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ABSTRACT OF THE DISSERTATION 

 
 

Extended Bootlier Procedure for Detection of  

Outliers in Univariate Samples and Linear  

Regression Analysis 

By Yi Xia 

Dissertation Director: Professor Minge Xie 

 

Determining if a dataset has one or more outliers is a fundamental and 

challenging problem in statistical analysis. This dissertation introduces a 

statistical framework that addresses two well-known problems in the outlier 

analysis.  The first problem (Problem 1) is to detect outliers in independent and 

identically distributed univariate samples, which is the basic setting of outlier 

problem. The second problem (Problem 2) is to detect outliers and influential 

observations in the linear regression analysis, which is a major topic in linear 

regression model diagnostics and represents a more complete setting.  

The proposed framework is motivated by a graphic outlier detection method 

proposed recently for Problem 1.  It is observed in bootstrapping that some 

bootstrap samples contain outliers while others do not, when outliers are present 

in a sample.  Based on this observation, the method discovers that a bootstrap 

sample statistic (termed “mean – trimmed mean”) is sensitive to outliers, and 

particularly its histogram is multimodal in the presence of outliers.  Consequently 

outliers are detected by plotting and visually checking the histogram.  Considering 

that method captures the essence of outliers that the researches often call, the 

proposed framework further develops it to a complete inference procedure by 
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constructing a formal statistical test based on a quantitative index that measures 

the degree of outliers effect.  The proposed framework is first developed to 

address Problem 1.  A procedure with a formal test is detailed and the large 

sample theory is developed to support the proposed procedure.  Then, the 

procedure is extended to linear regression to address Problem 2.  The measures 

for outliers and influential observations, including several residuals and a square-

root version of Cook’s distance, are discussed, and large sample theory is 

developed for such non-independent case.  In addressing both problems, the 

simulation studies are conducted and real data examples are explored to show the 

wide-range application of the proposed framework.  In particular, the comparison 

with other commonly used methods in the simulation studies demonstrates the 

overall advantage of the proposed framework. 
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CHAPTER 1    

INTRODUCTION 

 

Outliers present a fundamental problem in statistical data analysis.  Although many 

statistical theories and methods for detection and handling of outliers have been 

proposed, it still remains an interesting research topic.  Among the recent developments, 

Singh and Xie (2003) propose a non-parametric and graphic method for the detection of 

outliers in the independent and identically distributed (i.i.d.) univariate sample, the basic 

setting of the outlier problem.  Considering that method captures the essence of outliers 

that researchers often call, this dissertation proposes a statistical framework that extends 

the graphic method to a more complete inference procedure by constructing a formal test 

based on a quantitative measure to detect outliers in the i.i.d. univariate sample.  Another 

more complicated and well-known outlier problem is to detect outliers and influential 

observations in linear regression analysis, which Barnett and Levis (1994) describe as a 

“structured data” case.  With the modifications, the proposed statistical framework is 

extended to the regression setting to detect outliers and influential observations by 

analyzing different residuals and influential measures.  In summary, this dissertation is 

aiming to solve the following two well-defined problems. 

 Problem 1. To detect outliers in the independent and identically distributed 

univariate data 

 Problem 2.  To detect outliers and influential observations in linear regression 

analysis 

Detection of outliers in i.i.d. univariate data is a basic problem in the analysis of 

outliers.  The methods commonly used in the real data analysis are developed mostly in 

the last century.  Examples of these outliers detection methods include the well-known 

box-plot and interquartile range (IQR) method with a classification of outlier as 

mild/extreme ones (NIST/SEMATECH, 2012), the modified IQR method (Barbato et al. 
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2011), Grubbs’ test (Grubb 1969), a general extreme studentized deviate (ESD) test 

(Rosner 1983), and Dixon’s Q test (Dixon 1950, 1951).  Barbato et al. (2011) provide a 

complete review of these outlier detection methods.  Although these methods are often 

used in the exploratory setting without considering the underlying distribution of the 

sample, they are developed under the assumption of normally distributed data.  Therefore 

they often exhibit higher false positive rate when normality assumption does not hold.  

Other limitations include not taking sample size into account or only applying to small 

samples.  For example, IQR method is not adjusted to sample size and Dixon’s Q test is 

appropriate for sample size no more than 40.  Among the outlier detection methods 

proposed in the recent years, Bootlier plot (Singh and Xie 2003) provides a non-

parametric and graphic way to detect outliers using the bootstrapping technique.  Singh 

and Xie (2003) prove that the limiting distribution of a bootstrap sample statistic “mean – 

trimmed mean” is expressed as a mixture of normal distributions with multiple modes 

when the sample has outliers.  Therefore detecting outliers is equivalent to checking 

multimodality in the density plot (a bootstrap histogram) of that bootstrap sample 

statistic.  By plotting and checking the bumpiness of the density plot, one can infer the 

presence of outliers in the sample.  A quantitative measure “Bootlier index” is introduced 

by Singh and Xie (2003) to measure the degree of bumpiness of the density plot, and is 

used to screen multiple plots to identify those bumpy ones.  The empirical thresholds are 

suggested, but no further utilization of this index is discussed. 

The identifying outliers and influential observations in linear regression analysis, as a 

major topic of linear regression model diagnostics, is a more complicated problem in the 

outlier analysis.  There is, of course, a vast literature on the detection of outliers and 

influential observations in linear regression analysis; see Beckman and Cook (1983), and 

Barnett and Levis (1994).  The topic is present in almost every textbook of linear 

regression model.  The current methods are generally classified into two groups, namely 

the graphical and the analytical methods.  The graphic methods usually display different 

statistics measuring the degree of departure of outliers or influential observations from 

other data points.  These graphic methods include scatter plot, residual plot, box-plot and 

normality plot.  The analytical methods include various discordancy tests based on 

different residuals and influence measures.  Chatterjee and Hadi (1986) have a complete 
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review of the measures and discordancy tests based on those measures.  Some 

discordancy tests are discussed in Barnett and Levis (1994).  

In this dissertation, we develop a statistical inference framework, named extended 

Bootlier procedure, to address the above two problems.  

 To address the first problem, we obtain the density plot of the bootstrap sample 

statistic “mean – trimmed mean” and Bootlier index of the density plot (referred 

as sample Bootlier index hereafter) from the given data.  We then construct a 

formal statistical test for the presence of outliers using sample Bootlier index as 

the test statistic.  Assuming the underlying distribution of the data is known, we 

estimate the null distribution of sample Bootlier index by a simulation method, 

and obtain P-value for the test.  When the underlying distribution is unknown, the 

test is repeated assuming data is from several representative distributions to 

provide the reference lines.  We illustrate the wide-range applications of extended 

Bootlier procedure by simulation studies and two real data examples.  In 

particular, the comparison with other commonly used outlier detection methods in 

the simulation studies demonstrates the overall advantage of extended Bootlier 

procedure.  The large sample theory that generalizes the results of Singh and Xie 

(2003) is developed to support the proposed framework.  The general results also 

answer a question for the choice of bootstrap sample size when the sample has 

multiple outliers, which is not addressed in the original results.  These 

developments are presented in Chapter 2. 

 To address the second problem, we extend the proposed procedure in Chapter 2 to 

the residuals and influential measures from regression model fitting.  The outliers 

and influential observations are detected by analyzing the outliers in the residuals 

and influential measures.  In the analysis of outliers, the ordinary residuals, 

studentized residuals, and studentized deletion results are suggested, while a 

square-root version of Cook’s distance (SRCD) is proposed to analyze influential 

observations.  While the large sample theory that explains the association between 

the sample Bootlier index and the outliers is provided for i.i.d. univariate data in 

Chapter 2, we develop similar results for the residuals and SRCD because they are 
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dependent.  The proposed framework is illustrated through simulation studies and 

a real data example to show its usefulness.  In particular, we show that the 

extended Bootlier procedure has a lower false positive rate compared with other 

commonly used methods when the distribution of error terms deviates from 

normal with high probability in its tail.  These developments are presented in 

Chapter 3. 

 To facilitate the use of proposed extended Bootlier procedure, we develop R/C 

functions in Chapter 4. 
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CHAPTER 2    

EXTENDED BOOTLIER PROCEDURE – A BOOTSTRAP-

BASED METHOD FOR OUTLIERS DETECTION 

 

ABSTRACT 

Detecting outliers in a sample is a fundamental and challenging problem in 

statistical analysis.  This chapter introduces a bootstrap-based statistical 

framework to detect outliers in an independent and identically distributed 

univariate sample.  The framework extends a graphic outlier detection method, 

the Bootlier plot, to a complete inference procedure by constructing a formal 

statistical test based on a quantitative index that measures the degree of outlier 

effect.  The large sample theory for general case of multiple outliers is developed 

as the support of the proposed framework, which also addresses the issue of 

bootstrap sample size selection.  The proposed framework is illustrated through 

simulation studies for various scenarios which include multiple outliers, heavy-

tailed distributions and large samples to show its wide-range applications.  In 

particular, the comparison with other common outlier detection methods in the 

simulation studies shows the overall advantages of proposed framework.  Two 

real data examples which include temperature data of space shuttle Challenger 

and natality data are explored to show its usefulness.    

Keywords: outlier; bootstrap; density estimation; mean – trimmed mean; large 

sample theory, Bootlier index 

2.1   INTRODUCTION  

This chapter develops a bootstrap-based statistical framework for detecting outliers in an 

independent and identically distributed (i.i.d.) univariate sample.  Suppose we have a 
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sample   {            } from a distribution   with finite variance (    ) that may 

or may not contain outliers.  A basic observation in bootstrapping is that, when outliers 

are present in  , some bootstrap samples contain outliers while others do not.  Motivated 

by this observation, Singh and Xie (2003) discover that a bootstrap sample statistic 

presents multimodality in its density plot (a bootstrap histogram), and propose a graphic 

outliers detection method (Bootlier plot) by drawing the density plot of the statistic and 

checking its multimodality to infer the presence of outliers.  Using the fact that this 

method captures the essence of outliers, this chapter further develops a formal testing 

procedure based on a quantitative index that measures multimodality of the density plot 

for detection of outliers.  The large sample theory is developed for general case of 

multiple outliers, which generalizes the results developed by Singh and Xie (2003).  

These are the main focuses of this chapter.     

Detection of outliers is a fundamental problem in statistical analysis.  While the 

statistical theories and methodologies aiming at drawing valid inference irrespective of 

the presence of outliers, as one of two main focuses of handling of outliers according to 

Barnett and Levis (1994), evolve remarkably in the past few years, those for detection of 

outliers, as the other focus, do not have such rapid growth.  The methods commonly used 

in the real data analysis nowadays are developed mostly in the last century.  Examples of 

these outlier detection methods include the well-known box-plot and interquartile range 

(IQR) method with a further classification of outlier as mild/extreme ones 

(NIST/SEMATECH 2012), the modified IQR method (Barbato et al. 2011), Grubbs’ test 

(Grubb 1969), a general extreme studentized deviate (ESD) test (Rosner 1983), and 

Dixon’s Q test (Dixon 1950, 1951).  Barbato et al. (2011) provides a complete review of 

these outlier detection methods.  Although these outlier detection methods are often used 

in the exploratory setting without considering the underlying distribution of the sample, 

they are developed assuming that the data are normal.  Therefore they often exhibit 

higher false positive rate when the normality assumption does not hold.  Some of these 

methods (for example, the IQR method) do not taking sample size into account, and 

others (for example, Dixon’s Q test) are appropriate for sample sizes no more than 40.   
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Among the outlier detection methods proposed in the recent years, the Bootlier plot 

(Singh and Xie 2003) provides a non-parametric and graphic way to detect outliers in the 

i.i.d. univariate sample utilizing the bootstrap technique.  Suppose {  
    

      
 } is a 

bootstrap sample from {            }.  The Bootlier plot method discovers that a sample 

statistic of {  
    

      
 }, named “mean – trimmed mean” (referred to as MTM 

hereafter), presents multimodality (or bumpiness in layman’s language) in its density plot 

when the data has outliers, and we draw a number of bootstrap samples.  Therefore by 

plotting and checking the bumpiness of the density plot, one can infer the presence of 

outliers in the sample.  Singh and Xie (2003) prove that the limiting distribution of MTM 

can be expressed as a mixture of normal distributions when a single outlier is present in 

the data.  However, the general case of multiple outliers is not discussed.  A quantitative 

measure “Bootlier index” is introduced by Singh and Xie (2003) to measure the degree of 

bumpiness of a density, and is used to screen multiple density plots to identify those 

bumpy ones, but no further utilization of this index is discussed. 

Considering that Bootlier index provides a good measure of multimodality of the 

density plot, in this research we propose a statistical inference framework, named 

extended Bootlier procedure, using Bootlier index of the density plot of MTM (referred 

as sample Bootlier index) as the test statistic to detect outliers in the sample.  By 

evaluating observed sample Bootlier index by its distribution under the hypothesis of no 

outliers, we obtain P-values that quantify the significance of outliers.  Together with the 

density plot, we can conclude whether there are outliers in the sample.  The simulation 

studies show the good testing power of this procedure and the comparison with other 

commonly used outlier detection methods demonstrates the overall advantage of the 

extended Bootlier procedure.  While large sample theory which explains multimodality of 

the density plot caused by outliers is proven when a single outlier is present in the sample 

by Singh and Xie (2003), in this research we extend the results to general case of multiple 

outliers.  The general results also answer a question for the choice of bootstrap sample 

size when the data has multiple outliers, which is not addressed in the original results.  

The rest of this chapter is organized as follows.  Section 2.2 briefly reviews the 

Bootlier plot method.  The proposed extended Bootlier procedure is introduced in Section 
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2.3 and the large sample theory is developed in Section 2.4.  In section 2.5, several 

simulation studies are conducted to illustrate the performance of the extended Bootlier 

procedure for various scenarios, such as the samples with multiple outliers, the samples 

from heavy-tailed distributions and large samples.  The testing power of extended 

Bootlier procedure and the comparison with other commonly used outlier detection 

methods are also present in Section 2.5.  Section 2.6 presents two real data examples.  

