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Thesis Director: 

Dr. Jinchuan Xing 

  

Lysosomes are membrane-bound, acidic eukaryotic cellular organelles. As an 

enzyme container, they play important roles in the degradation of macromolecules. 

Monogenic mutations resulting in the loss of enzyme activities in the lysosome may 

lead to severe health problems, such as neurodegeneration and early death.  These 

conditions are categorized as Lysosomal Storage Diseases (LSDs). The diagnosis of 

LSDs is typically straightforward. However, in some cases the underlying genetic 

defects remain unknown. Here, we performed whole exome sequencing on 14 

suspected LSD cases, with the goal of finding the causal mutations. From the raw 

sequence data, we first identified DNA variants in each individual using three variant 

discovery pipelines: the Genome Analysis Toolkit, LifeScope™ Genomic Analysis 

Software and CLC Genomics Workbench. For each variant calling dataset, we then 

used the Variant Annotation Analysis Search Tool (VAAST) to prioritize disease-

causing mutations in 848 candidate LSD genes. As a probabilistic disease gene finder, 

VAAST integrates allele frequency, amino acid substitution severity and conservation 

information into a composite likelihood framework. Different from hard filtering 
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methods, VAAST preserves all the candidates by listing them according to their 

disease-causing potential. To obtain the detailed information of each mutation and add 

one more layer of mutational prediction, we performed SIFT analysis for each dataset. 

Afterward, tier study was conducted to accommodate the discrepancies between 

different pipelines and further reprioritize the candidate variants. Finally, based on the 

mutational validation and functional analysis, we identified nine mutations in six 

genes to be candidate LSDs causal variants in five individuals, including both known 

and novel mutations.  In summary, our project utilized various bioinformatics 

analyses tools to decode the extensive exome sequencing data and identify candidate 

variants for downstream functional studies. The study results provide valuable 

insights into the genetic basis of LSDs. 
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1. Introduction 

Lysosome Storage Diseases (LSDs) are inherited metabolic multisystemic 

disorders caused by specific mutations in genes encoding lysosomal enzymes, 

resulting in reduced lysosomal trafficking, substrate accumulation and cellular 

dysfunction [1]. Multiple tissues and organs can be affected, especially the ones with 

high turnover-rate lysosomal enzymatic substrate. Clinical manifestations include 

bone deformities, decline in vision and hearing, organomegaly (especially in spleen 

and liver), cardiac disease and other symptoms. The most severe manifestations 

involve the central nervous system, leading to mental retardation. Many LSDs share 

similar clinical presentation and progressively deteriorate with consequence of 

premature death [2].  

LSDs comprise a group of more than 50 known rare monogenic disorders [3]. 

Although individually LSDs are rare with incidences ranging from 1:57,000 (Gaucher 

disease) to 1:4,200,000 (Sialidosis) [4], collectively they have an overall prevalence 

about 1 in 5,000-7,700 live births [5], which is likely underestimated due to a 

significant number of undiagnosed or misdiagnosed cases. Many of these cases may 

represent atypical clinical LSDs manifestations with a mild or delayed onset due to 

partial loss-of-function mutations [6]. Two possible reasons may account for LSDs 

with unknown etiology: defects in lysosomal proteins that are not currently associated 

with human diseases or in unidentified lysosomal proteins [3]. 

 Biochemical and genetic analyses are the classic strategies to study the etiology 

of LSDs [7]. More recently, highly sensitive proteomic approaches have been applied 

and largely expanded the knowledge of lysosomal proteins [2]. However, these 

molecular methods are subjected to certain limitations and drawbacks such as low 

specificity, low throughput, contamination, complexity [3].  Moreover, currently most 
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clinical and molecular analyses focus on specific type of common LSD, such as 

Gaucher disease [8]. Therefore, these strategies are limited to exploring the genetic 

bases of unknown etiology LSDs in large scale.  

In this study, we adopted whole exome sequencing (WES) and multiple 

bioinformatics techniques to identify known and novel LSDs mutations from 14 

patients with potential LSDs. With the decrease of sequencing cost, WES has been 

widely used in human genetic studies since the first successful application of WES in 

identifying the genetic cause of Miller Syndrome [9]. As a cost-effective method for 

identifying disease-causal mutations, WES covers nearly all protein-coding regions 

but only requires ~5% of the sequencing throughput of a whole human genome.  

With enormous data from WES, bioinformatics tools are required to manipulate 

and analyze the data efficiently. To eliminate the bias of a certain tool, we adopted 

three different variant-calling pipelines to discover the mutations in all individuals.  

Then we used Variant Annotation Analysis Selection Tool (VAAST) [10] to prioritize 

all the mutations and narrow down our candidate gene list. As a probabilistic disease 

gene finder, VAAST integrates allele frequency, amino acid substitution severity and 

conservation information into a composite likelihood framework. Different from hard 

filtering disease finding tools [11], VAAST prioritizes genes according to their 

disease-causing potential, ranking candidate genes without excluding any candidates, 

largely decreasing the false negative rate. It has been successfully applied in finding 

the causal mutation of an X-linked disorder with very limited sample size [12]. 

VAAST has been shown to outperform other mutation effect prediction software, 

including SIFT, Polyphen-2, CASM and Mutation Taster [13]. It’s a very flexible and 

powerful tool with the properties that allows both dominant and recessive mode of 

inheritance, and allows the scoring of splice sites mutation and indels (insertions and 
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deletions), in addition to single-nucleotide coding variants. In this study we applied 

WES and multiple bioinformatics tools to study the genetic bases of LSDs with 

unknown etiology in an exome wide scale.  

 

2. Methods/Experimental Procedures 

2.1 Sample information 

Cell lines from 14 genetically unrelated patients were obtained by Dr. David Sleat 

(Center for Advanced Biotechnology and Medicine and Department of Biochemistry 

and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, 

Piscataway, New Jersey, United States of America) and Dr. Peter Lobel (Center for 

Advanced Biotechnology and Medicine and Department of Biochemistry and 

Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, 

Piscataway, New Jersey, United States of America)  from several sources (Table 2.1). 

Table 2.1. Source or phenotype information of 14 samples.

 

Sample	
  ID Clinical	
  Information
00RD098
01RD492
02RD297
82RD265
95RD414
99RD299
B1278 pycnodystosis-­‐like,	
  Cathepsin	
  K	
  positive

CABMHF11
thromocytopenia	
  and	
  splenomegaly,	
  
tests	
  for	
  Niemann-­‐Pick	
  negative

CABMHF210
untrastructure	
  suggestive	
  of	
  NPC	
  but	
  
tests	
  negative

CABMHF311
neuronal	
  storage,	
  sphingolipidoses	
  
excluded	
  by	
  enzyme	
  assays

CABMHF412 neurodegeneration
CABMHF52 severe	
  neurodegeneration
HL508Pa adult	
  neuronal	
  ceroid	
  lipofuscinosis
TC98307 metaphyseal	
  acroscyphodysplasia

LSD	
  cases	
  from	
  Netherlands	
  -­‐	
  no	
  
confirmed	
  diagnosis	
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The patients from whom these cell lines were derived displayed a spectrum of typical 

LSD phenotypes, such as different levels of neurodegeneration. Both 

histopathological and clinical evidence support that they were suffering LSD. 

However, none of the cases could be clinically diagnosed of being subjected to the 

defect of known LSD causal mutations – they were negative for known LSD tests. 

Research protocols involving human subjects were approved by the Institutional 

Review Board of the University of Medicine and Dentistry of New Jersey. 

 

2.2 Exome Sequencing and Reads Mapping  

The Whole Exome sequencing was performed on SOLiD platform in 50x25 bp 

format by Sequencing and Non-Coding RNA Program (The University of Texas MD 

Anderson Cancer Center, Houston, Texas). The exomes were enriched with Agilent 

SureSelect DNA - Human All Exon 50Mb Kit. Raw sequences were aligned to the 

human reference genome (version hg 19) using LifeScope ™ Genomic Analysis 

Software (http://www.lifetechnologies.com/lifescope), a tool kit developed by Life 

Technologies for SOLiD sequencing data.  

