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ABSTRACT OF THE DISSERTATION

A model study of molecular transport in electroporation

by Miao Yu

Dissertation Director: Professor Hao Lin

Reversible electroporation is a non-viral technique to introduce foreign molecules into

biological cells or tissues, which has found applications in fields including gene transfer,

cancer treatment, stem-cell research etc. Despite its promising potential, the improve-

ment of electroporation technique is impeded by the lack of a comprehensive under-

standing of the underlying mechanisms involved in the process of molecular delivery.

This work aims at implementing model studies of electroporation-mediated molecular

delivery with the target varying from small molecules (propidium iodide, PI) to macro-

molecules (DNA). Three significant tasks have been accomplished. First, a model study

is performed on the electroporation-mediated delivery of PI. In particular, the effects

of extra-cellular conductivity on the amount of PI delivery are carefully investigated

and discussed. The results are extensively compared with experiments by Sadik et

al. [72], and reveal important physical insights about the transport mechanisms in-

volved. It is confirmed that the electrophoretic transport, not the diffusive transport,

is the dominating mechanism in mediating PI delivery, and the inverse correlation ob-

served between PI delivery and extra-cellular conductivity results from an electrokinetic

phenomenon termed Field Amplified Sample Stacking (FASS). Second, a model investi-

gation of Fluorescein-Dextran delivery is implemented for double-pulse electroporation.
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Simulated results find qualitative agreement with experiments in predicting the corre-

lation between delivery and pulsing parameters. A bifurcation analysis of equilibrium

pore size with respect to the transmembrane potential is presented to explain the ob-

served critical field strength above which the second pulse abruptly becomes effective

in mediating delivery. Third, a 1D Fokker-Planck simulation is used to characterize the

process of DNA translocation through an electropore under finite DC pulses. It is found

that the translocation may occur on two disparate time scales, the electrophoretic time

(∼ ms), and the diffusive time (∼ s), depending on the pulse length. Furthermore, a

power-law correlation is observed between the final probability of successful translo-

cation and pulsing parameters. Simulated results are compared with previous data

to interpret the trends, and further model predictions are made which can be verified

by well-designed experiments. Together, these projects establish connections between

available theoretical model and experimental observations in electroporation research.

Such a connection on one hand benefits experimentalists in providing a powerful predic-

tion tool for the design and optimization of electroporation; on the other hand it equally

benefits theorists to improve the models and advance fundamental understandings in

the subject.
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Chapter 1

Introduction

The term ”electroporation” or ”electropermeabilization” refers to the phenomenon that

a cell membrane becomes permeabilized when exposed under a strong enough exter-

nal electric field [56]. Such permeabilization can be either irreversible or reversible.

Irreversible electroporation often kills cells or damages their structure permanently,

therefore it can be utilized to destroy tumors or ablate biological tissues in a drug-free

manner. Irreversible electroporation has attracted increasing research interests recently,

and become a promising tool in fields such as tissue ablation, debacterialization, and

cancer therapy [53, 58, 70, 75]. Reversible electroporation provides an effective tool

to introduce foreign molecules into biological cells while keeping their functionality, as

those molecules in general cannot go through an intact cell membrane without the occur-

rence of membrane permeabilization. Reversible electroporation has found applications

in gene delivery, cancer treatment, stem-cell research etc. [1, 7, 89, 46, 48, 57, 74, 88],

and is the main focus of this thesis.

Compared to other chemical or biological techniques of molecular delivery, reversible

electroporation is fast, safe, relatively cheap and easy to perform [13]. In addition, its

effectiveness depends less on the cell type [22, 27]. Therefore it has become one of the

most widespread techniques to transport molecules into organs and tissues. Neverthe-

less, the underlying mechanisms of electroporation-mediated molecular delivery are still

relatively poorly understood [13]. This drawback has impeded further improvement of

the efficacy of this method, which is crucial for clinical applications. For example, many

in vitro and in vivo studies [14, 28, 44, 45, 47, 59, 61, 68, 93] have been performed to

investigate the effect of pulsing parameters, such as pulse number, duration, and po-

larity, on the efficiency of gene delivery. However, these studies are mostly empirical,
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following trial-and-error manners due to the lack of available prediction tools of the

process. As a result, clear physical understandings are still lacking in explaining many

of the observed trends, and it remains to be a difficult task to extract key information

from these studies toward advancing the technique. In this thesis, the author aims

to develop a basic understanding of the physical process of electroporation-mediated

molecular transport, by performing model studies that connect available theoretical

predictions with experimental observations. From an engineering point of view, this

work is supposed to benefit experimentalists in providing a powerful prediction tool for

the design and optimization of electroporation, and equally benefit theorists to improve

the models and advance fundamental understandings in the subject.

Depending on the specific goal of researches or applications, drugs, dyes or poten-

tially therapeutic agents such as proteins, oligonucleotides, RNA and DNA [13], can be

selected as the target to be delivered into the cytoplasm via electroporation. These tar-

get molecules can vary greatly in size. For example, propidium iodide (PI), a small dye

molecule with a molecular mass of 668.4 Da, is frequently used to detect the occurrence

of membrane permeabilization [14, 21, 98], while in DNA electrotransfer the molecular

mass of delivered polymer chains can easily exceed a million Dalton (corresponding

to a chain length of around 1.5 kbp) [21, 22, 32, 81, 98]. Experimental observations

suggest that, between these two cases how the target molecules enter the cell can be

quite different. Small molecules are more likely to be directly driven across the per-

meabilized membrane by electrophoresis and diffusion. On the other hand, the trans-

fer of macromolecules such as DNA is presumably more complex [12, 15, 22, 62, 67],

and different theories have been presented to hypothesize the mechanisms involved

[43, 60, 69, 99, 105]. Consequently, necessity arises to develop different models to cap-

ture the key characteristics for each case.

In this thesis, the author implemented models to study the transport of three dif-

ferent types of target molecules: propidium iodide (Chapter 2), Dextran (Chapter 3)

and linear double-strand DNA polymer chain (Chapter 4). These molecules are among
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the most commonly used targets in electroporation studies, either in research or prac-

tical applications. More importantly, they cover three typical sizes of electroporation-

mediated delivered agents in hydrodynamic radius: PI, small (∼ 0.5 nm); Dextran of

10k Dalton, moderate (∼ 2 nm); DNA, large (>100 nm). These studies altogether

advance the understanding of the various characteristics of electroporation-mediated

delivery with respect to the target molecule size. A brief summary of each task is

presented below.

• The author implemented a whole-field numerical model to extensively investigate

PI transport via electrporation. Furthermore, the results are directly compared

with experimental data by Sadik et al. [72], which studied PI delivery under

a variety of extra-cellular conductivity configurations. The comparison confirms

that electrophoretic transport is the dominating mechanism in mediating PI de-

livery, and the inverse correlation observed between PI delivery and extra-cellular

conductivity results from an electrokinetic phenomenon termed Field Amplified

Sample Stacking (FASS). The main contribution of this quantitative study lies

in providing a more comprehensive mechanistic interpretation to the dynamics of

electroporation-mediated molecular delivery. This work is presented in Chapter

2, and has been summarized in a manuscript submitted to Bioelectrochemistry

[100].

• With the prediction tool used in the previous task, the author examined two-

pulse electroporation as a potential means to achieve effective delivery efficiency.

In this study, a combination of a strong, short pulse (HV) and a weak, long pulse

(LV) is applied. The respective effects of HV and LV are theoretically predicted,

and the total delivery of Fluorescein-Dextran is quantitatively correlated with

pulsing parameters. Through comparison with experiments by Sadik et al. [73],

a pore dynamics analysis is presented to explain the existence of a threshold

strength of LV, above which the delivery becomes much more effective. This study

bears significance in providing theoretical foundation for protocol optimization

and useful predictions to guide future experimental studies. This work is presented
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in Chapter 3, and has been published in Biophysical Journal [73].

• To study DNA electrotransfer, the author developed a theoretical framework to

characterize the process of DNA translocation through an electropore with finite

pulses. This model study adopts the ”translocation theory”, which assumes that

as a polymer chain DNA molecule can be driven across a narrow electropore like

a thread being pulled across a needle hole. Numerical studies were performed to

quantitatively investigate the probability of successful DNA translocation across

the pore as a function of pulsing parameters. The results are compared with

previous experiments and provide theoretical explanations to the trends that was

poorly understood previously. A main contribution of this work is to establish a

power-law correlation between DNA delivery efficiency and pulsing parameters,

which can be verified by well-designed experiments. This work is presented in

Chapter 4, and has been published in BBA Biomembranes [101].

During the PhD study, the author also began to develop a theoretical model to

predict the deformation and relaxation of vesicles and cells suspended in solution. This

work follows our previous model studies [103, 104], and aims at quantitatively extracting

important mechanical properties of the lipid membrane from temporal-resolved mea-

surements of shape changes. This work is presented in Chapter 5, and is currently

under preparation for a journal publication.

Concluding remarks are made in Chapter 6.
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Chapter 2

Propidium iodide delivery with millisecond electric pulses

2.1 Introduction

As a widely-used technique to deliver active agents into biological cells and tissue [1, 8,

89, 13, 19, 46, 56, 74, 86], the process of electroporation includes two basic aspects. In

the first, the application of an electric pulse permeabilizes the membrane to gain access

to the cytoplasm [3, 6, 10, 34, 37, 38, 40, 52, 54, 79, 85, 95, 96, 97]. In the second,

molecules are transported into the cell via mechanisms such as electrophoresis, diffusion,

and endocytosis [1, 14, 28, 43, 44, 45, 47, 59, 63, 61, 64, 68, 69, 93, 94, 78, 81, 90, 99, 105].

In an earlier work by Sadik et al. ([72], henceforth denoted as Sadik13), time- and space-

resolved fluorescence microscopy was used to quantify the second aspect, namely, the

transport of small molecules via electroporation. As a companion study of Sadik13, this

model investigation aims to differentiate contributions to total delivery by the various

pertinent mechanisms. In addition, it also provides quantitative data to help interpret

trends observed in earlier experiments, namely, the inverse correlation between delivery

and extra-cellular conductivity [10, 49].

The model used in this chapter couples the asymptotic Smoluchowski equation

(ASE) [35, 54, 55] for membrane permeabilization with the Nernst-Planck equations

for ionic transport [41, 42]. (A list of abbreviations used in the following chapters is

given in Table 2.1.) Following Sadik13, the delivery of propidium iodide (PI) into 3T3

mouse fibroblast cells is simulated. The extra-cellular conductivity is varied between

100 and 2000 µS/cm. The simulation provides detailed, dynamic predictions that were

not directly measured by the experiments, including the systematic behavior of the

transmembrane potential (TMP), the membrane conductance, and the pore area den-

sity (PAD). On the other hand, the results on PI delivery are compared directly with



6

Abbreviation Definition

ASE asymptotic Smoluchowski equation
FASS Field-Amplified Sample Stacking
PAD pore area density
PI propidium iodide
Sadik13 reference [72]
TFI total fluorescence intensity
TMP transmembrane potential

Table 2.1: Definition of abbreviations.

data from Sadik13. This comparison not only validates the numerical model, but also

helps tackle the basic physical processes involved in electroporation-mediated molecular

delivery. The main contribution of this work lies in providing a clear, thorough physical

explanation of the key experimental observation with available theoretical tools. This

work has been summarized in a manuscript submitted to Bioelectrochemistry [100].

2.2 Model formulation

A schematic of the problem is presented in Fig. 2.1. The cell is modeled as a spherical

space surrounded by a thin and rigid cell membrane. A constant pulse with the strength

of E0 is applied, and axisymmetry is assumed with respect to the direction of the electric

field. A spherical coordinate system (r, θ) is adopted, and the cell radius is a. The axis

of symmetry is denoted by x, which is also the coordinate along the cell centerline. The

intra- and extra-cellular conductivities are denoted by σi and σe, respectively. The PI

molecule is a charged ion with a valence number of +2.

The model framework follows that presented in an earlier work by our group [42].

A detailed description of the model is presented in Appendix A. Briefly speaking, the

Ohmic equations are solved for the intra-cellular electric potential, Φi, and the extra-

cellular electric potential, Φe. On the membrane, the current continuity condition is

applied:

−n · σi∇Φi = −n · σe∇Φe = Cm
∂Vm
∂t

+ jp, (2.1)
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where n is the local unit vector normal to the membrane, Cm is the membrane capaci-

tance, and jp is the local ionic current density across electropores. The TMP (denoted

by Vm) is the potential difference across the infinitesimally-thin membrane. Equation

(2.1) is coupled with the ASE for membrane permeabilization to track the evolution of

both the electric potential and pore statistics. Once the latter is obtained, the PAD

(denoted by ρp) can be evaluated:

ρp(t, θ) = Ap(t, θ)/∆A, (2.2)

where ∆A is a local area element [35], and Ap is the total area occupied by the pores

thereon. The PAD therefore represents a quantification of the degree of membrane

permeabilization. The membrane conductance, gm, is calculated by taking the ratio of

the local ionic current density and the TMP:

gm(t, θ) = jp/Vm. (2.3)

To track the evolution of PI concentration, the Nernst-Planck equations are solved

in conjunction with the following reactive kinetics:

PI2+ + B
k+


k−

PIB. (2.4)

Here PI2+ denotes the free PI ion, B denotes the binding sites in the cytoplasm, and

PIB is the compound which is responsible for the experimentally observed fluorescence

emission. k+ and k− are the association and dissociation constants, respectively. The

species concentrations are denoted by [PI2+], [B], and [PIB], respectively.

