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ABSTRACT OF THE DISSERTATION

Learning Human Contexts through Unobtrusive Methods

By CHENREN XU

Dissertation Director:

Yanyong Zhang

Learning human contexts is critical to the development of many applications, ranging

from healthcare, business, to social sciences. Most existing work, however, acquires

contextual information in an obtrusive manner – they may require subjects to carry

mobile devices, or rely on self or peer report to report data. In this dissertation, we

present two unobtrusive techniques that can help us learn important human contex-

tual information including count, location, trajectory, and speech characteristics. We

first present SCPL, a radio frequency-based device-free localization technique. SCPL

is able to count how many people are in an indoor setting and track their locations

by observing how they disturb the wireless radio links in the environment. Second,

we present Crowd++, a smartphone-based speech sensing technique, which records a

conversation and automatically counts the number of people in the conversation with-

out prior knowledge of their speech characteristics. Both techniques are unobtrusive,

low-cost, and private, which can thus enable a large array of important applications

that rely upon the knowledge of human contextual information.
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1

Chapter 1

Introduction

1.1 Overview

1.1.1 The Quest for “Unobtrusive” Human Context Sensing

Learning human context information is vital to our daily life as it covers almost all

our daily aspects, such as where I am, what I am doing, and who I am with. Looking

back, the term context-aware computing was first introduced by Schilit [61] following

Mark Weiser’s vision of ubiquitous computing [69] over two decades ago. This vision

foresees an intelligent world that computers would become such an integral part of

our environment that we won’t be aware of them anymore. The recent decade has

witnessed the trend where smart sensors are increasingly embedded in sensing in-

frastructure (e.g., thermostat, motion sensor, smoke detector) and mobile devices (e.g.,

phones, tablets, glass, watches). As a result, this vision is becoming tangible. Smart

sensors at homes or commercial buildings provide isolated but focused sensing func-

tionalities, such as temperature, room occupancy and smoke. On the other side, the

ones on our mobile devices are seamlessly making our life easier by means of sup-

porting our mobility: with a suite of sensors (accelerometer, microphone, GPS, WiFi,

camera, digital compass, gyroscope), the device can provide built-in or third-party

services targeting at a variety of contexts, such as user’s physical location (latitude

and longitude), contextual location (home and work place, indoor and outdoor etc.),

relative orientation and location between a device and user, etc. These technologies

can lead to revolutions in different domains, such as healthcare, entertainment, trans-

portation, and social networks.

However, we argue that despite the progress, there is still much room to improve
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in this area. Specifically, we would like to minimize the inconveniences cased by these

technologies. For example, existing solutions often incur the following issues:

• Need to wear a device: Many current techniques rely on the user to carry a device

all the time. For example, location services assume the user will always be co-

located with the device, which is not the case when users are at home. Smart

technology should be able to continuously track people wherever they are.

• Extensive calibration: In the area of human-centric computing, the characteristics

of each individual is not completely uniform and not necessarily known by the

system beforehand. Profiling the system with all the possible scenarios and will

be a straightforward solution, but it usually requires extensive calibration and

frequency recalibration to be sustainable to the environmental change.

• Need to report status manually: Social science, such as the fields of psychology and

human computer interaction [51], involves the study, planning, design and uses

of the interaction between people and computers. For example, to study chil-

dren’s autism, researchers often record audio/video during study. Afterwards,

they manual listen to or watch the recordings to by get groundtruth, which pro-

cess is both labor intensive and not necessarily accurate.

As a result, the dissertation statement is that wewould like to develop and evaluate

“unobtrusive” techniques to learn human contexts such that the vision of “context-

aware computing” is brought close to realization.

1.1.2 Proposed Solutions

In this dissertation, we propose two techniques to unobtrusively sense human con-

texts such as physical activities and social activities including such as count, location,

trajectories, speed, and speaker count.

Radio-Frequency (RF) Based Device-free People Counting and Localization

Passive Localization In Cluttered Environments Using Classification Methods [78]
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In today’s world, regardless where we are, we are constantly exposed to RF sig-

nals emitted from a variety of radio sources. The presence of human subjects (without

wearing any device) can interfere with these signals in such a way that by observing

how the received signal strength (RSS) changes over time, we can infer people’s lo-

cations. Since no device is required on the subject, we call this localization method

RF-based device-free localization.

Passive localization is challenging, especially in cluttered indoor environments

(home, office, etc.), because radio is radiating omni-directionally, and the receiver will

thus receive signals not only from the visible Line-of-Sight (LoS) component but also

from invisible multipaths (as a result of reflection, diffraction, and/or scattering). As

a result, even a small move by the subject may lead to a great RSS fluctuation at the

receiver, making it challenging to infer locations from the observed RSS values. We

address this challenge by shifting the localization problem to a cell-identification prob-

lem – we partition the area into cells based on contextual information such as a cubi-

cle, sofa, or bed, and then identify in which cell is the subject by solving a probabilistic

classification problem. By choosing an appropriate cell size, we can balance the local-

ization accuracy with calibration overhead. We tested our algorithm in a one-bedroom

apartment and an office, achieving a sub-meter localization accuracy for a single per-

son by having a device every 5 m2.

Counting and Localizing Multiple People [76]

Device-free localization can localize people when they move about in their daily life

without specifically wearing a device for localization purposes. In these scenarios, it

is important to be able to localize multiple people at the same time. More importantly,

this should be done without the need to calibrate multiple subjects, which will lead to

a factorial growth in the calibration effort. Our objective is then to localize multiple

people using a single subject’s calibration data.

We achieve this objective by first counting how many people are in the room, and

then calculating their locations. We propose a successive cancellation based scheme

to count people. We first detect whether there is more than one subject in the room
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by looking at the RSS values; If yes, we assume there is only one person and use the

probabilistic method described above to identify his/her cell number. Then we sub-

tract this subject’s impact on the RSS values from the total RSS change. We repeat this

process until there is no subject left in the remaining RSS change. Once we know the

number of people in the room, wemodel indoor human trajectories as a state transition

process, exploit indoor human mobility constraints from the site map, and integrate

all information into a conditional random field (CRF) to calculate their locations at the

same time. We show that our algorithm achieves an 86% of average counting accuracy

and about 1 meter localization accuracy for tracking up to four people.

Unsupervised Speaker Counting on Smartphones [80]

Smartphones can serve as an excellent mobile social sensing platform, with the micro-

phone in particular being exercised in several supervised audio inference applications,

such as speaker identification, emotion detection, etc. Recognizing the fact that the

most direct form of social interaction occurs through the spoken language and con-

versations, we identify it is important to automatically estimate how many people are

involved in a conversation. Speaker count specifies the number of people that partici-

pate in a conversation, which is one of the primary metrics to evaluate a social setting:

how crowded is a restaurant, how interactive is a lecture, or how socially active is a

person. Thus, we developed Crowd++, an audio inference service running on off-the-

shelf smartphones to accurately extract the speaker count from recorded audio data,

without any supervision, and in different use cases. Through extensive experiments

in real settings, we demonstrate that Crowd++ can to accurately estimate the number

of people talking in a certain place with an average error distance of 1.5 speakers.

1.2 Contribution

Herein, wemake several contributions to the unobtrusive human context sensing field,

as summarized in the following:

• We designed and conducted extensive field experiments to study how indoor
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radio multi-path effect brings challenges in device-free human localization prob-

lems, and understood the limitations of applying geometric family approach in

this problem. We further designed PC-DfP, a probabilistic algorithm framework

formulating this localization problem into a supervised machine learning clas-

sification problem. PC-DfP reduces the human calibration effort and mitigate

the error caused by the multi-path effect by discretizing the physical space into

context-based cells and taking random samples from different locations to av-

erage out the deep fading effect. PC-DfP further maintains high localization

accuracy in long-term deployments by identifying and selecting the radio links

robust to the environmental change.

• To enable this RF-based device-free localization technique to scale, we further

designed SCPL, a technique simultaneously count and localize multiple people,

which is unique in at least four contributions: (i) to our knowledge, it is the first

work to systematically perform simultaneous counting and localization for up to

four device-free people (moving or stationary) in large-scale deployments only

using RF-based techniques; (ii) we designed a set of algorithms to count and

localize multiple subjects relying on the calibration data collected by only a sin-

gle individual; (iii) We also use plausible trajectory constraints (e.g. not walking

through walls) based on floor map information, and integrate this information

into the radio calibration data to further improve the tracking accuracies; and (iv)

we recognize the nonlinear fading effects caused bymultiple subjects in cluttered

indoor environments, and design the algorithms to mitigate the resulting error.

• We oversaw the potentials of the “speaker count” context information in a num-

ber of social sensing applications, designed and prototyped a mobile application

called Crowd++ running on off-the-shelf smartphones. Crowd++ is unique given

its number of contributions: (i) it is entirely distributed, with no infrastructure

support; (ii) it applies completely unsupervised learning techniques and no prior

training is needed for the system to operate; (iii) it is self-contained, in that, the

sensing and machine learning computation takes place entirely and efficiently



6

on the smartphone itself as shown by our implementation on four different An-

droid smartphones and two tablet computers; (iv) it is accurate, as shown by

experiments where Crowd++ is used in challenging environments with differ-

ent audio characteristics - from quiet to noisy and loud - with the phone both

inside and outside a pocket, and very short audio recordings; and (v) it’s energy

and resource-efficient.

1.3 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present a mea-

surement study of the impact of radio multipath propagation on the received signal

strength when human are exposed to a radio environment. Then we describe the PC-

DfP algorithm in more detail and share our experiences how it works in realistic in-

door environments. Next, Chapter 3 first presents a measurement study of how mul-

tiple people collectively interfere with the received signal strength in radio environ-

ments, and impresents how SCPL algorithm leverages the calibration data collected

with one person and the room map information to count and localize multiple peo-

ple. Finally, Chapter 4 describes our speaker counting technique in more detail and

share our lessons learned from the large scale experimental results from real world

scenarios.
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Chapter 2

PC-DfP: A Probabilistic Classification Approach for

Device-free Human Localization

The proposed method for localzing one person using radio signal strength, namely

PC-DfP, is presented in this chapter. This method will play an fundamental role for

counting and localizing multiple people discussed in next chapter as well.

2.1 Introduction

There is growing interest in incorporating automatic “intelligence” in our homes and

offices using a dense array of wireless radio/sensor nodes. Central to this intelligence

is often the need to localize and track people in indoor environments. Many radio

frequency (RF) based localization techniques have been proposed, such as those dis-

cussed in [5, 74, 17, 30, 59, 63, 81, 39, 52, 13, 82, 47, 68]. Most of these techniques,

however, require the subjects to carry wireless devices, and are referred to as device-

based active localization. This requirement has several inherent disadvantages. First,

tracking stops whenever the device is detached from the subject either accidentally

or intentionally. Second, for applications such as elder care, we cannot assume the

subjects will always agree or remember to carry the device.

Recognizing these limitations, the community has started the discussion on RF-

based device-free passive (DfP) localization techniques [83]. Compared to its active

localization counterpart, DfP offers a lower cost solution as it does not require the par-

ticipation of the subject and uses low-power RF devices that may already be available

in our home/office environment. In DfP localization, we capture the change of the

RF signals caused by the subject and try to derive his/her location based upon this



8

change.

Deriving a subject’s location from the RSS change caused by the subject, however,

is a challenging task, mainly due to the well-known “multi-path” effect [56] that is

caused by the reflection and diffraction of the RF signal from subjects and objects in

the environment.

Let us look at a simple experiment to understand the effect of the multipath prob-

lem. Figure 2.1(a) shows the topology of a one-bedroom apartment in which we con-

duct our experiments. We have one transmitter (Tx in the picture) and one receiver

(Rx in the picture), and this radio link has one Line-of-Sight (LoS) component and four

Non-Line-of-Sight (NLoS) (or, multipath) components. We only show four NLoS com-

ponents for simplicity; in reality there are many more present. A person walks from

themarked “Start Point” to themarked “End Point”. During themovement, we record

the received signal strength (RSS) at the receiver (operating at 909.1 MHz), and report

the differences between these values and the RSS values when the subject is absent in

Figure 2.1(b). Figure 2.1(b) shows that the person’s effect on the RSS value is random

and unpredictable – we observe RSS decreases at different levels, and sometimes we

even observe an RSS increase. Figure 2.1(b) also shows that changes from motion rel-

ative to the LoS and NLoS components can be far larger when the subject is not on

the LoS than when he is – the variation is as high as 10 db from location 17 to location

18 over a distance of less than 20 cm where the person is not crossing the LoS of the

link. Finally, we note that the multipath effect is affected bymany factors. Figure 2.1(c)

shows a completely different behavior when the radio frequency is set to 433.1 MHz.

Many earlier DfP localization techniques either ignoredmultipath, or failed to treat

multipath carefully enough. For example, radio tomography proposed in [71] tries to

calculate a subject’s location based upon the signal attenuation when the subject is

blocking the LoS of the link. These schemes assume there is a direct relationship be-

tween a subject’s location and the impact on radio signals. They will have good local-

ization results either outdoor or in an empty room with little multipath. In a cluttered

room, which is more common in real life than empty rooms, this assumption does not

hold. In [83, 62], the authors acknowledge the importance of multipath, and propose
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Figure 2.1: (a) shows the indoor environment in which the radio link has one LoS and
four NLoS components; (b) and (c) show the fluctuation of RSS changes between Tx
and Rx when the radios operate at 909.1 MHz and 433.1 MHz respectively.
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a fingerprinting-based approach in which they first collect a radio map with the sub-

ject present in a few predetermined locations, and then map the test location to one of

these trained locations based upon observed radio signals. While the fingerprinting

approach is certainly a better fit for indoor DfP localization, the localization algorithm

in [83, 62] adopts a point-based simplistic minimum Euclidean distance based match-

ing algorithm, which is only practical when the training locations are sparse and the

test location closely matches one of the training locations. As training points become

denser, classification difficulty will grow significantly.

In this chapter, we take on the challenge and strive to improve the performance of

DfP localization. Considering the complexity of multipath, we choose to adopt the finger-

printing approach, and try to achieve good results when we have dense training locations, and

random test locations. We believe these requirements are crucial to many smart home

applications such as infant care or elder care. We achieve improved results with the

following two optimizations. First, we apply discriminant analysis to the classification

problem based on the assumption that the covariates follow a multivariate Gaussian

distribution. We validate the assumption of Gaussian distribution through experi-

mental data as well as theoretical approximations. Second, in collecting radio signal

readings, we adopt various ways to mitigate the multipath effect so that signal varia-

tions within a short distance become smoother. This can increase the distance between

classes and further lead to higher classification likelihood. Specifically, our study has

the following contributions:

• We derive a sophisticated classification model to better describe the DfP local-

ization problem.

• We improve the quality of data sets by mitigating the error caused by the multi-

path effect.

• We show that in a one-bedroom apartment of 5 × 8 m that consists of 32 cells

(each being 0.75 × 0.75 m in size), with 8 transmitters and 8 receivers, we can

estimate the occupied cell ID with an accuracy of 97.2%.
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• We show that our approach can achieve cell estimation accuracies over 90% in

degraded conditions, such as reducing the training overhead (taking 16 data

samples per cell instead of 100 samples), reducing the computation overhead, us-

ing fewer radio devices (10 devices instead of 16), and conducting tests a month

later after the training.

• We show that our approach can be used to track multiple people when they are

standing still, walking, sitting, or even lying down. We can also localize multiple

people that co-exist in the apartment.

• We also implement our approach in a much larger commercial office space, and

report a cell estimation accuracy of 93.8% from 32 cubicle-size cells.

The rest of the chapter is organized as follows. In Section 2.2, we highlight the

challenges faced in indoor DfP localization. We model the system and present our

localization algorithm in Section 2.3. In Section 2.4, we introduce our experimental

setup andmethodology. In Section 4.5, we implement our algorithm in a one-bedroom

apartment and report detailed experimental results. We discuss the related studies in

Section 4.7, and conclude the chapter in Section 4.8.

2.2 Challenges In a Cluttered Indoor Environment

In this section, through experimentation, we demonstrate the differences between RF-

based outdoor and indoor localization, and highlight the challenges posed by indoor

environments.

2.2.1 Outdoor Free Space Localization

We begin our experiments in an open outdoor environment. By setting up a transmit-

ter and a receiver attached on tripods 4.5 meters away from each other in an empty

parking lot, we only have a relatively small reflection from the ground. We partition

the area into 0.75 × 0.75 m cells and categorize the cells into two groups: those on the

LoS, and those off the LoS. We first record the median of the RSS measurements when
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Figure 2.2: In an outdoor environment, when the radio devices are placed lower than
the subject height, the subject causes distinctly different RSS changes for on-LoS cells
and off-LoS cells.

the subject is 9 meters away from either device, RSSE, which represent the base RSS

when the subject is absent. Then, we collect 10 continuous RSS readings from each cell

while the subject remains stationary in that cell. For each cell, we calculate the RSS

change caused by the subject.

We first place the radios such that their height from ground is less than a per-

son’s height. In this way, a person can block radio signals more pronouncedly. Fig-

ure 2.2 shows that in this setting, RSS changes in different cells caused by the person

clearly fall into two disjoint sets. RSS changes in on-LoS cells are much larger than RSS

changes in off-LoS cells. This observation suggests that we may perfectly determine

whether the subject is on the LoS or not simply by setting an appropriate threshold for

observed RSS changes, which agrees with the observations in earlier studies [71, 11].

