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This thesis discusses first-principles modeling of functional perovskite oxides and per-

ovskite superlattices. In the past few decades, first-principles density functional the-

ory has driven tremendous advances in the theoretical study of materials. However, it

does not give us a conceptual understanding of the physics of these materials, which

makes the first-principles modeling necessary.

In the first project, we use the first-principles method to study the epitaxial strain-

induced ferroelectricity in the orthorhombic CaTiO3 structure and construct the en-

ergy expansion from first principles to illustrate the mechanism of the induced fer-

roelectricity. We also discover an unexpected polar phase of CaTiO3 with in-plane

polarization under compressive strain. Symmetry analysis shows that this phase is a

realization of a new mechanism of geometric ferroelectricity. In the second project,
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we collaborate with an experimental group at SUNY Stony Brook to study the per-

ovskite superlattices PbTiO3/BaTiO3. A variety of properties, including electric po-

larization, tetragonality, piezoelectricity and dielectric constant, have been studied

from first principles. We also construct a slab model, in which different constituents

are treated as bulk-like materials with appropriate electrostatic constraints, to investi-

gate the origin of the enhanced piezoelectricity in PTO/BTO superlattices. The third

project is our first-principles study of the BaTiO3/CaTiO3 superlattices, in which the

oxygen octahedron rotations play a substantial role. We observe the phase transi-

tions among three competing phases and enhanced piezoelectricity in all of the three

phases at intermediate BaTiO3 concentration. The slab models of BTO/CTO super-

lattices consistently underestimate the polarization, which indicates the interfacial

enhancement of polarization.
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Chapter 1

Introduction

In the past few decades, the first-principles method has driven tremendous advances in

the theoretical study of materials. It is a powerful tool for obtaining information at the

atomic scale and computing physical properties of materials of technological interest,

such as functional materials and superlattices. First-principles calculations can thus

provide theoretical input to the design of new materials with desired properties for

technological applications or novel physical behavior.

However, the direct results of first-principles calculations do not give us a con-

ceptual understanding of the physics of these materials; they can be considered as

analogous to the experimental measurements of properties. For physical insight and

to provide guidance in the materials design process, we need to construct models to

describe the first-principles results, analogous to phenomenological modeling of exper-

imental measurements. This thesis presents the first-principles modeling of functional

perovskites and superlattices. In these materials, functional behaviors are derived

from competing structures, whose relative energies can be tuned by the application

of epitaxial strain or chemical substitutions. First-principles modeling sheds light on

the competition between the candidate structures and helps to guide the search for

the novel functional materials.

Perovskites form a large class of crystal materials with chemical formula ABO3,

where A and B represent metal atoms of different sizes. The ideal cubic-symmetry

perovskite structure has a five-atom unit cell of space group Pm3m, as shown in

Fig. 1.1. The B atom is at the center of an oxygen octahedron. These octahedra are
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Figure 1.1: Perovskite cubic Pm3m structure. B cation sits at the center of the
oxygen octahedron O6 while A cation fills the space between the oxygen octahedra.

corner-linked to form a simple cubic network.

The ideal cubic perovskite structure is inherently unstable and prone to distor-

tion due to the incompatibility of the ions with the crystal structure, as quantified

by the tolerance factor (1). At low temperature, the perovskites can have different

lower-symmetry structures, such as orthorhombic, tetragonal and rhombohedral. The

variety of perovskite compositions and structures leads to various functional proper-

ties exhibited in the perovskite oxides, such as (anti-)ferroelectricity, piezoelectricity

and (anti-)ferromagnetism, which makes perovskites an intensively studied family of

functional materials.

The lower-symmetry structures of perovskites can be obtained by freezing in vari-

ous distortion modes, such as polarization and oxygen octahedron rotations and tilts,

as shown in Fig. 1.2, in the high-symmetry cubic structure (2; 3; 4). These distortion

modes in the low-symmetry structures of perovskites are the origin of the functional

behavior in perovskites. For example, in ferroelectrics such as BaTiO3, the instability

of the polar mode Γ−
4 in the ideal cubic structure leads to ferroelectricity and large

static dielectric response. In piezoelectric materials, the piezoelectric response also

originates from the coupling of the polar mode and elastic strain. Models that take

the polar mode and strain as the fundamental degrees of freedom can describe these
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(a) (b) (c) 

Figure 1.2: Distortion modes: (a) polar mode Γ−
4 , (b) out-of-phase rotational mode

R+
4 , (c) in-phase rotational mode M+

3

properties well (5) and have also formed the basis for simulations of the temperature-

driven ferroelectric-paraelectric transition.

Besides the polar mode Γ−
4 , instability of the oxygen octahedron rotational modes

in the ideal cubic structure is also very common, for example, in CaTiO3. CaTiO3

has a nonpolar orthorhombic Pbnm structure with in-phase oxygen octahedron ro-

tations (M+
3 [001]) and out-of-phase oxygen octahedron tilts (R+

4 [110]) frozen in the

cubic Pm3m structure. The existence of the rotational modes greatly increases the

complexity of the structures as well as the first-principles modeling.

In this thesis work, I have studied several functional perovskite materials and

superlattices, and developed approaches to model their behavior as observed in first

principles calculations, to obtain physical insight into their functional properties and
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to assist in the design of new functional superlattices through interactions with ex-

perimental collaborators.

In the second chapter, I review the formalism of first principles calculations, in-

cluding both the fundamental approximations of density functional theory and aspects

of the numerical implementation. I show how functional properties such as electric

polarization, dielectric response and piezoelectric response are obtained in the first-

principles framework. The second half of this chapter is devoted to the formulation

of my first-principles models, with a review of the fundamentals of polynomial ex-

pansions of the energy in symmetry invariants in the spirit of Landau theory, and a

general overview of how the coefficients in such an expansion can be obtained from

first-principles calculations.

In the third chapter, I present first-principles calculations and modeling for CaTiO3

under epitaxial strain. First, I consider the epitaxial phases derived from the low-

symmetry nonpolar bulk structure of CaTiO3, and develop a model to describe the

structural energetics over a wide range of strain. Then, I examine an intriguing

metastable structure that appears at compressive strain (6). From modeling of the

first-principles results, I show that this phase is a realization of a new mechanism for

geometric ferroelectricity.

In the fourth chapter, I consider superlattices of BaTiO3 and PbTiO3 (7). In

previous first-principles investigation, it was observed that for certain stacking se-

quences, the piezoelectric response of the superlattices is substantially enhanced over

the piezoelectric response of the pure compounds. Working with an experimental

group at SUNY Stony Brook, I performed additional first-principles calculations and

worked on developing a model that would describe the observed enhancement and

provide guidance for optimizing the piezoelectric response of these superlattices, with

the possibility of extension to other superlattice systems.

In the fifth chapter, I consider superlattices of BaTiO3 and CaTiO3 (8). The
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oxygen octahedron rotations of CaTiO3, discussed in the third chapter, play an im-

portant role in determining the structure and properties of these superlattices. I

discuss models that describe various aspects of the structure and properties of these

superlattices as a function of overall composition and individual layer thicknesses.

Finally, I conclude with a summary of the most important lessons learned, and

some avenues for further investigation.
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Chapter 2

Formalism

“The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated
to be soluble. It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to an explanation of
the main features of complex atomic systems without too much computation.” P. A.
M. Dirac, Proceedings of the Royal Society of London. Series A, Vol. 123, No. 792
(Apr. 6, 1929)

2.1 First-principles calculations

In the past thirty years, first-principles quantum-mechanical methods have achieved

impressive success in analyzing and predicting the structures and properties of a

wide range of materials, allowing a comprehensive understanding of the origin of

macroscopic properties at the atomic scale. As established in the well-known quote

from Dirac at the beginning of this chapter, the key ingredients in this success have

been the exponential growth of computational power and the development of suitable

approximations and highly efficient algorithms.

First, starting from elementary nonrelativistic quantum mechanics, I review the

mapping to an equivalent non-interacting electron system through the Born- Oppen-

heimer approximation and density functional theory. Then, I discuss the numerical

solution of the non-interacting electron system for a periodic arrangement of the nu-

clei, including pseudopotentials, plane wave basis set, and Brillouin zone averages.

The central quantities are the total energy (electronic ground state for a given ar-

rangement of the nuclei), the forces on the atoms through the Hellman-Feynman



7

theorem, and the stress on the unit cell. From these, Equilibrium structure, phonon

frequencies, and elastic constants can be computed. The modern theory of polariza-

tion also allows us to compute the spontaneous polarization of ferroelectric materials

and response functions such as the dielectric response and piezoelectric response.

Practical aspects of these computations are described. I conclude this section with a

discussion of the precision and accuracy of the first principles results.

2.1.1 Quantum-mechanical description of solids

In quantum mechanics, a solid is a system of interacting electrons and nuclei described

by the Hamiltonian

H = − ~2

2me

∑
i

∇2
i +

1

2

∑
i6=j

e2

|ri − rj|
+
∑
i,I

ZIe
2

|ri −RI |

− ~2

2MI

∑
I

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |

(2.1)

where ~ is the reduced Planck constant, me and MI are the masses of electrons and

ions, ZI is the atomic number of the I-th ion and e is the electron charge. Because

of the large difference between the electron and ion masses (me � MI), electrons

respond immediately to the motion of the ions. Therefore we can separate the motion

of electrons and nuclei and only consider the dynamics of the electrons with frozen-

in nuclei, which is called the Born-Oppenheimer approximation. In this way, the

electronic Hamiltonian is simplified to

H = − ~2

2me

∑
i

∇2
i +

1

2

∑
i6=j

e2

|ri − rj|
+
∑

i

Vext(ri) (2.2)

where Vext(r) =
∑

I
ZIe2

|r−RI |
. The electron-nuclei interaction is treated as the exter-

nal potential to the electron. Even this simplification, it is still extremely difficult

to achieve an exact solution to Eq. 2.2, because of the electron-electron interaction
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1
2

∑
i6=j

e2

|ri−rj | . In the electron-electron interaction, besides the classic Coulomb inter-

action, there is also exchange and correlation energy which is due to the antisymmetry

of the electron wave function. It is straightforward to include exchange in a total en-

ergy calculation, but the calculation of correlation energy can be formidable in a

complex system. Therefore, further treatment is needed to perform accurate total

energy calculation of solids.

2.1.2 Density functional theory

Density functional theory (9; 10) provides a simple way to include the exchange and

correlation energy in the total energy calculation of solids. It reduces a system of

strongly interacting electrons to a system of non-interacting electrons in an effective

external potential. As described in more detail in this section, density functional

theory has been proved to be extremely useful in the theoretical study of functional

materials and successfully reproduced the ground-state properties of various materi-

als.