A complete description of the model, including the numerical implementation, as

well as the boundary and initial conditions, are found in Appendix A. Model parameters

specific to the current problem are listed in Table. 2.2, which follows the experimental

conditions in Sadik13. Note that in particular a value of 0.16 V was adopted for Vep, the

characteristic voltage of electroporation. The value defers from that used in previous

work [35, 41, 42], and is determined from a comparison between experimental data and
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a

Figure 2.1: A schematic of the problem. (r, θ) denotes the spherical coordinate system.
x is the axis of rotation, and is aligned with the direction of field application. The field
strength is denoted by E0. The intra- and extra-cellular conductivities are denoted by
σi and σe, respectively.

Symbol Definition Value/Source

E0 applied field strength 0.8 kV/cm [72]
tp pulse length 100 ms [72]
a cell radius 7 µm [72]
σe extra-cellular conductivity 100-2000 µS/cm [72]
σi intra-cellular conductivity 4000 µS/cm [42]
[PI2+]e,o initial extra-cellular concentration of PI2+ 100 µM [72]
[B]i,o initial intra-cellular concentration of B 6.93 mM [42]
Vep characteristic electroporation voltage 0.16 V [72]

Table 2.2: List of model parameters in Chapter 2.

model simulation in our recent study [73].

2.3 Results

In the following, simulated results are first presented on the effect of extra-cellular con-

ductivity on membrane permeabilization. The results on PI delivery are then presented

and compared with experimental data from Sadik13. For all cases, a single pulse of 0.8

kV/cm and 100 ms is applied.

Figure 2.2 summarizes the results on the TMP, Vm, membrane conductance, gm, and

the PAD, ρp. Figure 2.2a shows the evolution of Vm at θ = π as a function of time. The

differences between the cases are only visible in the initial stage (∼10 µs, see the inset),

which is caused by the dependence of charging time on the extra-cellular conductivity
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[71, 92]. For t > 10 µs, Vm settles to an equilibrium value, which is maintained until

the end of the pulse. Figure 2.2b shows Vm as a function of the polar angle, θ, at

t = 95 ms. The consistency of the equilibrium distribution with respect to the extra-

cellular conductivity is evident. It is found that this equilibrium value of Vm in the

permeabilized regions is determined by a critical point of the pitchfork bifurcation in

the (req, Vm) space, where req is the equilibrium pore size at a given voltage. In other

words, it is determined by the energy landscape of the porated membrane, which does

not change with respect to the extra-cellular conductivity. A more detailed analysis is

presented in Section 2.4.

Figure 2.2c shows the evolution of gm as a function of time. Similar to Vm, it exhibits

an initial stage of rapid growth, followed by a plateau (an equilibrium) in the presence

of the pulse, and a rapid decay post-pulsation. However, the equilibrium value depends

strongly and positively on σe. This trend is more obviously observed in Fig. 2d, where

gm at θ = 0, π and t = 95 ms is plotted against σe. This correlation derives from the

global Ohmic current balance. In fact, following an analysis similar to that presented

in [42], it can be shown that

gm ∝
σe

2σe + σi
(3− 2

E0a
max(|Vm|)). (2.5)

In Fig. 2.2d, the dashed line represents a fitting in the form Cσe/(2σe + σi), where the

fitting constant C = 1.46× 105 S/m2. This result is in qualitative agreement with the

numerical study by Suzuki et al. [84].

Figures 2.2e and f show the behavior of ρp with respect to time and σe. Not surpris-

ingly, the trend concurs with that of gm, as the change in the latter is only caused by a

change in membrane permeabilization. Note that this result qualitatively defers from

that in supra-electroporation, where our model did not indicate a strong dependence of

ρp on σe [42]. However, in neither situation does membrane permeabilization provide

a viable explanation for the negative correlation between delivery and extra-cellular

conductivity [10, 49, 72], and alternative mechanisms need to be identified.
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Figure 2.2: Simulated membrane permeabilization under a single pulse of 0.8 kV/cm in
strength and 100 ms in length, for various extra-cellular conductivities. (a) Evolution
of the TMP, Vm, at θ = π as a function of time. (b) Polar distribution of the TMP at
t = 95 ms. (c) Evolution of local membrane conductance, gm, at θ = π as a function of
time. (d) Membrane conductance at θ = 0, π at t = 95 ms. The dashed is a theoretical
prediction, and the fitting constant C = 1.46 × 105 S/m2. (e) Evolution of the PAD,
ρp, at θ = π as a function of time. (f) The PAD at θ = 0, π at t = 95 ms.



11

Figure 2.3: Contour plots of convoluted PI concentration at the cell center-plane for
σe = 100 µS/cm (top) and 2000 uS/cm (bottom). The snapshots are taken at t =0, 20,
45, 70, 95, 121, and 4996 ms, following the experimental presentation in Sadik13.

Figure 2.3 shows exemplary simulated results in an attempt to reproduce the ex-

perimental fluorescence images in Sadik13 (Fig. 1 therein). The contour plot is based

on the convoluted concentration of PIB:

[PIB]conv =

∫ σz/2

−σz/2
[PIB]e−z

2/2σ2
zdz , (2.6)

where σz is the focal depth of the microscopic system, and z is the axis perpendicular

to image acquisition. This convolution is taken to approximate the effects of a finite

focal depth in the experimental measurements [41]. The evolution with respect to the

lowest (100 µS/cm) and the highest (2000 µS/cm) conductivities is shown, which is in

qualitative agreement with data. Noticeably, the spread is stronger in case of σe = 100

µS/cm.

Figure 2.4 demonstrates the detailed evolution of the species concentrations, also

for the two extreme values of σe. Figures 2.4a-d show [PI2+] and [B] at different times

along the cell centerline, x. Together, the results indicate that the binding sites are

exhausted upon electrophoretic entry of the free ions in the presence of the 100-ms

pulse. Continuous intra-cellular diffusion and association/dissociation occur after the

pulse ceases. However, no appreciable molecular exchange across the membrane is

predicted. Figures 2.4e and f show the [PIB] profile. This compound is responsible for

the experimentally observed fluorescence emission, and the convoluted concentration as

defined by Eq. (2.6) is assumed to be proportional to the fluorescence intensity. During
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the pulse, the front of [PIB] profile advances uniformly along the field direction due

to binding-site exhaustion. The redistribution post-pulsation is due to intra-cellular

redistribution of all species. In comparison with Fig. 2.3, the peaks observed therein

are attributed to the convolution over a spherical cell geometry, which effect has been

explained in a previous work of our group [41]. Finally, Figs. 2.4g and h show the

sum of the free and bound ions. This quantity indicates the total PI concentration in

the cell. For both values of σe, this summed concentration (∼ 10 mM) is significantly

higher than the extra-cellular PI concentration (100 µM). Furthermore, consistent with

the experimental observation, delivery decreases when σe increases. These trends are

explained with an electrokinetic phenomenon termed Field-Amplified Sample Stacking

(FASS), which is discussed in greater details in our previous work [41, 42].

To study total delivery, the free and bound PI concentrations are respectively in-

tegrated over the entire cell and then summed, and the resulting quantity is denoted

by PItot + PIBtot. The evolution of total delivery as a function of time and for the

six values of σe is shown in Figs. 2.5a and b, where Fig. 2.5b displays the specific

stage during the pulse. Once the pulse ceases, the total delivery, PItot + PIBtot, does

not further increase. This saturation of delivery is due to the fact that in the model,

pores immediately return to a very small size (rm= 0.8 nm, [35]), hence significantly

diminishing ρp and preventing post-pulsation diffusive delivery. A further examination

on the effect of the latter is presented later in Fig. 2.6b. Figures 2.5c and d show the

evolution of bound PI integrated over the whole cell (PIBtot). The results are in quali-

tative agreement with the total fluorescence intensity (TFI, induced by the compound

PIB) presented in Sadik13. Figure 2.5c shows, in contrast to Fig. 2.5a, that PIBtot

continues to increase even after the pulse ceases. Although no more PI is delivered into

the cell at this stage, the available free PI ions that have already entered the cell during

the pulse (Figs. 2.4a and b) continue to spread and bind, causing PIBtot to further

increase. A final steady-state is reached within the diffusive time scale (∼ 0.1 s) after

the association/dissociation processes equilibrate over the entire cell.

Together, Figs. 2.4 and 2.5 impart important insights. First, due to the FASS
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the pulse. (b) Evolution of PItot + PIBtot during the pulse. (c) Evolution of integrated
PIB concentration over the entire cell (PIBtot). (d) Evolution of PIBtot during the
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mechanism and the high conductivity ratio, the cell can be “loaded” with a high con-

centration of ions via electrophoretic transport, even with short pulses. In the current

simulations, this “loading” is sufficient to exhaust locally the high concentration of

binding sites. A similar conclusion can be drawn if PI is replaced by other target

agents such as drug molecules. Second, the observed increase in fluorescence signal

post-pulsation, such as that presented in Sadik13 may be partially attributed to this

“pre-loading” effect. Therefore, caution needs to be taken to interpret experimental

data where an indirect indicator such as PIB is used to study PI delivery.

Figure 2.6a compares the simulated results with data from Sadik13. The experimen-

tal data is denoted by circles, and the middle and lower curves represent contributions

to the normalized TFI during and after the pulse, respectively. The upper curve is the

sum of the two. The model prediction is denoted by pluses, and the definition of the

curves follows the data. Because of the difference in the units of the measurement (a.u.

for the fluorescence signal) and the prediction (mol for PIBtot), the axis presenting the

latter is scaled linearly, such that the upper curves are best matched. The comparison
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demonstrates that the trends in the data are very-well captured by the numerical study,

although quantitative differences are observed between the middle and lower curves. As

noted above, in the model prediction, although PIBtot continues to increase after the

pulse, it is in actuality attributed to further binding of the free PI ions already delivered

into the cell during the pulse.

The correlation between PIBtot and σe can be approximated by

PIBtot ∝
1

2σe + σi
. (2.7)

A fitting using this functional form is shown as the dotted line in Fig. 2.6a. This

correlation can be derived if it is assumed that delivery is primarily mediated by elec-

trophoresis. The molar flux into the cell is proportional to ceEe, where ce is the extra-

cellular concentration of PI2+, and is assumed to be constant ([PI2+]e,o). Therefore,

molecular delivery is proportional to the extra-cellular field strength at the membrane.

Using Eq. (2.1), the steady-state expression of Ee is given by

Ee =
gmVm
σe

. (2.8)

Substituting Eq. (2.5) into Eq. (2.8), and considering Vm does not change with respect

to the extra-cellular conductivity, the correlation (2.7) is obtained.

In the simulation above, and similar to our previous studies [41, 42], ρp decreases by

three orders of magnitude immediately after the pulse ceases, due to the shrinking of the

pore size in the absence of Vm. This reduction prohibits appreciable diffusive transport

afterwards. This behavior is an artifact of the ASE model due to its incapability to

include the resealing process (typically on the order of seconds to minutes [13, 25, 95]).

To investigate the effects of post-pulsation diffusion, ρp reduction at the end of the

pulse is artificially prevented in the simulations. In other words, ρp is kept at its value

at the end of the pulse for an additional second. The result is shown in Fig. 2.6b, also

in comparison with the data. Similarly, the axis for PIBtot is rescaled to best match the

upper curves. It is observed that the respective contributions from during and after the

pulse match better quantitatively when compared with Fig. 2.6a. However, the inverse
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Figure 2.6: Comparison of simulated results (′+′, right axis) with experimental data
from Sadik13 (′o′, left axis). For the data, the middle and lower curves represent contri-
butions to the total fluorescence intensity (TFI) during and after the pulse, respectively.
The upper curve is the sum of the two. In comparison, numerical simulation of PIBtot

is presented, and the upper, middle, and lower curves are defined similarly. The right
axis is scaled linearly such that the upper curves from data and simulation best match.
(a) Simulated results using the original ASE model. The dotted line is a theoretical
fitting with the functional form C/(2σe + σi). (b) The size of the pores are artificially
maintained for 1 s post-pulsation in the ASE model to allow for more diffusive delivery.

trend with respect to σe is abated. This result is not surprising, as diffusive transport

correlates positively with ρp, which in turn depends positively on σe (Fig. 2.2f). The

addition of the diffusive delivery therefore weakens the inverse trend observed in the

data.

