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Accurate identification of similar companies is invaluable to the financial and invest-

ing communities. To perform relative valuation, a key step is identifying a “peer group”

containing the most similar companies. To hedge a stock portfolio, best results are often

achieved by selling short a hedge portfolio with future time series of returns most similar to

the original portfolio - generally those with the most similar companies. To achieve diver-

sification, a common approach is to avoid portfolios containing any stocks that are highly

similar to other stocks in the same portfolio.

Yet, the identification of similar companies is often left to hands of single experts who

devise sector/industry taxonomies or other structures to represent and quantify similarity.

Little attention (at least in the public domain) has been given to the potential that may lie

in data-mining techniques. In fact, much existing research considers sector/industry tax-

onomies to be ground truth and quantifies results of clustering algorithms by their agreement

with the taxonomies.

This dissertation takes an alternate view that proper identification of relevant features

and proper application of machine learning and data mining techniques can achieve results

that rival or even exceed the expert approaches. Two representations of similarity are con-

sidered: 1) a pairwise approach, wherein a value is computed to quantify the similarity
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for each pair of companies, and 2) a partition approach analogous to sector/industry tax-

onomies, wherein the universe of stocks is split into distinct groups such that the companies

within each group are highly related to each other. To generate results for each represen-

tation, we consider three main datasets: historical stock-return correlation, equity-analyst

coverage and news article co-occurrences. The latter two have hardly been considered previ-

ously. New algorithmic techniques are devised that operate on these datasets. In particular,

a hypergraph partitioning algorithm is designed for imbalanced datasets, with implications

beyond company similarity prediction, especially in consensus clustering.
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Preface

Portions of this dissertation draw from research previously published (Yaros and Imieliński,

2013a,b, 2014a,c,b).
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Chapter 1

Introduction

Like many industries, finance has been continually transformed by new technologies. The

New York Stock Exchange (NYSE) is often recognized as originating with the signing of the

Buttonwood Agreement in 1792 (Geisst, 2012, Chapter 1). In these early days of trading,

stock and commodity prices had to be delivered by person. Large numbers of people would

be employed with the simple goal of communicating stock quotes as quickly as possible.

Still, physical limitations meant information disseminated slowly. The introduction of the

telegraph in the mid-1800s greatly reduced the time to send a message and meant trading

could more readily be performed over larger distances. Soon after, the ticker tape machine

was invented, eliminating the need for a trained receiver to transcribe signals. One of the

best known machines is the Universal Stock Ticker, an early development by Thomas Edison

that helped provide the funds to create his famous laboratory in Menlo Park.

In the twentieth century, technology and automation continued to be part of advances

in the financial industry, sometimes by necessity. In 1968, paper stock certificates were

still required to be physically delivered after a transaction. Increases in trading volume

meant that back offices soon became overwhelmed, resulting in the “Paper Crisis” and

NYSE actually stopped trading on Wednesdays for nearly the entire second half of 1968

so that back offices could recover. This lead to the accelerated formation of the Central

Certificate Service, and later the Depository Trust Company, to store and transfer stock

ownership electronically. The Paper Crisis also served as impetus to form the world’s first

fully electronic exchange, National Association of Securities Dealers Automated Quotations

(NASDAQ), which replaced the previous over-the-counter (OTC) system of trading smaller

stocks by phone (Wells, 2000). Older exchanges that previously used open outcry have

been converting to electronic trading for years, including the London Stock Exchange (LSE),
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which converted in 1986, and NYSE, which moved to a “hybrid” market in 2007. Meanwhile,

electronic communication networks (ECNs), crossing networks and dark pools have become

prevalent forms of Alternative Trading Systems (ATSs).

The advent of new technologies have often brought controversy. “Black Monday” (Oct.

19th, 1987), the largest one-day decline in the Dow Jones Industrial Average (DJIA), is

often blamed in part on “program trading”, which is a broad term but with regard to Black

Monday usually refers to a trading method that had relatively recently been introduced and

allowed execution of trades in a basket of securities contingent on certain conditions met.

Traders often used program trading to implement “portfolio insurance” whereby a portfolio

would be sold if stocks began to decline. The widespread use of portfolio insurance is

believed to have caused a positive feedback system with sales by program trades triggering

more and more sales by other program trades. (Carlson, 2007) More recently, use of high-

frequency trading has been blamed for the “Flash Crash” of May 6, 2010, where the DJIA

lost over 9%, then recovered within minutes (CFTC/SEC, 2010).

Still, technology and automation have been part of clear long-term beneficial trends.

Jones (2002) finds that one-way commissions as a proportion of the trade’s value have

decreased from approximately 0.25% in 1925 to 0.10% in 2000. Further, bid-ask spreads

have decreased from approximately 0.65% in 1900 to 0.20% in 2000. Chordia et al. (2011)

finds dramatic reductions continuing into the 21st century. These changes can be partially

attributed to changes in regulation, especially the 1975 “May Day” deregulation of the bro-

kerage industry by the Securities and Exchange Commission (SEC) and also decimalization

in 2001. Yet, the influence of technology in the reduction of trading costs is beyond doubt.

Even the controversial techniques of algorithmic and high-frequency trading show evidence

of bringing greater trading volume and greater efficiency to the market (Hendershott et al.,

2011).

This dissertation is intended to provide support to this continual progression towards

automation and efficiency. More specifically, it seeks to consider the task of predicting

company similarity, particularly as measured by stock price co-movements. Two output

forms often used by financial practioners are examined. The first is pairwise similarity

where a scalar value is produced to quantify the similarity between two companies. This is
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Figure 1.1: Example Morningstar Instant X-Ray. In this instance, the portfolio has a large

exposure to technology.

analogous to the Pearson correlation of returns for two stocks (although this dissertation’s

goal is prediction of similarity, not necessarily the quantification of historical similarity).

The second form is a simpler representation where stocks are placed in clusters, with the goal

that each stock is most similar to the other stocks in its cluster. These clusters often appear

in practice as sector/industry classifications or taxonomies, with each company belonging

to a group, like “Health Care”, “Energy”, “Consumer Staples”, etc.

The use of such similarity information in the financial community is pervasive. For

instance, services like the Instant X-Ray from Morningstar1 allow investors to view the

weights of their portfolio across sectors with the goal of avoiding too much concentration in

any single sector. (See Figure 1.1.) They might also be used to hedge stock positions in a

equity-neutral fashion. For example, an investor might hold a stock position and fear that a

sector or market decline will reduce the position’s value. Meanwhile, that investor might be

unable to liquidate the position due to trading restrictions, such as black-out periods. To

hedge the position, the investor could sell short a number of highly similar stocks, such as

those in the position’s sector. So, if the market or that sector were to experience a general

1http://morningstar.com

http://morningstar.com
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decline (or rise), any losses in the long position should be compensated by gains in the

shorted stocks (or vice-versa). Underlying this strategy is a belief that the stocks will have

highly similar reactions to market or sector events (e.g., a rise in the federal funds target

rate or a decline in consumer sentiment). Thus, an accurate sector mapping is vital to the

strategy.

Yet, creation of sector/industry taxonomies and other quantifications of company simi-

larity has often been viewed as an expert task. Financial ratios and other metrics, such as

the price-to-earning (P/E) ratio, return on assets (ROA), operating margin, etc., might be

used to inform the expert, but the task of conceiving the groups, levels and definitions for

the taxonomy are left to the expert.

This dissertation seeks to provide methods that compute company similarity and pro-

duce clusterings in a more automated fashion, while still offering quality that is “on par”

or even exceeds expert-devised taxonomies. Further, this dissertation identifies two novel

datasets that can aid in the computation of company similarity: equity analyst coverage

and news article co-occurrences. The primary purpose of neither is to compute company

similarity; yet, both convey rich information about company relatedness. This dissertation

offers methods to convert these datasets into the more immediately usable forms: pair-

wise similarity and stock groups. The contributions of this dissertation are described more

precisely in the next section.

1.1 Contributions

This dissertation’s contributions are grouped into three categories: new perspectives, meth-

ods and tools, and applications.

1.1.1 New Perspectives

Sector/Industry taxonomies are not ground truth Much research, particularly from

the computer science community, takes the view that stock grouping is an expert task

and follows a paradigm of devising a method, then offer a demonstration of agree-

ment with sector/industry taxonomies to show validity of the method. (Examples
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are: Doherty et al. (2005); Gavrilov et al. (2000)). This dissertation takes the view

that improvements can be made beyond what is achieved by these taxonomies.

“Don’t listen to what analysts say. Look at what they cover.” Many studies (e.g.,

Welch (2000)) have found that analyst earnings estimates and stock recommendations

subject to biases. Ignoring this primary function of analysts, this dissertation finds

an alternative use that is powerful and surprisingly accurate: determining stock sim-

ilarity. The strength of this feature stems from the fact that in order to facilitate

efficiences at the research firms employing the analysts, each analyst is typically as-

signed to a set of highly similar stocks.

1.1.2 Methods and Tools

Entropy-constrained hypergraph partitioning A method for constructing stock groups

directly from the analyst or news data is described. The data are represented as a

hypergraph and partitioning is applied such that agreement with the original dataset

is maximized. In the case of analysts, the method seeks to achieve this maximiza-

tion by minimizing the instances where an analyst’s covered stocks spans in multiple

parts of the partition. In order to ensure balance roughly matches comparison groups,

an entropy-constraint is imposed. The method can easily be extended to other do-

mains using hypergraph representations, such as consensus clustering, where many

researchers have been frustrated by the fact that most existing tools offer constraints

that are focused on equal-sized partitions. In addition, a “discount-cut” heuristic is

described that helps avoid a local optima problem that is frequently found in exist-

ing methods. The method is implemented in C++ and links to the source code are

provided.

Pairwise similarity computation through the cosine measure Several interestingness

measures from frequent itemset analysis are considered for use in computing a similar-

ity value for pairs of stocks using the news and analyst datasets. The cosine measure is

selected based on many desirable features relevant to the company similarity setting.

Procedure for combining pairwise datasets A method to find optimal weights among
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datasets to use for prediction of future correlation is described. The method is used

to combine historical correlation, analyst cosine values and news cosine values, with

results that generally perform at least as good as the best performing single dataset

and often even better. These performance improvements are particularly true for

pairs of stocks with the highest similarity (i.e., the “top K”), which is important for

a variety of applications, such as hedging and relative valuation. The most similar

stocks are the best candidates for hedging and the most similar stocks would form the

“peer group” for relative valuation.

Pipeline approach to creating groups from pairwise similarity values A method to

form stock groups from pairwise similarity values is described that starts with a fast

hierarchical clusterer, then applies improvements using a genetic algorithm. Links to

source code for the methods are provided.

1.1.3 Applications

Numerous possibilities for using company similarity exist. Potential ideas are described in

chapter 6 with the following two examined in depth.

Long position hedging Suppose an investor holds a position in a single stock and fears

an impending sector or market decline will reduce the value of his/her position, but

the investor is unable to sell the position or invest in derivatives with value derived

from the price of the stock. Such situations are not uncommon. For example, ex-

ecutives are often highly restricted in trading in their company’s stock, even though

much of their compenstation (and therefore their wealth) may be in stock or stock op-

tions. Even non-executive employees with stock purchase plans may be restricted from

trading during a vesting period. In such situations, hedging is vital to maintaining

wealth. Using the pairwise similarity values computed in chapter 3, this dissertation

demonstrates that by selling short a portfolio of most similar stocks, risk is reduced

by using a combination of analyst, news and historical correlation data.

Diversification Whereas hedging reduces risk by seeking the most similar stocks and

selling them short, diversification seeks to avoid similarity entirely. That is, a portfolio
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is diversified if its constituents have minimum correlation and, therefore, reduced risk

of simultaneous losses. This dissertation compares using pairwise similarity values to

avoid similar stocks with standard approaches using sector/industry taxonomies that

seek to achieve diversification by avoiding portfolios with concentrations in any single

sector.

1.2 Dissertation Structure

The remainder of this dissertation is organized as follows. In chapter 2, prerequisite in-

formation is provided and datasets are described. Related work is also summarized. In

chapter 3, methods are provided to quantify pairwise similarity using the datasets and the

foundational task of correlation prediction is examined. In chapter 4, hypergraph partition-

ing is discussed and an algorithm is provided that performs well in partitioning imbalanced

datasets. Subsequently, formation of stock groups is considered in chapter 5, both by us-

ing the datasets directly through the hypergraph representation and by using the pairwise

values of chapter 3. Applications are examined in chapter 6 and chapter 7 concludes.
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Chapter 2

Background & Related Work

Finance, particularly trading, is a peculiar area in that many resources are devoted to

research, but a relatively small amount is published. Knowledge is often kept secret, since

profiting from new ideas can more immediately be accomplished than with other fields. A

breakthrough in medicine requires years of tests, government approvals and an apparatus

to manufacture, distribute and market new medicines, whereas a trading insight may only

require some start-up capital and perhaps software systems to achieve profitability. Still,

there have been many advances driven by academics and enough of the industry is visible

to infer some of its workings.

This chapter presents a literature review with the intention to provide some of the pre-

requisite knowledge required in later chapters and also to suggests this dissertation’s place

within the existing literature. The chapter begins by explaining and justifying correlation

as a primary measure of company similarity. Next, historical correlation’s predictive power

of future correlation is discussed, followed by a primer on industry taxonomies, which serve

as a expert-driven reference point by which this dissertation’s methods can be compared.

Finally, the two nontraditional datasets, analyst coverage and news article co-occurrences,

are discussed.

2.1 Correlation as a Measure of Similarity

The major goal of this dissertation is to quantify the “similarity” of companies. Depending

on a given viewpoint, similarity could be measured in a variety of ways. A consumer

might wish to know which companies offer similar products or services. For example, if the

consumer needs to file taxes, s/he might wish to know the different companies that offer

such services. From this perspective, similarity in the company “outputs” are important.
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Conversely, a supplier, such as raw materials producer, might be interested in the “inputs,”

specifically which companies might need aluminum, sulfur, rare earth metals, etc. In a

separate scenario, a politician might categorize companies based on their tendencies to offer

campaign donations. There may exist interrelationships in the results of these metrics.

For example, many companies that are similar as measures by their “inputs” may also

be similar in their ”outputs”. Both train and car manufacturers will have similar inputs,

while their outputs are also similar. Still, applying each of the different metrics will likely

have different results, hence it is important to understand the intended audience for any

similarity quantification and also how that audience will use it.

This dissertation focuses on financial practitioners and investors, specifically those who

wish to use the similarity values for hedging, diversification or other investing applications

(i.e., the applications to be described in chapter 6). To this audience, understanding how

the stocks of certain companies will “co-move” is a vital interest. For example, if a clothing

retailer has a decline in stock price, can it be expected that other clothing retailers will

decline in the same time period? Further, can it be expected that clothing manufacturers

will also decline? Such propensities for co-movements are often quantified by the Pear-

son product-moment correlation coefficient, which will henceforth be simply referred to as

“correlation.” Suppose there are two stocks, x and y, with time series of stock prices

Px,0, Px,1, Px,2, ..., Px,T and Py,0, Py,1, Py,2, ..., Py,T

For simplicity, these prices are measured at even time steps and for most of this dissertation

daily close prices will be used.1 The one-period return at time t using stock x is

Rx,t =
Px,t − Px,t−1

Px,t−1

The mean return is

R̄x =
1

T

T∑
t=1

Rx,t

and the standard deviation of returns is

σx =

√√√√ 1

T − 1

T∑
t=1

(Rx,t − R̄x)

1Actual price changes are usually unsynchronized, which is not important for this dissertation, but is
important in high-frequency scenarios.
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Finally, the correlation is

ρx,y =
1

n− 1

T∑
t=1

(
Rx,t − R̄x

σx

)(
Ry,t − R̄y

σy

)
An intuitive reason that correlation is applied to returns rather than stock prices directly

is that investors are typically interested in the gains or losses on assets rather than their

absolute price levels. A second, more statistical reason is that residuals in the time series

of prices will likely have a trend and be non-stationary, meaning time series parameters like

mean and variance will change over time. Non-stationarity is also possible with returns,

but effects tend to be much less dramatic and an assumption of a fixed mean and variance

is much more reasonable than with prices. A related, intuitive argument is that if one views

the time series of prices as a product of returns, then it is evident that early returns have

much greater weight in the computation of correlation if prices are used:

(Px,0, Px,1, Px,2, ... , Px,T )

= (Px,0, Px,0 · (1 +Rx,1), Px,0 · (1 +Rx,1) · (1 +Rx,2), ...,

Px,0 · (1 +Rx,1) · ... · (1 +Rx,T ))

In the seminal work introducing Modern Portfolio Theory (MPT), Markowitz (1952)

demonstrates correlation’s vital importance in risk reduction. Markowitz argues that risk

can be measured as the variance of returns deviating from expected return. By including

more assets in a portfolio, risk can be reduced as long as the assets are not perfectly

correlated (and assets are rarely perfectly correlated). To demonstrate this result, consider

the variance (σ̂) of a portfolio of assets

σ̂2 =
∑
i

w2
i σ

2
i +

∑
i

∑
j 6=i

ρijwiwjσiσj

where i and j are assets in the portfolio and wi is the weight of i in the portfolio, such that∑
iwi = 1. Since −1 ≤ ρij ≤ 1, it must be the case that

σ̂ ≤
∑
i

wiσi

Hence, risk (as measured by the standard deviation of returns) is reduced by holding a

portfolio of assets versus just holding a single asset as long as the portfolio of assets are
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not perfectly correlated. This fundamental result provides a strong theoretical argument

for the benefits of “diversification” - avoiding holding similar assets. Thus, prediction of

future correlation is of great interest to investors, not only for its usefulness in achieving

diversification, but for other reasons that will be described in chapter 6, such as hedging.

Therefore, future correlation is a key metric that this dissertation will use to quantify

performance.

2.1.1 Possible Alternatives

Cointegration

There do exist other measures of similarity. In particular, cointegration tests are often used

to measure if two or more time series are highly related. Cointegration means that if the

individual time series are each integrated at a given order, a linear combination of the time

series can be found with a lower order of integration. Murray (1994) provides a simple

example of a drunk and her dog who have recently left a bar. The drunk wanders aimlessly,

as in a random walk. If the dog is considered independently, it also appears to follow a

random walk. However, examining the drunk and her dog together, they tend to follow the

same trajectory. They sometimes separate, but there is a strong force returning each to the

other. Similarly, the stock prices of two related companies may wander around the same

path and a test for cointegration will capture this relatedness. (See Alexander (2001) for a

more rigorous explanation of cointegration, illustrated with financial applications.).

A major difference between correlation and cointegration is that correlation measures

how strongly the returns of two stocks mave similar movements in the same time steps.

With cointegration, the two stocks do not need to have “synchronized” movements, but

rather must follow the same general trends - deviations are allowed but reversion to the

same spreads are expected. So, the underlying desires must be considered when choosing

between use of correlation or cointegration. One application that widely uses cointegration

is pairs trading (Gatev et al., 2006; Elliott et al., 2005), wherein two stocks are first identified

as cointegrated. So, whenever the prices of the two stocks drift apart, it can be expected that

they will revert. Thus, a trading strategy can be implemented that sells short the stock that
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has drifted higher in price and buys the stock that is lower in price. As the prices revert to

their long-term spread, one can expect to profit regardless of general market conditions. If

the market drops, gains in the short position will compensate for losses in the long position.

Likewise, if the market rises, any losses in the short position will compensate for gains in

the long position. Since the strategy relies on drifts and reversions, cointegration is an

appropriate test.

At the same time, in a risk management setting, it may be important that movements

in the assets occur in the same time period. Suppose an investor holds a long position in a

stock index fund, but believes the market will suffer a decline. Rather than incur taxes by

selling the index position, the investor decides to hedge using a short position in futures.

The investor’s bank agrees to fund the futures position using the stock index position as

collateral. If the stock index and its futures do not remain tightly correlated, the investor

may be forced to liquidate part of the index position. In this case, drifts are not desirable,

so correlation is more likely an appropriate measure than cointegration.

This dissertation uses correlation as the predominate measure of similarity for several

reasons.

� Correlation appears more often in traditional financial models, particularly the Capital

Asset Pricing Model (CAPM). Since this dissertation focuses on the finance commu-

nity, it is appropriate to use the measure most commonly used by that community.

� Correlation is generally easier to understand, whereas cointegration requires a much

stronger mathematical background. Focusing on correlation should make this disser-

tation accessible to a wider audience.

� Correlation is an appropriate measure in many situations, such as the hedging scenario

above. Many other applications exist, such as those to be discussed in chapter 6, so

it is reasonable to use it.

Examination of cointegration and consideration of its applications are left for future work.
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Financial Statement Values (“Fundamentals”)

While this dissertation focuses on stock returns, other time series could be used to measure

similarity between companies. In particular, values from financial statements, such as sales,

earnings, research & development expense, etc. could be used to quantify the relatedness

of companies. These are often called “fundamentals.” Prediction of these values is also

important to many financial practitioners. For example, they can be important to a buyout

firm that wishes to assess the value of a takeover target.

The drawbacks of financial statement values are that they are much less frequent than

stock prices. Generally, financial statements are filed only quarterly with regulators. Differ-

ent accounting methods also mean that the values have different meanings from company to

company. In contrast, stock returns have much higher frequency and have the same mean-

ing across companies. Moreover, these stock returns ultimately have greatest importance

to investors because they represent the investor’s change in wealth.

2.2 Historical Correlation

Since prediction of correlation is a main goal, a natural question is how predictive is simply

using historical correlation? As a prelude, results in chapter 3 will show that it does have

strong predictive power, although not necessarily more power than other datasets. For now,

theoretical arguments both in favor and against its predictiveness will be considered.

Companies and the economy are constantly changing. Google began as a web-search

company, but has expanded over time into other domains. It has developed a popular mobile

operating system, Android, and even acquired Motorola’s wireless handset division in 2012.

Thus, one might expect its relatedness to other telecommunications companies to have risen

over time. At the same time, it has been a leader in the development of autonomous driving

systems and one might expect its relatedness to automobile manufacturers to increase in

the future. From this perspective, one can expect inter-company correlations to change as

companies change their products and services. Still, these changes occur slowly and so the

past should hold some predictive power for the future, particularly within the span of a few

years.
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The “stationarity” of stock correlations is an important question that has been consid-

ered in prior research since models, such as the Markowitz model described in section 2.1,

often require ex-ante (i.e., future) correlations as input, but since these are unknown, ex-post

(i.e., historical) correlations are frequently used instead. This approach implicitly assumes

stationarity in the correlations. Contrary to these expectations, Cizeau et al. (2001) find

that correlations increase in periods of high volatility – often when the diversification effects

of low correlations are needed most. (Similar results are found in Reigneron et al. (2011)

and Preis et al. (2012).) Yang et al. (2006) finds similar results and also that international

correlations have been increasing as the global economy becomes more integrated (a result

also found by Cavaglia et al. (2000)). Tóth and Kertész (2006) has found correlations, on

average, have increased over time. Their period of examination was 1993 to 2003, but this

dissertation finds similar results through 2010 (see section 3.3). Each of these results indicate

correlations are neither completely stationary, nor are they completely time-independent.