Hohenberg-Kohn theorem

Hohenberg and Kohn (9) proved that there exists a universal functional of the elec-

tron density F [n(r)], independent of the external potential Vext, for the sum of the

electron kinetic energy and electron-electron interaction potential. It is evident that

the ground-state electron density n(r) is uniquely determined by the external poten-

tial Vext. In their paper, Hohenberg and Kohn showed that conversely Vext is also a

unique functional of n(r), as will be briefly discussed in the following.

Hohenberg and Kohn preserved a proof by contradiction. Assume that there are

no degenerate ground states and two different external potentials V (r) and V ′(r),

with ground states, Ψ and Ψ′ respectively, give rise to the same electron density n(r).

Excluding the trivial case that V − V ′ = const, the two wave functions, Ψ and Ψ′,

are different. If we combine the kinetic energy K and electron-electron interaction
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Ve-e as F , for the two Hamiltonian H = F + V and H ′ = F + V ′, we have:

〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉 (2.3)

because Ψ is the wave function of the ground state of H. Then we have

E < E ′ + 〈Ψ′|V − V ′|Ψ′〉 (2.4)

E < E ′ +

∫
[V (r)− V ′(r)]n(r)dr (2.5)

If initially we switched Ψ and Ψ′ , we would get

E ′ < E +

∫
[V ′(r)− V (r)]n(r)dr (2.6)

Summing up Eq. 2.5 and Eq. 2.6 leads to the contradiction

E + E ′ < E + E ′ (2.7)

Therefore, the external potential Vext(r) is a unique functional of electron density

n(r). Since Vext(r) defines the whole Hamiltonian H, the total energy, including the

kinetic energy and electron-electron interaction, is also a unique functional of the

density. According to the Hohenberg and Kohn theorem, the total energy of a system

with wave function {ψi} can be written as:

E[{ψi}] =
∑

i

∫
ψ∗i

(
− ~2

2me

)
∇2ψid

3r +

∫
Vext(r)n(r)d3r

+
e2

2

∫
n(r)n(r′)

|r− r′|
d3rd3r′ + EXC [n(r)],

(2.8)

where

n(r) =
∑

i

|ψi(r)|2 (2.9)
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and EXC [n(r)] is the exchange and correlation energy functional. Because of the one-

to-one mapping between the total energy functional and electron density, the electron

density that yields the minimum of the total energy functional is exactly the ground

state electron density, which provides some hope of solving the problem of strongly

interacting electron gas.

Kohn-Sham equations

The Hohenberg-Kohn theorem provides an exact solution to the many-body problem

of interacting electron gas. However, it does not show how to obtain the electron

density that minimizes the total energy functional. Kohn and Sham (10) developed

an self-consistent approach to determine the set of wave functions ψi that minimize

the total energy functional, which are the solutions to the Kohn-Sham equations:

[
− ~2

2me

+ Vext(r) + VH(r) + VXC(r)

]
ψi(r) = εiψi(r) (2.10)

Where

VH(r) = e2
∫

n(r′)

|r− r′|
d3r′ (2.11)

VXC(r) =
δEXC [n(r)]

δn(r)
(2.12)

VH(r) is the Hartree potential which represents the classic Coulomb interaction be-

tween the electrons. VXC(r) is the effective exchange-correlation potential given by

the functional derivative of the exchange-correlation energy EXC [n(r)]. ψi is the wave

function of the electronic state i, which is obtained through a set of self-consistent cal-

culations. εi is the Kohn-Sham eigenvalue of electronic state i. The electron density

n(r) corresponding to the solutions to the single-particle Schrödinger-like equation,

ψi, is the exact ground state density. The value of the corresponding Kohn-Sham func-

tional is the total energy of the ground state. The Kohn-Sham equations reduce the
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strongly interacting electron gas to independent electrons in effective potential caused

by all the other electrons. If the exchange-correlation potential VXC is described ex-

actly, the electron density corresponding to eigenstates of Kohn-Sham Hamiltonian

ψi is the exact electron density of the electron gas ground state. With the ground

state electron density n(r) known, the total energy of the ground state can then be

obtained by the Kohn-Sham functional E[n(r)].

Approximate forms for the exchange-correlation functional

As previously discussed, in principle, the solution to the Kohn-Sham equations is

the exact solution of the ground state, as long as the exchange-correlation functional

is exact. However, there is no way to obtain a simple exact functional to describe

the exchange-correlation energy for arbitrary electron density n(r). Therefore, some

approximation is needed to describe the exchange-correlation functional in Kohn-

Sham equations. It has been shown that if the electron density is sufficiently slowly

varying, we have (11):

EXC [n(r)] =

∫
n(r)εXC(n(r))dr, (2.13)

where εXC is the exchange and correlation energy density of a uniform electron gas

of density n. Kohn and Sham (10) applied this approximation with

VXC(r) =
δEXC [n(r)]

δn(r)
= εXC(n(r)), (2.14)

which is now commonly known as the local density approximation (LDA). The LDA is

a local approximation of exchange-correlation energy and ignores the contributions of

the inhomogeneities in the electron density. However, over the past few decades, the

LDA has reproduced a variety of physical properties in many successful theoretical

investigations of many types of materials and systems within a few percent of errors

compared with the experimental data. The high accuracy of the LDA is partly due
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to the fact that the LDA gives the correct sum rule for the exchange-correlation

hole (12; 13; 14).

Generalized gradient approximation (GGA) is another exchange-correlation func-

tional commonly utilized in many first-principles studies. The GGA is an improve-

ment of LDA, which includes the contributions of nearby electrons by adding the

gradient of electron density ∇n(r)

VXC(r) = ε(n(r),∇n(r)) (2.15)

However, the corrections of electron density gradient have not shown the expected

improvement over the results from the LDA. This is partially because the sum rule

for the exchange-correlation hole is not obeyed in the GGA.

2.1.3 Lattice periodicity of crystals

As previously discussed, the density functional theory simplifies the strongly inter-

acting electron gas to independent particles. However, in real materials, there are an

infinite number of electrons whose wave functions extend over infinite space, which

makes the Kohn-Sham equations still unsolvable. In periodic system, like crystals,

the infinite number of electronic states can be mapped through the application of

Bloch’s theorem to an infinite number of k points with a finite number of electron

states at each k point, which changes the notation of ψi in Eq.(2.10) to ψnk. k is the

wave vector of the electron wave function and n is the index which distinguishes the

multiple electron states at the same k point. Mapping to k-space does not reduce

the number of Equations to solve, but it provides the foundation for the further sim-

plification based on Bloch’s theorem, such as cutoff of plane-wave basis sets and the

k-sampling.
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Bloch’s theorem

Bloch’s theorem states that in a periodically-repeating system, the wave function of

a particle, such as an electrons in a solid, can be written as a product of two parts:

ψnk(r) = eik·runk(r), (2.16)

where ψ is a wave function at an arbitrary wave vector k, r is the position and u is a

periodic function which has the period of crystal lattice with uk(r) = uk(r+R) . The

periodic part of wave function, u, can be expanded using a discrete set of reciprocal

lattice vectors {G} (G ·R = 2πm, m=0,1,2,. . . ):

unk(r) =
∑
G

Cn,k+Ge
iG·r (2.17)

Combine Eq.(2.16) and Eq.(2.17) and we have:

ψnk(r) =
∑
G

Cn,k+Ge
i(k+G)·r (2.18)

Substitution of Eq.(2.18) into Eq.(2.10) gives the plane-wave representation of the

Kohn-Sham equations

∑
G′

[
~2

2me

|k + G|2δGG′ + Vext(G−G′)

+ VH(G−G′) + VXC(G−G′)

]
Cn,k+G′

=εnkCn,k+G.

(2.19)

By solving the eigenvalues and eigenvectors of the Hamiltonian matrix whose matrix

elements are given by the terms in the brackets above, we can obtain the energy and

wave function of each electron state.
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2.1.4 Pseudopotential approximation

Using Bloch’s theorem, the electron wave function in a periodic external potential can

be expanded in a discrete set of plane-waves. In the core region, the wave function of

the valence electrons oscillate rapidly to maintain the orthogonality with the core wave

function. To accurately represent the oscillation of valence electron wave function, a

large set of plane waves is required, which makes the all-electron (AE) calculations

greatly time-consuming.

To make possible accurate calculations with a small set of plane waves, the pseu-

dopotential approximation (15; 16; 17; 18; 19; 20) has been devised. Most of the

physical properties of materials are determined by the valence electrons. The pseu-

dopotential(PS) approximation remove the electron orbitals within the core region

and replace the strongly attractive ionic potential and the core orbitals with a much

weaker effective potential, which greatly improves the smoothness of the valence elec-

tron wave functions and hence reduces the size of the plane-wave basis set required.

To guarantee that the PS calculations accurately reproduce the results of the AE

calculations, several requirements have to be fulfilled during the process of the pseu-

dopotential construction. The construction of the pseudopotential starts with the AE

calculation of a chosen atomic configuration. The PS electron state should have the

same eigenenergy as the AE electron state. Outside a certain cutoff radius rc, the PS

wave function should match with the AE wave function, as shown in Fig. 2.1.4. Since,

in the compounds, bonding or banding shifts eigenenergies away from the atomic lev-

els, optimum transferability among a variety of chemical environments should also be

guaranteed. This leads to the requirement that the logarithmic derivatives of the AE

and PS wave functions and their first energy derivatives agree beyond the cutoff radii

rc, which minimizes the error due to the bonding or band shifts.

In the following part, I will discuss about three schemes to construct the pseu-

dopotentials, which are the norm-conserving pseudopotentials, ultrasoft pseudopoten-

tials (19) and projector augmented waves method (20). The three methods adapted
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Figure 2.1: Schematic illustration of all-electron and pseudoelectron potentials and
their wavefunctions

different strategies for the pseudopotential construction to reduce the size of the

plane-wave basis set in the first-principles calculations and to maintain the optimum

transferability.

Norm-conserving pseudopotentials

The norm-conserving pseudopotentials were first introduced in Ref (17). Besides hav-

ing the same eigenenergy and the same wave function for r > rc as the AE calculation

in a chosen atomic configuration, the most important property of the norm-conserving

pseudopotentials is that the total charges of the PS and AE wavefunctions within the

core region, r < rc, are the same. This property, through Gauss’s law, guarantees

that the electrostatic potential outside the core region is the same for the PS and AE

calculations. Due to the identity

2π

[
(rφ)2 d

dε

d

dr
lnφ

]
R

= 4π

∫ R

0

φ2r2dr, (2.20)

the norm-conserving property is equivalent to the requirement for the the logarith-

mic derivatives of the AE and PS wave functions, which guarantees the optimum
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transferability.