Next, we repeat the same experiment, but place the radios above the height of the

subject (radios were placed 2 meters above the ground, and the subject is 1.8 meters

in height). In this case, the position of the subject has little effect on the RSS values,

as shown in Figure 2.3. As a result, in the rest of the study, we place the radio devices
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Figure 2.3: In an outdoor environment, when the radio devices are placed higher than
the subject height, the subject causes little effect on the radio signals regardless of his
location.

vertically lower than the subject except when explicitly noted.

2.2.2 The Multipath Effect

Compared with straightforward localization in the outdoor space, localization in the

indoor space is much harder because of the multipath problem. This is particularly

true for environments of interest for most applications. Next we will support this

statement using experimental observations.

In our indoor experiments, we attach the transmitters and receivers on the wall, 1.2

meters above the floor, which is below most adults and above most of the furniture so

that the impact of a subject’s presence on the radio signal is maximized. As explained

earlier, in an indoor environment, the subject may have an unpredictable impact on

the RSS. Figure 2.4 shows the histogram of RSS changes in different cells. We observe

that, when a subject randomly blocks a LoS, there is only a 50% probability of the signal

being attenuated by 1 dB or more. In other words, 50% of the time the signal will not at-

tenuate or even increase. This observation clearly shows that the assumption of “blocking
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Figure 2.4: In an indoor environment, when the radio devices are placed below the
subject height, the subject’s effect on the radio signal is unpredictable with respect to
his location.

LoS” means “attenuation” is misleading in cluttered environments. On the other hand, the

results show that if a subject does not block any LoS, there is a 15% probability that the

RSS of a radio link will change more than 3 dB. This further shows the unpredictable

nature of the multipath effect.

2.3 Device-free Passive Localization through Probabilistic ClassificationMeth-

ods (PC-DfP)

As discussed earlier, indoor radio propagation is a very complex phenomenon such

that the relationship between a subject’s location and the resulting RSS of any radio

links in the environment is hard to predict. Thus, statistical rather than deterministic

methods are required to extract location information from the measured RF signals.

In this section, we discuss in detail our probabilistic classification based device-free

passive localization method, PC-DfP in short.
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2.3.1 Overview of PC-DfP

We visualize a room as a grid of small square cells with unique addresses or ID num-

bers. By localizing a subject, we mean to estimate accurately the ID of the cell in which

the subject is located. In our method, we assume there are L radio links in the envi-

ronment, and there are K cells in a room. In the training phase, we first measure the

RSS values for all L radio links when the room is empty (referred to as environmental

RSS). Then for each cell k, we collect a set of RSS values with the subject present in this

cell. The change between the environmental RSS and the RSS when the subject is in

cell k, [xk,1, ..., xk,L], gives the RSS change vector, xk, for cell k. xk is referred to as the

footprint for cell k. By the end of the training phase, we have obtained RSS footprints

for every cell in the room. We build a K-class classifier based on the RSS footprints.

Subsequently, in the testing phase, this classifier is used to classify the testing subject

with an unknown label (i.e., cell ID).

2.3.2 Discriminant Analysis

In formulating our classification problem, we label a class k as the state with the subject

in the k-th cell, with the associated RSS footprint xk. For each cell k, we collect the

RSS footprint matrix Xk of dimension R
nk×L, where nk denotes the number of RSS

footprints sampled in the training phase for the k-th cell. The class label is denoted as

yk. The goal of our analysis is to classify the subject with an unknown label into the

correct cell ID based on the measured RSS vector.

A large number of classification techniques have been proposed in the literature,

including density based approaches. Under the 0− 1 loss, the objective is to find the

maximizer of the class posterior distribution P(Y|X), where Y is the class label yk and

X is the RSS change vector xk. A simple application of the Bayes rule gives

P(Y = k|X = x) =
fk(x)πk

∑
K
j=1 f j(x)πj

,

where fk(x) is the class-conditional density of X in class Y = k, and πk is the prior
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probability of class k that sums to 1. Assuming f to be a multivariate Gaussian dis-

tribution, we have the classical discriminant analysis. In the remaining of this section,

we present a few variations of this technique and describe the rationale for applying

them to solve our localization problem.

Minimum Euclidean Distance (MED)

Suppose we have the mean vector µk ∈ R
L of the RSS for each class k from the training

data. We also have the testing RSS vector x and ŷ associated with the unknown cell

label to be estimated. The Euclidean distance between x and µk is defined as

d(x, µk) =

√

√

√

√

l

∑
i=1

(xi − µki)
2,

where

µk = ∑
i∈class k

xi/nk.

Thus, we have the objective classifier function

ŷ = argminkd(x, µk),

as studied in [62].

Linear Discriminant Analysis (LDA)

Linear discriminant analysis aims to find a linear combination of features which char-

acterize or separate two or more classes of subjects [21]. We assume the density of each

class k is multivariate Gaussian with mean µk and a common covariance matrix Σ:

fk (x) =
1

(2π)
L
2 |Σ|

1
2

exp

[

−
1

2
(x− µk)

T
Σ−1 (x− µk)

]

.

Applying Bayes rule, we have the objective function

ŷ = argmaxk fk(x)πk.
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In the log-scale, we can write the discriminant function as

δk(x) = xTΣ−1µk −
1

2
µk

TΣ−1µk + logπk,

and we find

ŷ = argmaxkδk(x).

Maximization of the discriminant function results in the following parameter up-

dates:

• π̂k = nk/n;

• µ̂k = ∑
i∈class k

xi/nk;

• Σ̂ =
K

∑
k=1

∑
i∈class k

(xi − µ̂k)(xi − µ̂k)
T/(n− K);

In our experiment, the number of samples nk is the same across the all the cells.

Therefore the class probability πj = 1/K for all the classes.

Quadratic Discriminant Analysis (QDA)

In practice, it is rare thatmultiple classes share a common covariancematrix. Quadratic

Discriminant Analysis (QDA) is a generalization of LDA that allows different covari-

ance matrices. Such a generalization results in more flexible quadratic decision bound-

aries comparing to the linear decision boundaries from LDA. The resulting discrimi-

nant function is

δk(x) = −
1

2
log |Σk| −

1

2
(x− µk)

TΣ−1k (x− µk) + logπk.

The flexibility of QDA comes with the cost of estimating the different covariance

matrices Σk. When the dimensionality of x is high, this amounts to a huge increase on

the number of parameters to be estimated. Thus in practice, with limited sample size,

the simpler LDA is preferable.
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Dimension Reduction

In practice, parameter estimation can be challenging even for LDA when data dimen-

sion is high. One way to address this problem is through feature selection or dimen-

sion reduction. Hereinwe adopt the linear projection scheme so that the L dimensional

vector x can be projected to a q dimensional space via z = Wx, whereW is a q× L ma-

trix and q < L. For a fixed q, the optimalW is computed by maximizing

J(W) =
WTSBW

WTSWW
,

where the within class scatter matrix is

SW = ∑
k

(µk − µ̄)(µk − µ̄)T,

and the between class scatter matrix is

SB = ∑
k

∑
i∈class k

(xi − µk)(xi − µk)
T.

Here µ̄ is the overall mean of x, and µk is themean of the kth class. This leads to solving

an eigenvalue problem whose solution isWl = S−1/2B vl , where vl is the lth eigenvector

of S1/2B S−1W S1/2B . The resulting z is a compact representation of x in a lower dimensional

space by projecting the original data to the first q principal discriminant components. In

this way, we can minimize the localization error, reduce the computational cost and

prevent the potential over-fitting and singularity problem.

2.3.3 Gaussian Approximation

In LDA and QDA, we assume that the conditional density given the class label is

multivariate Gaussian. In this section, we first present experimental data to support

this assumption, and then provide theoretical discussions on why our problem can be

approximated by the Gaussian distribution.

Figures 2.5(a)-(c) show representative histograms for those links with RSS stable
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Figure 2.5: Three histograms for typical experimental RSS change measurements from
an arbitrary link when a subject moves randomly within an arbitrary cell. The smooth
curve is a log-normal density distribution.

(a), attenuated (b) and increased (c). We observe that most of the links fit the log-

normal distribution well enough to produce an acceptable fit. As a result, treating RSS

values (in power) as Gaussian is a valid assumption. The fact that our results based

upon this assumption achieve good classification accuracies (as high as 97% shown in

Section 4.5) is a further support for this assumption.

Next, we explain why we expect that a Gaussian model approximation would

work as a first approximation in our classification problem. First, we note that the

problem we are addressing is not a typical problem discussed in the literature [56],

where the statistics of the multi-path signals at the receiver are considered when ei-

ther the transmitter or receiver are moved, like in active RF-based localization prob-

lems. In passive localization, all the path lengths remain fixed, but the presence of a

subject introduces attenuation, scattering, or diffraction of a subset of the multi-path

signals. Based upon the geometry of the experimentation room and some simple mea-

surements, we can make analogies, though, to the more typical multipath problem.

In Figure 2.7(b), it is clear that the major fraction of the links between transmitters

and receivers have a substantially clear LoS or at most are obstructed by one relatively

transparent interior partition wall. Because of the dominance of the large planar and

often perpendicular reflecting surfaces (floor, walls, ceiling), one would expect the

multi-path signals to be dominated by LoS and a few, relatively strong components,
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as seen in [8], along with many components so much smaller than the LoS component

that they are insignificant. Finally, we note that in moving around, even a subject that

is completely out of the LoS can cause a change in RSS of 10-20 db. This is consistent

with a situation in which there are only a small number of multipath components of

a magnitude large enough that they could add up constructively and cancel the LoS

component to within 10% in amplitude, resulting in a 20db change in energy.

Extending a simplified Rician model [56] to our model would result a dominant

LoS signal and a limited number of important multipath signals whose energy was

somewhat smaller in total. This would be the Rician limit where the statistics of the

signal are approximately Gaussian, as we have seen. Our results show that this ap-

proximation is adequate for our environments.

2.4 Experimental Methodology

In our experiments we will show that one or more subjects can be successfully lo-

calized in a home/office environment using our PC-DfP method. The system was

deployed in two environments: a one bedroom apartment with home furniture and a

commercial office space with cubicles and offices. Since most of the experiments were

conducted in the first setting, we will focus on the first setting (i.e., the one-bedroom

apartment) in the rest of the chapter unless otherwise noted. The apartment pictures

are shown in Figures 2.7(a). The apartment is below ground level with a floor area of

5 × 8 m and a height of 3 m. The floor is concrete, the walls are wallboard on wooden

studs, and the ceiling is acoustic tile.

Our experimental setup consists of a host PC (Intel i7-640LM 2.13GHz, 3GB RAM)

serving as the centralized system, and eight transmitters and eight receivers. Receivers

are connected to the PC through a (wireless) USB hub. In our system, each transmitter

broadcasts a 10-byte packet every 100 milliseconds. The receivers will forward re-

ceived packets to the host PC for data collection and analysis. In Section 4.5, we show

that we can reduce the number of radio devices while maintaining good localization

results.
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(a)

(b)

Figure 2.6: (a) Wireless transmitter. (b) Wireless receiver with USB.

2.4.1 Hardware Description

The radio devices used in our experiments contain a Chipcon CC1100 radio transceiver

and a 16-bit Silicon Laboratories C8051-F321 microprocessor powered by a 20 mm di-

ameter lithium coin cell battery, the CR2032. The receivers have a USB connector for

loss-free data collection but are otherwise identical to the transmitters. In our experi-

ments, the radio operates in the unlicensed bands at 433.1 MHz or 909.1 MHz. Trans-

mitters useMSKmodulation, a 250kbps data rate, and a programmed output power of

0dBm. Each transmitter periodically broadcasts a 10-byte packet (8 bytes of sync and

preamble and 2 bytes of payload consisting of transmitter’s id and sequence number)

ten times per second. When the receiver receives a packet, it measures the RSS values

and wraps the transmitter id, receiver id, RSS, timestamp (on the receiver side) into a

“data packet”. This packet is sent to the centralized system over direct USB connection
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or through network hub for data analysis. The transmitter and receiver are shown in

Figure 2.6.

2.4.2 Experimental Setup

Transmitters and receivers are deployed alternatively one by one along the periphery

of the wall depicted in Figure 2.7(b). Eight transmitters and eight receivers provide

64 independent radio links in total. We virtually partition the room into 32 cells, each

roughly 0.75 × 0.75 m in size. We choose 0.75 m because it is the typical walking step

size for adults.

Data Collection: Our method consist of the following two phases:

• Off-line training phase. In the training phase, we will construct the radio map of

the room bymaking 100 measurements in each cell (10 seconds) to determine the

RSS footprint. We consider two training strategies. In the first case (training case

A), the subject will stand at the center of each cell and spin around so that the

resulting training data will focus on the cell center but involve different orienta-

tions. In the second case (training case B), the subject will walk randomly within

the cell. Thus, the resulting training data treat all the voxels within that specific

cell uniformly and includes all possible orientations.

• On-line testing phase. In the testing phase, the subject (who is different from the

subject in the training phase in height and weight) will appear in a random loca-

tion with a random orientation. In our experiments, we have 100 test locations in

each cell, resulting in a total of 3200 test locations. Among the 100 test locations

within each cell, 25 of them are the cell center, 25 of them are 0.13 m from the

center, 25 of them are 0.25 m from the center, and the other 25 are 0.38 m from

the center. For each test location, we take 10 RSS measurements and compute

the median value for all the 64 radio links.
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Figure 2.7: In (a), we show a rather cluttered one-bedroom deployment region. In (b),
we show the experimental topology. The one-bedroom deployment region is parti-
tioned into 32 cells. The center of each cell is marked in the picture. Eight transmitters
and eight receivers are deployed. We only show the 64 LoS links here.
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2.4.3 Deployment Cost

Unlike [71, 85], our localization algorithm does not require prior information about the

locations of all the radio nodes. Transmitters and receivers can be deployed at random

locations. This property enables that PC-DfP can be applied in an environment with

no changes to the existing infrastructure. In our experiments, it takes 10 seconds to

collect 100 training measurements. Even considering the extra overhead of moving

and turning, 30 seconds are sufficient for each cell. Usually we spend around 15

minutes training the whole deployed region. Given 32 cells and 100 RSS training

measurements for each cell in a 64 dimensional space, it takes 0.044 seconds to estimate

the parameters of the classification algorithm, and takes only 0.007 second to estimate

the subject location.

Overall, the runtime cost of our method is rather modest. In the results section, we

discuss ways of further reducing this cost while maintaining high localization accura-

cies.

2.5 Results

In this section, we first discuss performance metrics, and then present detailed exper-

imental results.

2.5.1 Performance Metrics

The objective of a localization system is to maximize the likelihood of correctly esti-

mating a subject’s location and minimize the average distance between the estimated

location and the actual location. For a specific test i, suppose a subject is actually lo-

cated in cell yi, and the estimated cell ID is ŷi by PC-DfP. Further suppose we have Ntst

tests. We thus define the following performance metrics:

• Cell Estimation Accuracy is defined as the ratio of successful cell estimations with

respect to the total number of estimations, i.e.,
Ntst

∑
i=1

I(yi = ŷi)/Ntst. In our system,

we consider a test successful if the estimated cell is the same as the occupied cell.
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If the subject is located on the shared boundary between two adjacent cells, the

test is considered successful if the estimated cell is either one of the two border-

ing cells.

• Average localization error distance is defined as the average distance between the

actual point location of the subject and the estimated point location (i.e., the cen-

ter of the estimated cell).

Table 2.1 summarizes the important parameters used in our experiments. To re-

iterate, our experiments were conducted in a one-bedroom apartment with the total

area of 5 × 8 m, which is divided into 32 cells (size of each cell being 0.75 × 0.75 m).

We have 8 transmitters and 8 receivers, resulting in 64 links in total. We note that this

number can be made smaller with minimal impact on our localization results. We also

note that we anticipate a reasonably large number of sensors/radio devices will be

existing in a “smart” home environment. In the training phase, the first author stood

in each of these 32 cells, and took 100 RSS measurements. The entire training was

finished within 15 minutes by one person.

2.5.2 Comparing Three Discriminant Analysis Methods

We first compare the results of the three discriminant analysis methods, namely MED,

LDA, and QDA. In this set of experiments, the radio frequency is set to 433.1 MHz,

and we adopt the training case A. The results are summarized in Table 4.1.

We observe that LDA performs the best among the three. We expected LDA to out-

perform MED because it takes into consideration the property of radio propagation.

The fact that QDA is the worst of all three, however, is somewhat counter intuitive.

Parameter Default value Meaning

K 32 Number of cells

L 64 Number of radio links

Ntrn 100 Number of training RSS vector per cell

Ntst 100 Number of testing RSS vector per cell

Table 2.1: System parameters.



26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7

C
el

l e
st

im
at

io
n 

ac
cu

ra
cy

 C
D

F
 (

%
)

Localization error distance (meters)

MED
LDA
QDA

Figure 2.8: Comparing the CDF of error distances with different discriminant analysis
algorithms (MED, LDA, and QDA) at 433.1 MHz.

