
MAXIMUM LIKELIHOOD INVERSE
REINFORCEMENT LEARNING

by

MONICA C. VROMAN

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Michael L. Littman

And approved by

New Brunswick, New Jersey

OCTOBER, 2014

ABSTRACT OF THE DISSERTATION

MAXIMUM LIKELIHOOD INVERSE

REINFORCEMENT LEARNING

by MONICA C. VROMAN

Dissertation Director:

Michael L. Littman

Learning desirable behavior from a limited number of demonstrations, also

known as inverse reinforcement learning, is a challenging task in machine

learning. I apply maximum likelihood estimation to the problem of inverse

reinforcement learning, and show that it quickly and successfully identifies

the unknown reward function from traces of optimal or near-optimal behav-

ior, under the assumption that the reward function is a linear function of a

known set of features. I extend this approach to cover reward functions that

are a generalized function of the features, and show that the generalized in-

verse reinforcement learning approach is a competitive alternative to existing

approaches covering the same class of functions, while at the same time, being

able to learn the right rewards in cases that have not been covered before.

ii

I then apply these tools to the problem of learning from (unlabeled) demon-

stration trajectories of behavior generated by varying “intentions” or objec-

tives. I derive an EM approach that clusters observed trajectories by inferring

the objectives for each cluster using any of several possible IRL methods, and

then uses the constructed clusters to quickly identify the intent of a trajectory.

I present an application of maximum likelihood inverse reinforcement learn-

ing to the problem of training an artificial agent to follow verbal instructions

representing high-level tasks using a set of instructions paired with demon-

stration traces of appropriate behavior.

iii

Preface

Portions of this dissertation are based on work previously published by the au-

thor in ”Apprenticeship Learning about Multiple Intentions” by Monica Babeş-

Vroman, Vukosi Marivate, Kaushik Subramanian and Michael Littman (ICML

2011) and ”Learning to Interpret Natural Language Instructions” by Monica

Babeş-Vroman, James MacGlashan, Ruoyuan Gao, Kevin Winner, Richard Ad-

jogah, Marie DesJardins, Michael Littman and Smaranda Muresan (NACL 2012).

iv

Acknowledgements

There are many people who were instrumental in the completion of the re-

search that went into this thesis.

My husband, Dave, provided the support and companionship I needed

through the sometimes lonely and difficult times in graduate school. He lis-

tened when I needed to process things and provided some ideas and feedback.

He proofread parts of my papers and helped me phrase things better. Most

of all, he was loving and patient with me through the ups and downs of my

research process. I couldn’t have asked for a better companion and best friend.

My son, Jay, forced me to take valuable breaks, not always appreciated,

but certainly needed. He made the last months of work on my thesis more

fun and enjoyable. He taught me to be patient and laid back and that he is

not a deterministic machine (like the computers I work with) who always has

the same behavior (or output) when I do the same thing (or provide the same

input). He is unpredictable and lovely.

My mom, Ina, traveled from Romania to spend time with us and give me

more time for research by taking care of my son. My mother-in-law, Diana, also

spent many days taking care of him so I would have more time to work. They

are some of the most generous people I have ever met and I hope I can learn

from the way they selflessly and joyfully helped me. Their time and support

were extremely valuable in the process of finishing my research.

My sister Laura and my sister-in-law Janna are my best friends. It warms

v

my heart every time I talk to them, which is not often, but it is always a delight.

They are sweet and honest, and their genuine love and care means the world

to me.

My friends encouraged and supported me, and even provided feed-back

when we designed experiments with human subjects. It was very entertain-

ing to read the transcripts of spouses giving each other instructions on how to

play Sokoban over instant messenger. Their thoughts and prayers were instru-

mental in getting my work done. Annette gave me a ride to and from campus

every time I needed it, Linh bought groceries for me and kept my son company

so I could take a break, Francis and Rebecca took me out in the evenings and

provided great company and conversations, Liz and I went through graduate

school together and encouraged each other to keep going, Natalie came over

to keep me company and cheer me up, Carroll made me laugh, Ruth took me

out for coffee every month and challenged and encouraged me to see things

outside of the box. I am blessed with great friends.

My collaborators, Kaushik Subramanian, Vukosi Marivate, James MacGlashan,

Julie Gao, Kevin Winner, Richard Adjogah, Marie DesJardins, Samaranda Mure-

san, Mike Wunder, and Enrique Munoz de Cote taught me so much about team

work and inspired me to be passionate about my research.

My (former) labmates took the time to attend my practice talks and pro-

vided valuable feed-back in terms of my research and the final presentation

slides, especially Tom Walsh who helped me gain some intuition about Gaus-

sian processes and helped me interpret some of my results. I also appreciated

the feed-back from John Asmuth, Sergiu Goschin, Vukosi Marivate, Ali Nouri

and Ari Weinstein.

My committee members, Tina Eliassi-Rad, Alex Borgida, and Brian Ziebart

vi

provided valuable feed-back, leading to important changes and additions to

this document. My thesis is more solid as a result of their comments and chal-

lenges.

My adviser, Michael, was my mentor and friend. He knew exactly how

to encourage and motivate me. His passion for research and teaching were

contagious. He taught me how important it is to care, not just about my work,

but also about the people I work with, and to make a real difference for the

better in my workplace. I am privileged to have had such a great role model.

Lastly, none of this work could have happened without the strength and

grace that God provided me with. The verse ”I can do all things through Him

who strengthens me.” (Philippians 4:13) became more real to me over the last

year of my research. I owe Him everything I have, including the intellect I

needed to complete this research, the discipline and patience to do it, and the

wonderful people He surrounded me with (mentioned above) who supported

and encouraged me. ”From Him and through Him and to Him are all things.

To Him be the glory forever. Amen.” (Romans 11:36).

vii

Dedication

To Dave, my favorite person in the whole world.

viii

Table of Contents

Abstract . ii

Preface . iv

Acknowledgements . v

Dedication . viii

List of Tables . xii

List of Figures . xiii

1. Introduction . 1

2. Background and Definitions . 4

2.1. The Reinforcement-Learning Setting 4

2.2. IRL and AL . 7

2.3. Maximum Likelihood Estimation 9

2.4. Conclusions . 11

3. Survey of Inverse Reinforcement Learning Algorithms 12

3.1. Imitation Learning. Direct methods. 13

3.2. Atypical Setups . 15

3.3. Indirect methods. Early Approaches 19

3.4. IRL and AL Approaches. Different Objectives 22

3.5. Bayesian Approaches . 28

ix

3.6. Active Learning . 30

3.7. Learning Non-linear Reward Functions 33

3.8. Learning about Multiple Intentions 35

3.9. Conclusions . 37

4. Maximum Likelihood Inverse Reinforcement Learning 39

4.1. Related Work . 39

4.2. Maximum Likelihood Inverse Reinforcement Learning

(MLIRL) . 41

4.3. Implementation Details . 44

4.4. Experiment . 46

4.5. Conclusions . 49

5. Inverse Reinforcement Learning with Modular Reward Function Learn-

ers . 50

5.1. A Modular IRL Algorithm . 51

5.2. Implementation Details . 53

5.3. Experiments . 58

5.3.1. Modular IRL is Competitive with Linear IRL 59

5.3.2. Modular IRL Can Solve Non-linear Problems 61

5.3.3. Modular IRL Can Solve Even Harder Problems 66

5.4. Issues of overfitting and underfitting 68

5.5. Sample complexity analysis . 73

5.6. Conclusions . 76

6. Inverse Reinforcement Learning about Multiple Intentions 78

6.1. Apprenticeship Learning about Multiple Intentions 79

x

6.1.1. A Clustering Algorithm for Intentions 80

6.1.2. Using Clusters for AL . 82

6.2. Experiments . 83

6.2.1. Learning about Multiple Intentions—Grid World with Pud-

dles . 84

6.2.2. Learning about Multiple Intentions—Highway Car Do-

main . 85

6.3. Conclusions . 87

7. Applications for Maximum Likelihood Inverse Reinforcement Learn-

ing . 90

7.1. Introduction . 90

7.2. Related Work . 91

7.3. Background . 92

7.4. The System Model . 94

7.5. Conclusions . 97

8. Conclusions and Future Work . 99

8.1. Future Work . 102

Bibliography . 103

xi

List of Tables

6.1. Highway Car Experiment Results 86

xii

List of Figures

2.1. The Reinforcement-Learning Setting. The mouse (agent) is mov-

ing around (actions) looking for food (the reward) in a maze (the

environment). 6

4.1. A single trajectory from start to goal. 42

4.2. Reward function computed using MLIRL. 42

4.3. A plot of the average reward computed with increasing number

of sample trajectories. 47

4.4. A plot of the average trajectory likelihood computed with in-

creasing number of sample trajectories. 48

5.1. The performance of MLIRL, modular+linear and modular+tree

in the Grid World with Macrocells. 59

5.2. The “AND” MDP. 62

5.3. The initial updates in reward values suggested by the gradient. 62

5.4. The performance of MLIRL, modular+linear and modular+tree

in the “AND” MDP. The expert reward function is red AND striped. 63

5.5. The tree computed by modular+tree, estimating the expert’s re-

ward function r(s) =red(s) AND striped(s). 64

5.6. The performance of GPIRL, modular+GP and modular+NN in

the “AND” MDP. The expert reward function is r(s) =red(s)

AND striped(s) . 65

5.7. The “XOR” MDP (the blue squares are shaded). 67

xiii

5.8. The performance of GPIRL, modular+GP, and modular+NN IRL

approaches in the “XOR” MDP. The expert reward function is

Agent-in-Room-1 XOR Block-in-Room-3. 68

5.9. The performance of different degree learners in 3× 3 grids . . . 72

6.1. Left: Grid world showing the start states (grey), goal state (G),

puddles and three sample trajectories. Right: Posterior proba-

bilities of the three trajectories belonging to Expert 1. 89

6.2. Simulated Highway Car. 89

7.1. Training data for 2 tasks: Taking the star to the green room (left)

and Going to the green room (right). 98

xiv

1

Chapter 1

Introduction

When an automatic door opens to let us in, the device implicitly assumes we

want to go into the store, based on our proximity to the door. It is reasonable to

assume that when we are close to a door, our intention is to use it. When we’re

driving, we signal our intention to make a turn, to help the other drivers safely

navigate around us. Some websites monitor our activity to decide which ads

to display in order to maximize our exposure to products and services we are

likely to buy.

Say we need to declutter and clean our garage, and we would like to pro-

gram a robot to learn how to do the job. One solution is to design an agent

motivated by a reinforcement signal. Each time this agent takes an action lead-

ing to progress in accomplishing the job, for example, throwing away trash, we

give it a positive reinforcement, encouraging it to take the same or a similar ac-

tion in the future. However, in many situations, it is difficult and expensive to

specify the reward manually. (Imagine specifying the reward amount in every

possible situation!)

As an alternative, we could program the agent to learn from demonstra-

tions. Returning to the task of cleaning, we trade off different factors, like

trying to minimize the amount of time and effort spent on the task, or mini-

mizing the amount of dust we swallow, maximizing the surface we clean in

the amount of time we have, or trying to clean each spot as thoroughly as we

2

can. To describe a reward function in the cleaning task, we would have to de-

cide exactly what factors matter in getting the job done, and describe exactly

how each of the factors contribute to the reward. We refer to these factors as

environment state features or just features.

A more efficient solution could be to observe the behavior of an expert in

the cleaning task, and infer their reward function from demonstrations. One of

the central assumptions in this inverse reinforcement learning problem is that

the expert’s behavior expresses what it means to perform a task well.

Inverse reinforcement learning [Russell, 1998], or IRL, tackles the problem

of learning the motivation of an agent given examples of its behavior in a

known environment. Motivations are conceptualized as reward functions in

the Markov decision process formalism, which maps states (or states and ac-

tions) to scalar values whose expected discounted sum the agent seeks to max-

imize. Because of the assumption that the agent is successfully maximizing

reward, we refer to it as the expert.

Apprenticeship learning [Abbeel and Ng, 2004], or AL, addresses the task

of learning a policy from expert demonstrations, but the expert’s reward func-

tion is unknown to the apprentice. From the demonstrations, the apprentice

strives to derive a policy that performs well with respect to the expert’s private

reward function.

A basic assumption in IRL and AL is that the expert’s intent can be ex-

pressed as a reward function that is a combination of a known set of features.

3

The statement of this thesis is the following:

By casting inverse reinforcement learning as a maximum likelihood

problem, we can provide a unified approach to linear inverse rein-

forcement learning, non-linear inverse reinforcement learning, and

multiple intentions inverse reinforcement learning leading to effec-

tive and natural solutions.

I start by providing the background and defining some of the terms I will

use in the dissertation in Chapter 2. In Chapter 3, I present a survey of existing

Inverse Reinforcement Learning approaches. The maximum likelihood linear

inverse reinforcement learning algorithm is described in Chapter 4. I relax the

assumption of a linear reward function and present a modular inverse rein-

forcement learning algorithm that adds a supervised learning component to

the inverse reinforcement learning setup in Chapter 5. Learning from multiple

experts with varying intentions is explored in Chapter 6. I show an application

of the maximum likelihood IRL algorithm in Chapter 7 and conclude in Chap-

ter 8. A bibliography containing all cited references is included at the end of

the dissertation.

4

Chapter 2

Background and Definitions

In this chapter, I define inverse reinforcement learning (IRL) and the closely re-

lated problem of apprenticeship learning (AL). I start by describing the reinforcement-

learning setting (Section 2.1), with terminology that I use again when describ-

ing AL and IRL. The AL and IRL settings are described in Section 2.2, and

maximum likelihood estimation is defined in Section 2.3.

2.1 The Reinforcement-Learning Setting

I start by describing the reinforcement-learning setting, and use as an exam-

ple the task of automatically driving a car. In reinforcement learning, there is

an agent (which is also called the learner or apprentice), for example the driver,

acting in a known environment, for example driving a car on a road. Using

the Markov decision process formalism [Puterman, 1994], the environment is

characterized by a set of variables (S, A, r, T, γ): states S, actions A, rewards r,

transition probabilities T, and discount factor γ.

A state is a sufficient statistic for transitions and rewards. In the driving

task, it can include information like be the speed of the car, the amount of gas

left in the tank, the lane where the car is driving, and the speeds and locations

of other cars on the same road that are up to a certain distance away from the

car that the agent is driving.

5

A is the set of actions the agent can perform in the environment. The set

of actions for the agent driver could be: changing the speed of the car, using

the blinker, going left, going right, etc. Each time the agent takes an action,

the environment provides a new state, describing how the environment has

changed as a result of the agent’s action, and a reinforcement signal, also called

reward (see Figure 2.1). Rewards can be either positive or negative, though a

negative reward is sometimes referred to as a cost. For example, the driver

might pay a cost for inefficient driving (high gas mileage), but obtain a high

reward when arriving to the destination within a certain time.

The transitions (or transition dynamics) describe how the environment’s states

change as the agent is taking actions. In some environments, when an agent

is taking the same action in a certain state, it always leads to the same new

state. In this case, the transitions are called deterministic. For example, if the

road is empty, the agent is driving in nice weather with no wind, and the car

is working properly, if the driver steers left to change the lane, the car will end

up in the next lane to the left. However, in certain environments, the driving

conditions are such that taking the same action can lead to multiple outcomes,

each outcome with a different probability. For example, if the road is slippery

or there is a very strong wind, the agent taking the left action might end up in

the lane it is trying to reach with high probability, but there may also be a small

chance of not being able to steer and to end up going straight. Such transitions

are called stochastic.

The transition probability matrix T encodes the environment’s transition dy-

namics. Each matrix entry T(s, a) is a probability distribution over next states

s′ when action a is taken in state s. We can also write T : S× A× S→ [0, 1].

The discount factor γ weights the outcome of future actions versus present

6

Figure 2.1: The Reinforcement-Learning Setting. The mouse (agent) is moving
around (actions) looking for food (the reward) in a maze (the environment).

actions. Receiving $100 next month may not be worth to the agent as much as

receiving $100 tomorrow. In our settings, the discount factor is γ ∈ [0, 1), with

lower numbers decreasing the value of future rewards more. If future actions

are worth as much as present actions, then γ = 1.

The RL problem is illustrated in Figure 2.1. The RL agent is drawn as a

mouse, acting in an environment shown as a maze and seeking to maximize

its reward, here shown as food. This picture is meant to illustrate the exchange

of information between the agent and the environment: the information that

the agent sends to the environment is its action, and the information that the

environment sends in response is the next state, and the reward or cost is the

immediate value for taking that action.

When an MDP (S, A, r, T, γ) is given, one can use the value-iteration algo-

rithm [Puterman, 1994] to compute the corresponding action-value function

Q : S× A → R and the optimal policy. The action-value function for a state

7

s and an action a, Q(s, a), provides an estimate of the total discounted reward

when taking action a in state s, and following the optimal policy defined by

reward function r thereafter. Using the optimal policy and an initial state dis-

tribution ps : S → [0, 1] (with Σs ps = 1), it is straightforward to generate

trajectories starting in states drawn according to ps with transitions selected

according to the policy. For example, after the starting state is drawn from p,

we could choose the greedy action at each step in state s (that is, the action a′

that maximizes Q(s, a)), or we could choose actions according to a Boltzmann

distribution for action selection:

π(s, a) = eβQ(s,a)/∑
a′

eβQ(s,a′). (2.1)

The advantage of using a Boltzmann distribution for action selection is that

it is commonly used as a way of inducing variability in the behavior that is tied

to the values of the actions themselves. It is also used as a model for human

decision making [Luce, 1959].

In our IRL and AL setups, I will assume the availability of a set of tra-

jectories coming from expert agents taking actions in the MDP in the form

D = {ξ1, ..., ξN}. A trajectory consists of a sequence of state-action pairs ξi =

{(s1, a1), . . .}.

2.2 IRL and AL

Algorithms for apprenticeship learning and inverse reinforcement learning take

as input a model of the environment and the observed behavior of another

agent in the form of a set of demonstrations, or trajectories. More formally,

the model of the environment is a Markov decision process (MDP) without

the reward function (MDP\r: (S, A, T, γ)), and the demonstrations are a set

8

D = {ξ1, . . . ξN}. Each demonstration ξi is a sequence of state–action pairs

ξi = {(s, a)i
j}, where s ∈ S, and a ∈ A. Sometimes, the MDP\r is called

a Markov decision process, and the MDP with the reward function is sometimes

called a Markov decision problem. Because of the assumption that the demonstra-

tions come from an agent that is successfully maximizing reward, this agent is

referred to as the expert. The learner does not have access to the expert’s re-

ward function. The state space is sometimes compactly represented by a state-

feature function Φ = {φi : S→ R}. Each feature assigns a value to every state.

In the car driving domain, the state features could be (for each state) the speed

of the car, the amount of gas left in the tank, the lane where the car is driving,

and the speeds and locations of other cars on the same road that are up to a

certain distance away from the car that the agent is driving.

The goal in AL is to find a policy that performs well with respect to the

expert’s reward function. The goal in IRL is to find a proxy for the expert’s

reward function. As is common in earlier work, I focus on IRL as a means to

solving AL problems. IRL is finding application in a broad range of problems

from inferring people’s moral values [Moore et al., 2009] to interpreting verbal

instructions [Branavan et al., 2009].

IRL can be seen as a reward-estimation problem. The reward-estimation

problem is the following: Given an MDP\r and a set of expert demonstrations

D = {ξ1, . . . ξN}, find a reward function r that makes behavior D optimal in

the MDP. This problem has an infinite set of solutions, for example, a reward

function r(s) = c, ∀s ∈ S and c ∈ R, therefore, the reward-estimation problem

is ill-posed. A well-posed problem is a problem that admits a solution, and

its solution is unique and stable [Hadamard, 1902]. The challenge of IRL algo-

rithms is to find the optimal solution in this infinite set. IRL algorithms differ

9

in the optimization criterion they use, but they all seek a solution that is unique

and optimal with respect to their criterion.

In general, reward functions are parameterized by a vector of reward weights

θ applied to a feature vector for each state-action pair φ(s, a). Thus, a reward

function is written rθ(s, a) = fθ(φ(s, a)). If the expert’s reward function is

given by θE, the apprentice’s objective is to behave in a way that maximizes

the discounted sum of expected future rewards with respect to rθE . However,

the apprentice does not know θE and must use information from the observed

trajectories to decide how to behave. It can, for example, hypothesize its own

reward weights θA and behave accordingly.