 

2.3 Variant Calling 

Variant discovery by the Genome Analysis Tool Kit (GATK) (version 2.8-1) 

genotyping pipeline roughly followed the GATK Best Practices recommendations 

[14]. Parameters are tuned based on the SOLiD data. Briefly, the raw sequence 

alignments (in binary alignment map (BAM) format) were reordered based on 

chromosomal coordinates with Picard tool (version 1.80) 

(http://picard.sourceforge.net), and then sorted with Samtools-0.1.19 [15] to adjust the 
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SOLiD sequencing format to be suitable for downstream GATK variant calling 

pipeline. Picard was used to index the BAM files, followed by a series of GATK 

alignment-processing procedures: indel realignment, remove duplication, base 

recalibration, which were all applied to individual BAM files. Then, a multi-

individual genotype calling were performed on all individuals with GATK 

UnifiedGenotyper to generate the raw genotype call in a single variant calling format 

(VCF) file. Single nucleotide variants (SNVs) and indels (insertions and deletions) 

located outside of the targeted exome regions were removed based on the target-

region definition provided by SureSelect DNA - Human All Exon 50Mb Kit. Lastly, 

the quality scores of both SNVs and indels were recalibrated with VariantRecalibrator 

according to the GATK recommended parameters. Detailed commands can be found 

in Appendix A. 

Variant discovery by LifeScope™ Genomic Analysis Software and CLC Genomic 

Workbench were performed under near-default parameters following the 

manufacture’s recommendation. CLC Variants with Depth of Coverage coverage (DP) 

less than 10 were removed. Variant calling with LifeScope™ Genomic Analysis 

Software was performed by Dr. Kumar Dibyendu (Waksman Genomics Core Facility, 

Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of 

America). Variant calling with CLC Genomic Workbench was performed by Dr. 

Robert Donnelly (Department of Pathology & Laboratory Medicine, New Jersey 

Medical School, Rutgers University, Newark, New Jersey, United States of America). 

 

2.4 Coverage Calculation 

Variant coverage was calculated by a GATK tool DepthofCoverage with the 

following command: java -Djava.io.tmpdir=/lab01/tmp -Xmx168g -jar /usr/local/gatk-
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2.5-2/GenomeAnalysisTK.jar --omitDepthOutputAtEachBase -R 

/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -T DepthOfCoverage -o 

Lyso_coverage_L.txt -I bamlist.list -pt readgroup -L 

padded_exome_region.interval_list > Lyso_L_ct15.log  

 

2.5 Variant Calling Pipeline Comparisons  

We calculated the number of all types of variants from the individual VCF files 

with a bash code. Since GATK called variants in population, it retained the no-call 

variants; while the LifeScope and CLC called variants individually, no-call variants 

have been excluded from the individual variant file. Therefore, we filtered the GATK 

no-call variants first, and then calculated the variants number of different categories in 

different individuals. The variant categories included transcript variant, gene variant, 

intron variant, exon variant and different types of coding variants: amino acid 

substitution, frameshift variant, splice donor variant, splice acceptor variant, stop 

gained, stop lost, stop retained and inframe variant. We calculated the average number 

of variants in each variant category of all the individuals for each variant calling 

pipeline, and compared the three different pipelines to determine the difference 

among them. Lastly we calculated the number of variants that shared by at most four 

individuals in each variant category of different pipelines and compared them. In our 

experience, four individuals are the optimal number to balance the sensitivity and 

specificity of the downstream analysis. 

 

2.6 VAAST Analysis 

The variant data were analyzed using the Variant Annotation, Analysis and Search 

Tool (VAAST) package. The VAAST analyses were conducted in parallel for the 
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three datasets derived from different variant-calling pipelines. The variants in VCF 

were converted to Genome Variation Format (GVF) with vaast_converter. Genotypes 

with quality score (GQ) less than 30 were converted to no call. The variants were 

annotated based on their functional impact using VAT (Variant Annotation Tool). 

Gender information was utilized for the individuals with known gender to increase the 

accuracy of analysis on the sex chromosomes. Then, annotated variants shared by less 

than four individuals were combined into one condensed file using VST (Variant 

Selection Tool). Lastly, the VAAST analysis was conducted within the candidate 

genetic regions under both a dominant and recessive mode of inheritance. Both splice 

sites and indels were analyzed. The analysis was performed under the assumption of 

allowing 1% prevalence of a variant in the background population, which means we 

estimated the expected allele frequency of a disease-causing allele within the 

background population to be 1% or lower. Variants in each gene were scored as a 

group. Candidate genes were ranked based on their disease-causing probability and 

the p-value for each gene was determined by a permutation test. VAAST analysis was 

performed within a list of candidate genetic regions defined by Dr. Peter Lobel and Dr. 

David Sleat.  Detailed commands can be found in Appendix B. The candidate gene 

list can be found in Supplementary Material I. 

 

2.7 SIFT Analysis 

The chromosome coordinates, reference allele, alternative allele, patient identifier 

information of all variants from VAAST output file were exported with a python code 

to make the SIFT input file. For example:  “18,21140411,T,C,CABMHF11” stands 

for a mutation at chromosome 18, position 21140411 that is T to C in individual 
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CABMHF11. SIFT analysis was conducted at http://sift.jcvi.org/ with 

SIFT/PROVEAN Human SNPs database.  

 

2.8 Tier Study 

A bash code was scripted to perform the Tier Study. By intersecting the three data 

sets, we obtained different tier groups. Tier One contained variants that shared by all 

three data sets, while Tier Two included variants that shared by two data sets. The 

variants that were unique to one data set were categorized to Tier Three. Variants 

were ranked according to the order of Tier One, Tier Two and Tier Three. Under each 

tier group, homozygous variants were ranked with higher priority than heterozygous 

variants. Results can be found in Supplementary Material II. 

 

2.9 Candidate Selection 

After reprioritizing all the variants by the tier study, we selected the initial 

candidate variants based on the following criteria: 

1. Homozygous mutation in each tier group, because homozygous variants have 

no compensation effect and are likely to contribute to the disease.  

2. Compound heterozygous, two heterozygous variants that are in the same gene 

in one individual but at different chromosomal positions may disrupt the gene 

function. 

3. Severe mutations based on VAAST and SIFT analysis results, i.e., the variant 

with higher VAAST score and the “Damaging” mutation marked by SIFT.   

4. All of the three standards mentioned above should follow the tier group 

priorities, where Tier One ranks higher than Tier Two, and Tier Two ranks 

higher than Tier Three. 
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After the initial selection, we narrowed down our candidate variants list to 10 

interesting mutations on 6 genes in 5 individuals as potential disease causing 

candidates. Detailed information for the 10 mutations is shown in Table 2.10. 

 

2.10 Sanger Sequencing Validation 

After candidate variant selection, we validated candidate variants by Sanger 

sequencing. Primers (Table 2.10) were designed with Primer3 [16] for PCR 

amplification of the genetic region covering the variants sites. The primers and PCR 

procedure used for the gender determination were as described previously [17]. 

Agarose gel electrophoresis was performed to validate the size of the amplicons. The 

gel with the right size of DNA fragment was cut and further purified with the 

Wizard® SV Gel and PCR Clean-Up System. Genes with unclear band was cloned 

with ZERO BLUNT TOPO kit (Life Technologies). In addition to single-mutation 

validation, larger fragments containing two close-by mutations were further amplified 

and cloned from NPC1 and SLC31A1. Individual clones of the large fragments were 

sequenced to determine if the two mutations are on the same or different 

chromosomal copies. Purified DNA products or molecular cloning products were 

sequenced by ABI 3730 DNA Sequencer (GenScript). Then genotypes were 

examined with BioEdit Sequence Alignment Editor.  

Table 2.10 Primers used for gene validation. Primers used for large fragment 

amplification were marked in red. 