After some deliberation, we find out the reason is that QDA requires the estimation

of separate covariance matrices for each class, which can lead to over-fitting, espe-

cially with a rather limited sample size. The same trend is demonstrated in Figure 2.8

through the CDF of error distances for the three methods. (We note that QDA does

have a slightly shorter tail than LDA.)

In the rest of the performance section, we will thus focus our discussion on LDA.

Discriminant Cell Estimation Average Localization
Analysis Method Accuracy (%) Error Distance (m)

MED 81.7 0.55

LDA 90.1 0.44

QDA 81.1 0.53

Table 2.2: Comparison of the three discriminant analysis methods: MED, LDA, and
QDA in training case A.
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2.5.3 Mitigating Multipath Effect

We have mentioned that the multipath effect has an adverse impact on indoor local-

ization, and in this chapter, we have devised approaches to mitigate its impact for

improved localization results. Specifically, due to multipath, when a subject moves

around, we will observe large and abrupt RF variations, even within a cell. Therefore,

accurately estimating cell ID based upon the observed RF readings becomes a daunt-

ing task. To mitigate this impact, we take the following measures to smooth out the

RF variations within a cell.

First, we operate our radios at the unlicensed frequency of 433.1 MHz instead of

909.1 MHz. Intuitively, the wavelength at 433.1 MHz is larger than that at 909.1 MHz,

and thus the RF signal has a smoother variation when the subject is moving. We have

conducted an experiment to demonstrate this idea. Figure 2.1(a) shows the experimen-

tal setup, and Figures 2.1(b) and Figures 2.1(c) shows the RF variation is much smaller

at 433.1 MHz than at 909.1 MHz.

Second, in the training phase, instead of standing still at a specific point within a

cell and using the measurement at that point to represent the entire cell (as in training

case A), we make random movements within that cell, take multiple measurements,

and use them collectively for classification, as in training case B in Section 2.4. In this

way, we sample the data for all the voxels with different orientations to average out

the multipath effect within each cell.

Table 2.3 summarizes the LDA results with and without these two optimizations.

We also varied the test location in these experiments. In general training case B gives

better cell estimation accuracies than training case A. Within each training case, radio

frequency of 433.1 MHz gives better results than 909.1 MHz with the node layout

shown in Figure 2.7(b). In summary, our cell estimation accuracy is as high as 97.2% with

433.1 MHz 909.1 MHz
Training case A 90.1% 82.9%
Training case B 97.2% 93.8%

Table 2.3: LDA cell estimation accuracies improve when the radios work on 433.1
MHz, and adopt the training case B.
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Figure 2.9: Cell estimation accuracy with 95% confidence interval error bar versus the
number of training measurements.

the average localization error distance of 0.36 meters.

2.5.4 Reducing Training/Testing Overhead

Here we investigate methods for reducing the computing overhead for our algorithm.

In this study, we formulate the localization problem as a classification problem that

involves a training phase and a testing phase. Suppose we have N training data of

L dimensions and K classes, where N is the number of measurements taken in each

cell in the training phase, L is the number of radio links in the environment, and K is

the number of the cells in the environment. In our default setting, we have N = 100,

L = 64, and K = 32.

For LDA, the algorithmic complexity is O(KNL + K3) in the training phase and

O(KL2) in the testing phase. As K is fixed in our algorithm, we can try to use a smaller

N and/or L to reduce the overhead.

First, we look at the possibility of having a smaller N, i.e., fewer training samples.

Figure 2.9 shows the localization results with different training data sizes. We observe

that we achieve a cell estimation accuracy of 90% by using 16 training measurements
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in each cell, and achieve a cell estimation accuracy as high as 90% by only using 8

training measurements in each cell. This will lead to a significant reduction of the

training overhead.

Next, we look at the possibility of having a smaller L, i.e., smaller data dimensions.

To do so, we adopt the optimization technique discussed in Section 2.3 to select the

principal discriminant components for classification purpose. Figure 2.10 shows that

we can achieve the same level of cell estimation accuracy when using only the first

28 principal discriminant components. Such a reduction on data dimension can lead

to significant improvement on computation efficiency. If we are willing to relax the

requirements for the cell estimation accuracy from 97% down to 90%, then choosing

the 10 most principal discriminant components will be sufficient.
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Figure 2.11: Boxplot of cell estimation accuracy versus the number of wireless devices
that are used. For a given number, we show all the possible combinations.

2.5.5 Localizing Subjects with Minimum Number of Radio Nodes

Next, we need to test whether our system can still function if we lose one or more

radios. In the experiments, we use a subset of the radio nodes and derive the corre-

sponding localization results, and investigate at what point the cell estimation accu-

racy will drop below a tolerable level. For example, if we would like to find out the

results using 10 radio devices out of the default 16 (8 transmitters and 8 receivers), we

would randomly remove 6 devices, and plot the localization results for all the possible

combinations of transmitters and receivers.

These results are shown in Figure 2.11. We find that our algorithm can deliver

a cell estimation accuracy of 90% when we remove 3 transmitters and 3 receivers in

the process. Finally, we note that our system can achieve an even better accuracy

(than having all 16 nodes), 99.4%, when three particular devices (i.e., T7, R4 and R6)

are removed. Note that we do not reposition the remaining nodes to optimize the

results, so this is an overestimate of the number of nodes needed for a given accuracy.

Optimizing localization results by systematically removing radio devices (as well as
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the corresponding links) is a topic for further investigation.

2.5.6 Using the Same Training Set Over a Long Testing Period

All the results shown above have the testing phase done within three days after train-

ing the system. In reality, we are also interested in knowing how well our system

will perform if the testing occurs much later in time, which could lead to performance

degradation because of changes in the environment or drift in the radio. Different

subjects or changes in the same subject could also affect the results.

All the above factors can change the relevance of the original RSS calibration and

training. Thus, we need to find an effective correction technique to extend the accuracy

of an original calibration over weeks or months. The basic idea is that before each

experiment, be it training or testing, we always collect the environmental RSS vector

RSSE when the room is unoccupied. We refer to this vector as RSStrnE and RSStstE for the

training and testing phase respectively. This information provides the correction basis

for the test data. We can determine when to collect RSStstE based upon the subject’s life

style. For example, it can be collected at noon if he/she works regularly, or at midnight

if he/she stays home most of the time.

Using the environmental RSS vector, we propose the following two correction ap-

proaches:

• Naive correction: For a simple correction of change over time, we first compute

the pairwise difference between the RSStrnE and RSStstE , and record the vector as

RSSbiasE . Then we add this bias vector to each RSS vector as the compensation

and construct the new test data.

• Truncated correction: We compute RSSbiasE as with naive correction and set an

empirical threshold τ. Then we compare the ith entry RSSbiasE i with τ for i ∈

1, ..., L. If | RSSbiasE i |≥ τ, then we eliminate that feature (link) from both training

data and test data. Otherwise, we compensate the test data for that feature as in

naive correction. The rationale behind this approach is that we want to eliminate
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Figure 2.12: Cell estimation accuracies over one month after the training with different
correction approaches.

those links that have experienced a large variation due to environmental instabil-

ities. Since our earlier results (Figure 2.11) show that our system is robust against

missing a few links, we believe removing these links with large fluctuation will

not significantly degrade the performance.

We summarize the results in Figure 2.12. In the case without correction, we do not

subtract the environmental RSS from the training/test data. The results show that cell

estimation accuracies drop significantly one week after training the system without

any correction. With naive correction, we can achieve a cell estimation accuracy of

80% after one month, and truncated correction provides 90% cell estimation accuracy

after one month, which is the best among all three.

2.5.7 Tracking a Moving Subject

Our approach can also be used to track amoving subject. In this set of experiments, the

subject moves in the apartment, and we try to estimate which cells he passes during

the movement. We choose the longest straight line path and a zigzag path as rep-

resentatives to test PC-DfP’s tracking performance. Specifically, the subject adopted
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Figure 2.13: Two mobility paths: (a) a line path, and (b) a real-life path.
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the following two mobility patterns: (1) line path, in which the subject walked along

a straight line at an average speed of about 3 meters per second (illustrated in Fig-

ure 2.13(a)), and (2) real-life path, in which the subject followed a path similar to the

path taken in his real life, e.g., he might choose to walk to the bed and lie on the bed

for a few seconds, and then walk to the couch and sit down on the couch for a few

seconds (illustrated in Figure 2.13(b)). When the subject moved in the room, we con-

tinued to take measurements and estimated which cell he occupied.

We show the localization results in these two cases in Table 2.4. As expected, when

the subject moves along a line path, he can be localized almost as well as when he

is stationary, with an cell estimation accuracy of 99.1% and a localization accuracy of

0.3 m. The results for the real-life path are slightly worse (cell estimation accuracy be-

ing 91.1%) because there are more complicated movements including walking, lying

down, getting up, and sitting. As a result, more uncertainties are introduced. In par-

ticular, the cell estimation accuracy is 86.1% when subject is moving and 98.6% when

the subject stays still on bed, chair or sofa. We, however, would like to point out that

the average localization error distance in this case, 0.37 m, is still rather good. We note

that different paths will lead to varying accuracies as different cells have exhibited

different classification accuracies.

In this study, we directly apply our approach to the mobile case without any mod-

ification. In our next step, we would like to investigate more sophisticated methods

such as taking into consideration the trajectory information.

2.5.8 Localizing Multiple Subjects When Subject Count Is Known

Next, we extend our method to localizing multiple subjects that coexist in a room if

we know the number of subjects. Here, we do not need to do any additional training,

Different Mobility Cell Estimation Average Localization
Path Accuracy (%) Error Distance (m)

Line 99.1 0.3

Real-life 91.1 0.37

Table 2.4: Localization results with two different mobility paths.
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and the original training data is sufficient.

In our method, we plug the measured data into the classifier, and retrieve the class

label which gives the maximum value from the discriminant functions to estimate the

cell number. Similarly, to localize n subjects, we just simply pick n class labels which

have the first n maximum values. For multiple subjects localization, we define the cell

estimation accuracy as the ratio of the number of the occupied cells that are correctly

estimated to the number of subjects. For instance, if there are three subjects and only

two of their three cells are correctly estimated, then the cell estimation accuracy will

be 66.7%.

We perform 32 independent tests, and show our results in table 2.5. As expected,

the cell estimation accuracy decreases when the number of people increases because

more people will cause a higher degree of uncertain interference with radio signals.

2.5.9 Deploying Our Method to a Larger Office Environment

Wehave shown that our localizationmethodworkswell in a home environment where

radio devices are installed on the walls. Next, we apply our method to a larger office

environment to show that it can easily scale to a different setting. In our experiments,

we deploy 13 transmitters and 9 receivers in the first author’s office, which is 10 × 15

m in size. In such an environment, localizing subjects at a 0.75 × 0.75 m cell granu-

larity is not needed; instead, a cubicle-size cell should be sufficient. Thus, we can still

partition the deployed area into 32 cells, as shown in figures 2.14(a) and 2.14(b). This

deployment has two main differences compared to our original deployment: hetero-

geneous cell sizes and random radio positions (i.e., not always on the walls). Using the

same method, our cell estimation accuracy is 93.8% and the average localization error

Number Cell Estimation Average Localization
of People Accuracy (%) Error Distance (m)

1 97.2 0.36

2 89.5 0.82

3 83.5 0.89

Table 2.5: Localization results with respect to number of people in the room when the
number is known.
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distance is 1.4 m. This degradation compared to the performance in the one-bedroom

apartment can be explained as follows. Intuitively, a larger cell involves more voxels,

which result in a large variance for each class. Therefore, for all the classes, there is a

higher probability that each pair-wise class will have a larger intersection area, which

leads to more classification error.

2.6 Related work

In this section, we discuss the related work in device-free passive localization (for

stationary subjects) and tracking (for mobile subjects).

Device-free Passive (DfP) Localization: Several DfP approaches have been proposed

in the literature. In [83, 62], DfP localization is done through fingerprint matching. A

passive radio map is constructed during the training phase by recording RSS measure-

ments with a subject standing at pre-determined locations. During the testing phase,

the subject appears in one of these locations, and the system can match the observed

RSS readings to the RSS readings from one of the trained locations based upon mini-

mum Euclidean distance. Our method shares the same philosophy with [83, 62] in that

multipath is so complex that we cannot understand the direct relationship between a

subject’s location and the radio signal changes. Instead, we have to train the system

first. However, minimum Euclidean distance is shown not to be as efficient as LDA

in classification in our study. Further, we have taken special care in the training phase

to minimize the RF signal variation within short distances to mitigate the multipath

effect. These measures are based upon our in-depth understanding of the radio prop-

agation properties and can lead to much improved localization results.

Radio tomography imaging [71] is a technique to reconstruct the tomographic im-

age for localizing device-free subjects. Here, the authors assume that the relationship

between a subject’ location and the radio signal variation can be mathematically mod-

eled. In [71, 11], based upon the shadowing effect (RSS is attenuated when the LoS

is blocked) caused by the subject, a linear attenuation model and a Sequential Monte

Carlo model are proposed respectively. This technique is unlikely to fare well in a
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Figure 2.14: In (a), we show the first author’s lab in which we deployed our system. In
(b), we show the experimental topology. The office deployment region is partitioned
into 32 cubicle-sized cells. Thirteen transmitters and nine receivers are deployed. We
show the cell boundaries in this plot.
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cluttered indoor environment because we observed that a person blocking the LoS can

only attenuate the RSS with a 50% probability (Section 2.2).

Device-free Passive Tracking: Several techniques have been proposed to track a mov-

ing subject in a passive fashion. In [85, 86], a grid sensor array is deployed on the

ceiling for the tracking purpose. An “influential” link is one whose RSS change ex-

ceeds a empirical threshold. The authors calculate a subject’s location based upon the

observation that these influential links tend to cluster around the subject. This work

is extended in [84] with triangle sensor array deployment and training information.

In VRTI [72], the authors leverage the RSS dynamics caused by the moving subject to

generate a radio tomographic imaging for tracking.

Finally, we would like to point out not only fingerprint-based schemes (including

ours) need a training phase, but other schemes such as radio tomography and grid

sensor array also need a training phase to determine a suitable threshold value to

detect if a subject is on the radio LoS.

2.7 Conclusion

In this chapter, we present the design, implementation, and evaluation of a device-free

passive localization method based on probabilistic classification. We compare three

discriminant analysis techniques and find that linear discriminant analysis (LDA) yields

much better localization results thanminimumEuclidean distance (MED) and quadratic

discriminant analysis (QDA). We also propose ways of mitigating the error caused by

multipath effect for better localization results, and approaches for correcting training

data to facilitate tests much later than the original training. We evaluate our method

in a real home environment, rich in multipath. We show that our system can success-

fully localize a subject with 97% cell estimation accuracy within 0.36 m error distance.

Through detailed experiments, we demonstrate that our method can achieve a basic

accuracy of over 97%. More importantly, it can maintain an accuracy of over 90%

with a substantial reduction in number of radio devices (from 16 down to 10), with far

fewer training samples (from 100 to only 16 per cell), or the use of a training set taken a
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month before testing. In addition, the basic system, without modification, can also be

used to track a moving subject or localize multiple subjects. Though originally tested

in a small apartment, it performs well in a larger commercial office space.
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Chapter 3

SCPL: Device-free Multi-Subject Counting and Localizing

Using Radio Signal Strength

In this chapter, we present SCPL, a framework aiming to count and localize multiple

people using radio signal strength at one time.

3.1 Introduction

Ambient Intelligence (AmI) envisions that future smart environments will be sensitive

and responsive to the presence of people, thereby enhancing everyday life. Potential

applications include eldercare, rescue operations, security enforcement, building oc-

cupancy statistics, etc. The key to enable these ubiquitous applications is the ability

to localize various subjects and objects in the environment of interest. Device-free

passive (DfP) localization has been proposed as a way of detecting and tracking sub-

jects without the need to carry any tags or devices. It has the additional advantage

of being unobtrusive while offering good privacy protection. Over the past decades,

researchers have studied ways of tracking device-free human subjects using different

techniques such as camera [31], capacitance [67], pressure [49], infrared [16] and ultra-

sonic [23]. However, they all suffer from serious limitations such as occlusion [31, 16],

high deployment cost [49, 67] or short range [23].

Radio frequency (RF)-based techniques have the advantages of long-range, low-

cost, and the ability to work through non-conducting walls and obstacles Several RF-

based DfP localization techniques have been proposed in [83, 85, 50, 43, 72, 11, 73, 78,

25], and these approaches observe how people disturb the pattern of radio waves in

an indoor space and derive their positions accordingly. To do so, they collect training
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data to profile the deployed area, and form mathematical models to relate observed

signal strength values to locations. DfP algorithms can be broadly categorized into two

groups: location-based, and link-based. Location-based DfP schemes collect a radio map

with the subject present in various predetermined locations, and then map the test lo-

cation to one of these trained locations based upon observed radio signals, which is

also known as fingerprinting, as studied in [83, 78]. Link-based DfP schemes, however,

capture the statistical relationship between the received signal strength (RSS) of a radio

link and whether the subject is on the Line-of-Sight (LoS) of the radio link, and conse-

quently determine the subject’s location using geometric approaches [85, 50, 11, 25].