The process of generating norm-conserving pseudopotentials is as follows. First,

first-principles AE calculations with real spherical potential V (r) is performed to

obtain the radial part of the wave function for each angular momentum l, φl(r). The

quantity ul(r) is defined as the product of the radius r and radial wave function φl(r).

For each l, a cutoff radius rcl is chosen to be typically 0.5 to 1.0 times of the radius

of the outermost peak of ul(r). A trial effective potential V ps
1l is constructed, utilizing

an analytic function f(x) which approaches 0 as x→∞ and approaches 0 at least as

fast as x3 as x→ 0,

V ps
1l (r) = [1− f(r/rcl)]V (r) + clf(r/rcl). (2.21)

The parameter cl can be tuned so that the eigenenergy εPS
1l of the radial Schrödinger

equation with effective potential V PS
1l is equal to the eigenenergy εl from the AE

calculations, and the solution is a smooth wave function ω1l without any nodes within

the core region. Outsides the core region, r > rcl, ω1l converges to ul(r). To satisfy

the norm-conserving property, the intermediate PS wave function ω1l is modified to

ω2l(r) = γl [ω1l(r) + σlgl(r/rcl)] , (2.22)

where gl(x) is a function which equals to 0 for x > 1 and behaves as xl+1 for small x.

The parameter σl is adjusted to satisfy the norm-conserving requirement,

4πγ2
l

∫ rcl

0

[ω1l(r) + σlgl(r/rcl)]
2 dr = 4π

∫ rcl

0

|φl(r)|2r2dr. (2.23)

With the modified PS wave function ω
PS(r)
2l , the final pseudopotential V PS

2l is then

numerically calculated by inverting the radial Schrödinger equation.

The construction of norm-conserving pseudopotentials is easy and straight for-

ward. However, good transferability requires that the cutoff radius rcl is at around
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the outmost maximum of the AE wave function. In the systems containing highly

localized valence orbitals, such as first-row and transition-metal atoms, the norm-

conserving condition requires that the PS wave function is also highly localized, which

makes it impossible to construct a PS wave function which is much smaller than the

AE one.

Ultrasoft pseudopotentials

Vanderbilt (19) developed the method of ultrasoft pseudopotential, in which the norm-

conserving constraint is released and a much larger cutoff, usually almost half of the

distance between the nearest neighbors, is allowed without hurting the transferability.

The ultrasoft pseudopotential method is not only a replacement of the strong ionic

potential and core orbitals with a weaker effective potential, but also a change of

the Kohn-Sham equation Eq.(2.10). In the ultrasoft pseudopotential method, the PS

electronic state ψ̃nk is obtained by the solution of the following equation in Heisenberg

representation

(T + V ion
loc + V ion

NL + VH [nv] + Vxc[nv + nc]− Sεnk)|ψ̃nk〉 = 0, (2.24)

where T is the kinetic energy operator −1
2
O2, V ion

loc is an appropriately chosen local

potential which is independent of the angular momentum l and matches the real ionic

potential beyond a cutoff radius rc, VH is the Hartree energy density functional, Vxc

is the exchange-correlation density functional and nv(c) is the valence (core) charge

density. V ion
NL and S are two operators, which depend on the angular momentum lm.

The construction of the two operators will be discussed later. The wave function can

be obtained by ψ̃nk(r) = 〈r|ψ̃nk〉 and the solution of Eq.(2.24) should be normalized

according to

〈ψ̃nk|S|ψ̃n′k〉 = δnn′ . (2.25)
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Unlike the construction of norm-conserving pseudopotentials, in the ultrasoft

pseudopotential method, for each angular momentum lm, the AE calculations in the

reference atomic configuration are performed at several, usually two, energy levels εi.

The AE electron state φi(r) = 〈r|φi〉 is the solution of the Schrödinger equation

(T + VAE − εi)|φi〉 = 0, (2.26)

where i is a composite index, i = {εilm} and VAE is the original reference screened

potential. Then a smooth pseudo-wave-function φ̃i(r) is constructed with one single

constraint, matching with φi(r) beyond the cutoff radius rcl. A set of local wave

functions |βi〉 is defined as

|βi〉 =
∑

j

(B−1)ji|χj〉, (2.27)

where

|χj〉 = (εj − T − Vloc)|φ̃j〉, (2.28)

Bij = 〈φ̃i|χj〉 (2.29)

The nonlocal pseudopotential operator VNL and the nonlocal overlap operator S are

constructed via the set of local wave functions |βi〉,

VNL =
∑
i,j

Dij|βi〉〈βj|, (2.30)

S = 1 +
∑
i,j

|βi〉〈βj|, (2.31)

with the two quantities Dij and Qij defined as

Dij = Bij + εijQij, (2.32)

Qij = 〈φi|φj〉rcl
− 〈φ̃i|φ̃j〉rcl

. (2.33)
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The special notation 〈φi|φj〉R denotes the integral of φ∗i (r)φi(r) inside the sphere of

radius R. From the definition of the quantity Dij and Qij, we can easily see that

T + Vloc + VNL − εiS|φ̃i〉 = 0, (2.34)

〈φ̃i|S|φ̃j〉rcl
= 〈φi|φj〉rcl

. (2.35)

It can be derived from the identity

(
d

dε
〈φ̃ε|T + Vloc + VNL − εS|φ̃ε〉rcl

)
ε=εi

= 0 (2.36)

that

(
−1

2
u2

i

d

dε

d

dr
lnuε(r)

)
R=rcl

= 〈φ̃i|φ̃i〉rcl
+Qii = 〈φi|φi〉rcl

. (2.37)

With a sufficient set of reference states εi, the scattering property of the pseudo wave

function would match with that of the real wave function for a large range of energy

ε. Therefore even for a large cutoff radius rcl, a good transferability can still be

maintained.

The PS wave function ψ̃nk(r) is obtained by iterative solution of Eq.(2.24). The

normalization constraint Eq.(2.25) is automatically satisfied. In the evaluation of

the energy density functionals, VH and Vxc, the deficit of valence charge due to the

pseudization of electron states should be compensated. To make up the charge deficit,

the valence charge density is defined to be

nv(r) =
∑
n,k

ψ̃∗nk(r)ψ̃nk(r) +
∑
i,j

ρijQji(r), (2.38)

where

ρij =
∑
n,k

〈βi|ψ̃nk〉〈ψ̃nk|βj〉, (2.39)
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Qij(r) = Ψ∗
i (r)Ψj(r)− ψ̃∗i (r)ψ̃j(r). (2.40)

The total energy is calculated by

Etot =
∑
n,k

〈ψ̃nk|

(
T + Vloc +

∑
ij

Dij|βi〉〈βj|

)
|ψ̃nk〉 (2.41)

+ EH [nc] + Exc[nc + nv]. (2.42)

Projector augmented wave (PAW) potentials

The third pseudopotential method that I will discuss is the projector augmented wave

(PAW) method that was developed by Blöchl (20).

The valence electron wave functions, which are physically relevant, oscillate rapidly

in the core region and makes the plane-wave expansion difficult in the first-principles

calculations. In the PAW method, the physically relevant AE wave functions |ψ〉 are

transformed from computationally convenient PS wave functions |ψ̃〉,

|ψ〉 = T |ψ̃〉, (2.43)

where T is a linear operator which will be discussed later. We can obtain physical

quantities, represented as the expectation value 〈O〉 = 〈ψ|O|ψ〉 of some operator O

from the expectation value 〈ψ̃|Õ|ψ̃〉 of a PS operator Õ = T †OT .

Now, let us consider the transformation T , which is represented by the sum of

identity and a set of local, atom-centered transformation operators T̂R such that

T = 1 +
∑

R

T̂R. (2.44)

The local operator T̂R acts only within some augmentation region ΩR enclosing the

atom, which is equivalent to the core region within cutoff radius rcl in other pseudopo-

tential methods. From Eq.(2.44), it is obvious that the AE and PS wave functions
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coincide outside the augmentation region ΩR. The local operator T̂R is defined as the

transformation from the PS partial wave |φ̃i〉 to the AE partial wave |φi〉

|φi〉 = (1 + T̂R)|φ̃i〉 (2.45)

The AE partial waves are obtained by radially integrating the Schrödinger equa-

tion

(
−1

2
O2 + vat − ε1

i

)
|φi〉 = 0 (2.46)

outward for the atomic AE potential vat and a set of energy ε1
i . The construction of the

PS partial waves is similar to the other pseudopotential approaches. An appropriate

PS potential ṽat is selected to match the AE potential vat outside the augmentation

region. The PS partial wave |φ̃i〉 is obtained by the solution of the Schrödinger

equation

(
−1

2
O2 + ṽat − ε1

i

)
|φ̃i〉 = 0 (2.47)

for the energy of the corresponding AE partial wave.

The set of PS partial waves form a complete basis of the PS Hilbert space, therefore

every PS wave function can be expanded by the PS partial waves:

|ψ̃〉 =
∑

i

|φ̃i〉〈p̃i|ψ̃〉 within ΩR, (2.48)

where |p̃i〉 is a projector satisfying

〈p̃i|φ̃j〉 = δij. (2.49)

Utilizing the relation |φi〉 = T |φ̃i〉, the corresponding AE wave function is calculated
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by

|ψ〉 = T |ψ̃〉 =
∑

i

|φi〉〈p̃i|ψ̃〉 within ΩR. (2.50)

From Eqs.(2.48) and (2.50), we can get

|ψ〉 = |ψ̃〉+
∑

i

(|φi〉 − |φ̃i〉)〈p̃i|ψ̃〉, (2.51)

which is a linear transformation from the PS wave function ψ̃ to the AE wave function

ψ.

For a certain operator O, its expectation value can be calculated as

〈O〉 =
∑

n

fn〈ψn|O|ψn〉 =
∑

n

fn〈ψ̃n|Õ|ψ̃n〉, (2.52)

where fn is the occupation of the state n. Using Eq.(2.51), the PS operator is of the

form

Õ = T †OT

= O +
∑
ij

|p̃i〉(〈φi|O|φj〉 − 〈φ̃i|O|φ̃j〉)〈p̃j|.
(2.53)

Hence, the charge density, which is the expectation value of the real-space projection

operator |r〉〈r|, is given by

n(r) = ñ(r) + n1(r)− ñ1(r), (2.54)

where

ñ(r) =
∑

n

fn〈ψ̃n|r〉〈r|ψ̃n〉, (2.55)

n1(r) =
∑
nij

fn〈ψ̃n|p̃i〉〈φi|r〉〈r|φj〉〈p̃j|ψ̃n〉, (2.56)
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ñ1(r) =
∑
nij

fn〈ψ̃n|p̃i〉〈φ̃i|r〉〈r|φ̃j〉〈p̃j|ψ̃n〉. (2.57)

Compared with the charge density in the ultrasoft pseudopotentials, Eq.(2.38), in

principle, the charge density in the PAW method is equivalent as long as the projectors

|βi〉 and |p̃i〉 are the same (21). Knowing the charge density n(r), the energy density

functional in the Kohn-Sham equations can be evaluated and the energy and wave

function of each single-electron state can be obtained by the solution of the Kohn-

Sham equation.

