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In decision research, hyperbolic discounting has been used for over 25 years to capture 

two aspects of impulsivity: 1) dynamic inconsistency--the tendency to initially prefer the 

long term option (e.g., to save money or exercise more) but then to switch to the short 

term option--and 2) level of discounting--differentiating those who wait for larger later 

options from those who prefer proximal options. A model simulation and an empirical 

experiment show that the hyperbolic discounting function does not accurately predict the 

relationship between dynamic inconsistency and different levels of discounting. Findings 

were better fit by an alternative model that incorporates subjective time sensitivity and 

predicts that extreme impulsiveness will lead not to dynamic inconsistency but rather to 

consistent preference for proximal rewards.  
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INTRODUCTION 

 

Many people struggle with impulsive desires to spend money on a new device 

rather than saving for retirement, indulge in a dessert rather than sticking to a diet, or 

sleep in rather than hitting the gym.  How do we define impulsivity? Impulsivity can 

manifest as a strong preference for smaller sooner options. Alternatively, it can also 

manifest itself as dynamic inconsistency—a preference whereby an agent initially choses 

to wait for the larger later option but later switches to the smaller sooner option (1), 

because she finds that she cannot endure the wait. In the current paper we explore the 

relationship between these two faces of impulsivity and the implications that relationship 

has for psychological models of intertemporal choice. 

Arguably, the most famous model in intertemporal choice research is the 

hyperbolic discounting function (2). Researchers have been using this model for over 25 

years because it can account for above two phenomena very well. First, the model can 

represent individual differences in impulsiveness using the discount rate parameter. An 

impatient individual who prefers smaller sooner rewards is represented with a high 

discount rate. Research has shown that high discount rates are correlated with smoking, 

obesity, and low credit scores (3-5). Second, this model can demonstrate dynamic 

inconsistency using two hyperbolic curves that cross each other (Fig 1B). Dynamic 

inconsistency has been a key focus in intertemporal choice research because it captures 

self-control failures in daily life, such as low savings rates or unused gym memberships 

(6, 7) and because it cannot be explained by the normative (exponential) discounting 

function (8). 
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However, research using the hyperbolic discounting function has studied each 

phenomenon separately, instead of considering these related phenomena together. The 

current study exams the link between these two sides of impulsivity and tests how the 

hyperbolic discounting function explains the relationship. We will also compare 

hyperbolic discounting to a recently formulated alternative model, which proposes a 

different relationship between these two faces of impulsivity. 

Herrnstein (9) conducted landmark theoretical work on the relationship between 

dynamic inconsistency and the discount rate. He derived the conditions that give rise to a 

consistent preference for the larger later option (which we call the L-L pattern - Fig. 1A) 

and dynamic inconsistency (the L-S pattern– Fig. 1B) using the location of the point at 

which the two discounting curves cross (Dp). According to his analysis, an agent will 

show the L-L pattern if Dp has a negative value (Fig. 1A) and the L-S pattern if Dp has a 

positive value (Fig. 1B).  

However, there is a third pattern the agent could show: preferring the smaller 

sooner option at all points in time (the S-S pattern – Fig. 1C). In this case, Dp has a value 

larger than the delay for the smaller sooner option (Table 1).  
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Fig. 1. Different choice patterns as a function of the hyperbolic discount rate (k). As the 

hyperbolic agents with different discount rates (A: k=.03, B: k=.05, and C: k=.15) move 

through time (from left to right) while holding constant all other parameters, the agents 

show the LL (A), LS (B) and SS (C) patterns depending on their discount rates. Dp for 

the L-L pattern (A) has a negative value and is located to the right of D. Dp for the S-S 

pattern (C) has a positive value (left of D and >20). SVLL: subjective value of the larger 

later option, SVSS: subjective value of smaller sooner option, S: the magnitude of the 

smaller sooner option, L: the magnitude of the larger later option, Ldelay: delay for the 

larger later option, Sdelay: delay for the smaller sooner option, Δ is Ldelay - Sdelay, and D is 

the point in time when S occurs.  
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Table 1. The relationship between three choice patterns, Dp, and Sdelay.  

Initial choice Later choice Dp Choice Patterns 

Larger later option Larger later option  Dp <0 L-L pattern 

Larger later option  Smaller sooner option Sdelay> Dp >0 L-S pattern* 

Smaller sooner option  Smaller sooner option  Dp >Sdelay S-S pattern 

Smaller sooner option  Larger later option   Improbable† 

*The condition for the L-S pattern is slightly different from Herrnstein’s definition 

(Dp>0) due to the condition for the S-S pattern, which was not examined in his paper (9). 