In summary, the model prediction agrees qualitatively with the experimental data in

general, and quantitatively in terms of the correlation between delivery and the extra-

cellular conductivity (Eq. (2.7)). The results confirm that this inverse correlation is

primarily mediated by electrophoretic transport during the pulse. In fact, this trend

tends to be abated rather than enhanced by diffusive transport due to the positive

dependence of permeabilization on extra-cellular conductivity. The current study sug-

gests that electrophoretic transport may be important even for a small molecule such

as PI.



17

2.4 The equilibrium transmembrane potential

In Fig. 2.2b, it is found that the TMP, Vm, settles to an equilibrium value in the

permeabilized regions within a few microseconds after the pulse starts. Furthermore,

this value does not vary appreciably with respect to the extra-cellular conductivity. Here

this value is argued to be determined by a critical point in the pitchfork bifurcation in

the (req, Vm) relation, where req is the equilibrium pore size at a given voltage.

In the ASE used, and in general in the Smoluchowski equations governing the pore

dynamics [17, 35, 54], the pore size evolves to minimize membrane energy. The rate of

change is given by the equation [35]:

ṙ =
D

KBT

[
4r4
pβ

r5
− 2πγ + 2πσeffr +

FmaxV
2
m

1 + rh
r+rt

]
, (2.9)

where r is the pore radius, D is the pore radius diffusion coefficient, KB is the Boltzmann

constant, and T is temperature. The value of σeff is given by σeff = 2σ′ − 2σ′−σ0
(1−ρp)2

. β,

γ, Fmax, rh, rc, σ
′, and σ0 are model constants, and the values can be found in [35].

This equation can be written in a generalized form as:

ṙ = U(r, Vm, ρp). (2.10)

The equilibrium value for the pore size, req, can be found by setting the right hand side

of Eq. (2.10) to zero:

U(req, Vm, ρp) = 0. (2.11)

In general, the dependence of req on ρp is weak. On the other hand, its dependence

on Vm exhibits an interesting pitchfork bifurcation, which is shown in Fig. 2.7a, for an

exemplary value of ρp = 2× 10−3.

The coupled dynamics between req and Vm in the initial charging and permeabi-

lization processes are illustrated in Figs. 2.7a and b, where the four stages are denoted

by I-IV. In Stage I, the initial charging stage, the membrane is near-impermeable with

sub-nanometer pores, and Vm grows rapidly via capacitive charging (see Eq. (2.1)).

Once Vm reaches V crit
m , the bifurcation point, pores begin to expand significantly. Due
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Figure 2.7: Schematics for the (req, Vm) dynamics. (a) The relation between req and
Vm exhibits a pitchfork bifurcation behavior. Between V eq

m and V crit
m , three branches of

solutions exist from Eq. (2.11), where the middle one (dash-dotted) is unstable. The
initial charging and permeabilization process follows four stages denoted by I-IV. For
this case ρp = 2 × 10−3. A detailed description is given in the text. (b) Exemplary
evolution of Vm as a function of time. The stages I-IV correspond to those in (a).

to the consequent “jump” in gm (Stage II), Vm eventually has to decrease to satisfy the

current continuity condition (Stage III), until the upper branch of the bifurcation is

reached. Vm continues to decrease until it reaches the other critical point, V eq
m , where

the pore size begins to recover to the lower branch (Stage IV). The dependence of pore

radius on Vm exhibits hysteresis typical of this type of bifurcation. The point around

V eq
m is the most interesting, because two equilibrium pore sizes exist. For this reason,

gm can assume a range of values for a single value of Vm. The upper bound can be

calculated by assuming all pores are on the upper branch, req = 10.4 nm; the lower

bound, the lower branch, req = 1.01 nm. If the required steady-state value of gm to

satisfy the current continuity condition (Eq. (2.1)) lies within these two bounds, then

Vm maintains at the level of V eq
m . This phenomenon is analogous to phase change in

physics, where V eq
m assumes the role of, e.g., temperature. For the same argument, V crit

m

is another candidate for the equilibrium value of Vm, which in general occurs when less

number of pores are locally available, e.g., at the edges of the permeabilized regions.

(See the slightly increased Vm values near θ = π/4, 3π/4 in Fig. 2.2b.) Although

the above illustration is only schematic, the full-model simulation follows this general

pattern.
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As a conclusive remark, this finding bears significance in that it connects the meso-

scopic ASE model with macroscopic observables. The membrane energy model in the

ASE, based on which Eq. (2.9) is derived, has a few free constants. In general, these

constants cannot be directly measured. The above analysis reveals that if pores on the

membrane do follow the bifurcation behavior with respect to the TMP, then the critical

values, namely, V eq
m and V crit

m, can be directly observed via a fluorescence measurement

similar to that by Kinosita et al. [31] or Flickinger et al. [16]. These values can in turn

help determine the pertinent constants (such as β, γ, and Fmax) used in the model.

2.5 Conclusions

In this work, a companion model study is implemented for the experimental counterpart

by Sadik et al. [72]. Results on both membrane permeabilization and molecular delivery

are presented, through which useful insights on the system behavior are gathered.

The TMP in the permeabilized regions exhibits a consistent value across all six extra-

cellular conductivities examined. Through a detailed investigation, it is found that this

value corresponds to a bifurcation point in the relation between equilibrium pore size

and the TMP. This finding bears significance in that it connects the mesoscopic ASE

model with macroscopic observables. In other words, this critical value was previously

specified empirically in the ASE model; with the current theory, it can be directly

measured by fluorescence techniques following Kinosita et al. [31] or Flickinger et al.

[16].

Both the PAD and the membrane conductance are predicted to increase with an

increasing extra-cellular conductivity. These correlations naturally result from the re-

quirement to satisfy the Ohmic current conservation condition. In fact, the relation

between membrane conductance and extra-cellular conductivity follows the functional

form of gm ∝ σe/(2σe + σi), which can be derived from an idealized model for the

electric potential. This positive correlation between membrane permeabilization and

extra-cellular conductivity rules out pure diffusive transport as a viable interpretation

for the opposite effect of the latter on delivery.
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For PI delivery, the model correctly predicts the inverse dependence on extra-cellular

conductivity. This agreement confirms that this behavior is primarily mediated by

electrophoretic transport during the pulse. In fact, diffusion tends to abate rather than

enhance the trend. The correlation between delivery and extra-cellular conductivity is

quantitatively captured by the model, namely, PIBtot ∝ 1/(2σe + σi). The simulation

also reveals that an increase in the fluorescence intensity after the pulse ceases is not

necessarily attributed to molecules entering the cell during this time; it may rise from

continuous spreading and binding of free ions “loaded” into the cell in the presence

of the pulse. Together, the results suggest that electrophoretic transport is important

even for a small molecule such as PI.

Last but not least, a direct comparison between experimental data and model simu-

lation as presented in this work helps establish confidence in and validate the latter. In

the ASE model, a few parameters (such as β, γ, and Fmax, see Eq. (2.9) in Section 2.4)

are specified empirically following previous work. However, membrane permeabiliza-

tion (including the PAD and membrane conductance) is found not to depend critically

on the specific values of these parameters. Instead, the bifurcation point of the TMP,

together with the Ohmic current conservation law strongly regulate the permeabiliza-

tion behavior. The model therefore provides robust predictions which are useful for the

study of electroporation-mediated molecular delivery.
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Chapter 3

Double-pulse electroporation

3.1 Introduction

Despite all the advantages of the technique, a major deficiency of electroporation is

the often low delivery efficiency and/or the accompanied high cell deaths. In many

cases, longer exposure under electric field(s) or application of stronger pulse(s) leads to

higher efficiency and lower viability at the same time [5, 18]. In other words, delivery

and cell viability appears to correlate with each other inversely. Such characteristics

hence make tuning of pulsing parameters (shape, strength, duration etc.) a key step

toward optimized protocols [5, 14, 33, 63, 68]. Among the efforts that have been made

to overcome this difficulty, combination of a strong, short pulse (HV) followed by one or

several weak, long pulses (LV) has become a popular approach among researchers. Here

the basic idea is to treat permeabilization and transport as separate tasks, which are

accomplished by HV (mediating permeabilization) and LV(s) (mediating transport),

respectively. The application of HV is a necessary condition to permeabilize the cell

membrane, which requires a relatively high field strength to overcome the threshold of

the TMP. Once permeabilization is achieved, LV(s) of a lower field strength is applied to

decrease cell damage to an acceptable level while still mediating considerable delivery.

This approach has been proven to be more effective than single-pulse electroporation by

many studies [1, 2, 4, 28, 94, 81]. However, there still lacks any systematic investigation

to characterize the scaling behavior between inputs (pulsing parameters) and outputs

(delivery efficiency and cell viability) of this technique.

To address this problem in a more systematic way, Sadik et al. [73] performed

double-pulse electroporation (HV+LV) experiments to quantify the effect of pulsing
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parameters on delivery efficiency of Dextran and cell viability. By establishing empir-

ical correlations between inputs and outputs, optimized protocols that maximize the

delivery efficiency can be found at any given level of cell viability. In this chapter,

the author presents a whole-cell level model study to provide mechanism-based inter-

pretations of the observed experimental trends. More specifically, the total delivery of

Dextran is investigated as a function of key pulsing parameters, and the results are

directly compared with the experimental data. The main contribution of this work

lies in providing theoretical foundation for protocol optimization and useful predictions

to guide future experimental studies. This work has been included in a manuscript

published in Biophysical Journal [73].

3.2 Summary of key observations

In Sadik et al.’s experiments [73], Fluorescein-Dextran (FD) with a molecular weight

of around 10,000 Da were delivered into suspended NIH 3T3 mouse fibroblast cells

via electroporation. Note that different from Chapter 2, there is no chemical binding

effect involved in this study. A double-pulse protocol was always used, which comprised

an HV of 1.0 kV/cm in strength and 1 ms in length and a subsequent LV of various

strengths and lengths with no delay. Data of delivery and cell viability were collected

by flow cytometry based on a population of 10,000 cells. A detailed description of data

analysis approach can be found in [73].

From their experimental study, Sadik et al. found that the total delivery of FD

increases linearly with the length of LV, t2 (Fig. 3.1a). The delivery rate per unit

time τf is a function of the strength of LV, E2, which appears to be in a sigmoidal-like

shape, as shown in Fig. 3.1b. On the other hand, the cell viability S (%) was found to

approximately correlate with the electrical energy of LV E2
2t2 linearly with a negative

slope (see Fig. 7 in [73]). These empirical scaling relationships altogether make it

possible to identify an optimal value of E2 at any given level of cell viability, at which

the delivery efficiency reaches its maximum. Sadik et al.’s experimental work provides

a systematic way of pursuing optimization of pulsing parameters, which can possibly

be generalized to other cell and target molecular type.
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Figure 3.1: Experimental results by Sadik et al. [73]. (a) The normalized Fluorescence
(NF) of intracellular Fluorescein-Dextran as a function of t2. Symbols represent exper-
imental data; curves, least-square fitting corresponding to different cases (E1 varying
between 10,000 and 100,000 V/m from bottom to top). (b) Measured delivery rate per
unit time (τf , circles) as a function of E2. The error bars represent the 95% confidence
interval of the fitting. The correlation between τf and E2 can be further approximated
by a least-square sigmoidal fitting (dashed). The coefficient of determination is R2 =
0.97.

In Sadik et al.’s work, an optimized value of E2 can be mathematically found within

the regime studied because of the following fact: the delivery rate τf displays a sharp

increase when E2 exceeds a critical field strength of about 25,000 V/m (see Fig. 3.1b).

As the cell viability S decreases linearly to E2
2 , this abrupt increase in delivery rate

with respect to E2 needs to be locally “sharper” than a quadratic power-law to create

a local maximum of delivery at a given value of S. On the other hand, the underlying

mechanism that is responsible for the existence of such a threshold field strength remains

to be a mystery. Theoretical studies are therefore necessary to shed light on the physics

behind this interesting and important behavior.

3.3 Model formulation

The model framework of this chapter follows exactly that in Chapter 2. Model param-

eters and pulsing schemes are tuned to Sadik et al.’s experiments [73], and are listed in

Table 3.1.
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Symbol Definition Value/Source

E1 field strength of HV 1.0 kV/cm
t1 pulse length of HV 1 ms
E2 field strength of LV 0.1-1.0 kV/cm
t2 pulse length of LV 0-100 ms
a average cell radius 7 µm
σe extra-cellular conductivity 100 µS/cm
σi intra-cellular conductivity 4000 µS/cm
[FD]e,o initial extra-cellular concentration of Fluorescein-Dextran 100 µM
Vep characteristic electroporation voltage 0.16 V

Table 3.1: List of model parameters in Chapter 3.

