. Direct numerical simulation (DNS) could be an all

encompassing algorithm, but requires vast computational resources[5].

This chapter is meant to be a rough introduction to CFD and it covers the exact

governing equations used throughout the text. Flow classifications will be covered

first, followed by convergence criteria, solution convergence, equation of state, fluid

properties, pressure-velocity coupling, discretization, and flow models.

A.1 Flow classifications

Flow classification can become a chore in of itself. However, there are a few flow clas-

sifications which are of most importance to CFD. The flow classifications are laminar-

turbulent, viscous-inviscid, and compressible-incompressible. Each of these classifica-

tions have a significant bearing on the methods used to solve for the fluid domain.

Other more specialty classifications exist, such as single-multiphase flows, which need

not be considered in this brief introduction.

A.1.1 Laminar - turbulent

Turbulent flows are characterized by three-dimensional transient chaotic motions, as

opposed to laminar flows which are characterized by smooth laminae fluid bundles,

with the Reynolds number being the typical determining factor for laminar or turbulent

flows. The Reynolds number is defined as a ratio of inertial forces to viscous forces,
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mathematically described in equation A.1.

Re =
ρV 2L2

µV L
=
ρV L

µ
(A.1)

If a fully developed flow has a Reynolds number below 2300, it is typically laminar, and

above 4000 is typically turbulent[11]. The Reynolds number is more a rule of thumb

than a law, however, other factors may come into play such as buoyancy described by

the Richardson number.

The Richardson number is a ratio of the Grashof number and Reynolds number.

The Grashof number is itself a ratio of buoyancy to viscous forces. Therefore, the

Richardson number is actually a ratio of buoyancy forces to inertial forces, i.e. natural

convection versus forced convection. The Grashof number is defined in equation A.2.

Gr =
gβ (Ts − T∞)L3

ν2
(A.2)

The Richardson number is similarly defined in equation A.3.

Ri =
Gr

Re2
=
gβ (Ts − T∞)L

V 2
(A.3)

If the Richardson number is much less than 1, then natural convection may be neglected.

If the Richardson number is much larger than 1, then forced convection may be neglected

[21]. Even with a Richardson number appropriate such that natural convection cannot

be neglected, the buoyancy may not generate any instabilities. For that we need the

Rayleigh number to be approximately 109 or higher[12, 21] for a vertical flat plate, but

will vary for other conditions.

Ra = GrxPr =
gβ (Ts − T∞)x3

να
(A.4)

Most of the problems dealt with in this text have a Reynolds number of order 2× 103

and thus turbulence is generated by the plume/jet. Therefore, the entire domain must

be modeled as a turbulent problem. Typical ranges of these dimensionless parameters

are listed in table A.1.

A.1.2 Viscous - inviscid

Being inviscid means that the internal frictional forces are zero, that is µ = 0. This

is a simplification of the physics, to make solving for the domain much easier. In
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Plume Jet Sealed Cavity

Re∞ ≈ 103 − 3× 103 6× 103 —

Rej — ≈ 103 − 104 —

Gr ≈ 105 − 107 ≈ 105 − 107 ≈ 105 − 108

Ri — ≈ 103 − 3 —

Ra ≈ 105 − 107 ≈ 105 − 107 ≈ 105 − 108

Table A.1: Typical range of dimensionless parameters in this text

the case of inviscid cfd, the convergence of the solution is usually much quicker. This

simplification has repercussions. In most cases the simplifications make the problem too

simple and the mathematical model no longer follows the underlying physics. Inviscid

flows cannot impart shear forces upon the boundaries and vice-versa. Without shearing

forces, turbulence cannot exist, therefore all inviscid flows are also laminar[11].

Inviscid flow solvers should be used with care and typically only within a preliminary

design stage. There are typically only two special cases when it is acceptable to consider

using an inviscid flow. The first case is for extremely high Reynolds number flows, which

is when the inertial forces are significantly higher than the viscous forces so they may

be neglected to some degree. The second case is when the flow is so overly complicated

and time consuming to solve with more robust solvers, that it is impractical to solve

otherwise. Even with these cases, the final solution to the design should be processed

with viscous forces included [3].