Finally, concluding remarks are present in Section 2.7. 

2.2   A REVIEW OF BOOTLIER PLOT METHOD (Singh and Xie 2003)  

The Bootlier plot method is illustrated as follows. 

Let {    
      

        
 } be the order statistics of a bootstrap sample {  

    
      

 } 

from {            },  ̅  
 

 
∑   

 
   , and  ̅ 

  
 

 
∑   

  
   .  MTM of the bootstrap sample 

with trimming size    is obtained as, 

Upper-sided trimming:      ̅ 
  

 

    
∑     

     
                           (2.1) 

Lower-sided trimming:      ̅ 
  

 

    
∑     

  
                              (2.2) 

Two-sided trimming:      ̅ 
  

 

     
∑     

     
                              (2.3) 

Singh and Xie (2003) prove that the limiting distribution of MTM is expressed as a 

mixture of normal distributions with multiple modes when the sample has outliers.  

Therefore detecting outliers in {            } is equivalent to checking multimodality in 

the density plot of MTM.  Two factors in the above notations need to explain.  First, the 

trimming direction is determined by which side(s) of outlier one likes to investigate.  The 

MTM by (2.1), (2.2) and (2.3) is sensitive to the outliers in the upper side, lower side, and 

both sides respectively.  For two-sided trimming (2.3), the same number of data points is 

trimmed for simplicity.  Second, the trimming size    is considered as a smoothing factor 

for the density of MTM.  Singh and Xie (2003) prove that the separation of two possible 

largest modes in the density of MTM is approximately proportional to 
 

  
 when the 
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sample has outliers and provide the some empirical suggestions, for example      for 

two-sided trimming.   

Singh and Xie (2003) also introduce a “Bootlier index” to measure the degree of 

bumpiness of a density.  If   denotes the global mode of a density      for a 

distribution, Bootlier index       is defined as, 

      ∫ (               )  
  

 
 ∫ (               )  

 

  
         (2.4) 

Bootlier index measures the valley area of a density with multiple modes.  An 

example is illustrated in Figure 2.1 for a density function as a mixture of three normal 

densities,      
 

 
     

 

 
       

 

 
      , where      denotes the standard 

normal density function.  Clearly Bootlier index is 0 for unimodal density functions, 

while the densities with multiple modes have non-zero values depending on the degree of 

separation between modes.  The original idea for Bootlier index is to screen out bumpy-

free plots when one is examining multiple density plots to pinpoint those bumpy ones.  

As suggested by Singh and Xie (2003), a Bootlier index of 0.1 can be considered as a 

bumpy plot, and a Bootlier index between 0.01 and 0.1 is considered as borderline cases.   

[Insert Figure 2.1] 

Considering that Bootlier index provides a good measure of multimodality of a 

density, in this research we propose a statistical inference framework based on Bootlier 

index to detect outliers.  In what follows we introduce the framework. 

2.3   EXTENDTED BOOTLIER PROCEDURE  

In this section, we extend the Bootlier plot method to a complete inference procedure 

with formal testing.  First we follow what Bootlier plot suggests to draw a large number 

of bootstrap samples and obtain a set of MTM.  Second we obtain the density plot using 

the kernel density estimation method and obtain the Bootlier index of the density plot 

(i.e., sample Bootlier index).  Third we construct a test for the presence of outliers using 

the sample Bootlier index as the test statistic given   is known.  When   is unknown, the 
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test is repeated assuming sample is from several representative distributions to provide 

the reference lines. 

Suppose   bootstrap samples are drawn from {            }. The set of MTM is 

obtained as {                  }.  The density plot is expressed as  ̂       

using the kernel density estimation method, 

 ̂       
 

  
∑  (

      

 
) 

                               (2.5) 

where      is a kernel function and   is the bandwidth.  The kernel density estimation is 

a non-parametric method introduced by Rosenvblatt (1956) and Parzen (1962), and 

widely used for density estimation problem; see Silverman (1986) and Sheather (2004).  

For our method,      is chosen to be the standard normal density function, and   is 

chosen to be Silverman’s bandwidth, which is one of default selections in the R statistical 

software package.  Although Singh and Xie (2003) pointed out, “it is clear that 

multimodality in a bootlier plot is a feature caused by outliers, not by selection of 

bandwidth”, the impact of bandwidth to sample Bootlier index is apparent.  For example, 

the bandwidth suggested by Jones et al., (1996) may oversmooth the curve to yield a 

smaller value of sample Bootlier index.  The impact of bandwidth to the inference (which 

is discussed below) is an interesting area for future study.  It would be interesting to 

compare results for other commonly used bandwidth selection methods (see Sheather, 

2004) when the data comes from different distributions.  The sample Bootlier index is 

calculated as     ̂     using a numerical method.  

While the Bootlier plot (Singh and Xie 2003) detects outliers by plotting   ̂       

and visually checking the bumpiness of the curve, we construct a statistical formal test 

for the presence of outliers.  Given   is known, the test is formulated as the following 

hypothesis,  

  :  {            } is from   without outliers 

  :  {            } is from   with outliers 
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To test the hypothesis, we consider sample Bootlier index     ̂     as the test 

statistic that is function of {            }.  We denote the distribution function of 

    ̂     under    (null distribution) by   .  The P-value for this test is expressed as 

              ̂     .  Since it is difficult to obtain the closed form of   , we 

propose a simulation approach to estimate it instead.  Suppose   independent samples 

with each sample having   independent values are drawn from  .  The sample Bootlier 

index is obtained for each independent sample using the same step as     ̂    , and is 

denoted by     for          . The P-value is then computed as 

    ̂  
 

 
∑  (  ( ̂    )    )

 
   .  While   is unknown, we propose to obtain P-values 

assuming  {            } from several representative distributions that range from short-

tailed distributions to heavy-tailed distributions, which include uniform, normal, student 

t6, exponential and Cauchy distribution.  The purpose is to provide the reference lines so 

that one can make the conclusion right away, for example, when none of P-values is 

significant or all of P-values are significant, or investigate the data more to draw firm 

conclusion. 

Combining the above steps we obtain an integrated statistical method, named 

“extended Bootlier procedure”.  The procedure can be summarized as follows. 

1. Draw   bootstrap samples from data {            } with each bootstrap 

sample of size  , and compute the sample statistic MTM as 

{                  }.  

2. Obtain  ̂    and     ̂    . 

3. Estimate the null distribution for     ̂     and obtain P-value(s). 

(a) If   is known, draw   independent samples with each sample having   

independent values drawn from  . 

(b) Obtain     for           for each bootstrap sample by repeating 1&2. 

(c) Obtain P-value as 
 

 
∑  (  ( ̂   )    )

 
   .   
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(d) If   is unknown, repeat 3(a) to 3(c) to obtain P-values assuming the data 

from several reference distributions that include uniform, normal, student 

t6, exponential, Cauchy distribution, and bimodal distribution (for 

example, a mixture of two normal distributions with a density      

 

 
         

 

 
        ) .  

2.4   LARGE SAMPLE THOERY 

In this section, we provide the results for limiting distribution of MTM for the general 

case of multiple outliers, which is the extension of the results proven by Singh and Xie 

(2003) when one outlier is present in the sample.  The main purpose is to explain why the 

density plot of MTM is sensitive to outliers in terms of multimodality and to provide 

support for the extended Bootlier procedure.  Under further imposed conditions for 

outliers, the results also address the problem of the choice of bootstrap sample size when 

multiple outliers are present in the sample.  

Suppose there are no outliers in {          } from a distribution   with finite 

variance (    ), and   outliers,   {          }, are added in upper side to the 

sample.  Without loss of generality, we assume variance     . 

Let {  
    

        
 } be a bootstrap sample from {                     }, 

 ̅  
 

 
∑   

 
   , and  ̅   

  
 

   
∑   

    
   .  We let         √     ̅   

   ̅     , 

and denote the number of times for any elements from   appearing in {  
    

        
 } 

by     .   

For any fixed      let       {                             
             } be 

the set of all configurations of choosing   elements from {          } with replacement. 

We denote the mean for each configuration by     
̅̅ ̅̅     

 

 
∑    

 
    for            . 

For notation purpose, we set     
̅̅ ̅̅ ̅     . 

The following theorem and corollary show that the limiting distribution of bootstrap 

sample mean is not sensitive to outliers.  
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THEOREM 2.1 

Under the above setting, the cumulative distribution function       can be expressed as 

the mixture 

∑
   

  
∑     

     ̅̅̅̅̅   

√   
   

   
 
        ,               (2.6) 

where                      , a.s.,   is a positive integer, and    is a Poisson 

random variable with mean  . 

Proof of Theorem 2.1 is provided in Appendix A.2.   

COROLLARY 2.2  

If     √ ⁄    as    , we have the limiting result                 a.s..  That 

is, unless      increases at a rate of √  or faster as    , its effect on the distribution of 

the normalized bootstrap mean vanishes in limit. 

Theorem 2.1 and Corollary 2.2 are multiple-outlier versions of the limiting 

distribution of bootstrap sample mean.  It reveals that the bootstrap sample mean 

converges to standard normal distribution even when there are outliers in the sample.  

Next we turn to the Bootlier statistic MTM with the upper trimming with size 1.  One 

can find out that, 

 
 

     
∑     

      
     ̅   

  
 

     
( ̅   

        
 ) 

It is sufficient to study the distribution of normalized  ̅   
        

 . 

Let    √     ̅   
        

   ̅  , and let               that is further 

expressed as the mixture 

                  +            , 

where                     ,                       , and         

              . 
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By above notations, Bootlier statistic MTM has a mixture of distributions      and 

    , where      is free of outliers and      involves of outliers.  The next theorem shows 

the representation of      and      as sample size increases to infinity.  The mixture of 

distributions presents multimodality driven by the outliers. 

THEOREM 2.3 

Under the above setting, the following representations hold for any positive integer   

with    :  

(a)          ∑             (  √           )
 
        ,            (2.7) 

where                  .  

(b)          

=∑
 

        
∑ ((

 

 
)
 

 (
   

 
)
 

)∑     √        
                

√   
     

   
 
   

 
         , 

                    (2.8) 

where               
 

             and              
̅̅ ̅̅ ̅̅ ̅({                }) for 

             . 

Proof of Theorem 2.3 is provided in Appendix A.2.  This result reveals the impact of 

outliers to the limiting distribution of MTM and the possible modes caused by outliers.  

However the representations are complicate.  The messages are much clear if we impose 

additional conditions on   in the following corollary.  

COROLLARY 2.4 

Under the same setting as Theorem 2.3 and assuming     √ ⁄   , Theorem 2.3 (a) 

holds and (b) has the following representation for any positive integer   with    :  

 (b)            ∑
       

    
    √        

 
         ,            (2.9) 

where               
 

            . 
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Corollary 2.4 is the immediate result from Theorem 2.3.  When there are no outliers 

increasing at rate √  or faster, which is true if   is drawn from some distribution with 

finite variance, the possible modes caused by outliers are √        for          , 

and those are separated from the possible modes in     ,          for          . 

For a more special case, √                , a.s. for any fixed  , which holds for 

short-tailed distributions (Singh and Xie 2003), Theorem 2.3 (a) can be simplified as, 

         (  √       ) .                          (2.10) 

Then       has the representation as, 

          (  √       )         ∑
       

    
 (  √       )

 
   .  (2.11) 

From (2.11), the message is clear that the normalized statistic    has a limiting 

distribution of a mixture of standard normal distributions.  The bumpiness of the density 

plot of MTM and thus Bootlier index of the density plot increase as the magnitude of 

outliers increases.  The (2.11) also reveals a fact that the density plot gets smoother when 

there are multiple outliers.  If we let          , (2.11) is further simplified as 

          (  √       )+           √     .          (2.12) 

When there is a single outlier, the weights of         and         in the mixture are 

0.37 and 0.63 respectively, which easily results in the bumpiness of density plot.  While 

the number of outliers   increases, the weight of         decreases rapidly.  For a 

moderate  , say    ,  the weight of         is only              so that         

dominates the mixture.  The density plot is nearly smooth in this case.  This phenomenon 

has been noticed by Singh and Xie (2003) and they propose a simple remedy approach to 

reduce the bootstrap sample size to a fraction of sample size  , say     , where     

 .  If we repeat the same arguments for Theorem 2.3, Corollary 2.4 and the results we 

have so far, the following holds,   

           (  √       )+         (  √    ).         (2.13) 
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The choice of   is suggested as 
       

 
  by (2.13), where         standards for natural 

logarithm.  If the number of outliers is unknown for a given problem, one can apply the 

extended Bootlier procedure using different bootstrap sample size of     .  Any density 

plot that exhibits significant modality indicates the presence of outliers.  

Theorem 2.3 and Corollary 2.4 study the case of trimming size 1.  When the trimming 

size is more than 1, say     , there are too many terms involved in the mixture normal 

representation of the limiting distribution under the setting of Theorem 2.3.  But if we 

add the additional constrains as discussed above, say √                 a.s. and 

 √ ⁄   , the limiting distribution of MTM has a simplified form that allows us to study 

the impact of trimming size    to the multimodality.  

Considering MTM with the upper trimming with size     , we have, 

 
 

      
∑     

       
     ̅   

  
  

      
( ̅   

  
 

  
∑     

    
          ). 

Then    √     ̅   
  

 

  
∑     

    
            ̅  , and              .  

The following theorem reveals the representation of    as the sample size increases 

to infinity, similar to (2.13). 

THEOREM 2.5 

Under the same setting as Theorem 2.3, and further assuming  √                 a.s. 

for any fixed  ,              and  √ ⁄   ,       has the following limiting 

distribution for trimming size of   , 

      ∑
     

  
 (  √   

             

  
)

    
       ∑

     

  

    
     (  √    ). 

                   (2.14) 

The proof of Theorem 2.5 follows the same arguments as Theorem 2.3 by partitioning 

the space        into                 for               , and        

         .  We do not repeat here.  