2.3 Maximum Likelihood Estimation

As stated in Chapter 1, I cast inverse reinforcement learning as a maximum

likelihood estimation problem.

The goal of maximum likelihood estimation (or MLE) is to find a set of

parameters θ̂ ∈ Θ given a mapping f : Θ → R, the observed data D, and the

process M(f) that generated the data. Here, θ stand for the true parameters

that generated the data. MLE finds parameters

θ̂ = argmax
θ

P(D|M, f , θ). (2.2)

In some cases, it is easy to compute θ analytically. For example, if f and

M are known linear mappings and assuming the data is large enough, finding

θ involves solving a system of linear equations. In settings like IRL, f (θ) is

the expert’s reward function, and M involves finding the optimal policy in the

given MDP\r, which is typically done by dynamic programming (for example,

using the value-iteration algorithm [Puterman, 1994]). The optimal policy is

10

then used to generate demonstrations in the MDP (see Section 2.1). In this

case, it is intractable to compute θ analytically, and we need to estimate θ̂ using

Equation 2.2.

In Chapter 4, the expert’s reward is assumed to be a linear combination of

a known set of state features, therefore f is a linear mapping. I use θE to stand

for the feature parameters in the expert’s reward function. The data is a set of

demonstrations

D = {(s1, a1)
1, . . . (sj1 , aj1)

1, (s1, a1)
2, . . . (sj2 , aj2)

2, . . . (s1, a1)
N, . . . (sjN , ajN)

N)},

where N is the number of expert demonstrations, and ji is the length of the ith

demonstration. The expert is assumed to be acting optimally with respect to its

reward function, but to allow for slight mistakes or noise in the observation of

the expert’s behavior, a Boltzmann distribution for action selection is used. The

data-generation process M is therefore the following: Given a current estimate

θ̂ of θE, compute an estimate of the expert’s reward, f (θ̂), then compute an

estimate of the optimal policy according to f (θ̂) by running value iteration for

a fixed number of steps. This calculation gives us an estimate of the Q-function,

which can be used to compute an estimate of the expert’s policy, π(s, a) =

eβQ(s,a)/∑a′ eβQ(s,a′). Using Equation 2.2, θ̂ can be computed by using gradient

ascent to maximize the probability of the data given the parameters.

The same process is used in Chapter 5, except using a mapping f that is a

non-linear function of the state features. In Chapter 6, MLE is applied to the

problem of inferring multiple intentions from a set of unlabeled demonstra-

tions.

11

2.4 Conclusions

In this chapter, I have described the settings and defined some of the terms

needed to support my thesis statement. I have described the reinforcement-

learning, inverse reinforcement learning and apprenticeship-learning settings

and defined maximum likelihood estimation.

In the following chapters, I show that maximum likelihood is a justified

optimization criterion for IRL in the single expert linear setting (Chapter 4),

in the single expert non-linear setting (Chapter 5), and in the multiple expert

setting (Chapter 6), thereby providing a unified approach to IRL problems.

12

Chapter 3

Survey of Inverse Reinforcement Learning
Algorithms

This chapter presents a survey of existing inverse reinforcement learning (IRL)

or inverse optimal control (IOC) and apprenticeship learning (AL) algorithms.

IRL and AL are examples of imitation learning [Argall et al., 2009], which is

the problem of inferring a policy from expert demonstrations. The expert is

generally assumed to be acting optimally according to their intention or re-

ward function, although many IRL and AL algorithms include a model of the

expert that allows for slight deviations from optimal behavior, or for noise in

the observations of the expert’s behavior.

As discussed in Chapter 2, the input to an IRL or AL algorithm is a Markov

decision process without the reward function, MDP\R, a state-feature function

Φ = {φi : S → R}, and a set of expert demonstrations D = {ξ1 . . . ξN}, each

demonstration represented as a sequence of state-action pairs, ξi = {(s, a)i
j}.

The output is the computed estimate of the expert’s reward function RE for an

IRL algorithm, or the computed estimate of the expert’s policy πE for an AL

algorithm.

Models for human goal inference and action understanding from sequences

of behavior have also been studied [Baker et al., 2007, 2009]. When under-

standing the actions of another rational agent, humans assume that the agent

behaves as optimally as possible to accomplish its goal. The authors use a

13

computational model of inverse probabilistic planning, the process of inferring

an agent’s ”intention, given observations of an agent behavior, by inverting a

model of the agent’s planing process.” The authors use three models of peo-

ple’s prior knowledge about goals, and show that a model assuming that goals

can change over time correlates best with human judgments.

3.1 Imitation Learning. Direct methods.

Early approaches to imitation learning used demonstrations from the expert

as input to a supervised learning algorithm, and learned the policy as a direct

mapping from states to actions. One paper [Sammut et al., 1992] presents an

application of inductive learning from human demonstrations in the task of

flying an airplane–a task that involves complex motor skills. The actions of

the human using the flight simulator are used as input to an induction pro-

gram. Since each person has a different flying style, the autopilot is trained

from each of the human subjects who demonstrate the task. Then, a decision

tree is learned that maps between the states of the simulator and the actions

that need to be taken in those states. The trees are pruned to obtain the small-

est trees that allow the plane to fly correctly. The authors show the learned

rules for taking off, attaining flight level, turning right and taking a sharp left

turn. The performance is measured by comparing the flight profiles for the

human pilot versus the autopilot. The goal is to mimic the trajectory of the

human expert.

In another paper [Amit and Matari, 2002], the learner is a robot expected to

learn to imitate the movements of the demonstrator. It uses a hierarchical re-

ward structure, where higher levels use the information from the lower levels

14

for policy inference. The lowest level encodes movement primitives, like mov-

ing a certain joint, the next level learns particular motions that are frequently

demonstrated, and the last layer is able to represent complex movements. Dur-

ing the demonstration, the lowest layer adjusts its parameters to imitate the

demonstrated movements as closely as possible. The second layer learns spe-

cific movements, composed of primitive joint movements encoded in the first

layer. The highest level is implemented using hidden Markov models, where

each motion from the lower level is treated as a symbol in a set of symbols for

the HMM. Performance is measured by the system’s accuracy in recognizing

demonstrated motions.

The disadvantage of these methods is that they learn a policy that essen-

tially copies the behavior of the demonstrator, and does not provide general-

ization in regions of the state space that have not been demonstrated. This

means that for guaranteeing optimal performance, the learner has to be given

an exhaustive set of demonstrations, and is unable to generalize to situations

it has not seen.

Learning the reward function provides more opportunity for this kind of

generalization. Maximum likelihood IRL methods (Chapter 4, Chapter 5, and

Chapter 6) find a reward function as a combination of state features. Even

if the demonstrations do not cover the state space, the algorithms are able to

learn which features are important to the demonstrated task, and extend this

knowledge to unseen states.

15

3.2 Atypical Setups

Several IRL and AL approaches do not follow the typical IRL setup. In one

approach [Ratliff et al., 2006], instead of using one MDP and a set of multiple

demonstrations, the training data consists of multiple training instances. Each

training instance is a tuple containing an MDP\r, a state-feature function, a

demonstrated trajectory, policy or vector of state-action counts, and a loss vec-

tor, giving the learner a measure of closeness between policies or behaviors.

The goal is to find the parameters of a linear mapping between features and

rewards such that for each training instance, the resulting reward is ”close” to

the reward that generated the demonstrated behavior. To compute the reward

parameters, the authors define a set of constraints using the structured large

margin criterion [Taskar et al., 2005], which allows only for weight vectors for

which the example policies have a higher expected reward than any other pol-

icy by a margin that scales with the loss. The parameters can be found by

solving a quadratic program, but to make the learning more efficient, the au-

thors use the subgradient method, a generalization of gradient descent. The

algorithm iteratively computes the optimal policy and state-action visitation

frequencies for each input map using the current estimate of the reward func-

tion weights, then computes the subgradient of the cost function, and updates

the weights according to the subgradient, with an optional step of projecting

the weights according to any additional constraints.

In another IRL framework, instead of having access to demonstrations of

optimal behavior, the agent receives as feed-back the result of the comparison

between two possible behaviors, in the form of feature expectations [da Silva

et al., 2006]. The reward function is assumed to be a linear combination of a

known set of features, and the goal is to find the expert’s reward function, or,

16

equivalently, the feature parameters of the expert’s reward function. As the

agent is acting in the environment and learning an estimate of the expert’s re-

ward function, it is able to query an evaluation module, giving it two different

feature expectation vectors and receiving back the result of their comparison.

The reward parameters are computed by solving a linear program, and gradu-

ally building a set of linear constraints until a given optimal policy is contained

in the convex set with boundaries defined by the constraints.

In a hierarchical AL approach [Kolter et al., 2007], the reward function is

decomposed into two levels of control, with the low level reward described as

a linear combination of a known set of features, and the high level reward as

the average of the low level rewards. At the high level, the expert demonstrates

full policies, and at the low level, the expert provides the greedy action in cer-

tain states. At the low level, the reward is computed by setting the constraint

that the reward for the expert’s demonstrated action be much higher than the

reward of any other action. The authors describe an optimization problem that

provides a solution incorporating the rewards of both the high and low levels

in the hierarchy.

The problem of inverse optimal control in linearly solvable MDPs (LMDPs)

has also been explored [Dvijotham and Todorov, 2010]. An LMDP is defined

by a state space X, a state cost q(x), and passive dynamics x′ ∼ p(̇|x) char-

acterizing the transitions in the absence of control. The controller can impose

dynamics x′ ∼ π(̇|x) by paying a cost which is the KL divergence between

π and p. In LMDPs, there is a direct dependence between the value function

v(x), the cost function q(x) and the control law π∗(x), so only determining

one quantity is necessary to compute all of them. The authors note that v is

the most efficient to compute, and they use maximum likelihood to estimate

17

it by computing the log likelihood of v. The authors also show a method for

computing the cost function directly, and how a traditional IRL problem can

be embedded into an LMDP in order to be solved more efficiently. In the case

of continuous state spaces, the IRL method uses time discretization which re-

duces it to a discrete LMDP. The authors note that algorithms in the LMDP

framework are more efficient because they recover the value function, and ”re-

covering values is easier than recovering costs because solving the forward

problem is avoided”. The disadvantage of this approach over approaches that

compute an estimate of the expert’s reward function is that the value function

transfers poorly to new MDPs with similar feature sets or to variants of the

same MDP.

Inverse reinforcement learning has also been studied in partially observ-

able MDPs (POMDPs) [Choi and Kim, 2009]. The authors show how previous

IRL algorithms [Ng and Russell, 2000; Abbeel and Ng, 2004], can be adapted

for POMDPs. The representation of the policy is a finite state controller (FSC),

which is a directed graph with one node per action, and one edge per obser-

vation. Given an FSC policy, the value function Vπ is the expected discounted

return for executing π, and is defined over the joint space of FSC nodes and

POMDP states. Following prior work [Ng and Russell, 2000], the authors de-

scribe three IRL algorithms in the case where the expert’s policy is known.

First, a Q-function based approach, where the reward is found by setting con-

straints on the value function that make the value of the expert’s policy higher

than the value of any other policy. Since there are infinitely many policies

to choose from, the authors choose to use the subset of constraints that com-

pare the expert’s policy only with policies that deviate by one step from the

expert’s policy, and only the finite sampled beliefs reachable by the expert’s

18

policy. This process leads to a finite set of constraints that can be solved to

find the estimate of the expert’s reward function. Second, a dynamic program-

ming update based approach, where the policies that are to be compared with

the expert’s policy are chosen among the policies that arise during the dynamic

programming update of the expert’s policy. The authors show that the expert’s

policy is optimal if its value is not improved for any belief by the dynamic pro-

gramming update. Third, using the witness theorem, which provides a more

computationally efficient way to find the reward function estimate, a set of

nodes is found that define a feasible region for the true reward function. To

put these results together, the authors present a modification of a previous IRL

algorithm [Ng and Russell, 2000], where an estimate of the reward function is

computed by maximizing the sum of margins between the expert’s policy and

all other policies, with a penalty term that encourages sparse reward functions.

In the case of IRL from sample trajectories, the authors show how three ex-

isting approaches can be extended for POMDPs: a method that uses the maxi-

mum margin between values, following the IRL algorithm from sample trajec-

tories from Ng and Russell [2000], a maximum margin method between feature

expectations following the maximum margin IRL algorithm from Abbeel and

Ng [2004], and a projection method adapted from the IRL method with the

same name by Abbeel and Ng [2004].

Imitation learning in multiagent settings have also been addressed [Waugh

et al., 2011].

Some of the approaches presented in this section have setups that, although

different, are comparable to the setup of our maximum likelihood IRL algo-

rithms. They address the case where the reward is a linear combination of a

known set of features [Ratliff et al., 2006; da Silva et al., 2006; Kolter et al., 2007],

19

but do not provide an overarching set of tools that can be applied in the non-

linear or the multiple intentions case, like the unified approach presented in

this thesis.

Most of these approaches also have the disadvantage of involving complex

algorithms and being computationally expensive, involving solving quadratic

programs [Ratliff et al., 2006], repeatedly querying a module that compares the

performance of pairs of behaviors [da Silva et al., 2006], and requiring demon-

strations at different levels of complexity in terms of the dependence of the

reward to features [Kolter et al., 2007]. In contrast, MLIRL (Chapter 4) is an

intuitive gradient-based algorithm, with simple computations at each step.

In the rest of the chapter, I present IRL and AL algorithms that, more or

less, use the typical setup described in Chapter 2.

3.3 Indirect methods. Early Approaches

The motivation for learning the reward function rather than the policy comes

from the assumption that reward functions are a more succinct, robust and

transferable ways to represent tasks [Abbeel and Ng, 2004]. Inverse reinforce-

ment learning was first defined taking as inputs measurements of an agent’s

behavior over time, measurements of the agent’s sensory inputs, and a model

of the environment, and finding an estimate of the reward function that the

agent is trying to optimize. In the paper, Russell [1998] enumerates a few

open research problems, and sketches an algorithm for IRL. The proposed al-

gorithm uses maximum likelihood estimation for the parameters of the reward

function, maximizing the likelihood of the observed behavior. To do so, it ex-

presses the likelihood of the behavior as a function of the reward parameters,

20

then computes the gradient of the likelihood with respect to the parameters to

improve the parameter estimates. Conceptually, this algorithm is very close to

Maximum Likelihood IRL (Chapter 4).

Interestingly, the author does not implement the maximum likelihood IRL

algorithm in his next IRL paper [Ng and Russell, 2000], but instead uses a lin-

ear programming formalism to compute the reward function parameters. The

IRL problem is explored in three different settings. In the first setting, one

with a finite state space, known model of the environment and known expert

policy, the authors show the equation that needs to be solved to obtain the re-

ward function. The equation admits an infinite number of solutions, including

degenerate ones assigning the same reward to each state. Therefore, the IRL

problem is ill-posed. To choose a meaningful reward, the authors require a

solution that makes a single step deviation from the optimal policy as costly

as possible, and favor solutions for which rewards are small numbers. These

constraints are framed in a linear programming formulation, with a unique

solution that assigns non-zero rewards to only a small number of states. In set-

tings with very large state spaces, the authors use function approximation to

represent the reward function as a linear combination of a known set of state

features, and the problem becomes that of estimating the feature parameters.

Since the reward is a linear combination of features, a linear programming ap-

proach can again be applied to find a reward function such that the value of the

expert’s policy is greater than the value of any other policy. The third setting

is one where the agent does not have access to the expert’s policy, but rather to

a set of demonstrations from the expert. The goal is to find the reward func-

tion such that the value of the unknown expert policy is maximal. Under the

assumption that the reward is a linear combination of a known set of features,

21

the algorithm starts with a random policy, then iteratively improves the re-

ward parameters by solving a linear program, this time using estimates of the

expert’s policy computed from the trajectories. The performance of the three

algorithms is measured in three experimental settings, a discrete 5 × 5 grid

world with stochastic transitions and one goal state, the mountain car domain,

and a continuous version of the grid world.

The assumption that the expert’s reward function is a linear combination of

a known set of features is very common in the IRL literature [Abbeel and Ng,

2004; Ratliff et al., 2006; da Silva et al., 2006; Syed and Schapire, 2007; Kolter

et al., 2007; Syed et al., 2008; Ziebart et al., 2008; Babeş-Vroman et al., 2011; Klein

et al., 2012; Almingol et al., 2013]. The problem becomes that of estimating the

feature parameters in the linear dependence.

In some settings, the reward’s dependence on features is non-linear, and

the linearity assumption can lead to solutions that result in poor performance.

A few IRL approaches address non-linear rewards. Neu and Szepesvári [2007]

provide a method for differentiable classes of reward functions, but only test

it in a linear setting. Other approaches using non-linear mappings of features

for the reward are described in specific settings, for example regression trees

[Levine et al., 2010], Gaussian processes [Levine et al., 2011], and Bayesian

frameworks [Ramachandran and Amir, 2007; Lopes et al., 2009]. In contrast

to these algorithms, our modular IRL approach (Chapter 5) allows any linear

on non-linear regression algorithm to be used in the IRL context.

22

3.4 IRL and AL Approaches. Different Objectives

IRL and AL algorithms differ not only in their algorithmic approach, but also

in the objective function they seek to optimize [Neu and Szepesvári, 2009]. In

early IRL work [Ng and Russell, 2000] the expert’s policy is given, and the

reward is chosen to make any one-step deviations from the expert’s policy as

costly as possible. If the expert’s policy is unknown, other objectives need to

be considered. In projection [Abbeel and Ng, 2004], the objective is to make

the features encountered by the apprentice’s policy match those of the expert.

Policy matching [Neu and Szepesvári, 2007] tries to make the actions taken

by the learned policy as close as possible to those of the expert. LPAL and

MWAL [Syed et al., 2008] behave in such a way that they outperform the expert

according to the computed reward parameters. Maximum entropy [Ziebart

et al., 2008] defines a probability distribution over behaviors as a function of

the reward parameters, and finds the parameters that maximize the likelihood

of the expert’s demonstrations. I discuss these approaches in detail below.

A unified IRL framework for linear IRL algorithms has been developed

[Neu and Szepesvári, 2009] to describe early work. In this framework, each

algorithm takes as input an MDP \ r, that is, an MDP without the reward func-

tion, and a set of trajectories D = {ξ1, . . . ξN}, and outputs a reward function.

The algorithms incrementally use an update rule with step size αk at iteration

k, update function g, also called the link-function (for example, the exponential

function for multiplicative updates, and the identity function for additive up-

dates), and parameter update ∆k at iteration k. The authors claim that the up-

date of any IRL algoritm can be written as θk+1 = g(g−1(θk) + αk∆k). The last

algorithm parameter is the dissimilarity function J = J(r, D), measuring the

23

similarity between the optimal behavior corresponding to r and the demon-

strations D. The authors show how each of these parameters is instantiated

for projection [Abbeel and Ng, 2004], MWAL [Syed et al., 2008], Max-margin

planning [Ratliff et al., 2006], policy matching [Neu and Szepesvári, 2007], and

maximum entropy IRL [Ziebart et al., 2008].

The expressions for some of the quantities mentioned above in the case of

these algorithms are complicated, and they may not seem straightforward at

first glance. In contrast, these functions can be easily computed for MLIRL

(Chapter 4). MLIRL uses a constant step size of α at each iteration, and an

additive update rule, g(x) = x. The parameter update is ∆k = log(P(D|θk)),

where θk is the current estimate of the feature parameters and the dissimilarity

function is J(θ, D) = − 1
N ΣN

i=1 log P(ξi|θ), with lower values when the optimal

behavior with respect to the reward function given by θ is more similar to the

dataset D.

So far, I have given a general overview of linear IRL algorithms, and the

methods they use in computing an estimate of the expert’s reward function. In

the following, these approaches are presented in detail.