A.1.3 Compressible - incompressible

Incompressible-compressible flows are only marginally more complicated by terminol-

ogy. Often, what is inferred by the term “incompressible flow” is constant density.

Technically speaking, this is an incompressible material. An incompressible flow is one

in which equation (A.5) holds true [27]. Any flow which does not satisfy the conditions

of incompressibility is considered compressible flow. High velocity fluids are possibly

the most common need-to-handle compressibility effects, but not the only reason. Large
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thermal gradients, rarefied gases, etc., may also necessitate the inclusion of compress-

ibility effects. This text consists of only incompressible flows.

ui
∂ρ

∂xi
<< ρ

∂ui
∂xi

(A.5)

A.2 Convergence Criteria

The convergence of the simulations are based upon a scaled residual value. A residual

is defined as the difference between a properties value and its value from the previous

iteration. The residuals for each property in each cell are divided by the residuals from

the first iteration. A typical means of determining convergence is when residuals drop

by three orders of magnitude for all parameters. This is the criterion used, except that

the turbulence parameters(e.g. k or ε) were increased to four orders of magnitude, due

to iteration convergence tests failing.

A.3 Solution Convergence

Probably the most important aspect of computational fluid dynamics is the question

“is the solution a numerically correct solution”. There are several ways to test the

numerical accuracy, and the best way is to test as many as practical. Typically there

are grid independence, iterative convergence, benchmark solutions, and experimental

results.

Selecting an appropriate grid generation method is critical to accurate results. That

being said, proving that the result is independent of the grid is more important. All

computational models must be independent of their grid, as the underlying physics

cannot be a function of an imaginary construct[47].

Like grid independence, ensuring iterative convergence occurred is necessary in us-

ing results from simulations. As many cfd methods require many iterations, knowing

when to stop is important. The simplest method for guaranteeing iterative convergence

is by comparing against a solution with very tough convergence criteria. If the two

simulations are similar, than the results have probably converged[47].
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Benchmark solution tests are the de facto standard for testing simulation results.

The simulation results are compared to a known good solution. Benchmark solutions

are often of simpler problems, and finding benchmark solutions of more complicated

cases may be difficult.

Having experimental results of the exact numerical problem being simulated has its

benefits. The experimental results are correct and the model must fit the experiment,

or the model is wrong. If there is a difference (there always will be), the difference must

be explained as to why it exists, such as not modeling radiation.

A.4 Equation of State

There are many equations of state developed for use in CFD. The two of primary interest

are the incompressible ideal gas law and the Boussinesq model. The incompressible

ideal gas law is the familiar ideal gas law shown in equation (A.6). The Boussinesq

model was developed to simplify the governing equations when used to calculate natural

convection problems to allow for buoyancy[3]. Modern computers seem to have made

the approximation a moot point, at least in this case. Several tests were performed

and all indicated insignificant processing time and insignificant result differences. In an

effort to reduce the possibility of error from the Boussinesq approximations in the later

stages of research, all of simulations used the full incompressible ideal gas law.

ρ =
PMW

RT
(A.6)

A.5 Fluid Properties

Besides density, there are several other fluid properties of interest. Those are the spe-

cific heat at constant pressure, thermal conductivity, and viscosity. There are several

methods that may be used, such as Sutherland viscosity law. As with the density calcu-

lations, effort to keep the results as close to the experimental properties was attempted

and the kinetic theory of gases was used to calculate these properties. In this case, the

computer run time was negligible between kinetic theory and alternatives, thus it was

chosen to utilize kinetic theory for all simulations.
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Kinetic theory calculations are very straight forward for specific heat of air near

the temperatures of interest. That is specific heat at constant pressure is a constant

CP = 1006.43 J/(kg −K).

Dynamic viscosity and thermal conductivity are not so simple and were modeled

using equation (A.7). µ is the dynamic viscosity and λ is the thermal conductivity.

The Lennard-Jones parameters are constant at σ = 3.711 Å and ε
kB

= 78.6K. Ωµ is

the collision integral for viscosity. For more information regarding the Lennard-Jones

parameters, see Ansys [3], Vincenti and Kruger [46].