Cutoff of plane-wave basis sets

The size of the Hamiltonian matrix represented in Eq.(2.19) is determined by the

number of the reciprocal lattice vectors {G}. In principle, an infinite number of

vectors {G} are required to represent the electron wave function, and the size of the

Hamiltonian matrix is hence also infinite. In Bloch’s theorem, the electron wave func-

tion is expanded by a plane-wave basis set of eik+G . In fact, only the wave vectors

with small kinetic energy (~2/2me)|k + G|2 have large coefficients Ci,k+G. Therefore,

we can truncate the plane-wave basis and only include the wave vector whose kinetic

energy is lower than a certain cutoff energy. Through this approximation, the dimen-

sion of Hamiltonian matrix is made finite and Eq.(2.19) is no longer unsolvable. Such

truncation would certainly lead to errors in the calculations. Therefore, in the DFT

calculations, the cutoff energy should be increased until the calculated total energy

converges.

k-point sampling

Given the energy εnk and wave function ψnk(r) obtained through the solution of

Eq.(2.19), the total energy and electron density can be calculated via averaging over
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the Brillouin zone

E =
Ω

(2π)3

∫
BZ

(∑
n

εnk

)
dk (2.58)

n(r) =
Ω

(2π)3

∫
BZ

(∑
n

ψ∗nk(r)ψnk(r)

)
dk, (2.59)

where Ω is the volume of the primitive unit cell. In general, integration over a certain

area can be numerically calculated via determination of the function values at a set of

points and interpolation for the other points. However, to obtain sufficient accuracy

in the general numerical integration, usually it is necessary to know the functional

values over a large set of points.

To avoid the use of the general numerical integration, efficient methods (22; 23;

24; 25; 26) have been developed utilizing the point group symmetry of the reciprocal

lattice. Those methods make possible simpler and more accurate calculations of aver-

age over the Brillouin zone. The main idea underlying those methods is to represent

the function values over a region of k space by the values at a single or several special

k points. To illustrate this idea, we assume a smooth function f(k) with the complete

symmetry of the lattice

f(Tik) = f(k), (2.60)

where Ti is an element of the operations of the reciprocal lattice point group T . Both

the energy εnk and wave function ψnk satisfy that condition. We can express f(k) in

the form

f(k) = f0 +
∞∑

m=1

fmAm(k), (2.61)
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where

Am(k) =
∑

|R|=Rm

eik·R,m = 1, 2, . . . . (2.62)

Am(k) is obtained via a sum over equivalent lattice vectors R related to each other

through the operations of T . It has the following property:

Ω

(2π)2

∫
BZ

Am(k)dk = 0,m = 1, 2, . . . . (2.63)

The average of f(k) over the Brillouin zone, f , is given by

f =
Ω

(2π)2

∫
BZ

f(k)dk. (2.64)

Substitution of Eq.(2.62) into Eq.(2.64) gives that f = f0. Therefore if we could a

single point k0, which satisfied

Am(k0) = 0,m = 1, 2, . . . , N, (2.65)

for N = ∞, then we could use the function value at k0 to represent the average over

the Brillouin zone, f(k0) = f . Unfortunately, such a point with N = ∞ does not

exist. However, since the coefficients fm in Eq.(2.61) decreases rapidly as m increases,

an estimate with required accuracy can be obtained as long as the condition(2.65)

is satisfied for sufficient large N . Moreover, the condition(2.65) is not necessary for

a single k point. We can use the linear combination of a set of carefully selected k

points, which satisfy

∑
i

αiAm(ki) = 0,m = 1, 2, . . . , N, (2.66)∑
i

αi = 1, (2.67)
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for the estimation of f . This is a systematic way of sampling in k-space and arbitrary

large N can be achieved given that a sufficient dense k-grid is used.

2.1.5 Crystal structure prediction through total energy minimization

The prediction of the ground-state crystal structure and quantitative values for the

structural parameters are obtained by minimizing the total energy with respect to

the lattice vectors and atomic positions in the unit cell. As in the minimization

of any function of many variables, direct information about the derivatives of the

total energy is extremely valuable for rapid location of local and global minima. In

first principles calculations, first derivatives of the total energy are obtained through

application of the Hellmann-Feynman theorem for forces on the atoms in the unit cell

FI = −
〈
ψ({R})

∣∣∣∣∂H({R})
∂RI

∣∣∣∣ψ({R})
〉
, (2.68)

and through the Nielsen-Martin stress expressions for changes in energy with changes

in lattice parameters.

These optimization approaches preserve the symmetry of the starting configu-

ration. Thus, for each choice of space group, they will identify the lowest energy

structure with that symmetry. A strength of first principles methods is the capability

for computing properties of hypothetical materials and materials under constraints.

For example, in the study of BaTiO3/SrTiO3 (27), the effect of epitaxial strain on

structure is studied in a first-principles framework though “strained bulk” calcula-

tions, in which the in-plane lattice constant of each superlattice is matched to the

lattice constant of the substrate materials so that the interfacial effect is excluded.

For the total-energy formalism described above, the accuracy of the computa-

tion of lattice constants depends on the choice of approximation for the exchange-

correlation functional. Use of the local density approximation gives lattice constants

typically about 1% too small compared with experimental values, while use of the
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GGA tends to give lattice constants that are typically about 1% too large; this is the

case for simple semiconductors and for oxides.

2.1.6 Phonon dispersion relations from first principles

Phonon dispersion relations reveal important information about the structures. For

a system near its equilibrium energy, the harmonic approximation applies. The fre-

quencies ω and eigenvectors {Uα
I } for the αth Cartesian component of the Ith atom

of the normal modes are determined by Equation:

∑
J,β

(Cαβ
IJ −MIω

2δIJδαβ)Uβ
J = 0,

where Cαβ
IJ is the matrix of interatomic force constants (IFCs):

Cαβ
IJ =

∂2E({R})
∂Rα

I ∂R
β
J

= −∂F
α
I

Rβ
J

.

Unstable normal modes, which have imaginary frequencies, indicate the lattice modes

that if frozen in, will lower the energy.

The IFCs can be obtained by the calculation of the change of Hellmann-Feynman

forces with a small atomic displacement. This is called the frozen-phonon method.

The frozen-phonon approach is straightforward for the calculation of the zone-center

modes (q = 0). An enlarged unit cell, or “supercell”, is required for the calculation

of IFC at any q 6= 0.

An alternative approach for phonon dispersion calculations is density functional

perturbation theory (DFPT) (28). The DFPT uses the perturbation theory to calcu-

late the second derivatives of the energy with respect to the atomic displacements

∂2E({R})
∂Rα

I ∂R
β
J

= 2
∑

n

〈ψ0| ∂H
∂Rα

I
|ψn〉〈ψn| ∂H

∂Rβ
J

|ψ0〉

ε0 − εn
, (2.69)
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Figure 2.2: The phonon dispersion of BaTiO3 from Ref (29). Imaginary frequency
indicates the instability of the mode.

where {ψi} are the states in the unperturbed system. In DFPT, the calculation of the

dynamical matrix can be performed for any q vector without introducing supercells.

The phonon dispersion calculations can reveal the instabilities in the high-symmetry

structure. The unstable phonon modes have imaginary frequencies and lead to struc-

tures of lower symmetry. Fig. 2.2 shows the phonon dispersion of cubic BaTiO3

structure. The unstable mode at Γ point indicates the polar instability in the cubic

BaTiO3 structure.

2.1.7 Electric polarization from first principles

In periodic solids, the classical definition of electric dipole moment p =
∫
en(r)dr

is not appropriate to calculate the polarization as the electric dipole moment of the

unite cell, because the value of the integral depends on the choice of the unit cell.

We use the Berry-phase method to calculate electric polarization from first principles.

For more details, please refer to Ref. (30; 31; 32).
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With the electric polarization calculated from first principles, we can calculate the

Born effective charge Z∗
ij for each atom as

Z∗
ij =

Ω

e

δPi

δuj

, (2.70)

where Ω is the volume of the unit cell, e is the charge of the electron, Pi is the

polarization in i-direction and uj is the displacement in j-direction.

2.1.8 Static dielectric response from first principles

With the modern theory of polarization, the static dielectric response

εij = ε0δij +
dPi

dEj

, (2.71)

can be calculated from first principles (33). In the Born-Oppenheimer approximation

the macroscopic polarization P can be expressed as

Pi = P 0
i + P lat

i + PE
i , (2.72)

where P 0
i is the spontaneous polarization of Equilibrium structure in zero field, P lat

i

is the polarization induced by lattice response and PE
i is the electronic screening

polarization. With this relation, the static dielectric constant can be calculated as

εij = ε0δij + ε∞ +
∂P lat

i

∂Ej

, (2.73)

where ε∞ =
∂PE

i

∂Ej
is the electronic component of the dielectric tensor. The contribution

of lattice response is calculated as

∂P lat
i

∂Ej

=
∑
ω2

µ 6=0

Z
∗
µiZ

∗
µj

V ε0m0ω2
µ

+
∑
kl

V −1∂Pi

∂ηk

(C−1)kl
∂Pj

∂ηl

. (2.74)
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The first term describes the phonon contribution to the dielectric tensor. The sum-

mation is over all of the optical phonons ωµ and the mode effective charge Z
∗
µi is

defined as

Z
∗
µi =

∑
nk

Z∗
nik(m0/mn)

1
2 (uµ)nk, (2.75)

where Z∗
nik is the Born effective charge component of nth atom, mn is its mass and

(uµ)nk is the displacement of nth atom in k-direction. The second term includes the

effect of changes in the lattice on the dielectric response, where C is the elastic tensor

Cij = − ∂2E

∂ηi∂ηj

. (2.76)

2.1.9 Piezoelectric response from first principles

In 1880 (34), Pierre and Jacques Curie published their observation of the accumu-

lated surface charges on a set of crystals when they were mechanically stressed. This

phenomenon was later termed as piezoelectricity. Later the converse effect was mathe-

matically predicted from fundamental laws of thermodynamics (35). The piezoelectric

coefficients are defined as

dij =

(
∂Pi

∂σj

)
E

=

(
∂ηj

∂Ei

)
σ

, (2.77)

where P is the electric polarization, σ is the stress, E is the electric field and η is the

elastic strain. In first-principles calculations, d33 was computed from the expression

d33 =
dP (η33)/dη33

dσ33/dη33

(2.78)

where dσ33 = −dEtot(η33)/dη33 is the relevant stress, Etot is the energy per volume

and all derivatives are computed with electric field held to zero. The derivatives are

computed by choosing five or more values of c near the optimized value, obtaining
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the total energy and polarization for c constrained to each of these values, and fitting

Etot(η33) and P (η33) to quadratic and linear order polynomials, respectively; the

minimizing value of η33 and the derivatives are computed from the fits.