Recognizing that merely tracking an individual might not be sufficient for typi-

cal indoor scenarios, researchers have been pushing a great amount of effort towards

scaling to multiple device-free subjects, such as in [86, 84, 45, 73, 78, 46]. They observe

the change of RSS mean or variance and propose different tracking algorithms. The

common thing missing is that the number of subjects is known, which is a strong as-

sumption. In addition, in cluttered indoor environments, subjects can cause collective

nonlinear fading effects, which might significantly degrade the tracking performance

and is not explicitly treated in the work above. On the other hand, location-based

schemes can be straightforward but prohibitive due to the exponential increase in the

training overhead if we need to profile the systemwith different combinations of these

subjects.

In this study, we propose and evaluate an efficient DfP scheme for tracking mul-

tiple subjects using the training data collected by a single subject to avoid expensive

training overhead.

Our algorithm consists of two phases. In the first phase, we count how many sub-

jects are present using successive cancellation in an iterative fashion. In each iteration,

we detect whether the room is empty. If it is not empty, we identify the location for

one subject, and then subtract her impact on the RSS values from the collective impact

measured in the experiment. Care must be taken when subtracting a subject’s impact

as the change in the RSS values caused by multiple subjects at the same time is smaller

than the sum of RSS changes from each individual subject. In order to compensate
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for this, we need to multiply a coefficient to a subject’s impact and then perform sub-

traction. The coefficient is specific to the subject’s location as well as the link under

consideration.

In the second phase, we localize the subjects after their number is known. We

partition the deployment area into cells and represent a subject’s location using its cell

number. We formulate the localization problem as a conditional random field (CRF)

by modeling indoor human trajectories as a state transition process and considering

mobility constraints such aswalls. We then identify the cells occupied by these subjects

simultaneously. Since our counting process is sequential and our localization process

is parallel, we call our algorithm SCPL.

We have tested SCPL in two indoor settings. The first setting is an office environ-

ment consisting of cubicles and narrow aisles, which is partitioned into 37 cells. We

used the 13 transmitters and 9 receivers that were deployed for some earlier projects.

The second setting is an open floor indoor environment, which is partitioned into 56

cells and deployed with 12 transmitters and 8 receivers. In the training phase, wemea-

sured the RSS values using a single subject. In the testing phase, we had four subjects

with different heights, weights and gender, and designed four different real life office

scenarios. These scenarios all had periods of time when multiple subjects walked side

by side and thus had overlapping trajectories. We can count the number of subjects

accurately, with a 88% counting percentage when the subjects were not walking side

by side, and a 80% counting percentage when they were.

Our localization results have good accuracies, with a average error distance of 1.3

m considering all the scenarios. We find that it is beneficial to consider indoor human

movement constraints according to the floormapwhen localizingmoving subjects and

demonstrate 24% improvement on average compared with no floor map information

provided.

Our technique, SCPL, is unique in at least four contributions: (i) to our knowledge,

it is the first work to systematically perform simultaneous counting and localization

for up to four device-free subjects (moving or stationary) in large-scale deployments

only using RF-based techniques; (ii) we designed a set of algorithms to count and
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localize multiple subjects relying on the calibration data collected by only a single

individual; (iii) We also use plausible trajectory constraints (e.g. not walking through

walls) based on floor map information, and integrate this information into the radio

calibration data to further improve the tracking accuracies; and (iv) we recognize the

nonlinear fading effects caused by multiple subjects in cluttered indoor environments,

and design the algorithms to mitigate the resulting error.

The rest of the chapter is organized as follows. In Section 3.2, we discuss the appli-

cations that benefit from passive localization as well as our solution framework. Our

solution consists of two phases, counting the number of subjects (in Section 3.3) and

localizing the subjects (in Section 3.4). Then we describe our experimental setup in

Section 3.5 and our detailed results in Section 3.6. We discuss the limitation and future

direction of our work in Section 3.7 and review the related work in Section 4.7. Finally,

we provide the concluding remarks in Section 3.9.

3.2 Background

Before presenting our SCPL algorithm, we first discuss potential applications and the

formulation of the problem.

3.2.1 Applications that Can Benefit from Passive Localization

Passive localization can find application in many important domains. Below we give

a few examples:

Elderly/Health Care: Elder people may fall down in their houses for various rea-

sons, such as tripping, momentary dizziness or overexertion. Without prompt

emergency care, this could lead to life-threatening scenarios. Using trajectory

based localization information, DfP can perform fall detection quickly because

the monitored subject will remain in an unusual location for a long period of

time.

Indoor Traffic Flow Statistics: Understanding patterns of human indoor movement
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can be valuable in identifying hot spots and corridors that help energy manage-

ment and commercial site selection. DfP provides a non-intrusive and private

solution to capturing indoor locations.

Home Security: DfP based home security is a major improvement over camera-based

intrusion detection because it can not only detect the intrusion, but also track the

intruders.

3.2.2 Problem Formulation

To solve the passive multi-subject localization problem, we adopt a cell-based finger-

printing approach, similar to the one discussed in [78].

Before we address the multi-subject problem, let us first look at how we localize a

single subject. We first partition the deployed area into K cells. In the training phase,

we first measure the ambient RSS values for L links when the room is empty. Then a

single subject appears in each cell, walks randomly within that cell and takes N RSS

measurements from all L radio links. By subtracting the ambient RSS vector from

the collected data, we have a profiling dataset D. D, a K × N × L matrix, quantifies

how much a single subject impacts the radio RSS values from each cell. Having this

profiling dataset D, we model the subject’s presence in cell i as state Si and thus D =

{DS1 ,DS2 , ...,DSK}. In the testing phase, we first measure the ambient RSS values when

the room is empty. Then a subject appears in a random location, and measures the

RSS values for all L links while making randommoves in that particular cell. Then we

subtract the ambient RSS vector from this measured data, and form an RSS vector, O,

which shows how much this subject impacts the radio links from this unknown cell.

Based on D and O, we can run classification algorithms to classify the cell number of

the unknown cell, thus localizing the subject.

Next we discuss howwe extend the same framework to formulate themulti-subject

localization problem. In the training phase, our objective is to still use a single subject’s

training data to keep the training overhead low. Taking the training data for different

number of subjects will lead to prohibitive overheads, which we will avoid. In the
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testing phase, multiple subjects appear in random cells, sometimes in the same cell,

and we measure the RSS values for all the radio links. We calculateO in the same way

as in the single-subject case.

To calculate the locations for these subjects, we need to go through two phases. In

the first phase, we identify the number of subjects that are present simultaneously, C,

which we call the counting phase. In the second phase, we identify in which cells are

these C subjects, which we call the localizing phase. Please note that subjects are not

stationary, but they move around within the deployed area.

3.3 Counting the Number of Subjects

In this section, we first provide empirical data to help the readers understand the im-

pact of havingmultiple subjects on the radio signals, especially nonlinear fading effect,

and then describe our sequential counting algorithm.

3.3.1 Understanding the Impact of Multiple Subjects on RSS Values

Let us first understand the relationship between a single subject’s impact on the room

RSS level and multiple subjects’ impact. In particular, we would like to find out

whether the relationship is linear.

As shown in previous studies such as [83, 85, 71, 11, 78], the RSS level of a radio

link changes when a subject is near its Line-of-Sight (LoS). Based on this observation,

we make a simple hypothesis: more subjects will not only affect a larger number of spatially

distributed radio links, but they will also lead to a higher level of RSS change on these links. If

this is true, we can infer the number of subjects that are present from the magnitude of

the RSS change that we observe in the deployed area. We use the sum of the individual

link RSS change to capture the total energy change in the environment as

γ =
L

∑
l=1

Ol ,

where Ol is the RSS change on link l.
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Next we look at how to capture the RSS change of link l. A straightforward metric

is to subtract the mean ambient RSS value for link l (when the room is empty) from

the measured mean RSS value for link l, the result of which is referred to as RSS mean

difference. RSS mean difference is a popular metric that has been used in several stud-

ies, e.g., as seen in [83, 71, 11, 78]. However, upon deliberation, we find that RSS mean

difference is not suitable for our purpose, mainly because the value is not always pos-

itive. Due to the multi-path effect, the presence of a subject does not always weaken

a link, but sometimes, it may actually strengthen a link! As a result, the RSS mean

difference can be negative. In this case, summing up each link’s RSS mean difference

does not lead to the correct total energy change in the environment because their val-

ues may cancel out each other. To address this issue, we thus propose to use absolute

RSS mean difference which has a more compact data space than RSS mean when a cell

is occupied.

Our experimental results confirm that the absolute RSS mean difference is a more

suitable metric. In this set of experiments, we collect the RSS values when there are 0, 1

and 2 subjects who make random movements (with pauses) in the deployed area. We

compute the corresponding γ value by using both RSS mean difference and absolute

RSS mean difference, and plot their histograms in Figures 3.1(a)-(b) respectively. In

Figure 3.1(a), when the room is empty, we observe γ values ∈ [−10, 10) which means

the overall energy level is rather stable. However, with 40% to 50% of chances, we still

observe γ ∈ [−10, 10)when subjects are present. This is because individual RSS mean

differences can cancel out each other, and thus their sum is not a good indicator of the

total energy change caused by having multiple subjects.

Absolute RSS mean difference is a better metric, as shown in Figure 3.1(b). The γ

value when there are two subjects is statistically greater than the γ value when there

is only one subject. As a result, in the rest of this chapter, unless explicitly noted, we

use absolute RSS mean difference as the metric to capture the RSS change in the envi-

ronment. Finally, we note that the γ value alone is inadequate to distinguish between

one or two subjects.

By looking at the two-subject data more carefully, we can further separate them
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Figure 3.1: In terms of overall energy change indicator γ, (a) “RSS Mean”, for zero,
one, and two subjects. (b) “Absolute RSS Mean” for the same measurement shows
better discrimination between zero and more than zero subjects.
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Figure 3.2: In terms of overall energy change indicator γ, Two subjects separated by
more than 4 meters are clearly distinguishable from one subject.

into two groups based on the distance between the subjects. If the distance is more

than 4 meters (we choose this threshold from the data sets), we call the two subjects

faraway, and call the subjects nearby if the distance is less. We then plot the histograms

of these groups in Figure 3.2. When subjects are close to each other, more links will

be affected by both subjects, and fewer links are affected by only one of the subjects.

Consequently, the γ value in this case will be smaller than the γ value when the two

subjects are farther apart. Furthermore, we point out that the γ value when we have C

subjects at the same time is smaller than the sum of the individual γ value from each

subject. As a result, it is hard to distinguish having two subjects close to each other

from having only one subject.

In summary, we have two main observations from these experiments. First, the

absolute RSS mean difference is a suitable metric to capture the impact caused by the

appearance of a subject. Second, the total energy change, γ, reflects the level of impact

subjects have in the room, but we cannot rely on the value of γ alone to infer howmany

subjects are present because γ is not linearly proportional to the number of subjects.
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3.3.2 Counting Subjects Using Successive Cancellation

We use successive cancellation to count the number of subjects. When multiple sub-

jects coexist, it often so happens that one subject has a stronger influence on the radio

signal than the rest. Thus, our counting algorithm goes through several rounds. In

each round, we estimate the strongest subject’s cell number in this round assuming

there is only a single subject, i, and then subtract her share of RSS change from the

remaining RSS vector O to obtain the new remaining RSS vector that will be used in

the next round.

If this problemwere linear, we could simply subtract the mean vector µi associated

with cell i in the profiling data D from the observed RSS vectorO. However, as shown

in the previous subsection, the total impact from multiple subjects is not linear to the

number of subjects – the impact observed when C subjects appear at the same time

is smaller than the sum of each subject’s impact if they appear one at at time. To be

more precise, O is an underestimation of the linear combination of the mean values of

the associated cells that we collected in D. To address this issue, instead of subtract-

ing µi directly from O, we multiply a coefficient that is less than 1 to µi and subtract

this normalized term from O. This coefficient, however, is not uniform across all the

cell and link combinations; instead, it is specific to each cell and link pair because dif-

ferent cells have different impacts on a link. We will then calculate the location-link

coefficient matrix, B = (βi,l) where βi,l is the coefficient for cell i and link l.

Our algorithm to calculate the coefficient matrix B is detailed in Algorithm 1. The

basic idea is that, for each link l, we compute the correlation between a cell pair, (i, j)

with respect to link l. The two cells that both are close to a link are highly correlated

with respect to this link. We use hlij to denote this correlation1. Note that all the RSS

values in profiling data are non-negative, and thus we have hlij ≥ 0. For each cell i, we

1Notice that we use correlation hlij instead of correlation coefficient ρlij because ρlii will always be 1

and thus guarantee its dominance among the all the cells on all the links when the cell i is detected first,
which is not true.
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pivot that cell and compute the βil as

βil =
hlii

√

K

∑
j=1

hlij
2

.

Basically, when two subjects occupy cells i and j respectively, and only one of them

affects link l, they have low correlation and the value of hlij is close to 0. On the other

hand, when they both affect link l, the value of hlij will reflect their positive correlation.

Algorithm 1: Location-Link Correlation Algorithm

input : D- The training data collected from L links among K states/cells
output: B - The location-link coefficient matrix

1 for l = 1→ L do
2 h← zero matrix of K× K
3 for i = 1→ K do
4 for j = 1→ K do
5 I ← training data indices associated with state Si
6 J ← training data indices associated with state Sj
7 // Compute the link correlation

8 hij ← E
[

D IlD Jl

]

9 for i = 1→ K do

10 norm f actor←

√

K

∑
j=1

hij
2

11 // Compute the location-link coefficient for cell i and link l

12 βil ←
hii

norm f actor

Once we determine the location-link coefficient matrix B, we describe our succes-

sive cancellation based counting algorithm (shown in Algorithm 2), which can identify

the subject count C from the observation RSS vector O using the profiling RSS matrix

D collected by a single subject. We first compute γ0’s and γ1’s from the ambient RSS

vector and the profiling RSS matrix D respectively. Then, we construct a 95% confi-

dence interval for the distribution of γ0’s and γ1’s and refer to the associated lower

and upper bounds as c0L, c
0
U , c

1
L, c

1
U . From the observation RSS vector, O, we first com-

pute its γ value and then perform a presence detection: if γ < c0U , we claim the room

is empty. Otherwise, we will claim there is at least one subject present and start to iter-

atively count the number of subjects using successive cancellation to finally determine
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the value of C.

In each successive cancellation iteration, we do the following:

• Presence Detection. We first perform a presence detection by checking if γ ≥ c1U

to find out whether there is any more subject in the room. Please note that this

condition is stronger than γ ≥ c0U , and we will take care of the last iteration

separately. If the presence detection returns a ‘yes’, we increment the detected

subject count C, and go to the next step. Otherwise, we end the algorithm.

• Cell Identification. If there is a subject in this iteration, we estimate the occupied

cell q by

q = argmax
i∈S

P(O|Si),

where S is the set of remaining unoccupied cells.

• Contribution Subtraction. Next, we cancel the impact of this subject from cell q by

subtracting µql · βql from Ol for each link l.

In the last round, we simply check if γ < c1U , which actually relax the lower bound

of γ1, which means we consider the possibility that when the last subject is detected

in our algorithm, the corresponding γ is lower than the c1L. This further compensates

for the over-subtraction in our earlier iterations.

3.4 LocalizingMultipleMoving SubjectsWhen the Subject Count is Known

In this section, we discuss how we localize multiple moving subjects when the subject

count is known. In SCPL, we track multiple subjects in parallel, unlike in the counting

phase where we count the number of subjects sequentially. Radio interference is very

complex and unpredictable, especially when multiple subjects are present and a link

is affected by multiple people. In this case, it is hard to quantify the exact impact of a

subject. Even after considering the cell link coefficient matrix B, we may still overesti-

mate (or, underestimate) a subject’s impact on a link. These errors, while insignificant

enough not to hurt the counting process, will lead to inferior localization results. On
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Algorithm 2: Successive Cancellation-Based Device-free Passive Counting Algo-
rithm
input : D- The training data collected from L links among K cells

S- The states {S1, ..., SK} associated with the K cells
O- The testing data collected from L links when subjects are in unknown

locations
B - The estimated location-link coefficient matrix generated from Algorithm 1
c0L, c

0
U- The lower and upper bounds of the 95% confidence interval when there

is no subjects in the deployed area
c1L, c

1
U- The lower and upper bounds of the 95% confidence interval when there

is one subject in the deployed area
output: C- The estimated number of subjects present in the deployed area

1 C← 0

2 γ←
L

∑
l=1

Ol

3 // Presence detection

4 if γ ≤ c0U then
5 return C;

6 // Count the present subjects
7 else
8 while true do
9 if γ ≥ c1U then
10 // Estimate the most likely occupied cell
11 q← argmaxi∈S P(O|Si)
12 // Remove the training data associated with the estimated cell in each

round
13 D ← D\Dq

14 S ← S\q
15 // Update the testing data by removing the partial impact caused by the

detected subject in each round
16 for l = 1→ L do

17 Ol ← Ol − βqlµql

18 C← C+ 1
19 // Update the overall affect energy indicator

20 γ←
L

∑
l=1

Ol

21 else if γ < c1U then
22 C← C+ 1
23 return C;
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the other hand, parallel tracking keeps all the raw RSS values and can provide better

results.