µ = 2.67× 10−6
√
MWT

σ2Ωµ

(
T

ε/kB

) (A.7a)

λ = µ

(
5

4

R

MW
+ CP

)
(A.7b)

A.6 Pressure-Velocity Coupling

Ansys Fluent software package offers only four possible coupling options: SIMPLE,

SIMPLEC, PISO, coupled. The coupled algorithm is the best for accuracy(typically)

and could offer significant convergence speed improvements. For as yet to be determined

reasons, the solutions would often diverge when utilized. PISO, due to its inter-step

pressure update would be the next choice. For slow plume velocity cases, PISO would

also diverge. This limits the options to SIMPLE and SIMPLEC, and since SIMPLEC

only modifies SIMPLE to assist in odd shaped cells it was deemed not worth the minus-

cule extra computational time. While the computation does take longer than coupled

or PISO could do, SIMPLE does converge for all cases of interest and thus it was used.

The easiest way to explain SIMPLE is it makes a guess at the pressure field, which

then does not satisfy the continuity equation. Later, a correction factor is added back

in to satisfy the continuity equation[3].
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A.7 Discretization

Discretization of space and time may be performed in a number of manners. There are

a few more prolific schemes used. The first order upwind scheme is by far the simplest

scheme. It is derived from the Taylor series approximation. The second order upwind

scheme is a direct consequence of the desire to have more accuracy from the first order

upwind scheme. In Fluent it is calculated using equation (A.8).

φf = φ+∇φ · r (A.8)

φf is the cell face value, where as φ is the cell centered value and r, in this case, is the

vector distance to the upstream cell center to the face[3]. This scheme is primarily used

to discretize pressure.

The central - differencing scheme is effectively a phase shift of the second order

upwind. In Fluent it is calculated using equation (A.9). The φ0 and φ1 are the cell

centered values down and up stream respectively of the face, while r0 and r1 are the

distances to the cell centered values from the face[3].

φf =
1

2
(φ0 + φ1) +

1

2
(∇φ0 · r0 +∇φ1 · r1) (A.9)

The last discretization scheme to be discussed is a combination of both the second

order upwind scheme and the central differencing scheme. It is the third order monotone

upstream centered scheme for conservation laws(MUSCL). The Ansys version is shown

below in equation (A.10). φcentral is the equation for φf from the central differencing

scheme, and similarly for φsecond is the φf from the second order upwind. θ is a blending

argument, which is spatially based [3]. MUSCL is used for all other discretizations.

These discretizations were chosen because they are the highest order accuracy available

in the Fluent package.

φf = θφcentral + (1− θ)φsecond (A.10)
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A.8 Flow Models

Each of the flow classifications change which flow models should be used. The category

compressible - incompressible determines whether one should use a pressure based for-

mulation or a density based formulation of the flow models. The pressure based model

is generally used for incompressible domains, while the density based solver is typi-

cally used for compressible flows. The pressure based solver calculates density from an

equation of state, in this case, the ideal gas law. The flows discussed here are entirely

assumed to be entirely incompressible, and thus the density based solver will not be

discussed further.

The flow classification of laminar-turbulent flows determines whether to use the

laminar solver or one of a variety of turbulent flow models. The laminar flow model is

based upon basic flow equations, mass and momentum.

Multiple turbulence flow models have been developed, each having its own strengths

and weaknesses. Therefore, when testing a new simulation, it is paramount to try many

turbulence models and compare the simulated results against experimental results.

There are several flow models with this research utilizing primarily the Reynolds

averaged Navier-Stokes (RANS) type. The RANS models assume the properties of

the flow may be broken into a steady component and a transient component, such as

velocity shown in equation (A.11). The models discussed are the Spalart-Allmaras,

k − ε, and k − ω models. The equations are solved using Ansys Fluent[2] and thus the

equations here are the equations Fluent uses to solve each model.

ui = ūi + u′i (A.11)

The physics governing equations are simplified via the assumption of incompressible

flow. This assumption may be shown to be accurate due to the near negligible Mach

number. It is useful to note that the equations are not simplified to an incompressible

fluid, which allows for density changes due to thermal effects, and therefore buoyancy

effects.

Applying equation A.11 to the conservation of mass equation (equation A.12) results
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in few changes (equation A.13).