One of the first applications of IRL is in solving apprenticeship learning

(AL), the problem of learning an estimate of the expert’s policy from demon-

strations [Abbeel and Ng, 2004]. As mentioned before, the motivation for

learning the expert’s underlying reward function instead of just a mapping

from states to actions is that reward functions provide a better generalization of

the task, especially in areas of the state space where the expert has not demon-

strated it. A key quantity defined in this approach are the feature expectations

of a policy, more specifically, the vector of discounted accumulated feature ex-

pectations when following the policy. The authors show that if two policies

24

have close feature expectations, then their values are also close, therefore com-

puting a policy with an optimal value can be solved by finding a policy that

matches the feature expectations according to the expert’s policy. The paper

describes two algorithms, maximum margin and projection, taking as input the

expert’s feature expectations, a model of the environment, and a feature map-

ping. Maximum margin iteratively builds a set of policies until a policy is found

for which the distance between its value and the estimate of the expert’s policy

(using the expert’s feature expectations) is smaller than a given threshold. If

such a policy is not found, a new policy is generated as the optimal policy cor-

responding to a reward function for which the expert does better by a margin

than any of the policies previously found by the algorithm. This step involves

solving a quadratic program. To avoid using a quadratic programming solver,

the authors propose the projection algorithm, which generates a new feature ex-

pectation vector by computing the orthogonal projection of the expert’s feature

expectations onto the line through the last two previously generated feature

expectation vectors. The authors show that the algorithms always converge

given enough data, and they provide a sample complexity bound.

There are a number of applications of projection and maximum margin.

One paper [Abbeel et al., 2008] applies maximum margin to the problem of

navigating though a parking lot. Another paper [Chandramohan et al., 2011]

applies projection to dialogue systems. Another one applies projection to learn

behavior styles from playing a video game with various characters [Lee and

Popović, 2010]. These algorithms have also been extensively applied to the

problem of teaching an autonomous helicopter to fly [Abbeel et al., 2010].

Matching the expert’s feature expectation is the goal of another IRL ap-

proach [Ziebart et al., 2008]. Since this computation can result in multiple

25

behaviors, the principle of maximum entropy is used to select a distribution

over behaviors that matches the expert’s feature expectations. This distribu-

tion is softmax or Boltzmann, assigning the same probability to plans yielding

the same reward, and higher probabilities to choices with higher rewards. The

parameters of the reward function are chosen such that the likelihood of the

observed behavior is maximized and computed using gradient descent.

Another approach [Ziebart et al., 2010] uses the idea of matching feature

expectations as part of the optimization for maximum causal entropy, an ex-

tension of maximum entropy in settings where side-information is revealed

over time. Side-information is a set of variables that are not predicted, but are

related to the predicted variables (for example, the environment’s transition

dynamics which the agent discovers as it interacts with the environment). In

the context of an agent interacting with a stochastic environment, the objective

function is the causal entropy based on the probability of the actions causally

conditioned on the side information available at each step. The optimization

can be solved recursively to obtain the distribution P(at|st), and the parame-

ters of the reward function are found using a gradient method, similar to the

one used in previous work [Ziebart et al., 2008].

The same principle of maximum entropy is used in a continuous inverse

optimal control algorithm [Levine and Koltun, 2012], which I describe later in

Section 3.7.

In a game-theoretic approach to AL [Syed and Schapire, 2007], the authors

note that AL algorithms from previous work [Abbeel and Ng, 2004] seek to

mimic the expert’s behavior, therefore their performance is both upper and

lower bounded by the performance of the expert. To address the situation

where the expert’s demonstrations are not optimal, the AL problem is cast as

26

a zero-sum game, in which the environment adversarially chooses a reward

function to minimize the performance of the learner, and the learner chooses

a mixed policy with the goal of maximizing its performance relative to the

reward function chosen by the environment. The learner is guaranteed to do no

worse than the expert according to the unknown reward function. The authors

use the multiplicative weights algorithm (MWAL) to find an approximately

optimal strategy, which provides the learner with a policy that can outperform

the expert under certain conditions.

A related approach frames the AL problem as linear programming (LPAL)

[Syed et al., 2008], using the Bellman flow constraints to compute a stationary

policy with the same value as the mixed policy computed by MWAL. The au-

thors also describe MWAL-Dual, a modification of MWAL that uses the dual of

the linear programming formulation for solving MDPs as an intermediate step.

The LPAL algorithm computes an estimate of the expert’s value function from

demonstrations, and uses a linear program to compute the occupancy mea-

sures of a policy that outperforms the expert, using the same maximization

step as the one for MWAL.

Learning from suboptimal demonstrations has also been addressed in the

context of teaching an autonomous helicopter to fly [Coates et al., 2008, 2009].

The assumption made in these papers is that the optimal behavior is encoded

in the joint set of suboptimal demonstrations. The paper presents an algorithm

for extracting optimal trajectories from many suboptimal demonstrations, and

building a model of the system’s dynamics in the vicinity of the optimal tra-

jectory, allowing the learner to perform better than the expert. The paper pro-

poses a generative model for the expert’s demonstrations as noisy observations

of the unobserved, intended trajectories, then an EM algorithm to infer both

27

the unobserved ideal trajectories, and a time alignment of the demonstrations,

used to learn a local model in the vicinity of the demonstration. The generative

model uses a normal distribution over initial states, and an approximate model

of the dynamics, including a term for noise, which is normally distributed with

mean 0. Each demonstration is represented as a set of independent observa-

tions of the hidden ideal trajectory z. The authors extend the generative model

to account for other sources of error like unintentional position drifting and in-

cluding prior knowledge. With this extended generative model, the algorithm

successfully finds the most likely hidden trajectory.

A gradient method for AL has been developed [Neu and Szepesvári, 2007],

combining direct imitation learning methods which learn a mapping from states

to actions (policy) by supervised learning with indirect imitation learning meth-

ods learning a policy by assuming the expert is acting optimally in the environ-

ment by using an IRL algorithm. The authors use a loss function that penalizes

deviations from the expert’s policy like in supervised learning, but the policy

is computed by tuning a reward function instead of finding the parameters

of the policy, such that it can generalize to parts of the state space that are

not visited by the expert during the demonstrations. The mapping between

the Q-function and the policy is the Boltzmann action-selection policy, chosen

because it is smooth and differentiable. To find the reward parameters, the au-

thors use gradient descent to minimize the distance between the estimate of

the expert’s policy and the apprentice’s policy.

The IRL algorithms described in this section assume the expert’s reward is

a linear combination of a known set of features [Abbeel and Ng, 2004; Ziebart

et al., 2008, 2010; Syed and Schapire, 2007; Syed et al., 2008; Neu and Szepesvári,

28

2007]. These algorithm only address learning a linear function from demon-

strations coming from a single expert, and do not provide a unified framework

for learning non-linear or multiple rewards. In contrast, I show how maximum

likelihood can be applied not only to the linear case (Chapter 4), but also to the

non-linear (Chapter 5) and multiple intentions case (Chapter 6).

3.5 Bayesian Approaches

Bayesian IRL [Ramachandran and Amir, 2007] casts IRL as a Bayesian infer-

ence problem, where prior knowledge about the expert’s reward function can

be included in the inference. The posterior is updated using the expert’s demon-

strations as evidence. The authors point out that the normalizing factor is hard

to compute, and therefore, the posterior is estimated by using a sampling tech-

nique. IRL becomes a reward-estimation problem, where the loss function can

be computed as the norm of the distance between the estimated and actual

rewards. The estimated reward that minimizes this loss is the mean of the

posterior. If the problem is policy estimation, the computed policy is the one

that minimizes the expected loss over the posterior reward distribution, where

the loss is defined as a function of a reward and a policy, and is computed

as the norm of the distance between the value of the optimal policy and the

value of the policy for the current reward function estimate. The authors claim

that the policy minimizing this norm is the optimal policy for the MDP with

reward function the expected value of the posterior reward distribution. In-

stead of computing the posterior distribution on reward functions, the authors

use a computationally efficient method to derive the mean of the posterior by

MCMC sampling and return the sample mean as its estimate, while at the

same time keeping track of the optimal policy as the reward changes along

29

the Markov chain. While moving along the Markov chain, the optimal policy

for the current reward R is either known, or, when a new reward vector in the

chain is encountered, the new optimal policy is only slightly different than the

old one and its update can be computed by using a few steps of policy iteration,

thus avoiding solving the MDP at each step.

A number of other IRL algorithms build on the ideas from Bayesian IRL

[Ramachandran and Amir, 2007]. Active learning reward estimation algo-

rithms rely on this algorithm [Lopes et al., 2009; Cohn et al., 2011] (see Sec-

tion 3.6) and it is also used in non-parametric approaches for learning about

multiple intentions also rely on it [Choi and Kim, 2012] (see Section 3.8).

An application of inverse reinforcement learning to preference elicitation

generalizes the Bayesian IRL framework [Rothkopf and Dimitrakakis, 2011] to

allow for obtaining the agent’s preferences and policy as well as their reward

function. The paper proposes a Bayesian formulation for inverse reinforce-

ment learning as preference elicitation, with a structured prior on the expert’s

utilities and policies, then derives two different Markov chain procedures for

preference elicitation. Two generative models are proposed, one for just the

data, and another one for both the data and the reward function. The observ-

ables are the prior on reward functions ξ, the prior on policies given a reward

function ψ, and the data D, which is a set of demonstrations from the expert,

(and, in the reward-augmented case, the rewards rT). The latent variables are

the actual reward function ρ (drawn from the prior) and corresponding policy

π used to generate the data.

This setup is extended to the problem of multitask IRL [Dimitrakakis and

Rothkopf, 2012] using a hierarchical population model.

30

None of these papers provide a unified approach to all the subproblems ad-

dressed in this thesis—linear IRL, non-linear IRL and multiple intentions IRL,

but one such approach could be built by using the algorithm described by Ra-

machandran and Amir [2007] for single intention IRL and the non-parametric

method by Choi and Kim [2012] for multiple intentions IRL.

3.6 Active Learning

Inverse reinforcement learning has also been studied in the context of active

learning. The first method introduced the active sampling algorithm [Lopes

et al., 2009]. In this approach, the agent receives a small number of demon-

strations from the expert to begin with, then repeatedly chooses a state where

its uncertainty about the optimal action is maximized, and queries the expert

about the optimal action in that state. Two Bayesian IRL algorithms are used

for learning, a gradient approach which computes the posterior probability of

the reward function given the data, Pr(r|D) by maximizing the likelihood of

the data under a uniform prior over reward functions and an MCMC sampling

approach that computes the estimate of the mean of the posterior over the re-

ward functions by sampling from the posterior and then averaging over the

samples [Ramachandran and Amir, 2007]. To compute the uncertainty about

the expert’s policy, the authors define a distribution over possible values for

a policy in each state, µsa(p), the probability that the value of the policy for

state action pair (s, a) is p. They discretize this distribution by splitting the

interval [0, 1] into K sub-intervals Ik, with k = 1 . . . N, and changing µsa(k) to

be the probability that π(s, a) belongs to interval Ik. The mean-entropy cor-

responding to the discretized distribution quantifies the uncertainty that the

agent has about the action it should take in that state, therefore the state that

31

is chosen for query is the one that maximizes this mean-entropy over all the

states. The distribution is estimated by generating N samples using Monte-

Carlo sampling, then averaging over the samples to obtain the probability of

each interval, µsa(k), according to a previously proved theorem [Ramachan-

dran and Amir, 2007]. Two active learning IRL algorithms are presented, the

first one computes an estimate of the posterior Pr(r|D) from the initial (as-

sumed small) data set, then uses this posterior to compute the mean-entropy

for each state, and queries the expert for the action to be taken in that state. The

new sample is used to re-estimate Pr(r|D), and so on. The second algorithm

considers the case of large dimensional state spaces, where estimating the pos-

terior using MC sampling is computationally too expensive. The sampling step

is replaced by estimating the expert’s reward function using the gradient ascent

method mentioned above, then estimating the posterior in a neighborhood of

the expert’s reward.

A a similar setup is used in a related approach to action-queries [Cohn

et al., 2011], this time the focus being on the uncertainty over reward functions.

When choosing which state to query, given the current probability distribution

over reward functions, the agent can compute the mean entropy for each state,

and query the state with the maximum mean-entropy. The expected myopic

gain quantifies the uncertainty about states [Cohn et al., 2010] and assesses

the goodness of a query in terms of its long term expected gain. The gain for

knowing that the answer to query q is o given the current state and the cur-

rent distribution over reward functions is the difference between the expected

value at the current state of the policy calculated according to the new infor-

mation and the policy calculated beforehand. Since the answer to the query q

is not known ahead of time, the agent computes an expectation of the gain for

32

q over all the possible answers, also called the expected myopic gain (EMG) of

query q, and chooses the query with the maximum expected myopic gain. To

compute the EMG, the authors use the Bayesian inverse reinforcement learning

algorithm [Ramachandran and Amir, 2007], which provides a way to update

the probability distribution over reward functions given demonstrations of ac-

tion choices from the expert. They also use a previous result [Ramachandran

and Amir, 2007] to replace the expected value of a policy over a reward distri-

bution with its value for the mean of the distribution to simplify the formula

for the gain corresponding to a query q.

The two algorithms presented in this section do not limit the reward func-

tion estimate to linear functions, but instead see the reward as an arbitrary

mapping between states and values. Lopes et al. [2009] use a gradient ap-

proach similar to the MLIRL algorithm (Chapter 4), but the gradient is taken

with respect to the reward of each state. Therefore, if a region of the state space

hasn’t been visited by the expert in the demonstrations, the estimate of the re-

ward in that region will be inaccurate. Ramachandran and Amir [2007] and

Cohn et al. [2010] have the same issue. In contrast, by expressing the reward as

a function of features, MLIRL (Chapter 4) and Modular IRL (Chapter 5) recover

the expert’s reward from fewer demonstrations, that do not necessarily need to

cover the entire state space. No active learning IRL algorithm for multiple in-

tentions has been published to my knowledge, although the application of an

active learning IRL algorithm to a multi-class classification has been discussed

by Melo and Lopes [2013].

33

3.7 Learning Non-linear Reward Functions

A few notable IRL algorithms do not make the assumption that the reward is

a linear combination of a known set of features.

I start with two approaches to IRL that build a feature set to best describe

the expert’s reward function from a larger set of basis features or feature com-

ponents. The computed reward function becomes a non-linear combination of

the feature components. One approach [Ratliff et al., 2007] iteratively builds

a model of the reward or cost function using the current feature set, initially

the set of feature components, then runs a planner to obtain the path with the

lowest loss. If the features are not expressive enough to represent the task, the

generated path will differ significantly from the expert demonstrated path. If

new features are needed, a training set is built by gathering feature vectors en-

countered along the generated path as positive examples, and feature vectors

encountered along the expert demonstrated path as negative examples. This

training set is used to build a classifier which can be queried in every cell of

all the example maps to build new features. The new feature is the one that

best raises the cost of the current erroneous path, and at the same time low-

ers the cost of the example path, therefore contributing to better explaining the

decisions made in the paths demonstrated by the expert.

Another approach [Levine et al., 2010] uses a similar iterative structure but

the optimization is different. The algorithm starts with an empty feature set,

and iteratively runs two steps: the optimization step builds a reward function

given the current feature set, and the fitting step generates a new feature hy-

pothesis that better captures the variations in the reward function. In the opti-

mization step, a reward function R is computed for which the optimal policy is

consistent with the expert demonstrations, while, at the same time, minimizing

34

the sum of squared errors between R and its projection unto the linear basis of

the current feature set. This calculation is accomplished using a quadratic pro-

gramming solver. The fitting step chooses to generate new features or merge

old ones, such that the resulting feature set gives greater resolution to regions

of the state space where the old features are too coarse, and lower resolution

to regions where the old features are too fine. The new feature set is obtained

by building a regression tree for the current reward function estimate, with the

feature components acting as tests at the nodes. Each leaf represents a subset

of the state space φl, and the new features are the set of indicator functions for

membership in φl. The smallest tree is chosen that produces a sufficiently rich

feature set to represent the current reward function.

Another non-linear approach casts IRL as a Gaussian process regression

problem [Levine et al., 2011]. The observations of the expert’s demonstrations

are assumed to be noisy, and the model learns the true rewards and the param-

eters of the model by maximizing their probability under the expert demon-

strations. The kernel function used is the automatic relevance detection kernel

(a variant of the RBF kernel), with hyper-parameters β, the overall variance,

and Λ, the feature weights. For large state spaces, a subset of the features is

chosen to contain the feature values of all states visited during the demon-

strations. Other kernels can be used to encode prior knowledge of the reward

function.

In a continuous inverse optimal control approach [Levine and Koltun, 2012],

a probabilistic algorithm for continuous domains is developed, using an ap-

proximation of the reward function that allows for learning from examples

that are globally optimal, but only requires locally optimal examples. The algo-

rithm only considers the shape of the reward function in the neighborhood of

35

the expert demonstrations. The goal of the algorithm is to find a reward func-

tion under which the optimal actions match the expert’s demonstrations, and

since the demonstrated trajectories are assumed to be suboptimal, the maxi-

mum entropy model is used for the expert’s behavior, to account for ”noise”

in the demonstrations. In this model, the probability of the expert’s actions is

proportional to the exponential of the rewards encountered along the trajec-

tory, and the log likelihood of this probability is maximized to find an estimate

of the expert’s reward function. Computing this quantity requires access to

the full policy under an estimated reward function, which becomes intractable

in high-dimensional state spaces. Instead of computing the log likelihood of

the action probability exactly, this quantity is approximated by using a second

order Taylor expansion of the reward function around the demonstrated ac-

tions. Under this approximation, reward functions with small gradients are

more likely.

While these approaches are suited for learning linear and non-linear reward

functions, they do not address the problem of learning about multiple inten-

tions. In the next section, I describe a few IRL algorithms that infer the rewards

corresponding to demonstrations coming from multiple experts with varying

intentions.

3.8 Learning about Multiple Intentions

Our work on learning from demonstrations generated by multiple intentions

or reward functions (Chapter 6) has been extended to address the requirement

that the number of reward functions needs to be known in advance by us-

ing non-parametric methods [Choi and Kim, 2012; Almingol et al., 2013]. The

first approach extends Bayesian IRL [Ramachandran and Amir, 2007] with the

36

Dirichlet process model, and clusters the trajectories coming from the same

reward function, while at the same time computing the reward function corre-

sponding to each cluster. The number of clusters is flexible and does not need

to be specified in advance, and the framework allows for inferring the reward

function for a trajectory even when its reward function is novel. The inference

is done using MCMC sampling for the latent variables. The algorithm has two

steps, first the cluster assignment is updated, then the reward functions for

each cluster are updated in light of the new cluster assignments. If a new clus-

ter is drawn, then its reward function is a new reward function drawn from the

prior.

The second approach [Almingol et al., 2013] focuses on motion planning,

a setting with very large action and parameter spaces. The function to be es-

timated is the potential function V dictating the motion of a particle, and it is

assumed to be a linear combination of a known set of features. Under the as-

sumption that V is smooth, the continuous dynamical system describing the

motion can be discretized with respect to time, and the equations correspond-

ing to a whole trajectory can be represented as a system of linear equations,

Y = Xβ. Each potential generating the input trajectories has its own set of

parameters βk. To compute these parameters, the model assumes that the tra-

jectory set is generated by a mixture model of K linear dynamical systems, that

is potentials Vk, with parameters βk, and a Dirichlet process is used to esti-

mate the mixture model over the parameters of each controller with a Lapla-

cian prior over the parameters.

These approaches do not provide a unified framework for linear, non-linear,

and multiple intentions IRL. As mentioned before, to build such a framework,

37

one could use Bayesian IRL [Ramachandran and Amir, 2007] for single inten-

tion IRL, and Choi and Kim [2012] for multiple intentions IRL.

3.9 Conclusions

My thesis statement is:

By casting inverse reinforcement learning as a maximum likelihood

problem, we can provide a unified approach to linear inverse rein-

forcement learning, non-linear inverse reinforcement learning, and

multiple intentions inverse reinforcement learning leading to effec-

tive and natural solutions.

In this chapter, I have surveyed some of the existing IRL and AL algorithms,

and shown that no such unified approach to IRL currently exists. While some

algorithms cover two of these subproblems, the linear and non-linear single

intentions cases, [Ramachandran and Amir, 2007; Neu and Szepesvári, 2007;

Ratliff et al., 2007; Lopes et al., 2009; Levine et al., 2010, 2011], they do not ad-

dress learning from demonstrations coming from multiple expert with varying

intentions.