†A preference switch from the smaller sooner option to the larger later option, also 

known as reverse time inconsistency (17), is improbable for convex discounting 

functions. 
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For an agent with hyperbolic discounting, Dp can be denoted as follows. 

)(1
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
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Dp occurs when the subjective values (SV) of the smaller sooner option and the larger 

later option are equal (SVSS=SVLL); thus, 

kSL
Dp

1

1/





  

A combination of four parameters, three parameters from Dp (k, Δ, and L/S) and the 

delay for the smaller sooner option (Sdelay), predicts whether an agent using the 

hyperbolic discounting function shows the L-L, L-S, or S-S pattern (Table 1). Using our 

newly formulated iPRP (intertemporal preference reversal prediction model) framework, 

we ran a simulation by testing all possible combinations of those parameters.  The results 

characterize the relationship of the discount rate to each of the choice patterns (Appendix. 

A). 

Figure 2 shows the simulation results using the hyperbolic discounting function. 

As the agent’s discount rate increases, the proportion of the parameter space that yields 

the L-L pattern decreases and the proportion of L-S and S-S patterns increase. This 

makes sense because the L-L pattern will be observed when the agent can patiently wait 

for the larger later option, while the L-S and S-S patterns will be observed when the agent 

fails to do so. Oddly, however, the proportion of the S-S pattern reaches an asymptote at 

50% in this analysis. This means that even if the hyperbolic agent has an extremely high 

discount rate, which implies a very strong preference for smaller sooner options, the 

agent is predicted to show the S-S pattern in only 50% of the parameter space. 
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Fig. 2. Model predictions using the hyperbolic function, showing the percentage of the 

parameter space occupied by each choice pattern as a function of the agent’s discount 

rate. 
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Herrnstein stated that the mechanism underlying dynamic inconsistency may be 

“a systematic psychological distortion of time perception” (10). That is, perceived or 

projected duration can differ from actual, objective time duration, and this discrepancy 

can affect choices between delayed outcomes. Although he suggested hyperbolic 

discounting as the underlying mechanism for subjective time perception, we consider an 

alternative conceptualization of subjective time preference, given that the hyperbolic 

model yields a prediction that does not fit the empirical data.  

Recently, several alternative discounting models that explicitly represent 

subjective time perception have been proposed (11-13). Among them, we used the 

constant sensitivity (CS) model (11), which uses a minimal modification from the 

exponential discounting function by simply adding a time-sensitivity parameter (s) onto 

the delay parameter: 

sDkeDf )(  

where k represents the discount rate and s represents the time sensitivity parameter. When 

s=1, the CS model becomes the exponential discounting function. 

A comparison between the hyperbolic and CS model is not straightforward 

because the hyperbolic discounting function has a single free parameter (k), while the CS 

model has two free parameters (k & s). We modified the CS model to create a single free 

parameter model by freezing the time sensitivity parameter at 0.5, simply using a square 

root function for time sensitivity. We refer to this version of the model as the simple CS 

model. 

Dk
simple eDf )(  

In this case, Dp becomes, 
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Figure 3 shows the results from the iPRP simulation using the simple CS function. 

Unlike the simulation using the hyperbolic discounting function, the proportion of the 

parameter space showing the S-S pattern reaches 100% as we increase the discount rate.  
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Fig. 3. Model predictions using the simple CS function, showing the percentage of the 

parameter space occupied by each choice pattern as a function of the agent’s discount 

rate.  
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EXPERIMENT 

 

We ran an experiment to see whether people actually show response patterns that 

fit this unique model prediction. We presented participants with a series of intertemporal 

choice questions selected based on iPRP and identified the proportion of each choice 

pattern for each participant. 

  

Participants 

Participants (N=100) were recruited from Amazon Mechanical Turk. 40 

participants were female and the mean age was 31.7 years. 69 participants were college 

graduates, 11 participants had education levels above a college degree, and 20 

participants had education levels below a college degree. The median income range was 

$35,000-$49,999. Participation was restricted to US residents aged 18 years or older. 