2.1.10 Discussion of accuracy

As previously discussed, the accuracy of the computation of lattice constants depends

on the choice of approximation for the exchange-correlation functional. Experience

shows that these are usually about 1% too small compared with experimental values

for LDA and about 1% too large for GGA. The errors of calculated phonon frequencies

and the related response functions, such as piezoelectricity, are typically within 10%

of experimental values. Because density functional theory is strictly applicable only

to the properties of the ground state, calculations of excited state properties, such

as band gap, from the Kohn-Sham band structure are not generally accurate. The

deficits and effect of temperature can also lead to discrepancy between the DFT

calculations and the experiment.

2.2 Polynomial expansions of the energy

Density functional theory has been proved to be extremely useful in the investigation

of functional materials, giving detailed information about atomic arrangements and

the atomic-scale origin of macroscopic properties such as the dielectric and piezoelec-

tric responses. For the physical interpretation of the wealth of information available

from a first-principles study, it can be very useful to focus on one or a few important

degrees of freedom and develop a simple model for the structural energetics.

For the functional perovskite materials considered in this thesis, the important

degrees of freedom are the lattice modes described in Chapter 2. A model of the

structural energetics can be obtained by expanding the energy as a function of these

modes around the cubic perovskite structure as a reference structure. The allowed
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terms are constrained by symmetry considerations, following the prescriptions of the

analogous expansions of free energy in Landau theory in terms of order parameters

defined through symmetry analysis.

There are four parts in the following part. First, I will briefly explain the most

essential aspects of the theory of finite groups; a fuller description of group theory

can be found in Ref (36). The second part is the mode description of crystal struc-

tures. Then I will discuss the construction of the polynomial expansion of the energy

following the procedures of Landau theory. The last part is how to determine the

coefficients in the energy polynomial expansions from first-principles calculations.

2.2.1 Introduction to group theory

Basic concepts of group theory

In mathematics, an abstract group G is a collection of elements A,B,C, . . . and a

binary operation AB, which satisfy the following four conditions:

1. The group is closed, i.e., if A,B ∈ G then AB ∈ G

2. The associative law is valid, i.e., (AB)C = A(BC).

3. There is an identity element E, so that, for ∀A ∈ G, AE = EA = A.

4. For ∀A ∈ G there exists an inverse element A−1 so that AA−1 = A−1A = E.

The number of elements in the group is called the order of the group. In a group with

a finite order, the identity E can be obtained by multiplying an arbitrary element X

by itself enough times, Xn = E. The number n is called the order of the element X.

A subgroup is a collection of elements within a group that by themselves form a

group.

The conjugation of element A is defined as B = XAX−1, where X is an arbitrary

element of the group. Conjugation is a transitive relation, since if B = XAX−1
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E C1
2 C2

2 C3
2 C1

3 C2
3

E E C1
2 C2

2 C3
2 C1

3 C2
3

C1
2 C1

2 E C1
3 C2

3 C2
2 C3

2

C2
2 C2

2 C2
3 E C1

3 C3
2 C1

2

C3
2 C3

2 C1
3 C2

3 E C1
2 C2

2

C1
3 C1

3 C3
2 C1

2 C2
2 C2

3 E
C2

3 C2
3 C2

2 C3
2 C1

2 E C1
3

Table 2.1: Multiplication table for the point symmetry operations of an equilateral
triangle

and C = Y AY −1, then B = (XY −1)C(XY −1)−1. A class is defined as the totality

of elements which can be obtained from a given group element by conjugation. The

elements of the same class are of the same order, because if B = XAX−1 and An = E,

then Bn = (XAX−1)n = XAX−1 . . . XAX−1 = XAnX−1 = E.

The elements of a point group are point symmetry operations {R}, such as rota-

tions and reflections, which transform the system into an equivalent state. Fig. 2.2.1

shows an equilateral triangle, which has six point symmetry operations: one identity

element (E), the rotations by ±2π/3 about the origin (C1
3 , C

2
3) and the rotations by

π about the three twofold axes (C1
2 , C

2
2 , C

3
2). The multiplication Table (2.2.1) shows

the product of each pair of the six symmetry operations. It is obvious that the four

conditions of the abstract group are satisfied and the six point symmetry operations

form a 2-D point group. The point group of an equilateral triangle has three classes:

1. E;

2. C1
2 , C

2
2 , C

3
2 ;

3. C1
3 , C

2
3 .

It is easy to show that the symmetry operations of the same class have the same

order.

In principle, there are continuous point groups in two or three dimensional space.

However, the crystallographic restriction theorem limits the rotational symmetries
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𝐶2
1 𝐶2

2 

𝐶3
1 

𝐶3
2 𝐶3

3 
𝑂 

Figure 2.3: The symmetry operations of a equilateral triangle

of a crystal to only 2-fold, 3-fold, 4-fold, and 6-fold. Therefore there are only 10

two-dimensional and 32 three-dimensional crystallographic point groups.

The symmetry group of the crystal lattice is called a space group, and consists of

both translational symmetry operations and point group operations. A space group

operation is denoted as

{Rα|τ}, (2.79)

where Rα denotes point group operations and τ denotes translation operations. There

are three special types of space group operations: identity, pure point group opera-

tions and pure translations, which are denoted as {ε|0}, {Rα|0} and {ε|τ}, respec-

tively. In the space group G, all of the elements of the form {ε|τ} form the translation

group T . The translation group T defines the Bravais lattice of the crystal. For the

three-dimensional crystal structures, there are in total 14 possible Bravais lattices,

which are obtained by combining one of the 7 lattice systems with one of the lattice

centerings. By replacing the different atomic structures in the Bravais lattice sites, a

total of 230 space groups, 73 symmorphic and 157 nonsymmorphic, can be formed.

If all of the symmetry operations in a space group can be expressed as of the form
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{Rα|τ} = {ε|Rn}{Rα|0}, where Rα denotes the translation vector of the Bravais lat-

tice, by selecting the correct origin, then the space group G is called a symmorphic

group. Otherwise, G is called a nonsymmorphic group. In the symmorphic group,

the entire point group is a subgroup of the space group, while in the nonsymmorphic

group, the point group is not a subgroup.

Representation theory

Representation theory is essential for developing the group theoretical framework for

the applications of group theory to solid state physics. A representation of a abstract

group is a matrix group with square matrices, whose elements have a one-to-one

correspondence to the elements of the abstract group. The assigned matrices follow

the multiplication relation of the original abstract group. We denote D(A) as the

corresponding matrix for the element A. Then we should have D(A)D(B) = D(AB).

The following is a representation ΓR(A) of each element A in the point group of the

previously discussed equilateral triangle.

E C1
3 C2

3
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 −1
2

√
3

2

0 0 −
√

3
2

−1
2




1 0 0 0

0 1 0 0

0 0 −1
2
−

√
3

2

0 0
√

3
2

−1
2


C1

2 C2
2 C3

2
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




1 0 0 0

0 −1 0 0

0 0 1
2

−
√

3
2

0 0 −
√

3
2

−1
2




1 0 0 0

0 −1 0 0

0 0 1
2

√
3

2

0 0
√

3
2

−1
2



(2.80)

It is easy to prove that the above representations with matrices follow the multiplica-

tion relation in the Table 2.2.1. We can also see that all of the representation matrices
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ΓR(A) are block matrices of the form


Γ1 0 0

0 Γ1′ 0

0 0 Γ2

 (2.81)

. where Γ1 and Γ1′ are 1× 1 matrices and Γ2 is a 2× 2 matrix. If the representation

matrices for all elements in the group can be brought into the same block form by

similarity transformation,

Γ̂R = U−1ΓRU, (2.82)

the representation is called reducible representations. Each block corresponds to an

irreducible representation (irrep) of the point group. The representation (2.80) is a

reducible representation containing three irreps, which is denoted as:

ΓR = Γ1 + Γ1′ + Γ2. (2.83)
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The irreps, Γn(A), for each element A in the point group of Equilateral triangle are

as follows:

E C1
3 C2

3

Γ1:
(
1
) (

1
) (

1
)

Γ1′ :
(
1
) (

1
) (

1
)

Γ2:

1 0

0 1

  −1
2

√
3

2

−
√

3
2

−1
2

 −1
2
−

√
3

2
√

3
2

−1
2


C1

2 C2
2 C3

2

Γ1:
(
1
) (

1
) (

1
)

Γ1′ :
(
−1
) (

−1
) (

−1
)

Γ2:

−1 0

0 1

  1
2

−
√

3
2

−
√

3
2

−1
2

  1
2

√
3

2
√

3
2

−1
2



(2.84)

It can be shown that every representation with matrices with nonzero determinants

can be brought into unitary form,

Γ−1
n (A) = Γ†

n(A), (2.85)

by a similarity transformation (36).

Now I will introduce the orthogonality theorem, or “Wonderful Orthogonality

Theorem,” which is essential to the application of the group theory to solid state

physics. All of the inequivalent irreps of a group obey the orthogonality relation

∑
R

Γn(R)µνΓn′(R−1)ν′µ′ =
h

ln
δnn′δµµ′δνν′ , (2.86)

where the summation is over all h group elements A1, A2, · · · , Ah and ln and ln′ are

the dimensionalities of representations Γn and Γn′ . If the irreps are of unitary form,
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the orthogonality relation becomes

∑
R

Γn(R)µνΓ
∗
n′(R)µ′ν′ =

h

ln
δnn′δµµ′δνν′ . (2.87)

For the proof of the orthogonality relation, please refer to Ref (36).

Character of a representation

The character of the matrix representation χΓn(R) for a symmetry operation R is the

trace of the matrix representation Γn(R):

χΓn(R) =
ln∑

µ=1

Γn(R)µµ, (2.88)

where ln is the dimensionality of the irrep Γn. The character of the representation

has an important property: the representation matrices for the elements in the same

class have the same character. Because all elements in the same class can be brought

to each other through similarity transformation,

A = U−1BU, (2.89)

a similarity transformation does not change the trace of the representation matrices.