One could argue that the non-parametric Bayesian inverse reinforcement

learning approach could be applied to all three settings: the linear case, the

non-linear case, and the multiple intentions case. If all the demonstrations

came from one expert, the non-parametric approach for multiple reward func-

tions may figure out the commonality of all the trajectories in the dataset. How-

ever, the underlying IRL algorithm for trajectories coming from a single expert

38

is Bayesian IRL [Ramachandran and Amir, 2007], which uses MCMC to esti-

mate the posterior in each iteration and is, therefore computationally expen-

sive. If it is known whether the demonstrations come from one or more expert,

and the shape of the reward function, it is more efficient to use specialized IRL

algorithms for each case.

Another advantage of the unified IRL framework is that the algorithms

are very simple. MLIRL is simply a gradient ascent algorithm that iteratively

changes the feature parameters to maximize the probability of the expert demon-

strations (Chapter 4). Modular IRL adds to each iteration a simple and intu-

itive step of fitting the rewards to the hypothesis class that the reward func-

tion belongs to (Chapter 5). Multiple intentions IRL is an EM-based clustering

method, and MLIRL naturally fits as the M-step (Chapter 6). Maximum likeli-

hood algorithms are simple and intuitive, yet we have not seen them described

anywhere else.

39

Chapter 4

Maximum Likelihood Inverse Reinforcement
Learning

In this chapter I describe maximum likelihood inverse reinforcement learning

(or MLIRL) and show that it is a justified approach for linear, single expert IRL.

I start by revisiting several algorithms for IRL and AL and briefly describing

a new linear programming based algorithm and will compare this algorithm

and MLIRL with with existing work in Section 4.1. MLIRL is described in Sec-

tion 4.2 with implementation details in Section 4.3. In Section 4.4 I describe an

experiment showing that MLIRL obtains optimal performance in an envion-

ment where other IRL and AL algorithms have been previously tested and

conclude in Section 4.5.

4.1 Related Work

As discussed previously in Chapter 2, IRL algorithms receive as input a model

of the environment in the form of an MDP\r:(S, A, T, γ), and demonstrations

of the task to be learned D = {ξ1, . . . ξN}. They then compute an estimate of the

reward function used to generate the demonstrations, under the assumption

that the demonstrator is a reinforcement learning agent acting optimally or

nearly optimally with respect to their reward function.

Reward functions are parametrized by a vector of reward weights θ applied

40

to a feature vector for each state-action pair φ(s, a). Thus, in the linear case, a

reward function is written rθ(s, a) = θTφ(s, a). If the expert’s reward function

is given by θE, the apprentice’s objective is to behave in a way that maximizes

the discounted sum of expected future rewards with respect to rθE . However,

the apprentice does not know θE and must use information from the observed

trajectories to decide how to behave. It can, for example, hypothesize its own

reward weights θA and behave accordingly.

As shown in Chapter Chapter 3, IRL algorithms differ not just in their algo-

rithmic approach but also in the objective function they seek to optimize [Neu

and Szepesvári, 2009]. I briefly revisit IRL and AL algorithms I will use in our

comparison in Section 4.4. In Projection [Abbeel and Ng, 2004], the objective

is to make the features encountered by the apprentice’s policy match those of

the expert. LPAL and MWAL [Syed et al., 2008] behave in such a way that they

outperform the expert according to θA. Policy matching [Neu and Szepesvári,

2007] tries to make the actions taken by its policy as close as possible to those

observed from the expert. Maximum Entropy IRL [Ziebart et al., 2008, 2010]

defines a probability distribution over complete trajectories as a function of θA

and produces the θA that maximizes the likelihood of the observed trajectories.

I devised two new IRL algorithms for our comparisons. The linear program

that constitutes the optimization core of LPAL (Linear Programming Appren-

ticeship Learning) is a modified version of the standard LP dual for solving

MDPs [Puterman, 1994]. It has as its variables the “policy flow” and a min-

imum per-feature reward component. Taking the dual of this LP results in a

modified version of the standard LP primal for solving MDPs. It has as its vari-

ables the value function and θA. Because it produces explicit reward weights

instead of just behavior, this algorithm is called Linear Programming Inverse

41

Reinforcement Learning (or LPIRL). Because its behavior is defined indirectly

by θA, it can produce slightly different answers from LPAL. The second al-

gorithm seeks to maximize the likelihood of the observed trajectories, as de-

scribed in the next section.

4.2 Maximum Likelihood Inverse Reinforcement Learning

(MLIRL)

In this section I present a simple IRL algorithm called Maximum Likelihood

Inverse Reinforcement Learning (MLIRL). Like Bayesian IRL, it adopts a prob-

ability model that uses θA to create a value function and then assumes the

expert randomizes at the level of individual action choices. Like Maximum

Entropy IRL, it seeks a maximum likelihood model. Like Policy matching, it

uses a gradient method to find optimal behavior.

To define the algorithm more formally, I start by detailing the process by

which a hypothesized θA induces a probability distribution over action choices

and thereby assigns a likelihood to the trajectories in D. First, θA provides the

rewards from which discounted expected values are derived:

QθA(s, a) = θT
Aφ(s, a) + γ ∑

s′
T(s, a, s′)

⊗
a′

QθA(s
′, a′).

Here, the “max” in the standard Bellman equation is replaced with an oper-

ator that blends values via Boltzmann exploration [John, 1994]:
⊗

a Q(s, a) =

∑a Q(s, a)eβQ(s,a)/∑a′ eβQ(s,a′). This approach makes the likelihood (infinitely)

differentiable, although, in practice, other mappings could be used. The Botz-

mann exploration is commonly used as a way of inducing variability in behav-

ior that is tied to the values of the actions themselves. It is also used as a model

for human decision making [Luce, 1959].

42

Algorithm 1 Maximum Likelihood IRL
Input: MDP\r, features φ, trajectories {ξ1, . . . , ξN}, number of iterations M,
step size for each iteration (t) αt, 1 ≤ t < M.
Initialize: Choose random set of reward weights θ1.
for t = 1 to M do

Compute Qθt , πθt .
L = ∑

i
∑

(s,a)∈ξ

log(πθt(s, a)).

θt+1 ← θt + αt∇L.
end for
Output: Return θA = θM.

Figure 4.1: A single trajectory from
start to goal.

Figure 4.2: Reward function com-
puted using MLIRL.

I calculate these values via value iteration and use β = 0.75.

The Boltzmann exploration policy is πθA(s, a) = eβQθA
(s,a)/ ∑a′ e

βQθA
(s,a′).

Under this policy, the log likelihood of the trajectories in D is L(D|θ) =

log
N

∏
i=1

∏
(s,a)∈ξi

πθ(s, a) =
N

∑
i=1

∑
(s,a)∈ξi

log πθ(s, a). (4.1)

MLIRL seeks θA = argmaxθ L(D|θ)—the maximum likelihood solution. Here,

this function is optimized via gradient ascent (although I experimented with

several other optimization approaches). These pieces come together in Algo-

rithm 1. I provide more detail in Section 4.3.

43

It is open whether infinite-horizon discounted value iteration with the Boltz-

mann operator will converge. In our finite-horizon setting, it is well-behaved

and produces a well-defined answer, as illustrated later in this section and in

our experiments (Section 4.4).

To illustrate the functioning of the MLIRL algorithm, I use the example

shown in Figure 4.1. It depicts a 5× 5 grid with puddles (indicated by wavy

lines), a start state (S) and an absorbing goal state (G). The dashed line shows

the path taken by an expert from S to G. The algorithm is now faced with

the task of inferring the parameters of the expert’s reward function θE using

this trajectory. It appears that the expert is trying to reach the goal by tak-

ing the shortest path and at the same time avoid any intermediate puddles.

The assignment of reward weights to the three features—ground, puddle, and

goal—that makes this trajectory maximally likely is one that assigns the high-

est reward to the goal. (Otherwise, the expert would have preferred to travel

somewhere else in the grid.) The probability of the observed path is further en-

hanced by assigning lower reward weights to puddles than to ground. Thus,

although one explanation for the path is that it is one of a large number of

possible shortest paths to the goal, the trajectory’s probability is maximized by

assuming the expert intentionally missed the puddles. The MLIRL-computed

reward function is shown in Figure 4.2, which assigns high likelihood (0.1662)

to the single demonstration trajectory.

One of the challenges of IRL is that, given an expert policy, there are an

infinite number of reward functions for which that policy is optimal in the

given MDP. Like several other IRL approaches, MLIRL addresses this issue

by searching for a solution that not only explains why the observed behavior

44

is optimal, but also by explaining why the other possible behaviors are sub-

optimal. The advantage of probabilistic IRL methods, like MLIRL, over non-

probabilistic ones is that they can account for stochasticity in the data. They

are, therefore, able to learn optimal behavior from noisy data and suboptimal

demonstrations.

4.3 Implementation Details

In this section I describe the MLIRL algorithm in detail.

Given:

• MDP (States S, Actions A, Transitions T, discount factor γ)

• Trajectories, D = {τk}

• Features Φ = {φ1, . . . , φd}

• Number of iterations N

• Step size for iteration t, αt

• Boltzmann temperature β

Initialize: Choose an arbitrary set of weights, w0 = {w0
1, w0

2, . . .}, r0 = ∑
j

φjw0
j .

For each iteration t = 0 . . . n :

Q0(s, a) = rt(s) = ∑
j

φjwt
j.

V0(s) = rt(s) = ∑
j

φjwt
j .

d
dwj

V0(s) = φj(s)

For each iteration i = 1 . . . K :

45

∀s ∈ S, a ∈ A, Qi(s, a) = rt(s) + γ ∑
s′

T(s, a, s′)Vi−1(s′).

dQi(s,a)
dwj

= φj(s) + γ ∑
s′

T(s, a, s′)
dVi−1(s′)

dwj
.

Zi(s) = ∑
a

eβQi(s,a).

d
dwj

Zi(s) = β ∑
a

eβQi(s,a) d
dwj

Qi(s, a) = β ∑
a

eβQi(s,a)(φj(s)

+ γ ∑
s′

T(s, a, s′)
dVi−1(s′)

dwj
).

πi(s, a) = eβQi(s,a)

Zi(s)
.

d
dwj

πi(s, a) =
βZi(s)eβQi(s,a) d

dwj
Qi(s,a)−eβQi(s,a) d

dwj
Zi(s)

Z2
i (s)

Vi(s) = ∑
a

πi(s, a)Qi(s, a).

d
dwj

Vi(s) = ∑
a
(Qi(s, a)

d
dwj

πi(s, a) + πi(s, a)
d

dwj
Qi(s, a)).

Li = log Pr(D) = ∑
τ∈D

Pr(τ) ∑
(s,a)∈τ

log(πi(s, a)).

dLi
dwj

= ∑
τ∈D

Pr(τ) ∑
(s,a)∈τ

1
πi(s, a)

dπi(s, a)
dwj

.

dL
dwj

= dLi
dwj

.

End For each iteration i.

∀j, wt+1
j = wt

j + αt
dL
dwj

.

rt+1(s) = ∑
j

φj(s)wt+1
j .

wj = wt+1
j , ∀j.

End For each iteration t.

Output: w = {w1, w2, . . .}.

The MLIRL algorithm behaved well in the experimental settings I tested it

in (See Section 4.4 and Section 6.2). These settings are suitable for applying

46

the gradient, because the likelihood of the demonstrations as a function of the

parameters is differentiable.

4.4 Experiment

This experiment was designed to compare the performance of the MLIRL and

LPIRL algorithms with five existing IRL/AL approaches summarized in the

beginning of this chapter, and described in more detail in Chapter 3. I compare

these seven approaches to assess how well they perform apprenticeship learn-

ing in a grid world with a single expert (single intention). In Chapter 6, I show

that MLIRL is a natural fit in a clustering approach computing the reward func-

tions used to generate trajectories coming from multiple experts, and illustrate

its performance in a highway car domain, where a few existing approaches

have already been tested [Abbeel and Ng, 2004; Syed et al., 2008].

I used implementations of the MLIRL, LPIRL, Maximum Causal Entropy

IRL, LPAL, MWAL, Projection, and Policy Matching algorithms, and obtained

implementations from the original authors wherever possible.

The grid world environment used in this experiment is similar to one used

by Abbeel and Ng (2004) and Syed et al. (2008), with a grid of size of 16 ×

16. Movement of the agent is possible in the four compass directions with

each action having a 30% chance of causing a random transition. The grid is

further subdivided into non-overlapping square regions, each of size 4 × 4.

Using the same terminology as Abbeel and Ng (2004), I refer to the square

regions as “macrocells”. The partitioning of the grid results in a total of 16

macrocells. Every cell in the gridworld is characterized by a 16-dimensional

feature vector φ indicating, using a 0 or 1, which macrocell it belongs to. A

47

Figure 4.3: A plot of the average reward computed with increasing number of
sample trajectories.

random weight vector is chosen such that the true reward function just encodes

that some macrocells are more desirable than others. The optimal policy π∗ is

computed for the true reward function and the single expert trajectories are

acquired by sampling π∗. To maintain consistency across the algorithms, the

start state is drawn from a fixed distribution and the lengths of the trajectories

are truncated to 60 steps. Each algorithm is run for 1000 iterations, except for

Max Causal Entropy, which was run for 100 iterations.

Of particular interest is the ability of the seven IRL/AL algorithms to learn

from a small amount of data. Thus, I illustrate the performance of the algo-

rithms by varying the number of sample trajectories available for learning. Re-

sults are averaged over 5 repetitions and standard error bars are given, corre-

sponding to a 95% confidence interval for the mean. In this and the follow-

ing experiments, Boltzmann exploration polices (with temperature parameter

48

Figure 4.4: A plot of the average trajectory likelihood computed with increas-
ing number of sample trajectories.

β = 0.75) is used to transform the reward functions computed by the IRL algo-

rithms into policies when required.

Figure 4.3 shows the value of the policy computed by each algorithm as

more trajectories are available for training. With enough training data, MLIRL

and Policy matching outperform the other six. LPAL also performs well. The

reward function computed by Max Causal Entropy assigns the highest weight

to a non-goal feature, the one with the second highest weight in the expert’s

reward function, therefore its policy has a relatively high value.

Figure 4.4 shows that for the most part, in this dataset, the better an algo-

rithm does at assigning high probability to the observed trajectories, the more

likely it is to obtain higher rewards. Here, I do not show the logarithm of the

probability of the observed trajectories corresponding to Max Causal Entropy,

which is around −200. This number is low due to the fact that the feature with

the highest weight in the reward computed by Max Causal Entropy is different

49

than the feature with the highest weight in the expert’s reward function, and so

the actions that Max Causal Entropy wants to take most often are suboptimal.

4.5 Conclusions

In this chapter I have shown that maximum likelihood is a justified approach

for inverse reinforcement learning. I have described the MLIRL algorithm, a

maximum likelihood approach to IRL in the linear, single expert setting and

shown that it is a simple and intuitive gradient method computing an estimate

of the expert’s reward function that makes the expert demonstrations maxi-

mally likely. I used gradient ascent to iteratively change the parameter values

in the direction of the gradient of the likelihood of the expert’s demonstrations

under the current parameter estimate. In the experiment, MLIRL was compet-

itive with 6 existing IRL and AL algorithms in a grid domain.

The fact that MLIRL is a gradient method has the advantage that is it simple

and easy to implement. Each iteration is computationally inexpensive, and it

does not require a lot of storage. The disadvantages of gradient methods are

that they can be very slow , and that the number of iterations necessary might

vary with the size of the problem. For the experiment described above, I varied

the number of iterations, and chose the number that gave the best results.

50

Chapter 5

Inverse Reinforcement Learning with Modular
Reward Function Learners

In this chapter, I examine a modular approach to inverse reinforcement learn-

ing, with a flexible hypothesis class for the reward function. Existing IRL al-

gorithms (see Chapter 3) wed the learning of the mapping from features to

reward values (regression) to the inference of rewards values from behavior

(intention inference). By joining these two elements together, the IRL commu-

nity is effectively disconnected from advances in the broader machine-learning

field. Our objective in this chapter is to create an approach to intention infer-

ence that can be flexibly combined with arbitrary approaches to regression,

building more directly on the existing foundation in the supervised learning

community.

A gradient approach is used to hone in on the reward function that max-

imizes the likelihood of the observed expert behavior with regard to the pro-

vided hypothesis class. I compare the performance of the resulting modular

IRL algorithm with existing approaches, showing that the approach is a viable

alternative to existing IRL methods.

I start by describing the Modular IRL algorithm in Section 5.1, with imple-

mentation details in Section 5.2. In Section 5.3 I describe three experiments,

51

showing that the Modular IRL algorithm is able to learn the right reward func-

tion where other algorithms fail. I show an example of the algorithm overfit-

ting and underfitting when its hypothesis class has too many or too few pa-

rameters in Section 5.4, show a sample complexity analysis in Section 5.5, and

conclude in Section 5.6.

5.1 A Modular IRL Algorithm

Our modular IRL framework combines elements of supervised learning with

the standard inverse reinforcement learning setup. As in the IRL setup, we are

given an MDP\r: (S, A, T, γ), a labeling function L : S → X1, and information

about the expert’s optimal policy in the MDP in the form of a set of action se-

lections, {s → a}, also called trajectories or demonstrations. From supervised

learning, we add the concept of an input space X, a hypothesis space H con-

taining functions h : X → R, and a learning algorithm A that takes a training

set of (x, y) pairs, with x ∈ X, and y ∈ R, and produces a hypothesis h ∈ H

that fits the training data well.

We seek an algorithm that finds the h ∈ H that assigns the highest proba-

bility to the observed transitions. Algorithm 2 outlines the basic steps of our

algorithm as it generates a sequence of hypotheses to explain the expert data.

Line 2 initializes hypothesis h0 to be 0 in all states. In the linear IRL setting, this

step is equivalent to choosing a set of feature weights that is 0 for each feature.

Alternatively, an arbitrary initial h0 can be chosen, but in that case, the number

of iterations used by the modular IRL algorithm may need to be increased, to

1 The labeling function L is a mapping from states to feature values. L(s) ∈ Rd, where d
is the number of state features. At the same time, for any state s ∈ S, L(s) can be used as
input to a classifier or regression module. This notation helps us make the connection with the
supervised learning setup.

52

bring the relative values of the computed rewards close to the values of the

expert’s rewards (for example, if the expert’s reward has a high value in one

state and a low value in another, the initial arbitrary values may be reversed,

that is a low value for the first state and a high value for the second state, and

more iterations will be needed to adjust those values if starting with arbitrary

values than if starting with zero values).

During each iteration t, the algorithm uses the current hypothesis h to con-

struct a reward function rt (Line 4). It then computes an approximation of the

corresponding optimal policy π̂∗t by performing a fixed number of steps (K) of

value iteration (Line 5). In Line 6, it computes the logarithm of the probability

of the expert’s demonstrations under π∗t , then the derivative of the probabil-

ity (Line 7), and performs one step of gradient ascent (Line 8) to update the

reward function r. In Line 9, these rewards are used to label the training exam-

ples and update hypothesis h. The Regression module has inputs {(xi, yi)},

where xi ∈ X, X = {xi = L(si)| si∈S}, and yi ∈ R, yi = r(si).

Our method can be seen as a kind of projected gradient algorithm [Rock-

afellar, 1976], although it uses function approximation instead of projection to

map the parameters back into their constrained space.

In practice, the occupancy measures of a policy can be used to compute the

probability of the expert’s demonstrations. The occupancy measures can be

computed exactly when the optimal policy is known, or estimated from the

expert’s demonstrations. I show how these quantities can be computed below.

The occupancy measures of policy π are

xπ
s′,a′ = (ps′ + γΣs,axπ

s,a·T(s, a, s′))·π(s′, a′), ∀s′, a′ (5.1)

where ps is the initial state distribution.

More implementation details are given in the following section.

53

Algorithm 2 Modular IRL.
1: Input: MDP\r (States S, Actions A, Transitions T, Discount factor γ), La-

beling function L, Trajectories D = {τk}, Number of iterations N, Number
of forward RL steps K, Learning rate α, Hypothesis class H, Learning algo-
rithm Regression for H

2: Initialize: Choose h0 ∈ H, h0 = 0, ∀s ∈ S.
3: for t = 1 to N do
4: rt(s)← ht−1(L(s)), ∀s ∈ S.
5: Use K steps of VI to compute π̂∗t from rt.
6: Compute Gt ← log(Pr(D|π̂∗t)).
7: Compute dGt

drt(s)
, ∀s ∈ S.