 

Attention check questions 

Because in an online experiment it is difficult to supervise participants’ attention, 

we included 16 attention check questions randomly placed among the main set of 

questions. The check questions were choice pairs with an obvious right answer (i.e., 

would you prefer $7.69 in 196 days vs. $10.00 today?), and they used the same range of 

magnitude and delay as did the main questions so that participants would need to pay 

careful attention to avoid making mistakes. Prior to the experiment, we established the 

rule that participants who made more than two mistakes on the check questions would be 
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removed from analysis. However, no participants made a mistake more than twice 

(Appendix. B).  

 

Payment 

We advertised our experiment as paying $1.50 for a 30-minute task. Only once 

participants entered the experiment were they informed about the complete payment 

structure. In addition to the base pay of $1.50 for entering the experiment, participants 

were also paid a $1.00 bonus if they correctly answered at least 14 of the 16 attention 

check questions.  Finally, all participants were given the outcome of one of their actual 

choices, randomly selected.  These payments ranged from $0.77 to $10 with delays from 

0 to 364 days.  The monetary amounts were paid in the form of Amazon Digital Gift 

cards that were activated on the appropriate date. The average participant received $8.36 

with 162 days of delay from the random selected choice paid out for real. 

 

Experiment 

The experimental stimuli were 304 intertemporal choice questions presented in 

random order. These included 288 main questions and 16 attention check questions. The 

288 questions formed the bottom and top “layers” of the parameter space (Figure A1 top 

and bottom cells). The first layer (144 questions) consisted of choices between an 

immediate option and a larger delayed option.  The second layer (144 questions) 

consisted of questions where both options were delayed and were created by adding a 

common delay to the first layer questions. The 144 questions in each layer were formed 

by crossing 12 levels of Δ with 12 levels of S (L was fixed at $10). By comparing the 
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responses to questions from one layer with the corresponding answers from the other 

layer, one of the three choice patterns could be identified. Participants received payment 

based on their response to one randomly question. 

 

Analysis 

We used maximum likelihood estimation (MLE) to approximate each 

participant’s discount rate. First, we created arrays that contain the proportion of each 

choice pattern (pSSk, pPRk, and pLLk) implied by each discount rate level (k) using the 

hyperbolic discounting function and the simple CS function. Figures 2 and 3 show 

changes of those arrays as a function of discount rate. Next, each participant’s (n) 

observed frequency of each choice pattern was counted (cSSn, cLSn, and cLLn) from their 

experiment responses. Finally, we calculated the likelihood for different values of the 

discount rate using a multinomial distribution. 

kkk
nnn

nnn pLLpLSpSS
cLLcLScSS

cLLcLScSS
nkL

!!!
)|(




 

For each participant, we chose a discount rate (k) that shows the maximum 

likelihood within the discount rate range. With the estimated discount rate, each 

participant’s predicted and observed proportions of each choice pattern were compared. 

We calculated the sum of the maximum log-likelihood (LgLk) for the model, 

which is the same as the formula for Bayesian Information Criteria (BIC), except for the 

parameter adjustment. With the negative sign, lower score implies better model fitting. 

 max10 )|(log nkLLgLk
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RESULTS AND DISCUSSION 

 

Figure 4A-C shows the predicted and observed proportions of each choice pattern 

for all participants. Most notably, some participants showed the S-S pattern in more than 

50% of the parameter space, which hyperbolic discounting cannot predict (Fig. 4C). This 

incongruence between the model prediction and empirical data is not just a simple 

quantitative fitting issue alongside the 45 degree line. Rather, it raises qualitative 

questions about whether this class of model can serve as a valid descriptive theory. The 

hyperbolic discounting model predicts that very high discount rates do not lead to high 

levels of the S-S pattern. 

 This counterintuitive model prediction is not limited to the hyperbolic discounting 

function. The predecessors of the hyperbolic model, the response strength model (9) and 

the simple reciprocal model (14), also predict that the S-S pattern can occupy only 50% 

of the parameter space. This is because the formula for Dp in these two discounting 

functions is identical to the Dp formula for the hyperbolic discounting function if the 

agent’s discount rate is high (Table 2). All of these models originate from the Matching 

Law principle introduced by Herrnstein (15). Consequently, it is not surprising that this 

entire family of models shares the same characteristic. 
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Fig. 4. Predicted-observed plot for three choice patterns using the hyperbolic discounting 

function (A-C).  
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Table 2. Similarity of the formulae for Dp in the Response strength hypothesis (9), 

Simple Reciprocal Model (14), and Hyperbolic discounting function (2). The three Dp 

equations become indistinguishable from one another when the agent’s discount rate is 

high. 