	
  

Individual ID Gene 
Name Coordinate Reference 

Allele
Alternative 
Allele Amplicon Primer Forward Amplicon Primer Reverse Length

Large 
Fragment 
Length

00RD098 GLB1 chr3:33099692 G A TTCCCTGCTCTTTTTTCACTCACAG CTGCAATTTCTGTTACTACAAACACC 235
GLB1 chr3:33055721 A G TCCTTCCCTCCCCAGCTCACTGTG GAATTCAAACCCTTCCCATGAAGAC 328

82RD265 SLC31A1 chr9:116021039 C T CAAGCAGTCTGACCAAAAGGT CAGGCATGGAATTGTAGCGAA 385
SLC31A1 chr9:116022721 G T AAGTACCCATGAGTTGCCAGA CTTCAACAACTTCCCACTGCA 382

95RD414 GLA chrX:100653420 C A  ATGGCTGCTCCTTTATTCATGT AAACCAAGAAAGTGTGGTTGCT 397
SMPD1 chr11:6413175 C A TGACTGTGCAGACCCACTGT TGCTTTCATGGTTACCCACA 308

CABMHF11 NPC1 chr18:21136367 C T TGATTCCTGCCATGAGATAGCAACT CCCATCTAGCAGTAGTCAACATGTA 556
NPC1 chr18:21140411 T C GTATTTCAGTGGGCTTTTCTTTGAGT CATGGAGGTATTTGTTTCTTGTCCTA 457
SMPD1 chr11:6415259 G A CACCATCCCTGTTGTCCCATGGAGT CACAGGGCTCCGAGGGTGGGT 713

CABMHF311 AP3B1 chr5:77396837 T . TTGAGACAAATGTTGATTCAGGA TTGGGACATGTAAATGAAAGGT 325

4415

2096
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3. Results 

3.1 Analysis Overview 

A schematic describing the entire analysis procedure is shown in Figure 3.1. In 

brief, WES was performed on 14 individuals. Three variant calling pipelines -- GATK, 

CLC and Lifescope -- were implemented to identify variants on all the samples 

independently.  For each variant dataset, we applied VAAST analysis to prioritize 

candidate genes. Because of the disconcordance of variant calling methods, Tier 

Study was performed to rerank 

candidates. Then, SIFT analysis 

was conducted to add one more 

layer of genetic information and 

evaluation of candidate mutations. 

Lastly, disease causing candidate 

mutations were selected based on 

our criteria and in select cases, 

mutational or functional 

validations were or will be 

performed to test the genetic 

bases of disease.  

 

3.2 Exome Sequencing and Variant Discovery Pipelines 

We performed WES on 14 genetically unrelated patients suspected to have LSDs. 

We calculated the sequencing coverage. The average exome-wide mean coverage for 

all the samples was 22.63-fold (Table 3.2). 

Figure 3.1 Analysis procedure overview. 
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Table 3.2 Individual coverage calculation results. 

 

We implemented three different variant calling pipelines to genotype all the 

samples. They are Genomic Analysis Tool Kit (GATK) [14], LifeScope™ Genomic 

Analysis Software and CLC Genomic Workbench (For clarity, GATK, CLC and 

LifeScope, respectively, were used as abbreviations in the rest of this thesis).  

 

3.3 Variant Calling Pipeline Comparisons  

To compare the overall performance of the three variant calling pipelines, we 

counted the number of different variants in each individual.  

First, we compared different types of variants averaged per individual among the 

three calling pipelines (Table 3.3.1). Overall, GATK identified a similar mutation 

load distribution with LifeScope, but CLC found a much smaller number of variants. 

For functional variants, such as frameshift_variant, stop_retained variant, LifeScope 

called more than GATK and CLC.  

 

Individual	
  ID Total	
  Bases Mean	
  Coverage %_bases_above_15
00RD098 2037480379 22.5 51.6
01RD492 2179163363 24.07 51.1
02RD297 2023856437 22.35 46.8
82RD265 2421322830 26.74 53.6
95RD414 1584030773 17.5 40.2
99RD299 1941261757 21.44 50.8
B1278 1891984968 20.9 48.6
CABMHF11 1996568992 22.05 49.1
CABMHF210 1652477376 18.25 45.4
CABMHF311 1835520789 20.27 47.8
CABMHF412 2304968208 25.46 51
CABMHF52 1306118808 14.43 38.5
HL508Pa 2108762505 23.29 50.2
TC983077 2007500640 22.17 48.4
Average 1949358416 21.53 48.1
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Table 3.3.1 Overall mutation load comparison. The mutation loads of different 
variant categories was listed under each variant calling pipeline.  
 

  

Because we are mainly interested in rare disease-causing variants, next we 

compared the number of total variants after we filtered the variants according to allele 

frequency (at most 0.285 within the 14-individual dataset or present in no more than 

three individuals) (Table 3.3.2). After filtering, GATK called a similar number of 

mutations to CLC output. However, the number of variants from LifeScope is larger 

than the other two call sets. The functional variants showed the same pattern.  

Table 3.3.2 Total variants comparison after filtering by allele frequency. Only 
variants shared by no more than three individuals were presented. 
 

 

Variant	
  Type GATK LifeScope CLC
transcript_variant 171581 152331 45507
gene_variant 173767 157751 48699
intron_variant 115128 97290 17148
exon_variant 5804 6157 2873
amino_acid_substitution 41000 29550 14186
frameshift_variant 206 596 180
splice_donor_variant 139 196 31
splice_acceptor_variant 257 635 27
stop_gained 427 747 163
stop_lost 81 73 23
stop_retained 29 26 10
inframe_variant 189 303 79

Variant	
  Type GATK LifeScope CLC
transcript_variant 35267 99421 30478
gene_variant 35602 102764 32574
intron_variant 19541 64156 12530
exon_variant 1338 3973 1848
amino_acid_substitution 9857 19856 9027
frameshift_variant 59 461 121
splice_donor_variant 37 163 21
splice_acceptor_variant 32 535 16
stop_gained 137 576 119
stop_lost 9 44 10
stop_retained 8 19 9
inframe_variant 45 208 49
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From the comparison, we can see that the variant calling pattern is different 

among the pipelines. Therefore, we performed downstream analyses on all three data 

sets to reduce pipeline bias and make full use of all variant calling information. 

 

3.4 VAAST Analysis  

With the aim of finding the disease causing mutations, we conducted the VAAST 

analysis using variants from each variant calling pipeline. The VAAST package 

contains Variant Annotation Tool (VAT), Variant Selection Tool (VST) and Variant 

Analysis Tool (VAAST). All variants were annotated with VAT according to their 

features. 

 For those cases where we have the gender information, we specified the gender 

option for VAT analysis to increase the accuracy of analysis of variants on the sex 

chromosomes. After successfully annotating all of the variants, we ran the VST, a tool 

to select variants of interest based on our hypothesis. In this study, all the 14 patients 

are genetically unrelated thus it is unlikely that they shared the exact same disease-

causing mutation. Therefore, we only targeted variants that are shared by less than 4 

individuals, which means we condensed the entire variants that only appeared in at 

most 3 individuals into a single file in the process of VST.  By doing this we could 

largely exclude common false-positive variants generated during the variant calling 

process and thus narrow down our candidate variant pool.  

The last step is VAAST, prioritizing the candidate genes according to their 

disease-causing potential. A VAAST score is assigned to each variant and the higher 

the score, the more likely it is a disease-causing defect.  VAAST analysis was 

performed under both dominant and recessive modes of inheritance respectively, 

while allowing splice site and indel variant finding. To narrow down the candidate 
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genes, we obtained a list of 848 LSD candidate genes, including both known disease 

genes and suspected genes from Dr. Peter Lobel and Dr. David Sleat. Based on the 

candidate gene list, we conducted VAAST analysis only within the genomic regions 

containing candidate genes. This way, the efficiency and effectiveness of our analysis 

was enhanced. The different pipelines produced different numbers of candidates 

scored by the VAAST. CLC workbench gave 123 variants, GAKT gave 153 variants 

and LifeScope scored 338 variants. Removing genes that overlapped across the three 

methods, 408 candidate variants were identified.  

 

3.5 Comparison of VAAST Results among Different Variant-calling Data 

Sets 

We compared the variants scored by VAAST of the three data sets, and found that 

different pipelines resulted in different amounts of variants. They shared some 

variants, but all three sets had their own unique variants. Moreover, the variant 

genotype wasn’t always concordant among different pipelines. Some of them were 

consistent among all the pipelines; some of them are consistent within two pipelines, 

while others are unique to certain pipeline. Low concordance of multiple variant-

calling pipelines is known because of the difference of variant-calling algorithms and 

their parameterization efficacy. However, it has been shown that the concordance 

rates of novel and unique-to-pipeline SNVs increase for variants called by an 

increasing number of pipelines [18]. Therefore, to make full use of all three 

bioinformatics pipelines, we conducted a tier study, reprioritizing the variants based 

on their concordance.  
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By intersecting different pairs of datasets in terms of both variants and their 

genotypes, we obtained different tier group. As showed in Figure 3.5, the Tier One 

group contained the 53 variants that shared by all three datasets; the Tier Two group 

included variants shared by two 

groups – 1 variants shared by CLC 

and GATK, 14 variants shared by 

CLC and LifeScope, and 94 variants 

shared by LifeScope and GATK; 

lastly, the Tier Three group 

possessed variants unique to one 

dataset – 55 variants unique to CLC, 

177 variants unique to LifeScope 

and 5 variants unique to GATK.  