Thus, one can expect historical correlation to have some predictive power, but not absolute

predictive power.

2.3 Industry Taxonomies

In contrast to correlation, which is a purely numerical quantification of similarity, sec-

tor/industry taxonomies are generally constructed by experts. These experts create a hi-

erarchy designed to partition the economy into groupings such that the groups are similar

across some attributes or set of attributes. Examples of these attributes are production

processes, products and services, and responses to economic factors.

The development of these taxonomies has a long history. The predominate classification

system in the U.S. for much of the twentieth century was the Standard Industrial Classifi-

cation (SIC), developed by the U.S. government in the 1930s. SIC Codes have 4 digits for

each “industry.” These can be grouped by the first 3 digits or first 2 digits to indicate the

“industry group” or “major group,” respectively. The major groups can also be mapped

into 9 “divisions.” These levels of granularity allow the user flexibility when aggregating

data from individual companies across industries. The SIC codes and hierarchy have been

periodically updated to account for structural changes in the economy, with the last update
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in 1987. In 1997, the North American Industry Classification System (NAICS) was jointly

introduced by the Canadian, Mexican and U.S. governments with the intention of replacing

SIC. NAICS has 6 digits, with grouping possible on digits 2 through 6, allowing 5 levels of

granularity. Despite the introduction of NAICS, use of SIC codes is still pervasive, with the

U.S. Securities and Exchange Commission (SEC) a notable user that has not transitioned to

NAICS. SIC codes have also been used widely by academic studies due to their availability

and long history.

Bhojraj et al. (2003) explain two major weaknesses of SIC codes for investment re-

searchers which carry over to NAICS. First, the U.S. Federal Census Bureau establishes the

taxonomy, but does not actually assign codes to companies. Company assignments are left

to data vendors or whomever wishes to use the taxonomy. Guenther and Rosman (1994)

show that even at the major group level (first two digits of code) there is 38% disagree-

ment between the classification of SIC codes by two of the largest financial data providers,

Compustat and the Center for Research in Security Prices (CRSP). Their work also shows

that Compustat’s intra-group price correlation is significantly larger than CRSP. Differences

such as these can add ambiguity to any research results. The second weakness for financial

practitioners is that these taxonomies have a “production-oriented, or supply-based concep-

tual framework” (Katzen, 1995), which were designed to support the needs of government

statistical agencies wishing to report on the economy (Arbuckle, 1998). Private investing

was less a concern in their design.

With some of these issues in mind, Fama and French (FF) present a re-mapping of SIC

codes into 48 industry groups in their study of industry costs of capital Fama and French

(1997). French provides additional mappings to 5, 10, 12, 17, 30, 38 and 49 groups through

his data library French (2012). The FF scheme is intended to form groups that are likely

to share risk characteristics and often appears in academic studies (Bhojraj et al., 2003).

Targeting financial practitioners, S&P and MSCI devised the Global Industry Classifica-

tion Standard (GICS), which was announced in 1999 and replaced S&P’s previous industry

classification methodology in 2001 (Maitland and Blitzer, 2002). The methodology classifies

companies “based primarily on revenues; however, earnings and market perception are also

considered important criteria for analysis” (MSCI / Standard & Poor’s, 2002). As seen in
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Figure 2.1: GICS Structure (as of Jan. 1, 2010). As an example, the code for International

Business Machines (IBM) is shown on the right along with the textual names corresponding

to its classification.

Figure 2.1, a single hierarchy is devised based on an 8-digit encoding that can be used to

group companies at the sector, industry group, industry and sub-industry level using the

first 2, 4, 6 and 8 digits of the code, respectively. This hierarchy is applied to companies

globally in order to simplify cross-border comparisons.

Bhojraj et al. (2003) compare SIC, NAICS, FF and GICS by computing, for each stock

group in each taxonomy, an average time series for stock-price returns and for seven financial

ratios, such as price-to-earnings or return-on-equity. Regression is preformed for each stock

against its group’s average and the taxonomies are compared by their average R2 values.

They find higher R2 for GICS in nearly every aspect of the comparison and conclude that

GICS is a superior classification system.

Chan et al. (2007) provide an alternate methodology that computes the difference be-

tween the pairwise intra-group and inter-group correlation, with a higher difference at-

tributable to better groupings. (See section 5.1.1.) They suggest this approach should be

preferred because it is more applicable to portfolio analysis and risk management. Their

work compares FF, GICS and a hierarchical clustering algorithm that groups stocks on

the basis of a five-year history of returns correlations. They find hierarchical clustering
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performs better in the training period, but underperforms when used in subsequent peri-

ods. Their results show GICS achieves the highest difference in correlation with the fewest

number of groups, thus outperforming FF and historical clustering. Using a similar method-

ology, Vermorken (2011) compares GICS with its main commercial competitor, the Industry

Classification Benchmark (ICB), which is the product of Dow Jones and FTSE. Though

differences exist, Vermorken ultimately finds the taxonomies largely similar for his sample of

large-cap stocks. Due to these prior works demonstrating the strength of GICS, it is used as

the predominate sector/industry taxonomy for purposes of comparison in this dissertation.

It must be noted that historical correlation has been used in previous research to iden-

tify structure in stock markets. For example, Mantegna (1999) uses a correlation matrix to

form an economic taxonomy. In another work, Micciche’ et al. (2005) perform hierarchical

clustering on stocks in the NYSE and suggest results have agreement with the Standard In-

dustrial Classification (SIC). In chapter 5, this dissertation goes further by forming groups

that have higher quality than SIC on two different measures. Further, correlation is com-

bined with other datasets to find even greater performance in forming stock groups.

Finally, to emphasize a point made in section 1.1.1, this dissertation will take a funda-

mentally different view than much existing research: improvements can be made beyond

the expert approaches, rather than seeking agreement with them as verification. GICS’s

wide spread use in the financial community and continued adoption over the existing SIC

system effectively make it a “state-of-the-art” system, so any results that match or exceed

the quality of GICS should be meaningful to the financial community.

2.4 Sell-side Equity Research Analysts

A major dataset used in this disseration is “analysts.” Outside the context of this disser-

tation, an “analyst” can be someone performing a variety of functions, but in this thesis,

they are a specific set of individuals: sell-side equity research analysts. We more precisely

define these individuals and their functions below.

Financial firms are often split into the “buy-side” and the “sell-side”. The buy-side

represents mutual funds, pension funds, hedge funds, endowments and other institutions
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with money to invest. The sell-side consists of brokerages, investment banks, trade-clearing

corporations and other institutions that offer services to the buy-side (Hooke, 2010, Ch. 2).

One of these services is research, wherein firms will offer reports or verbal consultation on a

variety of topics from general economic outlook to evaluations of individual assets. A large

portion of the research generated by these firms tracks individual companies, estimating

their earnings and offering investment recommendations for those individual companies. In

order to perform such research, each firm offering this service will typically employ a large

number of analysts, often called “sell-side equity research analysts”.

The research firm will typically assign each of these analyst to “cover” a set of companies

such that the companies in the set are highly related. For example, an analyst may be

assigned to cover restaurants, or clothing retailers (Valentine, 2011, Ch. 2). Some reasons

for the firm to ensure the companies covered by an analyst are highly related are

� Each analyst can specialize in a particular area, rather than dividing efforts among

many areas. For example, if an analyst had to cover Microsoft and Google, the

analyst must have knowledge of the technology industry, but if the companies were

Microsoft and Exxon, the analyst must have knowledge of both technology and energy

industries. Further, these knowledge requirements are not static. As the industries

evolve, so must the analyst’s knowledge. Hence, covering multiple areas is much more

time-consuming.

� In order to effectively cover a particular company, the analyst will likely have to

understand its competitors. It makes sense to have that same analyst also cover those

competitor companies, rather than paying another analyst to cover them. These

competitor companies will likely be the ones most similar to the original company.

� A research firm is a business. Having more efficient analysts will mean lower costs for

a firm, giving it a competitive advantage over other firms.

When a firm makes such coverage assignments, it performs a partition of the universe of

stocks. For the reasons above, it can be expected that those stocks will be highly similar,

and this dissertation seeks to utilize this data as will be seen in the subsequent chapters.



19

Investors do listen to these analysts and their opinions can greatly influence the price

of a company’s stock (U.S. Securities and Exchange Commision, 2010). This importance

has meant that analyst recommendations and earning estimates have been well-tracked.

For example, the Institutional Brokers’ Estimate System (I/B/E/S), our primary analyst

data source, has tracked analysts since 1976 (Thomson Reuters, 2014). Their apparent

importance to the investment community and the availability of this data has lead to a

plethora of academic research on sell-side analysts. Much of this research focuses on their

accuracy and the identification of biases. Some research suggests they do have investment

value. For example, Barber et al. (2010) find that a portfolio following the literal levels of

ratings (e.g. buy, hold, sell) generates positive abnormal returns. They find the same of

a portfolio tracking revisions, which is one that buys stocks that are upgraded and shorts

stocks that are downgraded. This occurs even on upgrades (downgrades) that maintain a

negative (positive) level, such as an upgrade (downgrade) from strong sell (strong buy) to sell

(buy). They find the greatest positive abnormal return when the rating and revision provide

a consistent indicator and have the greatest strength. That is, a portfolio constructed of

upgrades from hold to strong buy would outperform a portfolio constructed of upgrades

from buy to strong buy, or of upgrades from strong sell to hold. These findings indicate

that analyst stock recommendations do have predictive value.

At the same time, their accuracy has long been disputed. Nearly a century ago, Cowles,

III (1933) found that contemporary stock market forecasters did worse on average than

pulling randomly from decks of cards to choose predictions and dates for each prediction.

More recently, “herding” has been observed, whereby analysts tend to follow each other’s

ratings more often than could be explained by chance (Welch, 2000). Moreover, in the early

2000s, several major research firms were accused of providing undeserved positive ratings

to companies that paid for investment banking services from that firm. These apparent

conflicts of interest resulted in the Global Analyst Research Settlement with several large

firms forced to pay fines and erect physical barriers between their investment banking and

research departments (Barber et al., 2007). Even research performed by this dissertation’s

author (along with a co-author) indicates the accuracy of analysts is very limited (Yaros

and Imieliński, 2013c).
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One major advantage of this dissertation’s use of the analyst data is that it bypasses

this contention surrounding analyst accuracy. Since we use only the analysts’ coverage

sets, the correctness of earnings estimates and stock ratings are not important. Instead,

this dissertation mainly relies on the assumption that firms will assign analysts to similar

companies, which seems reasonable since it can be assumed that the firm is seeking to

minimize costs.

Interestingly, this perspective on the data has previously had little attention. In past

literature, we find Ramnath (2002) to be the earliest use of analyst coverage to determine

stock similarity. The author focused on how a company’s earnings announcement affects

forecasts for other companies. The study wished to group stocks by industry, but recognized

that Clarke (1989) and Guenther and Rosman (1994) had found issues with the industry

classification scheme that was predominate at the time, the Standard Industry Classification

(SIC). Ramnath then used a heuristic method to form groups where every stock in the group

was covered by at least five analysts covering every other stock in the group. While Ramnath

recognized that analyst coverage can be useful to determine groups, it was not the focus

of his study. His heuristic method is somewhat arbitrary and, because of the five analyst

threshold and other reasons, many stocks were completely omitted. This dissertation seeks

to examine the use of this data in much greater depth and using more robust methods.

2.5 News Article Co-occurences

While interest in equity research has led to a market that can support a large number of

research firms and sell-side analysts, an even larger dataset lies in news articles. When

a writer creates a news article that contains a company or set of companies, that writer

generally communicates rich information about the companies, albeit only a sliver of the

total information. In particular, they often convey much information about the relatedness

of companies. Consider the following snippets from New York Times articles involving

Wal-Mart (an American discount retailer with many stores in various countries):

1. The [advertising] agency changes were part of a strategy shift at Wal-Mart, the nation’s

largest retailer, to compete more effectively against rivals like Kohl’s, J. C. Penney
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and Target (Elliott, 2006).

2. Procter & Gamble, the consumer products company, reached an agreement yesterday to

acquire the Gillette Company, the shaving-products and battery maker, ... The move is

a bid by two venerable consumer-products giants to strengthen their bargaining position

with the likes of Wal-Mart and Aldi in Europe, which can now squeeze even the largest

suppliers for lower prices (Sorkin and Lohr, 2005).

3. BUSINESS DIGEST ... Federal regulators wrapped up the first set of public hearings

on Wal-Mart’s request to open a bank, but gave scant indication of how they might

rule on the company’s application. ... Stocks tumbled as strength in the commodities

market fed inflation fears and stifled investors’ enthusiasm over upbeat first-quarter

earnings from Alcoa (NYT (2006)).

In the first snippet, several companies are identified as competitors to Wal-Mart. In a

diversified portfolio, it would make sense to avoid large positions in several of these stocks

because the companies face similar risks. For instance, a drop in consumer spending would

likely affect all retailers.

In the second snippet, we see that Procter & Gamble and Wal-Mart hold different

locations in the same supply chain. While the article clearly mentions a battle between the

companies to extract more value in the supply chain, the profitability of each company is

again linked to similar risks, such as a drop in consumer spending.

In the third snippet, we see Wal-Mart is mentioned together with Alcoa (a producer of

aluminum), but there is no real relation between the companies presented in the article,

other than the fact they had notable events occurring on the same day and, therefore,

appear together in a business digest.

This dissertation hypothesizes that some signal of company relatedness can be captured

by simply examining the co-occurrences of companies in news articles, despite presence of

“noise,” such as in the case of the third snippet above. After controlling for the fact that

some companies simply appear in news more than others, it can be expected that more

co-occurrences should mean greater similarity for any set of companies. Additionally, the

abundance of news articles and their widespread availability, particularly due to a trend
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towards publication on the Internet instead of news print, means there exists a large and

accessible dataset able to overcome the effects of noise.

Broadly examining existing research, the study of news and finance have intersected on a

number of topics, including the speed of investor reactions to news stories (Klibanoff et al.,

1998) and the effects of media coverage (or lack thereof) on stock prices (Chan, 2003; Fang

and Peress, 2009). Another area is sentiment analysis, which has been applied to measuring

the impact of pessimism on stock price and volumes (Tetlock, 2007). Sentiment analysis

and use of other textual features have further been applied to create numerous signals for

trading strategies (Li and Wu, 2010; Zhang and Skiena, 2010; Hagenau et al., 2012). Yet,

those threads of research tend to focus on the use of news to predict the movements of single

stocks, sectors or markets, rather than the relatedness and consequential co-movements of

stocks.

The smaller thread of research more similar to this dissertation is the use of news and

textual data to extract inter-company relationships. In a seminal work, Bernstein et al.

(2002) use ClearForest software (a pre-cursor to the Calais service used in this article) to

extract entities from a corpus of business news articles, which are then cleaned for deviations

in company naming (i.e., I.B.M. vs IBM). Bernstein et al. then visualize the data with a

network structure where edges are drawn between company vertices wherever the count of

co-occurrences exceeds a set threshold. They highlight clusters in the network that appear to

match common perceptions of industries, then develop a notion of “centrality” to measure

a company’s importance to an industry. They further develop a cosine measure for the

inter-relatedness of two pre-designated industries based on relatedness of their respective

companies, as determined by news co-occurrences. As Bernstein et al. concede, the work

is limited by its small set of articles covering only four months in 1999, where the dot-

com bubble led to significantly high numbers of articles containing technology companies.

Further, the results rely on the reader to judge whether the industries and relatedness

measurements are reasonable, rather than offering verification through external measures

of company similarity, such as stock-return correlation.

Other researchers have also considered use of news or other textual information to de-

termine various aspects of relatedness between companies. Ma et al. (2009) construct a
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network derived from news articles appearing on Yahoo! Finance over an eight month pe-

riod. If the same article appears under the news pages for two different companies, a link

is constructed between the two companies in the network. Multiple articles increase the

weight of each link. Ma et al. then use in-degree and out-degree measures as features for

binary classifiers that seek to predict which company in a pair has higher revenue. Jin et al.

(2012) similarly construct networks based on co-occurrences in New York Times articles,

but instead study the evolution of networks over time and use network features along with

regression models to predict future company profitability and value. Rönnqvist and Sarlin

(2013) suggest bank interdependencies can be inferred from textual co-occurrences, rather

than the two traditional data sources, co-movements in market data (e.g., CDS spreads),

which are not always efficient, and interbank asset and liability exposures, which are gen-

erally not publicly disclosed. They exemplify their approach using a Finnish dataset and

examine the temporal changes in the network, particularly following the Global Financial

Crisis. Bao et al. (2008) present a method for extracting competitors and competitive do-

mains (e.g., laptops for Dell and HP) that essentially uses a search engine to gather articles

and then uses some sentence patterns to identify competitors. Hu et al. (2009) describe

a system that extracts companies and corresponding relationships from news articles us-

ing predefined rules. They suggest an approach to detect events, such as acquisitions, by

observing changes in the strength of relationships over time.

This dissertation differs from previous research by focusing on more robust evaluation

of the usefulness of news, especially by examining its predictiveness of future correlation.

This dissertation also evaluates its usefulness in hedging and diversification, which are of

direct interest to financial professionals.
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Chapter 3

Pairwise Correlation Prediction

As stated in section 2.1, a major goal of this dissertation is to identify data and develop

methods to improve correlation prediction. In particular, we focus on the most similar

companies (i.e., most correlated companies) since these are the most important in many

applications, such as hedging and relative valuation. This chapter focuses on this task of

similarity prediction, as measured by correlation. First, in section 3.1, cosine is identified

as an appropriate measure to determine the similarity of two companies using the news

and analyst datasets. Next, section 3.2 describes many of the datasets used to perform

experiments in this chapter and throughout the remainder of this dissertation. In section 3.3,

we measure the predictiveness and other properties of the analyst, correlation and news

datasets. Finally, section 3.4 consider approaches to combining the datasets and ultimately

find performance that is at least as good as the best individual dataset and often better,

particularly for the pairs of most similar companies, particularly for the most similar pairs

of stocks (i.e., the “top K”).

3.1 Set Representation and Interestingness Measures

A first step towards computing similarity from the analyst and news datasets is to determine

a representation of the data. Several possibilities exists. For example, a bipartite graph

could be constructed with analysts or news stories forming the nodes as one part of the

partition and companies forming the nodes of the other part. Another alternative would

be to create a logical matrix (i.e., Boolean matrix) with companies forming the rows and

analysts or news articles forming the columns. The cells of the matrix would be 1 wherever

its corresponding company was present in the given article or covered by the given analyst.

In this chapter, a set representation is used. Using the analyst dataset, for each company,
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Table 3.1: Hypothetical Analyst Coverage

Company Symbol Analysts Covering Company

Chipotle CMG Alice, Bob, Carol

Darden Restaurants DRI Bob, Carol, Dan

McDonald’s MCD Alice, Bob

Netflix NFLX Frank, Mallory

Panera PNRA Alice

Yum! Brands YUM Bob, Carol, Dan, Oscar, Peggy

Table 3.2: Jaccard Similarity Values

CMG DRI MCD NFLX PNRA YUM

CMG - 0.500 0.667 0.000 0.333 0.333

DRI 0.500 - 0.250 0.000 0.000 0.400

MCD 0.667 0.250 - 0.000 0.500 0.167

NFLX 0.000 0.000 0.000 - 0.000 0.000

PNRA 0.333 0.000 0.500 0.000 - 0.000

YUM 0.333 0.400 0.167 0.000 0.000 -

a set is formed of the analysts that cover the company. With news articles, for each company,

a set is formed of the news articles that the company appears in. Thus, to quantify the

similarity of two companies, one must quantify the similarity of their sets.

Consider Table 3.1. A simple measure of similarity for two companies might be to find

the size of their overlap - i.e., the count of analysts covering both companies. For example,

Chipotle and Darden would have overlap of two, while Chipotle and Netflix have overlap

zero, indicating no similarity. However, overlap seems incorrect when considering Chipotle

and Darden have the same value of two as Chipotle and Yum! Brands. Intuition suggests

Chipotle appears should have less similarity with Yum! Brands because, in comparison to

Darden, a smaller proportion of analysts covering Yum! Brands are also covering Chipotle.

Hence, it is important to “normalize” by the sizes of the sets. At the same time, the
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Table 3.3: Cosine Similarity Values

CMG DRI MCD NFLX PNRA YUM

CMG - 0.667 0.816 0.000 0.577 0.516

DRI 0.667 - 0.408 0.000 0.000 0.775

MCD 0.816 0.408 - 0.000 0.707 0.316

NFLX 0.000 0.000 0.000 - 0.000 0.000

PNRA 0.577 0.000 0.707 0.000 - 0.000

YUM 0.516 0.775 0.316 0.000 0.000 -

penalty for having different levels of coverage should not be too severe. Both Panera and

McDonald’s have analysts that are subsets of the analysts of Chiptole. This may reflect

lower levels of coverage for the companies, rather than dissimilarity.

The quantification of set similarity is a well-studied area, particularly in frequent itemset

and association rule mining where such measures are often called “interestingness measures.”

Tan et al. (2005) provide a strong review of many of the measures used in literature and also

identify several important properties common to some measures. Two properties important

to this dissertation’s study are

Symmetry Company A’s similarity with company B should equal company B’s simi-

larity with company A. This matches the objective, correlation, which will compute to

the same value regardless of the order that the time series are considered. Many mea-

sures do not have the symmetry property, including conviction, mutual information,

etc.

Null Addition In the example from Table 3.1, suppose more analysts exist than are

present in table. If these analysts do not cover any of the stocks shown, then they

should have no effect on the similarity values. That is, the measures should not be

affected by “null addition.”

Only two symmetric measures out of nine considered by Tan et al. (2005) have the null

addition property: the Jaccard index and cosine.
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Let Wi represent the set of analysts covering a particular stock i and Wj represent the

set of analysts covering a different stock j. The Jaccard index is

Jij =
|Wi ∩Wj |
|Wi ∪Wj |

(3.1)

The measure was originally published by Jaccard (1901), but is sometimes called Tanimoto

similarity due to its later publication by Tanimoto (1957).

The cosine is

Cij =
|Wi ∩Wj |√
|Wi| · |Wj |

This measure sometimes appears in literature as the Ochiai coefficient due to Ochiai (1957).

Following our initial thoughts above about a good similarity measure, both Jaccard

and cosine measures contain the set overlap (i.e., intersection) in the numerator, but have

different ways of normalizing (i.e., different denominators). Recalling the concern about

different levels of coverage, cosine is a better choice because the effects of the set sizes

in the denominator are dampened. In fact, cosine receives its name from its relationship

to its geometric counterpart. The cosine between two vectors measures the angle between

them, regardless of their magnitudes. Likewise the cosine interestingness measure quantifies

the similarity between two sets, controlling for set sizes. Tables 3.2 and 3.3 provide the

computed Jaccard and cosine similarity values, respectively, for the analyst coverage shown

in Table 3.1. Note that Panera is more similar to Chipotle relative to McDonald’s with

the cosine measure than with the Jaccard measure, matching the desire that Panera not be

penalized too severely for less coverage.