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (A.12)

∂ρ

∂t
+

∂

∂xi
(ρūi) = 0 (A.13)

Application of Reynolds averaging to the conservation of momentum equation, equa-

tion A.14 is before A.15 and is after. Equation (A.15) is generally referred as the

Reynolds averaged Navier-Stokes equation (RANS).

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂P

∂xi
+

∂

∂xj

[
µ

(
2Sij −

2

3
δij
∂uk
∂xk

)]
(A.14)

∂

∂t
(ρūi) +

∂

∂xj
(ρūiūj) = − ∂P̄

∂xi
+

∂

∂xj

[
µ

(
2S̄ij −

2

3
δij
∂ūk
∂xk

)
− ρu′iu′j

]
(A.15)

Sij is the strain rate tensor and is defined by equation (A.16). δij is the Kronecker

delta function.

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(A.16)

Similarly, for the conservation of energy equation, equation A.17 is before and A.18

is after.

∂

∂t
(ρE) +

∂

∂xi
[ui (ρE + P )] =

∂

∂xi

[(
λ+

Cpµt
Prt

)
∂T

∂xi

]
(A.17)

∂

∂t

(
ρĒ
)

+
∂

∂xi

[
ūi
(
ρĒ + P̄

)]
=

∂

∂xi

[(
λ+

Cpµt
Prt

)
∂T̄

∂xi

]
(A.18)

The only major change for each of these equations is the addition of the Reynolds

stress tensor, −ρu′iu′j . The tensor is the cause of a multitude of difficulties when solv-

ing for turbulent flows. Determining these six terms have been denoted the “closure

problem”.

A.8.1 Laminar Flow Model

The laminar flow model does not require any special handling of the turbulence because

by definition there is no turbulence. Therefore, the laminar flow model solves the

continuity and Navier-Stokes equations without modifications.

Laminar flow problems in Ansys Fluent solve the governing equations already dis-

cussed. The continuity equation is shown in equation (A.12). The momentum equation
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is shown in equation (A.14). Lastly, the energy equation is shown in equation (A.17).

The only slight modification is that the eddy viscosity is zero in the energy equation

and thus, that term is neglected.

A.8.2 Spalart-Allmaras 1-equation Model

The Spalart-Allmaras model is a relatively simple one-equation model. That is that

the turbulence model only adds one more transport equation to the original set: mass,

momentum, and energy. Being a RANS model, it uses the Reynolds averaged transport

equations already discussed, equations (A.13), (A.15) and (A.18). Due to the original

intent of solving aerodynamic flows and the simplicity of the model, it has difficulty

solving general fluid problems. Spalart-Allmaras has a particular difficulty solving free

shear flows and jet flows [3].

The transport equation added may be either based upon the kinetic energy or the

eddy viscosity. Ansys Fluent utilizes the eddy viscosity version and therefore, that is

the version to be described here[3].

∂

∂t
(ρν̃) +

∂

∂xi
(ρν̃ui) = Gν +

1

σν̃

[
∂

∂xj

{
(µ+ ρν̃)

∂ν̃

∂xj

}
+ Cb2ρ

(
∂ν̃

∂xj

)2
]
− Yν (A.19)

The Reynolds stress is:

u′iu
′
j = µtSij (A.20)

The eddy viscosity µt is calculated via equation (A.21) [3].

µt = ρν̃fν1 (A.21a)

fν1 =
χ3

χ3 + C3
ν1

(A.21b)

χ =
ν̃

ν
(A.21c)

The turbulent production term in the transport equation is Gν and the turbulent

destruction term is Yν . The former of which is detailed in equation (A.22), and the
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latter in equation (A.23) [3].

Gν = Cb1ρS̃ν̃ (A.22a)

S̃ = S +
ν̃

κ2d2
fν2 (A.22b)

fν2 = 1− χ

1 + χfν1
(A.22c)

S =
√

2ΩijΩij (A.22d)

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(A.22e)

(A.22f)

Yν = Cw1ρfw

(
ν̃

d

)2

(A.23a)

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6
(A.23b)

g = r + Cw2
(
r6 − r

)
(A.23c)

r =
ν̃

S̃κ2d2
(A.23d)

There are several model constants yet to be defined, equation (A.24) [3].