3.4 Results

Figure 3.2 shows the simulated results of total delivery of Fluorescein-Dextran (TFD)

as a function of t2 for various values of E2. It is observed that TFD is always lin-

early correlated with t2, which agrees with the experimental results (Fig. 3.1a) . This

observation is also consistent with our studies of PI delivery, suggesting that the elec-

trophoretic transport is still the dominating mechanism for a larger target molecule like

Dextran.

As the main objective of this investigation, Figure 3.3 shows simulated results of the

delivery rate τf (the left axis) plotted as a function of E2. Here τf is defined as the slopes

of fitting lines in Fig. 3.2 corresponding to each value of E2. When compared with the

experimental trends in Fig. 3.1b, the simulations qualitatively capture a critical value

of E2 above which the delivery rate displays a sharp increase, however at a higher value

of 50,000 V/m. This behavior is explained as a result of an abrupt increase of the total

permeabilized area (TPA), which is also plotted as a function of E2 in Fig. 3.3 on the

right axis. Here the TPA is defined by the following formula:

TPA =

∫ 2π

0
dφ

∫ π/2

0
ρpdθ, (3.1)

where φ is the azimuthal coordinate, and the definition of ρp and θ follow those in

Chapter 2. Equation (3.1) calculates the total area occupied by electropores on the

cathode-facing hemisphere of the cell membrane, which are accessible for the delivery

of negatively-charged FD molecules during the pulse. This calculation is performed
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Figure 3.2: Simulated results of total delivery of Fluorescein-Dextran (TFD), plotted
as a function of t2 for E2 varying between 10,000 and 100,000 V/m.

at t = 5 ms during the second pulse when the permeabilization level has reached

its equilibrium. As the TPA and τf displays very similar trends with respect to E2,

especially on a sharp “turning point” at about 50,000 V/m, it is intuitive to see that the

critical value of E2 results from a surge in TPA as more open area becomes accessible

for FD molecules to enter the cell via electrophoresis.

Through carefully tracking the evolution of pore statistics in the previous simula-

tions, the critical phenomenon of TPA in the simulation is found to be mediated by the

same pore dynamics discussed in Section 2.4. In double-pulse electropoation, the TMP

of permeabilized region will drop significantly when LV (of a lower strength) replaces

HV as the applied field. In the simulation, such a drop of TMP will lead to a decrease

in TPA in a short period of time (< 100 µs), as shown in Fig. 3.4. According to

Fig. 2.7, the decrease in TPA corresponds to ”immediate shrink” of large pores (upper

branch, > 10 nm in size) to much smaller ones (lower branch, ∼ 1 nm in size) at a

critical TMP value of V eq
m , such as to satisfy the current continuity condition. Below a

critical value of E2 (from Fig. 3.4, between 50,000 and 60,000 V/m), the balance has to

be established by eliminating all large pores, therefore with only a very small portion
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Figure 3.3: Simulated results of delivery rate per unit time τf (the left axis) and the
total permeabilized area (TPA, the right axis) plotted as a function of E2. τf is defined
as the slopes of fitting lines in Fig. 3.2 corresponding to each value of E2. TPA is
defined as the total area occupied by electropores on the cathode-facing hemisphere of
the cell membrane.

of open membrane area left compared to that during the first pulse. This bifurcation

behavior of equilibrium pore size around V eq
m is therefore the cause of the existence of

a very nonlinear “turning point” of TFD and TPA at a critical value of E2.

Although the simulation does not capture the critical value of E2 quantitatively,

here the author argue that the discrepancy is attributed to inaccurate values of model

parameters used in the ASE model. In general, a change in the critical value of E2 is

expected when the cell type is changed, which naturally corresponds to a different set

of model parameter values. Similar to that in Chapter 2, this study again connects the

mesoscopic ASE model with macroscopic observables in the critical value of E2. This

can be helpful in determining the values of pertinent constants in the ASE model for

various cell types.

On the other hand, the simulation also does not capture the plateau in Fig. 3.1b.

This behavior is speculated to result from a higher cell death rate at a field strength

approaching 100,000 V/m. Briefly speaking, because FD molecules do not bind within
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Figure 3.4: Evolution of the TPA during HV (0-1 ms) and at the beginning of LV (1-1.6
ms), with E2 varying between 10,000 and 100,000 V/m.

the cell, they may eventually diffuse out of the cell if the membrane remains open for

an extended period of time, e.g. in case of cell death. The enhanced delivery therefore

does not manifest itself in the data. This effect cannot be captured by the transport

model, which does not include viability predictions.

3.5 Conclusions

In this work, the effect of pulsing protocol on delivery efficiency is investigated with the

prediction tool developed in the previous task. This study is a companion research of

Sadik et al.’s experiments [73], which quantified the Dextran delivery and cell viability

using double-pulse electroporation. In the experiments, one of the most important ob-

servations is that there exists a threshold value of E2 above which the delivery efficiency

sees a sharp increase. The current study qualitatively captures this trend, and further

reveals that this behavior can be attributed to an abrupt shrink in the equilibrium pore

size at that critical point. In addition, simulated results confirm that electrophoretic

transport is still the dominating mechanisms for a moderate-size target molecule of

molecular weight around 10,000 Da.
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This study also makes interesting predictions that can be verified by well-designed

experiments. First, given the assumption that the critical value of E2 is caused by the

dynamics of membrane permeabilization, then this value should be strongly dependent

of cell type. Second, if the critical value of E2 does correspond to the value of V eq
m

as defined in Section 2.4, then there should exist another critical value of E1 corre-

sponding to the value of V crit
m , which is supposed to be the commonly known “critical

transmembrane potential”. This value can be captured by investigating the effects of

E1 on the total delivery of FD, and is predicted to be larger than the critical value of

E2 according to Fig. 2.7 (V crit
m > V eq

m ).

As a summary, this research makes successful connection between the mesoscopic

ASE model and experimental observables, hence benefiting both experimentalists and

theorists in providing the necessary information they need. In particular, the study

provides theoretical foundation for protocol optimization in electroporation, which is

useful to guide future studies in the field.



29

Chapter 4

DNA translocation through an electropore

4.1 Introduction

Compared to small molecules, the transfer of macromolecules such as DNA is believed

to be more complex. Although many studies [14, 28, 44, 45, 47, 59, 61, 68, 93] have been

carried out to optimize the transfection efficiency (TE) of gene transfer, a comprehen-

sive understanding of the process has yet to be established [13]. (A list of abbreviations

used in this chapter is given in Table 4.1) One of the key differences between the

delivery of DNA and small molecules is that the former stays much longer at the mem-

brane, forming the so-called DNA-membrane complex [12, 15, 22, 62, 67]. The detailed

structure of these complexes is still under debate. One theory hypothesizes that the

internalization of DNA is facilitated by endocytosis, which is termed the ”endocytosis

theory” henceforth [43, 69, 99, 105]. In particular, a recent work by Wu et al. found

that the TE is significantly decreased if certain endocytic mechanisms were inhibited,

providing support for this hypothesis [99]. The results are, however, not yet conclusive.

For example, a recent experiment by Pavlin et al. [60] indicates no significant corre-

lation between the field strength and intracellular vesiculation, which is presumably

required for endocytosis.

Meanwhile, other mechanisms for DNA electrotransfer have not been sufficiently

explored. In this work, we focus on the so-called “translocation theory”. In this the-

ory, macromolecules also go through the membrane like the small ones. However, the

process is more complex due to their polymeric nature, and the translocation time can

be long, which potentially explains the long coherence time of the DNA-membrane

complex [15, 22]. We are motivated by experimental observations from the literature.
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In Sukharev et al., the authors observed that the existence of DNA in the buffer so-

lution greatly enhanced cell uptake for smaller molecules such as Dextrans [81]. This

observation can be explained by prolonged and enlarged pore openings due to DNA

molecules “stuck” within the pore. As discussed in Chapter 3, another typical finding

in electroporation research is that the combination of a strong, short pulse (HV) with

one or several weak, long pulses (LV) can enhance the TE greatly when compared with

using HV or LV alone [1, 2, 4, 28, 94, 81]. In addition, the longer the second pulse,

the greater the TE [81]. This trend can be naturally explained from the transloca-

tion perspective: the HV is mainly responsible for creating the pores, whereas the LV

assists DNA translocation electrophoretically. The above arguments suggest that the

translocation theory warrants further examination. In particular, the development of

a predictive model is much needed, such as to generate quantitative data to directly

correlate with experimental observations.

In this chapter, a stochastic model to study DNA translocation across an electro-

pore driven by finite-time electric pulses is presented. The model is based on previous

developments [50, 76, 82] which were primarily used to study DNA sequencing with

synthesized or protein nanopores. The model is capable of predicting the probability of

successful translocation (PST) as a function of field strength, pulse length, and DNA

size. Furthermore, many important insights are revealed, including the effects of the

electrophoretic and the diffusive time scales, and a power-law correlation between the

final probability of successful translocation (F-PST) and the governing parameters. The

simulated results are compared with previous data to interpret the trends. In partic-

ular, the diffusive time scale is used to explain the frequency dependence observed in

electroporation experiments with uni- and bi-polar pulse trains. Most importantly, this

work generates quantitative data which can be tested and validated with well-designed

experiments, to further our understanding of the physical processes governing DNA

electrotransfer. This work has been published in BBA Biomembranes [101].
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Abbreviation Definition

TE transfection efficiency
PST probability of successful translocation
F-PST final probability of successful translocation
PDF probability density function
PUT probability of unsuccessful translocation

Table 4.1: Abbreviations used in Chapter 4

N-m segments m segments

Region I
Φ1(t)

Region II
Φ2(t)

lK

Figure 4.1: A schematic of the problem. The membrane is an infinitesimally thin plane
separating region I (the extracellular space) and region II (the intracellular space). The
electric potential in each region is denoted by Φ.

4.2 Model formulation

A schematic describing the physical problem is shown in Fig. 4.1. The membrane is

modeled as an infinitesimally thin plane separating two regions, namely, I and II. A

pore is embedded on the membrane. The electric potentials of regions I and II are Φ1(t)

and Φ2(t), respectively. Note that Φ1(t) and Φ2(t) are spatial constants, leading to a

discontinuity known as the TMP, Vm = Φ1 − Φ2. The DNA molecule is modeled as a

charged polymer chain consisting of N segments, each with the Kuhn-length, lK (100

nm for double-strand DNA, see Table 4.2) [91]. The polymer chain translocates through

the pore as a single strand, i.e., hairpin structures are not considered [39]. The number

of segments in region II (the intracellular space) is denoted m. Correspondingly, the

number of segments in region I is N −m. In each region, the chain is assumed to be

a random walk of m (or N − m) segments pinned at the pore on one end. At each

instant, the chains are at thermodynamic equilibria.

Our model follows that of Sung et al. [82], which was initially used to simulate

the translocation of a polymer through a membrane pore under a constant potential
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difference. This model has been subsequently developed by Muthukumar and other

authors [50, 76]. The above problem can be described by a one-dimensional Fokker-

Planck equation governing the evolution of the probability density function (PDF),

P .

∂P (m, t)

∂t
=

∂

∂m

[
k0

kBT
P (m, t)

∂f(m, t)

∂m
+ k0

∂

∂m
P (m, t)

]
. (4.1)

Here P (m, t) is the probability density of having m segments in region II at time

t. The probability of having N segments in region II is the probability of successful

translocation. kB and T are the Boltzmann constant and temperature, respectively. k0

is the effective rate of change coefficient, and is given by the formula:

k0 =
D0

L2
, L =

0.918lk
N0.4

, (4.2)

where D0 is the effective chain diffusivity during translocation, and L is a characteristic

length derived from the radius of gyration, Rg. f is the Helmholtz free energy, and

consists of contributions from three parts:

f(m, t)

kBT
= (1− γ)ln(m+ 1) + (1− γ)ln(N −m+ 1) +m

∆µ

kBT
. (4.3)

On the right-hand side of the above formula, the first two terms are the entropic energies

of m and N −m segments, respectively [11], where γ is a constant (Table 4.2). The

third term represents the total electrostatic energy summed for all segments, where

∆µ =


z̃seVm, if 0 < t < tp.

0, if t > tp.

(4.4)

z̃s is an effective charge number per segment, e is the electron charge, Vm is the TMP

introduced above, and tp is the pulse length. Note that our formulation deviates slightly

from the previous work in two aspects. First, the effective rate of change coefficient,

k0, is derived from the chain diffusivity D0 from a scaling analysis. Second, the ef-

fective charge number per segment, z̃s is specified according to previous experimental



33

Symbol Definition Value/Source

F Faraday constant 96485 C/mol
kB Boltzmann constant 1.38× 10−23 J/K
T room temperature 298.15 K
lK the Kuhn-length of ds-DNA 100 nm [91]
lbp DNA base-pair length 0.34 nm
γ constant for a self-avoiding chain 0.69 [50]

Table 4.2: List of model parameters in Chapter 4

measurements. The details of the derivations and arguments are found in Appendix B.