 

3.6 SIFT Analysis  

To acquire more information and evaluation of the variants, we conducted SIFT 

(Sorting Tolerant From Intolerant) analysis [19].  SIFT predicts the functional effect 

of amino acid substitution mutations based on the degree of conservation of amino 

acid residues in closely related sequence alignments.  It provides a user-friendly 

outcome for each mutation, scoring the mutation based on their predicted functional 

disruption severity and categorizing them into two groups: Damaging and Tolerated. 

Among 408 identified variants, SIFT predicted 167 damaging variants. Besides 

grouping variants, SIFT also provided the detailed information of codon change and 

residue substitution, which were used for data mining and mutation validation. SIFT 

results can be found in Supplementary Material II. 

Figure 3.5 Venn diagram of pipeline 
comparisons. The number of variants 
was listed in corresponding tier group.  
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3.7 Mutation Validation  

Sanger sequencing was performed to verify the 10 candidate variants, including 9 

SNPs and one 1bp deletion in corresponding patient genomes. For all 9 SNPs we 

validated the alternative allele: 3 mutations were validated as homozygous and the 

others were heterozygous. Two examples were shown in Figure 3.7.1. For the 1bp 

deletion, the Sanger sequencing result showed a homozygous 3bp deletion at the 

position (Figure 3.8.3).  

 

          

Figure 3.7.1 Sequence electropherogram examples of gene GLA and 
SMPD1. (a) Variant “X,100653420,C,A,95RD414” on gene GLA was 
heterozygous with signals of both reference allele (G) and alternative 
allele (T) on the forward strand. Sequencing of the reverse strand 
confirmed the heterozygous signals of both reference allele (C) and 
alternative allele (A). (b) Variant “11,6413175,C,A,95RD414” on the 
gene SMPD1 was homozygous with the predominant signal of mutant 
allele (A) on the forward strand and predominant signal of mutant allele 
(T) on the reverse strand. 
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 Because the candidate mutation in individual 95RD414 is on the X chromosome, 

the gender of this case was confirmed by PCR using the methods developed by 

Hedges et.al[17]. We used both AluSTXa and AluSTYa, the two monomorphic Alu 

insertions fixed on X chromosome and Y chromosome respectively, to validate the 

gender of the individual. The agarose gel electrophoresis result showed a single band 

for both of the two insertions on individual 95RD414 – 878bp for AluSTXa and 199bp 

for AluSTYa (Figure 3.7.2), which means that 95RD414 is a female. Therefore, this 

variant is heterozygous, consistent with the Sanger validation result (Figure 3.7.1(a)). 

 

 

 3.8 Candidate Disease-causing Mutations 

Based on our mutational validation results and data mining analysis, we found 9 

candidate disease-causing mutations on six genes in five individuals. To check if the 

validated mutations are known pathogenic variants, we searched the Human Gene 

Mutation Database (HGMD) [20] and identified 4 known pathogenic variants in four 

genes; 2 novel variants in known pathogenic genes; and, most excitingly, 3 novel 

mutations in two genes related with lysosomal function (Table 3.8.1). These are 

discussed on a case by case basis below. 

Figure 3.7.2 Mobile element-based 
gender determination. An agarose gel 
chromatograph from the analysis of 
individual 95RD414 using the genetic 
systems AluSTXa and AluSTYa is shown. 
Females are distinguished by the 
presence of one DNA fragments, while 
males have two amplicons. The size of 
DNA fragment is listed on the right side. 
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Table 3.8.1 Candidate Disease-causing Mutations. Ten mutations on six genes in five individuals were listed in the table. Both known and 
novel variants are included.  
 

 
 

 

VARIANT TYPE

INDIVIDUAL ID CABMHF311
GENE SYMBOL SMPD1 GLA SMPD1 AP3B1

GENE 
DESCRIPTION

Sphingomyelin 
phosphodiesterase 1 Galactosidase alpha Niemann-Pick 

disease, type C
Niemann-Pick 

disease, type C1
Sphingomyelin 

phosphodiesterase 1

Solute carrier family 
31 (copper 

transporters), 
member 1

Solute carrier family 
31 (copper 

transporters), 
member 2

Adaptor-related 
protein complex 3, 

beta 1 subunit

COORDINATE chr3:33099692 chr3:33055721 chr11:6413175 chrX:100653420 chr18:21140411 chr18:21136367 chr11:6415259 chr9:116021039 chr9:116022721 chr5:77396838
LENGTH 677 677 631 429 1278 1278 631 190 190 1045
STRAND -1 -1 1 -1 -1 -1 1 1 1 -1

CODON_CHANGE TTT [C/T]GC CAC GTG [T/C]GC AGC GAC [C/A]AA CTG CAG [G/T]AT AAG AAC A[A/G]T GCC GCT C[G/A]C CTG ATC [G/A]GC CTT GCC [C/T]GA GAG GCA [G/T]TG GTA GAA [AAG/-] AAA
POSITION 208 521 294 313 222 389 492 90 181 754

REFRENECE 
RESIDUE R C Q D N R G R V K

ALTERNATIVE 
RESIDUE C R K Y S H S * L .

TYPE Single AA Change Single AA Change Single AA Change Single AA Change Single AA Change Single AA Change Single AA Change Nonsense Single AA Change Deletion
SIFT PREDICTION Damaging Tolerated Damaging Damaging Tolerated Damaging Tolerated NA Damaging Deleterious

TIER GROUP Tier2 Tier2 homo Tier1 Tier3 Tier3 Tier3 homo Tier 2 Tier 2 Tier3 homo
SANGER 

VALIDATION Het Homo, C (ref is T) Homo, A (ref is C) Het Het Het Het Het Het Deletion

PHENOTYPE Niemann-Pick disease Fabry disease Niemann-Pick C 
disease 

Niemann Pick C type 
1 disease

Niemann Pick A 
disease

REFRENCE
Boustany (1993) 
Am J Hum Genet 

53, 881

Caciotti (2005) 
Hum Mutat 25, 285

Pavlu (1997) J Inherit 
Metab Dis 20, 615

Eng (1993) Am J 
Hum Genet 53, 

1186

Park (2003) Hum 
Mutat 22, 313

82RD265

NOVEL PATHOGENIC VARIANTSKNOWN (PATHOGENIC) VARIANTS

SLC31A1

Gangliosidosis GM1

NPC1
CABMHF11

NOVEL VARIANTS IN KNOWN 
PATHOGENIC GENES

00RD098 95RD414
GLB1

Galactosidase beta
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1) Case 00RD098	
  

We found two previously reported mutations on the protein coded by 

Galactosidase beta (GLB1): R208C [21] and C521R [22]. β-galactosidase (GLB1) 

enzyme deficiency will cause GM1 Gangliosidosis. R208C was validated as a 

heterozygous variant in case 00RD098. It is a known pathogenic allele according to 

Silva et al [23]. The other mutation, C521R, was validated as a homozygous variant 

with alternative allele G  (reference is A). C521R is reported to be  a netural 

polymorphism by Silva et al [23]. However, Caciotti et al [24] expressed GLB1 with 

C521R mutation and found a 75% decrease in the GLB1 activity. We performed a 

beta-galactosidase enzyme assay [25] for 00RD098, and no significant diminish was 

observed. In the 1000 Genome Project, the alternative allele G is the major allele, 

with the allele frequency of 76% in African and 100% in European 

(http://browser.1000genomes.org/Homo_sapiens/Variation/Population?db=core;r=3:3

3055721-33055721;source=dbSNP;v=rs4302331;vdb=variation;vf=3279748). 

Therefore, this mutant is most likely to be a neutral polymorphism rather than 

pathogenic in individual 00RD098.  

2) Case 95RD414 

Sphingomyelin phosphodiesterase (SMPD1) is a lysosomal acid 

sphingomyelinase that converts sphingomyelin to ceramide. Defects of SMPD1 gene 

result in Niemann-Pick A and B diseases. A known pathogenic mutant Q294K [26] on 

SMPD1 was found in this case. Note that this allele is sometimes referred to as 

Q292K [26]. Comparing the sequence containing the Q292K mutation from the 

original paper [27] with SMPD1 sequence 

(http://www.ncbi.nlm.nih.gov/protein/NP_000534.3), we can see that all of the 

reported alleles are -2 positions compared to the reference sequence. Homo-allelic 
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tranversion C to A has been confirmed to be disease-causing [26]. Our Sanger 

sequencing validation confirmed that the Q294k mutant in 95RD414 is homozygous 

(Figure 3.7.1(b)). Therefore, it’s likely that this established pathogenic mutation 

produced an LSD phenotype in case 95RD414. Moreover, X chromosomal mutation 

D313Y [28] in Galactosidase alpha (GLA) is validated to be heterozygous (Figure 

3.7.1(a)) and could also have functional impact. Downstream validation is required 

for further confirmation.  