To further illustrate the need to control for variance in set sizes, consider Figure 3.1,

which displays cross-sectional boxplots of the number of analysts covering each company.

In the figure, the circle-dot represents the median number of analysts covering a company

for the given year. The top and bottom of each thick bar represent the 75th and 25th

percentiles, respectively. The top and bottom of each thin line represent the maximum and

minimum, respectively. Correspondingly, Figure 3.2 displays the the number of times each

company is mentioned in articles, across all article datasets (to be described in section 3.2.3).

As can be seen in both Figures 3.1 & 3.2, the number of analysts and news mentions varies

greatly (note the logarithmic scale) with imbalances more severe for news articles. This may
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Figure 3.1: Analyst Coverage Counts
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Figure 3.2: News Article Mention Counts
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Figure 3.3: Analyst Coverage By Company
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Figure 3.4: News Mentions By Company

Size

occur because some companies are much larger and simply have more analyst coverage and

news mentions due to their size. Figure 3.3 displays the number of analysts covering each

stock averaged over years 1995 to 2008 for S&P 500, 400 and 600 stock, while Figure 3.4

displays the number of mentions in news. As will be discussed in section 3.2.1, the S&P

500 consists of five hundred of the largest capitalization stocks in the U.S. The S&P 400

consists of medium capitalization (i.e., “medium-cap”) stocks, while the S&P 600 consists

of small-cap stocks. From the figures, it is evident larger companies tend to get more

attention. However, company size does not account for all variance. Some small-cap stocks

evidently get more analyst coverage and more mentions in news than some large-cap stocks.

Intuitively, the variances in news article mentions can occur for a variety of reason. For

example, some companies may have generated much controversy (e.g., Enron was frequently
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in the news at the end of 2001 due to accounting fraud, but was previously less mentioned.)

Analyst coverage can also vary for a variety of reasons, particularly demand from brokerage

clients and potential for large price changes (e.g., mergers expected to occur). Regardless

of the reasons, it is clearly important to control for the variations in set sizes - a need

addressed by the cosine similarity measure.

In this section, cosine has been justified as a measure of similarity between two com-

panies using analyst and news data. Shortly, its predictive power of future correlation will

be examined, but first an overview of the actual datasets and the processing required to

compute the cosine will be provided in the next section.

3.2 Data

3.2.1 Stocks

For stock returns, a dataset from the Center for Research in Security Prices (CRSP) is used

which offers a daily return computation that includes splits, cash and stock dividends, and

other distributions. The CRSP dataset also provides other corporate actions like delistings,

mergers and spin-offs, so it is possible to have a complete picture of the active companies

at any point in time. This property is critical to avoiding survivorship bias (Elton et al.,

1996), which is an effect where results from many previous studies have been shown to have

upward bias because they only examine companies that are active at the time of the study.

Companies that went bankrupt or have otherwise been delisted are often excluded. This

dissertation makes efforts to avoid such biases by including such stocks.

For the universe of stocks, the broad market S&P 1500 index is used, which is composed

of the S&P 500 large-cap, S&P 400 mid-cap and S&P 600 small-cap stocks. Compustat, a

product of S&P, is used to determine the composition of the S&P 1500 each year from 1996

to 2010. In order to avoid the aforementioned survivorship bias, the index compositions

are fixed at the beginning of each year. Wherever possible, delisted stocks are included in

computations by weighting them by the number of days they were active during the year.

In chapter 5, Compustat will be further used to identify the GICS sector/industries for each

company. Compustat will also be used for SIC codes, except wherever they are missing, in
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which case CRSP will be used.1

3.2.2 Analysts

The data used to track analysts and their coverage comes from the Institutional Brokers

Estimate System (I/B/E/S), which is currently owned by Thomson Reuters. Since 1976,

I/B/E/S has recorded earnings estimates and recommendations from major brokerages.2

The dataset differs from many others (such as FirstCall - acquired earlier by Thomson)

by recording the analyst who made the recommendation or earnings estimate, not just the

firm. Analysts are tracked throughout their career by a unique identifier which remains

constant regardless of name changes. Actual coverage assignments are not recorded, so

this dissertation instead slices the data into individual years and considers an analyst to

be covering a stock if the analyst made at least one earnings estimate for that stock in the

past year. Analysts estimate earnings for each financial quarter and their estimates are

frequently updated as the company’s earnings announcement approaches, so the using the

estimates provides a strong proxy for the actual coverage assignments.

3.2.3 News Articles

The collection of news articles is taken from two corpora at the Linguistic Data Consortium

(LDC)3. The first is the New York Times Annotated Corpus4, which contains over 1.8

million articles published by the New York Times (NYT) from January 1, 1987 to June 19,

2007. The second is English Gigaword Fourth Edition5, which contains articles from the

following five newswire services6:

1This same prioritization of data sources for SIC codes is used elsewhere, such as Bhojraj et al. (2003).
2Ljungqvist et al. (2009) found evidence that I/B/E/S data had changed over time in ways that would

improve the recommendation accuracy of some analysts, suggesting some inappropriate data modifications
may have occurred. This dissertation uses data obtained after these modifications should have been corrected
or reverted by I/B/E/S. Additionally, such modifications should not affect this study because earnings
estimates are used. Further, their estimate values (i.e., their accuracies) are not important our study.

3https://www.ldc.upenn.edu
4http://catalog.ldc.upenn.edu/LDC2008T19
5http://catalog.ldc.upenn.edu/LDC2009T13
6The English Gigaword Fourth Edition also contains newswire articles from NYT, which we exclude since

the separate NYT corpus is already being used.

https://www.ldc.upenn.edu
http://catalog.ldc.upenn.edu/LDC2008T19
http://catalog.ldc.upenn.edu/LDC2009T13
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Figure 3.5: Articles Per Year

AFP Agence France-Presse

APW Associated Press Worldstream

CNA Central News Agency of Taiwan

LTW Los Angeles Times / Washington Post

XIN Xinhua News Agency

The data collection at LDC for most of the newswires was performed via dedicated lines

that recorded article text and meta-data in real-time, although some articles were later

received (or recovered) in bulk. Due to various collection issues, there are large gaps in

the collection for particular newswires. There are also periods where fewer articles where

collected due to changes in collection methods. Figure 3.5 depicts the number of articles

from each source, per year7.

To extract company names from articles, we use Calais, which is developed and main-

tained by ClearForest8, a group within Thomson Reuters. The free OpenCalais9 web service

allows users to submit text and receive back annotations. Company name detection is a

main feature, and is heavily used in this dissertation.

7A small number of articles contained non-English characters and could not be processed by OpenCalais.
Figure 3.5 depicts only processed articles.

8http:\www.clearforest.com
9http:\www.opencalais.com

http:\www.clearforest.com
http:\www.opencalais.com
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Table 3.4: OpenCalais Performance on 100 Sample Articles

No. Companies in Text 288

True Positives 213 F1 score 0.796

False Positives 34 Precision 0.862

False Negatives 75 Recall 0.740

To quantify OpenCalais error rates, we randomly selected 100 NYT articles and man-

ually marked companies in the text. We then computed precision and recall as shown in

Table 3.4. Calais does reasonably well at the difficult task of identifying companies, in-

cluding differentiating those companies from non-profit organizations (e.g., Red Cross) or

governmental agencies (e.g., Air Force). Some examples of false positives are shown in

Fig. 3.6, where the words alleged to be companies by OpenCalais are outlined in boxes. In

example (1), a region was misidentified as a company. Examples (2) & (3) demonstrate a

common problem, wherein only part of the company name is identified as a company, or

other words are combined into the company name (possibly from other companies). We

did not attempt to perform any correction, again with the expectation that such errors will

amount to noise and enough articles will overcome any problems. The worst case occurs

when a false positive has the name of an actual company. For example, if the fruit “apple”

was somehow identified by OpenCalais as the technology company, Apple. We never ob-

served such situations, although it is possible they did occur. For most false positives, the

misidentified text would not be included in our analysis because it simply would not link

to our universe of stocks.

1) Ray Sullivan, Northeast regional director for American College Testing, ...

2) Specialty Products and Insulation Co. , East Petersburg, ...

3) ... Credit Suisse First Boston/Goldman, Sachs & Co.

Figure 3.6: Examples of False Positives
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Figure 3.7: News Data Processing Overview

A significant task was linking the news article companies because the same company

may be referenced in multiple ways. For instance, “DuPont,” “EI DuPont,” “E.I. Du Pont

De Nemours” and “E.I. du Pont de Nemours and Company” are all aliases for the same

company. Calais does offer company “resolutions,” where these multiple aliases are resolved

to a single company name and Reuters Instrument Code (RIC). However, these resolutions

do not account for the time period of the article. For example, “Mobil” will resolve to

ExxonMobil, which is not helpful if the article is prior to the 1998 merger of Exxon and

Mobil. Therefore, we use only the original company names identified by Calais, not their

resolutions.

To link the identified companies to the other datasets, we use a manually constructed

mapping of company aliases to CRSP permno (CRSP’s unique identifier). Each entry of

the mapping includes beginning and ending dates of validity to avoid mapping to incorrect

companies for the given article’s date, such as in the ExxonMobil example above. We

further use a series of standardization rules on the raw company names, such as removal of

periods, consolidation of abbreviation characters (i.e. “A. T. & T.” → “AT&T”), removal

of suffixes (i.e., remove “Co,” “Company,” ”Inc,” etc.) and multiple other rules to reduce

the possible number of alias derivatives for a given company.

Finally, an important note is that we do not consider subsidiaries in determining co-

occurrences. A main reason is that joint ownership of a subsidiary (by two or more com-

panies) is frequent and may easily obscure the strength of a co-occurrence in news. For

example, suppose 32% of Hulu is owned by NBCUniversal, which in turn is wholy owned
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Figure 3.8: Walk-forward Testing

by Comcast. Further suppose there is a co-occurrence in news between Hulu and Google.

What should be the strength of the relationship between Google and Comcast? What about

the other owners of Hulu? We leave this for future work.

3.3 Predictiveness of Individual Datasets

We wish to use the similarity values in a predictive sense. Accordingly, we use walk-forward

testing (Meyers, 1997; Aronson, 2007) as illustrated in Figure 3.8. This approach measures

for a relationship between the predictor values (historical correlation, analyst cosine or news

cosine) computed over one year’s data and the stock return correlations in the subsequent

year (i.e., the future correlation).

In Figures 3.9, 3.10 & 3.11, we group pairs of stocks into five separate ranges by their

predictor values. Data from the entire S&P 1500 is used. The first observation that one

might make is that correlation varies significantly between years and appears to be increasing

in general. This trend is depicted by Figure 3.12 and has been observed by others (e.g., Tóth

and Kertész (2006)). Further, as mentioned in section 2.2, it is well-known that correlations

tend to increase in periods of crisis, which is evident in Figure 3.12 during two recent crash

periods, 1987 (esp. Black Monday) and 2008 (the Global Financial Crisis).

For each of the predictors in Figures 3.9, 3.10 & 3.11, a higher range of values should

mean higher future correlation, and this is true for each predictor with varying strength.

For both historical correlation and analyst cosine values, a higher range of values nearly
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Figure 3.9: Hist. Correlation Predictiveness
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Figure 3.10: Analyst Predictiveness
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Figure 3.11: News Predictiveness
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Figure 3.12: Correlation Time Dependence

always means higher future correlation. For news, the relationship is much noisier. Still the

correlation for the highest range of news cosine values is higher than the correlation for the

lowest range, indicating there is some predictiveness with news.

To test the statistical significance of the relationship between each predictor (historical

correlation, analyst cosine and news cosine) and future correlation, we use the nonpara-

metric Kendall’s tau10 (Kendall, 1938), which tests for a relationship by counting occur-

rences of concordance versus discordance. In this setting, concordance means that if we

take two pairs of stocks, the pair with higher predictor value has higher future correla-

tion. Discordance means the pair with higher predictor value has lower future correlation.

Kendall’s tau counts and normalizes all possible occurrences to output a number between

10We use the version of Kendall’s Tau (called Tau-b) that accounts for ties.
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Table 3.5: Kendall’s Tau Values

Hist. Correlation Analyst Cosine News Cosine

Kendall’s Odds Kendall’s Odds Kendall’s Odds

Year Tau Ratio Tau Ratio Tau Ratio

1996 0.138 32.1% 0.094 20.6% 0.042 8.7%

1997 0.138 32.1% 0.108 24.1% 0.079 17.1%

1998 0.215 54.9% 0.110 24.7% 0.110 24.7%

1999 0.228 59.1% 0.086 18.9% 0.073 15.6%

2000 0.142 33.1% 0.108 24.3% 0.071 15.2%

2001 0.182 44.4% 0.120 27.2% 0.044 9.3%

2002 0.306 88.1% 0.111 24.9% 0.041 8.6%

2003 0.311 90.3% 0.106 23.6% 0.048 10.1%

2004 0.397 131.9% 0.102 22.6% 0.074 16.0%

2005 0.301 86.1% 0.083 18.1% 0.040 8.3%

2006 0.266 72.4% 0.083 18.0% 0.021 4.3%

2007 0.311 90.3% 0.084 18.3% 0.018 3.6%

2008 0.249 66.4% 0.069 14.9% 0.061 13.0%

2009 0.226 58.4% 0.091 20.0% 0.051 10.7%

−1 and 1, where −1 indicates all occurrences are discordant and 1 indicates all occurrences

are concordant. Kendall’s tau is also easy to interpret because an odds-ratio can be com-

puted by (1 + τ)/(1− τ), where τ is Kendall’s tau. Thus, if τ = 0.1, then the odds-ratio is

(1 + 0.1)/(1− 0.1) = 11/9 ≈ 1.22, so concordance is 22% more likely than discordance. Ta-

ble 3.5 shows the Kendall’s tau values and corresponding odds-ratios when testing for a

relationship between each predictor and future correlation. In each year and for each pre-

dictor, the Kendall’s tau values are greater than zero with statistical significance well below

0.1%. So, each predictor is clearly positively related to future correlation. At the same

time, it is clear that historical correlation has highest predictive strength, while analyst

cosine has lower strength and, finally, news cosine is weakest. As will be seen in the next

section, this does not mean that analysts and news are not useful.
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3.3.1 Selectivity Properties

In the previous section, Figures 3.9, 3.10 & 3.11 show promising results. Still, consideration

must be given to the distribution of pairs of stocks that fall within each of the predictor

value ranges in the figures. Consider Figures 3.13, 3.14 & 3.15. Correlation is characterized

by a distribution that most closely follows a standard normal distribution compared to the

others. For a pair of stocks selected at random, the most likely correlation values are near

the mean value. Analyst and news cosines follow a much different distribution. Most values

are near zero (i.e., there is no overlap in the sets for the two companies). High values are

much less common. In fact, even though 99.6% of stocks in the S&P 1500 were covered by
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Figure 3.16: Top 5 Hit Rate
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Figure 3.17: Top 50 Hit Rate
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Figure 3.18: Top 500 Hit Rate

at least one analyst in 2010, roughly only 4% of pairs of stocks had any analyst covering

both in the pair. The percentages are similar for all other years in the dataset. News has

similar characteristics where a large majority of pairs of stocks never appear together in any

articles. The end result is that news and analyst cosine values are generally not effective

in differentiating moderately and slightly similar stocks, but are effective at determining

highly similar stocks.

To demonstrate this phenomenon, we quantify the strength of each predictor with a

“hit rate,” which we will explain through a hypothetical example. Suppose we wish to

predict the top five most similar stocks to Walmart. We rank all other stocks using one

of the predictors, such as the analyst cosine, on the previous year’s data. We then choose

the top five most similar companies: Costco, Target, Sears Holdings, Macy’s and Rite Aid.

Next, we determine the actual top five most correlated stocks for that year: Costco, Target,
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Macy’s, Family Dollar and Safeway. Three out of the five stocks were predicted correctly,

so our “hit rate” is 3/5 = 0.6. Figures 3.16 , 3.17 & 3.18 display the average hit rate of all

stocks in the S&P 1500.

As the figures indicate, the relative performance of the analyst cosine degrades from

selecting the top 5 stocks to selecting the top 50 stocks and further degrades when selecting

the top 500 stocks. This occurs because analysts will tend to cover relatively small sets of

highly similar stocks. Moderately related stocks are not well differentiated from unrelated

stocks because the analyst’s data presents little or no information on pairs of stocks that

are not highly related. Figure 3.14 also supports this claim since most pairs of stocks have

cosine of zero (i.e., both moderately related and unrelated pairs of stocks have cosine zero).

Also in the figure, it is evident that news has much less predictive power. However, its

hit rates are far greater than random. The average top k hit rate for a random selection of

stocks is
k∑
j=1

(
j

k

) (k
j

)(
N−k
k−j
)(

N
k

) =
k∑
j=1

(
j

k

)
h(j;N, k, k)

where h is the hypergeometric function and N is the number of stocks in the universe (1500

in our case for the S&P 1500). Thus, the average random top 5 hit rate is 0.0033, the

average random top 50 hit rate is 0.0333 and the average random top 500 hit rate is 0.3333.

For news, the minimum top 5 hit rate for any year is 0.0295, while the minimum top 50

hit rate is 0.0546. It is not until the top 500 that the minimum hit rate reaches 0.3358,

nearly the same as random. These results indicate that news, just like analysts, is better

at differentiating highly similar stocks than moderately or unrelated stocks. In chapter 6,

we will see that determining the most similar stocks is important to many applications.

3.4 Method to Combine Datasets

Since each of the individual datasets, historical correlation, analysts and news, exhibit

predictive power over future correlation, a natural next step is to combine these datasets

in hope of obtaining better predictions. A naive approach would be to perform linear

regression using previous data to determine weights, then using those weights for prediction.
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For example,

ρi,j,t = β0 + β1ρi,j,t−1 + β2CAi,j,t−1 + β3CNi,j,t−1 + εi,j

where ρi,j,t is the “current” correlation of stocks i and j at time t, ρi,j,t−1 is the “previous”

correlation of i and j at time t − 1, CAi,j,t−1 and CNi,j,t−1 are the cosines of analyst coverage

and news co-occurrences of stocks, respectively, of stocks i and j using data from time t−1.

The regression coefficients are β0, β1, β2 and β3, while the regression error is εi,j . The

purpose of this regression would be to produce these coefficients and apply them to the

current year’s correlation (ρi,j,t) and cosines (CAi,j,t and CNi,j,t) such that a prediction can be

made for the future correlation ρi,j,t+1.

However, if we consider again the dramatic year-over-year changes in correlation (as

depicted in Figure 3.12), it is clear that the model will not perform well since it is predicting

the absolute levels of correlation. Such prediction would require more sophistication and

inclusion of more data, such as general economic indicators. For example, recall from

section 2.2 that correlation tends to increase in periods of crisis, so predicting absolute

levels of correlation would likely necessitate prediction of economic crises. Such prediction

is beyond the scope of this work. Rather, we seek to know the similarity of pairs of stocks

relative to other pairs of stocks. This relative similarity can be expected to remain more

invariant from year to year than the absolute levels of correlation. At the same time,

accurate prediction of relative levels of similarity is extremely useful, as will be shown in

chapter 6.

To quantify relative similarity, we again use Kendall’s tau as was done in section 3.3 to

quantify the predictiveness of the individual datasets. Recall that Kendall’s tau is a measure

of concordance against discordance, where concordance occurs when a higher value of our

predictor results in a higher value in future correlation and discordance occurs when a higher

predictor value results in lower correlation. Here our predictor is composed of the individual

predictors (historical correlation, analyst cosine and news cosine). To find the find weights

for the individual predictors, we use Kendall’s tau as an objective function, seeking to find

a combination of the datasets that maximizes Kendall’s tau using the previous year’s data.

We then use that combination on the current year’s data to make a prediction for the

subsequent year.
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3.4.1 Controlling for Confidence

Our approach to combining datasets is based on a simple linear combination of the predictors

ρi,j,t−1 + wA · CAi,j,t−1 + wN · CNi,j,t−1 (3.2)

where wA and wN are the weights of the analyst cosine and news cosine, respectively.

Observe that this model has the favorable property that if the analyst and news cosine

values are zero, the output value will simply be the historical correlation. That is, the

analyst and news values will only add to the correlation if they are non-zero. This property

fits with the observed distributions of these values in Figures 3.13, 3.14 & 3.15 and the

observation that analysts and news are effective at selecting the most similar stocks. For

less similar stocks, the output of the model “defaults” to using correlation.

We augment this model by incorporating a confidence multiplier for the analyst and

news cosines. The confidence multiplier makes use of the intuition that the larger the sets

used in the computation of the cosine, the higher confidence we can have in its value. For

example, if two sets, each with ten elements, intersect on five elements, then their cosine is

0.5. Likewise, if two sets, each with one hundred elements, intersect on fifty elements, then

their cosine is still 0.5. However, we can likely be more confident in the latter’s value since

more elements were present in the computation. So, if more news stories are involved in the

cosine computation, then it should have higher weight in the combination with correlation

and analysts. Likewise, more analysts should translate to higher weight for the analyst
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cosine value.

We compute the confidence multiplier for analysts cosine CA as

1− e−ϕA min(ai,aj)

where ai and aj are the count of analysts covering stocks i and j, respectively. The rate of

increase in confidence is controlled by ϕA, which will be optimized using the previous years

data (as is done for wA and wB above). The minimum of the two set sizes is used in the

exponent rather than some combination of their values because the size of the smaller set

is most important to the sense of confidence. For example, if the sizes of the two sets are

10 and 1000, the addition of another element to the smaller set is much more important

than another element added to the larger set. In the analyst dataset, such mismatches are

frequent, and even more so with the news dataset. (See Figures 3.1 and 3.2.)

As shown in Figure 3.19, the functional profile for the confidence multiplier is that

as the minimum of the two set sizes increases, the confidence increases. However, the

greatest increases occur when the minimum set size is smaller. This matches intuition that

suggests the marginal increase in confidence should be decreasing as the set sizes increase.

For example, an increase from one to two analysts, should result in a larger increase in

confidence than an increase from 100 to 101 analysts.

Similar to the analysts confidence multiplier, the confidence multiplier for news cosine

CN is

1− e−ϕN min(mi,mj)

where mi and mj are the count of news article co-occurrences for stocks i and j, respectively.

The form is identical to the confidence computation for the analyst cosine, however the

actual optimized value for ϕN may lead to a different rate of increase.