17 
 

 
 

By (2.14), the potential modes of       are √   
             

  
 for           . 

They spread evenly between √        and √      by an equal distance of  
√   

  
(  

    ) between two adjacent modes.  When    is very large, the multimodality of       

will vanish because the distance between modes gets too small.  When     , the 

mixture distribution is the same as (2.12).  Therefore    is considered as a smoothing 

factor and is associated with how much separation between the outliers and the rest of 

samples we would assume.  Although the original Bootlier plot recommends “     or 

4 for sample size 15 to a few hundreds” based on empirical calibration, we notice that the 

extended Bootlier procedure is less sensitive to    because the sample Bootlier index is 

evaluated by the null distribution obtained using the same trimming size.  Thus, we use 

     in the simulation studies and real data examples.  The modes are not solely 

determined by √   
             

  
 for           .  The coefficient of each normal 

component, 
     

  
 for              and    ∑

     

  

    
    , is another factor 

contributing to the mixture distribution.  As the discussion following (2.13), some key 

components will have little effect to the mixture distribution due to small coefficient 

value, which results in the smooth density.  The remedy approach proposed for (2.13), i.e. 

reducing the bootstrap sample size to     , applies for      as well. Repeating the 

same arguments, we have 

        

∑
         

  
 (  √   

             

  
)

    
       ∑

         

  

    
     (  √    ).           

(2.15) 

Because what we are interested in is the separation of outliers with the rest of sample, 

we suggest   
          

 
 to let the coefficient of  (  √       ) about 

 

    
.  

Practically one could examine the potential number of outliers first, for example, 

checking the largest gap among the extreme observations, to get the good estimation of   

and then apply to the extended Bootlier procedure.  
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2.5   SIMULATION STUDIES 

In this section, we conduct four simulation studies to illustrate the performance and 

features of the extended Bootlier procedure on various data cases including samples with 

multiple outliers, samples from heavy-tailed distributions and large samples.  In 

particular, we compare the performance of the extended Bootlier procedure with other 

commonly used outlier detection methods for each simulation study to demonstrate the 

overall advantage of extended Bootlier procedure.  The details of those commonly used 

outlier detection method are provided in Appendix A.1.  At the end of this section, 

another simulation study is performed to access the testing power of Bootlier procedure.   

In the simulation study #1, a sample of size 25 is simulated from standard normal 

distribution with three severe outliers, 3.4, 3.5 and 3.6, added to the sample.  The total 

number of data points is 28.  The sample data is plotted in Figure 2.2 (a).  The density 

plot, sample Bootlier index and P-value for normal distribution are presented in Figure 

2.2 (b) for investigating the outliers in upper side.  To evaluate the performance, we also 

apply the extended Bootlier procedure with a single outlier 3.5 added to the sample.  The 

results are presented in Figure 2.3.  

P-value is 0.012 and 0.008 for the first and the second case respectively, and clear 

multimodality in the density plot presents in both cases.  Therefore the conclusion of 

presence of outliers in upper side is established by the strong evidence for both cases.     

 [Insert Figure 2.2] 

 [Insert Figure 2.3] 

Not all other outlier detection methods (see Appendix A.1) give same results though.  

The intervals to identify mild and extreme outlier are (            ) and 

(            ) respectively for interquartile range method.  Two of the three added data 

points are then considered as mild outliers.  For modified interquartile range, the intervals 

to identify the mild and extreme outlier are                and (            ) 

respectively, so that the three added data points are not outliers.  P-value for Grubbs’ test 
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is 0.218, thus we do not reject the null hypothesis of presence of outliers.  For Dixon’s Q 

test, P-value is 0.063, which only suggests borderline outliers.  

When there are some intermediate data points filling in the gap between the outliers 

and other data points, the outlier effect is mitigated such that the original outliers are 

rather considered as data points from some heavy-tailed distribution than outliers.  As 

seen in Section 2.3, for such case,      and   do not have clear distinctions and the 

multimodality will vanish.   The extended Bootlier procedure performs better than other 

outlier detection methods in this case, which is illustrated by the following simulation 

study.  

The simulation study #2 has a sample of size 100 simulated from standard normal 

distribution, and four points, 2.8, 3.2, 3.6 and 4, are added to the sample.  The results of 

the extended Bootlier procedure are present in Figure 2.4.  The density plot is nearly 

smooth and P-value is 0.586, which suggest no outliers in the sample.  This is due to the 

intermediate points filling the gap between the large values and rest of data points.   

[Insert Figure 2.4] 

Other outlier detection methods have different results.  The interval to identify mild 

outlier is (            ) for interquartile range method, the largest three values are 

considered as mild outliers.  By modified interquartile range, the interval to identify the 

mild outlier becomes               .  Again the largest two values are considered as 

mild outliers.  P-value for Grubbs’ test is 0.023, which suggests the outliers in the data.  

Dixon’s Q test is not suitable for this study.  

When the sample comes out from a heavy-tailed distribution, the probability of 

having large values is higher.  Most commonly used outlier detection methods are 

developed under the assumptions of normal distribution, therefore they often exhibit 

higher false positive rate when the sample is from heavy-tailed distributions.  The 

extended Bootlier procedure usually performs better on such samples.  This is also 

observed and explained in simulation #2.  The following simulation study illustrates a 

case when the entire sample is from a heavy-tailed distribution.  
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In simulation study #3, a sample of size 25 is simulated from exponential distribution 

with 7 added to the sample.  The total number of data points is then 26.  The sample data 

is plotted in Figure 2.5 (a).  The density plot, sample Bootlier index and P-value for 

exponential distribution are presented in Figure 2.5 (b).  The nearly smooth density plot 

in Figure 2.5 (b) and P-value (0.534) suggest no outlier in data if the data is from 

exponential distribution.  Even if we do not know the distribution, the moderate sample 

Bootlier index (0.02244) may only suggest very mild outliers.  In fact P-value using 

normal distribution as reference distribution is 0.101, which is not an evidence of outliers.  

Besides the normal and exponential distributions, P-value is 0.242 and 0.711 for student 

t6 and Cauchy distribution respectively, which also suggest no outliers in the data given 

that the sample is from other heavy-tailed distributions.  Although P-value is 0.001 and 

0.024 for uniform distribution and a bimodal distribution with a density      

 

 
         

 

 
         respectively, it is easy to rule out these distributions.  

 [Insert Figure 2.5] 

Other outlier detection methods all provide strong evidence of the presence of outliers 

though.  The interval to identify extreme outlier is (            ) for interquartile range 

method, the three largest values are considered as extreme outliers.  By modified 

interquartile range, the interval to identify the extreme outlier becomes               , 

again the three largest values are considered as extreme outliers.  P-value for Grubbs’ test 

is 0.003, which is a strong evidence of presence of outliers in the data.  For Dixon’s Q 

test, P-value is 0.056, which suggests borderline outliers in the data.  

Without any distribution assumptions, the inference using the empirical threshold of 

Bootlier index as suggested by Singh and Xie (2003) or based on the distribution of 

  ( ̂   ) using normal distribution as reference may increase the false positive rate.  

However it is still a good strategy if the purpose of analysis is to screen hundreds of 

datasets to identify those for further investigation, for example, to screen hundreds of 

genes of a gene expression dataset of a set of patients to find potential genes with 

outliers.  In any case, we recommend investigating the underlying distribution of the 

sample to draw the accurate inference.  
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We investigate the outlier problem in the samples with sample size from around 25 to 

100 so far.  When sample size is large, there are two issues to note.  First, the probability 

of having very large values significantly increases in large samples.  For example, the 

probability of a value from standard normal distribution greater than 3.29 is about 0.0005, 

i.e.,                 , where         .  The probability of having at least one 

value greater than 3.29 is 0.015 for a sample of size 30, but it increases to 0.221 for a 

sample of size 500, about a 15-fold increase.  This leads to higher chance of false positive 

findings for those outlier detection methods which are not adjusted by sample size.  

Second, the probability of having multiple outliers also increases dramatically in large 

samples.  Still considering the same example as above, the probability of having at least 

two values greater than 3.29 is about 0.0001 for a sample of size 30, but it increases to 

0.0266 for a sample of size 500, about a 245-fold increase.  The two issues are in the 

nature of outlier problem.  The extended Bootlier procedure addresses these two issues 

well because it is automatically adjusted to the sample size.  For the first issue, as proven 

in the Section 2.3, the separation of modes in the density plot of MTM is determined by 

distance between largest order statistic      and outliers  .  When sample size increases, 

     increases so that it requires large outliers   to have the separation in the density plot.  

For the second issue, a remedy is proposed by adjusting the bootstrap sample size to      

(     ), where   is suggested to be 
         

 
.  One can estimate the number of outliers 

to pre-specify   or explore different  ’s to get the best results.  The following simulation 

study illustrates the performance of the extended Bootlier procedure for large sample. 

In simulation study #4, a sample of size 500 is simulated from standard normal 

distribution with three outliers 3.8, 4 and 4.2 added to the sample.  The total number of 

data points is then 503. The sample data is plotted in Figure 2.6 (a).  The density plot, 

sample Bootlier index and P-value for normal distribution are presented in Figure 2.6 (b).  

Based on density plot in Figure 2.6 (b) and P-value = 0.011, we draw the conclusion of 

presence of outlier in the data.   

[Insert Figure 2.6] 
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Similar conclusions are obtained by other outlier detection method.  The interval to 

identify extreme outlier is (            ) for interquartile range method, the three 

largest values are considered as extreme outliers.  By modified interquartile range, the 

interval to identify the mild outlier becomes               , again the three largest 

values are considered as extreme outliers.  P-value for Grubbs’ test is 0.017, which is a 

strong evidence of presence of outliers in the data. 

The extended Bootlier procedure constructs a statistical test to assess the significance 

of outlier effect, thus it is very important to assess its testing power, i.e., the probability 

of rejection under the alternative hypothesis.  We first show that sample Bootlier index as 

the test statistic increases with the increase of the magnitude of outliers.  Consider two 

mixed normal density functions,       
 

 
     

 

 
       and       

 

 
     

 

 
      . The Bootlier index of       (0.262) is much larger than that of        (0.0167), 

which is due to the fact that there is more separation of two modes in       than that in 

     .  As seen in Theorem 2.3, Corollary 2.4 and Theorem 2.5, the separation between 

modes in the mixture normal distribution function of MTM increases as the magnitude of 

outliers increase.  Although it seems difficult to prove theoretically the monotonicity of 

sample Bootlier index with magnitude of outliers, the association between larger outliers 

and larger sample Bootlier index is clear.  Therefore, we should see higher probability of 

rejection for larger outliers.  Next we conduct a simulation study to assess the testing 

power of Bootlier procedure and prove the above arguments.  

The simulation study #5 consists of three sub-studies.  For the first simulation study 

(#5A), we draw a sample of size 30 from standard normal distribution, truncate the values 

greater than 3.29 to 3.29, then add 3.29 to the sample.  The value 3.29 is chosen based on 

                , where         .  We then apply the extended Bootlier 

procedure to get P-value.  After repeating the above steps 1,000 times, we assess the 

power of testing procedure under different significance level             and    .  For 

the second simulation study (#5B), we use 3.72 instead of 3.29 to assess the testing power 

of extended Bootlier procedure under the same significance levels.  The value 3.72 is 

chosen based on                 , where         .  For the third simulation 
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study (#5C), we use 4.23 based on                  . The results are presented in 

Table 2.1. 

 [Insert Table 2.1] 

If we consider       corresponding to a mild outlier and        corresponding 

to an extreme outlier, the extended Bootlier procedure achieves sufficient power to 

identify 4.23 as an extreme outlier (power = 90.0%) and at least a mild outlier (power = 

97.0%).  But for 3.29, a more possible value than 4.23 in a normal sample, the procedure 

has a fair chance to identify it as at least a mild outlier (power = 69.1%) or as an extreme 

outlier (power = 48.5%). 

2.6   REAL DATA EXAMPLE 

2.6.1   Temperature Data of Space Shuttle Challenger 

The real data examples consist of two studies.  In the first study, we revisit a sample for 

the recorded temperature at which the primary O-ring of the space shuttle Challenger was 

sealed on 24 launches; see Dalal et al. (1989).  The temperature at the time of Challenger 

explored, Jan. 28, 1986, was 31 degrees.  This data example is used in a lot of literatures; 

see Singh and Xie (2003), Agresti (2002) and Robert and Casella (2004).   

The temperatures in Fahrenheit at which O-ring was sealed are, 

 66, 70, 69, 68, 67, 72, 73, 70, 57, 63, 70, 78, 67, 53, 67, 75, 70, 81, 76, 79, 75, 76, 58, 31   

The sample data is plotted in Figure 2.7 (a).  The temperature of Challenger’s last 

launch, 31 degree, is a suspect outlier in the lower side.  The normal Q-Q plot of 

temperature data, Figure 2.7 (b), supports the normality of data except for the suspected 

outlier point.  Therefore we consider normal distribution as reference.  The extended 

Bootlier procedure is then applied for upper-sided and lower-sided trimming, and the 

density plots are presented in Figure 2.7 (c) and (d).  The multimodality is clearly 

demonstrated in Figure 2.7 (d) with P-value = 0.004, but the density plot is nearly smooth 
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in Figure (c) with P-value = 1.  Consequently, the presence of outliers in lower side is 

confirmed.   

[Insert Figure 2.7] 

2.6.2   Natality Data 

The second study illustrates an analysis of outliers in a large sample.  We consider a 

dataset that contains natality information of the United States from 2007 to 2012, 

supplied by Wide-ranging Online Data for Epidemiologic Research (WONDER) of 

Centers for Disease Control and Prevention (CDC) (http://wonder.cdc.gov).  We analyze 

the fertility rate for 572 counties or combined counties in the United States.  The counties 

with populations of 100,000 or more are listed while those with fewer than 100,000 

persons within a state are combined together and labeled as “Unidentified Counties”.  

The fertility rates are calculated as the number of births divided by the number of females 

with age 15 to 44 years old, and expressed as the rate per 10,000 persons.  