3) Case CABMHF11 

We found a known pathogenic mutation N222S [29] on Niemann-Pick disease, 

type C3 gene (NPC1). NPC1 encodes a large protein that resides in the membrane of 

endosomes and lysosomes, mediating intracellular cholesterol trafficking. Low-

density lipoproteins (LDL) carry cholesterol in the plasma. Circulatory LDL is 

endocytosed by cells and is delivered to late endosomal/lysosomal compartments 

where the cholesterol esters are hydrolyzed. Normally, the free cholesterol is 

transported out of lysosomes. Impairment in lysosomal cholesterol transport arises 

when either of two proteins NPC1 or NPC2 are defective, causing NPC disease. . [30]. 

Besides the known pathogenic NPC1 variant, we also found a novel variant on NPC1 

in the same individual: R389H. There are known pathogenic mutations at the position 

389 with different amino acid substitutions: R389L [31] and R389C [29], which both 

lead to Niemann-Pick disease C (Table 3.8.2), making this mutation a very promising 

candidate. Moreover, since two mutations are present on NPC1 in case CABMHF11, 

the two mutations can collectively lead to disease through compound heterogeneity. 

We amplified and cloned a large NPC1 DNA fragment containing the two variant loci 

and sequenced different clones to determine if the two mutations are present on 

different chromosomes. The sequencing results supported our hypothesis (Figure 



	
   	
   	
  
	
   	
  

	
  
	
  

21	
  

3.8.1). The mutant alleles were separately located on the two copies of chromosome 

18: mutant allele C located on one copy of chromosome 18 at position 21136367, 

while mutant allele G located on another copy of chromosome 18 at position chr18: 

21140411. Protein coded by either chromatid would be disrupted by a mutant allele. 

Fillipin staining, which detects the accumulation of cholesterol in lysosomes, will be 

performed to validate the functional defects of NPC1 in our case. 

 

 

Figure 3.8.1 NPC1 Compound Heterogeneity Illustration. Two copies of gene 
NPC1 in individual CABMHF11 are shown as thick solid black track. Two mutants 
on different copies are marked in red line. Red arrows lead to the electropherogram of 
the mutant allele (circled by red box) and its flanking sequence, while black arrows 
lead to the mutant-corresponding reference allele (circled by black box) and its 
flanking sequence. The reference is shown in blue. Consensus coding sequence is 
shown in green. The sequence plot is generated by UCSC genome browser Custom 
Tracks tool. For gene annotation, exonic regions are shown as solid boxes, while non-
exonic regions are shown as thin lines, with arrows indicating the direction of the 
gene. 
 

Additionally, in individual CABMHF11, we also found another novel variant in 

the known pathogenic gene SMPD1: G492S.  Although no pathogenic mutations are 

known at position 492, there are known pathogenic mutations very close to it: T488A 

[32], and Y490N [33] (Table 3.8.2).  
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Table 3.8.2 Related variants of novel mutations on known pathogenic genes.  

 

 

4) Case 82RD265 

We found 2 novel mutations in a lysosome-functional related gene in individual 

82RD265: a nonsense mutation R90* and a non-synonymous V181L mutation in the 

Solute carrier family 31 (copper transporters), member 1 (SLC31A1). The V181L was 

predicted as damaging by SIFT. SLC31A1 was proposed to be a high-affinity copper 

uptake gene. It’s responsible for the uptake of at least 80% of copper and other metals 

into cells [34]. The dysfunction of copper metabolism can leads to human disease 

such as Wilson disease, which is characterized by dramatic build-up of intracellular 

hepatic copper with subsequent hepatic and neurologic abnormalities [35]. Although 

SLC31A1 has been reported to localize on the plasma membrane[36], another SLC31 

family member SLC31A2 has been shown to localize in lysosomes and facilitates 

cellular copper uptake [37]. All the indirect evidence implied that our mutations are 

HGMD	
  
Accession	
  
Number

CM096652 CM032619 CM093885 CM023159

Codon	
  Change CGC-­‐CTC tCGC-­‐TGC aACT-­‐GCT cTAC-­‐AAC
Amino	
  Acid	
   Arg-­‐Leu Arg-­‐Cys Thr-­‐Ala Tyr-­‐Asn
Codon	
  Number 389 389 488 490

Phenotype
Niemann-­‐Pick	
  
disease	
  C

Niemann-­‐Pick	
  
disease	
  C

Niemann-­‐Pick	
  
disease

Niemann-­‐Pick	
  
disease

Reference
Fancello	
  (2009)	
  
Neurogenetics	
  1

0,	
  229

Park	
  (2003)	
  Hum	
  
Mutat	
  22,	
  313

Rodríguez-­‐
Pascau	
  (2009)	
  

Hum	
  
Mutat	
  30,	
  1117

Simonaro	
  (2002)	
  
Am	
  J	
  Hum	
  

Genet	
  71,	
  1413

INDIVIDUAL	
  ID CABMHF11 CABMHF11
GENE	
  SYMBOL NPC1 SMPD1
GENE	
  DESCRIPTION Niemann-­‐Pick	
  disease,	
  type	
  C1 Sphingomyelin	
  phosphodiesterase	
  
POSITION 389 492
REFERENCE	
  RESIDUE R G
ALTERNATIVE	
  RESIDUE H S

HGMD	
  
INFORMATION

PHENOTYPE Niemann	
  Pick	
  C	
  type	
  1	
  disease Niemann	
  Pick	
  A	
  disease
TYPE Single	
  AA	
  Change Single	
  AA	
  Change

CHARACTERISTICS
There	
  was	
  mutation	
  at	
  the	
  same	
  
position,	
  but	
  not	
  the	
  same	
  amino	
  

acid	
  substitution	
  

There	
  was	
  mutation	
  around	
  this	
  
position
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highly likely to be involved in the LSDs. Moreover, similar to the case CABMHF11, 

two heterozygous mutations of SLC31A1 in the same individual implied the 

possibility of compound heterogeneity loss-of-function of these two mutations. We 

did similar large fragment amplification, cloning and sequencing analyses. Tests 

results supported our hypothesis (Figure 3.9.2). The two mutations are located on 

different chromosomes, so each copy of the SLC31A1 has a heterozygous mutation in 

individual 82RD265. Further functional analysis to test the cellular copper uptake 

would be necessary to demonstrate the effect of these mutations. 

 

 

Figure 3.8.2 SLC31A1 Compound Heterogeneity Illustration. Two copies of gene 
SLC31A1 in individual 82RD265 are shown as thick solid black track. Two mutants 
on different copies are marked in red line. Red arrows lead to the electropherogram of 
the mutant allele (circled by red box) and its flanking sequence, while black arrows 
lead to the mutant-corresponding reference allele (circled by black box) and its 
flanking sequence. The reference is shown in blue. Consensus coding sequence is 
shown in green. The sequence plot is generated by UCSC genome browser Custom 
Tracks tool. For gene annotation, exonic regions are shown as solid boxes, while non-
exonic regions are shown as thin lines, with arrows indicating the direction of the 
gene. 
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5) Case CABMHF311 

We found another novel mutation in individual CABMHF311. It is an inframe 

deletion of Lysine at the postion754 on Adaptor-related protein complex 3, beta 1 

subunit coded by gene AP3B1. This protein is involved in protein trafficking to 

lysosomes or specialized endosomal-lysosomal organelles such as pigment granules, 

melanosomes, and platelet dense granules [38]. Adaptor protein complex 3 is a 

ubiquitous cytoplasmic complex that shuttles cargo proteins from the trans-Golgi and 

a tubular-endosomal compartment to endosome-lysosome-related organelles. Lack of 

the beta-3A subunit of this complex causes Hermansky-Pudlak syndrome type 2 [39]. 