One might remark that the justification for using the cosine measure of similarity in sec-

tion 3.1 was to control for differences in set sizes, and with this notion of confidence, we are

again attempting to control for these same size differences. Importantly, the normalization

used in the cosine measure simply helps to control for imbalances, but it does not provide

any indication of the confidence. When combining with the other datasets, this measure of

confidence is invaluable because it allows the model to provide more or less weight to the
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Figure 3.20: Top 5 Hit Rate
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Figure 3.21: Top 50 Hit Rate
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Figure 3.22: Top 500 Hit Rate

other predictors depending upon how much a given predictor should be trusted.

Incorporating these confidence values into the linear equation, the model becomes

ρi,j,t−1 + wA·
(

1− e−ϕA min(ai,t−1,aj,t−1)
)
· CAi,j,t−1 (3.3)

+ wN ·
(

1− e−ϕN min(mi,t−1,mj,t−1)
)
· CNi,j,t−1

To find optimal values for the coefficients (wA, wN , ϕA and ϕN ), we use Matlab’s

patternsearch11. For the objective, we implement a MEX-function that computes Kendall’s

tau in O(n lg n) time based on the algorithm described by Knight (1966). This dramatically

improves computation times over standard O(n2) approaches. After these optimal weights

are computed for each year, they are used to make predictions for the subsequent year.

Results are shown in Figures 3.20, 3.21 and 3.22, which reproduce Figures 3.16, 3.17 and

11http://www.mathworks.com/help/gads/patternsearch.html

http://www.mathworks.com/help/gads/patternsearch.html
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3.18, but with the confidence-based combination of analyst, correlation and news (A+C+N)

also included. In the figures, there are clear improvements in the hit rates for the most

similar stocks (i.e., top 5 and top 50). Using a one-tailed paired t-test of the hit rates

over the years, the top 5 hit rate for A+C+N is significantly higher than both historical

correlation (p = 3.8 × 10−5) and analysts (p = 1.1 × 10−5). The top 50 hit rate is also

significantly higher than historical correlation (p = 6.4×10−5) and analysts (p = 2.1×10−6).

Importantly, performance is generally no worse than the best predictor, so including the

other factors does not cause harm. This is evident even in the top 500 hit rate, where

performance of the combination method does not drop below historical correlation alone.

3.4.2 Importance of Factors

The A+C+N model (equation 3.3) has multiple inputs and therefore we consider the im-

portance of each of these inputs in making predictions.

Predictors

To evaluate the value of analysts, correlation and news, we consider models that combine

only two of the three predictors:

correlation + analysts:

ρi,j,t−1 + wA ·
(
1− e−ϕA min(ai,t−1,aj,t−1)

)
· CAi,j,t−1

correlation + news:

ρi,j,t−1 + wN ·
(
1− e−ϕN min(mi,t−1,mj,t−1)

)
· CNi,j,t−1

analysts + news:(
1− e−ϕA min(ai,t−1,aj,t−1)

)
· CAi,j,t−1 + wN ·

(
1− e−ϕN min(mi,t−1,mj,t−1)

)
· CNi,j,t−1

We abbreviate these models as A+C, C+N and A+N, respectively.

In Table 3.6, we display the Kendall’s tau values between correlation and the outputs

of the combinations based on the previous years data. Recall that Kendall’s tau is the

objective measure in our parameter optimization process, but it is also a global measure.

So, whereas we are most interested in the top K results, Kendall’s tau is a measure across all
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Table 3.6: Kendall’s Tau Values for Confidence Augmented Combinations

year Ana Cor News A+C A+N C+N A+C+N

1997 0.1097 0.2153 0.1100 0.2199 0.1376 0.2171 0.2215

1998 0.0861 0.2281 0.0725 0.2286 0.1012 0.2284 0.2291

1999 0.1081 0.1421 0.0707 0.1454 0.1190 0.1430 0.1458

2000 0.1197 0.1818 0.0444 0.1869 0.1184 0.1821 0.1870

2001 0.1109 0.3057 0.0412 0.3069 0.1109 0.3060 0.3071

2002 0.1056 0.3110 0.0482 0.3117 0.1073 0.3112 0.3119

2003 0.1017 0.3974 0.0740 0.3976 0.1185 0.3981 0.3982

2004 0.0829 0.3009 0.0401 0.3020 0.0853 0.3004 0.3014

2005 0.0827 0.2659 0.0210 0.2663 0.0751 0.2659 0.2663

2006 0.0837 0.3109 0.0179 0.3114 0.0837 0.3110 0.3114

2007 0.0693 0.2492 0.0610 0.2495 0.0693 0.2495 0.2497

2008 0.0908 0.2259 0.0506 0.2268 0.0979 0.2261 0.2268

A+N and A+C+N are tied in 2005 because the optimizer returned a zero weight for news

(wN ) using the 2004 data.

pairs in the stock universe. Small differences in Kendall’s tau may mean large improvements

in top K results.

From Table 3.6 it can be seen that historical correlation is the best predictor globally,

followed by analysts then news. This same result was already discussed in section 3.3.

However, if we look at the combinations of two predictors (A+C, A+N and C+N), it is

evident that each combination does better than either of its single predictors alone. Using

paired t-tests over the years, A+C outperforms historical correlation (p = 0.0045), A+N

outperforms analysts (p = 0.029) and C+N outperforms historical correlation (p = 0.022).

Furthermore, A+C+N outperforms A+C (p = 0.049). Although it is evident that news

brings least improvement, each of these results is statistically significant at the 5% level.
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Table 3.7: Kendall’s Tau Values for Simple Linear Combinations

year Ana Cor News A+C A+N C+N A+C+N

1998 0.0861 0.2281 0.0725 0.2292 0.1018 0.2278 0.2289

1999 0.1081 0.1421 0.0707 0.1449 0.1192 0.1424 0.1450

2000 0.1197 0.1818 0.0444 0.1861 0.1175 0.1804 0.1856

2001 0.1109 0.3057 0.0412 0.3063 0.1109 0.3057 0.3063

2002 0.1056 0.3110 0.0482 0.3114 0.1056 0.3112 0.3115

2003 0.1017 0.3974 0.0740 0.3976 0.1185 0.3976 0.3978

2004 0.0829 0.3009 0.0401 0.3020 0.0851 0.2998 0.3008

2005 0.0827 0.2659 0.0210 0.2663 0.0749 0.2659 0.2663

2006 0.0837 0.3109 0.0179 0.3114 0.0837 0.3110 0.3114

2007 0.0693 0.2492 0.0610 0.2494 0.0693 0.2493 0.2495

2008 0.0908 0.2259 0.0506 0.2266 0.0976 0.2254 0.2260

Confidence

Finally, we evaluate the importance of incorporating the confidence multipliers for analysts

and news. To make this assessment, we examine using only the simple linear combination

of equation 3.2. We also consider the simple linear combinations of two predictors:

correlation + analysts: ρi,j,t−1 + wA · CAi,j,t−1

correlation + news: ρi,j,t−1 + wN · CNi,j,t−1

analysts + news: CAi,j,t−1 + wN · CNi,j,t−1

Results are shown in Table 3.7. Against the confidence-based combinations (Table 3.6),

all simple combinations perform worse, although only C+N and A+C+N are significantly

worse (p = 0.011 and p = 0.024, respectively). The performance reduction for A+C is not

significant (p = 0.105) and neither is A+N (p = 0.442). Regardless, whereas the confidence-

based C+N is significantly better than correlation alone, the simple linear form of C+N

actually performs worse than correlation alone. The same is true when comparing A+C+N

with A+C — the addition of news does not bring any benefit in a simple linear combination.

This implies that the confidence multiplier is extremely important when including news in
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the combination.

3.5 Summary

� Analyst cosine and news cosine are found to be predictive of future correlation, par-

ticularly for the most similar pairs of companies. That is, analysts and news perform

best for the “top K” pairs of stocks where K is a small number. As K increases,

performance degrades. Historical correlation is also shown to be predictive of future

correlation, but for all pairs of stocks (i.e., regardless of K). These performance pro-

files for analysts and news and for historical correlation can be explained by their

fundamental properties. On one hand, historical correlation can be computed for any

two timeseries of returns, so historical correlation can produce a similarity value for

any pair of stocks. On the other hand, analysts tend to cover highly similar companies

and, likewise, similar companies are much more likely to appear together in news. So,

analysts and news are not good at differentiating between companies with moderate

or little similarity. For example, analysts and news are good determining if Microsoft

is more similar to Google than to Apple, but not if Microsoft is more similar to Ford

than to McDonald’s. However, the most similar stocks (i.e., low K in “top K”) are

important for many applications, such as hedging and relative valuation.

� Methods to combine the analyst, correlation and news data (A+C+N) are considered.

A linear combination is used with a confidence multiplier for the analyst and news

cosines that gives greater weight to the cosine values when the companies are covered

by more analysts or have more occurrences in news articles. The end result is that

the A+C+N combination is found to better predict future correlation than any of

its individual inputs, particularly for the most similar pairs of companies (i.e., the

“top K”).



48

Chapter 4

Hypergraph Partitioning

Chapter 3 focused on prediciting the similarity of a pair of stocks, specifically prediciting the

future correlation of returns for those stocks. In chapter 5, the focus turns to forming groups

of highly similar stocks, analogous to the industry taxonomies described in section 2.3. As

will be seen in the next chapter, hypergraph partitioning is an intuitive method that can

be used to form groups from the analyst and news data. Each vertex in the hypergraph

corresponds to a single company. With the analyst data, each edge (i.e., hyperedge) corre-

sponds to a single analyst and connects the companies that analyst covers. With the news

data, each edge corresponds to a news article and connects the companies in the article.

Using hypergraph partitioning, the companies will be split into parts such that the number

of cut hyperedges is essentially minimized. More details on performance will be discussed in

chapter 5, but the purpose of this chapter is to describe a hypergraph partitioning algorithm

that respects an entropy constraint. In forming stock groups, this constraint is important

because it enables fair comparisons with industry taxonomies. More generally, there are

many application areas were such a constraint is desirable, such as consensus clustering

(i.e., cluster ensembles). This chapter is devoted to the presentation of the algorithm and

comparison with existing algorithms. Datasets outside the financial domain are used in

order to illustrate the generality of the algorithm.

4.1 Motivation

A hypergraph is similar to a graph, except edges can connect any number of vertices, whereas

edges in a graph each connect exactly two vertices. Formally, a hypergraph H = (V,E)

where V is a set of vertices and E is a set of edges such that for all e ∈ E, e ⊆ V . Edges are

sometimes called hyperedges, nets or links. The vertices that compose an edge are called
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Figure 4.1: Hypergraph Partition Example

its pins.

The partition problem involves splitting the vertices V into disjoint sets (V1, V2, ..., Vk)

such that the number of edges with pins appearing in more than one part is minimized (i.e.,

minimize the edge “cut”). Left unconstrained, solving the partition problem can often lead

a degenerate solution with several tiny parts that simply have the fewest edges connecting

their vertices. To ensure reasonable sizes, a balance constraint is typically imposed. Since

partitioning a graph under balance constraints is NP-Hard (Garey, 1979), the same is true

for hypergraph partitioning.

A major application area of hypergraph partitioning is integrated circuit (IC) design

(Papa and Markov, 2007), where circuits are divided such that connections between subdi-

visions are minimized. In this setting, a common balance constraint (Karypis et al., 1997)

is

1

c
· |V |
k
≤ |Vi| ≤ c ·

|V |
k

(4.1)

where the imbalance tolerance is specified by c ≥ 1.0. This matches an IC specification that

parts be roughly equal size.

Yet, this constraint is not necessarily appropriate for all domains, especially those

where natural clusters are “quasi-balanced.” Consider the hypergraph in Figure 4.1, where

edges are indicated by black ovals. Vertex sets {1,2}, {3,4,5,6,7,8,9}, {10,11,12,13,14} and

{15,16,17,18,19,20} are each enclosed by two edges, and make a reasonable 4-way partition

Π2, as indicated by the short-dashed blue line. In order to allow the small set {1,2} to be
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its own part, c = |V |/(2k) = 20/(2 · 4) = 2.5. However, this also allows the largest part

to be bounded by c|V |/k = 2.5 · 20/4 = 12.5. Thus, the partition Π1 is allowed and has a

lower cut of 2, instead of a cut of 3 for Π2.

One might consider replacing c of equation 4.1 with separate parameters for the upper

and lower bounds. Such alterations could prevent the situation of Figure 4.1, but do not

solve the underlying issue in that the notion of “imbalance” is determined solely by the

part with largest deviation from the average size, while deviations of other parts offer no

contribution. For example, in a 6-way partition of 60 vertices, these sets of part sizes would

each have equal imbalance under equation 4.1 or similar formulations: {2,10,10,10,10,18},

{2,4,8,12,16,18} and {2,2,2,18,18,18}. We posit the first set is more “balanced” than the

second, and even more so than the third. Meanwhile, we suggest that many quasi-balanced

datasets may have natural clusters with sizes similar to any of the three.

We suggest that a more appropriate balance constraint is information-theoretic entropy

c` ≤ −
k∑
i

|Vi|
|V |

lg

(
|Vi|
|V |

)
≤ cu (4.2)

where c` and cu are user-specified constants defining the range of acceptable solutions. In

Figure 4.1, Π1 is far less balanced in the information theoretic sense, with entropy 1.596,

whereas Π2 has entropy 1.883. Thus, the desired partition would be achieved by setting

c` anywhere between 1.596 and 1.883 and cu beyond 1.883, up to the maximum possible

value of 2 corresponding to purely equal-sized parts of 5. The partition algorithm is free

to choose small or large parts as long as the overall balance stays within the constraint.

This contrasts with typical constraints, such as formula 4.1, where the user is forced into

an all-or-none situation when setting c, leaving the partition algorithm free to push all part

sizes to the extremes.

Hypergraph partitioning has recently been employed to perform consensus clustering

(a.k.a. cluster ensembles), which is the process of combining the results of clustering algo-

rithms or runs of the same algorithm to compute a single clustering. Perhaps because most

tools and research on hypergraph partitioning have focused on equal-sized partitions, its

use has been limited to problems where roughly equal-sized clusters are desired. In fact,

a recent survey (Ghosh and Acharya, 2011) suggests that “employing a graph clustering
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algorithm adds a constraint that favors clusterings of comparable size.” We do not believe

this limitation is necessary.

Building on existing techniques, we present an algorithm hyperpart that respects the

entropy constraint of formula 4.2. Additionally, we develop a new cut cost measure, dis-

count cut, that helps avoid local minima, a known weakness in many k-way partitioning

algorithms (Cong and Lim, 1998). Comparing to today’s leading partitioners, we demon-

strate our algorithm is best able to produce high quality partitions for imbalanced datasets.

We further show that by use of our algorithm, hypergraph partitioning can be effective in

consensus clustering, even when cluster sizes are not roughly equal.

4.2 Background and Related Work

4.2.1 Progression of Partitioning Algorithms

Major advances in graph partitioning begin with the Kerninghan-Lin algorithm (Kernighan

and Lin, 1970), which makes vertex swaps in an equal-sized bi-partition to reduce its cut.

The Fiduccia-Mattheyses (FM) algorithm (Fiduccia and Mattheyses, 1982) followed with

the introduction of single-vertex moves and a balance constraint. In its original form, FM

only performs bi-partitioning, but it can be applied recursively it to achieve k-way parti-

tioning. Sanchis (1989) extended the FM algorithm to directly achieve a k-way partition

with “k-FM”. Cong and Lim (1998) noted that k-FM is easily susceptible to local optima

in practice and introduced K-PM/LR, which performs FM for pairs of parts in parallel,

leading to large improvements in cut size.

Karypis and Kumar (1996) introduced the multi-level framework for partitioning, which

consists of three phases. First, the hypergraph is coarsened by merging vertices and/or edges

through a variety of heuristics. This process of consolidation may occur multiple times,

with each called a level. Once the hypergraph is considered small enough, it is partitioned

randomly or through some other heuristic. FM and/or other refinement algorithms are

then applied until no improvements can be observed. The levels of coarsening are then

unwound, with part assignments for each merged vertex in the coarsened graph applied to

each of its corresponding de-merged vertices. Refinement algorithms are then re-applied.
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The uncoarsening continues until the original graph is recovered. This framework has

been shown to dramatically improve execution time, while also improving partition quality

as measured through cut size. This framework has been applied to both recursive bi-

partitioning (Karypis et al., 1997) and direct k-way partitioning (Karypis and Kumar, 2000).

One drawback is the difficulty in enforcing a balance constraint during the coarsening and

uncoarsening phases, particularly as more imbalance is allowed. As our experimental results

will show, some partitioners are unable to produce any results at high levels of imbalance.

For purposes of comparison in this work, we consider two of the most popular recursive

bi-partitioners, PaToH (Çatalyürek and Aykanat, 1999) and hMETIS (Karypis and Kumar,

1998). We also consider hMETIS’s k-way counterpart, khMETIS. (For simplicity, we refer

to PaToH, hMETIS and khMETIS as patoh, hmetis-rb and hmetis-kway, respectively.) All

three use a multi-level framework.

4.2.2 Quality Measures & Balance Constraints

A common partition objective is to minimize the edge cut, which simply counts the edges

that span more than one part. More sophisticated partitioners may minimize the Sum of

External Degrees (SOED), which assigns a penalty equal to the number of parts an edge

spans when it is cut. The similar K-1 measure has penalty of parts spanned minus one.

Both emphasize reducing the number of parts spanned. For example, an edge with pins in

10 parts is less desirable than having pins in 2 parts. Both scenarios have cut 1, but SOED

of 10 and 2, respectively, and K-1 of 9 and 1.

Balance constraints are typically defined in a manner that fits the algorithm. For the

recursive bi-partitioner hmetis-rb, balance is controlled through the UBFactor denoted b.

For each bisection, hmetis-rb will produce parts with sizes (50− b)n/100 and (50+ b)n/100,

where n is the number of vertices. Using the example from the manual (Karypis and Kumar,

1998), with b = 5 the parts will be between 0.45n and 0.55n. Further, in a 4-way partition,

this means parts will be between 0.452n = 0.2n and 0.552n = 0.3n.

No longer focusing on bisection, hmetis-kway redefines the UBFactor such that “the

heaviest [part] should not be b% more than the average weight.” So, if b = 8 and k = 5,

the largest part(s) will have at most 1.08n/5 vertices. (Karypis and Kumar, 1998)
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While still a recursive bi-partitioner, patoh defines its imbal parameter similarly to

hmetis-kway, which is a threshold tolerance above average for the maximum sized part.

Patoh internally adjusts its allowed imbalance during each bisection to meet the final k-way

imbalance threshold. (Çatalyürek and Aykanat, 1999)

Note that each of these balance constraint definitions are essentially tolerances above

(and sometimes below) an average part size. As suggested in section 4.1, with this approach

imbalance is defined solely by the part with largest deviation from the average, while devi-

ations of other parts are not considered. In contrast, our constraint (formula 4.2) relies on

entropy, which is an information-theoretic measure for the uncertainty of a random vari-

able. In the case of partitioning, if we choose a vertex uniformly at random, entropy can

be used to measure the uncertainty about which part the vertex is assigned. Suppose we

have two partitions, Πa and Πb, with sizes {1,7,7,7} and {4,5,5,5}, respectively. With Πa,

there is more certainty because part 1 is very unlikely, whereas Πb has less certainty since

all parts are closer to the same likelihood. In fact, the entropies of Πa and Πb are 1.287

and 1.577, respectively. Entropy is commonly used to compare the imbalance of clusterings

(for example, see Meilă (2007)). Thus, we find it a more natural and more precise means

to control imbalance.

Some partitioners allow the user to specify desired sizes per part. For example, k-FM

uses constraints

ri · |V | − ε ≤ |Vi| ≤ ri · |V |+ ε (4.3)

for all 1 ≤ i ≤ k, where Vi denotes part i, 0 ≤ ri ≤ 1,
∑k

i=1 ri = 1 and ε denotes the error

tolerance. These “target size” constraints are useful when parts of varying fixed sizes are

desired, as in IC applications where die sizes are known, or in computational load balancing

when resources have varying capacities. However, if specific part sizes are not known a

priori, these constraints are of little use other than perhaps allowing the user to perform

multiple runs over many sets of varying part sizes.

Others have sought “natural” partitions, especially by incorporating cut costs and bal-

ance constraints into a single objective. In a seminal work, Wei and Cheng (1989) present
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ratio-cut minimization

Cπ1π2
|π1| × |π2|

(4.4)

where π1 and π2 denote the parts after bisection and Cπ1π2 denotes the edges cut by that

partition. A lower cut size is favored by the numerator, while the denominator favors equal-

sized parts. It can also be viewed as actual cut divided by expected cut. Thus, the ratio-cut

optimizes a tradeoff between minimizing cut and maintaining balance, which can lead to

more natural partitions where edges cut are lowest in comparison to expectation. Yet, it

does not satisfy a situation where the user has some tolerance for imbalance and simply

wishes to minimize the cut within that tolerance. For example, a 20-30 partition of a 50

vertex hypergraph with cut 100 would be preferred by the ratio cut to a 15-35 partition

with cut 90, but the user may have been more satisfied with the latter partition simply

because cut is lower.

The ratio cut has been extended to k-way partitioning with objectives such as scaled cost

(Chan et al., 1994) and numerous other objectives have been proposed to address specific

situations or applications (see Alpert and Kahng (1995) for a survey). Still, we suggest that

minimizing the cut within an entropy constraint is most effective when equal parts are not

required, fixed part sizes are unknown a priori and the user does not want to be forced into

specific tradeoffs between imbalance and edge cut.

4.2.3 Consensus Clustering

The process of combining the results of several cluster algorithms (or multiple runs of the

same algorithm) to form a single clustering is known as consensus clustering or cluster

ensembles. The motivation is that the consensus is often more robust than individual

cluster algorithms. A simple, intuitive consensus clustering algorithm is the hypergraph

partitioning algorithm (HPGA) (Strehl and Ghosh, 2003). Each cluster from each of the

underlying cluster algorithms is represented by a hyperedge. The task is simply to partition

the hypergraph such that the cut is minimized. Since only tools (esp. hmetis-rb) with equal

part constraints have been used thus far, HPGA’s successful application has been limited

to problems where clusters are to be roughly equal size. In a study comparing consensus

clustering algorithms, Topchy et al. (2005) remarked “HGPA did not work well due to
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its bias toward balanced cluster sizes.” We believe this is a limitation of the tools, not

hypergraph partitioning itself. Thus, we view this work as a means to broaden the class of

problems to which HPGA can successfully be applied.

While HPGA is not necessarily the most effective consensus clusterer, it is easy to

understand and frequently appears as a baseline. Moreover, other algorithms, such as

the Meta-Clustering Algorithm (MCLA) (Strehl and Ghosh, 2003) also use hypergraph

partitioning as a component of its overall algorithm. We do not consider MCLA or other

algorithms in this work, but believe use of an entropy constraint may have benefits beyond

our focus on HPGA.