There is also a Wonderful Orthogonality Theorem for the character,

∑
R

χΓn(R)χΓn′ (R−1) = hδΓnΓn′ , (2.90)

which for the unitary representations becomes

∑
R

χΓn(R)χΓn′ (R)∗ = hδΓnΓn′ . (2.91)

Thus can be easily proved by summation of the Wonderful Orthogonality Theorem
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(2.86) and (2.87) over the diagonal elements. Since the elements of the same class

have the same character, the Wonderful Orthogonality Theorem for character can be

expressed as

∑
k

Nkχ
Γn(Ck)χ

Γn′ (Ck)
∗ = hδΓnΓn′ , (2.92)

where Ck denotes a class with index k and Nk is the order of the class. The Wonderful

Orthogonality Theorem for character indicates that the character vector, {χΓn(Ck)},

is unique for each irrep Γn, because if two inequivalent irreps had the same character,

the vectors could not be orthogonal and the Wonderful Orthogonality Theorem for

character would be violated. Moreover, there is a second orthogonality relation for

character:

∑
Γn

Nkχ
Γn(Ck)χ

Γn′ (Ck′)∗ = hδkk′ . (2.93)

The two orthogonality relations (2.92) and (2.93) provide an efficient way to determine

whether a representation is reducible. The characters of a reducible representation

will generally violate the two orthogonality relations.

The characters of representations encode many important properties of both

classes and irreps and greatly help the study of structures. The property of a group

can be summarized in a compact form as a character table, a two-dimensional table

whose rows correspond to the irreps and whose columns correspond to the classes of

group elements. Table 2.2.1 shows the character table for the previous example of

Equilateral triangle. The character table is a useful tool for the classification of finite

groups.
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E 3C2 2C3

Γ1 1 1 1
Γ1′ 1 -1 1
Γ2 2 0 -1

Table 2.2: The character table of the point group of an equilateral triangle.

Basis functions

For a group G with symmetry elements R and symmetry operator P̂R, we can define

a set of basis functions |Γnα〉 with index α for each irrep Γn. The symmetry operator

P̂R and its matrix representation Γn(R) are related through the relation

P̂R|Γnα〉 =
∑

j

Γn(R)jα|Γnj〉. (2.94)

The basis functions should obey the orthonormality relation

〈Γni|Γn′j〉 = δnn′δij. (2.95)

The orthonormality relation (2.95) provides a way to construct the representation

matrix by using the basis functions and symmetry operator:

Γn(R)jα = 〈Γnj|P̂R|Γnα〉. (2.96)

We can also define a projection operator P̂
(Γn)
kl , which transform a basis function

|Γnl〉 to another basis function |Γnk〉 with the same representation Γn:

P̂
(Γn)
kl |Γnl〉 ≡ |Γnk〉. (2.97)

The projection operator P̂
(Γn)
kl can be expanded in terms of the symmetry operators
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P̂R:

P̂
(Γn)
kl =

∑
R

A
(Γn)
kl (R)P̂R. (2.98)

Plugging Eq.(2.94) and (2.98) into the definition of the projection operator (2.97),

we have

∑
R,j

A
(Γn)
kl (R)Γn(R)jl|Γnj〉 = |Γnk〉. (2.99)

According to the orthonormality relation (2.95) between the basis functions, we can

derive that

∑
R

A
(Γn)
kl (R)Γn(R)jl = δjk. (2.100)

Comparing with the Wonderful Orthogonality Theorem (2.87), we can get the ex-

pression of the coefficient A
(Γn)
kl (R),

A
(Γn)
kl (R) =

ln
h

Γn(R)∗kl. (2.101)

Then we have the explicit form of the projection operator, which is

P̂
(Γn)
kl =

ln
h

∑
R

Γn(R)∗klP̂R. (2.102)

The special case P̂
(Γn)
kk only contains the diagonal elements of the representation ma-

trix,

P̂
(Γn)
kk =

ln
h

∑
R

Γn(R)∗kkP̂R. (2.103)

Utilizing the special projection operator P̂
(Γn)
kk , we can construct another projection
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operator P̂ (Γn), where

P̂ (Γn) =
∑

k

P̂
(Γn)
kk

=
ln
h

∑
k,R

Γn(R)∗kkP̂R

=
ln
h

∑
R

χ(Γn)(R)∗P̂R.

(2.104)

For an arbitrary function F ,

F =
∑
Γn′

∑
j′

f
(Γn′ )
j′ |Γn′j′〉, (2.105)

and the effect of application of projection operator P̂ (Γn) is

P̂ (Γn)F =
ln
h

∑
k,R

Γn(R)∗kk

∑
Γn′

∑
j′

f
(Γn′ )
j′ P̂R|Γn′j′〉

=
ln
h

∑
k

∑
Γn′

∑
j

∑
j′

∑
R

f
(Γn′ )
j′ Γn(R)jj′Γn′(R)∗kk|Γn′j′〉

=
∑

k

∑
Γn′

∑
j

∑
j′

f
(Γn′ )
j′ δΓnΓn′δjkδj′k|Γn′j′〉

=
∑

k

f
(Γn)
k |Γnj〉.

(2.106)

We can see that the projection operator P̂ (Γn) projects out an arbitrary function F

to a function transforming as Γn. In a later section, we will utilize this property to

construct the invariant polynomial expansions.

Space groups in reciprocal space and representations

The previously discussed representation theory and projection operators are for gen-

eral abstract groups. Therefore, they also apply to the space groups of crystals.

In the following, I will discuss how to incorporate the point group symmetry and

translational symmetry of the crystal lattice.
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For lattice periodic system, it is convenient to study the properties of the materials

in reciprocal space. Therefore it is natural to choose functions with wave vectors k as

a set of basis functions. The symmetry properties at each k point is described by the

group of wave vector Gk. Gk is defined as the collection of all symmetry operations

that bring the wave vector k into itself or an equivalent wave vector of the form

k′ = k + Km, (2.107)

where Km is a reciprocal lattice vector satisfying

eiKm·Rn = 1, (2.108)

for all lattice vectors Rn. Not all elements in the space group of the crystal lattice G

are necessarily included in in Gk when k 6= 0. Therefore Gk might be the same as G

or its subgroup.

Now let’s consider a certain function Fk at wave vector k. The symmetry op-

erator P̂ k
{R|τ} corresponds to the symmetry operation {R|τ}, which is in the group

of wave vector Gk. For the symmorphic group, the symmetry operation {R|τ} can

be decomposed into a pure translational operation {ε|Rn} and a pure point group

operation {R|0}. Therefore the effect of application of P̂ k
{R|τ} on Fk is as follows:

P̂ k
{R|τ}Fk = P̂ k

{ε|Rn}P̂
k
{R|0}Fk. (2.109)

P̂ k
{R|0}Fk is also a function at wave vector k. According to Bloch’s theorem,

P̂ k
{ε|Rn}P̂

k
{R|0}Fk = eik·RnP̂ k

{R|0}Fk. (2.110)

Therefore, we have

P̂ k
{R|τ}Fk = eik·RnP̂ k

{R|0}Fk. (2.111)
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The case of a nonsymmorphic group is more complicated. For detailed description,

please refer to Ref (36).

2.2.2 Mode description of crystal structures

A crystal structure that is obtained by a continuous distortion of a higher symmetry

structure can be described with reference to that structure by specifying the nonzero

amplitudes of the modes that generate the deformation. For example, the tetragonal

BaTiO3 structure can be described by a single unique mode Γ−
4 and elastic strain η3.

A mode amplitude of 1 a.u. corresponds to a displacement eigenvector with norm 1.00

Å. For example, the analysis of ISOTROPY shows that the bulk Pbnm structure of

CaTiO3 consists of in-phase rotational mode M+
3 , out-of-phase rotational mode R+

4 ,

X+
5 mode and R+

5 mode. The first two modes are the primary order parameters of

the phase transition from the cubic Pm3m to orthorhombic Pbnm structure. The

other two modes, which are stable in the ideal cubic structure, are induced by the

combination of M+
3 and R+

4 breaking symmetry.

2.2.3 Symmetry analysis in Landau theory

Landau introduced a mean field method to estimate the free energy of the system and

simulate the phase transition between the low and high symmetry states. In Landau

theory, the free energy is approximately described by an analytic function in terms of

order parameters, which describe the structural and physical properties of the system.

Typically the Landau free energy is a polynomial expansion with terms respecting the

symmetry of the order parameter. In the original Landau theory, the free energy was

described by a fourth-order polynomial with a single order parameter, the primary

order parameter, which breaks the symmetry and induces the phase transition:

F = F0 + αψ2 + κψ4, (2.112)



45

where the coefficients are functions of external constraints, such as temperature. This

fourth-order energy expansion successfully captures the physics in some transitions,

such as the appearance of the polarization P , the order parameter in para- and ferro-

electric phase transition. In those systems, inversion of the primary order parameter:

ψ → −ψ, i.e., flipping of the polarization P , does not change the energy of the sys-

tem. Therefore the symmetry of the order parameter only allow even order terms

existing in the energy expansion. However, for some systems, other order parameters

are necessary to appropriately describe the energy surface of the system, which leads

to a more complicated Landau energy function. In the following part, I will explain

how to construct the Landau energy function through symmetry analysis.

In all groups, there is a special irrep, Γ1, with character of 1 for all group elements.

It means that the basic functions of irrep Γ1 are invariant under all group elements. As

a scalar quantity, the free energy of the system does not change under any symmetry

operations. Therefore the free energy is a basic function that transforms as the irrep

Γ1 of the space group of crystal lattice. To construct an energy polynomial satisfying

that symmetry requirement, we can apply the projection operator of irrep Γ1,

P̂ (Γ1) =
1

h

∑
{R|Rn}

P{R|Rn}, (2.113)

to each term in the Taylor expansion of the free energy function. The projection

operator P̂ (Γ1) will project out each term to zero or a function transforming as irrep

Γ1.