A study on a dog disease -- canine cyclic neutropenia -- indicated AP3B1 as their 

candidate genes because a lysine deletion led to a polyA track and in turn results in 

transcriptional slippage in AP3B1 mRNA at the equivalent position to the human 

lysine deletion [40]. In human the locus appears to be a mix of simple repeats. The 

repetitive feature makes the locus susceptible for replication slippage and creating 

small indels both during replication and transcription, resulting in frameshifting 

mutations. The AP3B1 sequence can be found in Appendix C. Based on our Sanger 

sequencing validation, we see a clean 3bp deletion signal (Figure 3.8.3), which 

implied that this mutation is homozygous. Therefore, we believe that deleterious 

mutations on these lysosomal related proteins are very likely to be disease causing. Of 

course, functional validation must be pursued for confirmation of our hypothesis. To 

test if the lysine deletion results in a polyA tract that in turn leads to transcriptional 

infidelity, we will conduct realtime-PCR to examine the AP3B1 RNA expression level 

of patient CABMHF311. Significant decrease or complete absence of expression level 

will confirm the loss of function of AP3B1 due to the deletion. 
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Figure 3.8.3 AP3B1 3bp inframe deletion signal. The sequence of gene AP3B1 in 
individual CABMHF311 is shown as thick solid black track. The reference is shown 
in blue. The consensus coding amino acid sequence is shown in green. 3bp inframe 
deletion signal is circled in red box. It is a lysine deletion according to the amino acid 
sequence. The sequence plot is generated by UCSC genome browser Custom Tracks 
tool. For gene annotation, exonic regions are shown as solid boxes, while non-exonic 
regions are shown as thin lines, with arrows indicating the direction of the gene. 
 

4. Discussion 

In this study, we applied multiple bioinformatics tools to decode and analyze the 

WES data from 14 suspected LSD patients. Nine mutations on 6 genes in 5 

individuals have been selected as candidate disease-causing mutations. Four of nine 

mutations are known pathogenic mutations. This result supports the accuracy of our 

selection and implies the applicability of using WES or whole genome sequencing 

(WGS) as a genetic diagnostic method for LSDs with the decrease of sequencing cost. 

We also found novel mutations in known pathogenic genes, expanding the category of 

known pathogenic mutations in LSDs and also improving the sensitivity of genetic 

testing. Most excitingly, we found novel mutations in genes that are related to 

lysosomal function but have not previously been associated with human disease, e.g., 

SLC31A1, which is important for downstream functional research to unveil the 

genetic bases of LSDs with unknown etiology. 

In addition to proteomics study, bioinformatics methods provide a novel approach 

for identifying the etiology of unknown LSD cases. We were able to search disease-

causing mutations on an exome-wide scale, and multiple variant calling pipelines 

were adopted to reduce technical bias. Pipeline discordance was expected because of 

their difference in post-alignment data processing (e.g., different quality filters), 
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analysis parameters, and the underlying models utilized by each algorithm [18]. 

However, by combing VAAST, SIFT and a Tier Study, we were able to prioritize 

candidate genes in an informative way and we identified nine disease causing 

mutations. 

However, we did not find disease-causing mutations for all 14 patients. Several 

reasons may account for the limitation. First of all, there are limitations in our 

hypotheses. Our study was based on two hypotheses: 1) fewer than 4 individuals 

would share the disease causing mutations because the cases are thought to be 

genetically unrelated; 2) the diseases were caused by monogenic variant. If the 

suspected LSDs were caused by a common mutation shared by more than 4 

individuals within our samples, the sensitivity of our selection would be largely 

decrease because they have been excluded by VAAST analysis at the VST step. If the 

diseases were caused by the epistatic effect of multiple less-deleterious mutations, the 

specificity of our selection would also decline. Second, each bioinformatics method 

has its own false-positive/false-negative rate, and the combined false-positive/false-

negative rate limits the power of our selection. For example, our tier study biases 

toward the variants that are shared by all three datasets, and biases against true 

variants exist in each pipeline-unique dataset. VAAST, a probability disease gene 

finder, may rank false positive mutations high if it is present in multiple individuals. 

Furthermore, SIFT prediction on mutation effect is not always 100% accurate. 

Although we tried to reduce the false negative rate by combing different methods 

together, we could still miss certain causal mutations in our data set. Third, we limited 

our search region within the 848 candidate genes. Any mutations outside of these 

regions will not be detected, such as mutations in genes encoding novel lysosomal 

proteins. Fourth, WES focuses on exonic variants in the genome.  If a disease is 
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caused by the disruption of a regulatory element, the disease-causing mutations will 

not be discovered in our datasets.  

For the future directions, we can expand the search scale to whole exome beyond 

the 848 candidate genes. If there are still undiagnosed patients, we can expand to 

whole genome, increasing the chances of finding disease-causing mutations in non-

coding regions. Modifying the VST parameters and increasing our candidate mutation 

pool can be applied to evaluate mutations shared by more than 4 individuals. 

Thorough downstream functional analysis of candidate novel mutations is important 

to unveil novel molecular mechanisms of LSDs. 

 

5. Conclusion 

By using three variant-calling pipelines and three prioritization bioinformatics 

tools, we identified both known pathological mutations and novel LSDs causing 

mutations on 6 genes in 5 individuals from the WES data of 14 patients suspected to 

have LSDs. With the application of high-throughput sequencing and bioinformatics 

analysis,  we were able to efficiently identify a list of candidate genes, offering 

feasible amounts of candidates for downstream biochemical and molecular research. 

We provide a new approach for genetic testing-based diagnosis of LSDs and shed 

light on the genetic bases of LSDs with unknown etiology. 
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Appendix A. GATK variant calling commands 

The GATK variant calling commands of individual 00RD098 are listed below as examples. 

Picard: ReorderSam 

java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/gkno/gkno_launcher/tools/picard/dist/ReorderSam.jar 

I=00RD098.bam O=00RD098.reordered.bam 

R=/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta 

VALIDATION_STRINGENCY=LENIENT 

Samtools: sort 

samtools sort -m 16G -@ 32 00RD098.reordered.bam 00RD098.reordered.sorted 

Picard: BuildBamIndex  

java -Djava.io.tmpdir=/lab01/tmp -jar 

/usr/local/gkno/gkno_launcher/tools/picard/dist/BuildBamIndex.jar I=00RD098.reordered.sorted.bam 

GATK:RealignerTargetCreator  

java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/gatk-2.5-2/GenomeAnalysisTK.jar -T 

RealignerTargetCreator -I 00RD098.reordered.sorted.bam -R 

/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -o 00RD098.reordered.sorted.intervals -nt 

32 

GATK: IndelRealigner  

java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/gatk-2.5-2/GenomeAnalysisTK.jar -T IndelRealigner -

I 00RD098.reordered.sorted.bam -R /lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -

compress 0 -targetIntervals 00RD098.reordered.sorted.intervals -o 

00RD098.reordered.sorted.realigned.bam 

Samtools: rmdup 

samtools rmdup 00RD098.reordered.sorted.realigned.bam 

00RD098.reordered.sorted.realigned.marked.bam 

Picard: BuildBamIndex  

java -Djava.io.tmpdir=/lab01/tmp -jar 

/usr/local/gkno/gkno_launcher/tools/picard/dist/BuildBamIndex.jar 

I=00RD098.reordered.sorted.realigned.marked.bam 

GATK: BaseRecalibrator  
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java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/gatk-2.5-2/GenomeAnalysisTK.jar -T 

BaseRecalibrator -I 00RD098.reordered.sorted.realigned.marked.bam -o 

00RD098.reordered.sorted.realigned.marked.bam.perged.grp -R 

/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -knownSites 

/lab01/DataSets/hg19/GATK_bundle/hg19/dbsnp_137.hg19.vcf -nct 32 --solid_nocall_strategy 

PURGE_READ 

GATK: PrintReads 

java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/gatk-2.5-2/GenomeAnalysisTK.jar -T PrintReads  -I 

00RD098.reordered.sorted.realigned.marked.bam -BQSR 

00RD098.reordered.sorted.realigned.marked.bam.nocallperged.grp -

o 00RD098.reordered.sorted.realigned.marked.nocallperged.recalibrated.bam -

R /lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -nct 32 

Once the alignment processing for each individual were finished, UnifiedGenotyper was applied to 

genotype all the variants and merge them into a single VCF file. 