Cb1 = 0.1355, Cb2 = 0.622, σν̃ =
2

3
, Cν1 = 7.1, κ = 0.4187 (A.24a)

Cw1 =
Cb1
κ2

+
(1 + Cb2)

σν̃
, Cw2 = 0.3, Cw3 = 2.0 (A.24b)

A.8.3 K − ε 2-equation model

The k − ε model is the first of two, two equation models used. The two equation

model adds two new transport equations needing to be solved. The mass, momentum

and energy equations are the same from the previous model, equations (A.13), (A.15)

and (A.18). The two transport equations solve for the turbulent kinetic energy k and

the turbulence dissipation rate ε, described in equation (A.25) and equation (A.26)

respectively. Equation (A.27) is the Reynolds stress equation.
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∂

∂t
(ρk) +

∂

∂xj
(ρkuj) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+
∂uj
∂xi

(
−ρu′iu

′
j

)
− gi

µt
ρPrt

∂ρ

∂xi
+ ρε

(A.25)

∂

∂t
(ρε) +

∂

∂xj
(ρεuj) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√
νε

− C1ε
ε

k
C3εgi

µt
ρPrt

∂ρ

∂xi

(A.26)

− ρu′iu
′
j = 2µtSij −

2

3
δij

(
ρk + µt

∂uk
∂xk

)
(A.27)

The constants for this turbulence model are [18] :

C1ε = 1.44, C2 = 1.9, σk = 1.0, σε = 1.2, Prt = 0.85 (A.28)

The coefficients of the model are [3]:

C1 = max

[
0.43,

Sk/ε

Sk/ε+ 5

]
, S =

√
2SijSji, C3ε = tanh

(
ug
up

)
(A.29)

Where ug is the velocity component parallel to gravity, while up is the velocity perpen-

dicular to gravity.

The realizable k−ε model varies from the traditional model by using a non-constant

coefficient Cµ of the eddy viscosity equation µt. Which is defined as follows [3, 18]

µt =
ρCµk

2

ε
(A.30a)

Cµ =
1

A0 + A1kU∗

ε

(A.30b)

U∗ ≡
√
SijSji + ΩijΩji (A.30c)

A0 = 4.04 (A.30d)

A1 =
√

6cos

[
1

3
cos−1

(
√

6
SijSjkSki

(SijSji)
3
2

)]
(A.30e)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(A.30f)

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(A.30g)
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A.8.4 K − ω 2-equation model

The k − ω model is similar to the k − ε model. The two new transport equations are

the turbulent kinetic energy and specific dissipation rate. Those transport equations

are equation (A.31) and equation (A.32).

∂

∂t
(ρk) +

∂

∂xj
(ρkuj) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+
∂uj
∂xi

(
−ρu′iu

′
j

)
− Yk

(A.31)

∂

∂t
(ρω) +

∂

∂xj
(ρωuj) =

∂

∂xj

[(
µ+

µt
σω

)
∂ω

∂xj

]
+ α

ω

k

∂uj
∂xi

(
−ρu′iu

′
j

)
− Yω

(A.32)

The eddy viscosity is calculated by equation (A.33).

µt = α∗
ρk

ω
(A.33a)

α∗ = α∗∞

(
α∗0 +Ret/Rk
1 +Ret/Rk

)
(A.33b)

Ret =
ρk

µω
(A.33c)

α∗0 =
βi
3

(A.33d)

α =
α∞
α∗

(
α0 +Ret/Rω
1 +Ret/Rω

)
(A.33e)

The dissipation of turbulent kinetic energy is Yk and is defined in equation (A.34),

while the dissipation of ω is Yω and is defined in equation (A.35). It should be noted

that these equations are for Mach numbers less than 0.25 [3].