3.4.1 Understanding the Challenge of Localizing Multiple Subjects

Before presenting our localization algorithm, we first take a closer look at how mul-

tiple subjects collectively affect the RSS values and thus complicate the localization

problem through empirical data. The complexity of this problem mainly stems from

the multi-path effect [56], a typical error source in RF-based indoor localization. In

this problem, multi-path can cause nonlinear interference in a radio space when mul-

tiple subjects are present. More precisely, when multiple subjects coexist in different

locations, the resulting RSS value will not be simply the summation of the individual

RSS values from a single subject independently in those locations. The gap between

these two is larger when these subjects are close to each other. To validate this conjec-

ture, we randomly select a few positions with certain distances apart. We first have

one subject, A, collect the RSS measurements by standing stationary in these locations.

Then, we involve another subject, B with similar height and weight as A, and have

them stand in two different positions, say i and j. We useOi andOj to denote the mea-

sured RSS vector when A is standing in positions i and j independently, and Oij the

measured RSS vector when A and B are standing in positions i and j simultaneously.

In a linear space, vector Oij would be simply the summation of Oi and Oj. However,

as mentioned before, this problem is nonlinear, especially when subjects are close to

each other. To quantify the degree of nonlinearity, we define the RSS Error Residual as

∆Ol = Ol
ij −Ol

i −Ol
j,

for link l. A larger ∆Ol value indicates a higher non-linear degree. To articulate the

nonlinearity nature, we remove link l if its Ol
ij,O

l
i ,O

l
j values are all less than 1 because

these links are actually not affected by the subjects in any case. We plot the histograms

of the remaining Ol values in Figure 3.3.

From Figure 3.3, we have three main observations. Firstly, when the two subjects
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Figure 3.3: The RSS residual error forms a double-sided distribution when using RSS
mean, while it is approximately single-sided distributed using absolute RSS mean.
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stand side by side (i.e., the distance between them is 0 m), there are only about 30%

and 50% chances that we see |∆Ol | < 2 for RSS mean and absolute RSS mean re-

spectively, which validates our problem is indeed nonlinear. As the distance becomes

longer than 2 m, the probability of having |∆Ol | < 2 rises to more than 70% for both

RSS mean difference and absolute RSS mean difference. Secondly, the error residual

can be negative under RSS mean difference, but is positive under absolute RSS mean

difference in most cases, suggesting Oij is consistently an underestimation of Oi +Oj.

This property is desirable because it ensures Monotonicity.

Finally, we define the total RSS Error Residual as:

ε =
L

∑
l=1

|∆Ol |,

which measures the deviation between the profiling data and the RSS measurement

in a multi-subject problem. We plot the histogram in Figure 3.4 and observe that the

absolute RSS mean has a smaller ε value, and thus more appropriate for our purposes.
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3.4.2 Conditional Random Field Formulation

Tracking moving subjects actually introduces new optimization opportunities - we

can improve our localization results by considering the fact that human locations from

adjacent time intervals should form a continuous trajectory, which can be further mod-

eled as a state transition process under conditional random field (CRF) [32]. CRFs are

a type of discriminative undirected probabilistic graphical model. We use them to

decode the sequential RSS observations into continuous mobility trajectories.

The first step towards formulating a conditional random field is to form the sensor

model and transition model respectively. In our problem, we have K states: S =

{S1, S2, ..., SK}. In a single-subject problem, state Si means the subject is located in

cell i. The sensor model essentially infers the current state based on the observation

RSS vector O, which is to generate a cell likelihood map based upon O. For a single

subject case, we would like to maximize the likelihood P(q = Si|O,D) when cell i is

occupied. In other words, when the subject is located in cell i in the testing phase,

we would like to maximize the probability that the estimated state/cell q matches the

actually occupied cell i. We assume the observed RSS vectors in each state follow a

multivariate Gaussian with shared covariance, as in [78], and denote

δi (O) = P (O|Si) ,

where

P (O|Si) ∼ N (µi,Σ) .

However, the sensor model is imperfect because of the deep fading effect that can

cause estimation error through only a few links2. Therefore, the cell associated with

the maximum probability might be far from the ground truth.

Next, we look at the transition model. In each clock tick t = 1, 2, ..., T, the system

makes a transition to state qt. This process models the movement of a subject – the

2Because of deep fading from multipath, adjacent points can have dramatically different RSS values,
leading to large estimation errors.
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subject moves to a new cell in each tick. We choose a first order CRF, which means the

next cell number depends on the current cell number, rather than any earlier history

because we do not want to assume any specific human movement trajectories. In our

model, subjects can either walk along a straight line, take turns or wander back and

forth.

The subject’s trajectory can thus be characterized as a parametric Markov random

process with the transition model defined as the probability of a transition from state i

at time t− 1 to state j at time t in form of

T = P(qt|qt−1),

where

Tij = P(qt = Sj|qt−1 = Si).

The intuition here is that people cannot walk through walls or cross rooms in a

single tick. We believe these mobility constraints can be used to fix most of the errors

in the sensor model caused by deep fades.

In our cell-based approach, we define the following:

Cell neighbors are a list of adjacent cells which can be entered from the current cell

without violating mobility constraints.

Order of neighbor is defined as the number of cells a person must pass through to

reach a specific cell from the current cell without violating mobility constraints. We

assume the subject moves to a new cell every clock tick. For example, as far as cell i is

concerned, the 1-order neighbors include its immediate adjacent cells, and its 2-order

neighbors include the immediate adjacent cells of its 1-order neighbors (excluding i

and i’s first order neighbors).

Trajectory ringwith radius r is defined as the area consisting of cell i, i’s 1-order neigh-

bors, 2-order neighbors, ..., up to its r-order neighbors. Particularly, 0-order trajectory

ring consists of all the cells.

Let Ωr (i) be the cells included in i’s r-trajectory ring and let Nr (i) be the size of
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Ωr (i). Our transition model thus becomes:

Tij =







1
Nr(i)

for j ∈ Ωr (i)

0 for j /∈ Ωr (i)

3.4.3 Localization Algorithm

Having constructed the sensor model and transition model, we can translate the prob-

lem of subject tracking to the problem of finding the most likely sequence of state tran-

sitions in a continuous time stream. The Viterbi algorithm [19] defines Vj(t), the highest

probability of a single path of length t which accounts for the first t observations and

ends in state Sj:

Vj(t) = argmax
q1,q2,...,qt−1

P(q1q2...qt = j,O1O2...Ot|T, δ).

By induction

Vj(1) = δj(O1),

Vj(t+ 1) = argmax
i

Vi(t)Tijδj(Ot+1),

which is similar as discussed in [77].

Generalizing to themulti-subject case, we denote δ1:K(O) = {δ1(O), δ2(O), ..., δK(O)}

from the sensor model to represent the likelihood of each state. We denote Q =

{q1, ..., qC}, where C is the total number of present subjects. For the current state Qt,

we have (KC) possible permutations of subject locations. For each permutation j, we

denote Qj = {q
1, ..., qC} and compute the Viterbi score

Fj =
C

∑
i=1

δqit
(Ot)Tqit−1qit

.

We then pick the j value that is associated with the maximum Viterbi score as the

current state.

We describe our device-free multi-subject localization algorithm in Algorithm 3.
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We believe we can achieve best localization results when we consider 1 or 2-order tra-

jectory ring, which is better than the 0-order case used in our earlier work [78], and is

also confirmed by our experimental results presented in Section 3.6.

Algorithm 3: Trajectory-Based Device-free Multi-subject Localization Algorithm

input : D- The training data collected from L links among K cells
T- The transition model
O1:t- The testing data collected from L links when subjects are in unknown

locations
C- The estimated number of present subjects in the deployed area
Q1- The initial state(s) of the present subjects

output: Q1:t- The most like sequence of the trajectories of the present subjects

1 for i = 2→ t do
2 δ1:K(Oi)← P(Oi|D)

3 Π← is the set of all the possible permutations of (KC)
4 Qi ← argmaxj∈Π ViterbiScore(Qi−1,Qj, δ1:K(Oi), T)

3.5 Experimental Setup

In this section, we briefly describe the experimental setup, the data collection process

and the metric we use for performance evaluation.

3.5.1 System Description

The radio devices used in our experiments contain a Chipcon CC1100 radio transceiver

and a 16-bit Silicon Laboratories C8051-F321 microprocessor powered by a 20 mm di-

ameter lithium coin cell battery, the CR2032. The receivers have a USB connector for

loss-free data collection but are otherwise identical to the transmitters. In our exper-

iments, the radio operates in the unlicensed bands at 909.1 MHz. Transmitters use

MSK modulation, a 250 Kbps data rate, and a programmed output power of 0 dBm.

Each transmitter periodically broadcasts a 10-byte packet (8 bytes of sync and pream-

ble and 2 bytes of payload consisting of transmitter’s id and sequence number) every

100 millisecond. When the receiver receives a packet, it measures the RSS values and
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wraps the transmitter id, receiver id, RSS, timestamp (on the receiver side) into a “data

packet”. The packets are forwarded to a centralized systemwhere the data can be ana-

lyzed by independent “solvers” that perform various data processing functions. These

include packet loss calculations [18], mobility detection [29], counting, localization,

and data interpolation. More detail of the system can be found on the Owl Platform

website [1].

3.5.2 Data Collection

In our experiments, the RSS data is collected as a mean value over a 1 second window

for each link. We choose a 1 second window because a normal person can at most

walk across one cell during a second. In the training phase, a single subject made

random walk for 30 seconds in each cell and collected 30 RSS vectors as the profiling

data. In this testing phase, we designed four scenarios for each environment, and

in each scenario the subject(s) individually form a continuous mobility trajectory for

about 30 seconds. The subjects are walking at a speed of about 0.5 m per second. The

training phase was performed in the early morning while the testing phase happened

the afternoon of the same day.

3.5.3 Deployment Cost

In this study, we deployed our system in two different indoor settings which we will

shown in Section 3.6. Our “solver” is running on a laptop (Intel i7-640LM 2.13GHz,

8GB RAM). For the 150 m2 setting, it took 15 minutes to collect the training data, 0.003

seconds for the solver to fit the model parameters, and 3.4 seconds to compute the

location-link correlation coefficients. The second area was 2.7 times larger (400 m2),

but data collection only took 30 minutes, the solver was actually faster (0.002 seconds),

and the time to compute the correlation coefficients only increased by a factor of about

1.5 (5.3 seconds).
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3.5.4 Performance Metrics

We use the following performance metrics to measure our counting and localizing

algorithms.

Counting Percentage is given by:

1−
|Ĉ− C|

C
,

where Ĉ is the estimated subject count and C is the actual subject count.

Error Distance is defined as:

d(Q, Q̂) =
1

C
min
π∈Π

C

∑
i=1

d(qi, q̂π(i)),

where Π includes all the possible permutations of {1, 2, ...,C}, d(q, q̂) is the Euclidean

distance between the ground truth q and the estimated position q̂. Q = {q1, q2, ..., qC}

and Q̂ = {q̂1, q̂2, ..., q̂C} are within the pre-profiled finite states S = {S1, S2, ..., SK}. In

this study, q is the subject’s actual location and q̂ is her estimated location (i.e., center

of the estimated cell).

3.6 Experimental Results

In this section, we summarize the results we have obtained from two indoor settings.

In each setting, we had multiple subjects each walking along a trajectory.

3.6.1 Results from Office Setting

Our first setting is a typical office environment, consisting of cubicles and aisles with

a total area of 150 m2. The environment is quite cluttered as shown in Figure 3.5(a).

The area is broken down to 37 cells such as cubicles and aisle segments, as shown in

Figure 3.5(b). We utilized 13 radio transmitters and 9 radio receivers, whose locations

and corresponding link LoS’s are shown in Figure 3.5(c). Here, we need to point out

that these devices were installed for some earlier projects, not specifically for this one,
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Figure 3.5: In (a), we show the office inwhichwe deployed our system. In (b), we show
that the office deployment region is partitioned into 37 cubicle-sized cells of interest.
In (c), we show the locations of the pre-installed 13 radio transmitters, 9 radio receivers
and the corresponding Line-of-Sight links.

and therefore, the link density per cell is non-uniform. This, however, represents a

more realistic setting, through which we can show that SCPL can achieve good results

without dedicated sensor deployment.

We had four subjects (A, B, C andD) in this series of experiments. Wewent through

several example scenarios and illustrate them in Figure 3.6:

• One Subject Scenario: A left her boss’s office, and walked along the aisle to her

cubicle.

• Two Subject Scenario: When B entered the room, A was walking on the aisle to-

wards him. B waited until they met and walked together for some time, and

then separated to go back to their own seats.
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D

C

B

A

Figure 3.6: We show the experimental trajectories of subjects A, B, C and D in the office
setting. Note the the trajectories of A and B are partially overlapped at the same time.

• Three Subject Scenario: While A and B followed the movement patterns in the

above two subject scenario, C walked on the other aisle from one cubicle to an-

other.

• Four Subject Scenario: While A, B, and C followed the movement patterns in the

above three subject scenario, D was sitting on her seat.

Counting Results

The difficulty of subject counting increases when multiple subjects walk together (in

the same cell). Thus, we present our counting results in the following three ways:

(a) all the experimental data (referred to as mixed), (b) the experimental data for when

multiple subjects walked together and thus had overlapping trajectories (referred to as

overlap trajectory), and (c) the experimental data for when multiple subject trajectories

did not overlap (referred to as non-overlap trajectory). Figure 3.7 shows the counting

percentages in all three cases.

We observe that when we have multiple subjects, the counting percentage is higher
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Figure 3.7: In a multi-subject case, our counting algorithm has a better performance
when their trajectories are not overlapped than overlapped.

in the non-overlap trajectory case. The average counting percentage across all cases is

84%, the average counting percentage for non-overlap cases is 90%, and the average

counting percentage for overlap cases is 80%.

Next, we show the performance improvement of subtracting a normalized RSS

contribution by location-link coefficients compared to directly subtracting a cell’s mean

RSS change. We show the counting percentage results in these two cases in Figure 3.8.

When we have one or two subjects, the non-linearity is not very obvious, and these

two methods have very similar results. When we have more than two subjects, the

non-linearity of the signal change becomes very pronounced, and using a normalized

RSS contribution can yield better counting results. Specifically, we observe a 36% im-

provement with three subjects, and a 24% improvement with four subjects.

Finally, we show our subject counting results in Figure 3.9, in which all the four

tests last 32 seconds. In the single-subject case, we see two individuals, between time

tick 12 and 20. This is likely because there is an overestimate of γ near cells 13, 19, and

25, because of a denser than average link space or proximity to the receiver.

In the two-subject case, we under-estimate the subject count by one between time
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Figure 3.8: Counting percentage improvement when the RSS change is normalized by
location-link coefficients in the office setting.
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Figure 3.9: Estimated subject count over time using our successive cancellation-based
counting algorithm in the office setting.
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Figure 3.10: We achieve best localization accuracy averaging all the test cases when we
adopt 1 or 2-order trajectory rings in the office setting.

tick 10 and 26 because the two subjects merged their trajectories in those time periods.

The errors caused by temporally overlapping trajectories can also be easily addressed

as follows. We continuously run the counting algorithm, and once we notice the esti-

mated subject count suddenly drops, we check their locations before the sudden drop.

If no subject’s location was close to the exit, then we can conclude that two or more

(depending upon the change in the count) were in close proximity. Of course, this

information should be validated from the subject location information. For the three

subjects case, we see the same problemwhen subjects A and Bmerge their trajectories.

For the four subject case, this error is reduced a bit because subject D is always in cell

10, where has a relatively high density of radio links.

Localization Results

We show the mean of localization error distances in Figure 3.10 with different ring

order parameters. In our setting, we choose 10 as the upper bound of the ring order

because all cells are within 10 hops of each other.

Our first observation is that the use of the trajectory information can improve the
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localization performance by 13.6% – the overall mean localization error distance drops

from 1.25m (with 0-order trajectory ring) [78] to about 1.08m (with 1-order trajectory

ring). We note that the error distance for a single subject does not benefit from using

trajectory information because the profiling data is good enough for this case [83, 78].

Multiple subjects, especially when they are close to each other, will cause non-linear

radio interference, and thus the data collected from the mutually affected links alone

cannot give very accurate localization results. Therefore, the sensor model alone is

insufficient for high accuracies. Secondly, we observe that the localization results are

less accurate in those cells with lower radio link densities, such as in cell 34-37, be-

cause subjects may cause negligible changes to the RSS space at a few points in those

cells. Thirdly, trajectory information helps prevent the error distance increases dra-

matically as the increasing number of subjects. Finally, our environment is an office

space consisting of cubicles and aisles, and the possible paths a subject can take are

rather limited. As a result, we achieve the best localization accuracies with 1 or 2 or-

der trajectory ring. Due to the movement constraints, a higher order trajectory ring

has the same result as not considering any neighbors at all (i.e., 0 ring order). We hy-

pothesize that this may not be true in a more open indoor environment such as (large)

homes, malls and museums.

3.6.2 Results from Open Floor Space

The second test setting is a more open floor of total 400 m2, as shown in Figure 3.11(a).

We used this setting to model an open hall with a few posters on exhibition, and SCPL

can be used to detect traffic flow and infer the most popular poster. We deployed 12

transmitters and 8 receivers in such a way that the link density has a relatively even

distribution across the cells, as shown in Figure 3.11(b). We would like to point out

that we used fewer devices in this setting than in the previous one, though this one

had a larger area. Also, this environment is even more challenging in that half of the

radio devices are deployed on a wall which also has dozens of computers and other

metal parts, significantly degrading radio propagation.