Equations (4.1)-(4.4) are solved numerically using a second-order finite-volume method.

The convective term in Eq. (4.1) is discretized using an upwind scheme. A Crank-

Nicolson algorithm is used to integrate the diffusive term in time. At the ends of the

computational domain, m = 0 and N , absorbing boundary conditions are employed

[51, 82]. Namely,

P (m = 0, N ; t) = 0. (4.5)

In adopting Eq. (4.5), we assume that once the chain leaves the pore from either side, it

will never return. This assumption is consistent with the fact that the entropic energy

drops abruptly when the chain departs from the membrane. The flux at m = 0 is

collected, which we term the probability of unsuccessful translocation (PUT). The flux

at m = N is collected and termed the probability of successful translocation (PST).

For initial condition, we assume a narrow-band Gaussian distribution approximating

a delta function and satisfying the normalization condition
∫ N

0 P (m, t = 0)dm = 1. For

most of the cases studied below, the center of the initial profile is located at m0 = 0.2.

The standard deviation of the Gaussian distribution is chosen to be 0.05. In choosing

this initial condition, the assumption that a small fractional segment of the polymer

chain is already inserted into the pore is made. Other initial locations (m0 = 0.1, 0.5,

1, and 1.5) are also studied to examine the effects of initial condition in Section 4.3.

All model parameters are listed in Table 4.2.
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4.3 Results

In what follows, results are first presented using a DNA polymer chain of N = 24,

which approximately corresponds to a linear length of 7.2 kbp. The initial location is

assumed to be at m0 = 0.2. The effects of DNA length and initial location are studied

later.

Figure 4.2 demonstrates the typical evolution of the PDF, P (m, t), subject to a

TMP of Vm = 0.2V and a pulse length of tp = 5ms. The pulsing parameters are chosen

according to the experiments from Sukharev et al. [81] and a comparison with the

data is presented later. During the pulse (Figs. 4.2a-c), the peak spreads by diffusion,

and is pushed towards the right under the influence of the electrophoretic force. After

the pulse ceases, the profile experiences diffusion only and spreads further towards the

ends of the domain (Fig. 4.2d). At each instant, the PUT and the PST are collected

and their values are presented at the artificial nodes of m = −1 and 25, respectively.

However, they are only large enough to be visible in Fig. 4.2d. At a sufficiently long

time, the PDF will become uniformly zero (not shown) due to the absorbing boundary

conditions, and the sum of the PUT and the PST will reach one.

In Fig. 4.3, the results for a longer pulse of tp = 20 ms are shown. All other param-

eters are identical to those used in Fig. 4.2. In contrast to Fig. 4.2, the electrophoretic

force drives the PDF peak towards the right (Figs. 4.3a-c) until it reaches the end of

the domain (Fig. 4.3d). At t = 15 ms, the PST is already reaching one. For this case,

the longer pulse ensures the definitive success of translocation.

The evolution of the PST is more clearly shown in Fig. 4.4, where it is plotted as

a function of time for the two cases studied above. For tp = 5 ms, the PST is very

small at the end of the pulse. Indeed, as indicated in Fig. 4.2c, at this time the PDF is

centered at around m = 11.75. Most of the PST increment occurs by the slow diffusive

process post-pulsation. This time scale is much longer (seconds) when compared with

the pulse length. On the other hand, for tp = 20 ms, it is observed that the PST

increases sharply to one when the pulse is still present. Fig. 4.4 demonstrates that two

time scales may manifest during the translocation process. If the pulse is not able to
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Figure 4.2: Evolution of the PDF, P (m, t), for a DNA chain of N = 24. The initial
location is m0 = 0.2, the TMP is Vm = 0.2 V and the pulse length is tp = 5 ms. In Fig.
4.2d, the PUT and the PST are indicated at the artificial nodes of m = −1 and 25,
respectively.
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Figure 4.3: Evolution of the PDF, P (m, t), for a pulse length of tp = 20 ms. All other
parameters are identical to those used in Fig. 4.2.
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completely translocate the chain during its presence, then translocation occurs on the

slow diffusive time scale (seconds). On the contrary, if the pulse is sufficiently long,

then translocation occurs on the much shorter electrophoretic time scale (ms).

For both of the cases in Fig. 4.4, the PST reaches a steady-state value given sufficient

time. This value is termed the “final probability of successful translocation” (F-PST),

and its dependence on the pulse length is examined in Fig. 4.5. In addition to Vm =

0.2 V, two other cases, namely, Vm = 0.4 and 0.6 V are also studied. For each value of

the TMP, the F-PST increases until it saturates at a value very close to 1. Furthermore,

the F-PST increases along with an increasing TMP. This trend is examined in detail in

Fig. 4.6, where the contours of the F-PST is shown in the phase space of Vm and tp.

The contour lines are linear and parallel, with slopes close to −1, suggesting that to

reach the same value of the F-PST, Vm and tp obey a reciprocal correlation. In other

words, the product of Vm and tp is constant along the contours. For the contour of

F-PST= 0.99, Vm × tp ≈ 2.23 V·ms. The latter value can be used to define a threshold

of pulsing parameters for successful DNA delivery.
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Here the reciprocal relation between Vm and tp reflects that electrophoresis is the

main driving mechanism for translocation. In fact, the F-PST depends strongly on the

peak position of the PDF at the end of the pulse. The distance that the peak travels

is simply proportional to the product of the electrophoretic velocity and time. Because

the drifting velocity has a linear dependence on the TMP (see Eqs. (4.1)-(4.4)), the

behavior above is observed.

The effect of DNA size on the F-PST is next examined in Fig. 4.7. In Fig. 4.7a, the

F-PST is plotted as a function of the DNA segment number, N , for tp = 5 , 10, and 20

ms. The F-PST in general decreases as N increases and tp decreases. The correlation

between the F-PST and N is close to a power law, F-PST∼ N−1.5. In Fig. 4.7b, the

F-PST is shown as contours in the phase space of N and tp. The contour space lines are

again linear and parallel, with slopes close to 0.75, suggesting a power-law correlation

between N and tp.

The results from Figs. 4.6 and 4.7 together suggest a similarity behavior of the

F-PST as a function of Vm, tp, and N . 568 simulations are run with Vm ranging from

0.1 to 1 V, tp from 0.01 to 100 ms, and N from 17 to 134 (corresponding to DNA sizes

from 5 kbp to 40 kbp). The data is shown in Fig. 4.8a and is well-fitted with the

correlation,

F− PST = C × (Vmtp)
a

N b
, (4.6)

where C = 45.0, a = 1.1, and b = 1.46. These constants are obtained by minimizing

the fitting error. The coefficient of determination is R2 ≈ 0.999, indicating that the

formula (Eq. (4.6)) accurately captures the data trend.

In generating the previous results, it is assumed that m0 = 0.2. This initial location

corresponds to the electrophoretic insertion induced by a prior pulse of Vm = 1 V and

tp = 18.5 µs. This pulse is comparable to the first 10-µs strong pulse (HV) used in

Sukharev et al. [81]. In Fig. 4.8b, the effect of a varying m0 is studied. The simulations

for m0 = 0.1, 0.5, 1, and 1.5 are run for the same range of Vm, tp, and N values

considered in Fig. 4.8a. For each value of m0, 106 cases are studied. It is found that the
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change in m0 does not cause appreciable deviation from the power-law behavior. The

collection of data is best-fitted with the correlation, F-PST= 60.0× (Vm tp)1.07/N 1.51.

The powers a and b only slightly differ from those in Fig. 4.8a, and the coefficient of

determination is R2 = 0.946. It is worthwhile to mention as m0 becomes large, eventual

departure from Eq. (4.6) is expected (not shown). However, the focus of this work is

studying DNA translocation with only a small segment initially inserted.

4.4 Comparison with Experiments

Direct, quantitative comparison with experimental data is difficult due to the lack of

sufficient details in the previous measurements. In what follows, the qualitative trends

from our simulation and two of the most relevant experimental studies in the literature,

namely, by Sukharev et al. [81] and Faurie et al. [15], are compared and discussed.

The study performed by Sukharev et al. used a two-pulse scheme to electroporate

simian Cos-1 cells. The first pulse is 6 kV/cm in strength and 10 µs in duration. After

a 100-µs delay, a second pulse of 0.2 kV/cm was applied with the duration varying

between 0 and 10 ms. The TE was obtained as a function of the second pulse duration

(see inset of Fig. 4.9). In general, a near linear dependence is observed. The simulated

result using the current model is shown in Fig. 4.9, which is generated following the

setup in Section 4.3. The initial PDF is centered at m0 = 0.2, and only the second

pulse from the experiment is considered. By using this configuration, it is assumed

that the first pulse is mainly responsible for pore creation, and the initial insertion of

the DNA into the pore. The average DNA length is 7.2 kbp, or N = 24. The TMP

is Vm = 0.2 V which is obtained via the formula Vm = 1.25ER [31], where E = 0.2

kV/cm is the applied field strength of the second pulse, and R = 8µm is the cell

radius. The simulated F-PST is plotted as a function of the pulse length, tp, in Fig.

4.9. Although the F-PST and the TE are not the same, they are both measures for

the efficacy of DNA delivery, and comparable linear trends are found in the simulation

and the experimental data in Fig. 4.9. Previous theory proposed that the increase

in TE was induced by increased pore size and population, or increased permeabilized

area due to prolonged field exposure [77]. Here an alternative interpretation is offered
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Figure 4.9: Simulated F-PST as a function of tp using parameters found in Sukharev
et al. [81]. The inset shows the original experimental data (stars) in terms of the TE
measured by fluorescent intensity.

that longer pulses enhance the probability of translocation, which manifests itself as

enhancement in TE.

Next, the experimental data by Faurie et al. [15] is examined. In these experiments,

a train of six uni-directional (uni-polar) or alternating (bi-polar) pulses were applied to

transfect CHO cells with plasmids of 4.7 kbp in average length. Each pulse was 1 ms

in duration, with the delay of 0.013, 0.1, 1, and 10 seconds, corresponding to repetition

frequencies of 77, 10, 1, and 0.1 Hz, respectively. The resulting fluorescence per cell is

shown in Fig. 4.10a.

The simulated results with m0 = 0.2, N = 16, and the same pulsing scheme as

in Faurie et al. are presented in Fig. 4.10b. Although there are noticeable differences

between the data and the simulation, the latter captures a few important features of the

former. For the uni-polar pulse, the simulation predicts a curve with the similar shape

to that in the experimental data. The F-PST begins to increase at approximately 1 Hz.

For frequencies greater than 1 Hz, the F-PST reaches one asymptotically, suggesting a

high probability of successful delivery. For the bi-polar pulse, the simulation captures



43

10
−1

10
0

10
1200

400

600

800

1000

1200

Pulse Repetition Frequency (Hz)

F
lu

or
es

ce
nc

e 
(A

U
)

(a) Bi−polar

Uni−polar

10
−1

10
0

10
10

0.2

0.4

0.6

0.8

1

Pulse Repetition Frequency (Hz)

F
−

P
S

T

 

 

(b)
 Bi−polar
 Uni−polar

Figure 4.10: (a) Experimental results from Faurie et al. [15]. The fluorescence intensity
per viable cell is plotted as a function of the pulse repetition frequency. (b) Simulated
result using parameters from the experiment.



44

the descending trend for frequencies higher than 1 Hz.

The main difference between the data and the simulation is at the lower frequencies.

In the experiments, the bi-polar pulse results in a TE higher than the uni-polar one,

whereas in the simulation, these two pulsing schemes lead to similar values of the F-

PST. This effect is possibly attributed to the fact that DNA molecules can enter the

cell from both sides under bi-polar pulses [14], enhancing the probability of delivery.

This mechanism is not included in the current model, and is also likely responsible for

the peak at 1 Hz shown in Fig. 4.10a.

The frequency dependence in the simulation is mediated by a diffusive time scale,

which is argued here to be responsible for the trends observed in the experimental data.

As demonstrated in Section 4.3, if a single pulse is not able to complete the translo-

cation by electrophoresis, then the translocation (either successful or unsuccessful) is

governed by the diffusive drifting of the polymer chain post-pulsation. For the plas-

mids considered in Faurie et al., this time scale is R2
g/D0 = 5.5 s, using Rg = 250 nm,

and D0 = 1.13 × 10−14 m2/s. At low frequencies, the sufficient delay time between

pulses ensures that the translocation is completed, such that there’s no compounding

effect between the individual pulses. For this case, the uni- and bi-polar pulses do not

behave differently according to the model, although in reality the effect noted above

may render the bi-polar pulse more advantageous. As the frequency increases and the

delay time decreases below the threshold, additional uni-polar pulses help push-in the

plasmids into the cell, whereas bi-polar pulses tend to reverse the translocation, hence

causing the observed behavior.