 Response strength 

hypothesis (9)* 

Simple 

Reciprocal Model 

(14) 

Hyperbolic discounting 

function (2) 

Equation 
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Dp, when 

SVSS=SVLL 

or B1=B2 

 
  

*Herrnstein’s “Reinforcement 1 (R1) or 2 (R2)” correspond to the magnitude of the 

smaller sooner reward (S) and the magnitude of the larger later reward (L) and “Behavior 

1 (B1) and 2 (B2)” correspond to the subjective values of the smaller sooner reward 

(SVSS) and the larger later reward (SVLL).  Herrnstein’s e and Re are curve-fitting 

parameters (9). 

  

)(2

2
2

1

1
1







DkRR

eR
B

kDRR

eR
B

e

e

k

R

RR
D e

p 





1/ 12
1/ 




SL
Dp

kSL
Dp

1

1/









16 
 

 

 

Figure 5A-C shows the agreement between predicted and observed proportions of 

each pattern in our experiment using the simple CS model. This model showed a better fit 

to our experimental data compared to the hyperbolic model, especially for the S-S pattern 

(Fig. 5C). In addition, the sum of the maximum log-likelihood for the simple CS model 

(=2150) was better than for the hyperbolic model (=3217). However, the most important 

finding is not the better quantitative model fit, but rather the more plausible qualitative 

predictions from the simple CS model. This model predicts that very impatient agents 

who have very high discount rates will show the SS choice pattern almost exclusively, a 

finding that the hyperbolic model cannot account for. This is true not just for the simple 

CS model but also for the general CS model at all time-sensitivity levels (Fig. 6). 

Moreover, this model explicitly suggests the non-linearity of time perception, rather than 

hyperbolic discounting or the matching principle, as the cause for dynamic inconsistency. 

The proportion of the parameter space occupied by the L-S pattern (dynamic 

inconsistency) approaches zero as the time sensitivity parameter (s) approaches 1, where 

s=1 implies perfect agreement between subjective time perception and objective time 

(Fig. 6). 
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Fig 5. Predicted-observed plot for three choice patterns using the simple CS function (A-

C). 
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Fig 6. Predictions from the CS model with various time sensitivity levels (A: s=0.1, B: 

s=0.3, C: s=0.5, D: s=0.7, and E: s=0.9). The panels in the first column show model 

predictions, and the panels in the 2nd to 4th columns show predicted-observed plots for the 

three choice patterns. 
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CONCLUSION 

 

In summary, we examined the relationship between the three choice patterns and 

discount rates, whereas previous studies have examined these two phenomena separately. 

The hyperbolic discounting function and related models that use the Matching Law 

principle yielded a counter-intuitive prediction that did not fit the results of our 

experiment. In contrast, theoretical predictions from the alternative model using 

subjective time perception was aligned both with our intuition and our empirical results. 

Our iPRP analysis enabled the comparison between the predictions of these two models 

by considering multiple parameters together and thus went beyond the insights that 

traditional discounting curves can provide (Fig. 7). 

Our result is closely related to recent findings that the phenomenon of decreasing 

discount rates over a time period, which is the hallmark of hyperbolic discounting, 

disappears, reflecting exponential discounting, when the delay term is adjusted to account 

for participants’ subjective time perception (13, 16). The CS model, with the exponential 

discounting function as a special case, can explicitly account for these empirical results. 

Finally, the current study addresses the relationship between the two faces of 

impulsivity: dynamic inconsistency and high discount rate. According to the hyperbolic 

model, an agent with a high discount rate is characterized as showing frequent dynamic 

inconsistency.  In contrast, according to the CS model, an agent with a high discount rate 

is characterized by showing frequent consistent preference for the smaller, sooner option.  

For the CS model, dynamic inconsistency is an intermediary phenomenon that appears 
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when the discount rate neither high nor low.  Our empirical data support the CS model, 

implying that dynamic inconsistency is not a marker of impulsivity or high discount rate.  

Instead, dynamic inconsistency reflects the level of time sensitivity, not discount rate (Fig 

6).  