Yk = ρβ∗fβ∗kω (A.34a)

fβ∗ =

 1 if χk ≤ 0

1+680χ2
k

1+400χ2
k

if χk > 0
(A.34b)

χk =
1

ω3

∂k

∂xj

∂ω

∂xj
(A.34c)

β∗ = β∗i (A.34d)

β∗i = β∗∞

(
4/15 + (Ret/Rβ)4

1 + (Ret/Rβ)4

)
(A.34e)
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Yω = ρβfβω
2 (A.35a)

fβ =
1 + 70χω
1 + 80χω

(A.35b)

χω = |
ΩijΩjkSki

(β∗∞ω)3
| (A.35c)

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(A.35d)

(A.35e)

Lastly, there are several model constants needing to be set

α∗∞ = 1, α∞ = 0.52, α0 =
1

9
, β∗∞ = 0.09, βi = 0.072, Rβ = 8 (A.36a)

Rk = 6, Rω = 2.95, ξ∗ = 1.5, σk = 2.0, σω = 2.0 (A.36b)
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Appendix B

Calibration

Equipment calibration is essential to acquiring proper results from scientific studies.

Calibration tests were performed on the thermocouples(K-type), motion controller and

the hot-wire anemometer. The pressure transducer (Omega model PX653-0.1D5V) was

factory calibrated and checked against a U-tube manometer.

B.1 Thermocouple

The thermocouples were individually checked against the freezing and boiling points

of distilled water. Only two points are needed, as K-type thermocouples (the only

type used) have a linear voltage response in the temperature range of interest. Since

the voltage response is linear, the calibration is also linear and may be applied after

another linear response. A table of all the thermocouple calibration parameters used

throughout the experiments is shown in table B.1. The table shows the reading of the

thermocouples when tested in a 0 deg C and 100 deg C environment. The data is used

to convert measured temperature into actual temperature using equation (B.1).

TActual =
−100

T0 − T100
TMeasured +

100

T0 − T100
T0 (B.1)

B.2 Motion Controller

The axial and perpendicular motion controllers send signals to stepper motors. If 1mm

motion is asked of the motion controller, it needs to know how many steps is required

to move that amount. It turns out that for the axial direction, it is 202.4 steps/mm,

and for the perpendicular direction, it is 155.6 steps/mm.

These numbers were determined via a Mitutoyo certified 6 inch caliper mounted
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Thermocouple 0 deg C 100 deg C

Probe 3.26 100.9

Ambient 1.66 99.8

Plume heater 1 -0.05 99.8

Plume heater 2 1.88 99.8

Jet 1.70 99.9

Jet air pre-heat 2.19 99.9

Jet air heater 1.30 99.8

Cavity heater 1.73 100.2

Table B.1: Thermocouple calibration

against each stage to determine how much motion occurs for each step and series of

steps. The caliper is accurate to 50µm and thus, motion of each linear stage is also

accurate to 50µm since the step size is approximately an order of magnitude smaller

than the accuracy of the calibration.

Unfortunately, the linear stages suffer from backlash even with backlash eliminating

feed nuts. Therefore, motion for both stages followed strict backlash compensation

procedures (i.e. approach locations from one and only one direction). The backlash is

approximately 1.3mm and 0.8mm for axial and perpendicular directions respectively.

B.3 Hot-wire Anemometer

The hot-wire anemometer was calibrated against a Pitot-static tube connected to the

aforementioned pressure transducer. The procedure is simple and entails sampling

several velocities and checking the resultant voltage. A fourth order least squares curve

fit is then used to convert voltage to velocity, equation (B.2). A plot of the calibrations

and curve fit are shown in figure B.1.

U = −26.78V 4 + 210.89V 3 − 597.91V 2 + 736.74V − 335.92 (B.2)
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Velocity (m/s) Voltage (V )

0 1.487

0.67 1.645

0.82 1.662

0.95 1.686

1.13 1.718

1.36 1.753

1.73 1.801

2.10 1.833

2.51 1.868

3.12 1.916

3.80 1.957

4.72 2.009

5.22 2.035

Table B.2: Hot-wire anemometer calibration

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

Voltage (V)

V
el

o
ci

ty
R

es
p

on
se

(m
/s

)

Calibration Points
Curve fit

Figure B.1: Hot-wire calibration curve
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Appendix C

Data Acquisition

Data acquisition is a significant portion of the experimental apparatus. A significant

number of experimental parameters were recorded. Some of the typical parameters are

listed in table C.1. Parameters listed as “constant” are kept as constant as practical.

However, some variation occurs, especially throughout the course of a day.