However, it should be emphasized that in the experiments and between the pulses,

diffusive drifting of the chain may not be the only mechanism at work. Endocytosis

can be triggered at this stage, and the direct interaction of the DNA molecule and the

membrane may also play a role. The complete intake of DNA may thus be a complex

process involving all these aspects. On the other hand, regardless of the specific nature,

the mechanism(s) needs to act on the characteristic time scale of a few seconds to be

able to explain the frequency dependence observed.

Finally, it is worthwhile to remark that although the above comparisons are only
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qualitative, our theory can be verified with well-designed quantitative experiments. For

example, experiments similar to those by Sukharev et al. can be repeated, but with a

wider and controlled range of Vm, tp and N values to validate the similarity behavior

indicated by Eq. (4.6). In particular, pulses with the same product, Vm × tp, should

result in similar values of TE. For uni-polar and bi-polar pulsing experiments, different

sizes of plasmids can be used which leads to different diffusive time scales, such that they

may be detected in the measurements. In addition, the length of each individual pulse

can also be explored as a control parameter, such that the electrophoresis-dominant

and diffusion-dominant regimes can be differentiated.

4.5 Conclusions

In this work, a 1D Fokker-Planck simulation for the translocation of a DNA polymer

through a membrane-bound nanopore is presented, within the context of electroporation-

mediated molecular delivery. The model provides a few important insights.

• The translocation may occur on two disparate time scales, namely, the elec-

trophoretic time (∼ ms), and the diffusive time (∼ s). If the pulse is sufficiently

long to complete the translocation via electrophoretic drifting, then the elec-

trophoretic time scale is observed. Otherwise, translocation completes (either

successfully or unsuccessfully) on a much longer diffusive time.

• The F-PST (the final probability of successful translocation) follows the correla-

tion,

F− PST ∼ (Vmtp)
a

N b
.

The values of a and b are close to 1 and 1.5, respectively, for small m0-values,

or for DNA chains with small initial insertion distances. The dependence of the

F-PST on the product, Vm × tp, directly reflects that translocation is primarily

driven by electrophoretic drifting.

The simulation results are compared with experimental data from previous studies. In

particular, the diffusive time scale is proposed to explain the frequency dependence
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observed in electroporation experiments with uni- and bi-polar pulse trains. Another

important contribution of the work is that the model predicts trends and correlations

(such as Eq. (4.6)) that can be verified with well-designed experiments.
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Chapter 5

A preliminary study of vesicle/cell relaxation

5.1 Introduction

Complex responses are induced when cells and vesicles are exposed to applied elec-

tric fields. Besides the phenomenon of electroporation, cell electrodeformation and

relaxation is another class of important problems in biological research. In particu-

lar, quantitative measurements of cell electrodeformation can be used as a technique

to probe membrane properties [36]. This topic has been of our particular interest,

as changes in biomechanical and biophysical properties of cells are closely related to

the onset and progression of human diseases [83]. For example, human breast cancer

cells are ”softer” than healthy breast cells, and they become even more deformable in

metastatic state [23]. On the other hand, human hepatocellular carcinoma cells exhibit

greater stiffness when compared with normal hepatocytes [102]. The research field of

biomechanics has seen a rapid growth in the past decade, with its great potential in

developing new biomedical techniques [83].

Previously, Sadik et al. [71] performed an experimental investigation of large vesicle

electrodeformation with various DC field strengths and intra-to-extra-vesicular conduc-

tivity ratios [71]. In a companion work, Zhang et al. performed a transient analysis to

quantify droplet/vesicle electrodeformation and relaxation [103, 104]. Here relaxation

refers to the retraction of a droplet/vesicle back to the original spherical shape when the

forcing mechanism is removed. By assuming that the initial spherical droplet/vesicle

always stays in a spheroidal shape, Zhang et al. analytically derived ODEs that govern

the dynamics of aspect ratio change both for eletrodeformation and relaxation. The

model prediction is found to agree well with the experiments by Riske and Dimova [65],

revealing that the vesicle relaxation obeys a universal behavior regardless of the means
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of deformation. This is one of the most important contributions of Zhang et al’s work

[104], as the universal scaling law provides a simple approach to detect membrane prop-

erties by studying vesicle/cell relaxation, instead of deformation which is presumably a

much more complex process.

In this work, the author implements a small-deformation analysis to reveal impor-

tant physical insights of our theory that was not clearly understood previously. The

author then extends our model investigation to a practical use, namely, directly ex-

tracting membrane properties from time-resolved measurements of aspect ratio change

during relaxation. The importance of this work lies in developing a simple but reliable

method of detecting well-defined mechanical properties of any vesicle/cell group. This

work is currently under preparation for a journal publication.

5.2 A small-deformation analysis of vesicle relaxation

In our previous work [104], the governing equation for vesicle relaxation is derived

within the prolate spheroidal coordinate system. This result is in general valid from

the regime of small- to moderate-deformation, which has been verified through com-

parison with experimental data. Nevertheless, one limitation of this theory is that

the resulting solution assumes a relatively complex mathematical form. This limitation

poses challenges in understanding the physical mechanisms governing the process. Here

we pursue a simplification by performing a small-deformation analysis of the problem.

Through investigation of the system behavior, the author proves that the governing

equation in [104] (Eq. 37 therein) converges to that for droplet relaxation in the lead-

ing order, or equivalently in the limit of infinitesimally small-deformation. The details

of derivation are provided in the following, and a brief discussion is presented in the

end of this section.

5.2.1 Problem description

A schematic of the problem is shown in Fig. 5.1. A vesicle formed by an infinitesimally

thin membrane is suspended in another fluid. The intra- and extra-vesicular vicosities
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Figure 5.1: A schematic of the problem.

are µi and µe, respectively. The vesicle membrane is subject to a uniform tension of Γ0

at rest, and the vesicle remains in a spherical shape without any external force applied

(the dashed line in Fig. 5.1). To solve the relaxation problem, it is assumed that the

vesicle has been pre-deformed into a prolate spheroidal shape of aspect ratio e0, which

is defined as the ratio of the major axis to the minor axis of the spheroid (the solid line

in Fig. 5.1). At the beginning of this problem, or the time t = 0, the application of

all external deforming forces (e.g., electrical forces) has been removed and all residual

effects have also vanished. In other words, the relaxation process does not depend on

any detail of how the vesicle was deformed. This assumption is always a good one as

long as the relaxation process is the slowest one compared to any residual effect of the

deformation process (e.g., membrane discharging in electrodeformation).

The problem is solved within an axissymmetric spherical coordinate (r, θ) as shown

in Fig. 5.1. To obtain a small-deformation solution, e0− 1� 1 is presumed and all the

derivation is based on the leading-order Taylor expansion of each term with respect of

e − 1. The intra-vesicular fluid is assumed to be incompressible such that the volume

of vesicle is a constant throughout the relaxation process.
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5.2.2 The hydrodynamic problem

Dimension analysis shows that the Reynolds number of the problem is of the order

τdiff/τrelax, where τdiff = a2/ν is the diffusive time scale, and τrelax = µa/Γ0 is the

relaxation time scale. Experiments show that [65], τrelax is of the order of milliseconds

to seconds depending on magnitude of Γ0, which is much longer than τdiff which is in

the order of microseconds in this problem. Consequently, the Stokes equation for an

incompressible flow is used here to solve the flow problem, which can be rewritten in

terms of the stream function, ψ, as:

∇4ψi,e = 0. (5.1)

The subscript i and e denote intra- and extra-vesicular space, respectively. In the

spherical coordinate system, the relationships between ψ and velocity/pressure are:

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
, (5.2)

−∇p+ µ∇2u = 0. (5.3)

ur and uθ are radial and polar components of velocity vector u, respectively, and p is the

pressure. Once ψ is solved from Eq. (5.1), the expression of intra- and extra-vesicular

velocity/pressure can be found through Eqs. (5.2) and (5.3).

5.2.3 Boundary conditions

Without any external forces applied, the velocity field converges to zero at infinity. It

also has to be finite at r = 0. At the membrane, the following conditions are applied:

ui = ue, (5.4)

ui · n = ue · n = un, (5.5)∫
S
un · (T enn − T inn − fmemn )dS = 0, (5.6)
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T ent = T int. (5.7)

Equation (5.4) is the velocity continuity condition across the membrane. Equation (5.5)

is the kinematic condition which relates the normal velocity un of the membrane to the

rate of aspect ratio change. The details are presented in Section 5.1.5. Equations (5.6)

and (5.7) refers to the normal and tangential stress matching condition, respectively.

Here T denotes components of the hydrodynamic stress tensor, fmem denotes the force

density arising from the membrane, and subscripts n and t denote the components

in the normal and tangential direction, respectively. Note that in Eq. (5.6) a global

balance integrated over the whole membrane surface is used instead of a point-to-point

balance, which is not possible to be established with a uniform distribution of fmem in

the current problem.

According to [104], the membrane force density fmem = 2ΓHn, where Γ is the local

membrane tension and H is the mean curvature. In case that the deformation is not

extremely large, the correlation between Γ and aspect ratio e arises from the folding

and unfolding of molecular-level thermal undulation [26], which is governed by:

∆(e) =
kBT

8πκ
ln

Γ

Γ0
, (5.8)

where kB is the Boltzmann constant, T is the temperature and κ is the bending rigidity

of the membrane. The dimensionless function ∆ is the increase in apparent membrane

area of a spheroid relative to the spherical state:

∆ =
1

2
(1− ξ−2

0 )−
2
3 [1− ξ−2

0 + (ξ2
0 − 1)

1
2 arcsin(ξ−1

0 )]− 1, (5.9)

where ξ0 = (1 − e−2)−
1
2 . Equations (5.8) and (5.9) together give the quantitative

information of membrane force density as a function of deforming state.

5.2.4 Base state

In solving the problem, the objective is to find out the transient solution for e in its

leading order of Taylor expansion. In other words, the velocity, pressure, stress terms are
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in the order of e−1 or ė. This refers to a small deviation from the “base state”, which is

the solution corresponding to the spherical state of the vesicle at rest. Equations (5.1)-

(5.7) define the governing equations of a complete solution, which is the superposition

of the base-state and the small-deformation solution. In the following, a superscript

0 is used to denote the base state, and the variables without superscript 0 as used in

all the previous formula, are changed to represent the leading-order small-deformation

solution, instead of the complete solution hereafter.

It is straightforward to obtain the solution of the base state:

ψ0
i,e = Constant, (5.10)

u0
i,e = 0, (5.11)

p0
e = p∞, p

0
i = p∞ + Γ0 ·

2

a
, (5.12)

where p∞ is a constant pressure at infinity. Subtracting the contributions of base state

from Eqs. (5.1)-(5.7), the governing equations for the small-deformation solution can

be obtained. It turns out that all equations keep exactly in the same form except that

fmem now has a new expression of fmem = (2ΓH − Γ0 · 2
a)n.

5.2.5 Kinematic condition

The normal velocity at each point of the membrane un is not an independent variable.

It has an intrinsic correlation with the rate of aspect ratio change ė. This correlation

can be derived by the following approach. The surface equation of a spheroid with an

aspect ratio of e and a volume of 4
3πa

3 in (r, θ) is

r − ae−
1
3 [1− cos2 θ(1− 1

e2
)]−

1
2 = 0. (5.13)

In its leading-order expansion with respect to e−1, Eq. (5.13) is simplified to a surface

equation:

F (r, θ, e) = r − a[1− 1

3
(e− 1)(1− 3 cos2 θ)] = 0. (5.14)
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From this surface equation, the normal velocity on the membrane can be derived as a

function of e and polar angle:

un = − 1

|∇F |
∂F

∂t
= −1

3
aė(1− 3 cos2 θ). (5.15)

5.2.6 Results

To satisfy Eq. (5.15) on the membrane, the leading-order solution of ψ is assumed to

be in the following mode:

ψ(r, θ) = sin2 θ cos θrn. (5.16)

Substituting Eq. (5.16) into Eq. (5.1), it can be solved out that available values of n

are -2, 0, 3 and 5. Considering the constraints at infinity and r = 0, the solutions of ψ

are:

ψi = (C
r3

a
+D

r5

a3
) sin2 θ cos θ, (5.17)

ψe = (A
a4

r2
+Ba2) sin2 θ cos θ, (5.18)

where A, B, C and D are undetermined constants in the dimension of velocity. Their

values are solved by applying the boundary conditions Eqs. (5.4)-(5.7). The mathe-

matical expressions for velocity, pressure and stress terms are presented in Appendix

C. The final results of linear equations of A, B, C and D are:



C +D = A+B = 1
3aė

3C + 5D = −2A

µi(8D + 3C) = µe(8A+ 3B)

8
5 [µe(6B + 8A)− µi(D − 2C)] = −32

15(e− 1)Γ(e)

. (5.19)

By eliminating A, B, C and D from Eq. (5.19), the final governing equation of e can

be derived:

de

dτ
= − 40(µr + 1)

(2µr + 3)(19µr + 16)
(e− 1) exp[

8πκ∆(e)

kBT
], (5.20)
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where µr = µi/µe is the intra-to-extra-vesicular vicosity ratio, τ = t/τ0 is the dimen-

sionless time, and the characteristic time τ0 = µea/Γ0.