Who is more impulsive: the person who plans to forgo sweets, save money, and 

give up cigarettes but then later falls prey to temptation, or the person who plans from the 

beginning to indulge?  According to our analysis, the latter is the true face of impulsivity.   
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Fig 7. Discounting curves using the hyperbolic discounting function (k=1.8) and the 

simple CS function (k=1). These two functions make different predictions about 

percentage of each choice pattern (Fig 2 and Fig 3), yet they produce discounting curves 

that are indistinguishable from each other. 
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APPENDICES 

Appendix A. iPRP simulation 

We defined a parameter space using four parameters (Δ, L/S, Sdelay, and k) and 

examined where within that parameter space the three choice patterns (L-L, L-S, and S-S) 

would occur. We will review how the combination of Δ, L/S, and Sdelay predicts a specific 

choice pattern under a fixed discount rate (k), and later expand to various k levels.  

Let’s begin defining the parameter space with L/S, the ratio between the 

magnitudes of the larger and smaller options. For simplicity, we will hold the L 

magnitude constant and consider various S levels that are smaller than L (L>S). A model 

simulation with varying L levels will be considered later. Also, we will hold the 

maximum delay for the larger later option (MLD) constant to simplify our simulation. Δ 

and Sdelay together determine Ldelay (Δ + Sdelay =Ldelay). Thus, various combinations of Δ 

and Sdelay can result in various levels of Ldelay. Simulations with different levels of MLD 

will be considered later. 

So far, we have held k, L, and MLD constant for simplicity. Let’s start with a case 

where k=.1, L=$500, and MLD =100 days. Given these fixed parameters, we can create 

an L/S array by changing S levels (i.e., S=$1 to $499). Also, we can make Sdelay and Δ 

arrays that do not exceed the MLD (i.e., Sdelay from today to 99 days and Δ from 1 day to 

100 days). With these three different arrays, we can create a 3D array that includes all 

those parameters (fig. A1).  
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Fig A1. Parameter space in iPRP. Boxes represent series of intertemporal choice 

questions with S=$50, L=$500, Δ=20 days. Sdelay ranges from 0 to 80 days. In this figure, 

the agent shows the L-S pattern by preferring larger later options for larger Sdelay 

questions (blue boxes) and by preferring smaller sooner options for smaller Sdelay 

questions (red boxes). The agent’s choice pattern in this specific parameter set can be 

inferred either by comparing the value of Dp and Sdelay (Table 1) or simply by comparing 

the top (the solid blue box) and bottom (the solid red box) responses. 
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Now, consider the specific combinations of these arrays (S=$50, L=$500, Δ=20 

days, and Sdelay ranging from 0 to 80 days) displayed in Figure A1. Each box (specific 

combination of L/S, Δ, and Sdelay) comprises a specific choice pair. For example, a 

combination of S=$50, L=$500, Δ=20 days, Sdelay=today implies a choice between $50 

now vs. $500 in 20 days. 

Now, consider an agent faced with a choice between $50, which will be delivered 

in 80 days. and $500, which will be delivered in 100 days. This agent will be asked the 

same question repeatedly over 80 days (for example, tomorrow this agent will be given a 

choice between $50 in 79 days and $500 in 99 days) until the Sdelay becomes 0. This is the 

same situation as that shown in figure 1. Depending on the agent’s location in time (Fig. 

1), Sdelay gradually decreases, as represented by the Sdelay dimension in figure A1. 

The agent’s pattern of responses across the series of choice questions created 

along the Sdelay dimension can follow one of three choice patterns. If the agent prefers the 

smaller sooner option in every choice in the series, we categorize that as the S-S pattern 

in this specific parameter set (S=$50, L=$500, Δ=20 days). If the agent prefers the larger 

later option in every choice in the series, we categorize that as the L-L pattern. If the 

agent changes her preference such that she prefers the larger later option in the first few 

choices of the series, but then switches to the smaller sooner options later in the series, 

that comprises the L-S pattern.  

Which of these three patterns occurs is determined by the value of Dp and Sdelay 

(Table 1). For example, if Dp has a negative value (-7.78) when S=$50, L=$500, Δ=20 

days, k=0.1, and Sdelay=5 days, it means that the agent will show the L-L pattern in this 

parameter set. If Dp is positive (3.33) when S=$200, L=$500, Δ=20 days, k=0.1, but less 
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than Sdelay (=5 days), it means the agent will show the L-S pattern. And finally, if Dp 

(=170) is greater than Sdelay (=5 days) when S=$450, L=$500, Δ=20 days, k=0.1 then the 

agent will show the S-S pattern. 