8: r′t(s)← rt(s) + α dGt
drs

, ∀s ∈ S.
9: ht ←Regression(L(s)→ r′t(s)),∀s ∈ S.

10: end for
11: Output: hN.

5.2 Implementation Details

Given:

• MDP consisting of states S, actions A, transitions T, discount factor γ,

initial states distribution p,

• Labeling function L : S→ Rd, where d is the number of features,

• Trajectories, D = {τk}, with |D| being the number of trajectories in D,

• Number of iterations N,

• Number of forward RL steps K,

• Learning rate α,

• Hypothesis class H,

• Learning algorithm REGRESSION for H.

54

Find: Hypothesis h ∈ H such that P(D|h) is maximized.

Note: Assumption: trajectories are generated by starting with a state accord-

ing to distribution p, then following π∗, the optimal policy corresponding to

the expert’s reward r∗ (with a Boltzmann distribution for action selection), and

continue after each step with probability γ. This choice of termination rule

assures that this truncated expected sum of rewards matches the standard ex-

ponentially discounted infinite horizon value.

Initialize:

Choose reward function r0(s) = 0, ∀s ∈ S.

Compute x̂π∗
s,a = (#(s,a)∈D)

|D|

For each iteration t = 0 . . . N :

Q0(s, a) = rt(s).

V0(s) = rt(s).

d
drj

V0(s) = 1, if j = s, and 0 otherwise , ∀j = 1 . . . |S|.

For each iteration i = 1 . . . K :

∀s ∈ S, a ∈ A, Qi(s, a) = rt(s) + γ ∑
s′

T(s, a, s′)Vi−1(s′).

55

dQi(s,a)
drj

= {1 if s==j, 0 otherwise}+ γ ∑
s′

T(s, a, s′)
dVi−1(s′)

drj
.

Zi(s) = ∑
a

eβQi(s,a).

d
drj

Zi(s) = β ∑
a

eβQi(s,a) d
drj

Qi(s, a)

πi(s, a) = eβQi(s,a)

Zi(s)
.

d
drj

πi(s, a) =
βZi(s)eβQi(s,a) d

drj
Qi(s,a)−eβQi(s,a) d

drj
Zi(s)

Z2
i (s)

Vi(s) = ∑
a

πi(s, a)Qi(s, a).

d
drj

Vi(s) = ∑
a
(Qi(s, a)

d
drj

πi(s, a) + πi(s, a)
d

drj
Qi(s, a)).

Pi = Pr(D|πi) = ∏
τ∈D

Pr(τ|πi) = ∏
τ∈D

pτ
s0
· ∏
(s,a)∈τ

πi(s, a) · ∏
(s,a,s′)∈τ

T(s, a, s′).

56

Gi = log Pi = log(∏
τ∈D

Pr(τ|πi))

= log(∏
τ∈D

(pτ
s0 ∏

(s,a)∈τ

πi(s, a) · ∏
(s,a,s′)∈τ

T(s, a, s′)))

= ∑
τ∈D

(log(pτ
s0
) + ∑

(s,a)∈τ

log(πi(s, a)) + ∑
(s,a,s′)∈τ

log(T(s, a, s′)))

= ∑
τ∈D

(log(pτ
s0
) + ∑

(s,a,s′)∈τ

log(T(s, a, s′))) + ∑
τ∈D

∑
(s,a)∈τ

log(πi(s, a))

= ∑
τ∈D

(log(pτ
s0
) + ∑

(s,a,s′)∈τ

log(T(s, a, s′))) + ∑
(s,a)∈S×A

(#(s, a)∈D) · log(πi(s, a))

= ∑
τ∈D

(log(pτ
s0
) + ∑

(s,a,s′)∈τ

log(T(s, a, s′))) + |D| ·∑
s,a

x̂π∗
s,a · log(πi(s, a))

(5.2)

dGi

drj
= |D|∑

s,a
x̂π∗

s,a
d

drj
(log(πi(s, a)) = |D|∑

s,a
x̂π∗

s,a
dπi(s, a)

drj

1
πi(s, a)

. (5.3)

d
drj

G = d
drj

Gi.

End For each iteration i.

r′t(s) = rt−1(s) + αt
d

drj
G, ∀s ∈ S, j = 1 . . . |S| .

h =REGRESSION(L(s)→ r′t(s)), ∀s ∈ S.

57

rt+1(s) = h(f (s)), ∀s ∈ S.

End For each iteration t.

Output: h.

To show that the gradient is a reasonable tool in obtaining optimal rewards, I

make the following claim:

Theorem 1. The expected gradient starting from the optimal policy is zero.

Proof. When the optimal policy is known, one can compute the true occupancy

measures x∗s,a:

xπ∗
s′,a′ = (ps′ + γ ∑

s,a
xπ∗

s,a ·T(s, a, s′))·π∗(s′, a′), ∀s, a (5.4)

where π∗(s, a) = eβ·Q(s,a)

Σa′ e
β·Q(s,a′) , and Q is the Q-function computed using Value It-

eration in the MDP (S, A, T, γ, r∗), where r∗ is the expert’s reward.

Equation 5.3 becomes:

dGi

drj
= |D|∑

s,a

x∗s,a

πi(s, a)
dπi(s, a)

drj
= |D|∑

s
(∑

a

x∗s,a

πi(s, a)
dπi(s, a)

drj
). (5.5)

When πi = π∗,

x∗s,a

πi(s, a)
=

x∗s,a

π∗(s, a)
=

(ps + γ ∑
s′,a′

x∗s′,a′T(s
′, a′, s))π∗(s, a)

π∗(s, a)
= x∗s . (5.6)

Therefore,

∑
a

x∗s,a

πi(s, a)
dπi(s, a)

drj
= ∑

a
x∗s

dπ∗(s, a)
drj

= x∗s ∑
a

dπ∗(s, a)
drj

, when π = π∗.

58

Because for any fixed state s,π(s, a) is a probability distribution over a ∈ A, we

have that ∑
a

π(s, a) = 1, therefore, ∑
a

dπ(s, a)
drj

= 0.

So,

∑
a

x∗s,a

π∗(s, a)
dπ∗(s, a)

drj
= x∗s · 0 = 0. (5.7)

Equation 5.5 becomes:

dG
drj

= |D|∑
s,a

x∗s,a

π∗(s, a)
dπ∗(s, a)

drj

= |D|∑
s
(∑

a

x∗s,a

π∗(s, a)
dπ∗(s, a)

drj
) (5.8)

= |D|∑
s
(∑

a
x∗s

dπ∗(s, a)
drj

) (5.9)

= |D|∑
s

x∗s (∑
a

dπ∗(s, a)
drj

) (5.10)

= |D|∑
s

x∗s · 0 (5.11)

= |D|∑
s

0 = 0. (5.12)

The gradient at the optimal policy is 0, and is therefore a fixed point of the

update equation.

5.3 Experiments

I implemented Algorithm 2 in Java, with the Regression module using off-the-

shelf regression modules from the Weka Application Programming Interface

(API) [Hall et al., 2009]. I performed IRL experiments with linear and polyno-

mial regression, multilayer perceptrons, regression trees, and Gaussian process

regression in several illustrative environments.

59

Figure 5.1: The performance of MLIRL, modular+linear and modular+tree in
the Grid World with Macrocells.

5.3.1 Modular IRL is Competitive with Linear IRL

Our first experiment evaluates the performance of the modular IRL framework

in the setting closest to most existing work—using a linear hypothesis space. I

wish to demonstrate that the resulting algorithm is competitive with existing

algorithms that use a linear representation. I use the MLIRL algorithm of Chap-

ter 4 as the representative of this class of algorithms, as it performs on par with

the best existing algorithms (Section 4.4). I used the original “macrocell” grid-

world domain [Abbeel and Ng, 2004] as a testbed, with an 8× 8 grid divided

into 16 2× 2 non-overlapping macrocells. There is one state per grid location,

and each state is represented by a set of 16 features, one feature per macrocell.

The feature values for a state are 0 if the state’s location does not belong to the

corresponding macrocell, and 1 if it does. There are 4 available actions to the

agent, allowing it to move in the grid north, south, east and west. Each action

has a 70% probability of succeeding and a 30% probability of moving the agent

randomly according to one of the other actions.

60

The expert’s reward function is assumed to be a linear combination of the

features. To measure the performance of the algorithms, an arbitrary expert

reward function is built by assigning to each feature a weight that is 0 with

probability 90% and a small positive number (in the interval [0, 1]) with prob-

ability 10%. If there are fewer than two features with non-zero weights, the

reward function is discarded, and a new one is generated. After the expert’s

reward is generated, its optimal policy is computed, and this policy is used

to generate the expert’s demonstrations or trajectories, which are given as in-

put to the IRL algorithms. Each of the IRL algorithms computes its estimate

of the expert’s reward function and this estimate is used to compute the opti-

mal Q-function using value iteration. The estimate of the optimal policy is the

Boltzmann distribution using the optimal q-function with respect to the esti-

mated reward and a temperature parameter of β = 2. I generated trajectories

according to this distribution, and trajectories are terminated with probability

1− γ at each step. The performance of the IRL algorithms is evaluated using

the average of discounted reward for this set of trajectories. More specifically,

each trajectory receives a score equal to the sum of rewards for the states in

the trajectory. The overall performance of the algorithm is the average of the

scores of its trajectories.

Each IRL algorithm was run for 1000 iterations with K (the number of for-

ward RL steps, see 2) set to 15. The discount factor was 0.9, and the learning

rate was set to 0.1. To evaluate the algorithms, 10, 000 trajectories were used,

generated according to the Boltzmann distribution for action selection corre-

sponding to the reward function computed by each algorithm. The generated

trajectories were ended at each step with probability 1− γ, with an average

61

trajectory length of 10. The starting state for each trajectory was chosen uni-

formly among all the states. For the modular IRL with linear regression learner

(modular+linear), I used the Weka LinearRegression class. I also ran modular

IRL with a decision-tree learner (modular+tree), using the Weka REPTree class

as the regression module.

The IRL algorithms were trained using increasing numbers of training tra-

jectories (Figure 5.1), and measured their performance over 100 runs. All three

algorithms were able to learn the optimal behavior. Consistently with pre-

vious results, MLIRL approached optimal performance with increasing data.

The modular algorithm was also able to do equally well with either a linear re-

gression algorithm or a decision-tree regression algorithm to learn the reward

function.

Note that modular+linear runs about 3 times more slowly than MLIRL;

MLIRL takes 40 seconds while modular+linear takes 120 seconds on a Intel

Core with a 3.2 Gigahertz processor.

5.3.2 Modular IRL Can Solve Non-linear Problems

The advantage of a modular approach over classic IRL algorithms is that it

can be used in more general settings. In many cases, a linear IRL algorithm is

adequate even in the face of a non-linear reward function—the best linear fit

can produce the right behavior even though the rewards themselves are non-

linear. However, I devised a simple environment that forces any linear-based

IRL algorithm to produce suboptimal behavior. I find that IRL algorithms with

non-linear hypothesis classes are able to learn optimal behavior in this exam-

ple.

Our testing domain is the small MDP shown in Figure 5.2. This domain has

62

Figure 5.2: The “AND” MDP. Figure 5.3: The initial updates in re-
ward values suggested by the gra-
dient.

10 states. There are 4 actions available to the agent in State S0, and one action

available in every other state. Each action has a 90% probability of succeed-

ing and a 10% probability of taking the agent back to State S0. The states are

described by two features: red and striped, and the expert’s reward function is

r(s) = red(s) AND striped(s).

This MDP is designed to thwart a linear representation. Any linear repre-

sentation of reward will prefer the sub-optimal action (going right, left, or up

from State S0) to the optimal action (going down from State S0). To see why, let

x and y be the weights learned for the two features. In State S0, the algorithm

will assign returns γx+γ2y
1−γ2 to the right action, γy+γ2x

1−γ2 to the up action, 0 to the

left action, and γ3(x+y)
1−γ3 to the down (optimal) action

For the down action to have the highest return, the following inequalities

have to be true at the same time for γ = 0.9: y < −1.3011x, y < 0.09x, and

y > −x, which is impossible for x, y ∈ R. Therefore, any linear algorithm will

make sub-optimal choices in this domain.

63

Figure 5.4: The performance of MLIRL, modular+linear and modular+tree in
the “AND” MDP. The expert reward function is red AND striped.

To evaluate performance on this MDP, I again generated training trajec-

tories for MLIRL, modular+linear, and modular+tree. The number of training

trajectories was 1, 5, 25, 125, and 625, each trajectory generated using the Boltz-

mann distribution, and ending with probability 1−γ at each step, with starting

states chosen uniformly among all the states of the MDP. The algorithms com-

puted their estimates of the expert’s reward function, and each of the estimates

was used to generate 10, 000 trajectories (again using the Boltzmann distribu-

tion), which were scored the same way as mentioned in the previous section.

Then, the scores were averaged to compute the reward of each algorithm. I

show these results in Figure 5.4.

We see that MLIRL, which uses a linear representation of reward, is clearly

suboptimal here. MLIRL receives a small reward due to the fact that the gen-

erated trajectories start in arbitrary states including states that lead to the goal,

but it always chooses the wrong action in State 0, therefore its performance

is worse than that of the random algorithm, since random chooses the right

64

Figure 5.5: The tree computed by modular+tree, estimating the expert’s reward
function r(s) =red(s) AND striped(s).

action more often than MLIRL. The modular+linear algorithm is also unable

to achieve high reward on this problem. The hypothesis it computes assigns

a weight of 0 for the two features, therefore it chooses randomly where to go

from State 0, and thus obtains the same performance as an algorithm that al-

ways chooses its actions randomly.

In contrast, even with a small number of training trajectories, modular+tree

is able to learn a reward function that enables it to act optimally. It consistently

learns to assign the highest reward to states where both features red and striped

are true, thus drawing the agent to the goal state. I show the learned decision

tree in Figure 5.5.

The white states get a relatively high reward due to the fact that States 4

and 5 are chosen often on the way to the goal, therefore the gradient is trying

to increase their values (see Figure 5.3).

65

Figure 5.6: The performance of GPIRL, modular+GP and modular+NN in the
“AND” MDP. The expert reward function is r(s) =red(s) AND striped(s)

.

Although this example shows that the vast majority of existing IRL algorithms—

those based on linear representations—can be thwarted, there are existing al-

gorithms that are successful. I evaluated Gaussian Process IRL [Levine et al.,

2011] on this same task, comparing its performance to Gaussian Process Re-

gression Modular IRL (modular+GP) and Multilayer Perceptron Modular IRL

(modular+NN). I used Weka’s GaussianProcesses class as the regression mod-

ule for the modular+GP learner and the MultilayerPerceptron class for the

modular+NN learner.

Figure 5.6 shows that all three of these algorithms are successful at learning

the non-linear reward function for this task.

In Figure 5.3, I show the updates in values that the gradient suggests during

the first iteration. Trajectories from an expert trying to reach goal State 5 will

choose to go down from State 0. Since the gradient is relative to state rewards,

and not features, to increase the likelihood of the demonstrations, one has to

increase the value of State 3 the most. Since the gradient increases the value of

66

State 3 and State 4 by a much larder quantify than the decrease in the value of

State 7, the linear algorithm is led to believe that white states are desirable, and

therefore, red states should be avoided.

5.3.3 Modular IRL Can Solve Even Harder Problems

In the “AND” MDP from the previous section, GPIRL was able to produce op-

timal behavior in spite of the non-linear nature of the reward function. In this

section, consider a problem that thwarts GPIRL but that the modular approach

can still solve given an appropriate hypothesis class.

The experimental setup is a 4 × 3 grid (Figure 5.7) with an agent and a

movable block. There is one state for each combination of agent and block

location. The features associated with the states are the agent’s location in each

room (3 features, one for each of the rooms), and the block’s location in each

room (another 3 features, one for each of the rooms). For example, the feature

Agent-in-Red-Room is true for states in which the location of the agent is the red

room. The transitions are deterministic, and the dynamics are similar to those

used in the game of Sokoban [Junghanns and Schaeffer, 2001]—the agent can

push the block if the agent is next to the block and the block is in the direction

the agent is moving and there is no obstacle (for example, a wall) next to the

block in the direction that the agent is trying to move.

To measure the performance of the IRL algorithms, I first generate trajecto-

ries following the optimal policy under the expert’s reward. The expert reward

is r(s) =Agent-in-Red-Room(s) XOR Block-in-Blue-Room(s) (the state shown in

the figure satisfies this goal condition). The performance of each algorithm is

67

Figure 5.7: The “XOR” MDP (the blue squares are shaded).

measured over 100 runs. For each run, a number of expert trajectories is gen-

erated according to the corresponding training size (1,5,52,53, 54, and 55 tra-

jectories). These are given as input to modular+GP, modular+NN, and GPIRL.

Each algorithm outputs its estimate of the expert reward function. The optimal

policy is computed for each of these estimates (using the Boltzmann distribu-

tion) and is used to generate 10, 000 trajectories. Each trajectory is evaluated by

computing the sum of rewards over the trajectory. For each algorithm, its score

is computed by averaging the score for its 10, 000 trajectories. Each trajectory

ends with probability 1− γ at each step.

I show the performance of the three algorithms in Figure 5.8. Both the mod-

ular+NN and the modular+GP algorithms are able to learn the true reward

function and obtain optimal performance, the GPIRL algorithm is not, and it is

unable to lift itself up above random.

68

Figure 5.8: The performance of GPIRL, modular+GP, and modular+NN IRL
approaches in the “XOR” MDP. The expert reward function is Agent-in-Room-1
XOR Block-in-Room-3.

5.4 Issues of overfitting and underfitting

As mentioned in the beginning of this chapter, the modular IRL algorithm pro-

vides a framework that is flexible enough to plug in a variety of supervised

learning algorithms, depending on the problem we are trying to solve. The

framework leverages new research in regression that other frameworks cannot

incorporate. Integrating a supervised learning component raises questions like

how does one choose the right hypothesis class (or model) for the function that

is being learned? Models with too few parameters will output a function that

is too simplistic, and the prediction error on new data will be too large, an is-

sue called underfitting [Mitchell, 1997]. Models with too many parameters, will

fit the training data well, but their output will be an overcomplicated function

that will not generalize well on new data, or overfit.

Existing IRL algorithms use only one function class to fit the expert’s re-

ward function, and it is hard to tell if that function class overfits or underfits.

69

Indeed, in most existing experiments, the hypothesis class is chosen to be pre-

cisely correct. With the Modular IRL framework, the function class is flexible,

so finding the right fit becomes a challenge. Another issue in existing IRL work

is that the algorithms are tested in the same MDP used to generate the train-

ing data, and the ability of the algorithm to generalize is often overlooked. I

noticed this point when testing the modular IRL algorithm with different hy-

pothesis classes in the same MDP where the expert demonstrations were gen-

erated, and noticed no overfitting or underfitting. To highlight the importance

of this issue, I changed the Modular IRL algorithm used in this setup to allow

for training data consisting of pairs of MDPs and trajectories. The testing was

done in MDPs that were different than the training MDPs, but all the MDPs

shared the same feature set. The setup is described in detail below.

To illustrate overfitting and underfitting, I designed an experiment where

the expert’s reward function is a linear combination of a given set of features.

I used four models of increasing complexity to learn the target function, and

tested their performance with increasing training data.

3× 3 grids were used with three features: a goal feature that is 1 in one of the

states chosen arbitrarily and 0 in all the other states, and so-called distraction

features that are 1 in approximately half of the states (arbitrarily) and 0 in all

the other states. Algorithm 3 outlines the experiment.