Experimental

Parameter

T∞ constant

U∞ constant

TS constant

Tjet constant

Ujet constant

T (r) time varying

U (r) time varying

raxial synchronized variation

rperp synchronized variation

Table C.1: Recorded experimental parameters

C.1 Hardware

Any experimental parameter requiring time varied sampling cannot have sampling lim-

itations and thus, will be acquired using a high speed data acquisition device. Unfor-

tunately, this hardware has limits to how many samples it can record simultaneously
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and therefore, a multiplexed data acquisition device is used to sample the relatively

constant parameters. Lastly, to move the sampling probe in the domain, a motion con-

troller is required. These devices are all add-on electronic cards for a modern computer.

A diagram of the hardware configuration is shown in figure C.1

Motion Controller - PCI7334

Multiplexed Sampling - 6035-E

High Speed Sampling - 6221

Computer
UMI-7774

SCXI-1102b

SCXI-1000

SCXI-1300

BNC-2120

Figure C.1: Diagram of hardware configuration

C.1.1 High Speed Data Acquisition

The high speed data acquisition is handled using a National Instruments add-on card,

model 6221, connected to a breakout board, model BNC-2120. This card is capable of

recording at 250,000 samples per second at 16-bit and 16 simultaneous channels. The

breakout board, BNC-2120, only has one thermocouple input, and therefore, only one

thermocouple will be recorded at high speed. That would be the local static temperature

probe. Since the hotwire-anemometer does not need the thermocouple input and is not

used simultaneously with the temperature probe, it is also connected to the high speed

device. The actual sample rate was set at 20kHz. The rate is fast enough to perform a

frequency analysis, which ultimately proved fruitless. The rate is slow enough to keep

total data at a reasonable level (total experiment recorded information totaled over

50GB). For reference the response time of the thermocouple is approximately 0.04 s

according to [1].

C.1.2 Multiplexed Data Acquisition

The bulk of all of the sampling is done through a 32-channel multiplexer. The device

is a National Instruments add-on card, model 6035-E, capable of 200,000 samples per



108

second at 16-bit connected to a SCXI-1000 low noise signal chassis. Inside the SCXI-

1000 chassis is a single SCXI-1102b 32-channel multiplexer, with a 2Hz low pass filter.

Lastly, a SCXI-1300 breakout board is connected to the SCXI-1102b. Just prior to

each high speed acquisition, 10 samples were recorded at 2Hz of the relatively constant

data. These samples were averaged later to get more accurate experimental conditions

for each high speed acquisition.

C.1.3 Motion Controller

The local static thermocouple probe is traversed across the domain using a two axis

stepper motor stage. The stepper motors are controlled via a National Instruments

pci7334 connected to a UMI-7774 breakout board. The stepper motors, in combination

of the linear slides, are capable of moving in increments as small as 50µm for both axial

and perpendicular directions.

C.2 Software

The hardware was controlled via National Instruments Labview software[22]. A special

labview program was written to accomplish all data acquisition and motion control.

The program was designed to sample an entire plane of the domain at specific sample

points without user interaction. The user interface to the program is displayed in

figure C.2. Labview programmed in what National Instruments calls block diagrams,

and the block diagram for this program is shown in figure C.3. Labview block diagrams

have sub-blocks (labeled “BOX A”, “BOX B”), each having their own figure. Box A

is a true-false box where the true case is shown in figure C.3, while the false case is

shown in figure C.4. Box B is a switch box where many numbered cases are possible,

the ‘0’ case is shown in figure C.3. The subsequent numbered cases 1-3 are shown in

figures C.5 to C.7. Figure C.7 also contains a true-false box. The true case is shown

in figure C.8. Similarly, Box C is a switch box and cases 1-4 are shown in figures C.9

to C.12. Figure C.12 has a true-false box and its true case is in figure C.13. There

are several alternative cases not shown here, such as ‘Box B case 4’ or ‘Box D case
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false’ these alternative cases do nothing and are left blank, and thus have nothing to

contribute.