I will use the case of the orthorhombic perovskite CaTiO3 to illustrate the process

of energy function construction. The ground state of CaTiO3 is of space group Pbnm,

which is obtained by freezing the phonon modes R+
4 (twofold, R+

4x and R+
4y) and M+

3

in the high-symmetry Pm3m structure. The coupling of the R+
4 and M+

3 modes also

induces another mode X+
5 (twofold, X+

5x and X+
5y). R

+
4 , M+

3 and X+
5 are the three

dominant distortion modes in the CaTiO3 Pbnm structure and we will construct the
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energy function in terms of the three distortion modes. The three distortion modes

are denoted according to their corresponding zone-boundary wave vectors R(π
a
, π

a
, π

a
),

M(π
a
, π

a
, 0) andX(0, 0, π

a
), where a is the lattice constant of cubic Pm3m unit cell. The

symmetry of the three distortion modes are also the same as their corresponding wave

vectors’. Because the space group Pm3m is a symmorphic group, the translational

and point group operations commute with each other. The application of the space

group symmetry operator on one distortion mode M , M = R4x, R4y,M3, X5x, X5y, is

given by

P{R|Rn}M = P{R|0}P{ε|Rn}M

= eikM ·RnP{R|0}M,
(2.114)

where Rn is a lattice vector and R is the point group symmetry operation of the

group GkM
. For an arbitrary term in the Taylor expansion of free energy function,

R
NRx
4x R

NRy

4y MNM
3 X

NXx
5x X

NXy

5y , the effect of the projection operator P̂ (Γ1) is:

P̂ (Γ1)R
NRx
4x R

NRy

4y MNM
3 X

NXx
5x X

NXy

5y

=
1

h

∑
{R|Rn}

P{R|Rn}(R
NRx
4x R

NRy

4y MNM
3 X

NXx
5x X

NXy

5y )

=
1

h

(∑
Rn

e[(NRx+NRy )kR+NMkM+(NXx+NXy )kX ]·Rn

)

×

(∑
R

P{R|0}

(
R

NRx
4x R

NRy

4y MNM
3 X

NXx
5x X

NXy

5y

))
,

(2.115)

where h is the number of the symmetry operations, h = NRn · NR and R is chosen

from the largest common subgroup of GkR
, GkM

and GkX
. Eq.(2.115) is ill-defined,

because a space group have infinite number of translational vector Rn. However, only

if the sum of wave vectors, (NRx + NRy)kR + NMkM + (NXx + NXy)kX , equals to

a certain reciprocal lattice vector Km, the term in the first parenthesis is nonzero,

otherwise the summation over Rn would cancel out. This symmetry requirement is
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called translational invariance. The summation in the second parenthesis is nonzero

only if the target function contains basis functions invariant under the point group

symmetry operations. Replacing the summation over the infinite lattice vectors Rn

with a delta function, Eq.(2.115) changes to the following form:

P̂ (Γ1)R
NRx
4x R

NRy

4y MNM
3 X

NXx
5x X

NXy

5y

=δ[(NRx+NRy )kR+NMkM+(NXx+NXy )kX ],Km

× 1

NR

(∑
R

P{R|0}

(
R

NRx
4x R

NRy

4y MNM
3 X

NXx
5x X

NXy

5y

))
.

(2.116)

Now I will use Eq.( 2.115) to check the symmetry of some terms in the energy ex-

pansion. First, let’s look at the coupling term R4xR4y. The sum of the wave vectors

(1 + 1)kR = (2π
a
, 2π

a
, 2π

a
) is a reciprocal lattice vector. Therefore the translational

invariance is satisfied. Since both of the two modes are of point group Oh, the point

group of this term is also Oh. According to the Table A.1 in Appendix A, we have

P̂ (Γ1)R4xR4y = 0. (2.117)

Therefore, the term R4xR4y contains no component transforming irrep Γ1. Then let’s

try the coupling term R4xMX5x. Again the translational invariance is satisfied, since

the sum of wave vectors, kR + kM + kX = (4π
a
, 4π

a
, 4π

a
), is also a reciprocal lattice

vector. The point group of this term is D4h, because M+
3 X+

5 are of point group D4h.

According to the Table A.2 in Appendix A, we have

P̂ (Γ1)R4xMX5x =
1

2
(R4xMX5x +R4yMX5y). (2.118)

Therefore the term R4xMX5x + R4yMX5y is an invariant term under all symmetry

operations and is a valid term in the Landau free energy expansion.
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2.2.4 First principles computation of coefficients in energy expansion

Previous work (37; 38; 39) can be used as the starting point for the construction of an

effective Hamiltonian for nonzero T simulation. To determine the coefficients in the

energy polynomial, we freeze in one or more modes in the high symmetry structure

with other modes set as zero or minimized over, which depends on the project. The

amplitudes of the frozen-in distortion modes are varied and the coefficients are fitted

to the total energy calculated from first principles.
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Chapter 3

First-principles study of epitaxially strained

CaTiO3

3.1 Introduction

As described in the Introduction, the equilibrium bulk structure of CaTiO3 is a nonpo-

lar orthorhombic Pbnm structure, generated by strongly unstable oxygen octahedron

rotations. The first principles phonon dispersion for CaTiO3 in the cubic perovskite

structure (Fig. 3.1) includes not only the unstable oxygen octahedron modes R+
4

and M+
3 that generate the nonpolar bulk orthorhombic structure, but also a unstable

polar mode. The fact that the polar mode is not present in the bulk structure can be

understood as the result of the competition between oxygen octahedron modes and

polar modes, which has been discussed in a number of perovskite systems (40). In

CaTiO3, the oxygen octahedron instabilities are strong enough to eliminate the polar

instability completely in the bulk phase.

One way to enhance the strength of the polar instability is through the polarization-

strain coupling discussed in the Introduction. Indeed, elastic strains have been a ex-

tremely powerful means of stabilizing electric polarization of perovskite oxides (41),

one example being the epitaxial-strain induced ferroelectricity in SrTiO3 (42; 43).

Furthermore, elastic strains also have a significant effect on the rotational modes,

and thus indirectly influence the competition between the rotational and polar modes,

hence changing the stability of the polar modes. Strain-induced ferroelectric phases

were reported in the first-principles study of epitaxially-strained bulk CaTiO3 (44).
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Above approximately 1.5% tensile strain, four competing ferroelectric phases exhibit-

ing in-plane polarizations with different orientations were observed, with the Pmn21

structure having the lowest total energy among the four polar structures over the

range of strain considered. First-principles calculations were also performed up to

2% compressive strain; however, no polar structures were stabilized in that range of

epitaxial strain.

In this chapter, I report calculations that extend the previously considered range

of strain to higher values of compressive strain (6%). My structure search included

all structures derived from the Pbnm bulk phase. The polar instability was revealed

by frozen-phonon calculations. Previously unreported polar phases at compressive

strain were discovered and characterized. Next, I discuss the construction of a model

that reproduces the epitaxial strain dependence of the distortions in the epitaxial

phases derived from the bulk orthorhombic Pbnm structure, with the focus on the

coupling and competition between the oxygen octahedron rotation distortions and

the polarization. The large amplitude of the distortions in the structures presents a

substantial challenge to modeling with a polynomial form, which I address below. In

the last part of the chapter, I focus on a distinct metastable ferroelectric epitaxial

phase identified in the first principles calculations in the compressive strain regime.

In most perovskites, compressive strain favors a polarization along the normal (the

long direction for the tetragonal unit cell). The phase I discuss has, surprisingly, a

polarization in the epitaxial plane. A model for the structural energetics of this phase

shows it is a geometric ferroelectric driven by a previously unrecognized mechanism.

3.2 First principles computational details

In this study, the first-principles calculations were performed using density functional

theory within the local density approximation as implemented in VASP 5.2 (46; 47).

We used the Ceperley and Alder functional (48), with projector-augmented wave
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Figure 3.1: Phonon dispersion for CaTiO3 in the ideal cubic perovskite structure from
Ref. (45).

potentials (20; 21). We considered 3p and 4s as valence states to build the Ca

pseudopotential, 3p, 3d and 4s valence states for the Ti pseudopotential and 2p

valence states for the O pseudopotential. A plane-wave energy cut-off of 680 eV was

used. The Brillouin zone of the twenty-atom unit cell was sampled by a 8 × 8 × 6

Monkhorst-Pack k-point mesh (25). The electric polarization is computed using the

Berry-phase method (30) with a 8× 8× 6 Monkhorst-Pack k-point mesh.

3.2.1 Structural optimizations and epitaxially strained calculations

To investigate the effect of epitaxial strain, we performed “strained bulk” calculations

matched to a square lattice substrate. The zero-strain lattice constant is taken as

a0 = 3.77Å, the cube root of the volume per formula unit of the relaxed Pbnm

structure. As shown in Fig. 3.2, there are two ways to fit the Pbnm structure to

the matching plane, which lead to two different epitaxially strained structures, c-

ePbnm and ab-ePbnm (44), respectively. In c-ePbnm, the Pbnm space group is

retained, while in ab-ePbnm, the symmetry is lowered to P21/m. In the structural

optimization, both the lattice and internal structural parameters were relaxed until

forces on atoms were less than 1 meV/Å. For all of the relaxed non-polar structures,



52

𝑐
≈
2
𝑎
0

 

𝑏 

𝑎 

𝑐 

𝑐-𝑒𝑃𝑏𝑛𝑚 𝑎𝑏-𝑒𝑃𝑏𝑛𝑚 

Figure 3.2: The two ways to fit the Pbnm structure of CaTiO3 to a square (001)
substrate. The shaded plane represents the matching plane.

frozen phonon calculations were carried out to determine the stability against zone-

center modes. In the frozen phonon calculations, the force constant matrices were

calculated by displacing each atom by 0.01 Å. The eigenvector and the frequencies of

the zone-center modes were computed via the diagonalization of the force constant

matrices and a imaginary frequency indicates the instability of the corresponding

phonon mode. Unstable zone center modes were frozen in and the resulting structures

relaxed to obtain the observed polar phases.

3.3 First-principles results

3.3.1 First principles results

The energies of various structures are plotted as a function of epitaxial strain in

Fig. 3.3. Consistent with previous investigations of the strain range from -2 to 4% (44),

the two non-polar structures show different trends with epitaxial strain, with an

orientational phase transition point at approximately +1.5%. Above +1.5 % tensile

strain, the frozen phonon calculations reveal four unstable polar modes, two for each

orientational structure, which lead to four polar structures with in-plane polarization:
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Figure 3.3: Total energy per formula unit from first principles for various epitaxially
constrained structures as a function of square misfit strain. At each strain, the energy
of the c-ePbnm structure is taken as the zero of energy.

Pmn21 ([100]) and Pmc21 ([010]) in c-ePbnm (matching plane (001)) and P21 ([001])

and Pm ([110]) in ab-ePbnm (matching plane (110)). Of the four polar structures,

the Pmn21 structure is the lowest in energy, which is consistent with previous work.

By extending the range of compressive strain considered to 6%, polar instabilities

are also observed in the frozen phonon calculations of corresponding strained CaTiO3.

In the compressively strained c-ePbnm structure, there is one polar instability, which

leads to the polar structure Pna1, while in the ab-ePbnm structure, two polar in-

stabilities are observed, which generate two distinct polar structures: Pm and P21.

In both the Pm([110]) and Pna21([001]) phases, the direction of the polarization is

out of the matching plane, consistent with the fact that polarization-strain coupling

generally favors polarization along the elongation direction of the unit cell. In con-

trast, in the P21([001]) phase the polarization is one order smaller than that in other

structures, as shown in Fig. 3.4, and unexpectedly lies in plane. This suggests that

the ferroelectricity of the P21 phases is driven by a different mechanism, which will
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Figure 3.4: First-principles calculated polarization in various polar structures.

be discussed further below.