The space was partitioned into a uniform grid of 56 cells, and we involved four
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Figure 3.11: In (a), we show the open floor space used for poster exhibition inwhichwe
deployed our system. In (b), we show the locations of the 12 radio transmitters, 8 radio
receivers and the corresponding Line-of-Sight links. In (c), we show the experimental
trajectories of subjects A, B, C and D in the open floor space which is partitioned into
a uniform grid of 56 cells.
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Figure 3.12: Counting percentage improvement when the RSS change is normalized
by location-link coefficients in the open floor space.

different subjects in this test and show their trajectories in Figure 3.11(c). We repeated

the same four scenarios as in the previous setting. We plot our counting results in

Figure 3.12. We achieve a 100% counting percentage when there was only a single

subject, which is better than the previous setting because the link density is more even

in this case.

We achieve a counting percentage of 83%, 80%, and 82% for two, three and four

subjects respectively, resulting in a 86% counting percentage in total. We have achieved

better results when we normalize a subject’s impact from a certain cell on the RSS with

the location-link coefficients. We observe similar trends as in the previous setting: the

results are the same for one or two subjects, and improved from 67% to 80%, and from

75% to 86% when we have three and four subjects, respectively. The estimated subject

is shown in Figure 3.13.

We present the localization results in Figure 3.14. In the localization part, we ob-

serve similar patterns as in the previous setting: we achieve better localization accu-

racy using trajectory information. We achieve the best localization accuracy when we

adopt the 2 order trajectory ring, which is 1.49 m, a 35% improved compared to the
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Figure 3.13: Estimated subject count over time using our successive cancellation-based
counting algorithm in the open floor space.

0-order trajectory ring case [78].

3.7 Limitations and Future Work

In this section, we discuss the limitation of SCPL.

3.7.1 Algorithms

Recognizing human mobility constraints in indoor environments leads to different

trajectory-based tracking optimizations. Under our framework of discretized physi-

cal space, our localization algorithm relies on a greedy search for the optimal solution

to find the most likely trajectories followed by the individuals. Unfortunately, this

has factorial computation complexity because it involves C-permutations of K3 and

potentially introduces prohibitive overhead to meet real-time requirements, especially

when K grows rapidly in a large-scale environment. However, as we observed from

the experimental results from the two different settings, we have achieved the best lo-

calization accuracies using only the 1 or 2-order trajectory ring, which means we can

3C is the subject count and K is the total number of cells.
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Figure 3.14: We consistently achieve best localization accuracy when we adopt 1 or
2-order trajectory rings in the open floor space

not only achieve good accuracy, but also significantly reduce the computational com-

plexity by reducing the permutation space from (KC) to (K
′

C ), where K′ is the cell union

of each individual’s 1 or 2-order trajectory rings. Under 1-order trajectory ring, it took

0.87 seconds and 0.88 seconds to count and localize four subjects in our two different

settings respectively. We would expect that it will take more than 1 second to track at

least five subjects, which fails to afford real-time tracking requirement with this hard-

ware. Another family of trajectory based tracking incorporates a particle filter [58],

such as the one used in [73, 45]. However, the primary weakness of particle filters is

the computational complexity required to run the algorithm for the large number of

particles needed to achieve accurate results. For example, 500 particles were needed

for tracking each individual and it took 7.6 seconds for four subjects in each time step,

as reported in [45]. Overall, there is plenty space to optimize the trade-off between

accuracy and computational cost in tracking multiple subjects for future work.
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3.7.2 Long-term Test

In a long-run test, any RF-based localization schemes suffer not only from temporal

fading, but also from environmental changes. A small piece of metal can change the

tuning of the antenna shift the radiation pattern or even the radio frequency of the

nearby transmitter or receiver. Either or both of these effects can change the under-

lying propagation pattern and, hence, the RSS values on the links. To avoid frequent

manual recalibration, we present two schemes in our earlier work [78, 79] to main-

tain the localization accuracy over a long-term test. In [78], we simply remove the

radio links experiencing deep fading by watching RSS values over time, which is able

to maintain a cell estimation accuracy of 90% over one month. In [79], we present a

camera-assisted auto recalibration –when the camera occasionally turns on, it localizes

the subject and calibrates the RF data automatically. Both schemes have limitations:

the performance of the first scheme will degrade when the number of remaining links

is too small, while the second one needs extra hardware. Realizing these limitations,

we will investigate sophisticated auto-calibration methods as part of the future work.

3.8 Related Work

In this section, we briefly review the related literature in RF-based counting and local-

izing device-free human subjects.

3.8.1 Device-Free Counting

Nakatsuka et al. [44] first demonstrated the feasibility of using radio signal strength to

estimate the crowd density. The authors setup two radio nodes and observe that RSS

decreases as the number of subjects increases when they are all sitting between the

nodes. We, however, point out that SCPL is the first work that systematically counts

device-free subjects in large scale deployment, to our best knowledge.
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Grid Array [84] RTI [25] NUZZER [62] SCPL
Meausred physical quantity RSS variance RSS attenuation RSS change RSS change
Non-LoS localization No Yes Yes Yes
Nodes density High High Low Median
Prior knowledge of node locations Yes Yes No No
Tracking static subjects No Yes Yes Yes
Deployment scale Median Small Large Large
Training overhead Low Low High Median

Table 3.1: Comparison of different RF-based passive localization systems.

3.8.2 Device-Free Localization

In 2006, Woyach et al. [74] first experimentally demonstrated the feasibility of local-

izing device-free subjects by observing a difference in RSS changes by a subject mov-

ing between (resulting signal shadowing effect) and in the vicinity (causing small-

scale fading) of a pair of transmitter and receiver. From then on, several DfP ap-

proaches have been proposed in the literature, which can be broadly categorized into

two groups as follows.

Location-based schemes: This approach is also known as “fingerprinting”, a popular

approach for RF-based localization. It was first studied in [83] in the context of pas-

sive localization. The authors first collect a radio map with the subject present in a

few predetermined locations, and then map the test location to one of these trained

locations based upon observed radio signals. This method explicitly measures the

multipath effect on RSS in each different position, and thus avoids modeling errors.

In addition, it does not require a node deployment as dense as in link-based schemes

because when the subject is in the position has no intersection with any radio LoS

links, the RSS ground truth still can provide a distinguishable record from other posi-

tions. This work is extended to a much larger deployment in Nuzzer [62]. In [78], Xu

et al. propose to formulate this localization problem into a probabilistic classification

problem and use a cell-based calibration with random walk method profiling the sys-

tem in order to mitigate the error caused by the multipath effect in cluttered indoor

environments, improve the localization accuracy and meanwhile reduce the profiling

overhead. However, the downside of fingerprinting is also evident: the calibration

procedure is relatively tedious.
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Link-based schemes: These techniques look for those radio links close to the target

subjects and further determine the locations of the targets based on the RSS dynam-

ics. Zhang et al. [85] set up a sensor grid array on the ceiling to track subjects on the

ground. An “influential” link is one whose RSS variance exceeds a empirical thresh-

old. The authors determine a subject’s location based upon the observation that these

influential links tend to cluster around the subject. This technique forms a consistent

link-based model to relate the subject’s location relative to the radio link locations.

In [86]. the authors extend their algorithms to track up to subjects separated by at least

5 m. In [84], the monitored area is partitioned into different triangle sections, and the

nodes in neighbor section are working at different communication channels to reduce

the interference among nodes. The authors applied support vector regression model

to track up to two subjects. The fundamental limitations of this series of work is that (i)

not all the monitored places have the facilities to mount nodes on the ceiling; (ii) this

work uses RSS variance as the data primitive, which is essentially the amplitude and

phase shift of the ground reflection multipath caused by the of human subjects only

in motion. In other words, the system might fail to work if the subjects stop walking.

Another sets of work following Link-based DfP is radio tomographic imaging (RTI).

Wilson et al. [71] use tomographic reconstruction to estimate an image of human pres-

ence in the deployment area of the network. RSS attenuation is used as data primitive

in [71], which effectively works in outdoor or uncluttered indoor space without rich

multipath. Recognizing the nature of multipath fading, Wilson et al. defined the con-

cept of fade-level [73], which captures the ambient RSS characteristics of each link and

categorize the links into deep fade (the RSS will increase on average when the LoS is

blocked) and anti-fade (the RSS decreases when the LoS is obstructed) through fitting

the calibration data to a skewed Laplace distribution. The authors demonstrate this

technique’s effectiveness through testing in same setting over time and a totally dif-

ferent setting without the effort of re-estimating the model parameters. Kaltiokallio et

al. [25] further exploit channel diversities to enhance the tracking accuracy. Taking the

framework of RTI, another sets of work is done based on sequential Monte Carlo sam-

pling techniques. Chen et al. [11] propose to use auxiliary particle filtering method to
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simultaneously localize the nodes and a single subject in an outdoor setting. In [66],

the author introduce a measurement model which assumes the attenuation in RSS due

to the simultaneous presence of multiple subjects on the LoS is approximately equal

to the sum of the attenuations caused by the individuals. This model is then applied

in [45, 46] for tracking up to four subjects in outdoor and indoor settings. In general,

link-based schemes have two advantages: (i) the algorithms are robust to the environ-

mental change because the subject’s location is directly estimated based on its relative

distance to each individual radio link LoS; (ii) it requires less calibration effort - only

sensor locations and ambient RSS for each link is needed. However, it requires a dense

nodes deployment to provide enough radio LoS links to cover all the physical space.

Finally, we summarize the differences between our system and the recent DfP RF-

based localization systems in Table 3.1.

3.9 Conclusion

In this chapter, we present SCPL, an accurate counting and localization system for

device-free subjects. We demonstrate the feasibility of using the profiling data col-

lected with only a single subject present to count and localize multiple subjects in

the same environment with no extra hardware or data collection. Through extensive

experimental results, we show that SCPL works well in two different typical indoor

environments of 150 m2 (office cubicles) and 400 m2 (open floor plan) deployed using

an infrastructure of only 20 to 22 devices. In both spaces, we can achieve about an 86%

average counting percentage and 1.3 m average localization error distance for up to 4

subjects. Finally, we shows that though a complex environment like the office cubicles

is expected to have worse radio propagation, we can leverage the increased mobility

constraints that go with a complex environment to maintain or even improve accuracy

in these situations.

Finally, we point out that if we rely on a single subject’s training data, the number

of subjects that can be accurately counted and localized is rather limited. We had

success with up to 4 subjects, but were not very successful with more subjects. In our
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future work, wewill look at howwe can accurately localize a larger number of subjects

with reasonable overheads.
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Chapter 4

Crowd++: Unsupervised Speaker Counting with Smartphones

In this chapter, we present SCPL, a framework aiming to count and localize multiple

people using radio signal strength at one time.

4.1 Introduction

The most direct form of social interaction occurs through the spoken language and

conversations. Given its importance, for decades scientists have proposed diverse

methodologies to analyze the audio recorded during people’s conversations to distill

the various attributes that characterize this particular social interaction. In addition

to the most obvious attributes of a conversation, i.e., its content [54], several types of

contextual cues have also received attention including speaker identification, conver-

sation turn-taking, and characterization of a social setting [14, 38, 24]. We, however,

note that one of the most important contextual attributes of a conversation, namely,

speaker count, has been largely overlooked. Speaker count specifies the number of

people that participate in a conversation, which is one of the primary metrics to eval-

uate a social setting: how crowded is a restaurant, how interactive is a lecture, or how

socially active is a person [53, 41]. In this chapter, we aim to accurately extract this

attribute from recorded audio data directly on off-the-shelf smartphones, without any

supervision, and in different use cases.

Most of the previous studies that focused on the extraction of conversation fea-

tures all share a common thread: they often require specialized hardware – such as

microphone arrays, external dongles pairing with mobile phones, or video cameras –

and complex machine learning algorithms built upon supervised training techniques
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requiring the collection of large and diverse data sets to bootstrap the classification

models. The support of powerful backend servers is also often needed to drive these

algorithms.

Given that smartphones are becoming increasingly powerful and ubiquitous, it is

natural to envision new social monitoring architectures, with the smartphones being

the only sensing and computing platform. In pursuit of these goals, we design a sys-

tem called Crowd++, where we exploit the audio from the smartphone’s microphone

to draw the social fingerprints of a place, an event, or a person. We do so by infer-

ring the number of people in a conversation – but not their identity – as well as their

interactions from the analysis of the voices contained in the audio captured by the

smartphones, without any prior knowledge of the speakers and their speech characteristics.

Audio inference from smartphones’ microphones has been previously used to char-

acterize places and events by picking up different sound cues in the environment [4].

However, for the first time, we show how to infer the number of speakers in a conver-

sation through voice analysis using the audio recorded on off-the-shelf smartphones.

Crowd++ is unique given its number of contributions: (i) it is entirely distributed,

with no infrastructure support; (ii) it applies completely unsupervised learning tech-

niques and no prior training is needed for the system to operate; (iii) it is self-contained,

in that, the sensing and machine learning computation takes place entirely and effi-

ciently on the smartphone itself as shown by our implementation on four different

Android smartphones and two tablet computers; (iv) it is accurate, as shown by ex-

periments where Crowd++ is used in challenging environments with different audio

characteristics – from quiet to noisy and loud – with the phone both inside and outside

a pocket, and very short audio recordings; and (v) it’s energy and resource-efficient.

In spite of Crowd++ not being perfect and potentially affected by limitations – the

count is based on active speakers and noise can possibly impact the count accuracy

– we still believe that ours is a competitive approach in many different application

scenarios. In the social realm for example: people are often interested in finding “so-

cial hotspots,” where occupants engage in different social behaviors: examples are

restaurants, bars, malls, and meeting rooms. What if we could know in advance the
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number of people in a certain bar or restaurant? It might help us make more informed

decisions as to which place to go.

While Crowd++ may be deemed only as an initial step, we show that faithful peo-

ple count estimates in conversations can nevertheless be achieved with sufficient ac-

curacy. We implement Crowd++ on four Android smartphones and two tablet com-

puters and collect over 1200 minutes of audio over the course of three months from

120 different people. The audio is recorded by Crowd++ in a range of different envi-

ronments, from quiet ones – home and office – to noisy places like restaurants, malls,

and public squares. We show that the average difference between the actual number

of speakers and the inferred count with Crowd++ is slightly over 1 for quiet environ-

ments, while being no larger than 2 in very noisy outdoor environments. We con-

jecture that this accuracy is adequate and meaningful for many applications – such

as social sensing applications, crowd monitoring and social hotspots characterization

just to name a few – that don’t necessitate exact figures but only accurate estimates.

4.2 Motivation and Challenges

Speaker count is an important type of contextual information about conversations.

Crowd++ is able to infer the number of speakers in a dialog without requiring any

prior knowledge of the speech characteristics of the involved people because of its un-

supervised nature. We believe that the ability to capture this information can support

different classes of applications, some of which are summarized below.

Crowd Estimation and Social Hotspots Discovery. With Crowd++ it would be pos-

sible to estimate the number of people talking in certain places, such as restaurants,

pubs, malls, or even corporate meeting rooms. This information is useful to assess the

occupancy status of these places.

One question that comes to mind is: Why do we need a solution like Crowd++ to

infer the number of people in a place? Wouldn’t be enough to simply count the num-

ber of WiFi devices associated with an access point, piggyback to a bluetooth scan

result, measure co-location, use computer vision techniques to analyze the number
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of people in video images, or even use active methods that require the transmission

and analysis of audio tones? The answers to these questions are quite straightforward:

none of these techniques in isolation is the solution to the problem. In order to read the

association table of an access point there is a need to have access to theWiFi infrastruc-

ture, which is often not allowed. Even if possible, a person with several WiFi devices

may generate false positives. A count based on the result of a bluetooth discovery [70]

is error-prone because of the likelihood of reaching out to distant devices. RF-based

device-free localization techniques [76] require the support of an infrastructure of sev-

eral radio devices. Acoustic-based counting engines as in [26] are error-prone because

of surrounding noise and audio sensitivity to clothes. Counting people through com-

puter vision techniques [10] requires customized infrastructure, suffers from privacy

concerns, and is limited by lighting condition. Crowd++ inference is instead based on

amuchmore localized event – speech – that can significantly scope the count inference

to specific geographic regions. It’s also passive, since no active sounds by the devices

need to be played.

We generally assume that people usually engage in conversations in social public

spaces such as restaurants, bars, or conference rooms. We also acknowledge that in

other places, such as subway stations or movie theaters, silence is predominant, mak-

ing it difficult for Crowd++ to properly operate. We, however, note that Crowd++

should not be deemed as a replacement of any of the existing approaches. Rather,

it should be seen as a complementary solution that can be useful to boost the crowd

count accuracy by working in concert with different techniques. Prior information

about a certain place – such as the average number of people attending the place –

combined with the properties of statistical sub-sampling can also be used to boost the

final count accuracy.

Personal Social Diary. Doctors analyze their patients’ social patterns to predict de-

pression or social isolation and take early actions. Rather than using ad-hoc hardware

as in [53], which could potentially perturb the quality of the measurements, Crowd++

is installed on the smartphones of people potentially affected by depression and oper-

ates unobtrusive monitoring in a muchmore scalable, and less invasive fashion. These



81

patients’ social pattern could in fact be drawn by the social engagement captured by

Crowd++ as the patients go about their daily lives.