The data is plotted in Figure 2.8 (a).  Two candidate outliers (Hampshire County, MA 

[fertility rate = 280.36] and Onslow County, NC [fertility rate = 1099.27]) are suspected 

with one on the lower side and the other on the upper side.  Figure 2.8 (b), the normal Q-

Q plot of the fertility rate does not rule out the normal assumption. We consider the 

normal distribution as the reference.  The density plots are presented in Figure 2.7 (c) and 

(d).  P-values are 0.008 and 0.154 for upper-sided and lower-sided trimming respectively.  

Consequently, the presence of outliers in the upper side is confirmed, while the evidence 

of outliers in lower side is not strong enough.  To further confirm if Onslow County, NC 

is the only outlier, we re-analyze the sample without that county.  The density plot is 

nearly smooth, Figure 2.8 (e), and P-value = 0.681.  Therefore Onslow County, NC is 

identified as the only outlier in this dataset.  

[Insert Figure 2.8] 

http://wonder.cdc.gov/
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2.7   CONCLUDING REMARKS 

In this chapter we propose a bootstrap-based statistical framework, the extended Bootlier 

procedure, to detect outliers in i.i.d. univariate sample.  The key elements of the extended 

Bootlier procedure including bootstrap, density plot, Bootlier index and the testing 

method are thoroughly discussed.  Then the features of the proposed framework are 

illustrated through various simulation studies and real data examples.  In these studies, 

the extended Bootlier procedure presents good performance under various scenarios, such 

as multiple outliers, heavy-tailed distribution, and large samples.  The extended Bootlier 

procedure also demonstrates good testing power.  The comparisons with other outlier 

detecting methods show its overall advantages.  The general result of the limiting 

distribution of MTM for multiple outliers is developed as the foundation of the extended 

Bootlier procedure.  The choice of bootstrap size under multiple outlier cases is suggested 

based on the limiting results.  Finally, the interesting areas for further study may include 

a sequential procedure similar to the generalized extreme generalized extreme studentized 

deviate (ESD) (see Rosner, 1983), and an automatic method searching the optimal   to 

increase the testing power.    
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APPENDIX  

A.1   A review of Outlier Detection Methods 

A review of several commonly used outlier detection methods is presented.  The purpose 

is not to exhaust all the outlier detection methods but to provide a general picture of 

representative methods.  The performance of proposed Bootlier procedure is compared 

with these methods to show the overall advantages.  

Box-plot and interquartile range method 

A box-plot is a graphic representation of the dispersion of the data.  The graphic 

represents the lower quartile   , 25th percentile of data, and upper quartile   , 75th 

percentile of the data, along with the median.  The interquartile range (   ) is defined as 

     .  The upper whisker limit (upper fence) is            and lower whisker 

limit (lower fence) is           .  As a crud method, any observation outside the 

interval                         is considered as an outlier, which is further 

classified as mild if it is within the interval                    , or extreme if 

it outside that interval according to NIST/SEMATECH (2012).  

The above approach does not take sample size into account so that when the sample 

size is large, the probability of extreme values appearing in the tails is high even the data 

is truly from a normal distribution, which will leads to higher false positive rate.  A 

modified interquartile range is proposed; see Barbato et al. (2011).  Assuming normality, 

the observations outside the interval                       
 

  
         

              
 

  
  but within the interval                  

   
 

  
                     

 

  
  are considered as mild outliers, and the 

observation outside the later interval are considered as extreme outliers. 

Because of its simplicity and quickness of implementation, the box-plot seems 

appealing in the examining the data especially for screening different features of a given 

data for potential outliers.  
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Grubbs’ test 

Grubb’s test, also known as maximum normed residual test, is used to detect a single 

outlier in a univariate data set assumed to come from a normal distribution; see Grubb 

(1969) and Stefansky (1972).  

Given a data set of size  , {            }, the hypothesis of interest is   : there are 

no outliers in the dataset vs.   : there is at least one outlier in the data set.  Grubb’s test 

statistic is defined as    
 ̅     

 
 and    

 ̅     

 
, where  ̅ and   are sample mean and 

sample standard deviation respectively. For a two-sided test, the null hypothesis is 

rejected if   
   

√ 
√

 
      

 
  

 

     
      

 
  

 , where   stands for    or   , and      is the      

percentile from t-distribution with   degrees of freedom. The significance level of this 

test is  .   

A generalized extreme studentized deviate (ESD) test  

A generalized extreme studentized deviate (ESD) test is used to detect one or more 

outliers in a data set which follows approximately normal distribution (see Rosner, 1983), 

which can be considered as a sequential procedure of Grubb’s test with adjustment of 

critical values based on the number of tests.  

Given a data set of size  , {            }, and an upper bound  , the generalized 

ESD tests the hypothesis,   : there are no outliers in the data set vs.   : there are up to k 

outliers in the data set.  The test statistics is computed in iteratively way. Compute 

       |
    ̅

 
| where  ̅ and   are sample mean and sample standard deviation 

respectively.  Then remove the observation which maximizes    and compute    with 

the rest     samples, repeat the process to get        .  Corresponding to the   test 

statistics,   critical values are computed by    
             

√               
         

 for         , 

     is the      percentile from t-distribution with   degrees of freedom and     

 

        
.  The number of outliers is determined by finding the largest   such that      .  
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The generalized ESD test makes the appropriate adjustment for critical values to avoid 

the early stopping of Grubb’s test if without the adjustment.  The generalized ESD is 

restricted to two-sided testing while the Grubb’s test does not.  

Dixon’s Q test 

This test is proposed by Dixon (see Dixon, 1950, 1951, and Barbato et al., 2011), and is 

appropriate for detecting outliers in small sample with sample size     .   

Given a data set of size n, {            }, the hypothesis for Dixon’s Q test is,   : 

there are no outliers in the data set vs.   : there are at lease one outlier in the data set.  

The test statistics are the quotient of gap divided by range, where gap is the absolute 

difference between the outlier in question and the close number to it and range is the 

range of all data points. When sample size is   , it has the form:    
           

           
 and 

   
           

           
, where the coefficients   and   are determined by:              

   ;                   and                   .  The null 

hypothesis is rejected if     or     exceeds the tabulated critical values which are based 

on the normal distribution assumption.  

Most of discordancy tests discussed above rely on the assumption of normal distribution, 

which limits their application in the broader data analysis.  Also, these methods are all for 

the i.i.d. univariate data. 

A.2   Proof of Results 

PROOF OF THEOREM 2.1 

Note that      is a              
 

   
 .  As    , it is a Poisson random 

variable with mean  , denoted by    . We then have the following for      . 

      ∑  (√     ̅   
   ̅           )          

      ,        (A.1) 

where             .  
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For any fixed      ,           converges to  
     

  
 as    . Then,  

        ∑  (√     ̅   
   ̅           )          

    

= ∑
     

  
 (√     ̅   

   ̅           ) 
       ,           (A.2) 

where        . 

Given       , let {  
    

      
 } be those bootstrap samples from  {          }.  

Then    
    

      
   has    unique configurations, i.e.,    

    
      

             

         , each with probability    .  Further conditional on        , we have 

  (√     ̅   
   ̅               

    
      

          ) 

   (√   (
    

         
 

   
  ̅ )    

     ̅̅̅̅̅   

√   
           

    
      

          ).

                                                                                                                     (A.3) 

Suppose that {              } be a bootstrap sample from {          }.  By 

Lemma B of Singh and Xie (2003), the conditional distribution of     
         

  given 

       and    
    

      
          , is same as of     

         .  Using the central limit 

theorem for bootstrap sample mean; see Singh (1981) or Bickel and Freedman (1981), 

one can prove √   (
    

         
 

   
  ̅ ) converges to       , which leads to, 

  (√     ̅   
   ̅               

    
      

          )   (  
     ̅̅̅̅̅   

√   
) 

                                                                                                                                       (A.4) 

By (A.3) and (A.4), we have 

 (√     ̅   
   ̅           )  

 

  
∑     

     ̅̅̅̅̅   

√   
   

                  (A.5) 

where        . 
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Finally by (A.1), (A.2) and (A.5), we have (2.6) 

      ∑
   

  
∑     

     ̅̅̅̅̅   

√   
   

   
 
        , 

where                      . 

PROOF OF THEOREM 2.3 (A) 

Let    be the event that   
    

        
  is free of the outliers           , and    

          be the event that   
    

        
  is free of the outliers and the top   members 

of           .  Then                form a monotonically decreasing sequence of 

events, i.e.,          .  We also note that, for any fixed    ,         

           and                              as    . Therefore,  

                   
 

     
∑                    

 
      ,      (A.6) 

where      
     

     
 . 

To conclude the theorem (a), we will show that, for any      ,  

                 (  √           )       .           (A.7) 

Adopting a general notation, we let   {    }  denote the number of times that      

appears in the bootstrap sample   
    

        
 .  Given the event set        , we have 

      
          .  For a fixed positive integer      , consider  (          

     {        }   ).  By Lemma B of Singh and Xie (2003), the conditional bootstrap 

distribution of ∑     
      

   , given that         and   {        }   , has the same 

distribution as that of bootstrap sample sum with size        , drawn from 

                  .  In the view of the fact that   and   are fixed and 
    

√ 
  , a.s. (see 

Singh and Xie, 2003, Lemma A), we have, 

  (               {        }   )    (  √           )      .     (A.8) 
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For different value of  ,   {        }    defines that partition of          .  As 

right-side of (A.8) is free of  , and  (  {        }           )  
 

       
 as    , 

we can conclude (A.7) from (A.8).  Therefore (2.7) holds from (A.6) and (A.7). 

PROOF OF THEOREM 2.3 (B) 

By definition,                       .   

Given that       
      ,          , the following holds for any fixed      , 

 (                  
      ) 

 
 

    
∑     √        

                ̅̅ ̅̅ ̅̅ ̅̅ ({                })

√   
     

         .        (A.9) 

Note that  (      
             )  (

 

 
)
 

 (
   

 
)
 

,      , we have, 

                

 

    
∑ ((

 

 
)
 

 (
   

 
)
 

)∑     √        
                ̅̅ ̅̅ ̅̅ ̅̅ ({                })

√   
     

   
 
        . 

                  (A.10) 

Therefore (2.8) holds from (A.10). 
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A.3   Figures and Tables 

Figure 2.1: Bootlier index for a distribution with density function      
 

 
     

 

 
       

 

 
      , where      stands for the standard normal density. 

 

Figure 2.2 (Simulation #1) Extended Bootlier procedure for a sample of size 25 simulated 

from standard normal distribution with three outliers, 3.4, 3.5 and 3.6, added: (a) 28 data 

values; (b) the density plot (sample Bootlier index = 0.08084, and P-value = 0.012 for 

normal distribution) 
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Figure 2.3 (Simulation #1)  Extended Bootlier procedure for the same 25 data values as 

Figure 2.2 with 3.5 added to the sample: the density plot (sample Bootlier index = 

0.43435 and P-value = 0.008 for normal distribution) 

 

Figure 2.4 (Simulation #2) Extended Bootlier procedure for a sample of size 100 

simulated from standard normal distribution with 2.8, 3.2, 3.6 and 4 added: the density 

plot (sample Bootlier index = 0.00015, and P-value = 0.586 for normal distribution) 
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Figure 2.5 (Simulation #3) Extended Bootlier procedure for a sample of size 25 simulated 

from exponential distribution with 7 added to the sample: (a) 26 data values; (b) the 

density plot (sample Bootlier index = 0.02244 and P-value = 0.534 for exponential 

distribution) 

 

Figure 2.6 (Simulation #4) Extended Bootlier Procedure for a sample of size 500 

simulated from standard normal distribution with three outliers, 3.8, 4 and 4.2, added: (a) 

503 data values (b) the density plot (sample Bootlier index = 0.44189 and P-value = 

0.011 for normal distribution) 
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Table 2.1 (Simulation #5) Testing power of extended Bootlier procedure 

Simulation  Study 
Type I error   

 0.1  0.05   0.01 

    #5A      

69.1% 

      

48.5% 

     

14.5% 

    #5B      

87.4% 

      

71.6% 

     

32.5% 

    #5C      

97.0% 

      

90.0% 

     

56.8% 

 

Figure 2.7 (Real Data Example #1) Extended Bootlier procedure for recorded 

temperature at which primary O-ring of space shuttle Challenger was sealed: (a) 24 

original data values, (b) normal Q-Q plot of 24 data values, (c) the density plot with 

upper-sided trimming (sample Bootlier index = 0, and P-value = 1), (d) the density plot 

with lower-sided trimming (sample Bootlier index = 0.59032, and P-value = 0.004) 
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Figure 2.8 (Real Data Example #2) Extended Bootlier procedure for county-level fertility 

rates of the United States supplied by US CDC WONDER database: (a) 572 original data 

values, (b) normal Q-Q plot of data, (c) the density plot with upper-sided trimming 

(sample Bootlier index =1.20468, and P-value = 0.008), (d) the density plot with lower-

sided trimming (sample Bootlier index = 0.46990, and P-value = 0.154), (e) the density 

plot with upper-sided trimming (sample Bootlier index = 0.00270, and P-value = 0.681) 

without Onslow County, NC 
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CHAPTER 3    

IDENTIFYING OUTLIERS AND INFLUENTIAL 

OBSERVATIONS IN LINEAR REGRESSION ANALYSIS 

BY EXTENDED BOOTLIER PROCEDURE 

 

ABSTRACT 

The identifying outliers and influential observations is a fundamental question in 

linear regression model diagnostics.  In Chapter 2 of this dissertation a 

distribution-free testing procedure is proposed for detection of outliers in the 

independent and identically distributed (i.i.d.) univariate sample.  As an extension 

of that testing procedure, in this chapter, a statistical framework is proposed to 

detect outliers and influential observations in linear regression analysis by 

analyzing the outliers in the residuals and influential measures from regression 

model fitting.  In the analysis of outliers, the ordinary residuals, studentized 

residuals, and studentized deletion results are suggested, while a square-root 

version of Cook’s distance is proposed to analyze influential observations.  In 

contrast to the case with i.i.d. samples, the residuals and Cook’s distance are 

dependent.  Therefore we develop large sample theory that explains the 

association between the test statistic and the outliers (or the influential 

observations).  The proposed framework is then illustrated through simulation 

studies and a real data example of sperm motility data to show its usefulness.   