4.3 Method

4.3.1 Algorithm Outline

Our partitioner hyperpart focuses on making single vertex moves that best improve the cut

measure while still respecting the entropy constraint in formula 4.2. This improvement in

cut is known as the move’s gain. After each vertex is moved, it is locked for the remainder

of the pass, which concludes when all vertices are moved. Vertex locking, along with forcing

all vertices to move even if the move has negative gain, serves as a form of local optima

avoidance and also helps prevent oscillations. At the end of each pass, the moves are

unwound back to the configuration where the cut was lowest, so negative moves are not

necessarily kept until the next pass. These passes continue until no improvement is witnessed

during an entire pass. Figure 4.2 depicts this general approach. The concepts of passes and

vertex locking first appeared in the Kerninghan & Lin algorithm, while the concept of move

gains first appeared in the FM algorithm.

4.3.2 Discount Cut

In finance, the “time value of money” describes the principal that, due to inflation, a dollar

today can buy more than a dollar in the future. To estimate the value of a payment to be

received in the future, one should discount it by the inflation rate. We use this notion to

help overcome the well-known issue (Cong and Lim, 1998) of convergence to local optima
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data structure)

Update gains for remaining moves in data structure 
(apply delta updates to move gains for which move’s 

vertex and vertex just frozen shared one or more edges)
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Figure 4.2: Hyperpart Flowchart
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SOED: 4        

Discount: 3.828     

K-1: 2     
SOED: 3        

Discount: 2.828     
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Cut Value

Cut Value

Gains:   K-1: 0         SOED: 0     Discount: 0.415     

Gains:   K-1: 1         SOED: 1     Discount: 1     

Figure 4.3: Discount Cut. Three different configurations of a single edge are depicted as

shown by the grey areas. Vertices are represented by numbers, which are split by the dotted

lines to show the partition (with 4 parts). Only one edge is depicted, but the full graph

would normally have many edges. Cut values under different measures are shown right of

each configuration. Gains for each measure are shown right of arrows, which indicate a

vertex move leading from one configuration to the other.

for k-way FM-based partitioners. We define the discount cut as

∑
e∈E

 ∑
π∈Π,π 6=π̂e

|π ∩ e|α
 (4.5)

where E is the set of edges, Π is the partition and 0 ≤ α ≤ 1. The part containing the most

pins in edge e is denoted by π̂e. Only one part may be π̂e, so ties can be settled with a rule,

such as choosing the part with lower label. Higher α means future moves are more strongly

discounted (i.e., worth less). In our experiments, we set α = 0.5.

Consider Figure 4.3. The bottom configuration is most desirable because the edge spans

only three parts. Two moves are required to get from top to bottom. Yet, if only the K-1

(or SOED) measure is used, the partitioner cannot see any benefit in moving from the top

to the middle. These measures do not facilitate a view into the future, and it becomes easy

for a partitioner to become stuck at a local optima. The concepts of passes and vertex
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freezing may help to avoid this problem since vertices are forced to move, even if there are

no positive gain moves for that vertex. Yet, there is still no guidance as to which moves

may be beneficial, so making the best move is a matter of chance. For example, moving

vertex 4 from the upper left to the lower left as shown in the diagram has the same gain

of zero (the best gain possible) as moving vertex 12 from the lower left to lower right part.

With the discount cut, there is positive gain in moving vertex 4. The discount cut for

the top configuration is 20.5 + 20.5 + 20.5 = 4.243, while the discount cut for the middle is

10.5 + 20.5 + 20.5 = 3.828. So, there is a gain of 4.243 − 3.828 = 0.415, and the partitioner

is encouraged to make this move. In general, the discount cut rewards moves that take an

edge’s pin from one of its smaller parts to a larger part. The greatest reward is given to

moving to the part with most pins since this part offers no contribution to the cut cost (as

seen in formula 4.5).

As edge size increases, the significance of the discount cut in local minima avoidance

grows since more pins means more moves will be necessary to realize gains in the K-1

measure (see section 4.4.2 for experimental evidence). At the same time, the best partition

as computed by minimizing the discount cut may not exactly match the minimum K-1

partition, although they will likely be similar. Therefore, we first run one iteration of the

algorithm using the discount cut cost. We then take the part assignments and repeat the

algorithm using the K-1 measure to match the true objective of minimizing the number of

parts each edge spans. Finally, as further local optima avoidance, we use random restarts

with the initial part assignments reshuffled and with each part receiving an approximately

equal number of vertices.

4.3.3 Implementation & Complexity

Hyperpart is implemented in C++ using STL and Boost libraries. It’s input file is compat-

ible with hmetis, where vertices and edges are numbered [1...|V |] and [1...|E|], respectively.

Code and binaries have been made available online at http://john.robert.yaros.us/

software. Upon initialization, hyperpart constructs two arrays of bucket-lists. The first

maps each vertex to its associated edges, while the second maps each edge to its associated

vertices. The time to populate these arrays is O(|P |) since it depends on the number of

http://john.robert.yaros.us/software
http://john.robert.yaros.us/software
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times each vertex appears in an edge, which is exactly the number of pins. The number

pins in each part is also maintained for each edge and similarly requires O(|P |) to initialize.

We maintain a each vertex’s current part assignment in an array, which is initialized (with

random assignments) in O(|V |) time and is easily updated in O(1) time as moves are exe-

cuted. Recall that computation of the discount cut requires knowledge of each edge’s max

part (π̂e in formula 4.5). To track the max, we use a heap, which will have size equal to the

number of parts k, so the total initialization time for all heaps is O(|P | lg k).

An essential key to fast execution is the ability efficiently maintain gains associated with

each possible move and to quickly determine the move with highest gain. To do so, we use

a binary search tree of gains, where each gain has a pointer to a linked list of moves with

that particular gain. The maximum number of moves possible is (k−1)|V |, since any vertex

can move to any part other than its current part. The tree will contain at most (k − 1)|V |

nodes, leading to O(lg k|V |) insertion and deletion time. No additional time complexity is

needed to maintain the lists at each node because we maintain with each move object a

pointer to its linked list location (among the moves of same gain), so deletion from the list

can be performed in constant time. Insertion simply involves appending to list, which is also

constant time. To fully initialize this the tree will take O(k|P |) insertions since, for each

vertex we must consider the cost of moving to each of the other k − 1 parts, and, for each

possible part, one must consider the change in cut to each of the vertex’s edges. However,

one may observe from K-1 cut and discount cut formulas that determining the change in

the cut measure does not actually require accessing the number of pins in all parts. The

cut “delta” simply requires knowing the sizes of the origin and destination parts. One

exception for the discount cut is that the edge’s max part may change as a result of the

move. This means that the sizes of the max and second max (in case the max is the origin

part) must also be known, but these can be obtained in O(1) time from edge’s part size

heap. So, only two part sizes must be known for the K-1 measure and four for discount

measure (not k). The map’s total initialization time is therefore O(k|P | lg k|V |). Across

these data structures, we can see that the gain tree has dominate initialization time, so our

the complexity for initialization is O(k|P | lg k|V |).

After initialization, the algorithm begins a pass whereby moves with highest gain are



60

executed one at time with each vertex locked until all vertices are locked. After each

executed move, the gains of other moves must be updated, which is an O(k|P | lg k|V |)

process just as in initialization. However, pruning dramatically reduce these calculations

because only moves for vertices sharing a edge with the moved vertex will be affected and

only those shared edges need to be considered in the computation. Moreover, only those

moves involving the move’s origin, destination, max or second max parts may be affected

and the change in gain can be computed with only those part sizes. Since every vertex will

be moved during the pass, total complexity is O(k|P ||V | lg k|V |).

Thus far, we have ignored the entropy constraint, yet it does not alter the complexity

analysis. From formula 4.2, we see entropy can be computed in O(k) time. As moves

are executed, entropy can be updated in constant time since only sizes of the origin and

destination parts need to be known. Finally, recall that we do not execute any moves that

violate the entropy constraint. This means we may have to pass over higher gain moves in

the tree before finding an allowable move, which is O(k|V |) to scan through all moves and

is less than the O(k|P | lg k|V |) process to update gains.

4.3.4 Drawbacks

The FM algorithm can be recursively applied to achieve a k-way partition in O(k|P |) time,

where P is the set of all pins across all edges (i.e., |P | =
∑

e∈E |e|, where E is the set of

all edges in the hypergraph). This is a consequence of the fact that the bi-partitioning FM

algorithm has complexity O(|P |) (see Fiduccia and Mattheyses (1982) for analysis). This

low complexity is due to two main items. First, it can be observed that a constant number of

changes in cut for a single edge is possible during a pass. Second, it makes an assumption

that edges will have integer weights. Thus, gains will all be integers and so moves can

be indexed by gain in an array of bucket-lists. Under the same assumptions, our k-way

algorithm using only the K-1 cut can be implemented with O(k|P |). However, in order to

support the discount cut, we require O(k|P ||V | lg k|V |) since the discount cut for an edge

can be changed with any of the moves in the pass, leading to the additional |V | term. We

also use a gain tree instead of an array, which leads to the additional lg k|V | term. At the

same time, use of the tree allows us to support floating point weights, which can be a useful
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feature to a user needing more precise control of edge weights. Moreover, use of discounting

greatly improves partition quality, as will be shown in section 4.4. Regardless, entropy

is a global calculation, so attempting to use recursive bi-partitioning, such as recursively

applying FM, would make enforcement of the entropy constraint difficult.

As future work, multi-level k-way partitioning (see section 4.2.1) offers an opportunity

to improve run times over our current implementation. While little formal analysis has been

performed for multi-level partitioners, experimental evidence has shown dramatic improve-

ments in runtime. Challenges will include determining how to enforce an entropy constraint

during the coarsening and uncoarsening phases, as well as properly being able to handle

imbalance.

4.4 Experimental Results

Two versions of our algorithm are used. Hyperpart only solves for the K-1 objective while

hyperpart-dc also uses the discount cut. For both, we set c` and cu (from formula 4.2)

to be 0.2 below and 0.2 above the desired entropy, respectively. We give hyperpart and

hyperpart-dc this window because at least some tolerance is required to allow movement

between parts. This is not unlike the other partitioners. For instance, hmetis-rb does not

allow a UBFactor less than 1 so that it may have movement around equal-sized parts.

Since none of the comparison methods offer an entropy constraint, we perform multiple

runs of each method where we gradually increase their respective imbalance parameters

over a range of values. We observe that at high levels of imbalance (low entropy), the com-

parison partitioners frequently crash or produce partitions with empty parts. So, in some

of our tests, some partitioners have no results at low levels of entropy. As mentioned in

section 4.2.1, we believe their inability to produce a solution is a result of the difficulty in

forecasting the number of vertices needed in each part during the coarsening and uncoars-

ening phases. This deficiency is also a clear indication that they were designed mainly for

balanced partitioning.

For hmetis-rb, its UBFactor is varied from 1 to 50 in steps of 0.005. Hmetis-kway’s

UBFactor is varied from 1 to 200 in steps of 0.015. Patoh’s imbal is varied from 0 to 10
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in steps of 0.001. (See section 4.2.2 for UBFactor and imbal definitions.) The maximum

level for each of their respective parameters is chosen so that it was beyond the range when

they could no longer achieve solutions. The steps are chosen such that the partitioners

each produces roughly the same number of solutions and such that lower granularity does

not produce meaningful differences in results. For each of these partitioners in each test,

the partition selected for comparison is the one with entropy closest to the desired entropy.

Clearly, this approach takes much more time than a single run of hyperpart or hyperpart-dc.

4.4.1 Performance with Imbalance

We consider hypergraphs with varying levels of imbalance as shown in Table 4.1. The total

number of pins helps quantify partition difficulty as seen in the complexity of FM and

other algorithms (see section 4.3.4), so we hold it constant across our test hypergraphs. We

generate a single edge for each part in round-robin fashion until we exceed 20000 total pins.

For each edge, pins equal to 50% of the part size (with a 2 pin minimum) are generated such

that each pin is chosen from the edge’s part with 95% probability and 5% probability of

random assignment. These probabilities were determined by experimentation to generate

some randomness, but still ensure that the lowest K-1 cut actually follows the specified part

sizes, which we call the “true partition.”

For each set of part sizes in Table 4.1, we generate 30 test hypergraphs. Results are

shown in Figure 4.4, where we display the average K-1 cut size relative to true partition.

We see hmetis-kway has the most limited range, followed by patoh. Hmetis-rb is able to

generate solutions at all levels of imbalance, although it sometimes crashes near the higher

levels of imbalance in our tests. All partitioners are able to recover the true partition when

imbalance is lowest, but as it increases, hyperpart and hyperpart-dc clearly perform better

as they return partitions with lower cut size. For part size set #14, we see a spike in the

K-1 cut. Observe that #14 has the largest single part size and therefore, the largest edges.

In these situations, the discount cut is most beneficial, as we will show in the next section.
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Table 4.1: Part Sizes for Test Hypergraphs

# Part Sizes Entropy

1 20 20 20 20 20 20 20 2.807

2 17 18 19 20 21 22 23 2.800

3 14 16 18 20 22 24 26 2.778

4 11 14 17 20 23 26 29 2.741

5 8 12 16 20 24 28 32 2.687

6 5 10 15 20 25 30 35 2.610

7 2 8 14 20 26 32 38 2.505

8 2 5 12 20 28 35 38 2.439

9 2 3 6 18 32 39 40 2.298

10 2 2 2 12 32 40 50 2.100

11 2 2 2 2 24 40 68 1.809

12 2 2 2 2 7 28 97 1.401

13 2 2 2 2 2 19 111 1.094

14 2 2 2 2 2 2 128 0.644
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4.4.2 Performance with Edge Size

We fix the part sizes to be #6 in Table 4.1, which is the highest level of imbalance where

all partitioners are still able to produce solutions. We use the same hypergraph generation

method described in section 4.4.1, but consider graphs with different percentages of pins

per edge (instead of just 50%).

Results are shown in Figure 4.5. We see that as edge size grows from 10% to 90% of part

size, performance of hyperpart begins to degrade. Meanwhile, hyperpart-dc maintains con-

stant performance, nearly always returning the true partition. As described in section 4.3.2,

whereas moves are essentially taken blindly in hyperpart unless they immediately lead to

a reduction in K-1 cut, the discount cut guides hyperpart-dc to where the K-1 cut can be

reduced.

4.4.3 Real World Datasets

We consider three publicly-available real-world datasets with characteristics described in

Table 4.2.

� Zoo is from UCI1 (Bache and Lichman, 2013). Animals are described by one numeric

attribute, num legs, and 15 binary attributes, like produces milk, lives in water, etc.

Each value for each attribute is used to form a hyperedge. An expert assignment into

7 groups forms the “actual” partition.

� Movie was obtained from Rovi2, which backs services like DirecTV and iTunes. We

obtain the “significant” movies for 3 genres: Children/Family, Romance and Horror.

We form hyperedges using “flags,” which are essentially parental warnings. For ex-

ample, the family movie E.T. has flags “Adult Language,” “Alcohol Consumption,”

“Child Classic,” “Scary Moments” and “Watch with your Children.” Some clearly

related to family movies, but others could easily apply to a romance or horror.

1http://archive.ics.uci.edu/ml/
2http://developer.rovicorp.com

http://archive.ics.uci.edu/ml/
http://developer.rovicorp.com
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Table 4.2: Real-World Dataset Characteristics

Max Actual Actual

Dataset Vertices Parts Edges Pins Entropy Entropy K-1 Cut

Zoo 101 7 31 1616 2.807 2.391 119

Movie 169 3 32 946 1.585 1.489 22

Track 275 32 527 3412 4.998 4.947 1195

Table 4.3: Real-World Dataset Results

Zoo Movie Track

Dataset K-1 Cut ARI K-1 Cut ARI K-1 Cut ARI

hmetis-rb 123 0.101 18 0.226 982 0.182

hmetis-kway × × 17 0.299 × ×

patoh 101 0.140 14 0.269 851 0.194

hyperpart 101 0.195 18 0.236 831 0.219

hyperpart-dc 100 0.172 13 0.331 833 0.224

� Track is the 2011-2012 NCAA division I men’s outdoor track and field schedule, where

universities are vertices and track meets are edges connecting them. Conferences, such

as the Big Ten, form the “actual” partition. The schedule was obtained from TFRRS3,

while conferences were obtained from USTFCCCA4.

Results are shown in Table 4.3 with × indicating that the partitioner was unable to

return a partition near the dataset’s actual entropy. ARI is the Adjusted Rand Index,

which measures the agreement between the produced partition and the actual partition on

a −1.0 to 1.0 scale, with 1.0 indicating identical partitions. As can be seen by comparing

the actual K-1 cut in Table 4.2 with the achieved K-1 cuts in Table 4.3, the partitioners

may find cuts that are lower than the actual cut sizes. Most real world datasets are like

this because the hypergraph may have a lower cut somewhere other than the actual cut

location. For this reason, we do not necessarily expect the partitioners to recover the exact

3http://tfrrs.org
4http://ustfccca.org/infozone

http://tfrrs.org
http://ustfccca.org/infozone


66

partition. However, we can expect the output of a good partitioner (with low K-1 cut)

to have positive ARI since the clusters in the actual partition should contain more similar

objects, and thus have more edges connecting them. So, even though the highest possible

ARI of 1.0 will not correspond to the partition with lowest K-1 cut size, we do generally

expect lower K-1 cut size to be positively related to ARI.

For all datasets, the best solutions on either the K-1 or ARI measures are returned

by hyperpart or hyperpart-dc. In the Track dataset, the edges are relatively small, so

hyperpart without the discount cut does as well as (or even slightly better than) hyperpart-

dc. However, in the Movie dataset where the edges are large, hyperpart-dc performs better.

4.4.4 Consensus Clustering

Strehl and Ghosh (2003) demonstrate the potential of consensus clustering using a synthetic

“8D5K” dataset, where points for 5 clusters are generated in 8 dimensional Euclidean space.

We reuse this concept, except whereas clusters were originally all equal size, we test on

imbalanced cluster sizes. To generate the dataset, we pick 5 means such that its value

along each dimension is chosen uniformly at random from 0.0 to 1.0 but such that no two

means are within 0.1 of each other in more than 2 dimensions. The points for each cluster

are then generated with values for each dimension again selected randomly, but using a

Gaussian pdf with 0.1 standard deviation around the value generated for the mean. Using

all 8 dimensions, the points in 8D5K are easily separable. The idea behind the dataset is

to use multiple clusterers, each with access to one of the
(

8
2

)
possible pairs of dimensions,

and then combine the clusterings to see if it is possible to recover the true clustering. See

Figure 4.6 for an illustration. This process of splitting a dataset in multiple feature subsets,

then combining them with a consensus clusterer is known as Feature-Distributed Clustering.

For each of the
(

8
2

)
pairs of dimensions, we use agglomerative clustering with Ward’s

distance metric. Following the HPGA consensus clustering method (as described in sec-

tion 4.2.3), we form a hypergraph where each of the clusters from each of the 2D clusterers

is used to form an edge. Hypergraph partitioning is performed to return the consensus

clustering.

Cluster sizes with varying levels of imbalance are shown in Table 4.4. For each setting,
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Figure 4.6: 8D5K Dataset. The top figures show data points on 2 of the 8 dataset dimen-

sions. The bottom figures display the same points along the 2 main principal components.

Results of a clusterer with access the 2 original dimensions are shown in the left two fig-

ures, while the true clustering is shown in the right two figures. Clearly, the overlap in the

true clusters along only 2 of the dimensions make it difficult to perform the clustering with

complete accuracy, although it is far more accurate than random assignment.

we perform 30 runs, recording the K-1 cut and the minimum, average, and maximum ARIs

for the 2-D clusterers. The averages for each over all 30 runs are shown in the table.

Results are shown in Figures 4.7 and 4.8. We see that all partitioners are affected

by imbalance, but hyperpart-dc performs best as imbalance increases. Importantly, if we

compare the 2-D ARI values from Table 4.4 to results in Figure 4.8, we see that hyperpart-dc

has ARI near or above the max ARI of the 2-D clusterers at all levels of imbalance. This

indicates that HPGA, using hyperpart-dc as the underlying partitioner, is an effective tool

for consensus clustering as quality of the consensus exceeds the inputs, even in imbalanced

settings.
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Table 4.4: 8D5K Settings

Agglom. Clusterer ARI

# Part Sizes Entropy Min Average Max K-1 Cut

1 30 30 30 30 30 2.322 0.423 0.676 0.903 156.9

2 20 25 30 35 40 2.281 0.409 0.673 0.922 153.2

3 10 35 35 35 35 2.220 0.411 0.674 0.910 153.3

4 10 20 30 40 50 2.150 0.402 0.686 0.917 139.5

5 20 20 20 20 70 2.063 0.331 0.632 0.924 144.2

6 8 8 8 63 63 1.728 0.232 0.595 0.906 129.7

7 10 10 10 10 110 1.370 0.164 0.392 0.830 115.7
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4.5 Summary and Future Directions

Many of today’s popular tools and algorithms for hypergraph partitioning have origins in

integrated circuit design, where a common specification is that part sizes be roughly equal.

Researchers in other domains, particularly consensus clustering, have often considered hy-

pergraph partitioning a poor method when the underlying dataset has imbalanced parts.

We suggest that the poor performance is not a result of hypergraph partitioning itself, but

rather the constraint definitions used by current tools and algorithms, which essentially

measure imbalance only by the largest or smallest part. We argue information-theoretic

entropy best measures imbalance and provides an entropy constraint that allows the parti-

tioner find to higher quality solutions for given levels of imbalance. Using a novel “discount”

cut heuristic for local optima avoidance along with other known techniques, we devise and

implement an algorithm that respects the entropy constraint. Against today’s leading parti-

tioners, we empirically demonstrate our method tends to find lower cut partitions in datasets

where the underlying true part sizes are imbalanced. We further show the discount cut is

effective in local optima avoidance, particularly in the presence of large edges. Finally, we

show that our approach greatly improves the quality of results in consensus clustering when

the clusters are imbalanced. These better results are a consequence of the fact that the

entropy constraint best allows the partitioner to find “natural” partitions of mixed sizes for

any given level of overall imbalance.

As future work, we believe multi-level partitioning with our entropy constraint should

be explored in order to improve execution times. Benefits to other consensus clustering

algorithms using hypergraph partitioning, such as MCLA, should also be explored. In gen-

eral, we believe this work broadens the class of problems for which hypergraph partitioning

can be considered as an effective method.
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Chapter 5

Stock Groups

A primary benefit of stock groupings, like those found in industry classifications, is that

they provide a simple, high-level view of a universe of stocks. In contrast, pairwise values,

such as the ones found in chapter 3, provide very detailed information about similarity, but

with such detail, it is difficult to understand larger dynamics, especially for the human user.

However, forming stock groups comes with the cost that some detailed information about

individual relationship is lost. For instance, consider TJX Companies (TJX), Ross Stores

(ROST) and Abercrombie & Fitch (ANF). All three are almost entirely involved in apparel

retail, yet the two discount retailers, TJX and ROST, are intuitively more related than TJX

to ANF, a higher-end retailer. In fact, the 2010 correlation of TJX and ROST was 0.703,

while TJX and ANF was 0.367. Regardless, a stock grouping may still place them together

in a single industry, as GICS does, and these individual relationships are no longer evident.