Equation (5.20) is the main result of this work, as it connects our general solu-

tion in [103, 104] with available analytical solution of droplet relaxation in the small-

deformation regime. On one hand, in the case for droplet relaxation, the exponential

term on the right-hand side of Eq. (5.20) will be replaced by 1 as the interfacial tension

is a constant γ and does not depend on e (no undulation effect involved). Then Eq.

(5.20) will give the same leading-order solution as in [24] (Eq. 3 therein), which makes

an analysis for the retraction of a droplet from a deformed shape to the spherical state.

This validates our theoretical derivation above.

On the other hand, for µr = 1, Eq. (5.20) can be simplified and rewritten into the

following form:

de

dτ
= − 3

14
× 32

15
(e− 1)× exp[

8πκ∆(e)

kBT
]. (5.21)

Compared to our general governing equation in [104] which is also derived assuming

µr = 1:

de

dτ
= − 1

F
(ξ2 − 1)−

3
2 f24(ξ0) exp(

8πκ∆

kBT
), (5.22)

here 3
14 and 32

15(e − 1) in Eq. (5.21) are the analytical leading-order terms of Taylor

expansion of 1
F (ξ2

0 − 1)−
3
2 and f24(ξ0) in Eq. (5.22) about e = 1 (spherical state),

respectively. In other words, Eq. (5.21) is verified to be a leading-order approximation

of our general solution in the small-deformation regime.

5.2.7 Discussion

The main contribution of this theoretical work is that it proves the following fact: the

governing equation for vesicle relaxation converges to that for droplet relaxation in the

limit of infinitesimally-small-deformation regime. This behavior can be easily seen from

Eq. (5.20), as the leading-order term of Taylor expansion of the exponential term about

e = 1 is simply 1 (∆(e = 1) = 0). This corresponds to a constant membrane tension

of Γ0, analogous to the surface tension coefficient γ for a droplet interface. Given this
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behavior, the relaxation of a vesicle close to spherical state is an exponentially-decaying

process governed by a single time scale:

τrelax =
(2µr + 3)(19µr + 16)

40(µr + 1)

µea

Γ0
. (5.23)

With τrelax, µi,e and a measured, then the membrane tension Γ0 can be extracted from

well-designed experiments.

Furthermore, Eq. (5.21) which corresponds to the case of µr = 1, helps reveal

important physical insights of different regimes in the relaxation process. In the right-

hand side of Eq. (5.22), 1
F (ξ2

0 − 1)−
3
2 , f24(ξ0) and the exponential term represent

the effect of hydrodynamic dissipation, membrane energy change resulting from local

curvature, and thermal undulation, respectively. From an energy point of view, Eq.

(5.22) is equivalent to regulating the energy release of a deformed membrane through

hydrodynamic dissipation inside and outside the vesicle. The term of 1
F (ξ2

0 − 1)−
3
2

appears to depend on e very weakly (numerical plot shows that this is true even for a

relatively large value of e), suggesting a “steady” dissipation rate of energy independent

of deformation. Consequently, the behavior of relaxation is governed by the competition

between f24 and the exponential term.

When e is close to 1 (small-deformation regime), the change of membrane energy

is dominated by the behavior of the second term (f24), namely, change of local curva-

ture. Therefore the behavior is similar to that for relaxation of a pure liquid droplet.

When e departs from the small-deformation regime such that the behavior of the ex-

ponential term dominates over f24, a logarithm-like dependence of the aspect ratio on

time manifests. Finally, in the moderate-deformation regime, the contributions from

f24 and the exponential terms are comparable, which leads to a transition solution

between “logarithm-like” and “exponential-decaying” regime. The typical behavior of

these three regimes are shown in Fig. 5.2, which is discussed in detail in the next

section.
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Figure 5.2: Schematic of regimes in vesicle relaxation. Solid curves are numerical
solution of Eq. (5.22) for two different values of membrane bending rigidity κ. When
the deformation is moderate (e > 1.2 for this case), the aspect ratio shows a logarithm-
like dependence on the dimensionless time τ . When the deformation is very small
(e < 1.05), the aspect ratio decays exponentially to 1 (spherical state), and the decaying
time scale is independent of κ (inset). There is a transition regime for e between 1.05
and 1.2, which is not apparently seen in this case.

5.3 Extraction of membrane properties

The main goal of this work is to find a simple yet reliable method to extract mem-

brane mechanical properties from experimental measurements. In the current model,

two membrane parameters, namely, the bending rigidity, κ, and the initial membrane

tension, Γ0, are involved. From the discussion in Section 5.2, Γ0 can be extracted by

measuring the characteristic time scale of relaxation in the small-deformation regime.

On the other hand, the bending rigidity, κ, can be extracted from relaxation in the

moderate-deformation regime, as shown in Fig. 5.2.

Figure 5.2 plots the numerical solution of Eq. (5.22) for two realistic values of κ,

(2.47×10−20 J, blue; 8.3×10−20 J, green). The logarithm-like and exponential-decaying

regimes for aspect ratio are marked. As demonstrated in the previous section, when

e < 1.05, it shows an exponentially-decaying behavior. The decaying time scale is in-

dependent of κ, which is more clearly shown in the inset of Fig. 5.2. When e > 1.2
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(moderate deformation), it shows a linear dependence on logarithm of τ , which man-

ifests when the behavior of the exponential term dominates in Eq. (5.22). Numerical

and theoretical analyses both show that the slope of this ”linear behavior” is inversely

correlated with κ. Such system characteristics suggest that, the value of κ can be

obtained by measuring the “slope” of relaxation from the plot of e against ln τ .

It is worthwhile to mention that, there is also a transition regime for e between

1.05 and 1.2. However, in most realistic cases the solution in this regime shows similar

behavior as for e > 1.2, and is therefore not apparently seen in Fig. 5.2.

The values of κ for four different types of vesicles/cells are extracted by fitting the

numerical solution of Eq. (5.22) with experimental data following a least-square error

principle. The experiments were performed by Riske and Dimova [66] (vesicles) and

by Yao and Xiong [87] (breast cancer cells), respectively. The results are shown in

Fig. 5.3. The vesicle/cell types are: POPC, vesicle of a lipid membrane of 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphocholine; MCF7, a breast cancer cell line; Egg-PC GUV,

Giant unilamellar vesicles of L-a-phosphatidylcholine from egg yolk; MDA-MB-231, a

breast cancer cell line in metastatic state.

A surprising observation is that, cell relaxation, although presumably a much more

complex problem, shows very similar behavior to vesicle relaxation, and is well cap-

tured by our model. More importantly, the MDA-MB-231 cells are found to be ”softer”

(having a lower value of κ) than MCF7 by our approach. This agrees with the behavior

of metastatic cancer cells which are softer such as to migrate more easily. Our model

and approach therefore has the potential to be developed into a simple, reliable and

promising tool in detecting mechanical properties for not only vesicles, but also bio-

logical cells. This is a significant advance compared to most previous methods, which

either adopted over-simplified, coarse-grained models or included so many unnecessary

details that the model has become too complex for practical applications.

5.4 Conclusions

The main findings of this work are:
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Figure 5.3: Extraction of membrane bending rigidity κ by fitting numerical solution
(solid) of Eq. (5.22) and experimental data (symbols), for four different types of vesi-
cles/cells. The vesicle/cell types are: POPC, vesicle of a lipid membrane of 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine; MCF7, a breast cancer cell line; Egg-PC GUV,
Giant unilamellar vesicles of L-a-phosphatidylcholine from egg yolk; MDA-MB-231, a
breast cancer cell line in metastatic state.

• The author theoretically proves that, in the limit of infinitesimally-small-deformation,

vesicle relaxation behaves identically to droplet relaxation. This process is an

exponentially-decaying one governed by a single time scale τrelax, which is a func-

tion of intra- and extra-vesicular viscosities, initial vesicle radius and membrane

tension. With viscosities and vesicle radius known, the membrane tension can be

extracted by measuring the decaying time scale of vesicle relaxation in the regime

of small deformation.

• An intrinsic mechanical property of the membrane, bending rigidity, can be ex-

tracted by fitting the model prediction with time-resolved measurement of vesicle

relaxation in the regime of moderate deformation. In this regime, the relaxation

process is dominated by the membrane energy change due to folding of thermal

undulation. This leads to a logarithm-like dependence of the aspect ratio on

time. With this approach, membrane properties are extracted for experimental

data of two groups of vesicles (egg-PC, POPC) and cells (MCF-7, MDA-MB-231),
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respectively. Preliminary results show that the membrane properties of vesicles

extracted from our new approach is in good agreement with that from other meth-

ods [66]. In addition, the author correctly captures a lower bending rigidity from

MDA-MB-231 cells (cancer breast cells in metastatic state) compared to that from

MCF-7 cells. This validates our approach as a simple, reliable and promising tool

in detecting mechanical properties for not only vesicles, but also biological cells.
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Chapter 6

Conclusions

In this thesis, the author implemented model studies of electroporation-mediated deliv-

ery for three different types of target molecules: propidium iodide, Fluorescein-Dextran

and linear double-strand DNA polymer chain. For the first two tasks, molecular de-

livery are simulated by numerically solving the coupled electrical problem, the ASE

model for membrane permeabilization, and the Nernst-Planck Equation for transport.

For the third task, a 1D Fokker-Planck simulation is presented for the translocation of

a DNA polymer through a membrane-bound nanopore.

In the study of PI delivery, simulated results are directly compared with temporally-

and spatially-resolved experiments by Sadik et al. [72] to tackle the basic physical

processes involved in electroporation-mediated molecular delivery. Through a care-

ful investigation of the process of membrane permeabilization and pore dynamics, a

clear and comprehensive physical understanding is established to quantitatively ex-

plain experimental observations. In particular, an electrokinetic phenomenon termed

Field Amplified Sample Stacking (FASS) is found to be responsible for the inverse cor-

relation between extra-cellular conductivity and the total delivery. This quantitative

study validates our prediction tool, provides mechanistic interpretation to experimental

trends, and furthermore makes a connection between the mesoscopic ASE model and

macroscopic observables.

In examining the delivery efficiency of two-pulse electroporation, the correlation

between Fluorescein-Dextran delivery and pulsing parameters is investigated quantita-

tively. As the main contribution of this task, the whole-cell level simulations capture

the experimentally-observed existence of a threshold field strength above which the sec-

ond pulse (LV) becomes effective in mediating molecular transport. Analysis of pore
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dynamics reveals physical insights for this behavior, which results from a bifurcation

point of equilibrium pore size with respect to the transmembrane potential. In addi-

tion to these findings, this model study provides useful predictions which can be verified

with well-designed experiments.

In studying DNA delivery, the author focuses on investigating the ”translocation

theory”, and has developed a 1D model in predicting the probability of successful

translocation across a single electropore. This variable is supposed to be proportional

to the total DNA delivery over the whole membrane. The main result of this work is a

power-law correlation between the delivery and pulsing parameters. Such a correlation

can be verified by experiments, which will in turn help check the validity of ”transloca-

tion theory”, and hence improves the current understanding about how DNA molecules

enter the cell via electroporation.

In summary, this work has established connections between available theoretical

tool and experimental observations. Overall, the tasks accomplished in this study

contributes to improving the current understanding of the physical process involved

in electroporation-mediated delivery, either for small-, moderate- or large-sized target

molecules.

Besides electroporation research, the author has also performed a model study in

vesicle/cell relaxation. The main result of this work is a small-deformation theory

of vesicle relaxation. The author proves that, in the limit of infinitesimally small-

deformation, the dyanmics of vesicle relaxation is identical to that for a droplet. Phys-

ical insights are also revealed in differentiating the dominating mechanisms in small-

and moderate-deformation, respectively. Preliminary results are shown in extracting

membrane properties (bending rigidity) for different vesicle/cell types. This work con-

tributes to the development of a reliable and promising theoretical tool of detecting

mechanical properties of vesicles/biological cells.
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Appendix A

Model formulation of electroporation-mediated delivery

A.1 The electrical problem

The overall model framework mostly follows that from our previous work [42]. The

schematic of the problem is shown in Fig. A.1. The cell is modeled as a spherical

space surrounded by a thin and rigid cell membrane. A 2D axissymmetric spherical

coordinate system is adopted, with the direction of x axis aligned with the applied

electric field. When the electric field is on, the cell membrane is partially permeabilized

and the charged PI molecules can go through the permeabilized membrane into the

cytoplasm. Since the charging relaxation time scale (in the order of nanoseconds) is

very small compared to the process studied here (in the order of micro- to milli-seconds),

the Ohmic equations are directly solved for the electric potentials inside and outside

the cell, respectively:

∇ · j = ∇ · (σi,e∇Φi,e) = 0, (A.1)

where j denotes the Ohmic current vector, σi,e denote the intra- and extra-cellular con-

ductivities, and Φi,e denote the intra- and extra-cellular electric potentials, respectively.