Keywords: linear regression; outlier; influential observation; residual; Cook’s 

distance; bootstrap; large sample theory; Bootlier index 
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3.1   INTRODUCTION  

This chapter develops a bootstrap-based statistical framework for detecting outliers and 

influential observations in linear regression analysis.  The framework extends the 

statistical method proposed in Chapter 2 for detection of outliers in the independent and 

identically distributed (i.i.d.) univariate sample to linear regression analysis, a more 

complicated setting.  The outliers and influential observations are detected by analyzing 

the residuals and the influential measures from regression model fitting using the same 

techniques as the procedure for univariate sample.  Although, in regression, it is generally 

assumed that error terms are i.i.d., the residuals and influential measures no longer are.  

Therefore some adjustments are made to the procedure and the large sample theory is 

developed for regression setting, which are two foci of this chapter. 

There is certainly a vast literature on the detection of outliers and influential 

observations in linear regression analysis, as the study on these is a major topic in linear 

regression model diagnostics; see Beckman and Cook (1983) and Barnett and Levis 

(1994).  The topic is present in almost every textbook of linear regression model.  An 

outlier usually means an outlying point which departs surprisingly far from the regression 

line.  For an influential observation, a definition given by Belsley et al. (1980) seems 

most appropriate: “an influential observation is which, either individually or together 

with several other observations, has a demonstrably larger impact on the calculated 

values of various estimates … than is the case for the most of the other observations”.  

This definition is also adopted by Chatterjee and Hadi (1986) and they classify the 

common measure of influence into the residuals, the prediction matrix, the volume of 

confidence ellipsoids, the influence functions, and the partial influence.  The difference 

between influential observations and outliers, to some extent, is vague.  While an outlier 

is often an influential observation, an influential observation need not be an outlier.  The 

methods for the detection of outliers and influential observations are generally classified 

into two groups, namely the graphical and the analytical methods.  The graphic methods 

usually display different statistics measuring the degree of departure of outliers or 

influential observations from other data points.  These graphic methods include scatter 

plot, residual plot, box-plot and normality plot to name a few.  The analytical methods 
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include various discordancy tests based on different residuals and influence measures.  

Chatterjee and Hadi (1986) have a complete review of the measures and discordancy tests 

based on those measures. Some discordancy tests are discussed in Barnett and Levis 

(1994).  

The method proposed in this chapter falls into the group of analytical approaches.  It 

also includes a graphical plot to facilitate the interpretation of analysis results.  The 

extended Bootlier procedure developed in Chapter 2 for univariate sample is motivated 

by a non-parametric and graphic outlier detection method proposed by Singh and Xie 

(2003).  They prove that, when the data has outliers and we draw a large number of 

bootstrap samples, a sample statistic “mean – trimmed mean” (referred afterwards as 

MTM) will have multiple modes in its density plot (a bootstrap histogram).  Therefore 

detecting outliers is equivalent to checking multimodality in the density plot of MTM.  A 

quantitative index is proposed to measure the degree of multimodality of density plot.  By 

utilizing that index as the test statistic, the extended Bootlier procedure developed in 

Chapter 2 provides a statistical inference approach for testing the outliers in the 

univariate sample.  In this chapter, we extend the procedure with some modifications to 

regression setting.   

There are several points to note.  First, the outliers and influential observations have 

distinct meanings in regression and there are different quantities to measure them; see 

Cook (1979) and Chatterjee and Hadi (1986).  Thus the inference drawn from the 

procedure depends on what measures we use.  We explore the ordinary residuals, 

studentized residual and studentized deletion residual as the measures for outliers and a 

square-root version of Cook’s distance (referred afterward as SRCD) as the measure for 

influential observations, but the procedure is not limited to those.  Second, the residuals 

and Cook’s distance are dependent, thus the large sample theory developed in Chapter 2 

do not apply directly.  Noticing certain properties of the residuals and SRCD, we develop 

large sample results similar to those in Chapter 2.  Third, the extended Bootlier procedure 

for i.i.d. univariate data demonstrates lower false positive rate when the sample is from 

heavy-tailed distribution.  This good property is still possessed in regression setting – 

when the distribution of error terms deviates from normal with high probability in the 
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tail, the extended Bootlier procedure has lower false positive rate to claim large values as 

outliers.  We illustrate it in a simulation study.   

The rest of the chapter is organized as follows.  Section 3.2 introduces the basic 

definitions of linear regression model including residuals and SRCD, and describes the 

proposed procedure with details.  Section 3.3 develops the large sample theory.  In 

section 3.4, two simulation studies are conducted to illustrate the performance of the 

proposed procedure.  Section 3.5 presents a real data example.  Finally, concluding 

remarks are present in Section 3.6. 

3.2   EXTENDED BOOTLIER PROCEDURE FOR LINEAR REGRESSION 

ANALYSIS 

3.2.1   Notations  

We consider a linear regression model, 

       ,                   (3.1) 

where   is a     vector of values of the response (dependent) variable,   is a     

matrix of independent variables,   is a     vector of unknown coefficients, and 

       is an unobservable     vector of error terms that are independent and 

identically distributed with mean 0 and unknown variance   , i.e.,             for 

         .   

Let  ̂ be the least square estimator of   and  ̂ be fitted value of  .  The vector of 

ordinary residuals        is  

     ̂        ,                            (3.2) 

where                    is a     projection matrix (often called hat matrix), 

with    th element    ,            . Its diagonal elements     are often termed as 

leverages to reflect the influence of an observation may have.  Detailed discussion related 
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to the hat matrix and leverages can be found in Hoaglin and Welsch (1978), and Cook 

and Weisberg (1982).   

Noticing that each    has different variance          , a scaled version of residual 

is proposed as studentized residual, 

   
  

√ ̂        
 ,                             (3.3) 

where  ̂  is the estimate of   . 

A different refinement to make residuals more sensitive to outliers is given by 

Beckman and Trussell (1974).  It is often called studentized deletion residual,  

   
  

√ ̂    
        

 .                                        (3.4) 

where  ̂    
  is the estimate of variance by fitting the regression model deleting the ith 

data point.  

Cook’s distance is generally considered as a good measure for evaluation the influence 

of a data point to the regression.  In this chapter, we propose a square-root version of 

Cook’s distance (SRCD), which is linear in the residual and has large sample theory 

proved in Section 3.3, 

   
√   

√  ̂        
    .                            (3.5) 

There, of course, exist other residuals and influential measures.  As the above are 

well-studied and representative measures, we use them in this chapter for the extended 

Bootlier procedure.  We believe other measures can also be used after careful 

examination.   

Typical graphical methods usually plot these measures and visually identify the data 

points that yield outliers in these measures as outliers or influential observations, or 

identify those that yield extreme values in these measures for further investigation.  Most 

analytical methods detect outliers and influential observations by testing the outliers in 
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those measures.  For example, a discordancy test by Barnett and Levis (1994) uses 

         as the test statistic to detect outliers, and the critical values for          are 

presented for different   (pp. 522-3).  Montgomery et al. (2003) suggests that an 

observation with      indicates an outlier.  Because each studentized deletion residual 

   has student t distribution with       degrees of freedom, a Bonferroni type of test 

that is adjusting for   tests therefore has the critical value as           
  ⁄  to detect 

outliers; see Neter et al. (1996).  In interpreting Cook’s distance, Bollen and Jackman 

(1990) suggests to investigate those with Cook’s distance greater than   ⁄ .  While these 

discordancy tests are developed specifically for certain residuals or influential measures, 

the extended Bootlier procedure provides a universal way to analyze the residuals and 

influential measures.  A question is often raised in the real data analysis – which measure 

is the best? There is no definitive answer.  The choice sometimes relies on specific 

problem setting, and sometimes may be just a personal choice.  For example, Belsley et 

al. (1980) prefer studentized deletion residual over studentized residual (also see 

Chatterjee and Hadi, 1986).  In what follows we elaborate our framework. 

3.2.2   Extended Bootlier Procedure for Linear Regression Analysis 

Consider the linear regression model (3.1) and let {          } be the general form of 

residuals or influential measures after fitting the model, which could be (3.2), (3.3), (3.4) 

or (3.5).  We apply the procedure proposed in Chapter 2 to {          } to obtain a set of 

MTM, the density plot of MTM, and the quantitative index measuring multimodality of 

the density as follows. 

Let {  
    

      
 } be a bootstrap sample from {          }, {    

      
        

 } be the 

order statistics of {  
    

      
 },    ̅  

 

 
∑   

 
   , and   ̅

  
 

 
∑   

  
   .  MTM of the 

bootstrap sample with trimming size    is obtained as, 

Upper-sided trimming:       ̅
  

 

    
∑     

     
    ,             (3.6) 

Lower-sided trimming:       ̅
  

 

    
∑     

  
       .            (3.7) 
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Suppose   bootstrap samples are drawn from {          }.  The set of MTM is 

obtained as {                  }.  The density plot of MTM is expressed as 

 ̂       using the kernel density estimation method, 

 ̂       
 

  
∑  (

      

 
) 

    ,                           (3.8) 

where      is a kernel function and   is the bandwidth.  

In the i.i.d. univariate sample case discussed in Chapter 2 (i.e., suppose {          } 

were an i.i.d. sample), we prove the association between multimodality of  ̂       and 

presence of outliers in the sample, and construct a statistical test based on a quantitative 

index, Bootlier index (Singh and Xie 2003), for detection the outliers in the sample.  

Adopting the same definition, we obtain the Bootlier index of  ̂       (referred as 

sample Bootlier index) as     ̂    .   

As the large sample theory in Section 3.3 shows, the similar association exists 

between the multimodality of  ̂       and the presence of the outliers (or influential 

observations) in linear regression analysis.  A formal test is then constructed for detection 

of outliers (or influential observations), which is formulated as the following hypothesis,  

  :  The sample contains outliers (or influential observations) 

  :             contains no outliers (or influential observations) 

The sample Bootlier index     ̂     is used as the test statistic to test this 

hypothesis.  We denote its distribution function under    (null distribution) by   .  The 

P-value for this test is expressed as               ̂     .  Since it is difficult to 

obtain the closed form of   , we propose a simulation method to estimate it instead.  

Suppose   independent samples with each sample having   independent values are 

drawn from the distribution of {          } under   .  The sample Bootlier index is 

obtained for each independent sample using the same step as     ̂    , and is denoted 

by     for          .  The P-value is then computed as 

    ̂  
 

 
∑  (  ( ̂   )    )

 
   .   
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Combining the above steps we obtain the extended Bootlier procedure for regression 

setting, which can be summarized as follows. 

1. Draw   bootstrap samples from data {          } with each bootstrap 

sample of size  , and compute the sample statistic MTM as 

{                  }.  

2. Obtain  ̂    and     ̂    . 

3. Estimate the null distribution for     ̂     and obtain P-value. 

(a) Draw   independent samples with each sample having   independent 

values drawn from the distribution       ̂   as                     for 

         . 

(b) Compute                          for           if {          } 

is the ordinary residual, and compute                 by (3.3), (3.4) or 

(3.5) if  {          } is the studentized residual, the studentized deletion 

residual, or SRCD. 

(c)  Obtain     for {             },           by repeating 1&2.  

(d) Obtain P-value as 
 

 
∑  (  ( ̂   )    )

 
   .      

While the general results for limiting distribution of MTM for i.i.d. univariate sample 

are developed in Chapter 2, they do not apply directly because the residuals and Cook’s 

distance are dependent.  In the following section, we develop similar results for 

regression case, which explains why multimodality in the density plot of MTM is 

sensitive to the outliers (or influential observations) to provide the support for proposed 

procedure.  

3.3   LARGE SAMPLE THEORY 

In this section, we develop several theorems that explain the association between the 

multimodality in the density plot of MTM and the outliers (or the influential 
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observations) in the sample.  Throughout this section, we consider   be the normal 

distribution        .  Lemma 3.1 introduce a basic result, the limiting distribution of the 

bootstrap sample mean for an increasing sequence converges to normal distribution given 

the sequence having certain properties.  Those properties are proved to be possessed for 

residuals and SRCD in the later theorems so that Lemma 3.1 forms the basis for later 

theorems.  Lemma 3.2 gives the result of limiting distribution of bootstrap sample mean 

for the residuals (or SCRD) when no outliers (or influential observations) are present in 

the sample, which is the immediate conclusion of Lemma 3.1.  Theorem 3.3 and Theorem 

3.5 present the limiting distribution of MTM with and without outliers (or influential 

observations) respectively, which are key results to support the proposed procedure.  

While the limiting distribution of MTM tends to normal distribution (Corollary 3.4) 

without outliers (or influential observations) present, it presents multimodality (Theorem 

3.5) when there are outliers (or influential observation) in the sample.  

Lemma 3.1 

Let                 be i.i.d. random variables uniformly distribution on a sequence 

{               }, where 
 

 
   for some constant    .  Let    

 

 
∑    

 
   ,   

  

 

 
∑           

    and  ̅   
 

 
∑    

 
   .  Suppose (a)      

     for        , 

and (b)         
     

√ 
   as    . Then √ 

 ̅     

  

 
        as    . 

Lemma 3.1 can be considered as a special case of Linderberg-Feller central limit 

theorem.  The proof is provided in Appendix A.1.  If we consider {               } as a 

sample from certain distribution, Lemma 3.1 provides the limiting distribution of its 

bootstrap sample mean.  We notice the sequence {               } do not necessarily 

come out from same distribution, and are not necessarily independent, but the bootstrap 

sample mean converges to normal distribution as long as the sample exhibits the 

asymptotic properties defined in (a) and (b).  The motivation of this lemma is the 

residuals and influential measures that have the same properties.   