Still, simplicity can justify the use of stock groupings. An example is the Morningstar

Instant X-Ray (Figure 1.1 in chapter 1). The X-Ray allows an investor to quickly see

his/her exposures to the different “sectors” of the market. This might help the user to

quickly identify if his/her portfolio has concentrated risk into a single area and, if so, to

understand how the portfolio should be rebalanced since underweighted sectors are also

evident.

At the same time, what defines particular industries is not always well-defined and

there are vast possibilities in the formation of these groups. If we consider the 1500 stocks

of the S&P 1500, there are S(1500,10) = 2.76 × 101493 different ways to form 10 groups,

where S() denotes Stirling numbers of the second kind. Hence, the traditional approach

has been to leave the construction of sector/industry taxonomies to experts. Research (e.g.,

Bhojraj et al. (2003); Chan et al. (2007)) has shown that these experts perform well. Still,
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there are indications that improvements could be made. As an example, GICS places Real

Estate Investment Trusts (REITs) into the Financials sector, however, these REITs often

have characteristics more similar to stocks in other sectors. Consider Marriott International,

Inc. (MAR), an S&P 500 constituent that is primarily engaged in operating hotels. In 2010,

the S&P 500 company with second highest correlation of daily returns to MAR was Host

Hotels & Resorts, Inc. (HST), REIT that owns and operates hotels.1 In 2010, MAR and

HST had returns correlation of 0.818, while the average pairwise correlation of constituents

of the S&P 500 was 0.464. Yet, MAR and HST do not appear in the same sector. MAR

is classified under Consumer Discretionary, while HST is under Financials because it is a

REIT. GICS completely misses the relationship.

This chapter examines using the analyst, correlation and news data to construct stock

groups. In section 5.1, two measures for evaluating the quality of groups are developed. In

section 5.2, two methods for forming groups are explored: 1) hypergraph partitioning using

the algorithm described in chapter 4, and 2) a pipeline approach of a hierarchical clusterer

followed by a genetic algorithm applied to the pairwise data of chapter 3. Results are

displayed in section 5.3, with comparisons made against three expert-driven classification

systems: SIC, FF and GICS.

5.1 Evaluation Measures

5.1.1 Average Pairwise Correlation

The first quality measure used to compare stock groupings originates in a study by Chan

et al. (2007) comparing several industry classification systems. The method evaluates the

groups on the basis of stock return co-movement. Two stocks within a group are expected

to have higher return correlation than two stocks in different groups. Let I denote a stock

group (i.e., “industry” in the original study). The average pairwise correlation ρiI for stock

i in I, and the average pairwise correlation φiI between stock i and stocks not in its industry

I, are

1The S&P 500 company with highest correlation to MAR in 2010 was Starwood Hotels & Resorts World-
wide (HOT) with correlation 0.890.
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ρiI =

∑
j∈I,j 6=i

dij · ρij∑
j∈I,j 6=i

dij
φiI =

∑
j /∈I

dij · ρij∑
j /∈I

dij

where ρij is the Pearson correlation coefficient between returns for stocks i and j, and dij

is the number of days both i and j are active. The day-weighting was added by Yaros and

Imieliński (2013b) to allow stocks that are delisted to still be included in the computation,

thus helping to avoid survivorship bias.

The average intra-industry correlation ρ̄I and inter-industry correlation φ̄I for industry

I are:

ρ̄I =

∑
i∈I ρiI

|I|
φ̄I =

∑
i∈I φiI

|I|

where |I| is the count of stocks in group I. Conceptually, if a stock grouping is good, ρ̄I

will be large and φ̄I will be small.

To aggregate, either a simple average, ψ, or a weighting by industry size, θ, can be used:

ψ =

∑
I∈I
(
ρ̄I − φ̄I

)
|I|

θ =

∑
I∈I |I| ·

(
ρ̄I − φ̄I

)∑
I∈I |I|

where I is the set of all industries. The weighted average, θ, is generally more preferable

since each stock gets equal value.

Unfortunately, optimizing the quality measures ψ and θ directly can easily lead to de-

generate solutions. Stocks with the lowest correlation to the market may be placed into

their own groups, while all other stocks are placed into a single group. The large group has

lower intra-group correlations (ρI), but the inter-group correlations (φI) are much lower,

leading to larger ψ and θ measures. Consider Table 5.1. The groups {1,2,3}, {4,5,6} and

{7,8,9} form good natural groups because the stocks within each group are more correlated

with each other than with any other stocks. Yet, these natural groups have ψ = 0.289

and θ = 0.289, while the degenerate groups {1,2,3,4,5,6,7}, {8} and {9} have ψ = 0.400

and θ = 0.311. These situations easily occur when there are some stocks that have low

correlation with the rest of the market. Unfortunately, this happens often in reality as cer-

tain companies and entire sectors become distressed and/or experience positive or negative

shocks that do not affect the rest of the market.
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Table 5.1: Hypothetical Correlations

1 2 3 4 5 6 7 8 9

1 - 0.6 0.6 0.5 0.5 0.5 0.2 0.0 0.0

2 0.6 - 0.6 0.5 0.5 0.5 0.2 0.0 0.0

3 0.6 0.6 - 0.5 0.5 0.5 0.2 0.0 0.0

4 0.5 0.5 0.5 - 0.6 0.6 0.2 0.0 0.0

5 0.5 0.5 0.5 0.6 - 0.6 0.2 0.0 0.0

6 0.5 0.5 0.5 0.6 0.6 - 0.2 0.0 0.0

7 0.2 0.2 0.2 0.2 0.2 0.2 - 0.3 0.3

8 0.0 0.0 0.0 0.0 0.0 0.0 0.3 - 0.3

9 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 -

The measures ψ and θ have a design that reflects the intentions of statistical cluster

analysis, where clusters (i.e., groups) should have high internal homogeneity (as measured

by ρI) and high external separation (as measured by φI) (Xu and Wunsch, 2009). However,

external separation can clearly be over-emphasized by φI in the measure. In fact, we propose

to simply use ρI alone. Financial practitioners will likely find that the internal similarity of

each group is most important to them, rather than focusing on reducing external similarity.

Further, there is a strong opportunity cost in placing each stock since ρI will be lower if a

stock is placed in an suboptimal group. Therefore, we suggest ψ and θ be replaced by

κ =

∑
I∈I ρ̄I

|I|
γ =

∑
I∈I |I| · ρ̄I∑
I∈I |I|

Further, we prefer the γ measure because each stock gets equal weight, thereby avoiding an

imbalancing problem in κ where there is an incentive to form many small groups of highly

correlated stocks and put the other stocks into a single large group. We focus on γ for the

remainder of this chapter.

5.1.2 Average Coefficient of Determination

The second measure used in this dissertation to evaluate group performance is inspired

by Bhojraj et al. (2003). As mentioned in section 2.3, Bhojraj et al. originally wished
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to evaluate the main contemporary industry taxonomies - SIC, NAICS, Fama-French and

GICS. To measure performance, Bhojraj et al. sought to quantify how well movements

in individual companies are explained by the contemporaneous average movements of the

company’s group. This performance can be quantified by the coefficient of determination

(R2) after performing regression

Ri,t = αi + βiRind,t + εi,t

where Ri,t is the return for company i at time t and Rind,t is the equally-weighted average

return of all stocks in i’s industry ind (i.e., group) at time t.

Briefly describing the coefficient of determination, it is a number between 0 and 1 in-

tended to describe how well data points fit a model.

R2 = 1− SSres
SStot

where SSres is the sum of the squared residuals from the regression and SStot is the sum

of squared differences from the mean in the dependent variable (in our case Ri). R2 = 1

indicates the model explains all variation in the dependent variable, while R2 = 0 indicates

the model has no explanatory power. For our purposes, the coefficient of determination can

be interpreted as an indication of how well the returns of the stocks are explained by the

returns of the stock’s group using the equation for Ri,t above.

Thus, the average R2 values for each grouping can be used for performance evaluation.

Higher average R2 indicates that the grouping does better at dividing stocks into groups

since each stock’s movements are better explained by the movements of its group.

5.2 Methods

Two approaches to forming groups are presented. The first approach is hypergraph par-

titioning using analyst data or news data directly to form groups. The second approach

uses the pairwise representations from chapter 3 and uses a hierarchical clusterer to form

initial groups followed by a genetic algorithm for refinement. The tradeoff between the

approaches is that hypergraph partitioning does not have the potential information loss

that occurs when looking only at pairs, whereas combining the datasets is more easily

accomplished with the pairwise approach (as seen in chapter 3).
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5.2.1 Hypergraph Partitioning

Analyst coverage can easily be represented as a hypergraph, where companies are repre-

sented by vertices and edges represent the analysts that cover those companies. Consider

Figure 5.1, which illustrates the process of constructing a hypergraph, then partitioning

it. In Figures 5.1a, 5.1b and 5.1c, the analysts from three separate firms are represented.

As seen with Cisco and Seagate in Figure 5.1b, it is possible that some companies are not

covered by any analysts. This happens frequently in practice. In Figure 5.1d, the complete

hypergraph is shown, combining the analyst hyperedges from all firms. In Figure 5.1e, the

hypergraph has been partitioned and each part of the partition can be used as a stock

group.

Recall from section 2.4 that it can be expected that each analyst will cover a set of

highly similar companies. Using this observation, the goal of the hypergraph approach is

to minimize the number of occurrences where an analyst’s covered stocks span multiple

parts of the partition. That is, we seek a partition that minimizes the edges cut. More

specifically, we want to minimize the K-1 cut measure, which is the summation over all

edges of the number of parts spanned by an edge minus one (see section 4.2.2 for details).

The end result should be a partition of the companies such that the firms in each part are

highly similar.

An identical approach can be taken for news articles, where vertices represent companies

and each edge represents a single news article, connecting the companies that appear in that

article. With the expectation that news articles will tend to cover highly similar companies,

a partition minimizing the K-1 cut measure should result in each part having highly similar

firms.

To perform partitioning, we use the hyperpart-dc algorithm described in chapter 4 us-

ing hmetis to perform the initial partition, which helps reduce run times. We compare the

results against three industry classification systems: 1) the US government developed Stan-

dard Industry Classification (SIC), 2) the academic Fama-French system (FF), and 3) the

commercial Global Industry Classification System (GICS). See section 2.3 for a description

of each. To make fair comparisons, we use set the partition size for hyperpart-dc to match
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the number of groups used by the comparison system. For example, we set hyperpart-dc to

produce a ten part partition when comparing against GICS sectors because the GICS system

has ten sectors. Since each of these comparison systems has multiple levels of granularity

(e.g., GICS has sector, industry group, industry and sub-industry), we make comparisons

for at each level of granularity. This enables us to assess the hypergraph method’s perfor-

mance at different levels of aggregation. Additionally, since an unconstrained partitioning

leads to degenerate solutions, we target the entropy level of the corresponding comparison

system with a tolerance of 0.1 when we perform the experiments.

An additional benefit of the hypergraph approach beyond any improvements in quality

is that the approach can perform a partition into any desired number of parts. The expert-

driven systems provide only fixed levels of granularity. So, if an investor desired a partition

of 100 groups but uses GICS, s/he would either need to accept the 68 industries or 156

sub-industries, or somehow manipulate them to achieve 100 groups.

At the same time, GICS and the other systems do provide additional value in that

their groups are labeled. While partitioning the hypergraph might produce a group with

Citibank, JPMorgan and Goldman Sachs, it does not label the group. Meanwhile, GICS

might label them “financial,” which immediately helps the user understand the business of

the constituent companies. While this dissertation does not examine this shortcoming, a

variety of approaches could be taken. First, an expert could be used the label the groups,

although this runs counter to this dissertation’s goal of greater automation. Second, natural

language processing could be used to automatically generate labels. For example, one could

use word histograms of company descriptions from their prospectuses to infer major business

commonalities within the constituent companies of a group, and apply a label based on high

frequency words.

Regardless, hypergraph partitioning (and pairwise conversion methods of section 5.2.2)

provide a valuable step towards automation, assuming good performance (which will be

seen shortly).
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5.2.2 Conversion of Pairwise Data into Groups

A disadvantage of the hypergraph representation is that it is not easily extended to combine

datasets, particularly correlation. To combine news and analysts, the edges from each

dataset could simply be overlaid, but a weighting scheme would likely be necessary since

there are many more news articles than analysts. Including correlation is more difficult since

it is a pairwise value. Edges of size 2 between each pair of vertices could be added to the

graph, with a weight proportionate to the correlation between the two stocks. Yet, this even

further complicates weighting the analyst and/or news edges. Moreover, the computation

complexity of performing the partition will grow substantially because of the increase in

the number of edges.

Given these shortcomings of the hypergraph approach, we also consider forming stock

groups from the pairwise values directly. Chapter 3 demonstrated that the analyst and

news data are amenable to a pairwise representation, and that combinations of the datasets

result in performance improvements. Thus, if groups can readily be formed using pairwise

values, then we can expect good performance with the pairwise representation to carry over

to the group representation.

At the same time, using pairwise values presents some information loss versus the hy-

pergraph approach. In the pairwise approach, only the strength of similarity between two

stocks is quantified, whereas in the hypergraph approach, an edge can represent a bond

between any number of stocks. Thus, we may expect some performance degredation if

pairwise values are used instead of a pairwise approach. Nevertheless, we still consider this

approach because of the greater ease by which the analyst, correlation and news datasets

can be combined.

To form groups from pairwise values, an exhaustive search is not feasible because of

the enormous number of possible stock groups that can be formed. Fortunately, there are

algorithms that can find good approximate solutions relatively quickly. We use a pipeline

approach consisting of two algorithms, an agglomerative clusterer and a genetic algorithm.

The agglomerative clusterer begins with each stock in its own group. It then merges

the two groups that would lead to the highest overall γ value. It continues this process of
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merging until the desired number of groups is reached. This algorithm is relatively fast since

the “gain” in γ for merging two groups need only be calculated at initialization and when

one of the groups changes (i.e., is merged with another group). Otherwise, no calculation

is necessary. The agglomerative clusterer is a greedy algorithm and does not look ahead

more than one iteration, so it may have been better to merge different groups in an early

iteration to lead to a higher final γ. Such lookahead is computationally infeasible since the

algorithm would essentially need to consider a large magnitude of combinations (i.e., the

S(1500,10) = 2.76 × 101493 described earlier). Instead, we next use a genetic algorithm to

refine the solution.

In our genetic algorithm, the sequence of group assignments to stocks is analogous to

a DNA sequence of codons. We wish to improve the stock assignments just as a species’

DNA might be improved through natural selection. The algorithm can be described by

the standard four stages: 1) Initialization 2) Selection 3) Crossover (a.k.a. Reproduction)

and 4) Mutation. Our initialization stage begins by taking the output of the agglomerative

clusterer and replicating it into a pool of N candidate groupings. In the selection phase,

we compute γ for each of the N candidates and select only the top P%. In the crossover

phase, the selected candidates are placed into parent pools and N new child candidates

are produced by selecting each stock’s group assignment randomly from each of its M

parents. In the mutation phase, these child candidates will have each of their individual

stock assignments (i.e., codons) changed with a low probability Q%. These candidates

are then fed back into the selection phase and the process is repeated. Throughout the

algorithm, the best grouping ever seen (i.e., the one with highest γ) is recorded and if

there is no improvement after T iterations, the algorithm terminates, returning that best

grouping. In our experiments, parameter settings are N = 1000, M = 2, P = 25%,

Q = 0.5% and T = 50. Genetic algorithms have been shown to be effective in a variety of

settings (see Banzhaf et al. (1998) for an introduction), and we have found ours does well

in improving the initial solution produced by the agglomerative clusterer.

The agglomerative and genetic algorithms are applied to the historical pairwise correla-

tions with the hope that the optimal groups of a given year will be predictive of intra-group
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correlation for the next year. For analysts and news, we use the same algorithms on their co-

sine values, using the same quality measure, γ, except replacing pairwise correlation values

ρij with the pairwise analyst cosine values or the news cosine values (CAij or CNij , respectively,

from section 3.1). In a similar fashion, we use the values from the combined analyst, news

and historical correlation method of section 3.4.1 to generate another comparative set of

groups. To briefly summarize, the steps to compute groups for year t are:

1. Compute Correlation (ρi,j,t−2 and ρi,j,t−1), Analyst Cosine (CAi,j,t−2 and CAi,j,t−1), and

News Cosine (CNi,j,t−2 and CNi,j,t−1) for previous two years for all pairs of stocks i and j.

2. Find parameters wA, wN , ϕA and ϕN that optimize Kendall’s tau between last year’s

correlation (ρi,j,t−1) and the linear combinations of the prior year’s (t− 2) predictors

ρi,j,t−1 ∼ ρi,j,t−2 + wA ·
(

1− e−ϕA min(ai,t−2,aj,t−2)
)
· CAi,j,t−2

+ wN ·
(

1− e−ϕN min(mi,t−2,mj,t−2)
)
· CNi,j,t−2

3. Using optimized parameters, compute combined similarity value si,j,t−1 using last

year’s predictors

si,j,t−1 = ρi,j,t−1 + wA ·
(

1− e−ϕA min(ai,t−1,aj,t−1)
)
· CAi,j,t−1

+ wN ·
(

1− e−ϕN min(mi,t−1,mj,t−1)
)
· CNi,j,t−1

4. Run Agglomerative Clusterer on combined similarity values si,j,t−1 to form candidate

stock groups Ĝ

5. Using Ĝ as initialization, run Genetic Algorithm on combined similarity values si,j,t−1

to form candidate stock groups G

6. Return G as prediction for year t

5.3 Results

In the following pages, we present results of both the hypergraph and the pairwise methods

compared against each of the SIC, FF and GICS systems at each level of granularity in their
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respective systems. Results are presented for both the intra-group correlation measure (γ

in section 5.1.1) and the coefficient of determination measure (R2 in section 5.1.2). Because

correlations change dramatically from year to year (see Figure 3.12), we do not plot the

intra-group correlation values (γ) directly. Instead, we normalize these values to a range

between that year’s average pairwise value between any two stocks and the theoretical

maximum γ that could possibly be achieved in that year. We compute this maximum by

running the algorithm of section 5.2.2 directly on that year’s correlation data instead of

using the previous year’s data. Clearly, this is an approximation of the maximum and is

done for visualization purposes only – it is not used in any statistical tests. A zero on the

y-axis indicates no improvement over simply choosing groups at random, while a one on the

y-axis indicates achievement of the theoretically maximum possible intra-group correlation.

For the cofficient of determination R2, raw values are plotted without any normalization.

The figures on the following pages present a great deal of information. To begin, recall

from the previous sections that it might be expected that the hypergraph approach will

outperform the pairwise approach because of information loss. Consider Figure 5.6, which

presents results using the intra-group correlation measure (γ) at each level of granularity in

GICS. At the sector level, which has 10 groups, the hypergraph methods for both analysts

and news outperform their respective counterpart pairwise methods. However, as the num-

ber of groups increases, the performance of the hypergraph method degrades relative to the

pairwise method. At the most granular level, GICS sub-industries, there are approximately

168 groups (the count changes years to year) for the 1500 stocks of the S&P 1500. At this

level, the hypergraph methods clearly underperform. We provide two explanations. First,

the information loss is less important as the number of groups increases and, correspond-

ingly, the size of the groups decreases. That is, the gap between the size of the group and

the size of a pair diminishes, so the information loss is less severe. Second, the difficulty

of partitioning the hypergraph increases as the number of groups grows. This is evident in

the complexity analysis of hyperpart discussed in section 4.3.3, where the number of groups

is a major component of its runtime complexity. This has also been observed with other

algorithms, such as k-FM (Sanchis, 1989). So, as the complexity of the partitioning prob-

lem increases, the relative quality of the partition produced by the hypergraph approach
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degrades. This relationship with the hypergraph approach outperforming the pairwise ap-

proach at low levels of granularity but underperforming at high levels of granularity is also

evident with the R2 measure for GICS in Figure 5.7. With the SIC and FF systems, it also

occurs, although FF never really reaches the high number of groups that occur with GICS,

so the underperformance of the hypergraph approach is not evident. The highest number

of groups in FF is 482.

Evident in all figures is that using only news data underperforms all other methods,

regardless of whether hypergraph partitioning or the pairwise method is used on the news

data. These results are unsurprising given the results of chapter 3. At the same time,

the news data does contain some information. Otherwise, it would have performance com-

parable to a random set of groups. This is not the case because in all figures displaying

intra-group correlation γ, the performance of the news methods are greater than zero.

In contrast to the performance of news, analysts perform much better. Against SIC and

FF, the hypergraph method, the pairwise method or both outperform the corresponding

SIC or FF groups at each of their respective levels of granularity. Against GICS with

the γ and R2 measures, analysts underperform at the sector and industry group levels.

At the industry level, the analyst pairwise method outperforms GICS on the γ measure

with statistical significance (p = 0.013) under a paired t-test, although the differences

are not significant with the R2 measure. At the sub-industry level, the analyst pairwise

method outperforms GICS under both the γ measure (p = 4.7× 10−5) and the R2 measure

(p = 0.014).

Correlation also performs much better than news and performs better than SIC or FF at

each of their respective levels of granularity. Against analysts, correlation tends to perform

better when there are fewer groups. For instance, at the GICS sector level, correlation

outperforms both analyst methods, but at the sub-industry level, correlation underperforms

the analyst pairwise method under both the γ measure (p = 1.4×10−4) and the R2 measure

(p = 5.1 × 10−5). Correlation also underperforms the analyst hypergraph method at the

GICS sub-industry level, although the differences are significance only with the R2 measure

2There is a 49 group partition available from French’s data library (French, 2012), but it was only initiated
in 2004.
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(p = 0.004). Against GICS, neither correlation nor GICS does better than the other under

the γ measure with statistical significance, except at the sub-industry level where GICS

outperforms correlation (p = 0.007). With R2, correlation underperforms GICS at all

levels of granularity, which may be a reflection of the fact that our hierarchical clusterer

and genetic algorithm essentially optimize for γ in the previous year without consideration

for R2. In general, correlation tends to perform better than the analyst pairwise method

when its performance is weakest – with fewer groups. This matches expectations since,

as described in section 3.3.1, analysts tend to cover highly similar stocks and, thus, will

be good at creating groups of highly similar companies (i.e., smaller groups), but not be

as good at creating larger groups. At the same time, since correlation offers a measure of

similarity for all stocks, correlation can do better at forming larger groups.