GATK: UnifiedGenotyper  

java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/gatk-2.5-2/GenomeAnalysisTK.jar -T 

UnifiedGenotyper -I all_bam_files  -o Lyso_Nan.vcf -

R /lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta --

dbsnp /lab01/DataSets/hg19/GATK_bundle/hg19/dbsnp_137.hg19.vcf -glm BOTH  

GATK: SelectVariants  

/usr/local/jdk1.7.0_40/jre/bin/java -Djava.io.tmpdir=/lab01/tmp -Xmx64g -jar 

/usr/local/GenomeAnalysisTK-2.7-1/GenomeAnalysisTK.jar -T SelectVariants -R 

/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta --variant 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan.vcf -o 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_Exome_Selected.vcf 

–L 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/ExomeEnrichment/S02972011/S02972011_Pa

dded_noheader.bed 

GATK: VariantRecalibrator (SNP) 
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/usr/local/jdk1.7.0_40/jre/bin/java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/GenomeAnalysisTK-2.7-

1/GenomeAnalysisTK.jar -T VariantRecalibrator -R 

/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -input 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_Exome_Selected.vcf 

-mode SNP -an QD -an HaplotypeScore -an MQRankSum -an ReadPosRankSum -an FS -an MQ -an 

InbreedingCoeff -recalFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_SNP_target.recal -

tranchesFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_SNP_target.tranches 

-rscriptFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_SNP_target.plots.R 

-resource:hapmap,known=false,training=true,truth=true,prior=15.0 

/lab01/DataSets/hg19/GATK_bundle/hg19/hapmap_3.3.hg19.vcf -

resource:omni,known=false,training=true,truth=false,prior=12.0 

/lab01/DataSets/hg19/GATK_bundle/hg19/1000G_omni2.5.hg19.vcf -

resource:dbsnp,known=true,training=false,truth=false,prior=6.0 

/lab01/DataSets/hg19/GATK_bundle/hg19/dbsnp_137.hg19.vcf 

GATK: VariantRecalibrator (Indel) 

/usr/local/jdk1.7.0_40/jre/bin/java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/GenomeAnalysisTK-2.7-

1/GenomeAnalysisTK.jar -T VariantRecalibrator -R 

/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -input 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_Exome_Selected.vcf 

-mode INDEL -resource:mills,known=false,training=true,truth=true,prior=12.0 

/lab01/DataSets/hg19/GATK_bundle/hg19/Mills_and_1000G_gold_standard.indels.hg19.vcf -

resource:dbsnp,known=true,training=false,truth=false,prior=2.0 

/lab01/DataSets/hg19/GATK_bundle/hg19/dbsnp_137.hg19.vcf -an DP -an FS -an ReadPosRankSum -

an MQRankSum -numBad 1000 --maxGaussians 4 -recalFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_INDEL_target.recal 

-tranchesFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_INDEL_target.tranc
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hes -rscriptFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_INDEL_target.plots.

R; 

GATK: ApplyRecalibration (SNP) 

/usr/local/jdk1.7.0_40/jre/bin/java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/GenomeAnalysisTK-2.7-

1/GenomeAnalysisTK.jar -T ApplyRecalibration -R 

/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -input 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_Exome_Selected.vcf 

--ts_filter_level 99.0 -tranchesFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_SNP_target.tranches 

-recalFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_SNP_target.recal -

mode SNP -o 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_recalibrated.SNP.vc

f -nt 32; 

GATK: ApplyRecalibration (Indel) 

/usr/local/jdk1.7.0_40/jre/bin/java -Djava.io.tmpdir=/lab01/tmp -jar /usr/local/GenomeAnalysisTK-2.7-

1/GenomeAnalysisTK.jar -T ApplyRecalibration -R 

/lab01/DataSets/hg19/GATK_bundle/hg19/ucsc.hg19.fasta -input 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_recalibrated.SNP.vc

f --ts_filter_level 99.0 -tranchesFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_INDEL_target.tranc

hes -recalFile 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_INDEL_target.recal 

-mode INDEL -o 

/lab01/Projects/Nan_Projects/Lysosome/variant_calling/Nan_vcf_files/Lyso_Nan_recalibrated.SNP.IN

DEL.vcf -nt 32; 
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Appendix B. VAAST analysis commands 

Convert VCF to GVF: 

nice /usr/local/VAAST/bin/vaast_tools/vaast_converter --build hg19 -i 00RD098  00RD098.vcf 

Filter GVF: 

nice awk --posix '($1 !~ /^$/) && ($1 !="chrM") && ($3 !="gap") {print $0}' 00RD098.gvf > 

00RD098.filter.gvf 

Sort GVF: 

nice /usr/local/VAAST_hao_dev/bin/vaast_tools/vaast_sort_gff -i -n 00RD098.filter.gvf 

Variant Annotation: 

nice /usr/local/VAAST_hao_dev/bin/VAT -f 

/lab01/Projects/VAAST_Projects/Data/Features/genes_only_ref_GRCh37.p10_top_level_chr_only_uni

q.gff -a /lab01/Projects/VAAST_Projects/Data/Fasta/vaast_hsap_chrs_hg19.fa --sex male -v quiet 

/lab01/Projects/Nan_Projects/Lysosome/waksman_vcf_files/VAAST_Lysosome_Analysis/Filter_Sort/

CABMHF52.filter.sorted.gvf > 

/lab01/Projects/Nan_Projects/Lysosome/waksman_vcf_files/VAAST_Lysosome_Analysis/VAT.GVF_

GENDER/CABMHF52.vat.gvf 2>CABMHF52_log& 

Variant Selection: 

nice /usr/local/VAAST_hao_dev/bin/VST -o 'S("<4",0..13)' -b hg19 

/lab01/Projects/Nan_Projects/Lysosome/waksman_vcf_files/VAAST_Lysosome_Analysis/VAT.GVF/

*.gvf> no_g_w_gender.cdr 2>no_g_w_gender.log 

VAAST (Recessive) analysis: 

nice /usr/local/VAAST_hao_dev/bin/VAAST -iht r -lh y -splice_site --indel -d 1e4 -r 0.01 -m lrt -mp1 

8 --less_ram -fast_gp -regions 

/lab01/Projects/Nan_Projects/Lysosome/waksman_vcf_files/VAAST_Lysosome_Analysis/Second_Ro

und_VAAST/Target_region/Nov15th_uniq_gene_region.bed -l 

/lab01/Projects/VAAST_Projects/Data/Phastcons/phastcons-hg19-vertebrate.txt -o 

/lab01/Projects/Nan_Projects/Lysosome/waksman_vcf_files/VAAST_Lysosome_Analysis/Second_Ro

und_VAAST/Nov20th_VAAST/Results/vaast_no_g_w_gender/Lyso_sec_Nov20_nog_wgender_reces

sive 

/lab01/Projects/VAAST_Projects/Data/Features/genes_only_ref_GRCh37.p10_top_level_chr_only_uni
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q.gff /lab01/Projects/VAAST_Projects/Data/Background_CDR/1304-doped.cdr 

/lab01/Projects/Nan_Projects/Lysosome/waksman_vcf_files/VAAST_Lysosome_Analysis/Second_Ro

und_VAAST/Nov20th_VAAST/CDR_no_g_w_gender/no_g_w_gender.cdr 

2>Lyso_sec_Nov20_nog_wgender_recessive_log& 
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Appendix C. The sequence of gene AP3B1  

Lysine 803 was marked in yellow 

Amino Acid Sequence (1095aa): 

MSSNSFPYNEQSGGGEATELGQEATSTISPSGAFGLFSSDLKKNEDLKQMLESNKDSAKLDAMKRIVGMI 

AKGKNASELFPAVVKNVASKNIEIKKLVYVYLVRYAEEQQDLALLSISTFQRALKDPNQLIRASALRVLS 

SIRVPIIVPIMMLAIKEASADLSPYVRKNAAHAIQKLYSLDPEQKEMLIEVIEKLLKDKSTLVAGSVVMA 

FEEVCPDRIDLIHKNYRKLCNLLVDVEEWGQVVIIHMLTRYARTQFVSPWKEGDELEDNGKNFYESDDDQ 

KEKTDKKKKPYTMDPDHRLLIRNTKPLLQSRNAAVVMAVAQLYWHISPKSEAGIISKSLVRLLRSNREVQ 

YIVLQNIATMSIQRKGMFEPYLKSFYVRSTDPTMIKTLKLEILTNLANEANISTLLREFQTYVKSQDKQF 

AAATIQTIGRCATNILEVTDTCLNGLVCLLSNRDEIVVAESVVVIKKLLQMQPAQHGEIIKHMAKLLDSI 

TVPVARASILWLIGENCERVPKIAPDVLRKMAKSFTSEDDLVKLQILNLGAKLYLTNSKQTKLLTQYILN 

LGKYDQNYDIRDRTRFIRQLIVPNVKSGALSKYAKKIFLAQKPAPLLESPFKDRDHFQLGTLSHTLNIKA 

TGYLELSNWPEVAPDPSVRNVEVIELAKEWTPAGKAKQENSAKKFYSESEEEEDSSDSSSDSESESGSES 

GEQGESGEEGDSNEDSSEDSSSEQDSESGRESGLENKRTAKRNSKAKGKSDSEDGEKENEKSKTSDSSND 

ESSSIEDSSSDSESESEPESESESRRVTKEKEKKTKQDRTPLTKDVSLLDLDDFNPVSTPVALPTPALSP 

SLMADLEGLHLSTSSSVISVSTPAFVPTKTHVLLHRMSGKGLAAHYFFPRQPCIFGDKMVSIQITLNNTT 

DRKIENIHIGEKKLPIGMKMHVFNPIDSLEPEGSITVSMGIDFCDSTQTASFQLCTKDDCFNVNIQPPVG 

ELLLPVAMSEKDFKKEQGVLTGMNETSAVIIAAPQNFTPSVIFQKVVNVANVGAVPSGQDNIHRFAAKTV 

HSGSLMLVTVELKEGSTAQLIINTEKTVIGSVLLRELKPVLSQG 

Nucleotide Sequence (3285 nt):  