The next theorem gives the limiting distribution of bootstrap sample mean for 

residuals and SRCD in (3.2) to (3.5).  In this theorem, we require the elements of hat 
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matrix are bounded by 
 

 
 for some constant  , i.e.,                   

 

 
 as    .  This 

condition is related to the independent variables only.  The purpose is to limit the impact 

of outliers in the independent variable space by excluding arbitrary outliers in the 

independent variables.  The assumptions generally hold in linear regression analysis.  For 

example, in simple linear regression,     
 

 
 

     ̅ (    ̅)

∑      ̅   
   

 for           and 

         .  Suppose  ̅     and 
 

 
∑      ̅   

      
    as    .  The 

assumption                  
 

 
  is equivalent to that   is bounded, which is a general 

case in the real data analysis. 

Lemma 3.2 

Assume the above condition holds.  Let {          } be any residuals or SRCD in (3.2) 

to (3.5),    
 

 
∑   

 
    and   

  
 

 
∑   

  
   .  Let {  

    
      

 } be a bootstrap sample 

from {          }, where 
 

 
   for some constant    ,   ̅

  
 

 
∑   

  
     and       

 (√ 
 ̅ 
    

  
  ).  Then,            as    . 

Lemma 3.2 shows that the bootstrap sample mean of the residuals and SRCD without 

outliers has the asymptotic normal distribution.  Proof of Lemma 3.2 is provided in 

Appendix A.1. 

The next theorem studies the limiting distribution of bootstrap sample mean of 

residuals and SRCD with an outlier present in the data.  Let us augment the data by an 

outlier from upper side, say             , where   is sufficiently large to make 

     the largest residual or SRCD after fitting regression model.   

Note we also let     and     for simplicity.   

Theorem 3.3 

Assume the conditions for independent variables in Lemma 3.2 hold.  Let {            } 

be any residuals or SRCD in (3.2) to (3.5),    
 

 
∑   

 
   ,   

  
 

 
∑          

   , and 
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∑   

    
   .  Let {  

    
      

      
 }  be a bootstrap sample from 

{               },   ̅  
  

 

   
∑   

    
   , and          (√   

 ̅   
    

  
  ).  Then, 

        can be expressed as a mixture of normal distribution as 

        ∑
   

  
 (  

   

√   
)      

 
    ,              (3.9) 

where                         and    is a Poisson random variable with mean 1, 

  is any positive integer,    
 

  
 for ordinary residuals and studentized deletion 

residuals,    
 

      
 for studentized residual, and    

√           

√       
  for SRCD.   

Proof of Theorem 3.3 is provided in Appendix A.1.   

COROLLARY 3.4  

If  √ ⁄    as    , we have the limiting result                   a.s..  That 

is, unless   increases at a rate of √  or faster as    , its effect on the distribution of 

the normalized bootstrap mean vanishes in limit. 

Theorem 3.3 and Corollary 3.4 show that the limiting distribution of bootstrap sample 

mean for residuals and SRCD in (3.2) to (3.5) with outliers converges to normal 

distribution, similar to the result we have in Lemma 3.2.  It implies that the bootstrap 

sample mean is not sensitive to outliers.   

Now we turn to the limiting distribution of MTM of bootstrap sample. With trimming 

size 1 from upper side of {               }, 

 
 

 
∑     

  
    

 

   
∑     

    
    

 

 
   ̅  

        
   . 

It is sufficient to study the distribution of normalized   ̅  
        

 . 

Let    √   
 ̅   
        

      

  
, and let               that is further expressed 

as the mixture 
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                 +            , 

where                     ,                       , and         

              . 

The rescaled    for MTM of {               } has a mixture of distributions      

and     , where      is free of outliers and      involves of outliers.  Under the same 

assumption as Theorem 3.3, the following theorem reveals the representation of      and 

     as the sample size increases to infinity. 

Theorem 3.5 

Under the above setting and same assumptions as Theorem 3.3,         and         can 

be expressed as a mixture of normal distribution as 

(a)          ∑             (  
√   

  
        )      

 
     ,         (3.10) 

where                    ,   is any positive integer,  

(b)         ∑
 

       
 (  

√     

  
    )      

 
    ,           (3.11) 

where                 
 

             and    is a Poisson random variable with 

mean 1,   is any positive integer.  

For (b), if  √ ⁄   , it can be further expressed as  

(c)           (  √     ) ,              (3.12) 

where      for residuals (3.2) to (3.4) and    
√           

√   
  for SRCD. 

Proof of Theorem 3.5 is provided in Appendix A.1. 

Without proof, for certain special cases where the error terms are from some short-

tailed distribution such that we could further assume that √                 a.s. for 
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any fixed  ,       of Theorem 3.5 can be further simplified as a mixture of two normal 

distributions,  

          (  √       )+        (  √     ) ,          (3.13) 

where      for residuals (3.2) to (3.4) and    
√           

√   
   for SRCD. 

The representations in (3.10) to (3.13) reveal that multimodality of limiting distribution 

of MTM for residuals and SRCD is caused by the outlier.  Lemma 3.2, Theorem 3.3 and 

3.5 are developed for one outlier in the linear regression problem.  When there are 

multiple outliers present in the sample, these results are similar to those discussed in 

Chapter 2.  We omit them here.   

3.4   SIMULATION STUDY 

In this section, we conduct two simulation studies to illustrate the performance and 

features of the extended Bootlier procedure.  The first simulation study illustrates a 

regression analysis with a data point which is both an outlier and an influential 

observation.  The second simulation study demonstrates that the extended Bootlier 

procedure has lower false positive rate when the error terms distributed with high 

probability in the tail.  In particular, the results from those analytic methods discussed in 

Section 3.2.1 are provided in both simulation studies for comparison.  

In the simulation study #1, a sample size of 30 {                  } is simulated 

to fit a linear regression model        .  The independent variables {     

        } are simulated from Uniform [-5, 5], error terms {             } are 

simulated from standard normal       , and   is calculated by           .  An 

additional data point          is added to the sample as an outlier (Note:           

       where         ).  The sample data with the fitted regression line is plotted in 

Figure 3.1 (a).  Figure 3.1 (b) to (e) are plots of residuals and SRCD.  The corresponding 

density plot of MTM and sample Bootlier index are provided in Figure 3.1 (f) to (i).   
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For Figure 3.1 (b) to (i), the residuals and SRCD of the added data point are well 

separated from others and clear multimodality of the density plot is presented for all three 

residuals and SRCD.  P-values are 0.001, 0.001, 0.001 and 0.024 for ordinary residuals, 

studentized residuals, studentized deletion residuals and SRCD respectively.  These 

present the strong evidence that the added point is both an outlier and an influential 

observation.  We notice that although the four measures all provide significant P-values, 

P-value for SRCD does not have same strength the other three for this example.  A close 

look of the residuals and SRCD explains the reason.  As seen in (3.2) to (3.4), the three 

residuals are usually at same scale when there are no obviously high leverage points in 

the sample or when the high leverage points are close to the regression line (i.e., with 

small error).  When there are high leverage points with large error, the studentized 

deletion residual is most sensitive to the outliers among the three, and studentized 

residual is more sensitive to the outliers than ordinary residual.   However, the difference 

among residuals is mainly determined by the weights 
 

√     
 for          , which 

usually does not present large variability.  In this simulation study, 
 

√     
 only ranges 

from 1.02 to 1.07.  Therefore the results based on residuals generally are consistent.  But 

SRCD is very different from residuals because it depends on leverage through the weight 

of 
√   

     
.  Even without the high leverage points, its variability is much higher.  The data 

points with relative higher leverage are more likely to have large SRCD values than those 

with small leverage.  In this simulation study, the range of 
√   

     
 is             and the 

added point has the value (0.19) at the lower end of range, which mathematically explains 

why P-value for SRCD is on a less severe scale than the residuals.  Essentially SRCD is a 

measure of influential observations.   

The studentized residual (3.502) for the added point is the only value greater than 3.  

It is considered as an outlier by Montgomery et al. (2003).  This value is also beyond the 

1% critical value for the discordancy test proposed in Barnett and Levis (1994).  For 

Bonferroni type test by Neter et al. (1996), the studentized deletion residual (4.529) for 

the added point is greater than the 1% critical value.  These results are consistent with the 

extended Bootlier procedure to confirm the added point is an outlier.  For Cook’s 
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distance, the added point has value 0.205 that is beyond the cutoff (i.e., 
 

  
) suggested by 

Bollen and Jackman (1990), which agrees the conclusion from the extended Bootlier 

procedure.   

[Insert Figure 3.1] 

The simulation study #2 investigates a linear regression analysis with the error terms 

distributed as the standard double exponential distribution         and no outliers of 

influential observations added.  A sample size of 100, {                   }, is 

simulated to fit a linear regression model        , with the      drawn from 

Uniform [-5, 5] and   
   drawn from         and   calculated by           .  The 

sample data with the fitted regression line is plotted in Figure 3.2.   

[Insert Figure 3.2] 

The observation #30 has the studentized residual -3.507 thus it is considered as an 

outlier by Montgomery et al. (2003).  This value is also beyond the 5% critical value for 

the discordancy test proposed by Barnett and Levis (1994).  The studentized deletion 

residual is -3.731 for the observation #30 that is beyond the 5% critical value for 

Bonferroni type test by Neter et al. (1996).  Therefore, observation #30 is considered as 

an outlier.  For Cook’s distance, there are several observations beyond the cutoff (i.e., 

 

   
) suggested by Bollen and Jackman (1990).  While all those analytic approaches 

suggest the outliers or influential observations in the data, the extended Bootlier 

procedure does not have the significant findings.  P-values for the lower-side and upper 

sided trimming are 0.298 and 0.212 for the ordinary residual, 0.304 and 0.219 for the 

studentized residual, 0.284 and 0.217 the for studentized deletion residual, 0.539 and 

0.503 for SRCD.  None of these P-values are significant.  In other words, the extended 

Bootlier procedure has lower false positive rate for such cases.  This is contributed to the 

fact the procedure inherently takes all data points into account, which Singh and Xie 

(2003) describe as “seems to capture the essence of what statisticians call outliers”.  

When there are data points filling in the gaps between those extreme values and the rest 
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of data, it is more reasonable to consider them from some heavy-tailed distribution rather 

than outliers.  

3.5   REAL DATA EXAMPLE  

In the real data example, we analyze the sperm data studied in Clarke (2008). The dataset 

includes sixty observations of bivariate data (Table 3.1), which are the Sperm Motility 

Index (SMI) and sperm motility (motility) as measured using the SQA-I1 B machine.  

Their objective of the analysis is to illustrate the usefulness of diagnostic approaches and 

the adaptive trimmed likelihood algorithm (ATLA) that are aiming at the detection of 

outliers in exploring the relationship between those two variables.  

 [Insert Table 3.1] 

The regression model is first fitted with all data points with SMI as the response 

variable and motility as the independent variable, then the extended Bootlier procedure is 

applied to the residuals and SRCD.  The sample data with the fitted regression line is 

plotted in Figure 3.3 (a).  Figure 3.3 (b) to (e) are plots of residuals and SRCD and Figure 

3.2 (f) to (i) are the corresponding density plots of MTM.     

P-values for sample Bootlier index are 0.004, 0.002, 0.003 and 0.038 for ordinary 

residuals, studentized residuals, studentized deletion residuals and SRCD respectively.  

The presence of outliers and influential observations in data is apparent.     

[Insert Figure 3.3] 

Similar to the diagnostic approach in Clarke (2008), we first exclude two largest 

outliers, observation #1 and #2, fit the linear regression model with the rest of data, and 

then apply the extended Bootlier procedure to residuals and SRCD again. Figure 3.4 (a) 

to (d) are the density plots with sample Bootlier index. P-values are 0.020, 0.021, 0.024 

and 0.003 for ordinary residuals, studentized residuals, studentized deletion residuals and 

SRCD respectively, which still suggest the presence of outliers and influential 

observations.  This is consistent with the results in Clarke (2008). 

[Insert Figure 3.4] 
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Next, four outliers, observation #1, #2, #3 and #15, are excluded from the model and 

the extended Bootlier procedure is applied to residuals and SRCD afterwards; see Figure 

3.5 (a) to (d) for the density plots with sample Bootlier index.  P-values are >0.999, 

>0.999, >0.999 and 0.045 for ordinary residuals, studentized residuals, studentized 

deletion residuals and SRCD respectively.  The results for residuals suggest no outliers, 

but SRCD suggests borderline influential observations.  The investigation of SRCD 

reveals that observation #4 has a large residual (studentized residual 2.55) and a high 

leverage in X, which are the largest values among studentized residuals and leverages 

respectively.  This is a good example that an observation is not an outlier but an 

influential observation.   

[Insert Figure 3.5] 

In Clarke (2008), the diagnostic approach does not go further to remove more outliers 

or influential observations, and the regression model is fitted with 56 observations.  In 

our study we further exclude observation #4 and apply the extended Bootlier procedure to 

the rest of data.  Figure 3.6 (a) to (d) shows the density plots for the residuals and SRCD.  

P-values are >0.999, >0.999, >0.999 and 0.451.  There is no evidence of outliers or 

influential observations.  This is consistent with the results by the ATLA method in 

Clarke (2008) given the number of potential outliers is up to five.  While the ATLA does 

not continue checking more outliers or influential observations due to the explosion of 

computation, not because of no outlier or influential observations, the extended Bootlier 

procedure suggests no further outliers or influential observations in the data.  

[Insert Figure 3.6] 

3.6   CONCLUDING REMARKS 

This chapter has proposed a statistical framework, the extended Bootlier procedure, as a 

diagnostic method for the outliers and the influential observations in linear regression 

model.  The framework is an extension of the similar method that is developed for i.i.d. 

univariate sample.  Three residuals as the measures of outliers and a square-version of 

Cook’s distance as the measure of influential observations are studied using the extended 
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Bootlier procedure.  As suggested, other measures could be applied after careful 

examinations.  The features of the proposed framework are illustrated through two 

simulation studies and a real data example, and the procedure demonstrates advantages 

when the error terms have higher tail probability than normal distribution.  Because the 

residuals and influential measures are dependent, the large sample results are developed 

to provide the theoretical support.  Finally, the interesting area for further study may 

include a sequential procedure similar to the generalized extreme generalized extreme 

studentized deviate (ESD); see Rosner (1983).   
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APPENDIX  

A.1   Proof of Results 

PROOF OF LEMMA 3.1 
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By Lemma 3.1 (b),  

 (   
             √   )    as    . 