By combining correlation with analysts and news, the hope is to receive the benefits

of each dataset across the spectrum of stock similarity. We wish to combine the perfor-

mance of analysts on highly similar stocks (plus any potential benefits from news) with

the performance of correlation on all other stocks. Indeed, the A+C+N method tends to

perform at least as good as the best input method (i.e., analysts or correlation). In the SIC

and FF comparisons, the A+C+N method is nearly always the best. Against GICS under

the γ measure, neither A+C+N nor GICS performs better than the other at the sector

or industry-group level with statistical significance, but A+C+N outperforms GICS at the

industry (p = 0.001) and sub-industry levels (p = 6.9 × 10−4). Under the R2 measure,

neither A+C+N nor GICS performs better than the other, except at the sub-industry level

(p = 0.023).

In general, the pairwise methods tend to do better with the γ measure than with R2.

We suggest this occurs because the objective used in the pairwise algorithms more directly

matches γ than R2.

The results presented tend to support the results of previous research (especially Bhojraj

et al. (2003) and Chan et al. (2007)) comparing the SIC, FF and GICS systems. Although

SIC, FF and GICS were not directly compared against each other in our experiments,

their performance against the methods presented in this dissertation suggest that GICS has

highest quality groups. On the other hand, this dissertation finds that historical correlation
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can be used to form groups of higher quality than has been previously implied (especially

by Chan et al. (2007)). We believe this is a result of designing an algorithm that directly

focuses on optimizing the performance measure γ. Although correlation does not perform

as well as GICS, its performance is relatively close. In fact, GICS does not outperform

correlation under the γ measure with statistical significance, except at the sub-industry

level.

5.4 Summary

The focus of this chapter is the formation of stock groups (i.e., a partition of a universe

of stocks) with the goal that the stocks in each group be highly related. Two evaluation

measures based on previous work are presented. The γ measure essentially focuses on intra-

group correlation, while the R2 measure focuses on how well the movements of a stock are

explained by the averaged movements of the stocks in its group.

Two methods for forming groups are presented. The first is hypergraph partitioning

performed using the hyperpart-dc algorithm presented in chapter 4. The hypergraph rep-

resentation is applied separately to each of the news and analyst datasets, but the vertices

represent companies in both cases. For analysts, each edge represents the coverage of an

analyst. For news, each edge represents a single news article - uniting the companies co-

occurring in the article. The second group formation method is a pipeline approach of

a heirarchical clusterer followed by a genetic algorithm. This approach is applied to the

pairwise datasets presented in chapter 3: analyst cosine, news cosine, historical correlation,

and their combination (A+C+N).

For both analysts and news, the hypergraph approach generally does better than the

pairwise approach when forming fewer groups (i.e., group sizes are larger). This is likely

a result of less information loss in the hypergraph approach than the pairwise approach.

Conversely, the pairwise approach does better when there are more groups (i.e., fewer

stocks), which is likely due to a combination of two reasons: 1) the smaller group sizes

are closer to the pairs of the pairwise approach, and 2) the computational complexity of

hypergraph partitioning is dependent on the number of parts, so more groups means a more
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Figure 5.2: Intra-Group Correlation (γ) compared against SIC

Values on the y-axis range from zero, representing the average intra-group correlation γ for

a random partition, to one, representing the theoretical maximum intra-group correlation

γ that could have been achieved.
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Figure 5.3: Coefficients of Determination (R2) compared against SIC

Values on the y-axis represent the average R2 associated with regressing each stock’s daily

time series of returns against the averaged returns stock’s respective group. R2 ranges from

zero to one with higher values indicating the stock’s returns are better explained by its

respective group.
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Figure 5.6: Intra-Group Correlation (γ) compared against GICS

Values on the y-axis range from zero, representing the average intra-group correlation γ for

a random partition, to one, representing the theoretical maximum intra-group correlation

γ that could have been achieved.



90

1996 2000 2004 2008

0.02

0.04

0.06

0.08

0.1

0.12

(a) vs. GICS Sectors

1996 2000 2004 2008

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) vs. GICS Industry Groups

 

 

GICS

A+C+N (Pairwise)

Analyst Hypergraph

Analyst Pairwise

Correlation (Pairwise)

News Hypergraph

News Pairwise

1996 2000 2004 2008

0.05

0.1

0.15

0.2

(c) vs. GICS Industries

1996 2000 2004 2008

0.1

0.15

0.2

0.25

(d) vs. GICS Sub-Industries

Figure 5.7: Coefficients of Determination (R2) compared against GICS

Values on the y-axis represent the average R2 associated with regressing each stock’s daily

time series of returns against the averaged returns stock’s respective group. R2 ranges from

zero to one with higher values indicating the stock’s returns are better explained by its

respective group.
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difficult problem for the partitioner.

Among the analyst, correlation and news datasets, news performs worst. Correlation

tends to perform better than analysts when forming fewer groups, while analysts tend to

do better with more groups. A+C+N does best and generally has performance at least as

good as the best of its input datasets (analysts, correlation or news).

These methods are compared against three expert-constructed industry classification

systems discussed in section 2.3: SIC, FF and GICS. Comparisons are made at each of

their respective levels of granularity. Against SIC and FF, news does worse, but analysts,

correlation and A+C+N do better. GICS is the most competitive system, which is in

accord with previous research. Against GICS, A+C+N tends to perform at least as well,

and often better when more groups are present (i.e., the industry or sub-industry levels).

This provides another validation for the methods used to create A+C+N in chapter 3.

While offering performance at least as good as GICS, there are other advantages to the

A+C+N approach. First, GICS offers only four levels of granularity while any number of

groups can be formed with the A+C+N approach. Second, whereas using GICS carries

a reliance on a single expert, the A+C+N approach seeks consensus. The analyst data

represents a consensus of brokerage and equity research firms. The news data represents a

consensus of news writers. The correlation data represents technical information provided

by stock markets, which itself is a consensus of all market participants.
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Chapter 6

Applications

In chapters 3 and 5, methods were described that used news and analyst data to increase

correlation prediction and improve the quality of stock groupings. While these are certainly

important to financial professionals, they are not their direct goal. Rather, their most basic

objectives are generally to increase returns and to minimize risk. This chapter demonstrates

how the improvements made in previous chapters are easy extended to these basic functions.

We first consider two areas in depth: section 6.1 describes improvements to diversification,

while section 6.2 considers a scenario where an investor wishes to hedge a long position

s/he is temporarily unable to unwind. In section 6.3, we present some ideas for further

application areas where we have not performed experiments, but believe potential benefits

exist.

6.1 Diversification

As described in section 2.1, one of the major advances of the past century in finance was the

introduction of Modern Portfolio Theory (MPT) by Markowitz (1952). MPT suggests that

risk, as measured by variance of returns, can be reduced by avoiding holding assets with

high correlation in the same portfolio. That is, as the pairwise correlations of the individual

assets held in the portfolio decrease, the risk of the portfolio should also decrease.

Since future correlations are unknown a priori, historical correlation is frequently used

a proxy. In chapter 3, we demonstrated methods to improve prediction of future correlation

beyond the simple use of historical correlation by also incorporating analysts and news

data. Therefore, it can be expected that these same methods can be used to improve

diversification, and thus, reduce risk. This section is devoted to exploring the application

of the analyst and news data to the task of diversification.
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6.1.1 Experimental Setup

The approach taken by this dissertation to achieving diversification is to avoid having pairs

of highly similar stocks in the same portfolio. Thus, to quantify the risk of a given portfolio,

we use a simple method of counting the number of ordered pairs of stocks in the portfolio

that are expected to be highly similar through one (or more) of the pairwise values presented

in chapter 3. For example, using the news cosine CN , we count the number of occurrences

of an ordered pair (c1, c2) where CN (c1, c2) is in the top K highest values for the given stock

c1. Observe that a set of two stocks {ca, cb} may be counted twice - once for CN (ca, cb)

and once for CN (cb, ca). The expectation is that a higher count of “top K pairs” means

the portfolio is less diversified and, thus, more risky. So, these risky portfolios should have

higher variances in their returns.

For each year in our dataset, we randomly generate 1,000,000 portfolios of five stocks

each from the S&P 1500. Since each stock in the portfolio may itself have varying levels of

risk, we weight each stock in the portfolio by the inverse of its historical standard deviation of

20-trading-day returns (approx. one calendar month) over the previous three years. That is,

the weight wi of stock i in the portfolio is proportional to 1/σh,i, where σh,i is the historical

standard deviation of stock i. In the case that there are fewer than twelve 20-trading-day

periods of returns in the stock’s history, we give that stock weight corresponding to the

average historical standard deviation of the other stocks in the S&P 1500 that year. These

weights are normalized such that
∑

iwi = 1.

This weighting scheme is intended to balance the portfolio such that each stock con-

tributes equal risk within the portfolio. A true equal-risk-weighted portfolio is known as

a “risk parity” portfolio and has recently been an area of active research (see Maillard

et al., 2010; Clarke et al., 2013). Analytic solutions are in their nascency, so we use the

above approximation (inverse of volatility) as has been done in other research (e.g., Asness

et al., 2012). This method would be precise if the portfolio constituents were uncorrelated,

but since non-zero correlations exist, we are essentially using the lower bound on each

constituent’s risk contribution (Clarke et al., 2013).
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Even with our weighting scheme, the portfolios themselves may have varying risk de-

pending on their underlying stocks (even though each is weighted for equal risk within the

portfolio). So, to make comparisons between portfolios, we compute the following “risk

improvement” measure

Λ =
σA
σH

where σA is the actual standard deviation of 20-trading-day returns of the weighted port-

folio over the subsequent 12 periods (essentially monthly returns over the next year). The

“homogeneous” standard deviation σH is a theoretical value that measures the variance as

if the stocks had been perfectly correlated (i.e., ρij = 1 for all pairs of stocks i, j)

σ2
H =

n∑
i=1

n∑
j=1

wiwjσiσjρij =

n∑
i=1

n∑
j=1

wiwjσiσj

Of course, most stocks are not perfectly correlated, so Λ will range between zero and one

with lower values indicating less risk. A value of 0.5 means that the risk (as measured by

variance) is half the risk that would be encountered if the stocks were perfectly correlated.

For comparison, we also consider a common method of achieving diversification: using

an industry classification. In this approach, risk can be quantified as the number of GICS

sectors a portfolio spans. More sectors means lower risk. For a five stock portfolio, the most

diversified portfolio will have each stock from a different sector, so five sectors are spanned.

The most risky portfolio will have all five stocks from a single sector. Such an approach is

frequently espoused as a basic approach to investing (e.g. Cramer (2005)). In fact, Nasdaq’s

financial glossary defines “sector diversification” as ”constituting of a portfolio of stocks of

companies in each major industry group.”1

In practice, other investment dimensions should be considered for diversification. For

example, risk can be lowered by investing across multiple asset classes (e.g., bonds, com-

modities, real estate, etc.) and across countries. However, this does not diminish the impor-

tance of these experiments. Diversification should still be applied within the single-country

equity portion of a larger investment portfolio (U.S. Securities and Exchange Commision,

2009).

1http://www.nasdaq.com/investing/glossary/s/sector-diversification
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6.1.2 Results

We first consider the validity of quantifying portfolio risk by counting the number of top K

pairs. Figure 6.1 depicts results for year 2000 (other years are similar) using K = 50. As can

be seen in the figure, an increase in the count of instances where a stock is in the top K of

another stock generally leads to an increase in the risk of the portfolio (as measured by Λ).

This relationship is present for all predictors: analyst cosine (Analyst), historical correlation

(Correlation), news cosine (News) and the combination method (A+C+N) described in

section 3.4.1.

Since investors will typically seek a portfolio with as little risk as possible (given equal

expected return), we consider the difference between portfolios with no top K pairs versus

portfolios with one or more top K pair. Results are shown in Table 6.1. In all but two

cases, having zero top K pairs leads to lower risk.

Thus, the notion of counting top K pairs to quantify risk has merit. We also consider

the traditional approach using sectors. In Figure 6.2, it is evident that the fewer sectors

the portfolio spans, the higher the risk. This matches traditional expectations that a well-

diversified portfolio will span multiple sectors.

Portfolio Selectivity

Before the risk results of the top K and traditional sector approaches can be compared, one

must consider their selectivity. If one approach returns fewer portfolios than the other, it

may be considered an unfair comparison since it can be easier to reduce risk by simply being

highly selective. Figure 6.3 displays, for each possible count of sectors, the percentage of the

1,000,000 randomly generated portfolios that have the given count. The riskiest portfolios

(one sector) are rare. On the other hand, the most diversified portfolios (five sectors)

comprise approximately 20%. Most portfolios lie between these extremes and span two,

three or four sectors.

Using the top K approach, the selectivity is largely controlled by K – higher K means

higher selectivity and, thus, fewer portfolios. Consider Figure 6.4, which displays the rela-

tionship between the value of K and the percentage of portfolios with zero top K instances.
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Figure 6.2: Risk by GICS Sector Count

Table 6.1: Risk by Top K Counts

Analysts Correlation News A+C+N

Year zero one+ zero one+ zero one+ zero one+

1997 0.6178 0.6252 0.6144 0.6278 0.6185 0.6303 0.6157 0.6265

1998 0.5870 0.5917 0.5853 0.5923 0.5876 0.5935 0.5855 0.5924

1999 0.5657 0.5754 0.5641 0.5746 0.5686 0.5679 0.5640 0.5749

2000 0.5017 0.5169 0.4989 0.5162 0.5050 0.5156 0.4994 0.5164

2001 0.6439 0.6495 0.6417 0.6505 0.6449 0.6501 0.6418 0.6507

2002 0.6955 0.7077 0.6945 0.7041 0.6980 0.7031 0.6947 0.7041

2003 0.5613 0.5721 0.5596 0.5696 0.5630 0.5728 0.5597 0.5697

2004 0.6006 0.6114 0.5984 0.6103 0.6015 0.6204 0.5984 0.6105

2005 0.6058 0.6148 0.6006 0.6186 0.6080 0.6093 0.6012 0.6181

2006 0.5539 0.5601 0.5506 0.5623 0.5560 0.5509 0.5506 0.5625

2007 0.5451 0.5542 0.5473 0.5478 0.5451 0.5696 0.5470 0.5482

2008 0.6523 0.6644 0.6546 0.6567 0.6541 0.6691 0.6543 0.6573

K=50. ’zero’ columns indicate no top K instances present in the portfolio. ’one+’ indicates

one or more top K instances are present.
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Figure 6.4: Top K Selectivity (year 2000

shown)

As expected, increasing K decreases the number of portfolios. The figure also demonstrates

that the analyst and news portfolios have relatively high asymptotic minima. These minima

occur because of the nature of the analyst and news datasets as described in section 3.3.1.

For most pairs of stocks, there are no analysts covering both. Likewise, most pairs of stocks

do not co-occur in any news stories. Thus, the analyst and news data can be used to elim-

inate the portfolios containing the pairs of highly similar stocks, but this has limits as K

is increased and portfolios containing moderately related stocks would be next to be elimi-

nated. The analyst and news data have little information in this regard. In fact, they never

reach the 20% selectivity of five-sector GICS portfolios, so comparisons are not appropriate.

However, since correlation can be computed for any pair of stocks (assuming a historical

price time series exists), it can achieve significant levels of selectivity. This carries over to

the combination method (A+C+N), since correlation is one of its components.

Comparison with GICS

To compare GICS with correlation, for each year we use the value of K for correlation that

produces the number of portfolios with zero top K pairs that is closest to the number of

GICS portfolios with stocks from 5 sectors. The same approach is applied to compare with

A+C+N. Results are shown in Table 6.2. As seen in the table, none of the methods clearly

outperform the other methods. Under paired t-tests, none are significantly different than
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the others. This indicates the correlation and A+C+N approaches have performance that

is comparable to GICS.

Combination with GICS

As with the analysts, correlation and news datasets, a natural question is whether GICS can

be combined with the other datasets to make improvements. To consider this question, we

examine portfolios that each would suggest are most highly diversified. That is, we examine

the portfolios that are in the intersection of the set of portfolios with five GICS sectors and

the set of portfolios that have zero Top K pairs. Inevitably, this increases selectivity and

means that the set of satisfying portfolios will be smaller. However, an investor may want to

know which portfolios satisfy all approaches since these are likely the are most diversified.

Results are shown in Table 6.3 using K=50. In nearly every year (except 2002 and 2008),

the risk is reduced by including GICS. The improvements for each are significant under a

paired t-test (p = 0.010, p = 0.012, p = 0.001 and p = 0.014 for analysts, correlation, news,

and A+C+N, respectively). Additionally, the combinations also generally improve results

over just using GICS alone. Results are significant under paired t-tests comparing GICS to

each combination with GICS (p = 1.9× 10−4, p = 2.7× 10−4, p = 0.014 and p = 3.8× 10−4

for analysts, correlation, news, and A+C+N, respectively).

6.2 Long Position Hedging

This section considers a scenario where an investor holds a long position in a single stock

and fears the stock may lose significant value due to a market or sector decline, but it is

unable to sell his/her position in that stock for a period of time. This inability to trade

could be a result of owning shares that have not yet vested as part of a compensation

package. Alternatively, the investor may be prohibited from trading because s/he is an

employee with material information or is an executive. In such situations, the value of the

stock position may be a significant part of the investor’s wealth, so proper hedging is critical

to preserving value. Moreover, these investors might easily be barred from trading in the

stock’s derivatives, such as put options, so the most straightforward hedging possibilities
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Table 6.2: Diversification Comparison against GICS

Year GICS Correl A+C+N

1997 0.6158 0.6094 0.6098

1998 0.5740 0.5830 0.5827

1999 0.5616 0.5609 0.5608

2000 0.4912 0.4926 0.4921

2001 0.6290 0.6375 0.6374

2002 0.7011 0.6902 0.6902

2003 0.5586 0.5556 0.5556

2004 0.5973 0.5931 0.5929

2005 0.6019 0.5906 0.5912

2006 0.5425 0.5449 0.5450

2007 0.5439 0.5472 0.5470

2008 0.6579 0.6524 0.6519

Table 6.3: Combinations with GICS

Analysts Correlation News A+C+N

Year GICS with w/o with w/o with w/o with w/o

1997 0.6158 0.6158 0.6178 0.6125 0.6144 0.6147 0.6185 0.6143 0.6157

1998 0.5740 0.5733 0.5870 0.5716 0.5853 0.5736 0.5876 0.5721 0.5855

1999 0.5616 0.5610 0.5657 0.5604 0.5641 0.5619 0.5686 0.5605 0.5640

2000 0.4912 0.4906 0.5017 0.4876 0.4989 0.4905 0.5050 0.4890 0.4994

2001 0.6290 0.6289 0.6439 0.6273 0.6417 0.6291 0.6449 0.6275 0.6418

2002 0.7011 0.7002 0.6955 0.6999 0.6945 0.7006 0.6980 0.7002 0.6947

2003 0.5586 0.5581 0.5613 0.5571 0.5596 0.5579 0.5630 0.5572 0.5597

2004 0.5973 0.5969 0.6006 0.5945 0.5984 0.5957 0.6015 0.5947 0.5984

2005 0.6019 0.6015 0.6058 0.5996 0.6006 0.6021 0.6080 0.6000 0.6012

2006 0.5425 0.5426 0.5539 0.5404 0.5506 0.5432 0.5560 0.5404 0.5506

2007 0.5439 0.5436 0.5451 0.5454 0.5473 0.5421 0.5451 0.5454 0.5470

2008 0.6579 0.6568 0.6523 0.6566 0.6546 0.6569 0.6541 0.6569 0.6543
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are eliminated.

To hedge the investor’s position, we use short sales of similar stocks. An ideal hedge

portfolio would have future time series of returns such that every movement in the long

stock is offset by an identical movement in the hedge portfolio. In practice, such a portfolio

is unachievable because each stock’s returns will be affected by its own specific events.

Nevertheless, one can seek to obtain a hedge portfolio as close to the ideal as possible by

using the stocks most similar to the long stock. To select these stocks, we consider using

the pairwise values described in chapter 3: analyst and news cosine values, correlation and

their combination (A+C+N). We compare these hedging methods against each other and

against the baselines of hedging with a market index ETF (SPY) and using a sector/industry

scheme, GICS, to select a portfolio of stocks.

6.2.1 Experimental Setup

To simulate hedging for a variety of time periods and stocks, we generate 100,000 runs, where

each run randomly selects a start date from the time period of 1997 to 2008 and a single

stock from the S&P 1500 constituents on that start date. We assume the investor wants

to hedge a long position in that stock over the next 125 trading days (approx. six months).

To hedge, we consider several portfolios. First, we use SPY, an ETF tracking the S&P

500.2 Second, we construct a portfolio using the GICS taxonomy. Ten stocks are randomly

selected from the long stock’s sub-industry. If there are fewer than ten stocks, we use stocks

from the long stock’s industry. If there are still too few, we use the industry group and,

finally, the sector. Third, we consider stocks selected by the similarity matrices, as computed

through correlation, analyst cosine values, news cosine values, or the optimal combination

thereof (as described in section 3.4.1). We select ten stocks with largest similarity values

to the investor’s long stock. We did not perform analysis to determine if ten is an optimal

number of stocks, but such an optimization would anyway be tangential to our main task,

which is to evaluate our similarity values as a means to select stocks for hedging.

For each run and each hedging method, we perform the following regression over the

2An ETF tracking the complete S&P 1500 was not used because such an ETF did not exist until 2004
when ITOT, the iShares Core S&P Total U.S. Stock Market ETF (formally called the The iShares S&P
1500 Index Fund) was introduced. Additionally, ITOT has much less daily volume than SPY.
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500 trading days (roughly two calendar years) prior to the run’s start date:

rs,t = α+ β · rh,t + εt (6.1)

where rs,t and rh,t are 20-trading-day returns for the stock and the hedge portfolio at time

t, respectively, and εt is the error at time t. The interval of 20 trading days is roughly one

calender month and means that the regression is over 25 points. For every dollar of the long

stock position, we short β dollars of the hedge portfolio (i.e., we hedge in a beta-neutral

fashion).

For simplicity, we ignore trading costs like commissions and market impact. For short

sales, we assume collateral of 100% of the value of the short is due at each trade’s inception.

Borrow costs, interest on collateral and all other fees or income are not considered. We do

not rebalance the hedge portfolio, even in the case that a hedge stock is delisted. In the

case that the long stock is delisted, we close the hedge portfolio on the delist date and use

the associated returns in our results.

We use a simplistic scenario for two main reasons. First, accounting for many of the real-

world effects that would impact the hedging scenario requires additional data that can be

difficult to obtain (e.g., historical borrow rates for individual stocks). Second, accounting for

these effects can require using complex models. These models are an active area of research

(especially for market impact costs) and choosing a specific model easily invites criticism

that may taint our results in their entirety. Since our intention is to portray the potential

benefits of our methods in similar stock selection, we stick to a simple scenario such that

stock selection should be the primary driver of any witnessed benefits. Nevertheless, it is

important to realize that results may be significantly different in practice. In particular,

shorting stocks can incur significant costs, especially for the stocks of distressed companies.