In this study, σi,e are both assumed to be constant, and their values are adopted from

Sadik et al.’s experiments [72].

Equations (A.1) are coupled on the cell membrane by the electric current continuity

condition across the membrane:

−n · σi∇Φi = −n · σe∇Φe = Cm
∂Vm
∂t

+ jp, (A.2)

where n is the local unit vector normal to the membrane, and Cm is the membrane
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Figure A.1: A schematic of the problem. (r, θ) denotes the spherical coordinate system.
x is the axis of rotation, and is aligned with the direction of field application. The field
strength is denoted by E0. The intra- and extra-cellular conductivities are denoted by
σi and σe, respectively.

capacitance. Vm is the transmembrane potential defined by the potential jump across

the membrane (Φi − Φe) |r=R. The last term jp in Eq. (A.2) is the total local ionic

current density through all the conductive pores generated by the electric field. The

formula of jp is adopted from Krassowska and Filev [35]:

jp(t, θ) =

K(t,θ)∑
j=1

ip(rj(t, θ), Vm)/∆A, (A.3)

where ∆A is the area of local element, K is the total number of conductive pores,

and ip denotes the current through an individual pore with radius of rj and local

transmembrane potential of Vm. ip is calculated by the formula:

ip =
2πr2

jσeffVm

πrj + 2h
, (A.4)

where σeff = (σe−σi)/ln(σe/σi) is an effective pore conductivity and h is the membrane

thickness. The detailed derivation of Eq. (A.4) can be found in [40].

A.2 Membrane permeabilization

The ASE model derived by Krassowska and Filev [35] is adopted to solve for the nu-

cleation of electropores and evolution of radius for each individual pore:
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dN

dt
= αe(Vm/Vep)2

(
1− N

N0eq(Vm/Vep)2

)
, (A.5)

drj
dt

= U(rj , Vm), j = 1, 2, · · · ,K(t, θ). (A.6)

Here N is the local pore number density, U denotes the advective velocity of pore

evolution in size and α, Vep, N0, q are model constants. In this model, each pore is

generated at an initial radius of 0.51 nm, and the rate of nucleation is governed by

Eq. (A.5). The dynamics of size evolution for each pore are then captured by Eq.

(A.6), which requires the total energy of the lipid membrane at its minimum. After

the electric field turns off, the electropores will reseal, which effect is also captured by

the current permealization model. Further details of the model including the values of

model parameters adopted can be found in [35].

A.3 Species transport

As shown in Fig. A.1, the free PI ions (denoted by PI2+) are delivered into the cy-

toplasm after the cell membrane is permeabilized. The delivered PI2+will bind to the

DNA/RNA sites (denoted by B) in the cytoplasm or the nucleus and become bound PI

(denoted by PIB) which is fluorescent such as to be experimentally observed. To fully

take into such a binding effect into account, three specific species, namely, PI2+, B and

PIB are considered in the simulations. It is assumed that before the electric pulse is

applied, the binding sites are only uniformly distributed in the cytoplasm at an initial

molar concentration of [B]i,o, and the free PI ions are only uniformly distributed in the

extra-cellular space at an initial molar concentration of [PI2+]e,o. Here the subscript i

indicates an intra-cellular value, e indicates an extra-cellular value and o indicates an

initial value. The binding sites are assumed to immobile, and the following chemical

reaction will take place after free PI ions are accessed into the cell:

PI2+ + B
k+


k−

PIB. (A.7)
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Here k+ and k− are the association and dissociation rate constants, respectively. The

bound PI molecules are also assumed to immobile.

A generalized Nernst-Planck system is adopted to solve for the ionic transport of

PI2+, B and PIB. The effect of chemical reaction manifests itself as the source and sink

terms in the transport equations. As both B and PIB are immobile, their transport

equations are simply derived from the evolution of local species concentration due to

chemical reaction.

The equations for ionic transport are:

∂[PI2+]

∂t
= ∇ · (ωFz[PI2+]∇Φ) +∇ · (D∇[PI2+])− k+[B][PI2+] + k−[PIB], (A.8)

∂[B]

∂t
= −k+[B][PI2+] + k−[PIB], (A.9)

∂[PIB]

∂t
= k+[B][PI2+]− k−[PIB], (A.10)

where [PI2+], [B], [PIB] denote the molar concentrations for each species, respectively.

F is the Faraday constant, ω, z, D denote the mechanical mobility, the valence number

and the diffusivity of PI2+, respectively. Eqs. (A.8)-(A.10) are solved in both the intra-

and extra-cellular spaces. They are coupled on the membrane by the continuity of

molar flux density for PI2+:

Fi,e = Fm, (A.11)

where Fi,e are the species flux densities from the intra- and extra-cellular space, respec-

tively, and Fm is the flux density across the cell membrane. Fi,e and Fm are calculated

by the formula:

Fi,e ≡ −n · (ωFz[PI2+]∇Φ +D∇[PI2+])i,e, (A.12)
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Fm ≡ ρp
D(Pe+ lnγ)

h

γ − 1

lnγ

([PI2+]e − [PI2+]iexp(Pe))

(1− γexp(Pe))
. (A.13)

Here the Peclet Number is defined as Pe ≡ ωFzVm/D. γ = σi/σe is the intra-to-extra-

cellular conductivity ratio. The pore area density (PAD) ρp indicates the fractional

area occupied by the conductive pores, which is given by the following pore statistics:

ρp(t, θ) =

K(t,θ)∑
j=1

πr2
j/∆A. (A.14)

ρp is frequently used as a measurement of the membrane permeabilization level. In

deriving Eqs. (A.11)-(A.13) , it is assumed that the sum of electrophoretic and diffusive

flux within each pore is constant along its axis.

A.4 Numerical implementation

The system of Eqs. (A.1)-(A.14) is numerically solved with a finite-volume, alternative

direction implicit (ADI) scheme. The problem is solved under a 2D axisymmetric

spherical coordinate system. Initially, the membrane is intact with no electropores

and the electric potentials inside and outside the cell are uniformly Vrest and zero,

respectively:

N(t = 0, θ) = 0, Φi(t = 0) = Vrest, Φe(t = 0) = 0. (A.15)

As introduced in Section A.3, the initial extra-cellular concentration of PI2+and intra-

cellular concentration of B are both assumed to be uniformly distributed.

The boundary of numerical domain is taken to be far away from the cell (at r = 20a),

where the electric field is approximated to be the same as the applied one, and the

concentration of PI2+ is fixed at its initial value:

Φe(t, r = 20a, θ) = −E0rcos(θ), [PI2+](t, r = 20a, θ) = [PI2+]e,o. (A.16)

Here E0 is the strength of the applied electric field.
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Appendix B

Supplements for Chapter 4

A main difference between the model in Chapter 4 and previous ones [50, 82] is that

a specific value for k0, which we determine from D0, the chain diffusivity, is required.

The latter can be obtained from experimental measurements. The relationship between

k0 and D0 can be derived by considering the Fokker-Planck equation in the natural

coordinate, namely, the center of mass of the entire chain, x:

∂P (x, t)

∂t
=

∂

∂x

[
D0

kBT
P (x, t)

∂f(x, t)

∂x
+D0

∂

∂x
P (x, t)

]
. (B.1)

Comparing Eq. (B.1) with Eq. (4.1), and considering x = mL, k0 = D0/L
2 is obtained.

Here, the characteristic length L is taken to be 2Rg/N (Fig. B.1), where Rg is the

radius of gyration. In other words, the translocation of the complete N segments is

equivalent to a distance of 2Rg traveled by the center of mass. Further considering that

Rg = 0.459lkN
0.6, which is derived for a polymer chain with one end pinned on a rigid

wall [11], Eq. (4.2) in the proper text can be obtained.

The bulk diffusivity of an N -segment DNA chain is found by the measurements of

Dauty et al. [9],

Dbulk =
1.344× 10−11

N0.68
m2/s. (B.2)

For the current model, a modified formula based on Eq. (B.2) is used,

D0 = αβDbulk. (B.3)
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Figure B.1: Upon the completion of translocation, the center of mass translates by 2Rg,
where Rg is the radius of gyration.

The factor α arises from a reduction due to the crowdedness of the cytoplasm. Extrap-

olating from the measurements by Dauty et al. (see Fig. 4B therein), α = 0.017 is used

for a chain length of 4.7 kbp, and α = 0.01 is used for a chain length of 7.2 kbp.

The factor β is the reduction effect due to the fact that the polymer chain is in

the vicinity of a rigid wall. According to the measurements by Kihm et al. for solid

nanoparticles [30], this factor typically ranges from 0 to 0.6 depending on the distance

from the wall. Due to the lack of data for near-wall DNA particles, β is simply used

as a fitting parameter to generate the best comparison with data on DNA translation

through synthesized nanopores [80]. From Fig. B.2, β = 0.322 is obtained to achieve

the best matching between our theoretical prediction and the measurements. Note to

generate this comparison, α = 1 is used because no cells are involved.

As a remark, Eq. (B.3) gives a constant D0 given a constant size of DNA. A more

accurate model can be derived where D0 is a function of the translocation coordinate,

m [82]. However, it is found that no appreciable difference between the results following

this approach and simply using Eq. (B.3) above. (The comparison is not shown here for

brevity.) The agreement results from the fact that the effective diffusivity of the DNA

chain is dominantly controlled by its much reduced value in the cytoplasm. In this

work, Eq. (B.3) is therefore used as an approximation to the more complete diffusivity
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Figure B.2: Simulated results with β = 0.322, in comparison with the experimental data
from Storm et al. [80]. The average translocation time ttran is plotted as a function
of DNA size. The transmembrane potential is Vm = 0.12 V. The average translocation
time is defined as the most probable time required for the DNA molecule to complete
its translocation.

model.

The effective charge per DNA segment, z̃s, is given by the formula,

z̃s = 0.5× L

lbp
= 135N−0.4. (B.4)

The factor of 0.5 is obtained from the experiments by Keyser et al. [29], which suggests

that the effective charge of a DNA base pair (2 electrons) is reduced by 75% within a

pore. This reduction ratio corroborates with the theoretical prediction by Ghosal [20],

which attributes the effects to viscous drags within the pore. Again, although these

results are generated for solid-state nanopores, they are employed in this work due to

the lack of measurements for electropores.
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Appendix C

Supplements for Chapter 5

The solution of intra- and extra-vesicular velocities can be derived from Eq. (5.2) and

Eqs. (5.17)-(5.18). The results are:



uir = −(1− 3 cos2 θ)(C r
a +D r3

a3
)

uer = −(1− 3 cos2 θ)(Aa4

r4
+B a2

r2
)

uiθ = − sin θ cos θ(3C r
a + 5D r3

a3
)

ueθ = sin θ cos θ · 2Aa4

r4

. (C.1)

The solution of pressure can then be derived from Eq. (5.3):


pi = −µi 7Dr2

a3
(1− 3 cos2 θ)

pe = −µe 2Ba2

r3
(1− 3 cos2 θ)

. (C.2)

In axissymmetric spherical coordinate system, The stress components are correlated

with velocity and pressure field by:


Trr = −p+ 2µ∂ur∂r

Trθ = µ[r ∂∂r (uθr ) + 1
r
∂ur
∂θ ]

. (C.3)
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With the solution in Eq. (C.1) and (C.2), the expressions of stress components are:



T irr = µi(1− 3 cos2 θ)(Dr
2

a3
− 2C

a )

T err = µe(1− 3 cos2 θ)(6Ba2

r3
+ 8Aa4

r5
)

T irθ = −µi sin θ cos θ 6Ca2+16Dr2

a3

T erθ = −µe sin θ cos θ 16Aa4+6Ba2r2

r5

. (C.4)

The normal membrane stress arising from membrane tension fmemn = 2ΓH. Here

H = 1
2( 1
R1

+ 1
R2

) where 1/R1 and 1/R2 are principal curvatures at a given point on the

surface of a spheroid. In deriving the solution, the leading order expansions of 1/R1

and 1/R2 are used:


1
R1

= 1
a [1 + (3 cos2 θ − 5

3)(e− 1) +O(e− 1)2]

1
R2

= 1
a [1 + (cos2 θ + 1

3)(e− 1) +O(e− 1)2]

. (C.5)
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[68] M.-P. Rols and J. Teissié. Electropermeabilization of mammalian cells to macro-

molecules: Control by pulse duration. Biophys. J., 75:1415–1423, 1998.

[69] C. Rosazza, E. Phez, J.-M. Escoffre, L. Cézanne, A. Zumbusch, and M.-P. Rols.
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