Then,   
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    .             (A.2) 

By Lemma (3.4.3) of Durett (2010),  

|∏       
 
    ∏    

  

  
  

   |    as    .                                                  (A.3) 

Then we have 
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  as    , which implies √ 
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        as    .  

PROOF OF LEMMA 3.2 

Given that {          } is the residuals or SRCD defined in (3.2) to (3.5), we will 

exam conditions (a) and (b) of Lemma 3.1 for each residuals and SRCD. 

Ordinary residuals 

(a) 
 

 
∑   

  
    

   

 
(

 

   
∑   

  
   )     as      

(b)         
    

√ 
   as    , which is obtained by the same arguments of Lemma 

A of Singh and Xie (2003). 

Studentized residuals 
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(b)          
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√ 
   as     

Studentized deletion residuals 

Note that  ̂    
  

      ̂ 

     
 

  
 

              
 (see Beckman and Tryssell, 1974), the 

studentized deletion residuals (3.4) can also be expressed as      √
     

             ̂    
  .

 Let           √
     

             ̂    
  , then                . 



60 
 

 
 

(a)   
 

 
∑   

  
    

 

 
∑          

   
  

      as      

(b)           
    

√ 
         

             

√ 
   as     

SRCD 

The coefficient for the SRCD 
√   

√  ̂        
 goes to 0 as    . So, we rescale SRCD 

by a common constant to fit the proof into our frame.  Let   
  √    

√ 

√  ̂ 
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  . 

Next, we exam the conditions (a) to (b) of Lemma 3.1 for {  
    

      
 }.  
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By Lemma 3.1, we conclude that        (√ 
 ̅ 
    

  
  )       as    . 

PROOF OF THEOREM 3.3 

Let      be the number of times      appearing in the bootstrap sample 

{  
    

      
      

 }. Then      has              
 

   
 .  When    ,      is 

asymptotically distributed as Poisson random variable with mean 1, and is denoted by   .  

The distribution of √   
 ̅   
    

  
 is expanded as 

         ∑  (√   
 ̅   
    

  
         )      

 
   ,           (A.4) 
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where               .  

Let {    
      

        
        

 } be the order statistics of {  
    

      
      

 }.  By 

assumption,       
       if      is in {  
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For     
 ’s,              , they are a bootstrap sample from {          } given 

that       .  Let’s rewrite     
 ’s as       

 , a form without order.  Next, we show that   
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        given        for each residual and SRCD. 

We first consider ordinary residuals.  That is,       for              .  

Correspondingly we denote       
  by       
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Adopting the same notations, let       
        

             
   for             

 , where       
  and            

  are the two components of       
  corresponding to   ’s and 

       ’s. 
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Then       
  and            

   can be considered as bootstrap samples from 

{          } and {                            } respectively. 

We have 
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     , which represents a special case that      resides at 

the center of X cloud, (A.6) is simplified as √     
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     , which represents that         for           have a 

fixed variation.  We consider the following three cases assuming       
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  , both components contribute to the distribution in (A.6).  In all 

three cases, we can apply the same arguments for Lemma 3.2 to get the following results, 
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Therefore, (A.5) becomes 
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From (A.4) and (A.7), we conclude (3.6), 
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The results for the other residuals and SRCD can be obtained by similar arguments as 

above. We do not repeat the arguments here. 

PROOF OF THEOREM 3.5  

The proof of (a) will follow same arguments of the proof of Theorem 2.3 (a); see 

Appendix A.1 of Chapter 2. We do not repeat the arguments here.  

For (b),         can be expressed as  
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Applying the same arguments as proof in Lemma 3.2, we have 

                (  
√     

  
    ).  

Then         ∑
 

       
 (  

√     

  
    )      

 
   . 

Proof of (c) is trivial. 

A.2   Figures and Tables 

Figure 3.1 (Simulation #1): Extended Bootlier procedure for a sample of size 30 

simulated for a univariate regression model with an outlier added: (a) 31 data points in 

      plane with fitted regression line, (b) ordinary residuals, (c) studentized residuals, 

(d) studentized deletion residuals, (e) SRCD, (f) the density plot for ordinary residuals,  

sample Bootlier index = 0.80838, (g) the density for studentized residuals, sample 

Bootlier index = 0.81510, (h) the density plot for studentized deletion residuals, sample 

Bootlier index = 1.11021, (i) the density plot for SRCD, sample Bootlier index = 0.45858 
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Figure 3.2 (Simulation #2): Extended Bootlier procedure for a sample of size 100 

simulated for a univariate regression model. 

 

Table 3.1 (Real Data Example): Sperm data in Clarke (2008)  

# Obs. Motility SMI # Obs. Motility SMI # Obs. Motility SMI 

1 8 23 21 62 291 41 81 481 

2 9 24 22 62 293 42 82 492 

3 28 70 23 64 307 43 82 494 

4 37 98 24 66 326 44 82 491 

5 41 128 25 66 326 45 84 510 

6 42 134 26 66 326 46 84 519 

7 45 158 27 68 351 47 85 521 

8 48 186 28 70 372 48 86 537 

9 50 198 29 70 372 49 86 539 

10 51 208 30 73 407 50 88 556 

11 51 206 31 73 403 51 88 556 

12 51 204 32 73 405 52 90 579 

13 53 245 33 74 416 53 91 589 

14 53 220 34 74 418 54 92 597 

15 55 290 35 75 424 55 92 592 

16 55 246 36 75 420 56 95 621 

17 56 250 37 78 455 57 96 643 

18 56 252 38 81 484 58 96 636 

19 57 256 39 81 480 59 96 631 

20 60 281 40 81 489 60 97 632 
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Figure 3.3 (Real Data Example): Extended Bootlier procedure for Sperm data: (a) 60 data 

points in       plane with fitted regression line, (b) ordinary residuals, (c) studentized 

residuals, (d) studentized deletion residuals, (e) SRCD, (f) the density plot for ordinary 

residuals, sample Bootlier index = 0.77918, (g) the density plot for studentized residuals, 

sample Bootlier index = 0.82472, (h) the density plot for studentized deletion residuals, 

sample Bootlier index = 0.86479, (i) the density plot for SRCD, sample Bootlier index = 

1.08405 
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Figure 3.4 (Real Data Example): Extended Bootlier procedure for SMI data with 

observations #1 and #2 excluded from the regression model: (a) the density plot for 

ordinary residuals, sample Bootlier index = 0.43834, (b) the density plot for studentized 

residuals, sample Bootlier index = 0.42557, (c) the density plot for studentized deletion 

residuals, sample Bootlier index = 0.52484, (d) the density plot for SRCD, sample 

Bootlier index = 1.22618 
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Figure 3.5 (Real Data Example): Extended Bootlier procedure for Sperm data with 

observations #1, #2, #3 and #15 excluded from the regression model: (a) the density plot 

for ordinary residual, sample Bootlier index = 0, (b) the density plot for studentized 

residuals, sample Bootlier index = 0, (c) the density plot for studentized  deletion 

residuals, sample Bootlier index = 0, (d) the density plot for SRCD, sample Bootlier 

index = 0.53587 
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Figure 3.6 (Real Data Example): Extended Bootlier procedure for Sperm data with 

observations #1, #2, #3, #14 and #15 excluded from the regression model. (a) the density 

plot for ordinary residuals, sample Bootlier index = 0, (b) the density plot for studentized 

residuals., sample Bootlier index = 0, (c) the density plot for studentized deletion 

residuals, sample Bootlier index = 0, (d) the density plot for SRCD, sample Bootlier 

index = 0.00078 
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CHATPER 4    

SOFTWARE DEVELOPMENT 

4.1   INTRODUCTION 

Software development is presented in this chapter.  The software includes a numerical 

algorithm for calculation of the Bootlier index and R/C functions for the extended 

Bootlier procedure developed in Chapter 2 and Chapter 3.  

4.2   COMPUTATION ALGORITHMS 

The Bootlier index is expressed in a closed form in (2.4) of Chapter 2, and the concept is 

easy to understand, but it is not trivial to use (2.4) directly to compute Bootlier index 

because it involves integral from    to   .  The analytical solution seems not feasible.  

However, a numerical solution is proposed noticing that the density plot is expressed as 

the kernel density function.  

Let      
 

  
∑  (

    

 
) 

    be the kernel density function for a given sample 

{          }.  An interesting finding is that      monotonically increases on {    

    {  }} and monotonically decreases on {        {  }}.  One immediate result is 

that the valley area as illustrated in Figure 2.1 only exists in the interval 

     {  }      {  } , which leads to a numerical algorithm to calculate Bootlier index 

as follows. 

1. Let   
    {  }     {  }

 
  and divide the interval      {  }      {  }  equally 

into   partitions.  Denote        {  },        {  }, and         , 

        . 

2. Find the global maximum {                   } and denote it by      . 
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3. Calculate the valley area between    and    iteratively by the steps below. 

 (a) Let        ,           and           . 

 (b) If                   , let              and              . 

If                   , let                                   

and              . 

(c) Repeat 3(a) and 3(b) until         . 

4. Calculate the valley area between    and    similar to Step 3 and denote it by 

      . 

5. Bootlier index is                  

The procedure above is similar to the standard numerical methods for calculating the 

integrals.  Without repeating the general proof, we claim that   converges to Bootlier 

index for      as   goes to infinity.   

4.3   R/C FUNCTIONS 

4.3.1   Functions 

Function for Bootlier index calculation 

To improve computational efficiency, this function is first written in C language based on 

the algorithm described in Section 4.2, and compiled into dynamic link library (DLL).  A 

R wrapper that calls the DLL by .Call function is developed to provide usual R interface.  

############################################################################### 

#                                                                             #       

# # C function – Calculate Bootlier index                                     # 

#                                                                             # 

############################################################################### 

 

#include <R.h> 

#include <Rmath.h> 

void getBIndexC(double *kfpoint, int *kflength, double *h, int *n, double 

*BIndex) 

{ 

  int i,j, pointmax; 

  double kfmin, kfmax, x[*n+1], y[*n+1], ymax, movingmax; 
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  kfmin=kfpoint[0]; 

  kfmax=kfpoint[0]; 

  for(i=1; i<*kflength; i++) { 

     if (kfmin>kfpoint[i]) kfmin=kfpoint[i]; 

     if (kfmax<kfpoint[i]) kfmax=kfpoint[i]; 

  }   

  for (i=0; i<=*n; i++) { 

    x[i]=kfmin+i*(kfmax-kfmin)/(*n);     

    y[i]=0; 

    for (j=0; j<*kflength; j++) y[i]=y[i]+dnorm((x[i]-kfpoint[j])/(*h),0,1,0); 

    y[i]=y[i]/((*kflength)*(*h)); 

  }     

 

  ymax=y[0]; 

  pointmax=0; 

  for (i=0; i<=*n; i++) { 

    if (ymax<y[i]) { 

      ymax=y[i]; 

      pointmax=i; 

    } 

  }  

  *BIndex=0; 

  movingmax=y[*n]; 

  for (i=*n;i>=pointmax;i--) { 

    if (y[i]<movingmax) *BIndex+=movingmax-y[i]; 

    else                 movingmax=y[i]; 

  } 

  movingmax=y[0]; 

  for (i=0;i<=pointmax;i++) { 

    if (y[i]<movingmax) *BIndex+=movingmax-y[i]; 

    else                 movingmax=y[i]; 

  } 

  *BIndex=*BIndex*(kfmax-kfmin)/(*n); 

} 

 

############################################################################### 

#                                                                             # 

# R wrapper function – Calculate Bootlier index                               # 

#                                                                             # 

# Function: getBIndexByC                                                      # 

# Parameter Description                                                       # 

#     kfpoint: sample for kernel density estimation                           #                               

#     h:       bandwidth of kernel density function                           # 

#     n:       number of partitions                                           # 

#                                                                             # 

############################################################################### 

 

setwd("C:/…/Clib") 

getBIndexByC<-function(kfpoint,h,n=2000){ 

return(.C("getBIndexC",as.double(kfpoint),as.integer(length(kfpoint)),as.doubl

e(h),as.integer(n),as.double(vector("double",1)))[[5]]) 

} 
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Function for the extended Bootlier procedure for i.i.d. univariate sample 

This R function calculates the sample Bootlier index, generates density plot, and 

produces P-value for a pre-specified distribution. 