The environment for borrowing shares to sell stocks short is itself a market and if a company

is in distress, the demand to borrow the stock can outstrip supply, leading to high fees or

even situations where the stock is impossible to borrow. These factors should be considered

before hedging in practice.
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6.2.2 Results

Table 6.4 contains results over the 100,000 runs for the entire 1997-2010 time period. Ta-

ble 6.5 focuses on the Global Financial Crisis and has the subset of runs with an initiation

between January 2007 and August 2008 (recall that each run is 125 trading days in duration,

so trades may end as late as early March 2009). The following items are displayed:

AvgRet The arithmetic mean of returns.

StDev The sample standard deviation of returns.

MAD Mean average deviation from the average return.

DDown The largest drawdown: the minimum return (i.e., the worst case)

VaR[5] Value at Risk at the 5% threshold: the fifth percentile value when returns are

sorted least to greatest.

ES[5] Expected Shortfall at the 5% level: the average of the lowest five percent of returns.

Roy[X] Roy’s Safety-First Criterion (introduced by Roy (1952)): the probability that re-

turns are less than X%. (-25%, -50%, -75% & -100% are shown.)

As seen in Table 6.4, use of hedging reduces risk in multiple measures, including StDev,

MAD, VaR[5], ES[5], Roy[-25] and Roy[-50]. However, it is evident in the largest drawdown

(DDown) and in the most extreme threshold for Roy’s safety-first criterion Roy[-100], that

the use of shorts for hedging actually increases “extreme event” risk. Losses to the long

position are bounded at 100% if the stock price falls to zero, which is why the unhedged

strategy’s biggest drawdown is close to -100%. At the same time, losses to the short portfolio

are theoretically unbounded since the price of the portfolio can continually rise. This risk

can be mitigated (though not eliminated) through stop loss orders on the shorted stocks.

When viewing the average return (AvgRet) in Table 6.4, the reduction in risk may not

seem worth the reduction in return. Stock values tend to rise in general (Siegel, 2008) and,

thus, short positions should be avoided. However, if one has a strong belief that a market or

sector downturn is imminent, use of a short portfolio can reduce risk and preserve value as

seen with the crisis period in Table 6.5. Both the risk factors are reduced and the average

return (AvgRet) is higher with hedging. The difference is further evident in the histograms

of Figures 6.5 and 6.6, where the variance (i.e., risk) is lower in both periods for hedging
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Table 6.4: Top 25% S&P 1500 – Hedge Results During Entire 1997-2010 Period

Unhedged SPY GICS Analyst Correl News A+C+N

AvgRet 3.96% 1.72% 0.40% 0.43% 1.03% 0.36% 1.04%

StDev 31.35% 28.57% 25.78% 24.91% 25.55% 26.99% 24.76%

MAD 21.39% 19.35% 17.00% 16.24% 16.67% 18.16% 16.11%

DDown -99.89% -111.87% -196.60% -185.73% -152.95% -171.89% -161.59%

VaR[5] -44.16% -39.30% -36.18% -34.43% -34.74% -38.81% -33.41%

ES[5] -60.16% -53.74% -52.53% -50.26% -50.49% -55.12% -48.72%

Roy[-25] 12.97% 12.54% 10.54% 9.41% 9.69% 12.10% 8.98%

Roy[-50] 3.62% 2.44% 2.08% 1.75% 1.86% 2.54% 1.64%

Roy[-75] 0.74% 0.49% 0.51% 0.43% 0.46% 0.56% 0.35%

Roy[-100] 0.00% 0.02% 0.12% 0.10% 0.08% 0.09% 0.07%

Table 6.5: Top 25% S&P 1500 – Results During 2007 - 2008 Crisis Period

Unhedged SPY GICS Analyst Correl News A+C+N

AvgRet -12.21% -0.99% -3.19% -1.98% 0.54% -2.29% 0.95%

StDev 28.07% 24.14% 21.35% 20.41% 21.55% 22.61% 20.88%

MAD 21.64% 17.66% 15.64% 14.95% 15.48% 16.57% 15.15%

DDown -99.89% -99.72% -98.44% -101.54% -131.84% -103.53% -127.52%

VaR[5] -62.84% -39.49% -38.09% -34.91% -33.58% -38.53% -32.10%

ES[5] -75.11% -53.99% -51.95% -48.17% -48.86% -51.69% -45.99%

Roy[-25] 28.90% 13.41% 12.98% 10.60% 9.20% 13.29% 8.26%

Roy[-50] 10.09% 2.40% 2.04% 1.49% 1.67% 1.97% 1.20%

Roy[-75] 1.99% 0.55% 0.41% 0.33% 0.35% 0.37% 0.28%

Roy[-100] 0.00% 0.00% 0.00% 0.04% 0.08% 0.04% 0.06%
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Figure 6.5: Returns 1997 to 2010
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Figure 6.6: Returns during Crisis

using analyst cosine and news cosine values combined with correlation (A+C+N), but the

fact that hedging has more zero-centered returns is useful only during the crisis.

During this crisis period, we see that using a set of similar stocks does better than

using a general market index (i.e., SPY). GICS generally does better in these measures

than use of historical correlation (Correl) or news cosine values (News), but worse than

analyst cosine values (Analyst). Using the Levene Test, the differences in the variances are

significant in all cases, except GICS vs. A+C+N (p = 0.598) and A+C+N vs. correlation

(p = 0.068). Analysts significantly outperform GICS (p = 0.005) and A+C+N (p = 0.001).

From this perspective of variance, using Analysts does best at reducing risk. However, from

the perspective of reducing the worst case losses, A+C+N does best as indicated by better

results under the VaR[5], ES[5] and Roy risk measures. Analysts does better on DDown,

but the other methods can be improved using the stop loss orders, as described earlier.

In summary, risk reduction improvements in a hedging scenario are observed over con-

ventional hedging methods, such as using a market index or using an industry taxonomy

to select the hedge stocks. These results further suggest strong value in the datasets and

methods described in chapters 2 and 3.

6.3 Further Applications

In this section, we briefly describe applications areas where we believe further potential lies.
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6.3.1 Comparative Analysis & Company Valuation

Valuation of companies is typically performed using one or a combination of the absolute

and relative value models. We believe the research in this dissertation has implications for

the improvement of relative value models, but to understand these models, we first describe

absolute models.

With absolute models, the valuation is generally computed as the present value of ex-

pected future cash flows and does not incorporate market prices into model. Expected

revenues and asset values are keys to these models. The advantages of these models are

that when they are properly applied, they should be free of any biases in the market. The

disadvantages are that they typically require a great deal of effort and expertise in financial

statements since it is often necessary to make adjustments. For example, one-time asset

sales, like the sale of a corporate office, should be removed from income since it cannot be

expected to occur again. Further, the absolute approach inevitably requires many assump-

tions about specific values, such as future cost of capital, future sales growth, etc. Slight

changes in these values can lead to dramatically different results, so absolute valuations can

be considered “fragile” from this respect.

With relative models, the valuation is derived from observed market values for similar

companies. A common approach in these valuations is to use a financial ratio computed

over a company’s set of “peers.” For example, to compute a value for Kroger (a supermarket

chain), the average price-to-earnings ratio of other supermarkets could be computed. Then,

this ratio could be multiplied by the earnings of Kroger’s to find its value. Such an approach

is often called a “comparables” approach and numerous other ratios, could be used, such

as price-to-sales, price-earnings-growth (PEG), etc. Unlike absolute value models, these

models are typically easier to compute, but also assume that the market is properly valuing

the other companies. These approaches can also be useful in cases where not all financial

information is available to perform a complete absolute valuation, such as with private

companies. In the case of a private company, the comparables approach can be performed

using data from public companies with the idea that this would reflect how the market

would value the private company if it were public.
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Key to the comparables approach is finding the right peer group. (Koller et al., 2005,

pgs. 336-367) states

To analyze a company using comparables, you must first create a peer group.

Most analysts start by examining the company’s industry. But how do you

define an industry? Sometimes, a company lists its competitors in its annual

report. If the company doesn’t disclose its competition, you can use an indus-

try classification system such as Standard Industrial Classification (SIC) codes.

[For example,] Home Depot’s SIC code, however, contains more than 20 compa-

nies, many of which are not directly comparable because they sell very different

products or rely on different business models. A slightly better but proprietary

system is the Global Industry Classification Standard (GICS) system,...

This notion of selecting a peer group is precisely what the use of correlation, analysts

and news helps to overcome. Just as with the long position hedging scenario in section 6.2,

the pairwise values from chapter 3 can use used to select the most similar stocks to a given

company. This approach may help with the problems associated with using industry groups,

as identified in the snippet above. Whereas industry groups do not suggest which stocks

within the group are most related to a given stock, the pairwise values provide an ordinal

ranking of similarity.

Surprisingly little research has been performed in this area. Alford (1992) is one of the

first to consider how the selection of the peer group might influence valuation. Bhojraj and

Lee (2002) suggest a “warranted multiple” approach to selecting peers driven by accounting

values. Henschke and Homburg (2009) provide an approach to repair valuations based on

peer group differences. Given that essentially the only alternative to industry groups (or

company guidance in annual reports) is to use accounting values, we believe there is much

to be explored using other data sources, such as analysts, news and correlation.

6.3.2 Equity-Neutral Trading

Section 2.1.1 mentioned cointegration could be used as an alternative objective to cor-

relation, the focus of much of this dissertation. While correlation and cointegration are
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mathematically different concepts, we believe the methods and datasets described in this

dissertation may help to identify candidates for cointegration testing. Stocks that are coin-

tegrated can be expected to revert to a mean spread when they divert. Thus, these stocks

are excellent contenders for pairs trading and other forms of equity-neutral trading that

exploit these concepts.
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Chapter 7

Conclusion

The financial industry continually seeks higher efficiency, more automation and improved

risk management. We believe this dissertation makes contributions in each of these areas. In

chapter 3, the task of predicting future stock similarity (as measured through stock-return

correlation) is considered. Two datasets, which previously had not truly been considered for

this purpose, are demonstrated to have predictive power over future similarity, particularly

at the highest levels of similarity. The first dataset is analyst coverage, where it is shown

that two stocks that tend to be covered by the same analysts also tend to be similar. The

second dataset is news articles, where it is shown that similar companies frequently co-occur

in news articles. Finally, a method to combine analysts and news with historical correlation

(A+C+N) is implemented and is shown to generally have greater predictive power than any

of the input datasets alone.

In chapter 4, a hypergraph partitioning algorithm is presented that produces high quality

partitions for imbalanced datasets. We believe this algorithm can be applied to a variety

of domains, but we focus on its application to creating stock groups in chapter 5. The

analyst and news datasets are each used again to form hypergraphs, where companies are

represented as vertices and analysts or news articles are used to create edges. The goal is to

partition the hypergraph such that, in the case of analysts, the number of instances where

an analyst covers stocks in multiple parts of the partition is minimized, or, in the case of

news, the number of articles containing companies in multiple parts is minimized.

This dissertation also offers an approach to forming groups that uses the pairwise values

introduced in chapter 3. This approach has the advantage that it is easier to combine

datasets, especially correlation. In forming stock groups, the A+C+N combination is again

found to perform best, even having higher quality groups than a leading commercial industry
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classification system, GICS.

In chapter 6, scenarios for two real world tasks are considered: diversification and hedg-

ing. In both cases, it is shown that the methods developed in previous chapters make

improvements over traditional methods.

Prediction of company similarity is a vital facet of successful investment strategies and

good financial analysis. This dissertation’s methods make steps towards the automation of

these tasks as well as improving their predictive accuracy. We believe these methods should

be considered by financial professionals to enhance or replace current processes that require

strong prediction of company similarity.

7.1 Future Work

7.1.1 Extraction of Relationships from News or Other Textual Data

While the news dataset presented in this dissertation had weakest performance compared

to analysts or correlation, news also has the greatest potential for improvements. This

dissertation counted simple co-occurrences, which is a blunt method. Greater precision

might be achieved by being more selective in the articles used. For example, it might be

useful to avoid “business digests,” “yesterday’s gainers and losers” and other articles that

are really a compendium of news events rather than a single story with related companies.

Another useful heuristic might be to consider the proximity of the company names in

the article, as suggested by Jin et al. (2012). Beyond heuristics such as these, natural

language processing techniques could be developed to extract the actual relationship, such

as competitor, supply chain partner, etc. Finally, more types of textual data, such as blog

posts, company prospectuses, etc., could be used in addition to news articles.

7.1.2 Measure Timeliness

Suppose a company enters a new market, such as Google’s recent entry into mobile phone

development. Which of the similarity predictors suggested in this dissertation would react

most quickly to this change? The efficient market hypothesis suggests that the stock market

should react immediately. However, some amount of history is required to have a long
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enough time series of returns such that correlation can be computed. So, correlation using

historical returns might lag changes in company, depending on how it is calculated. Intuition

suggests news should also react quickly since current events are of primary importance to

news publications. On the other hand, analysts might be slow to adapt since it may take

time for the research firm to decide to reassign a company to a different analyst. There are

significant switching costs for the firm to change analysts since the new analyst will likely

need to increase his/her knowledge of the company to be able to make earnings estimates and

recommendations. Additionally, any brokerage clients familiar with the previous analyst

will now need to develop a relationship with the new analyst. Finally, intuition also suggests

that industry taxonomies might be slow to adapt to changes. GICS claims to be “evolving”

(MSCI / Standard & Poor’s, 2002) by conducting reviews of company assignments at least

annually and reviews of its taxonomical structure annually (Standard & Poor’s, 2008). Still,

one might expect the time to conduct a review and publish changes to be longer than the

time taken for several news articles to be published. Conducting experiments to measure

the timeliness of each predictor would help to understand their “reaction times” and to

incorporate this into prediction models.

Furthermore, it is well-established that correlations tend to differ depending on the time

scale used in the correlation computation (Kinlaw et al., 2014). This dissertation focused

on yearly correlations computed from daily stock returns. Results might differ using either

less frequent returns, such as daily or monthly returns, or more frequent returns, such as

intra-day returns. So, depending on the application, it may be important to determine if

the relationships found in this thesis also exist at different time scales.

7.1.3 Labeling Stock Groups

In chapter 5.2.1, we remarked that an advantage to industry taxonomies is that they apply

a label to their groups. For instance, McDonald’s, Wendy’s and Panera might all be in

the “restaurants” industry. This label helps the user to understand the business of the

constituent companies. The automated grouping approaches suggested in this dissertation

do not provide such labels by themselves. However, we believe it might be possible to
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develop methods to automatically produce such labels by applying natural language pro-

cessing techniques to company descriptions or other textual data regarding the companies

in a group. For example, using the most frequent words in the descriptions of a group’s

companies might be useful for producing a label.

7.1.4 Hypergraph Partitioning Improvements

As suggested in section 4.3.4, multi-level hypergraph partitioners have been shown to have

much shorter run times. A flat partitioner was used in this dissertation due to its simplicity,

but using a multi-level framework in conjunction with the entropy-constraint and discount-

cut concepts presented in this thesis might lead to improved run times and an ability to

work with larger hypergraphs while still producing high quality partitions, particularly for

imbalanced datasets.
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Ümit V. Çatalyürek and Cevdet Aykanat. PaToH: Partitioning tool for hypergraphs.

http://bmi.osu.edu/ umit/PaToH/manual.pdf, 1999.

Louis K.C. Chan, Josef Lakonishok, and Bhaskaran Swaminathan. Industry classification

and return comovement. Financial Analysts Journal, 63(6):56–70, 2007.

P.K. Chan, M.D.F. Schlag, and J.Y. Zien. Spectral k-way ratio-cut partitioning and cluster-

ing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

13(9):1088–1096, Sep 1994.



114

Wesley S. Chan. Stock price reaction to news and no-news: Drift and reversal after head-

lines. Journal of Financial Economics, 70(2):223–260, 2003.

Tarun Chordia, Richard Roll, and Avanidhar Subrahmanyam. Recent trends in trading

activity and market quality. Journal of Financial Economics, 101(2):243–‘263, 2011.

Pierre Cizeau, Marc Potters, and Jean-Philippe Bouchaud. Correlation structure of extreme

stock returns. Quantitative Finance, 1(2):217–222, 2001.

Richard N. Clarke. SICs as delineators of economic markets. The Journal of Business, 62

(1):17–31, 1989.

Roger Clarke, Harindra de Silva, and Steven Thorley. Risk parity, maximum diversification,

and minimum variance: An analytic perspective. The Journal of Portfolio Management,

39(3):39–53, 2013.

Jason Cong and Sung Kyu Lim. Multiway partitioning with pairwise movement. In

IEEE/ACM International Conference on Computer-Aided Design, pages 512–516, Nov

1998.

Alfred Cowles, III. Can stock market forecasters forecast? Econometrica, 1(3):309–324,

1933.

James J. Cramer. Jim Cramer’s real money: Sane investing in an insane world. Simon &

Schuster, New York, 2005.

K.A.J. Doherty, R.G. Adams, N. Davey, and W. Pensuwon. Hierarchical topological cluster-

ing learns stock market sectors. In ICSC Congress on Computational Intelligence Methods

and Applications, 2005.

Robert J. Elliott, John Van Der Hoek, and William P. Malcolm. Pairs trading. Quantitative

Finance, 5(3):271–276, 2005.

Stuart Elliott. Why an agency said no to Wal-Mart. New York Times, page C1, Dec 15

2006.



115

E.J. Elton, M.J. Gruber, and C.R. Blake. Survivor bias and mutual fund performance.

Review of Financial Studies, 9(4):1097–1120, 1996.

Eugene F. Fama and Kenneth R. French. Industry costs of equity. Journal of Financial

Economics, 43(2):153–193, 1997.

Lily Fang and Joel Peress. Media coverage and the cross-section of stock returns. The

Journal of Finance, 64(5):2023–2052, 2009.

C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network parti-

tions. In 19th Conference on Design Automation, pages 175–181, 1982.

Kenneth French. Kenneth R. French-Data Library. http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html, 2012.

Michael Garey. Computers and intractability: A guide to the theory of NP-completeness.

W.H. Freeman, San Francisco, 1979.

Evan Gatev, William N. Goetzmann, and K. Geert Rouwenhorst. Pairs trading: Perfor-

mance of a relative-value arbitrage rule. Review of Financial Studies, 19(3):797–827,

2006.

Martin Gavrilov, Dragomir Anguelov, Piotr Indyk, and Rajeev Motwani. Mining the stock

market: Which measure is best? In Proceedings of the Sixth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’00, pages 487–496, New

York, NY, USA, 2000. ACM.

Charles Geisst. Wall Street: A history. Oxford University Press, Oxford New York, 2012.

Joydeep Ghosh and Ayan Acharya. Cluster ensembles. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 1(4):305–315, 2011.

David A Guenther and Andrew J Rosman. Differences between Compustat and CRSP

SIC codes and related effects on research. Journal of Accounting and Economics, 18(1):

115–128, 1994.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


116

Michael Hagenau, Michael Liebmann, Markus Hedwig, and Dirk Neumann. Automated

news reading: Stock price prediction based on financial news using context-specific fea-

tures. In Proceedings of the 2012 45th Hawaii International Conference on System Sci-

ences, pages 1040–1049, 2012.

Terrence Hendershott, Charles M. Jones, and Albert J. Menkveld. Does algorithmic trading

improve liquidity? The Journal of Finance, 66(1):1–33, 2011.

Stefan Henschke and Carsten Homburg. Equity valuation using multiples: Controlling for

differences between firms, 2009. URL http://ssrn.com/abstract=1270812. Working

Paper.

Jeffrey Hooke. Security Analysis and Business Valuation on Wall Street. John Wiley &

Sons, Hoboken, NJ, 2010.

Changjian Hu, Liqin Xu, Guoyang Shen, and Toshikazu Fukushima. Temporal company

relation mining from the web. In Qing Li, Ling Feng, Jian Pei, SeanX. Wang, Xiaofang

Zhou, and Qiao-Ming Zhu, editors, Advances in Data and Web Management, volume

5446 of Lecture Notes in Computer Science, pages 392–403. Springer Berlin Heidelberg,

2009.

Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et

du jura. Bulletin de la Socit Vaudoise des Sciences Naturelles, 37:547–579, 1901.

Yingzi Jin, Ching-Yung Lin, Yutaka Matsuo, and Mitsuru Ishizuka. Mining dynamic social

networks from public news articles for company value prediction. Social Network Analysis

and Mining, 2(3):217–228, 2012.

Charles Jones. A century of stock market liquidity and trading costs. Working paper, 2002.

George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning scheme for ir-

regular graphs. In Proceedings of the 1996 ACM/IEEE Conference on Supercomputing,

1996.

George Karypis and Vipin Kumar. hMETIS, a hypergraph partitioning package, version

1.5.3. User Manual, Nov 1998.

http://ssrn.com/abstract=1270812


117

George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. VLSI Design,

11:285–300, 2000.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph

partitioning: Application in VLSI domain. In Proceedings of the 34th Annual Design

Automation Conference, DAC ’97, pages 526–529, New York, NY, USA, 1997. ACM.

Sally Katzen. Economic classification policy committee: Standard Industrial Classifica-

tion replacement the North American Industry Classification System proposed industry

classification structure. Federal Register, 60(143):38436–38452, 1995.

M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

B W Kernighan and S Lin. An efficient heuristic procedure for partitioning graphs. Bell

System Technical Journal, 49(2):291–307, 1970.

William B Kinlaw, Mark Kritzman, and David Turkington. The divergence of the high

and low frequency estimation: Causes and consequences. 2014. URL http://ssrn.com/

abstract=2433227. Working Paper.

Peter Klibanoff, Owen Lamont, and Thierry A. Wizman. Investor reaction to salient news

in closed-end country funds. The Journal of Finance, 53(2):673–699, 1998.

William R. Knight. A computer method for calculating Kendall’s tau with ungrouped data.

Journal of the American Statistical Association, 61(314):436–439, 1966.

Tim Koller, Marc Goedhart, and David Wessels. Valuation: Measuring and Managing the

Value of Companies. John Wiley & Sons, Hoboken, NJ, 2005.

Nan Li and Desheng Dash Wu. Using text mining and sentiment analysis for online forums

hotspot detection and forecast. Decision Support Systems, 48(2):354–368, 2010.

Alexander Ljungqvist, Christopher Malloy, and Felicia Marston. Rewriting history. The

Journal of Finance, 64(4):1935–1960, 2009.

Zhongming Ma, Olivia R.L. Sheng, and Gautam Pant. Discovering company revenue rela-

tions from news: A network approach. Decision Support Systems, 47(4):408–414, 2009.

http://ssrn.com/abstract=2433227
http://ssrn.com/abstract=2433227


118
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John Robert Yaros and Tomasz Imieliński. A Monte Carlo measure to improve fairness in

equity analyst evaluation. In Applied Mathematics, Modeling and Computational Science,

2013c.
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John Robert Yaros and Tomasz Imieliński. Data-driven methods for equity similarity pre-

diction. Quantitative Finance, Special Issue on Big Data Analytics: Algorithmic Trading

and Financial Text Mining, 2014b. (to appear).
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