Participant Engagement Estimation. What if a teacher could assess, after a lecture,

the level of engagement of their students by simply looking at the number of students

participating in discussions during the lecture and the frequency of the discussions?

This could be used as an indirect measure of the class engagement and of the teacher’s

effort in improving the quality of their teaching. Students would in turn be motivated

to run Crowd++ on their devices in order to share with their friends, and in turn ap-

prehend from other students, information on the most lively lecture on campus.

4.2.1 Challenges

As in other smartphone audio inference applications, Crowd++ is affected by some

challenges: the phone’s location, e.g., in or out of a pocket or bag, smartphone’s hard-

ware constraints, and noise polluting the audio are the main limiting factors. Despite

these limitations, we show through the development and evaluation of Crowd++ that

the system is able to efficiently and accurately perform speaker count in a diverse set

of environments and settings.

4.3 Privacy

It is quite natural to raise privacy concerns when doing audio analysis. These concerns

become more serious when the audio is captured with a smartphone, which is always

with the user, even in private spaces. With this in mind, we take specific steps to make

sure that users’ privacy is preserved.

Speakers’ identity is never revealed. Crowd++ isn’t able to associate a voice finger-

print to a specific person and it’s designed to only infer the number of different speak-

ers in an anonymized manner. Crowd++ could potentially identify only the phone’s

owner if the algorithm was actively trained to recognize the owner’s voice. Identi-

fication of the owner may be optionally added to either improve the speaker count

accuracy or in personal social diary applications.
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The audio analysis is always performed locally on devices in order to avoid sensi-

tive data leaks. The audio is deleted right after the audio features computation. Should

communication with backend be needed, the servers should be trusted and off-the-

shelf encryption methods for the communications should be put in place. Only fea-

tures extracted from the audio, rather than the raw audio itself, should be sent to the

server.

To guarantee the user’s privacy when the data is sent to a backend server and to

prevent attacks that exploit the audio features to reconstruct the original audio, mea-

sures such as the ones proposed by Liu et al. [34] should be put in place. In this work, it

is shown how to manipulate the features to a point that they are still effective for a ma-

chine learning algorithm to infer events while, however, obfuscating the underlying

content of the raw audio.

Finally, by giving users the ability to configure the application’s settings, Crowd++

should be allowed to work only in specific locations – say, in public places. Through

geo-fencing technologies, the application could be automatically activated and deacti-

vated as directed by the user’s pre-selected policies: e.g., activate it in the office and in

restaurants but not at home.

4.4 System Design

Crowd++ estimates the number of active speakers in a group of people. It consists

of three steps: (1) speech detection, (2) feature extraction, and (3) counting. In the speech

detection phase, we extract the speech segments from the audio data by filtering out

silence periods and background noise. In the feature extraction phase, we compute

the feature vectors from the active speech data. In the counting phase, we first se-

lect the distance function that is used to maximize the dissimilarity between different

speakers’ voice, and then apply an unsupervised learning technique that, operating on

the feature vectors with the support of the distance function, determines the speaker

count. An overview of the Crowd++ pipelined approach is shown in Figure 4.1.
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Figure 4.1: Crowd++ sequence of operations.

4.4.1 Speech Detection

As soon as an audio clip is recorded, we segment the clip into smaller segments of

equal length. Each segment, which is 3-second long, is the basic audio processing

unit. Through experimentation we find this duration to be acceptable for the trade-

off between inference delay and inference accuracy. It also captures adequately the

turn-taking pattern normally present in everyday conversations [38]. This choice is

also supported by previous studies showing that the median utterance duration of

telephone conversations between customers of a major U.S. phone company and its

customer service representatives is 2.74 seconds [60].

The result of the segmentation of an audio clip S is a sequence of N different seg-

ments, S = {S1, S2, ..., SN}. Next we filter out segments containing long periods of

silence or where noise is predominant. We use each segment’s pitch value for this
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(c) Three-second utterance

Figure 4.2: Cosine similarity distance demonstrates better speaker distinguishing ca-
pabilities with longer utterance.

purpose.

Pitch [64] is directly related to the speaker’s vocal cord, and therefore, by being

intimately connected with the speaker vocal trait, it’s robust against noise and other

external factors. Pitch has been widely used in speaker identification [7] and speaker

trait identification [36] problems. When estimated accurately, pitch information can

be used to assist the voice activity detection task in a noisy acoustic environment. In

this study, we select YIN [12], a time-domain pitch calculation algorithm based on

autocorrelation. While some other pitch estimation algorithms, such as Wu [75] and

SAcC [33], might exhibit better accuracy, YIN is simpler, more energy-efficient, and

robust to noise – hence more suitable for mobile devices.

Traditionally, energy-based methods such as the ones discussed in [20] have been

used for voice data detection, but they are unsuitable for processing audio collected

by smartphones. When recording audio, smartphones are usually placed at a certain

distance from the speakers. As a result, even in absence of speech, the ambient au-

dio energy could be high enough to trigger false positives in energy-based algorithms.
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Pitch, on the other hand, is a better alternative because human pitch is distinctly dif-

ferent than pitch obtained in absence of speech.

We then apply the pitch estimation algorithm on all the segments to only admit

those where the pitch falls within the range of 50 to 450 Hz, the typical pitch interval

for human voice [6]. In this way, we apply a filtering technique to remove all the seg-

ments with long periods of silence or background noise. We note that using pitch to

detect speech is not always the best approach because of pitch being only associated

with voiced phoneme. However, in our setting, each basic acoustic segment is 3 sec-

onds long with a probability of lack of voiced parts in such a time frame being quite

low. In our evaluation, we collected over 1200 minutes audio and verified that pitch is

a feasible solution for our purposes.

4.4.2 Speaker Distinguishing Features and System Calibration

Having filtered out the non-speech and background noise audio segments, our next

step is to extract the features that can efficiently distinguish speakers. We have ex-

plored various feature sets that are largely used in the speech processing community,

such as LPCC [40], RASTA [22], and different combinations of them. We find that

MFCC [15] and pitch, when used together, provide the best inference results. In the

following, we discuss the details on how these feature vectors are used in our counting

algorithm.

MFCC and its Distance Metric

MFCC is one of the most effective and general-purpose features in speech process-

ing [15]. In Crowd++, we use the coefficients between the 2nd and the 20th coefficient

in order not to model the DC (direct current) component of the audio from the first

coefficient. A 19-dimensional MFCC vector is then formed out of each 32 msec frame.

In order to perform the counting, we need to rely on a distance metric that allows

Crowd++ to distinguish speech from different speakers by comparing MFCC vectors

from different audio segments. An ideal distance metric should demonstrate a perfect
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discriminative capability when computed on data from two different speakers. After

investigating several common distance metric options – e.g., Average Linkage and 2-

Gaussian Mixture Model (GMM) Generalized Likelihood Ratio (GLR)1 – we find that

Cosine Similarity (CS) is the best candidate as it minimizes the computation overhead

in terms of real-time factor (RTF), defined as the processing time per second, and the

expected error probability (EEP) metric. The EEP is defined as:

∫ τ

−∞
p (x|ωd) dx+

∫ ∞

τ
p (x|ωs) dx,

where p (x|ωs) and p (x|ωd) represent, respectively, the probability density functions

(pdfs) of the distance from the same speaker and different speakers, and τ is the data

point where these two pdfs present the same value. Table 4.1 shows that the best

performance for both the RTF and EEP metrics is achieved using CS. This confirms

the superiority of the CS distance compared to a GMM approach, heavily used in the

literature in audio processing applications.

Distance Model EEP RTF

Cosine Similarity (CS) 0.1687 0.003

Average Linkage (AL) 0.5787 0.01

2-Gaussian Mixture Model (GMM) 0.5742 1.17

Table 4.1: Cosine Similarity outperforms Average linkage and 2-Gaussian Mixture
Model in terms of expected error probability (EEP) and real time factor (RTF) based
on 3-second utterances.

For the audio data processing, we partition the data into smaller segments, and

assume the speech within a segment belongs to the same speaker. We then calculate

the MFCC vectors for each segment and determine whether two segments belong to

the same speaker by looking at their distance. We plot the cosine similarity distance

density with different segment lengths (1, 2, 3 seconds) in Figure 4.2. We observe that

the size of the overlap decreases as the length of the segment increases, which confirms

the intuition that it is easier to distinguish multiple speakers when longer samples are

collected. Finally, Figure 4.2 also provides hints about the best possible CS distance

1We use 2-GMM because a higher order GMM fails to converge in the parameter fitting phase.
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threshold that allows the differentiation of different speakers.

Pitch and Gender Identification

In addition to assisting the speech detection process as discussed above, pitch can

also be used to identify the gender of the speaker because the most distinctive trait

between male and female voices is their fundamental frequency or pitch. The average

pitch for men falls between 100 and 146Hz, whereas for women it is usually between

188 and 221Hz, as demonstrated in [6]. By relying on gender identification, Crowd++

speaker count accuracy is increased because of its disambiguation role. For instance, if

two participants (one male and the other female) present similar MFCC features, their

pitch difference can help distinguish between the two.

4.4.3 Crowd++ Counting Engine

The last step is about the computation of the speaker count. Having extracted n dif-

ferent audio segments containing human voice, Crowd++ derives the feature vectors

from each segment. Let M1,M2, ...,Mn be the sequence of feature vectors for all the

segments, where Mi is the MFCC feature vectors for segment Si.

Our counting algorithm involves two rounds. In the first round, we aggregate

neighboring segments that produce similar features. Traditional speech processing

methods use agglomerative hierarchical clustering [27] that requires the comparison

between each segment with every other segment in the set, which incurs a computa-

tional complexity of O(n2). We instead employ a much more lightweight clustering

method, i.e., forward clustering, which needs to visit all the segments only once. In

forward clustering, we start from segment 1 (i.e., S1), and compare it against S2. If

their MFCC features are close enough, i.e., dCS(M1,M2) < θs, we merge these two seg-

ments into a new S1. Next we compare this new S1 with S3. If they are still similar, we

will merge them too. Otherwise, we stop comparing with S1, and begin to compare

S3 and S4. In contrast with hierarchical clustering, forward clustering incurs much

less computation and energy overhead given its linear time complexity O(n). The
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rationale behind forward clustering is that there usually exists temporal correlation

in speech – the likelihood of contiguous segments containing the same voice is high

when the segments are short enough. After running the forward clustering algorithm,

we have fewer and longer segments, to the result of the merging step. We also note

that longer segments have better performance in distinguishing different speakers and

further boost counting accuracy.

Let’s now denote with C the set of inferred speakers. When computing the distance

dCS(i, j) between two different feature vectors Mi (which is the MFCC vector from a

new segment i) and Nj (which is the MFCC vector of a previously inferred speaker, Cj)

we have three possible outcomes:

• Existing Speaker: If dCS(i, j) < θs and we infer a same gender, then we treat these

two voice segments as belonging to the same person, namely Cj. In this case, we

do not update C by adding new inferred speakers, but only update Cj’s MFCC

vector as Mi. If this condition is true for multiple existing speakers, we update

the MFCC of the speaker that gives the lowest CS distance.

• New Speaker: If dCS(i, j) > θd or different genders are inferred for all the members

in C, we then tag this voice data as from a new speaker, the |C|+ 1-th speaker,

and add it to the admitted crowd C, where |C| denotes the size of C.

• Uncertainty: If dCS(i, j) ≥ θs for all j’s but dCS(i, k) ≤ θd for some k (both j, k ≤

|C|), then we cannot decide whether this utterance is from an existing speaker or

a new speaker. In this case, we discard this data point.

The θs and θd thresholds are empirically determined in the calibration phase before

we conduct the evaluation. We note that the optimal threshold values may vary across

different phone models because the microphones have different internal sensitivity

levels. The choice of these two thresholds is driven by the desire to be conservative in

the discovery of new speakers while minimizing the number of false positives.

To summarize, our counting algorithm is designed to be robust and resource-aware.
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To this end, we rely on an energy efficient and noise-resilient pitch estimation algo-

rithm, and introduce the cosine similarity distance function, an efficient distance met-

ric at the core of our counting engine.

4.5 Evaluation

A detailed description of the Crowd++ evaluation results is presented in this section.

4.5.1 Crowd++ App Implementation

We have implemented Crowd++ on the Android platform using Java and installed it

on multiple smartphones – HTC EVO 4G, Samsung Galaxy S2, S3, Google Nexus 4, –

and tablets – Samsung Galaxy Tab 2 and Google Nexus 7. The raw audio is recorded

at an 8 KHz frequency, 16 bit pulse-code modulation (PCM). We use 32 msec hamming

window with 50% overlap for computing the MFCC, and the YIN pitch tracker. The

code base of Crowd++ has been optimized to minimize the CPU processing time and

energy consumption.

4.5.2 Energy Considerations

In Table 4.2, we report the latency for processing 1-second audio segments in terms of

MFCC and pitch computation, and the time needed to run the speaker count algorithm

on the different devices. The results show that Crowd++ execution time is fast, topping

320msec and only 171msec on a Galaxy S3. In addition, we demonstrate Crowd++ en-

ergy efficiency in a continuous sensing scenario. We adopt the duty-cycling approach

of recording for 5-minute followed by the speaker count algorithm and sleeping for T

minutes. We choose the Galaxy S2 phone and plot in Figure 4.3 the phone’s battery du-

ration as a function of the sleep time T between consecutive recordings (similar results

can be found for other devices). We observe that even with short sleeping intervals,

i.e., 15 minutes, the phone can last up to 23 hours. All the measurements are collected

with the WiFi service running in background on the phone. These battery durations

are all compatible with the use of a phone in a normal daily routine. It has to be noted
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Figure 4.3: A duty-cycle of 15 mins guarantees a one day battery life for the Samsung
Galaxy S2.

that these battery durations are achieved with a fixed duty-cycle policy, providing a

performance lower bound. Given that Crowd++ would mostly run in public spaces

only, longer sleeping intervals would extend the battery duration even further.

Latency HTC Samsung Samsung Google Google
(msec) EVO 4g Galaxy S2 Galaxy S3 Nexus 4 Nexus 7

MFCC 42.90 36.71 24.41 22.86 23.14

Pitch 102.71 80.36 58.11 47.93 58.33

Count 175.16 150.47 89.01 83.53 70.23

Total 320.77 267.54 171.53 154.32 151.7

Table 4.2: Average latency for processing 1-second audio for MFCC calculation, Pitch
calculation, and speaker counting using different phone models.

4.5.3 Performance Metric

We define Error Count Distance as |Ĉ − C|, where C is the actual number of speakers

and Ĉ is the estimated speaker count. The metric is calculated using the absolute value

of the error to avoid the terms canceling out because of their positive and negative

contributions. The average error count distance is a proxy for the Crowd++ count

accuracy.
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Figure 4.4: The phone placement in the benchmark experiments.

4.5.4 System Calibration

Before the feature computation of an arbitrary speech segment, we first need to set

appropriate values for the parameters required by the CS metric to properly operate.

For this purpose, we have performed a preliminary calibration phase at the beginning

of the study, where we collect audio from 10 participants (5 males and 5 females) from

different countries with different accents. To guarantee robust calibration, we use dif-

ferent phone models mentioned earlier with different placements (on the table and in

the pocket), different distances (in a range of 2 meters), and orientations with respect

to the speaker. We empirically chose 15 and 30, respectively, for the θs and θd thresh-

olds used by the cosine similarity distance metric introduced in the previous section.

θs and θd are chosen as the median value from p (x|ωs) and p (x|ωd), which is a little

off from τ mentioned earlier to filter out the speech containing overlap and pause.

4.5.5 Performance with a Single Group of Speakers

We first conduct a set of controlled experiments to benchmark the performance of

Crowd++. The experiment consists of 10 different sessions. The first session includes
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Figure 4.5: The counting accuracy does not vary much with the phone position on the
table.

one speaker, and the number of speakers is incremented by 1 in each following session.

As a result, the 10th session includes 10 speakers.

In each session, every speaker sits at an oval table and speaks in turns as in a

conversation. Figure 4.4 illustrates the experimental setting. We use 7 smartphones

for the audio recording – one smartphone (phone 0) is placed at the center of the table;

3 smartphones (phones 1-3) are placed on the table at a distance of 0.5 m, 1 m, and 1.5

m from the center; 3 smartphones (phones 4-6) are placed inside speakers’ pockets.

Counting Accuracy vs. Phone Position

During a conversation, phones are usually placed on the table. Therefore, we look at

how the phone’s position on the table affects the error count. The results are shown

in Figure 4.5. The results show that Crowd++ is rather robust against various conver-

sation group sizes and phone positions. The error count distance is usually within 1,

sometimes 2, and very rarely 3 (in 2 out of 40 cases). From this set of results, we can

draw the following conclusions: First, in a quiet indoor environment, Crowd++ gives

accurate speaker count estimates. Second, the phone’s position on the table does not

have an obvious impact on the inference accuracy.
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Figure 4.6: The phones on the table present a better counting accuracy than the phones
inside the pockets.

Counting Accuracy when Phones on Table vs. in Pocket

Figure 4.6 compares the mean error count distance for phones placed on the table

(namely, phones 1-3) and phones placed inside a pants pocket (namely, phones 4-6).