ATGTCCAGCAATAGTTTTCCTTACAATGAGCAGTCCGGAGGAGGGGAGGCGACGGAGCTGGGTCAGGAGG 

CGACCTCAACCATTTCCCCCTCGGGGGCCTTCGGCCTCTTTAGCAGCGATTTGAAGAAGAATGAAGATCT 

AAAGCAAATGTTAGAGAGCAACAAAGATTCTGCTAAACTGGATGCTATGAAGCGGATTGTTGGGATGATT 

GCAAAAGGGAAAAATGCATCTGAACTGTTTCCTGCTGTTGTGAAGAATGTGGCCAGTAAAAATATTGAGA 

TCAAGAAGTTGGTATATGTTTACCTGGTTCGATATGCTGAAGAACAGCAGGATCTTGCACTCCTGTCCAT 

AAGCACTTTTCAGCGAGCTCTGAAGGACCCAAACCAACTAATTCGTGCAAGCGCTTTGAGAGTTCTGTCA 

AGTATTAGAGTGCCAATTATTGTACCTATCATGATGCTTGCTATTAAGGAAGCTTCTGCTGACTTATCAC 

CATATGTTAGGAAGAATGCAGCCCATGCAATACAAAAATTATACAGCCTTGATCCAGAGCAGAAGGAAAT 

GTTAATTGAAGTAATTGAAAAACTTCTGAAAGATAAAAGCACATTGGTAGCTGGCAGTGTTGTGATGGCT 

TTTGAAGAAGTATGCCCGGACAGAATAGATCTGATTCATAAAAATTACCGCAAGCTATGTAACTTACTAG 

TGGATGTTGAAGAGTGGGGGCAGGTTGTCATAATCCACATGCTAACTCGATATGCTCGGACACAGTTTGT 

CAGCCCTTGGAAAGAGGGTGATGAATTAGAAGACAATGGAAAGAATTTCTACGAATCTGATGATGATCAG 

AAGGAAAAGACTGACAAAAAGAAGAAGCCGTATACTATGGATCCAGATCATAGACTCTTAATTAGAAATA 
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CAAAGCCTTTGCTTCAGAGCAGGAATGCTGCGGTGGTTATGGCAGTTGCTCAGCTGTATTGGCACATATC 

ACCAAAATCTGAAGCTGGCATAATTTCTAAATCACTAGTGCGTTTACTTCGTAGCAATAGGGAGGTGCAG 

TATATTGTCCTACAAAATATAGCAACTATGTCAATTCAAAGAAAGGGGATGTTTGAACCTTATCTGAAGA 

GTTTCTATGTTAGGTCAACTGATCCAACTATGATCAAGACACTGAAGCTTGAAATTTTGACAAACTTGGC 

AAATGAAGCCAACATATCAACTCTTCTTCGAGAATTTCAGACCTATGTGAAAAGCCAGGATAAACAATTT 

GCAGCAGCCACTATTCAGACTATAGGCAGATGTGCAACCAACATCTTGGAAGTCACTGACACGTGCCTCA 

ATGGCTTGGTCTGTCTGCTGTCCAACAGGGATGAAATAGTTGTTGCTGAAAGTGTGGTTGTTATAAAGAA 

ATTACTGCAAATGCAACCTGCACAACATGGTGAAATTATTAAACATATGGCCAAACTCCTGGACAGTATC 

ACTGTTCCTGTTGCTAGAGCAAGTATTCTTTGGCTAATTGGAGAAAACTGTGAACGAGTTCCTAAAATTG 

CCCCTGATGTTTTGAGGAAGATGGCTAAAAGCTTCACTAGTGAAGATGATCTGGTAAAACTGCAGATATT 

AAATCTGGGAGCAAAATTGTATTTAACCAACTCCAAACAGACAAAATTGCTTACCCAGTACATATTAAAT 

CTCGGCAAGTATGATCAAAACTACGACATCAGAGACCGTACAAGATTTATTAGGCAGCTTATTGTTCCGA 

ATGTAAAGAGTGGAGCTTTAAGTAAATATGCCAAAAAAATATTCCTAGCACAAAAGCCTGCACCACTGCT 

TGAGTCTCCTTTTAAAGATAGAGATCATTTCCAGCTTGGCACCTTATCTCATACTCTCAACATTAAAGCT 

ACTGGGTACCTGGAATTATCTAATTGGCCAGAGGTGGCGCCCGACCCATCAGTTCGAAATGTAGAAGTAA 

TAGAGTTGGCAAAAGAATGGACCCCAGCAGGAAAAGCAAAGCAAGAGAATTCTGCTAAGAAGTTTTATTC 

TGAATCTGAGGAAGAGGAGGACTCTTCTGATAGTAGCAGTGACAGTGAGAGTGAATCTGGAAGTGAAAGT 

GGAGAACAAGGCGAAAGTGGGGAGGAAGGAGACAGCAATGAGGACAGCAGTGAGGACTCCTCCAGTGAGC 

AGGACAGTGAGAGTGGACGGGAGTCAGGCCTAGAAAACAAAAGAACAGCCAAGAGGAACTCAAAAGCCAA 

AGGAAAAAGTGATTCTGAAGATGGGGAGAAGGAAAATGAAAAATCTAAAACTTCAGATTCTTCAAATGAC 

GAATCTAGTTCAATAGAAGACAGTTCTTCCGATTCTGAATCAGAGTCAGAACCTGAAAGTGAATCTGAAT 

CCAGAAGAGTCACTAAGGAGAAAGAAAAGAAAACAAAGCAAGATAGAACTCCTCTTACCAAAGATGTTTC 

ACTTCTAGATCTGGATGATTTTAACCCAGTATCCACTCCAGTTGCACTTCCCACACCAGCTCTTTCTCCA 

AGTTTGATGGCTGATCTTGAAGGTTTACACTTGTCAACTTCCTCTTCAGTCATCAGTGTCAGTACTCCTG 

CATTTGTACCAACGAAAACTCACGTGCTGCTTCATCGAATGAGTGGAAAAGGACTAGCTGCCCATTATTT 

CTTTCCAAGACAGCCTTGCATTTTTGGTGATAAGATGGTCTCTATACAAATAACACTGAATAACACTACT 

GATCGAAAGATAGAAAATATCCACATAGGGGAAAAAAAACTTCCTATAGGCATGAAAATGCATGTTTTTA 

ATCCAATAGACTCTCTTGAGCCTGAGGGATCCATTACAGTTTCAATGGGTATTGACTTTTGTGATTCTAC 

TCAGACTGCCAGTTTCCAGTTGTGTACCAAGGATGATTGCTTCAATGTTAATATTCAGCCACCTGTTGGA 

GAACTGCTTTTACCTGTGGCCATGTCAGAGAAAGATTTTAAGAAAGAGCAAGGAGTGCTAACAGGAATGA 

ATGAAACTTCTGCTGTAATCATTGCTGCACCACAGAATTTCACTCCCTCTGTGATCTTTCAGAAGGTTGT 

AAATGTAGCCAATGTAGGTGCAGTCCCTTCTGGCCAGGATAATATACACAGGTTTGCAGCTAAAACTGTG 

CACAGTGGGTCATTGATGCTAGTCACAGTGGAACTGAAGGAAGGCTCTACAGCCCAGCTTATCATAAACA 

CTGAGAAAACTGTGATTGGCTCTGTTCTGCTGCGGGAACTGAAGCCTGTCCTGTCTCAGGGGTAA 
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