Our feature set contains the 3 features described above. The learners used

polynomial regression with different degree polynomials and therefore differ-

ent number of parameters (features). I tested the following algorithms: the

constant learner uses a model with a constant reward in all the states, the lin-

ear learner finds a linear function of the feature set, the quadratic learner also

70

Algorithm 3 Overfitting/underfitting experiment setup.
1: Input: Size of grid g, Number of features nF, Number of training examples

nT, Number of testing trajectories tT, Boltzmann temperature β , Number
of iterations N, Number of forward RL steps K, Learning rate α, Learning
algorithm Regression for H

2: Initialize: Training set T ← ∅.
3: for t = 1 to nT do
4: Initialize feature set, F ← ∅
5: choose an arbitrary state as a goal state, and set feature f1 accordingly
6: choose nF− 1 arbitrary binary features, f2 . . . fnF
7: F ← f1 . . . fnF
8: Build grid Gt of size g× g using F
9: Build expert reward r(s) = f1(s)

10: Compute optimal policy for r, and generate 1 expert trajectory ξt.
11: Add (Gt, ξt) to training set T
12: end for
13: Classifier←ModularIRL(G,T,N,K,α,H)
14: sum← 0
15: for gt = 1 to 10 do
16: Initialize feature set, F ← ∅
17: choose an arbitrary state as a goal state, and set feature f1 accordingly
18: choose nF− 1 arbitrary binary features, f2 . . . fnF
19: F ← f1 . . . fnF
20: Build grid Gt of size g× g using F
21: r′(s)← Classifier(s), ∀s, states of Gt.
22: trajectories←generate(r′,nT)
23: sum← sum + reward(trajectories)
24: end for
25: Output: Average performance sum/10.

learns a linear function of the pair-wise products of the feature set (for exam-

ple, f1 · f1, f1 · f2, . . .), and the cubic learner uses as features the set of all possible

3-term products of the feature set (for example f1 · f1 · f1, f1 · f1 · f2, . . .). In Algo-

rithm 3, these models are called the ”learning algorithm”, and their hypotheses

are used as input to the Modular IRL Algorithm 5.

Algorithm 3 receives as input the size of the grids g, which in our setup is

3, the number of features nF is also 3, the number of training examples, which

I increased for each run: 1, 5, 10, 15 and 20, the number of testing trajectories

71

tT (10, 000) used to compute the performance of the learners, the inverse Boltz-

mann temperature (3), and a few other parameters used by the modular IRL

algorithm: the number of iterations (5, 000), the number of forward RL steps

(6), the learning rate for the gradient update (0.1), and the hypothesis class H,

which is the feature set used by each learner (for example, the linear feature set

for the linear learner, the quadratic feature set for the quadratic learner, etc).

I first build a training set T (lines 3–12) by generating nT arbitrary 3 × 3

grids (lines 4-8), and an optimal trajectory for each grid (lines 9–10). Each train-

ing example is a pair (G, ξ), where G is a grid, and ξ is an optimal trajectory

in G. The trajectory is generated (line 10) by computing the optimal policy for

the expert’s reward, r, then using the corresponding Boltzmann distribution

with temperature β as the policy in each state (Equation 2.1). Each grid G is

represented as an MDP (S, A, T, γ) as in Section 5.

To make the connection with the previous sections clearer, in the following,

I refer to the grid in each training instance as an MDP. I made a slight change

to the modular IRL algorithm so it can take as input multiple pairs (MDP, ξ),

a Markov decision problem representing a grid G, and an optimal trajectory in

the MDP, ξ, all with the same features and actions sets (line 13). I tested the

classifier on 10 arbitrary grids (lines 15–24) using the same feature set (lines

16–20). The testing data for the classifier are the states of each testing grid, the

classifier providing the reward for each of these states as its prediction (line

21). This reward is used to generate trajectories in the grid, again using the

Boltzmann distribution as the estimate of the optimal policy (line 22). The

performance of the algorithm in each testing grid is computed as the average

reward over these trajectories (line 23). The overall performance of the learner

is the average over its performance on all 10 testing grids (line 25).

72

Figure 5.9: The performance of different degree learners in 3× 3 grids

In Figure 5.9, I plot the reward obtained by the four learners with increasing

amounts of training data. As expected, the constant model is not able to learn

a usable reward function, because its best explanation for the observed trajec-

tories is that the reward is 0 in all the states; therefore, its trajectories miss the

goal state. The linear, quadratic, and cubic learners can all model the linear re-

ward function, and are therefore able to learn the target function with enough

data, but the simpler hypotheses learn the function with less data. More specif-

ically, the linear algorithm obtains optimal performance with just 5 training ex-

amples, whereas the quadratic and cubic algorithms need at least 25 training

examples to attain optimal performance.

73

5.5 Sample complexity analysis

Our sample complexity analysis closely follows that of Abbeel and Ng [2004].

The following theorem states our sample complexity claim.

Theorem 2. Let an MDP (S, A, T, γ), a labeling function L : S → Rd (where d

in the number of state features), and any ε > 0, δ > 0 be given. Let r∗ be the true

expert reward, πE, the corresponding optimal policy estimate using the Boltzmann

distribution for action selection, m, the number of demonstrations generated following

πE. If the MDP and trajectories are given as input to the modular IRL algorithm, let

h be the function output by the algorithm and π̃ the Boltzmann policy corresponding

to reward function r(s) = h(L(s)), ∀s ∈ S. To ensure that for any expert reward

r∗(s) we have

Vπ̃ ≥ VπE − ε,

it suffices that

m ≥ 9‖S‖‖A‖
2(1−γ)2·ε2 log δ

2‖S‖‖A‖ .

Proof. The definition of the occupancy measure for state s and action a is :

xπ
s,a = E[Σ∞

t=0γt · 1st=s∧at=a|π]

m samples or trajectories are used to estimate x, the vector of all occupancy

measures for the expert’s policy. We denote this estimate by x̂. Our goal is to

find the number of samples m for which the estimate x̂ is ε-close with proba-

bility 1− δ from x. Formally, we need to find m, such that

Pr(‖x− x̂‖ ≤ ε) ≥ 1− δ

.

74

From this definition, xπ
s,a ≥ 0; that is, in the worst case, policy π never visits

state action pair (s, a), and xπ
s,a ≤ 1 + γ + γ2 + γ3 + . . . = 1

1−γ , if at each step

policy π visits state action pair (s, a). Therefore, we can write xπ
s,a ∈ [0, 1

1−γ],

where γ is the discount factor used in the MDP.

Since each xπ
s,a is bounded, (1− γ)xπ

s,a is also bounded, and we can apply the

Hoeffding’s inequality for the m-sample estimate (1− γ)x̂π
s,a of (1− γ)xπ

s,a:

Pr((1− γ)|xπ
s,a − x̂π

s,a| > τ) ≤ 2 · exp(−2τ2m). (5.13)

Applying the union bound for the probabilities given by Equation 5.13 for all

the components of x, xπ
s,a, ∀(s, a) ∈ S× A, we get

Pr(∃(s, a) ∈ S× A.(1− γ)|xπ
s,a − x̂π

s,a| > τ) ≤ 2 · |S||A| · exp(−2τ2m). (5.14)

We subtract both sides of Equation 5.14 from 1, and obtain

1− Pr(∃(s, a) ∈ S× A.(1− γ)|xπ
s,a − x̂π

s,a| > τ) ≥ 1− 2 · |S||A| · exp(−2τ2m).

(5.15)

Pr(¬∃(s, a) ∈ S× A.(1− γ)|xπ
s,a − x̂π

s,a| > τ) ≥ 1− 2 · |S||A| · exp(−2τ2m).

(5.16)

If none of the components of x is greater than τ
1−γ , then the component with

the maximum value will also be less than τ
1−γ , therefore

Pr((1− γ)
∥∥xπ

s,a − x̂π
s,a
∥∥

∞ ≤ τ) ≥ 1− 2 · |S||A| · exp(−2τ2m). (5.17)

75

I substitute τ for (1−γ)ε

3
√
|S||A|

Pr((1−γ)
∥∥xπ

s,a − x̂π
s,a
∥∥

∞ ≤
(1− γ)ε

3
√
|S||A|

) ≥ 1− 2 · |S||A| · exp(−2(
(1− γ)ε

3
√
|S||A|

)2m)

(5.18)

or

Pr(
∥∥xπ

s,a − x̂π
s,a
∥∥

∞ ≤
ε

3
√
‖S‖‖A‖

) ≥ 1− 2 · ‖S‖‖A‖ · exp(−2(
(1− γ)ε

3
√
‖S‖‖A‖

)2m).

(5.19)

Above, I simplified the quantity under the probability on the left hand side by

(1− γ).

For m ≥ 9‖S‖‖A‖
2(1−γ)2·ε2 log δ

2‖S‖‖A‖ , we get

Pr(
∥∥xπ

s,a − x̂π
s,a
∥∥

∞ ≤
ε

3
√
‖S‖‖A‖

) ≥ 1− δ. (5.20)

Since ‖.‖2 ≤
√
|S||A|‖.‖∞ in |S||A|-dimensional spaces,

∥∥xπ
s,a − x̂π

s,a
∥∥

2 ≤
ε

3
(5.21)

with probability at least 1− δ.

So far, I have shown that if the number of samples m used to estimate the oc-

cupancy measures of the expert’s policy is greater or equal to 9‖S‖‖A‖
2(1−γ)2·ε2 log δ

2‖S‖‖A‖ ,

then the distance between the occupancy measures of the expert’s policy and

its estimate (using the m samples) is smaller than ε with probability at least

1− δ, where ε and δ are parameters chosen ahead of time. I still need to show

that if our estimate of the occupancy measures for the expert’s policy is ε-close

to the actual occupancy measures, then the values of the policies are also close

(this is an analogue of the simulation lemma [Kearns and Singh, 2002])

76

The definition of the value of a policy is:

Vπ = E[Σ∞
t=0γtR(st, at)|π].

The occupancy measure for state, action pair (s, a) under policy π is:

xπ
s,a = E[Σ∞

t=0γt1st=s,at=a|π].

Therefore, we have that Vπ = Σs,aR(s, a)xπ
s,a.

The distance between the values of two policies πE and π̃ is:∥∥VπE −Vπ̃
∥∥ =

∥∥Σs,aR(s, a)xπE
s,a − Σs,aR(s, a)xπ̃s,a

∥∥
≤ Σs,aR(s, a)

∥∥xπE
s,a − xπ̃s,a

∥∥ . (5.22)

If the occupancy measures for the expert’s policy πE and for policy π̃ are ε-

close, then the distance between the value of the expert’s policy πE and the

value of policy π̃ will be: ∥∥VπE −Vπ̃
∥∥ ≤ Σs,aR(s, a)ε. (5.23)

5.6 Conclusions

In this chapter, I have described a modular approach to IRL and showed it

working in concert with several off-the-shelf regression algorithms and per-

forming well across several small but challenging problems.

I have shown that maximum likelihood IRL is a justified approach in the

non-linear case and provided a framework for learning when the expert’s re-

ward is an unknown function from an arbitrary and known hypothesis class.

There are several shortcomings of our approach. First, I found that the

modular versions of the linear and Gaussian process IRL algorithms tended to

77

run much more slowly than their integrated counterparts. Of course, it is not

surprising that the modular IRL algorithms, with their external calls to Weka,

would be slower.

In addition, since they are based on local search, the modular algorithms

share shortcomings with other local search algorithms, including the possibil-

ity of being trapped in local maxima. I did not see local maxima cropping up in

the evaluations I performed, likely due to the small size of our test problems.

A problem I did encounter, however, is that regularizing function approxima-

tors can cause the overall algorithm to fail to make progress when faced with

small data sets (few states). The reason for this behavior is that the regression

algorithms require sufficient data to be convinced that the differences are not

due to chance and so can end up producing the same reward functions even

after the gradient is applied. And, of course, if the hypothesis class is a bad fit

for the data, any IRL algorithm will exhibit difficulties.

78

Chapter 6

Inverse Reinforcement Learning about Multiple
Intentions

In this chapter, I present a maximum likelihood IRL approach to the problem

of learning about multiple intentions and show that maximum likelihood is a

justified approach to multiple intentions IRL.

Most IRL approaches assume that the demonstrations come from a single

expert (Chapter 3). In many natural scenarios, however, the learner observes

the expert acting with different intents at different times. For example, a driver

might be trying to get to the store safely one day or rushing to work for a

meeting on another. If trajectories are labeled by the expert to identify their

underlying objectives, the problem can be decomposed into a set of separate

IRL problems. However, more often than not, the learner is left to infer the

expert’s intention for each trajectory.

In this chapter, I formalize the problem of inverse reinforcement learning

about multiple intentions and adopt a clustering approach in which observed

trajectories are grouped so their inferred reward functions are consistent with

observed behavior.

I start by describing the multiple intentions setting in Section 6.1, present an

EM approach to clustering demonstrations coming from multiple experts and

inferring the reward function corresponding to each cluster in Section 6.1.1,

79

and show how the clusters can be used for apprenticeship learning in Sec-

tion 6.1.2. Two experiments (Section 6.2) show that the clustering algorithm

is able to successfully learn the intentions used to generate the demonstrated

trajectories. I report results using seven IRL/AL approaches including MLIRL

(Chapter 4) and I conclude in Section 6.3.

6.1 Apprenticeship Learning about Multiple Intentions

The motivation for tackling the problem of inferring multiple intentions from

a set of unlabeled demonstrations comes from settings like surveillance, in

which observed actors are classified as “normal” or “threatening” depending

on their behavior. I contend that a parsimonious classifier results by adopt-

ing a generative model of behavior—assume actors select actions that reflect

their intentions and then categorize them based on their inferred intentions.

For example, the behavior of people in a train station might differ according

to their individual goals: some have the goal of traveling causing them to buy

tickets and then go to their trains, while others may be picking up passengers

causing them to wait in a visible area. I adopt the approach of using unsuper-

vised clustering to identify the space of common intentions from a collection

of examples, then mapping later examples to this set using Bayes rule.

Similar scenarios include decision making by automatic doors that infer

when people intend to go through them, a home climate control system that

sets temperature controls appropriately by reasoning about the home owner’s

likely destinations when driving. A common theme in these applications is

that unlabeled data—observations of experts with varying intentions—are much

easier to come by than trajectories labeled with their underlying goal. I define

the formal problem accordingly.

80

In the problem of inverse reinforcement learning about multiple intentions,

I assume there exists a finite set of K or fewer intentions each represented by

reward weights θk. The apprentice is provided with a set of N > K trajectories

D = {ξ1, ..., ξN}. Each intention is represented by at least one element in this

set and each trajectory is generated by an expert with one of the intentions.

An additional trajectory ξE is the test trajectory—the learner’s objective is to

produce behavior πA that obtains high reward with respect to θE, the reward

weights that generated ξE. Many possible clustering algorithms could be ap-

plied to attack this problem. I show that Expectation-Maximization (EM) is a

viable approach.

6.1.1 A Clustering Algorithm for Intentions

EM [Dempster et al., 1977] is a straightforward approach to computing a maxi-

mum likelihood model in a probabilistic setting in the face of missing data. The

missing data in this case are the cluster labels—the mapping from trajectories

to one of the intentions. Next, an EM algorithm is derived.

Define zij to be the probability that trajectory i belongs in cluster j. Let θj

be the estimate of the reward weights for cluster j, and ρj to be the estimate for

the prior probability of cluster j. Following the development in Bilmes (1997),

define Θ = (ρ1, . . . , ρK, θ1, . . . , θK) as the parameter vector we are searching for

and Θt as the parameter vector at iteration t. Let yi = j if trajectory i came from

following intention j and y = (y1, . . . , yN). Let zt
ij = Pr(ξi|θt

j), the probability,

according to the parameters at iteration t, that trajectory i was generated by

intention j.

81

The E step of EM simply computes

zt
ij = ∏

(s,a)∈ξi

πθt
j
(s, a)ρt

j/Z, (6.1)

where Z is the normalization factor.

To carry out the M step, define the EM Q function (distinct from the MDP

Q function):

Q(Θ, Θt)

= ∑
y

L(Θ|D, y))Pr(y|D, Θt)

= ∑
y

N

∑
i=1

log(ρyi Pr(ξi|θyi))
N

∏
i′=1

Pr(yi′ |ξi′ , Θt)

= ∑
y1

· · ·∑
yN

N

∑
i=1

K

∑
l=1

δl=yi log(ρl Pr(ξi|θl))

×
N

∏
i′=1

Pr(yi′ |ξi′ , Θt)

=
K

∑
l=1

N

∑
i=1

log(ρl Pr(ξi|θl))∑
y1

· · ·∑
yN

δl=yi

×
N

∏
i′=1

Pr(yi′ |ξi′ , Θt)

=
K

∑
l=1

N

∑
i=1

log(ρl Pr(ξi|θl))zt
il

=
K

∑
l=1

N

∑
i=1

log(ρl)zt
il +

K

∑
l=1

N

∑
i=1

log(Pr(ξi|θl))zt
il. (6.2)

In the M step, we need to pick Θ (ρl and θl) to maximize Equation 6.2. Since

they are not interdependent, we can optimize them separately. Thus, we can

set ρt+1
l = ∑i zt

il/N and θt+1
l = argmaxθ ∑N

i=1 zt
il log(Pr(ξi|θl)). The key obser-

vation is that this second quantity is precisely the IRL log likelihood, as seen

in Equation 4.1. That is, the M step demands that we find reward weights that

make the observed data as likely as possible, which is precisely what MLIRL

82

Algorithm 4 EM Trajectory Clustering
Input: Trajectories {ξ1, ..., ξN} (with varying intentions), number of clusters
K.
Initialize: ρ1, . . . , ρK, θ1, . . . , θK randomly.
repeat

E Step: Compute zij = ∏(s,a)∈ξi
πθj(s, a)ρj/Z, where Z is the normalization

factor.
M step: For all l, ρl = ∑i zil/N. Compute θl via MLIRL on D with weight
zij on trajectory ξi.

until target number of iterations completed.

seeks to do. As a result, EM for learning about multiple intentions alternates

between calculating probabilities via the E step (Equation 6.1) and performing

IRL on the current clusters. Algorithm 4 pulls these pieces together. This EM

approach is a fairly direct interpretation of the defined clustering problem. It

differs from much of the published work on learning from multiple experts,

however, which starts with the assumption that all the experts have the same

intentions (same reward function), but perhaps differ in their reliability (Argall

et al. 2009, Richardson and Domingos 2003).

6.1.2 Using Clusters for AL

The input of the EM method of the previous section is a set of trajectories D

and a number of clusters K. The output is a set of K clusters. Associated with

each cluster i are the reward weights θi, which induce a reward function rθi ,

and a cluster prior ρi. Next, let’s consider how to carry out AL on a new tra-

jectory ξE under the assumption that it comes from the same population as the

trajectories in D.

By Bayes rule, Pr(θi|ξE) = Pr(ξE|θi)Pr(θi)/ Pr(ξE). Here, Pr(θi) = ρi and

Pr(ξE|θi) is easily computable (z in Section 6.1.1). The quantity Pr(ξ) is a simple

normalization factor. Thus, the apprentice can derive a probability distribution

83

over reward functions given a trajectory [Ziebart et al., 2008]. How should it

behave? Let f π(s, a) be the (weighted) fraction of the time policy π spends

taking action a in state s. Then, with respect to reward function r, the value of

policy π can be written ∑s,a f π(s, a)r(s, a). We should choose the policy with

the highest expected reward:

argmax
π

∑
i

Pr(θi|ξE)∑
s,a

f π(s, a)rθi(s, a)

= argmax
π

∑
s,a

f π(s, a)∑
i

Pr(θi|ξE)rθi(s, a)

= argmax
π

∑
s,a

f π(s, a)r′(s, a),

where r′(s, a) = ∑i Pr(θi|ξE)rθi(s, a). That is, the optimal policy for the ap-

prentice is the one that maximizes the sum of the reward functions for the

possible intentions, weighted by their likelihoods. This problem can be solved

by computing the optimal policy of the MDP with this averaged reward func-

tion. Thus, to figure out how to act given an initial trajectory and collection of

example trajectories, our approach is to cluster the examples, use Bayes rule

to figure out the probability that the current trajectory belongs in each cluster,

create a merged reward function by combining the cluster reward functions

using the derived probabilities, and finally compute a policy for the merged

reward function to decide how to behave.

6.2 Experiments

These experiments are designed to compare the performance of the MLIRL

and LPIRL algorithms (Chapter 4) with four existing IRL/AL approaches de-

scribed in Chapter 3 and summarized in Chapter 4. In this section, I compare

these seven approaches in several ways to assess how well they function in

84

the setting of learning about multiple intentions. I first use a grid world ex-

ample with puddles to demonstrate the performance of the MLIRL algorithm

as part of the EM approach (Section 6.1) to cluster trajectories from multiple

intentions—each corresponding to a different reward function. In the second

experiment, I compare the performance of all the IRL/AL algorithms as part

of the EM clustering approach in the simulated Highway Car domain (Abbeel

and Ng 2004, Syed et al. 2008), an infinite-horizon domain with stochastic tran-

sitions.