We find that in general, phones placed inside a pocket provide larger error count

distances, similar to the trend observed in earlier smartphone-based audio sensing

studies [42]. As a result, we suggest that in order to achieve accurate speaker count

estimates, users should place their phones on the table to extend the sensing range of

the microphone.

Counting Accuracy with Different Aggregation Methods

Given the proximity to the speakers, multiple phones record audio at the same time.

We exploit this redundancy and compare different ways of aggregating the results.

Specifically, we collect the speaker count estimates from all the 7 phones and show the
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devices.

mean, median and mode of all the samples in Figure 4.7. The results show that the

median and mode value give better speaker count estimates because they are more

robust to estimation errors, and mode is better than the median in most of the cases.

4.5.6 Performance with Multiple Groups

We now investigate the performance of Crowd++ when operating in an environment

where different groups of people are next to each other. This is the case of a restaurant

for example, with each table occupied by a number of people. In this case, the speech

from a nearby group could impact the results of the counting.

In order to demonstrate that Crowd++ can work in such a scenario, we have con-

ducted another benchmark experiment to mimic a restaurant setting by having two

and three groups of people talking at adjacent tables in the same room. Each group en-

tertains separate conversations occurring in parallel. For each group, two phones are
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Figure 4.8: The phones inside the pockets present better counting results when multi-
ple groups of speakers are co-located.

deployed: the first one held by one speaker and the second one in another speaker’s

pocket. In the two-group scenario, each group has 5 participants, while in the three-

group scenario each group has 3 participants. The groups are separated by a 3-meter

gap. We record 3 audio clips in each scenario.

We show the estimated speaker count in Figure 4.8. It is interesting to see that

when we have multiple groups talking at the same time, the phones in the pocket

have a slightly better performance. This is because the phone in the pocket is still able

to pick up the group members’ voice while filtering out – for the clothing muffling

effect – more distant sounds.

Overall, both the phones in each group are able to accurately estimate the speaker

count, with an average error distance of 1.5. It is important to realize that only 1 device

is sufficient in a group of people to infer the speaker count.
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In order to estimate the total number of people in a restaurant, our solution in-

volves having each group estimate its size, and then using the sum as the total people

count. In this experiment, we also evaluate the performance of this solution, which

is shown in Figure 4.8 as well. We find that the average error count distance is re-

ported 1 and 2 for the phones placed in the pockets or on the table. As a result, we

believe that our divide-and-conquer solution works well in practice, especially con-

sidering the privacy concerns involved in uploading the audio features to the cloud

for aggregation.

4.5.7 Performance with Various Conversation Parameters

In reality, many factors could impact the counting performance, such as utterance

length, overlapping speech, and the duration of the recorded audio clip. Precisely

controlling these parameters at the same time in real world experiments is often un-

feasible. For this reason, we follow a common approach in the speech community and

generate a separate dataset, as previously shown in [48]. Specifically, we collect audio

recordings from 4 male and 4 female participants using a smartphone. We ask each

speaker to talk for 3 minutes and record the audio clips. We then segment these clips

into smaller segments of random lengths and assemble them to generate audio data.

We model the utterance length as a random variable following a log-normal dis-

tribution with mean of δ and standard deviation of 1 according to the configurations

used in [60]. By default, each generated audio clip has 2, 4, 6, or 8 speakers, is 8 min-

utes long, no overlap, and is assigned a value of δ = 3.

Counting Accuracy with Audio Clip Duration

In this set of experiments, we vary the audio duration from 2, to 4, 6 and 8 minutes.

We report the average error count distances with these different audio durations in

Figure 4.9. The results show that to achieve a good counting accuracy, we need longer

audio clips. As shown in the plot, 8-minute audio clips are usually long enough to
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Figure 4.9: Eight-minute audioclips are sufficient to achieve an error count distance of
1.

achieve an average error count distance of 1. This is meaningful since we target the in-

ference in social spaces, where usually people tend to remain for more than 8 minutes.

Counting Accuracy with Overlapping Percentage

Earlier studies [9] show that conversations are often characterized by interruptions

of one speaker to another. In this set of experiments, we look at the impact of the

percentage of the overlapping speech. We vary the overlapping percentage from 0%,

5%, 10%, 20% to 40% and show the results in Figure 4.10. We find that the overlapping

percentage does not have a noticeable impact on the performance of Crowd++. Even

with overlaps of 40% the average error distance of Crowd++ is about 1.

Counting Accuracy with Utterance Length

In daily conversations, utterance duration can vary according to the setting: people

tend to be interrupted more frequently in casual chats and less in formal meetings. We
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Figure 4.10: The average counting error distance is around 1 with up to 40% overlap.

then look at the impact of the utterance length, which we make it of 1, 2, 3, 5, and 8

seconds. The average error count distance is shown in Figure 4.11. We observe that we

have slightly worse results when the utterance length is 1 or 2 seconds, shorter than the

processing unit of 3 seconds. Even so, the average error distance is 1.5. When the ut-

terance length is longer than 3 seconds, the average counting error distance decreases

to 1.

4.5.8 Large-scale Experiments

To demonstrate that Crowd++ can accurately count speakers in different conditions,

we have installed the app in six android devices and recruited six volunteers to col-

lect 109 different audio instances with 120 people speakers for a total of 1034 minutes

of recorded audio. The conversations are recorded during normal family and friend

interactions. In each setting, the participants are within 1 meter from the phone. We

can broadly group the audio clips into three categories based on the location of the
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Figure 4.11: Longer utterance lengths lead to slightly better counting performance.

recordings:

• Private Indoor Environments: In this category, audio clips are recorded in quiet

indoor environments, including seminar rooms, office and home during, respec-

tively, different events: meetings, lunch and home conversations. The phones are

placed on the table during the recording. In spite of these conversations taking

place in private indoor settings, background noise is still present, for example

paper flipping, door’s closing/opening, chair movement, etc.

• Public Indoor Environments: In this scenario, audio clips are recorded in different

public indoor environments when participants are sitting in restaurants, food

courts or moving in supermarkets and shopping malls. The phones are placed

in the pocket. The background noise in these environments is mainly generated

by surrounding people, music, and various service operations.

• Outdoor Environments: The last class of recordings are collected in outdoor places
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such as parking lots and restaurant outdoor seats, where the background noise

mainly comes from cars, wind and other activities. The phones are placed in the

pocket during recordings.

Private Indoor Environments

Speaker # Sample # Place SNR AECD AECP

2 4 Home 21 0 0%
3 11 Office 24.6 0.82 27.3%
4 8 Office 21.4 1.25 31.3%
5 7 Kitchen 20.9 1.28 25.6%
6 10 Kitchen 17.6 2 33%

Overall 40 Quiet Indoor 21.5 1.07 23.4%

Public Indoor Environments

Speaker # Sample # Place SNR AECD AECP

2 2 Restaurant 8.6 0 0%
3 6 Food Court 13.2 1.5 50%
4 7 Coffee Shop 8.2 1.86 46.5%
5 17 Shopping Mall 12.2 1.82 36.4%
7 12 Super Market 13.8 1.58 22.6%

Overall 44 Noisy Indoor 11.2 1.35 31.1%

Outdoor Environments

Speaker # Sample # Place SNR AECD AECP

2 4 Plaza 16.8 0.5 25%
3 6 Parking Lot 16.6 1.2 40%
4 7 Plaza 13 2.29 57.3%
5 2 Parking Lot 12.2 2.5 50%
6 6 Patio 13.9 2.67 44.5%

Overall 25 Noisy Outdoor 14.5 1.83 43.4%

Table 4.3: The detailed breakdown of the error counts for all the audio clips. We ob-
serve that average error count distances and average error count percentage for private
indoor is less than in public indoor, and outdoor environments.

Table 4.3 summarizes the signal-to-noise ratio (SNR) estimation [28], average error

count distance (AECD) and the average error count percentage (AECP)2 from all the

experiments. We observe a lower SNR and a higher AECD and AECP, when we move

from private indoor, to public indoor and outdoor environments. We also observe

that the error count increases when the crowd becomes larger because of more con-

flicting audio sources. The maximum AECD in private indoor scenarios is 2. In more

challenging environments, e.g., public indoors and outdoors, the accuracy degrades.

2An alternative counting performance metric, defined as
|Ĉ−C|

C .
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Being Crowd++ designed to infer social hotspots mainly indoors, we conjecture that

the indoor error range can be considered adequate for many applications.

4.5.9 Crowd++ Use Cases

Finally, to demonstrate the utility of Crowd++, we have implemented three proof-of-

concept use cases where knowing the number of speakers in a conversation is impor-

tant.

Where Is the Most Crowded Restaurant?

Crowd++ can be exercised to find the most crowded restaurant in the area. To provide

such a service, we envision there is at least one smartphone at each table running

Crowd++, which counts the number of people talking at the table. Then we calculate

the total number of people in the restaurant by summing up the people at each table.

In this study, we have recruited participants to record audio at four different restau-

rants, including formal restaurants, coffee shops, food courts in a mall and in a uni-

versity student center. The results are shown in Table 4.3 in the public indoor envi-

ronments section, where AECD is 1.3. We believe that this level of accuracy should

be adequate for this use case since, again, our goal is to infer an estimate of the count

in a lightweight manner. More accurate results could be achieved in cooperation with

other techniques.

Are you a social person?

In the second use case, Crowd++ can be used to build a person’s social diary – how

many people the person talks to, and at what time – which is particularly useful for

seniors or people with clinic depression.

In this study, we have recruited three participants, a teacher, a student, and a com-

pany employee, who have been using the SocialDiary app to record their conversation

log for a week. The SocialDiary app records audio every 2-hour for 8 minutes. We
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Figure 4.12: The social diary of a participant shows that he has different social patterns
on work days and weekends.

show the log for the student participant on a weekday and a weekend in Figure 4.12.

From the social diary, we observe that the student’s day starts much later on the week-

end. Also, he talks more in the morning and early afternoon on a weekday and at

more recreational events – lunch and dinner – during weekends.

Is your audience engaged?

In the third use case, we show that Crowd++ can be used to measure the level of

interaction of a lecture or seminar. Such a measurement could allow parents to be

aware of their kids’ participation in a classroom for example. Or it can be used to

annotate a seminar or lecture to fast forward to the part with more active discussions

when watching a video or audio recording of the event for example.

In this study, we record 2 regular classes and 2 recitation sessions at a university

campus and 4 seminars from an industry lab. Each recording lasts 60 minutes. We seg-

ment each audio into six 10-minute segments and estimate the speaker count in each

segment, as well as the total speaker count for the whole period. We show how the

speaker count varies as time progresses in Figure 4.13. We observe that the recitation
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Figure 4.13: Seminars and classroom lectures have different interaction patterns over
the time.

involves less interaction of all – the instructor spends most of the time showing how

to solve the homework problems on the blackboard. The regular class has a steady

interaction level throughout the duration, while the seminar presents more questions

at the beginning.

4.6 Discussion

A possible source of interference is voice generated by TV or radio equipment. Would

these background voices cause Crowd++ to over-count? The answer is no. Given the

audio modulation techniques applied to TV and radio broadcast it has been proven

that audio segments dominated by TV or radio sources can be effectively filtered

out [37]. When there is instead significant overlap between people’s live voices and

TV or radio audio, source separation can be performed [35].

We acknowledge that in some cases the accuracy of Crowd++ could be improved;

however, Crowd++ has been designed to perform people counting on mobile devices

with no infrastructure intervention and in an energy and resource-efficient manner.

Because of this, Crowd++ doesn’t rely on complex speech processing algorithms that
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would yield higher accuracy; its design favors efficiency and mobility support. We are

currently exploring further optimizations, such as sparse sampling techniques to re-

duce the computation overhead. Moreover, noise cancellation achieved with the mul-

tiple microphones that can be found in most recent smarpthones would likely provide

a further accuracy boost.

4.7 Related Work

We review the most relevant literature on smartphone audio inference applications

and speaker count techniques.

4.7.1 Audio Sensing and Inference on Smartphones

A large body of research demonstrates the use of the mobile phone’s microphone to

opportunistically analyze audio for event and context characterization. Examples of

smartphone context-aware applications are Darwin [42] and SpeakerSense [38] to per-

form speaker identification. SurroundSense [4] analyzes audio events for place fin-

gerprinting. The EmotionSense project [55] demonstrates the possibility to classify

humans’ emotions through audio analysis. Ambient noise is leveraged to improve in-

door localization results in [65]. All these projects have often in common the use of

cumbersome supervised learning approaches, the use of external hardware in some

cases, and the need to rely on external servers to operate the learning process. In

contrast, Crowd++ is entirely unsupervised, with sensing and processing entirely oc-

curring on the mobile device itself.

4.7.2 Speaker Counting

Some speaker counting techniques can be found in the literature. The closest related

research to Crowd++ is [2] and [48]. Agneessens et al. [2] present a pitch estimation

algorithm to recognize a single speaker from audio recordings containing two speak-

ers with 70% of the times correctly estimate the speaker count (referred to as counting

accuracy). Crowd++ goes beyond this binary classification approach by tackling a



105

much harder problem, where the number of speakers is up to 10 or even more. More-

over, Crowd++ runs an unsupervised learning algorithm without taking any training

data from the target speakers. Ofoegbu et al. [48] present 60% counting accuracy for

4 speakers (versus Crowd++’s 68% counting accuracy under the same conditions and

settings) and a generalized residual radio algorithm with a computational complex-

ity of O(N2) (versus Crowd++’s O(N)). Moreover, the data set in [48] is based on

staged data from the HTIMIT database [57] containing transcribed speech of Amer-

ican English speakers. Crowd++’s focus instead is the analysis of audio recordings

challenged by noise, mobility and obstacles as people go about their daily lives. An-

other relevant technique is speaker diarization [3], which essentially determines “who

spoke when” in an audio recording that contains an unknown amount of speech and

also an unknown number of speakers. However, the main objective of diarization is

to cluster the homogeneous speech rather than determine the optimal number of clus-

ters. In addition, it usually relies on computationally expensive models (GMM,HMM)

and algorithms (BIC, MCMC), which are not suitable for off-the-shelf smartphones.

4.8 Conclusion and Future Work

In this chapter, we presented Crowd++, a scalable and energy efficient speaker count

application for smartphones based on the microphone’s audio analysis. Crowd++ is

novel in many dimensions: it is completely unsupervised and no prior models or ex-

ternal hardware are necessary to operate. It doesn’t require any infrastructure and

runs entirely on the mobile device. We implemented Crowd++ on different Android

platforms and showed, through solid experimentation, that Crowd++ presents ad-

equate inference accuracy in many diverse conditions, from quiet to noisy environ-

ments. In contrast to more complex and less scalable counting techniques, Crowd++

is a lightweight approach that can support many different application scenarios: from

social sensing – to determine social hotspots – to personal wellbeing assessment and

social diary, place characterization, and more accurate localization techniques.
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Chapter 5

Conclusion

5.1 Summary

In conclusion, this dissertation investigates unobtrusive human context learning tech-

niques. Specifically, we make the following contributions:

• PC-DfP: By observing and utilizing how human interferes with radio frequency

based wireless signal in indoor environments, we designed and developed a

wireless embedded networked sensor system to track an individual’s location,

trajectory and speed without requiring him/her to carry any devices. We de-

veloped approaches that mitigate the errors caused by the multipaths in indoor

radio propagation and reduce the human calibration effort.

• SCPL: Next, based upon how multiple people disturb the radio signals when

they co-exist in an indoor environment, we designed a set of algorithms to count

the number of people and localize them using the calibration data collected with

only one person. In addition, we incorporated the map information, explored

the humanmobility constraints in typical indoor settings to improve the tracking

accuracies.

• Crowd++: We designed and implemented a mobile application that records a

conversation, extracts the speaker-independent features and automatically counts

the number of speakers in an unsupervised manner. This new context infor-

mation (speaker count) enables a number of social sensing applications such as

crowd estimation, social isolation detection and event engagement level estima-

tion.
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5.2 End Note

Looking forward, with the vision of “internet of things”, there will be numerous small

form-of-factor devices anywhere in our ambient living environments. They are not

only coming with their own utilities to improve our daily life, but also leading to new

sensing modalities. On the other side, the increasing number of such ambient devices

should facilitate easier human intervention. Thus, the benefit of a technology would

not come at the cost of inconvenience to the end users. While this dissertation takes the

first few steps in this direction, enriching applications in this domain remains an open

problem. Sensing gesture, gait, fall and emotion in unobtrusive manners are of great

value, and the ability to accurately detect them is one important step towards realizing

technology-assisted life style and wellbeing. For example, gesture detection is impor-

tant as people send commands to and interact with others through gestures; the study

of gait allows diagnoses and intervention strategies to be made to people who have

problems walking, as well as permitting future developments in technology-enhanced

rehabilitation; a fall can lead to severe injuries, and even death, especially for elders,

and thus it is extremely important to develop device-free techniques for fall detection;

a person’s emotional state has a great impact on his/her wellbeing, and the ability to

detect what causes a person’s emotional swing usingmobile computing will be impor-

tant to explore. Ultimately, all the immersive ambient technology will transparently

monitor our behavior, adapt to our needs, and help actively manage our life.
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