Figure C.2: Labview program user interface
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Figure C.3: Labview program block diagram
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Figure C.4: Labview program block diagram - box A - false
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Figure C.5: Labview program block diagram - box B - 1

Figure C.6: Labview program block diagram - box B - 2

Figure C.7: Labview program block diagram - box B - 3

Figure C.8: Labview program block diagram - box B - 3 true
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Figure C.9: Labview program block diagram - box C - 1

Figure C.10: Labview program block diagram - box C - 2

Figure C.11: Labview program block diagram - box C - 3

Figure C.12: Labview program block diagram - box C - 4
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Figure C.13: Labview program block diagram - box C - 4 true
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Appendix D

Matlab Software

The Mathworks Matlab[32] software was used extensively in all aspects of the solution

methodology. Collating of experimental and numerical data, methodology, optimiza-

tion, analysis, and reporting were all performed using Matlab.

D.1 Genetic Algorithm

The Mathworks Matlab[32] global optimization toolbox is used in both the inverse

methodology and optimization of the search shape. The toolbox contains a plethora of

methods for solving for global minimums. One such example is the genetic algorithm,

which is used here. The genetic algorithm, or GA, was specifically developed to have

significant robustness. That is to say that the method is designed to solve a wide range

of problems with a complex mixture of constraints. GA was not developed overnight

from one grand paper, but was started from several papers by Barricelli in the mid

1950’s through mid 1960’s. This culminated with what is widely accepted as the first

document on what we now call the genetic algorithm, a book by Holland [16].

The GA is fundamentally bio-mimetic method, which loosely follows evolution.

Many possible sets of design variables or chromosomes are evaluated, and the best

chromosomes are selected to mate and create the next generation of chromosomes.

This process is repeated until no further “best” solution is found[35].

Matlab’s version of the GA follows six steps: creation, fitness scaling, selection,

crossover, and mutation. Creation is the initialization step, the creation of the “species”

if you will. Fitness scaling is the way each chromosome is fairly scored against the other

chromosomes, without one group dominating the population. Selection is the method in

which parents are selected, often partially stochastic. Crossover is the GA’s terminology
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for mating; chromosomes are paired and design parameters are swapped in an attempt

to make a better chromosome. The mutation step adds a bit of randomness to the

chromosome pool to reduce design parameter stagnation. For more details about the

Matlab GA or GA in general refer to either [31] or [35].

There are many parameters available to the Matlab GA function, of which the most

important for this work is displayed in table D.1.
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Parameter Meaning default

population size no. of chromosomes in pool no. of parameters

generations maximum no. of generations 100

before a forced exit

tolerance smallest difference between 10−6 when ranking

chromosome rankings is normalized to 1

considered unique

stall limit number of generations to none

proceed with no changes in

the best unique solution

number of elites number of chromosomes kept 2

between iterations

crossover fraction percentage of population 0.8

used in the next generation

creation method how the initial chromosome Gaussian

population is generated

fitness method method on ranking of top 40%

chromosomes

selection method method on selecting mating stochastic

pairs of chromosomes

crossover method method for making new intermediate

new chromosomes

mutation method how mutations occur Gaussian

during the mating process

hybrid function an option to switch to a none

traditional linear solver

parallel utilizes all parallel never

resources available

Table D.1: Genetic algorithm parameters[31]
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Appendix E

Sampled Data

The following is plots of the experimental plume data.
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Figure E.1: Experimental Data U∞ = 0.4m/s, TS = 410K
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Figure E.2: Experimental Data U∞ = 0.4m/s, TS = 435K
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Figure E.3: Experimental Data U∞ = 0.5m/s, TS = 435K
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Figure E.4: Experimental Data U∞ = 0.6m/s, TS = 446K

0 20 40 60 80 100

280

300

320

340

360

Axial location (x)(mm)

T
em

p
er

at
u
re

(K
)

y = 0mm
y = 1mm
y = 2mm
y = 3mm
y = 4mm
y = 5mm

Figure E.5: Experimental Data U∞ = 0.6m/s, TS = 410K
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Figure E.6: Experimental Data U∞ = 0.7m/s, TS = 430K

0 20 40 60 80 100
260

280

300

320

340

360

380

Axial location (x)(mm)

T
em

p
er

a
tu

re
(K

)

y = 0mm
y = 1mm
y = 2mm
y = 3mm
y = 4mm
y = 5mm

Figure E.7: Experimental Data U∞ = 1.0m/s, TS = 446K
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