6.2.1 Learning about Multiple Intentions—Grid World with

Puddles

The first experiment is designed to demonstrate the performance of MLIRL

as part of the EM approach (Section 6.1) to cluster trajectories from multiple

intentions—each corresponding to a different reward function. It tests the abil-

ity of the proposed EM approach, described in Section 6.1, to accurately cluster

trajectories associated with multiple intentions.

I make use of a 5× 5 discrete grid world shown in Figure 6.1 (Left). The

world contains starting states (shown in gray), a goal state, and blue wavy

patches in the middle indicating puddles. Furthermore, states are character-

ized by three features, one for the goal, one for the puddles, and another for

the remaining states. For added expressive power, the negations of the features

are also included in the set thereby doubling the number of features to six.

Imagine data comes from two experts with different intentions. Expert 1

goes to the goal avoiding the puddles at all times and Expert 2 goes to the goal

completely ignoring the puddles. Sample trajectories from these experts are

85

shown in Figure 6.1 (Left). Trajectory T1 was generated by Expert 1, T2 and T3,

by Expert 2. This experiment used a total of N = 12 sample trajectories of vary-

ing lengths, 5 from Expert 1, 7 from Expert 2. The EM algorithm was initiated

by setting the value of K, the number of clusters, to 5 to allow some flexibility

in clustering. After the clustering was run, I hand-identified the two experts.

Figure 6.1 (Right) shows the algorithm’s estimates that the three trajectories,

T1, T2 and T3, belong to Expert 1. The EM approach was able to successfully

cluster all of the 12 trajectories in the manner described above: the unambigu-

ous trajectories were accurately assigned to their clusters and the ambiguous

ones were “properly” assigned to multiple clusters. Since the value of K was

set to 5, EM produced 5 clusters. On analyzing these clusters, I found that the

algorithm produced 2 unique policies along with 3 copies. Thus, EM correctly

extracted the preferences of the experts using the input sample trajectories.

The probability values were computed at intermediate steps during the 10

iterations of the EM algorithm. After the 1st iteration, EM estimated that T1

belongs to Expert 1 with high probability and T2 belongs to Expert 1 with very

low probability (implying that it therefore belongs to Expert 2). It is interesting

to note here that EM estimated that trajectory T3 belongs to Expert 1 with prob-

ability 0.3. The uncertainty indicates that T3 could belong to either Expert 1 or

Expert 2.

6.2.2 Learning about Multiple Intentions—Highway Car Do-

main

In this second experiment, I instantiated the EM algorithm in an infinite hori-

zon domain with stochastic transitions, the simulated Highway Car domain (Abbeel

and Ng 2004, Syed et al. 2008). This domain consists of a three-lane highway

86

with an extra off-road lane on either side, a car driving at constant speed and

a set of oncoming cars. Figure 6.2 shows a snapshot of the simulated highway

car domain. The task is for the car to navigate through the busy highway us-

ing three actions: left, right and stay. The domain consists of three features:

speed, number of collisions, number of off-road visits. The experiment uses

these three features along with their negations, making a total of six features.

The transition dynamics are stochastic. Four different experts were used for

this experiment: Safe: Avoids collisions and avoids going off-road. Student:

Avoids collisions and does not mind going off-road. Demolition: Collides with

every car and avoids going off-road. Nasty: Collides with every car and does

not mind going off-road. Sample trajectories of 60 steps were collected from a

human subject emulating each of the four experts, with three trajectories per

expert, for a total of 12 trajectories. Using these sample trajectories, the EM

approach performed clustering (K = 5) for 5 iterations. The trajectory used for

evaluation ξE was generated by Student.

Table 6.1: Highway Car Experiment Results
Algorithm EVD Mean EVD Standard Deviation

EM+MWAL 1.78 0.01
EM+LPIRL 1.78 0

EM+Policy Gradient 1.71 0.02
EM+Projection 1.50 0.57
Single Expert 1.45 —

EM+LPAL 1.37 0.19
EM+Max Causal Ent 0.44 0.01

EM+MLIRL 0.32 0.05

The actions selected by the approach outlined in the previous section were

evaluated according to the expected value difference (or EVD), which is the

87

difference between the value of the Student policy and the values of the poli-

cies computed by EM with various IRL/AL algorithms. I show the mean and

standard deviation of the EVD for each algorithm over 10 runs in Table 6.1.

Although the MLIRL algorithm is best suited to carry out the M step in the

EM algorithm, any IRL can be used to approximately optimize the likelihood.

Indeed, even AL algorithms can be used in the EM framework where a proba-

bilistic policy takes the place of the reward weights as the hidden parameters.

Thus, I instantiated each of the 7 AL/IRL approaches within the EM algorithm.

I also included the ”single expert” algorithm, an approach that uses the data

from all the demonstrations to learn a single reward function. It is interest-

ing to note that maximum likelihood algorithms (MLIRL and MaxEnt) are the

most effective for this task. This time, MaxEnt was provided with longer trajec-

tories, leading to an improvement in its performance compared to Section 4.4

and Figure 4.3.

6.3 Conclusions

In this chapter, I have described a maximum likelihood approach to IRL in

the multiple intention setting, where demonstrations come from experts with

varying reward functions. I have shown that maximum likelihood is a justified

approach in the multiple intentions IRL case—the maximum likelihood algo-

rithm was able to successfully cluster demonstrations based on the intention

that generated them and compute the reward parameters for each cluster.

The advantages of an EM approach are that it is fast (with a generally low

cost per iteration), it is simple and easy implement and understand, requiring

small storage space, it is numerically stable, with each iteration guaranteed to

increase the likelihood of the data, it can be used to provide estimates for the

88

missing data, and, under certain conditions, it can provide global convergence.

The disadvantages are that it can be slow to converge, and in most settings it

can find a local maximum instead of the global one.

In the setting I tested it, the multiple intentions maximum likelihood algo-

rithm generally behaved well when the data was representative of each cluster.

89

Figure 6.1: Left: Grid world showing the start states (grey), goal state (G),
puddles and three sample trajectories. Right: Posterior probabilities of the
three trajectories belonging to Expert 1.

Figure 6.2: Simulated Highway Car.

90

Chapter 7

Applications for Maximum Likelihood Inverse
Reinforcement Learning

In this chapter I describe an application of maximum likelihood inverse re-

inforcement learning, or MLIRL (Chapter 4) in training an artificial agent to

follow verbal commands representing high-level tasks. The agent learns from

a set of training data which consists of pairs of a command given in natural

language and a trace of behavior corresponding to carrying out the command.

The system has three modules: the semantic parsing module (or SP) pro-

cesses the command using natural language processing (or NLP) tools, the in-

verse reinforcement learning module (or IRL) infers the intention behind the

command from the behavior, and the task abstraction tool (or TA) combines

information from SP and IRL to learn demonstrated tasks. In this chapter, I

describe a simplified model of the system with a unigram language model and

minimal abstraction.

7.1 Introduction

For robots to be useful to humans, they need to be able to carry out useful

tasks. One way this can happen is if the robots are pre-programmed for certain

jobs, like vacuuming, or carrying drugs to patients in a hospital. Some artificial

agents are able to recognize simple commands from a pre-programmed list, or

91

recognize certain words in a sentence and make informed decisions based on

those words. We would like to train an artificial agent to carry out tasks speci-

fied in natural language, by demonstrating the task to the agent, and having it

learn the meaning of words from the pairings of the command in natural lan-

guage and the task demonstration. A trained robot would be able to generalize

its knowledge to understand and carry out new commands.

These agents will ground the meaning of words from pairings of language

and behavior. From each demonstration, the IRL component can infer the

intention of the demonstrating agent as a function of a set of state features

(Chapter 4). The NLP component processes the verbal command, identifying

important words and modifiers. The TA component takes as input the inten-

tion computed by IRL and the sentence information from NLP, and learns to

map language to abstract tasks. When a new command is given to the agent,

it gets mapped to its corresponding intention. Any ”off-the-shelf” planning

algorithm can, then, be used to generate the corresponding optimal behavior.

7.2 Related Work

Our work relates to the broad class of methods that aim to learn to interpret

language from a situated context Branavan et al. [2009, 2010, 2011]; Clarke et al.

[2010]; Chen and Mooney [2011]; Vogel and Jurafsky [2010]; Grubb et al. [2011];

Goldwasser and Roth [2011]; Liang et al. [2011]; Hewlett et al. [2010]; Tellex

et al. [2011]; Atrzi and Zettlemoyer [2011]. Instead of using annotated train-

ing data consisting of sentences and their corresponding logical forms Kate

and Mooney [2006]; Wong and Mooney [2007]; Zettlemoyer and Collins [2005,

2009], most of these approaches leverage non-linguistic information from a

situated context as their primary source of supervision. These approaches

92

have been applied to various tasks such as: interpreting verbal commands in

the context of navigational instructions Vogel and Jurafsky [2010]; Chen and

Mooney [2011]; Grubb et al. [2011], robot manipulation Tellex et al. [2011], puz-

zle solving and software control Branavan et al. [2009, 2010]; semantic parsing

Clarke et al. [2010]; Liang et al. [2011]; Atrzi and Zettlemoyer [2011], learn-

ing game strategies from text Branavan et al. [2011], and inducing knowledge

about a domain based on text Goldwasser and Roth [2011]. The task closest

to ours is interpreting navigation instructions. However, our goal is to move

away from low-level instructions that correspond directly to actions in the en-

vironment Branavan et al. [2009]; Vogel and Jurafsky [2010] to high-level task

descriptions expressed using complex language.

Early work on grounded language learning used the bag-of-words approach

to represent the natural language input Branavan et al. [2009, 2010]; Vogel and

Jurafsky [2010]. More recent methods have relied on a richer representation

of linguistic data, such as syntactic dependency trees Branavan et al. [2011];

Goldwasser and Roth [2011] and semantic templates Grubb et al. [2011]; Tellex

et al. [2011] to address the complexity of the natural language input. Our ap-

proach uses a flexible framework that allows us to incorporate various degrees

of knowledge available at different stages in the learning process (e.g., from

dependency relations to a full-fledged semantic model of the domain learned

during training).

7.3 Background

The object-oriented Markov decision process formalism is used:

OOMDP(S, A, T, r, γ, C, X, P), where S is the set of states, A is the set of actions,

T are the transition probabilities, r is the reward function, γ is the discount

93

factor (see Chapter 2), C is a set of classes, X is a set of attributes describing

objects in each class, and P is a set of propositional functions, describing high-

level information about the states (the equivalent of the state-feature mapping

in the MDP in Chapter 2). Objects in the environment are typed, in that they

each belong to a class c ∈ C. For example, in the car driving domain, C could

be the set: {car, lane, road}, with different attributes in X. Each car would have

a color, make, and highest speed it can reach. Each lane would have a location

(right lane, left lane, etc). The attributes of the road could be the number of

lanes, how busy it is, and some coefficient encoding the driving conditions on

it, for example, how slippery it is. In each state, the propositional functions in

P would describe the current speed of the agent’s car, how much gas is left in

the tank, whether it is within safe driving distance of the other cars, etc.

To illustrate our approach, the Cleanup World domain is used. This do-

main is a grid world with one agent, a few rooms, each room with a differently

colored carpet, and doorways between the rooms. Some rooms contain large

toys. The transition dynamics are similar to those in the game of Sokoban:

the agent can move a toy by pushing it, unless there is another toy or a wall

on the other side of the toy in the direction the agent is trying to move. The

Cleanup World domain can be represented as an OO-MDP with four object

classes: agent, room, doorway, and toy, and a set of propositional functions that

specify whether a toy is a specific shape (such as isStar(toy)), the color of a

room (such as isGreen(room)), whether a toy is in a specific room (toyIn(toy,

room)), and whether an agent is in a specific room (agentIn(room)). These

functions belong to shape, color, toy position or agent position classes.

The training data for the overall system is a set of pairs of verbal instruc-

tions and behavior. For example, one of these pairs could be the instruction

94

Push the star to the green room with a demonstration of the task being accom-

plished in a specific environment containing various toys and rooms of differ-

ent colors. We assume the availability of a set of features for each state repre-

sented using the OO-MDP propositional functions described previously. These

features play an important role in defining the tasks to be learned. For exam-

ple, a robot being taught to move furniture around would have information

about whether or not it is currently carrying a piece of furniture, what piece

of furniture it needs to be moving, which room it is currently in, which room

contains each piece of furniture, etc.

The system builds on the MLIRL algorithm (Chapter 4). Given even a small

number of trajectories, MLIRL finds a weighting of the state features that (lo-

cally) maximizes the probability of these trajectories. Here, these state features

consist of one of the sets of propositional functions provided by the TA com-

ponent. For a given task and a set of sets of state features, MLIRL evaluates the

feature sets and returns to the TA component its assessment of the probabilities

of the various sets.

7.4 The System Model

In this section, I present a simplified version of our system with a unigram lan-

guage model, inverse reinforcement learning and minimal abstraction. This

version is called Model 0. The input to Model 0 is a set of verbal instruc-

tions paired with demonstrations of appropriate behavior. It uses an EM-

style algorithm Dempster et al. [1977] to estimate the probability distribution

of words conditioned on reward functions (the parameters). With this infor-

mation, when the system receives a new command, it can behave in a way that

maximizes its reward given the posterior probabilities of the possible reward

95

functions given the words.

Algorithm 5 shows our EM-style Model 0. For all possible reward–demonstration

pairs, the E-step of EM estimates zji = Pr(Rj|(Si, Ti)), the probability that re-

ward function Rj produced sentence-trajectory pair (Si, Ti), This estimate is

given by the equation below:

zji = Pr(Rj|(Si, Ti)) =
Pr(Rj)

Pr(Si, Ti)
Pr((Si, Ti)|Rj)

=
Pr(Rj)

Pr(Si, Ti)
Pr(Ti|Rj) ∏

wk∈Si

Pr(wk|Rj)

where Si is the ith sentence, Ti is the trajectory demonstrated for verbal com-

mand Si, and wk is an element in the set of all possible words (vocabulary). If

the reward functions Rj are known ahead of time, Pr(Ti|Rj) can be obtained

directly by solving the MDP and estimating the probability of trajectory Ti un-

der a Boltzmann policy with respect to Rj. If the Rjs are not known, EM can

estimate them by running IRL during the M-step Chapter 6.

The M-step in Algorithm 5 uses the current estimates of zji to further refine

the probabilities xkj = Pr(wk|Rj):

xkj = Pr(wk|Rj) =
1
X

Σwk∈Si Pr(Rj|Si) + ε

ΣiN(Si)zji + ε

where ε is a smoothing parameter, X is a normalizing factor and N(Si) is the

number of words in sentence Si.

While the final system is fully designed, it is still being implemented. As

such, we only have results for specific parts of the system. I illustrate a simpli-

fied version of our Model 0 in the Cleanup Domain below. To collect a corpus

of training data that would be linguistically interesting, we crowdsourced the

task of generating instructions for example trajectories using Amazon Mechan-

ical Turk. Example trajectories were presented to users as an animated image

96

Algorithm 5 EM-style Model 0
Input: Demonstrations {(S1, T1), ..., (SN, TN)}, number of reward functions
J, size of vocabulary K.
Initialize: x11, . . . , xJK, randomly.
repeat

E Step: Compute

zji =
Pr(Rj)

Pr(Si,Ti)
Pr(Ti|Rj)∏wk∈Si

xkj.

M step: Compute

xkj =
1
X

Σwk∈Si
Pr(Rj|Si)+ε

Σi N(Si)zji+ε
.

until target number of iterations completed.

of the agent interacting in the world, and users were asked to provide a corre-

sponding instruction. This process had predictably mixed results: about 1/3

of the resulting instructions were badly malformed or inappropriate. For the

results shown here, we have used “human-inspired” sentences, consisting of

a manually constructed subset of sentences we received from our Turk experi-

ment. These sentences were additionally simplified and clarified by retaining

only the last verb and by pruning irrelevant portions of the sentence. Instruc-

tions are typically of the form, “Move the green star to the red room”; the

trajectories in the training data consist of a sequence of states and actions that

could be performed by the agent to achieve this goal.

To illustrate our Model 0 performance, I selected as training data six sen-

tences for two tasks (three sentences for each task) from the dataset collected

using Amazon Mechanical Turk. The training data is shown in Figure 7.1.

The reward function for each task is obtained using MLIRL, computed the

Pr(Ti|Rj), then ran Algorithm 5 and obtained the parameters Pr(wk|Rj). Af-

ter this training process, the agent is presented with a new task. She is given

the instruction SN: Go to green room. and a starting state, somewhere in the

same grid. Using parameters Pr(wk|Rj), the agent can estimate:

97

Pr(SN|R1) = ∏wk∈SN
Pr(wk|R1) = 8.6× 10−7, Pr(SN|R2) = ∏wk∈SN

Pr(wk|R2) =

4.1 × 10−4, and choose the optimal policy corresponding to reward R2, thus

successfully carrying out the task. Note that R1 and R2 corresponded to the

two target tasks, but this mapping was determined by EM. To illustrate the

limitation of the unigram model, the trained agent is told to Go with the star to

green, (this sentence is labeled S′N). Using the learned parameters, the agent

computes the following estimates:

Pr(S′N|R1) = ∏wk∈S′N
Pr(wk|R1) = 8.25× 10−7, Pr(S′N|R2) = ∏wk∈S′N

Pr(wk|R2) =

2.10× 10−5. The agent wrongly chooses reward R2 and goes to the green room

instead of taking the star to the green room. The problem with the unigram

model in this case is that it gives too much weight to word frequencies (in this

case go) without taking into account what the words mean or how they are

used in the context of the sentence. Using the system described in Section 7.1,

we can address these problems and also move towards more complex scenar-

ios.

7.5 Conclusions

I have presented a three-component architecture for interpreting natural lan-

guage instructions, where the learner has access to natural language input and

demonstrations of appropriate behavior. I showed that with a very simple lan-

guage model and minimal task abstraction, MLIRL can be used to infer the

intentions behind demonstrated tasks. With a more complex language model

on the SP side, possibly using grammars and semantic parsing, and a task ab-

straction component that can map the language processed by SP to abstract

tasks, I believe the system can be successful in interacting with humans, and

carrying out commands on behalf of its users.

98

Figure 7.1: Training data for 2 tasks: Taking the star to the green room (left)
and Going to the green room (right).

Current work uses a generative model for behavior and tasks, and learns

the parameters of the model from the training data using weakly supervised

learning. Future work includes fully implementing the system to be able to

build abstract tasks from language information and feature relevance, and col-

lecting more data (using Amazon Mechanical Turk) to find out if there are dif-

ferent clusters for users in a cooking task.

99

Chapter 8

Conclusions and Future Work

My thesis statement is:

By casting inverse reinforcement learning as a maximum likelihood

problem, we can provide a unified and justified approach to linear

inverse reinforcement learning, non-linear inverse reinforcement learn-

ing, and multiple intentions inverse reinforcement learning leading

to effective and natural solutions.

The dissertation started by defining inverse reinforcement learning and the

related problem of apprenticeship learning in Chapter 2. I mentioned that the

reward-estimation problem (finding a reward that makes a given behavior op-

timal in a known environment) is ill-posed in that it admits an infinite number

of solutions, including degenerate ones. Therefore, every IRL algorithm needs

to address how a unique and meaningful reward function is chosen from this

infinite set. In this dissertation, rewards were chosen to maximize the likeli-

hood of the data given as a set of traces of optimal behavior.

In Chapter 3, I showed that no existing work has provided a unified ap-

proach to linear IRL, non-linear IRL, and multiple intentions IRL. To do so, I

surveyed existing algorithms in various settings, describing the approach to

solving IRL that each one took. I have shown that, even though approaches

that tackle the problem in the non-linear setting could be applied to the linear

100

setting as a special case, and approaches that tackle the problem in the multiple

intentions settings could be applied to the single intention setting as a special

case, none of them provided specialized algorithms for each setup, under a

unified approach, like the one I introduced in this work.