###############################################################################

#                                                                             # 

# R function - Calculate Bootlier index, generate estimated density plot, and # 

#              produce P-value based on pre-specified distribution            # 

#                                                                             # 

# Function: BProc                                                             # 

# Parameter Description                                                       # 

#     sample:    univariate sample                                            # 

#     numTrim:   trimming number [positive integer] [default=2]               # 

#     BPSide:    trimming side [1: two-sided, 2: upper-sided, 3: lower-sided] # 

#                [default=2]                                                  # 

#     numMTM:    number of bootstrap samples [positive integer] [default =    # 

#                20,000]                                                      # 

#     numPar:    number of partitions for Bootlier index calculation          # 

#                [positive integer] [default=2,000]                           # 

#     BPFrac:    fraction of total sample size for bootstrap samples          # 

#                [positive number between 0 and 1] [default=1]                # 

#     BPPlot:    plot estimated density function? [TRUE, FALSE] [default=TRUE]#  

#     BPTest:    produce P-value? [TRUE, FALSE]  [default=TRUE]               # 

#     BPDist:    pre-specified distribution [1: normal, 2: T6, 3: Exponential # 

#                4: Uniform, 5: Cauchy] [default=1 normal]                    # 

#     numDist:   number of observations for empirical distribution [positive  # 

#                integer] [default=1,000]                                     # 

#     BPSeed:    seed for random number generation [default=1]                # 

#     StatusBar: display the progress bar? [TRUE, FALSE] [default=TRUE]       # 

#                                                                             # 

############################################################################### 

 

BProc<-function(sample,numTrim=2,BPSide=2,numMTM=20000,numPar=2000,BPFrac=1, 

BPPlot=TRUE,BPTest=TRUE,BPDist=1,numDist=1000,BPSeed=1,StatusBar=TRUE){ 

  # Initialization  

  set.seed(BPSeed) 

  numObs=length(sample) 

  dyn.load("getBIndexC.dll") 

  # Get the MTM sample  

  

MTM=getMTM(sample=sample,numTrim=numTrim,BPSide=BPSide,numMTM=numMTM,BPFrac=BPF

rac) 

  # Plot the kernel density estimator  

  if (BPPlot==TRUE) plot(density(MTM),xlab="",ylab="",main="") 

  # Calculate Bootlier index 

  hSRT=0.9*min(IQR(MTM)/1.34,sd(MTM))*(numMTM^(-0.2)) 

  BIndex=getBIndexByC(MTM,hSRT,n=numPar) 

  # Simulate distribution of Bootlier index and produce P-value 

  if(BPTest==TRUE){ 

     # Simulate distribution 

     set.seed(BPSeed) 

     BIndexEmp=rep(0,numDist) 

     if(StatusBar==TRUE) BPStatus=txtProgressBar(min=0,max=numDist,style=3) 
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     for (i in 1:numDist){ 

       if(BPDist==1) sampleEmp=rnorm(numObs) 

       if(BPDist==2) sampleEmp=rt(numObs,6) 

       if(BPDist==3) sampleEmp=rexp(numObs) 

       if(BPDist==4) sampleEmp=runif(numObs) 

       if(BPDist==5) sampleEmp=rcauchy(numObs)     

   

MTMEmp=getMTM(sample=sampleEmp,numTrim=numTrim,BPSide=BPSide,numMTM=numMTM,BPFr

ac=BPFrac) 

       hSRTEmp=0.9*min(IQR(MTMEmp)/1.34,sd(MTMEmp))*(numMTM^(-0.2)) 

       BIndexEmp[i]=getBIndexByC(MTMEmp,hSRTEmp,n=numPar) 

       if(StatusBar==TRUE) setTxtProgressBar(BPStatus,i) 

     } 

     if(StatusBar==TRUE) close(BPStatus) 

 

     # Calculate P-value  

     BIndexEmpQ=quantile(BIndexEmp,probs=(seq(0,1,0.05))) 

     BPpval=sum(BIndexEmp>=BIndex)/numDist 

  } 

  # Produce the final result 

  if(BPTest==FALSE){ 

    BIndexEmp=NULL 

    BIndexEmpQ=NULL 

    BPpval=NULL 

  } 

  BPList=list(MTM,BIndex,BIndexEmp,BIndexEmpQ,BPpval) 

  names(BPList)=c("MTM","BIndex","BIndexEmp","BIndexEmpQuantile","BPpvalue") 

  return(BPList) 

} 

 

############################################################################### 

#                                                                             # 

# R function – Generate MTM samples                                           # 

#              This is a sub-function called by BProc to generate MTM samples.# 

#                                                                             # 

############################################################################### 

 

getMTM<-function(sample,numTrim,BPSide,numMTM,BPFrac){ 

  numSample=length(sample) 

  n=floor(numSample*BPFrac) 

  # Get the MTM sample  

  MTM=rep(0,numMTM) 

  for(i in 1:numMTM){ 

    select=ceiling(numSample*runif(n)) 

    y=sort(sample[select]) 

    if(BPSide==1) MTM[i]=(-2*numTrim)*sum(y)/(n*(n-2*numTrim))+sum(y[1:numTrim],y[(n-

numTrim+1):n])/(n-2*numTrim) 

    if(BPSide==2) MTM[i]=(-numTrim)*sum(y)/(n*(n-numTrim))+sum(y[(n-numTrim+1):n])/(n-

numTrim) 

    if(BPSide==3) MTM[i]=(-numTrim)*sum(y)/(n*(n-numTrim))+sum(y[1:numTrim])/(n-numTrim) 

  } 

  return(MTM) 

} 
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Function to produce the null distribution of sample Bootlier index  

This R function produces the null distribution of the sample Bootlier index.  In addition 

to the main function BProc, this function provides flexibility for those who only need the 

null distribution of sample Bootlier index.  

###############################################################################  

#                                                                             # 

# R function – Produce the simulated distribution                             # 

#                                                                             # 

# Function: BProcEmp                                                          #  

# Parameter Description                                                       # 

#     numObs:    sample size of original sample [positive number]             # 

#     numTrim:   trimming number [positive integer] [default=2]               # 

#     BPSide:    trimming side [1: two-sided, 2: upper-sided, 3: lower-sided] # 

#                [default=2]                                                  # 

#     numMTM:    number of bootstrap samples [positive integer]               # 

#                [default = 20,000]                                           # 

#     numPar:    number of partitions for Bootlier index calculation          # 

#                [positive integer] [default=2,000]                           # 

#     BPFrac:    fraction of total sample size for bootstrap samples          # 

#                [positive number between 0 and 1] [default=1]                # 

#     BPDist:    pre-specified distribution [1: normal, 2: T6, 3: Exponential # 

#                4: Uniform, 5: Cauchy] [default=1 normal]                    # 

#     numDist:   number of observations for empirical distribution [positive  # 

#                integer] [default=1,000]                                     # 

#     BPSeed:    seed for random number generation [default=1]                # 

#     StatusBar: display the progress bar? [TRUE, FALSE] [default=TRUE]       # 

#                                                                             # 

############################################################################### 

 

BProcEmp<-function(numObs,numTrim=2,BPSide=2,numMTM=20000,numPar=2000,BPFrac=1, 

BPDist=1,numDist=1000,BPSeed=1,StatusBar=TRUE){ 

  # Initialization  

  dyn.load("getBIndexC.dll") 

  set.seed(BPSeed) 

  # Generate the simulated distribution and P-value 

  BIndexEmp=rep(0,numDist) 

  if(StatusBar==TRUE) BPStatus=txtProgressBar(min=0,max=numDist,style=3) 

  for (i in 1:numDist){ 

     if(BPDist==1) sampleEmp=rnorm(numObs) 

     if(BPDist==2) sampleEmp=rt(numObs,6) 

     if(BPDist==3) sampleEmp=rexp(numObs) 

     if(BPDist==4) sampleEmp=runif(numObs) 

     if(BPDist==5) sampleEmp=rcauchy(numObs) 

     

MTMEmp=getMTM(sample=sampleEmp,numTrim=numTrim,BPSide=BPSide,numMTM=numMTM,BPFr

ac=BPFrac)   

     hSRTEmp=0.9*min(IQR(MTMEmp)/1.34,sd(MTMEmp))*(numMTM^(-0.2)) 

     BIndexEmp[i]=getBIndexByC(MTMEmp,hSRTEmp,n=numPar) 

     if(StatusBar==TRUE) setTxtProgressBar(BPStatus,i) 

  } 

  if(StatusBar==TRUE) close(BPStatus) 

  BIndexEmpQ=quantile(BIndexEmp,probs=(seq(0,1,0.05))) 
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  # Produce the final result 

  BPList=list(BIndexEmp,BIndexEmpQ) 

  names(BPList)=c("BIndexEmp","BIndexEmpQuantile") 

  return(BPList) 

} 

 

Function for the extended Bootlier procedure for linear regression model 

This R function provides the sample Bootlier index, density plot, and P-value for the 

residuals and the square-root of Cook’s distance for linear regression analysis.  

###############################################################################  

#                                                                             # 

# R functions - Calculate Bootlier index, generate estimated density plot, and# 

#               produce P-value for linear regression analysis                #                                

#                                                                             # 

# Function: BProcLinMod                                                       #  

# Parameter Description                                                       # 

#     linFit:    lm object from linear regression model                       # 

#     resType:   residual type [1: ordinary residual, 2: studentized residual,# 

#                3: studentized deletion residual, 4: SRCD]                   # 

#     numTrim:   trimming number [positive integer] [default=2]               # 

#     BPSide:    trimming side [1: two-sided, 2: upper-sided, 3: lower-sided] # 

#                [default=2]                                                  # 

#     numMTM:    number of bootstrap samples [positive integer] [default =    # 

#                20,000]                                                      # 

#     numPar:    number of partitions for Bootlier index calculation          # 

#                [positive integer] [default=2,000]                           # 

#     BPFrac:    fraction of total sample size for bootstrap samples          # 

#                [positive number between 0 and 1] [default=1]                # 

#     BPPlot:    plot estimated density function? [TRUE, FALSE] [default=TRUE]# 

#     BPTest:    produce P-value? [TRUE, FALSE]  [default=TRUE]               # 

#     numDist:   number of observations for empirical distribution [positive  # 

#                integer] [default=1,000]                                     # 

#     BPSeed:    seed for random number generation [default=1]                # 

#     StatusBar: display the progress bar? [TRUE, FALSE] [default=TRUE]       # 

#                                                                             # 

############################################################################### 

 

BProcLinMod<-

function(linFit,resType,numTrim=2,BPSide=2,numMTM=20000,numPar=2000, 

BPFrac=1,BPPlot=TRUE,BPTest=TRUE,numDist=1000,BPSeed=1,StatusBar=TRUE){ 

  # Initialization  

  set.seed(BPSeed) 

  dyn.load("getBIndexC.dll") 

  y=linFit$model[,1] 

  numObs=length(y) 

  x=cbind(rep(1,numObs),linFit$model[,-1]) 

  numDim=length(x[1,]) 

  variance=summary(linFit)$sigma 

  hatMatrix=x%*%solve(t(x)%*%x)%*%t(x) 

  hat=diag(hatMatrix) # hat=lm.influence(linFit)$hat 

  residual=resid(linFit) 

  if(resType==1) resValue=residual 
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  if(resType==2) resValue=rstandard(linFit) 

  if(resType==3) resValue=rstudent(linFit) 

  if(resType==4) resValue=sqrt(cooks.distance(linFit))*sign(residual) 

  # Get the MTM sample  

  

MTM=getMTM(sample=resValue,numTrim=numTrim,BPSide=BPSide,numMTM=numMTM,BPFrac=B

PFrac) 

  # Plot the kernel density estimator  

  if (BPPlot==TRUE) plot(density(MTM),xlab="",ylab="",main="") 

  # Calculate Bootlier index 

  hSRT=0.9*min(IQR(MTM)/1.34,sd(MTM))*(numMTM^(-0.2)) 

  BIndex=getBIndexByC(MTM,hSRT,n=numPar) 

  # Generate the simulated distribution and P-value 

  if(BPTest==TRUE){ 

     # Simulated distribution 

     BIndexEmp=rep(0,numDist) 

     if(StatusBar==TRUE) BPStatus=txtProgressBar(min=0,max=numDist,style=3) 

     for (i in 1:numDist){ 

       sampleEmp=variance*(diag(numObs)-hatMatrix)%*%rnorm(numObs) 

       varEst=sqrt(sum(sampleEmp**2)/(numObs-numDim)) 

       if(resType==2) sampleEmp=sampleEmp/sqrt(1-hat)/varEst 

       if(resType==3) sampleEmp=sampleEmp*sqrt((numObs-numDim-1)/(1-

hat)/((numObs-numDim)*varEst**2-sampleEmp**2/(1-hat))) 

       if(resType==4) sampleEmp=sampleEmp*sqrt(hat/numDim)/varEst/(1-hat) 

       

MTMEmp=getMTM(sample=sampleEmp,numTrim=numTrim,BPSide=BPSide,numMTM=numMTM,BPFr

ac=BPFrac)   

       hSRTEmp=0.9*min(IQR(MTMEmp)/1.34,sd(MTMEmp))*(numMTM^(-0.2)) 

       BIndexEmp[i]=getBIndexByC(MTMEmp,hSRTEmp,n=numPar) 

       if(StatusBar==TRUE) setTxtProgressBar(BPStatus,i) 

     } 

     if(StatusBar==TRUE) close(BPStatus) 

     # Cacluate P-value  

     BIndexEmpQ=quantile(BIndexEmp,probs=(seq(0,1,0.05))) 

     BPpval=sum(BIndexEmp>=BIndex)/numDist 

  } 

  # Produce the final result 

   if(BPTest==FALSE){ 

   BIndexEmp=NULL 

   BIndexEmpQ=NULL 

   BPpval=NULL 

  } 

  BPList=list(MTM,BIndex,BIndexEmp,BIndexEmpQ,BPpval) 

  names(BPList)=c("MTM","BIndex","BIndexEmp","BIndexEmpQuantile","BPpvalue") 

  return(BPList) 

} 
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4.3.2   Examples 

Example 1 Codes for Real Data Example #1 in Chapter 2 

  # Codes for real data example #1 in Chapter 2: 24 recorded temperatures at 

which the primary O-ring of the space shuttle Challenger was sealed  

  sample=c(66, 70, 69, 68, 67, 72, 73, 70, 57, 63, 70, 78, 67, 53, 67, 75, 70, 

81, 76, 79, 75, 76, 58,) 

  BProc(sample=sample,BPSide=3) 

 

Example 2  Codes for Simulation Study #1 in Chapter 3 

  # Codes for Simulation Study #1 in Chapter 3 

  set.seed(1) 

  x=10*(runif(30)-0.5) 

  y=x+1+rnorm(30) 

  x=c(x,0) 

  y=c(y,4.72) 

  linFit=lm(y~x) 

  BProcLinMod(linFit=linFit,resType=1,BPSide=2) 

  BProcLinMod(linFit=linFit,resType=2,BPSide=2) 

  BProcLinMod(linFit=linFit,resType=3,BPSide=2) 

  BProcLinMod(linFit=linFit,resType=4,BPSide=2) 

 