These three patterns can be also identified by simply comparing the responses 

from the top layer and the bottom layer of the parameter space. As in Figure A1, if the 

agent prefers the larger later option on the top layer (solid blue box) and prefers the 

smaller sooner option on the bottom layer (solid red box), this series of questions can be 

identified as the L-S pattern. By doing so, each choice pattern can be identified without 

using the Dp equation. This is useful when Dp is insolvable (i.e., when using the 

exponential discounting function). 

In the current study we are interested in the three choice patterns, not the 

particular value of Dp. Consequently, the Sdelay dimension can be collapsed, changing the 

three-dimensional array (Δ, L/S, and Sdelay) into a two-dimensional array (Δ and L/S). We 

note where each of the three choice patterns will occur within that two-dimensional array 

(coded with blue for consistent L-L patterns, red for consistent S-S patterns, and green for 

L-S patterns), as shown in a single slice in figure A2. Each slice depicts how much of 

each choice pattern would be observed from an agent with a specific discount rate. 

Now, we will vary k, L, and MLD levels one by one. Let’s start with various k levels. By 

changing the k value used in the single slice in figure A1, many different slices can be 

made as we vary the k values (fig. A2).  
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Fig A2. iPRP simulation results as a function of an individual discount rate (k). The 

parameter space in Figure A1 can be collapsed across the Sdelay dimension, creating the 

2D slices (defined by the Δ and L/S dimensions) shown in this figure. Blue, green, and 

red spaces imply the parameter combinations that yield the L-L, L-S, and S-S patterns.  
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This illustrates the relationship among the L/S, Δ, and k parameters and the choice 

patterns (L-L, L-S, and S-S) in a three-dimension array. We can take one-step further to 

focus just on the relationship between k and the choice patterns by collapsing the L/S and 

Δ dimensions, and displaying the proportion of each choice pattern in each slide (fig. 2 

and fig. 3). This display provides a simple view of how the proportion of choice patterns 

changes as a function of discount rate, which is impossible to see from the typical 

discounting curves (fig. 7). 

Now we will vary L levels. However, different levels of L do not have an impact 

on the model prediction. Figure A3 shows the model prediction with varying levels of L 

($100, $1000, and $10,000), but the predictions are identical. The reason is that changing 

the value of L only changes the scale of the graph.  

Finally, we will vary MLD levels. Different levels of MLD scale the parameter 

space up or down (and hence influences the model prediction), but do not yield 

qualitatively different predictions. Figure A4 shows the model prediction with varying 

levels of MLD (100 days, 1000 days, and 10000 days). Note that different levels of MLD 

only change the x-axis of the model predictions. Changes in the value of MLD equally 

influences both Sdelay and Δ (Ldelay=Sdelay+ Δ, MLD is maximum value of Ldelay). The 

change in Δ influences the value of Dp. For example, a larger MLD increases the 

magnitudes of both Sdelay and Δ equally, but yields a smaller Dp because of the 

denominator. A smaller Dp yields more impatient choice patterns (more S-S or L-S 

patterns). This is exactly what happened in Figure A4 as we increased the MLD. 

Increasing MLD moved the model prediction to the left, implying more impatient choice 

patterns at the lower discount rate levels.  
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Fig A3. iPRP simulation results with varying L magnitude using the hyperbolic 

discounting function. L magnitude change does not affect the model prediction. 
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Fig A4. iPRP simulation results with varying MLD. Increasing MLD pushes the overall 

percentage of choice patterns to the left.  
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Appendix B. Attention check questions 

SS options LL options  

$ 3.08 in 252 days $ 10.00 in 252 days 

$ 10.00 today $ 10.00 in 140 days 

$ 2.31 in 364 days $ 10.00 in 224 days 

$ 3.08 in 364 days $ 10.00 in 364 days 

$ 10.00 in 168 days $ 7.69 in 364 days 

$ 8.46 in 364 days $ 10.00 in 364 days 

$ 10.00 in 308 days $ 3.85 in 364 days 

$ 10.00 in 56 days $ 1.54 in 364 days 

$ 9.23 in 364 days $ 10.00 in 336 days 

$ 10.00 in 28 days $ 10.00 in 364 days 

$ 10.00 today $ 6.15 in 56 days 

$ 10.00 in 224 days $ 10.00 in 364 days 

$ 6.92 in 364 days $ 10.00 in 364 days 

$ 5.39 in 224 days $ 10.00 today 

$ 10.00 today $ 10.00 in 196 days 

$ 7.69 in 196 days $ 10.00 today 

 

 