In Chapter 4, I described MLIRL, a maximum likelihood algorithm for the

single intention linear case. I showed that it is effective in recovering the ex-

pert’s reward, even with small amounts of training data, outperforming most

existing IRL and AL algorithms in a grid-world environment. MLIRL is an ef-

fective gradient ascent algorithm that iteratively tweaks the reward-function

parameters to maximize the probability of the expert demonstrations under

the current reward-function estimate. To account for noise in the observation

or for slight deviations from optimal behavior in the demonstrations, MLIRL

uses a Boltzmann distribution for action selection, with a parameter that can

be tweaked according to the amount of noise in the observations.

The non-linear case was addressed in Chapter 5. Instead of focusing on

computing a reward from a single hypothesis class (for example a decision tree,

a Gaussian process or a neural network), the modular IRL algorithm combines

a supervised-learning component with a flexible hypothesis class with maxi-

mum likelihood IRL. At each gradient ascent step, the rewards are projected

through the supervised-learning component so that the learned reward both

maximizes the probability of the expert demonstrations and fits in the hypoth-

esis class given as input. I showed that if we start with the optimal policy, the

gradient does not change the rewards, presented a sample complexity analysis

for the algorithm, and demonstrated how issues of overfitting and underfitting

apply to the modular algorithm.

101

The maximum likelihood algorithm for the multiple intentions case was

described in Chapter 6. The expectation maximization algorithm was applied

to cluster demonstrations according to their intention, and to infer the reward

parameters for each intention. I showed that MLIRL is a natural fit in the M-

step for computing the parameters of the reward functions corresponding to

each cluster. The algorithm is successful in teasing apart demonstrations cor-

responding to two experts in a grid-world domain and finding their reward-

function parameters.

In Chapter 7, I described an application of MLIRL to teaching an artificial

agent to follow verbal commands. I showed how MLIRL can be used in an

EM-like setup, together with a simple language model, to infer reward func-

tions corresponding to novel verbal commands. In this setting, the training

data consist of pairings of a verbal command and the corresponding optimal

behavior, so it is important that MLIRL can learn the reward from only one

trajectory.

Maximum likelihood proved to be an effective approach in all three IRL set-

tings it was applied to—the linear case, the non-linear case, and the multiple

intentions case. We computed the reward parameters that maximized the like-

lihood of the data (the expert’s demonstrations) via gradient ascent, a simple

and step-wise computationally inexpensive algorithm. Gradient ascent is in-

tuitive, and can lead to good results, even when the amount of data is limited,

which is what we observed in the settings we have tested. Gradient methods

can be very slow, and require a number of iterations that increases with the

size of the problem. Like other local search algorithms, they can get stuck in a

local maximum, instead of finding the global one.

102

The Expectation Maximization algorithm is also simple to implement and

fast, with a relatively low computational cost per iteration. Its disadvantages

are that it can be slow to converge, and can also find a local maximum instead

of the global one. In the multiple intentions settings in which it was tested,

the multiple intentions maximum likelihood algorithm generally behaved well

when the data was representative of each cluster.

8.1 Future Work

Future work can apply the maximum likelihood algorithms to larger datasets

and in the context of transfer, which will require making the implementations

more efficient and scalable.

In the linear setting, it is open whether infinite-horizon value iteration with

the Boltzmann operator will converge. In the finite horizon setting I used, it

was well-behaved and produced a meaningful answer, as illustrated by the

experiments.

In the non-linear case, it would be useful to understand the conditions un-

der which the composition of a function approximator and a gradient algo-

rithm can be guaranteed to find optimal or even locally optimal solutions.

In the multiple intentions setting, it would be interesting to pursue using

the learned intentions to predict the behavior and better interact with other

agents in multiagent environments.

103

Bibliography

Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aer-
obatics through apprenticeship learning. I. J. Robotic Res., 29(13):1608–1639,
2010. 24

Pieter Abbeel, Dmitri Dolgov, Andrew Y. Ng, and Sebastian Thrun. Appren-
ticeship learning for motion planning with application to parking lot navi-
gation. In IROS, pages 1083–1090. 2008. 24

Pieter Abbeel and Andrew Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the Twenty-First International Conference in
Machine Learning (ICML 2004). 2004. 17, 18

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse rein-
forcement learning. In Proceedings of the International Conference on Machine
Learning. 2004. 40, 46, 47, 59, 73, 84, 85, 2, 19, 21, 22, 23, 25, 27

Javier Almingol, Luis Montesano, and Manuel Lopes. Learning multiple be-
haviors from unlabeled demonstrations in a latent controller space. In ICML
(3), volume 28 of JMLR Proceedings, pages 136–144. JMLR.org, 2013. 21, 35,
36

R. Amit and M. Matari. Learning movement sequences from demonstration. In
Development and Learning, 2002. Proceedings. The 2nd International Conference
on. 2002. 13

Brenna Argall, Brett Browning, and Manuela M. Velos. Automatic weight
learning for multiple data sources when learning from demonstration. In
Proceedings of the International Conference on Robotics and Automation, pages
226–231. 2009. 82

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robot. Auton. Syst., 57(5):469–
483, May 2009. ISSN 0921-8890. 12

Yoav Atrzi and Luke Zettlemoyer. Bootstrapping semantic parsers for conver-
sations. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing. 2011. 91, 92

104

Monica Babeş-Vroman, Vukosi Marivate, Kaushik Subramanian, and Michael
Littman. Apprenticeship learning about multiple intentions. In Proceedings
of the Twenty Eighth International Conference on Machine Learning (ICML 2011).
2011. 21

Chris Baker, Joshua Tenenbaum, and Rebecca Saxe. Goal inference as inverse
planning. In Proceedings of the Thenty-Ninth Annual Conference of the Cognitive
Sceince Society, pages 779–784. 2007. 12

Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. Action understanding
as inverse planning. Cognition, 113(3):329–349, December 2009. 12

Jeff A. Bilmes. A gentle tutorial of the EM algorithm and its application to pa-
rameter estimation for gaussian mixture and hidden Markov models. Tech-
nical Report TR-97-021, International Computer Science Institute, 1997. 80

S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer, and Regina Barzilay. Re-
inforcement learning for mapping instructions to actions. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Processing of the AFNLP: Volume 1 -
Volume 1, ACL ’09. 2009. 91, 92, 8

S. R. K. Branavan, Luke S. Zettlemoyer, and Regina Barzilay. Reading between
the lines: Learning to map high-level instructions to commands. In Associa-
tion for Computational Linguistics (ACL 2010). 2010. 91, 92

S.R.K. Branavan, David Silver, and Regina Barzilay. Learning to win by read-
ing manuals in a monte-carlo framework. In Association for Computational
Linguistics (ACL 2011). 2011. 91, 92

Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefvre, and Olivier
Pietquin. User simulation in dialogue systems using inverse reinforcement
learning. In INTERSPEECH, pages 1025–1028. ISCA, 2011. 24

David L. Chen and Raymond J. Mooney. Learning to interpret natural lan-
guage navigation instructions from observations. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence (AAAI-2011)., pages 859–865. 2011.
91, 92

Jaedeug Choi and Kee-Eung Kim. Inverse reinforcement learning in partially
observable environments. In Proceedings of the 21st International Jont Confer-
ence on Artifical Intelligence, IJCAI’09, pages 1028–1033. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2009. 17

Jaedeug Choi and Kee-Eung Kim. Nonparametric bayesian inverse reinforce-
ment learning for multiple reward functions. In Peter L. Bartlett, Fernando

105

C. N. Pereira, Christopher J. C. Burges, Lon Bottou, and Kilian Q. Wein-
berger, editors, NIPS, pages 314–322. 2012. 29, 30, 35, 37

James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving se-
mantic parsing from the world’s response. In Proceedings of the Association for
Computational Linguistics (ACL 2010). 2010. 91, 92

Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Learning for control from
multiple demonstrations. 2008. 26

Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Apprenticeship learning
for helicopter control. Commun. ACM, 52(7):97–105, July 2009. ISSN 0001-
0782. doi: 10.1145/1538788.1538812. URL http://doi.acm.org/10.1145/

1538788.1538812. 26

Robert Cohn, Edmund H. Durfee, and Satinder P. Singh. Comparing action-
query strategies in semi-autonomous agents. In Wolfram Burgard and Dan
Roth, editors, AAAI. AAAI Press, 2011. 29, 31

Robert Cohn, Michael Maxim, Edmund H. Durfee, and Satinder P. Singh.
Selecting operator queries using expected myopic gain. In Jimmy Xiangji
Huang, Ali A. Ghorbani, Mohand-Said Hacid, and Takahira Yamaguchi, ed-
itors, IAT, pages 40–47. IEEE Computer Society Press, 2010. ISBN 978-0-7695-
4191-4. 31, 32

Valdinei Freire da Silva, Anna Helena Reali Costa, and Pedro U. Lima. Inverse
reinforcement learning with evaluation. In ICRA, pages 4246–4251. IEEE,
2006. 15, 18, 19, 21

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society,
39(1):1–38, 1977. 80, 94

Christos Dimitrakakis and Constantin Rothkopf. Bayesian multitask inverse
reinforcement learning. 2012. 29

Krishnamurthy Dvijotham and Emanuel Todorov. Inverse optimal control with
linearly-solvable mdps. In Johannes Frnkranz and Thorsten Joachims, edi-
tors, ICML, pages 335–342. Omnipress, 2010. 16

Dan Goldwasser and Dan Roth. Learning from natural instructions. In Proceed-
ings of the Twenty-Second International Joint Conference on Artificial Intelligence.
2011. 91, 92

Alexander Grubb, Felix Duvallet, Stephanie Tellex, Thomas Kollar, Nicholas
Roy, Anthony Stentz, and J. Andrew Bagnel. Imitation learning for natural
language direction following. In Proceedings of the ICML Workshop on New
Developments in Imitation Learning. 2011. 91, 92

http://dx.doi.org/10.1145/1538788.1538812
http://doi.acm.org/10.1145/1538788.1538812
http://doi.acm.org/10.1145/1538788.1538812

106

Jacques Hadamard. Sur les problèmes aux dérivés partielles et leur significa-
tion physique. Princeton University Bulletin, 13:49–52, 1902. 8

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009. 58

Derek Hewlett, Thomas J. Walsh, and Paul R. Cohen. Teaching and executing
verb phrases. In Proceedings of the First Joint IEEE International Conference on
Development and Learning and on Epigenetic Robotics (ICDL-Epirob-11). 2010. 91

George H. John. When the best move isn’t optimal: Q-learning with explo-
ration. In Proceedings of the Twelfth National Conference on Artificial Intelligence,
page 1464. Seattle, WA, 1994. 41

Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general
single-agent search methods using domain knowledge. Artificial Intelligence,
129:2001, 2001. 66

Rohit J. Kate and Raymond J. Mooney. Using string-kernels for learning se-
mantic parsers. In Proceedings of the 21st International Conference on Computa-
tional Linguistics and the 44th annual meeting of the Association for Computational
Linguistics, ACL-44. 2006. 91

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in
polynomial time. Machine Learning, 49(2-3):209–232, November 2002. ISSN
0885-6125. 75

Edouard Klein, Matthieu Geist, BILAL PIOT, and Olivier Pietquin. Inverse Re-
inforcement Learning through Structured Classification. In P Bartlett, F C N
Pereira, C J C Burges, L Bottou, and K Q Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1016–1024. 2012. URL
http://books.nips.cc/papers/files/nips25/NIPS2012_0491.pdf. 21

J. Zico Kolter, Pieter Abbeel, and Andrew Y. Ng. Hierarchical apprenticeship
learning with application to quadruped locomotion. In John C. Platt, Daphne
Koller, Yoram Singer, and Sam T. Roweis, editors, NIPS. Curran Associates,
Inc., 2007. 16, 18, 19, 21

Seong Jae Lee and Zoran Popović. Learning behavior styles with inverse re-
inforcement learning. ACM Trans. Graph., 29(4):122:1–122:7, July 2010. ISSN
0730-0301. doi: 10.1145/1778765.1778859. URL http://doi.acm.org/10.

1145/1778765.1778859. 24

Sergey Levine and Vladlen Koltun. Continuous inverse optimal control with
locally optimal examples. In ICML ’12: Proceedings of the 29th International
Conference on Machine Learning. 2012. 25, 34

http://books.nips.cc/papers/files/nips25/NIPS2012_0491.pdf
http://dx.doi.org/10.1145/1778765.1778859
http://doi.acm.org/10.1145/1778765.1778859
http://doi.acm.org/10.1145/1778765.1778859

107

Sergey Levine, Zoran Popovi, and Vladlen Koltun. Feature construction for
inverse reinforcement learning. In Advances in Neural Information Processing
Systems 23, pages 1342–1350. 2010. 21, 33, 37

Sergey Levine, Zoran Popovi, and Vladlen Koltun. Nonlinear inverse rein-
forcement learning with gaussian processes. In Advances in Neural Informa-
tion Processing Systems 24, pages 19–27. 2011. 65, 21, 34, 37

Percy Liang, Michael Jordan, and Dan Klein. Learning dependency-based com-
positional semantics. In Association for Computational Linguistics (ACL 2011).
2011. 91, 92

Manuel Lopes, Francisco S. Melo, and Luis Montesano. Active learning for
reward estimation in inverse reinforcement learning. In ECML/PKDD, pages
31–46. 2009. 21, 29, 30, 32, 37

R. Duncan Luce. Individual Choice Behavior: A theoretical analysis. Wi-
ley, 1959. URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/B0007DELQY. 41, 7

Francisco S. Melo and Manuel Lopes. Multi-class generalized binary search for
active inverse reinforcement learning. CoRR, abs/1301.5488, 2013. 32

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997. ISBN 0070428077, 9780070428072. 68

Adam B. Moore, Michael T. Todd, and Andrew R. A. Conway. A computational
model of moral judgment, 2009. Poster at Psychonomics Society Meeting. 8

Gergely Neu and Csaba Szepesvári. Apprenticeship learning using inverse
reinforcement learning and gradient methods. In Proceedings of the Conference
of Uncertainty in Artificial Intelligence. 2007. 40, 21, 22, 23, 27, 37

Gergely Neu and Csaba Szepesvári. Training parsers by inverse reinforcement
learning. Machine Learning, 77(2–3):303–337, 2009. 40, 22

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learn-
ing. In in Proc. 17th International Conf. on Machine Learning, pages 663–670.
Morgan Kaufmann, 2000. 17, 18, 20, 22

Martin L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, 1994. 40, 4, 6, 9

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learn-
ing. In Proceedings of IJCAI, pages 2586–2591. 2007. 21, 28, 29, 30, 31, 32, 35,
37, 38

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/B0007DELQY
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/B0007DELQY

108

Nathan Ratliff, David Bradley, J Andrew (Drew) Bagnell, and Joel Chestnutt.
Boosting Structured Prediction for Imitation Learning. In B Schölkopf, J C
Platt, and T Hofmann, editors, Advances in Neural Information Processing Sys-
tems 19. MIT Press, Cambridge, MA, 2007. URL http://www-clmc.usc.edu/

publications/B/bagnell-NIPS2006.pdf. 33, 37

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum
margin planning. In In Proceedings of the 23rd International Conference on Ma-
chine Learning (ICML06. 2006. 15, 18, 19, 21, 23

Matthew Richardson and Pedro Domingos. Learning with knowledge from
multiple experts. In Proceedings of the International Conference on Machine
Learning, pages 624–631. 2003. 82

R. Tyrrell Rockafellar. Monotone operators and the proximal point algorithm.
14(5):877–898, 1976. 52

Constantin A. Rothkopf and Christos Dimitrakakis. Preference elicitation and
inverse reinforcement learning. In ECML/PKDD (3), volume 6913 of Lecture
Notes in Computer Science, pages 34–48. Springer, 2011. 29

Stuart Russell. Learning agents for uncertain environments (extended ab-
stract). In Proceedings of the Eleventh Annual Conference on Computational Learn-
ing Theory, COLT’ 98, pages 101–103. ACM, New York, NY, USA, 1998. ISBN
1-58113-057-0. doi: 10.1145/279943.279964. URL http://doi.acm.org/10.

1145/279943.279964. 2, 19

Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to
fly. In In Proceedings of the Ninth International Conference on Machine Learning,
pages 385–393. Morgan Kaufmann, 1992. 13

Umar Syed, Michael Bowling, and Robert E. Schapire. Apprenticeship learning
using linear programming. In Proceedings of the International Conference on
Machine Learning, pages 1032–1039. 2008. 40, 46, 47, 84, 85, 21, 22, 23, 26, 27

Umar Syed and Robert E. Schapire. A game-theoretic approach to apprentice-
ship learning. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T.
Roweis, editors, NIPS. 2007. 21, 25, 27

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning
structured prediction models: A large margin approach. In Proceedings of the
22Nd International Conference on Machine Learning, ICML ’05, pages 896–903.
ACM, New York, NY, USA, 2005. ISBN 1-59593-180-5. 15

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter,
Ashis Gopal Banerjee, Seth Teller, and Nicholas Roy. Understanding

http://www-clmc.usc.edu/publications/B/bagnell-NIPS2006.pdf
http://www-clmc.usc.edu/publications/B/bagnell-NIPS2006.pdf
http://dx.doi.org/10.1145/279943.279964
http://doi.acm.org/10.1145/279943.279964
http://doi.acm.org/10.1145/279943.279964

109

natural language commands for robotic navigation and mobile manip-
ulation. In Proceedings of the Twenty-Fifth AAAI Conference on Articifical
Intelligence. 2011. 91, 92

Adam Vogel and Dan Jurafsky. Learning to follow navigational directions. In
Association for Computational Linguistics (ACL 2010). 2010. 91, 92

Kevin Waugh, Brian D. Ziebart, and Drew Bagnell. Computational rational-
ization: The inverse equilibrium problem. In ICML, pages 1169–1176. 2011.
18

Yuk Wah Wong and Raymond Mooney. Learning synchronous grammars for
semantic parsing with lambda calculus. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics (ACL-2007). 2007. 91

Luke Zettlemoyer and Michael Collins. Learning context-dependent mappings
from sentences to logical form. In Proceedings of the Association for Computa-
tional Linguistics (ACL’09). 2009. 91

Luke S. Zettlemoyer and Michael Collins. Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars. In
Proceedings of UAI-05. 2005. 91

Brian D. Ziebart, J. Andrew Bagnell, and Anind K. Dey. Modeling interaction
via the principle of maximum causal entropy. In Proceedings of the 27th Inter-
national Conference on Machine Learning. 2010. 40, 25, 27

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Max-
imum entropy inverse reinforcement learning. In Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence, pages 1433–1438. 2008. 40, 83, 21, 22,
23, 24, 25, 27

	Titlepage
	Abstract
	Preface
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background and Definitions
	The Reinforcement-Learning Setting
	IRL and AL
	Maximum Likelihood Estimation
	Conclusions

	Survey of Inverse Reinforcement Learning Algorithms
	Imitation Learning. Direct methods.
	Atypical Setups
	Indirect methods. Early Approaches
	IRL and AL Approaches. Different Objectives
	Bayesian Approaches
	Active Learning
	Learning Non-linear Reward Functions
	Learning about Multiple Intentions
	Conclusions

	Maximum Likelihood Inverse Reinforcement Learning
	Related Work
	Maximum Likelihood Inverse Reinforcement Learning (MLIRL)
	Implementation Details
	Experiment
	Conclusions

	Inverse Reinforcement Learning with Modular Reward Function Learners
	A Modular IRL Algorithm
	Implementation Details
	Experiments
	Modular IRL is Competitive with Linear IRL
	Modular IRL Can Solve Non-linear Problems
	Modular IRL Can Solve Even Harder Problems

	Issues of overfitting and underfitting
	Sample complexity analysis
	Conclusions

	Inverse Reinforcement Learning about Multiple Intentions
	Apprenticeship Learning about Multiple Intentions
	A Clustering Algorithm for Intentions
	Using Clusters for AL

	Experiments
	Learning about Multiple Intentions—Grid World with Puddles
	Learning about Multiple Intentions—Highway Car Domain

	Conclusions

	Applications for Maximum Likelihood Inverse Reinforcement Learning
	Introduction
	Related Work
	Background
	The System Model
	Conclusions

	Conclusions and Future Work
	Future Work

	Bibliography