We performed mode decomposition for the various computed structures at com-

pressive strain using ISOTROPY (49). Fig. 3.5 shows that the dominant distortion

modes in both the c-ePbnm(Pbnm) and ab-ePbnm(P21/m) structures are R+
4 , M+

3

and X+
5 (Fig. 3.6), the same modes that dominate the bulk Pbnm structure. While

many of the mode amplitudes vary relatively little with epitaxial strain, a few modes

show strong strain dependence, which will be discussed further below. In the polar

structures, besides the zone-center mode Γ−
4z, which produces the polarization, many

other nonpolar modes are also introduced by the symmetry lowering, but most of their

amplitudes are very small. Table 3.1 shows the dominant modes in the mode decom-

position of various structures at 5% compressive strain. The Pm phase has a large

amplitude for the polar mode Γ−
4xy, as expected for a proper ferroelectric. In contrast,

in P21, the largest additional mode amplitude is not Γ−
4z, but X−

5 , the alternating

displacements of Ti and O atoms, and the amplitude of Γ−
4z is much smaller than that

in other polar phases. Moreover, the eigenvector of Γ−
4z in P21 is quite different from
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Figure 3.5: Mode decomposition of nonpolar CaTiO3 structure. Top: mode decom-
position of c-ePbnm. Bottom: mode decomposition of ab-ePbnm. 1 a.u. of distortion
mode is defined as that the norm of the corresponding displacement eigenvector is
1.00 Å. All of the superscripts of the distortion modes are omitted. In c-ePbnm,
symmetry requires that R+

4x = R+
4y = R4. In ab-ePbnm, the space group is lowered

from orthorhombic to monoclinic. Therefore, shearing strain component η6 should be
considered.
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Figure 3.6: Schemes of distortion modes. (a), (b) R+
4 mode in Ti-O layers at z = 0.0

and 0.5c. (c), (d) M+
3 mode in Ti-O layers at z = 0.0 and 0.5c. (e), (f) X+

5 mode in
Ca-O layers at z = 0.25c and 0.75c. (g), (h) X−

5 mode in Ti-O layers at z = 0.0 and
0.5c.

that in Pm. At 5% compressive strain, in P21, [Ca,Ti,O‖,O⊥]=[-0.76,0.19,0.13,0.60],

in Pm, [Ca,Ti,O‖,O⊥]=[-0.10,-0.65,0.55,0.51]. In P21, the polarization is A-site dom-

inated, while in Pm it is B-site dominated, as in the other epitaxial-strain-induced

ferroelectric phases. The difference between eigenvectors is additional evidence of the

different mechanism for the in-plane polarization in P21, which will be discussed in

Section 3.5.

Mode Pbnm P21/m Pna21 Pm P21

R+
4 0.418 0.785 0.530 0.762 0.778

M+
3 0.740 0.402 0.657 0.451 0.434

X+
5 0.187 0.289 0.205 0.305 0.308

Γ−
4 0.000 0.000 0.184 0.153 0.048

X−
5 0.000 0.000 0.147 0.000 0.143

Table 3.1: Amplitudes of modes, which are greater than 0.1 a.u., in different structures
at 5% compressive strain. The information about the components is not included in
this table.
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3.4 Construction of polynomial energy expansion for CaTiO3

In order to illuminate the mechanism of the strain-induced ferroelectricity in the

orthorhombic CaTiO3, we constructed a polynomial expansion to describe the energy

surface of CaTiO3. The total energy of CaTiO3 was expanded in terms of distortion

modes and elastic strains with respect to the high-symmetry cubic Pm3m structure.

One obstacle in the construction of the CaTiO3 energy function is the existence of

multiple distortions, which greatly increases the complexity of the expression. In

the c-ePbnm structure, which retains the space group of Pbnm, there are a total

of five distortion modes, including the two oxygen octahedron rotations, M+
3 [001]

and R+
4 [110], and three other modes, X+

5 , R+
5 and M+

2 . In the ab-ePbnm structure

and in the strain-induced ferroelectric phases, the space group is further lowered and

more modes have non-zero amplitudes. The amplitudes of most of these additional

distortion modes are very small. Therefore, to preserve the simplicity of the model,

we only include the distortion modes with significant amplitudes, which are M+
3 , R+

4 ,

X+
5 , Γ−

4 and X−
5 , and elastic strain components, η1, η2 and η3, in the construction of

the energy function.

In the polynomial energy expansion for systems with small distortions, such as

BaTiO3 and SrTiO3, the energy is expanded up to 4th order in the polar mode,

which is sufficient to describe the pare- and ferroelectric phase transition. However,

in CaTiO3, because of the large amplitudes of the distortion modes, the truncation

error at 4th order is non-negligible and higher order terms need to be included in order

to precisely reproduce the response of CaTiO3 to the application of epitaxial strain.

In our study, we expanded the energy series up to 8th order to reduce the truncation

errors. However, including the full set of terms up to 8th order is cumbersome and

not necessary for a useful description of the energy surface. Therefore, we developed

a systematic method for the selection of terms with significant contributions to the

total energy, as follows.
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The total energy is decomposed into the sum of various coupling terms,

E(S) =
∑
A⊂S

∆E(A), (3.1)

where E(S) is the total energy of the structure described by S, the full set of structural

parameters that determines the structural configuration, the summation is over all of

the subgroups of S, A’s and ∆E(A) represents the coupling term including only and

all of the elements in the subgroup A. The value of the coupling term ∆E(A) can be

determined iteratively by the following relations:

∆E(A) = E(A)−
∑
A′⊂A

∆E(A′), (3.2)

where E(A) is the total energy of the configuration in which only structural para-

meters in A are of nonzero value and E(∅) is the total energy of the high-symmetry

cubic structure, E0, or

∆E(A) = E(A) +
∑
A′⊂A

(−1)k−k′
E(A′), (3.3)

where k and k′ are the sizes of group A and its subgroup A′. We performed first-

principles calculation to compute the total energy of configurations of various sets

of structural parameters A and the values of nonzero parameters are set as their

average values in epitaxially-strained CaTiO3. Then we used the relation (3.2) or

(3.3) to estimate the value of each coupling term and selected the terms with most

significant impact (specifically, the largest absolute value) in the energy expansion.

One advantage of decomposing the total energy into coupling terms is that we can

fit each coupling term separately without any interference of the fitting errors from

other terms. We used an 8th-order polynomial for all terms with only one distortion

mode, such as ∆E({R+
4 }) and ∆E({Γ−

4 }), and 4th-order polynomials for the pure

strain terms. For the terms including more than one structural parameter, we fitted
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Figure 3.7: Fitting of the coupling term ∆E(R+

4x,M
+
3 , X

+
5 , η3) to the energy expansion

Cη3R4xM3X5, where C is the coefficient and the superscripts of the distortion modes
are omitted.

them with polynomials with appropriately selected order, which is no higher than

8th-order. For a given energy polynomial, we chose a natural grid of sampling points,

in which each structural parameter was varied in turn with others fixed at the average

value, as shown in Fig. 3.7. The coefficients in the energy expansion are adjusted to

minimize the cost function:

L =
∑

A

(∆E(A)−∆Ê(A))2, (3.4)

where the summation is over all of the sampling configurations and Ê(A) is the value

estimated by the energy polynomial. In principle, the fitting error L can be eliminated

by choosing a fitting polynomial with sufficient coefficients or fitting parameters. We

also impose another requirement that the fitted polynomial does not have any spurious

minima or divergence outside the range of the sampling, otherwise we reduce the order

of the polynomial until it is satisfied.
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Figure 3.8: Comparison the fitting of coupling term ∆E({R+
4x,M

+
3 , X

−
5 }) with poly-

nomials of different orders. Top: fitting with 6th-order polynomial C
(1)
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4xM
2
3 (X−

5 )2;

Bottom: fitting with 8th-order polynomial C
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2
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5 )2 +C
(2)
8,3R

2
4xM

2
3 (X−

5 )4. The superscripts of distortion modes are omit-
ted when there is no ambiguity.

3.4.1 Construction of CaTiO3 energy function

To simplify the energy function, we only included the distortion modes with signifi-

cant amplitudes in the energy function of CaTiO3. The ground state of orthorhombic

bulk CaTiO3 structure are obtained by freezing R+
4 and M+

3 modes in the high-

symmetry cubic structure. Therefore, the two rotational modes are the most impor-

tant structural parameters in the energy expansion. Moreover, the lowered symmetry

of ab-ePbnm makes the out-of-phase tilting modes around two directions, R+
4x and

R+
4y, no longer equivalent. The two components of R+

4 mode should be separately

considered. Since the goal of the construction of the energy function is to quantita-

tively reproduce the induced ferroelectricity under epitaxial strain, the polar mode

Γ−
4 , which yields the electric polarization, is also essential ingredient in construction

of the energy expansion. The polar CaTiO3 structures are characterized by the direc-

tion of the polarization. Therefore, it is necessary to include the three components of

the polar Γ−
4 mode.Besides the primary distortion modes, we also included the two

zone-boundary modes X+
5 and X−

5 , which have large amplitudes comparable with
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that of the polar mode, as shown in Fig. 3.5 and Table 3.1. For selection of the

strain components, we artificially suppressed the shearing strain η6 and only include

the diagonal elements of the strain matrix in Voigt notation, η1 ∼ η3. In our energy

function, there are in total 11 structural parameters, including 8 distortion modes,

Γ−
4x ∼ Γ−

4y,M
+
3 , R

+
4x, R

+
4y, X

+
5 and X−

5 , and 3 elastic strain components, η1 ∼ η3.

With 11 structural parameters included, the decomposition of the total energy

Eq. 3.1 contains 211 = 2048 coupling terms. We calculated the value of each term

near the ground state of orthorhombic CaTiO3 and sorted them in descending order

of the absolute value. We chose the first several terms, whose sum of absolute values

accounts for over 90% of the sum over all coupling terms,
∑

A |∆E(A)|. There are

a total of 169 independent coupling terms included in the energy function. For the

application of point group symmetry operations on the distortion modes and elastic

strain, please refer to Table A.1 and A.2 in Appendix A.

The energy function with coefficients fitted to the first principles calculations by

least square error mode is shown in Appendix B. The application of epitaxial strain

was simulated by fixing the appropriate elastic strain components and optimizing the

energy function with conjugate gradient method. Fig. 3.9 shows the total energy of

various structures estimated by the energy function. The simulation with the energy

function successfully reproduces the orientational phase transition between the two

non-polar structures, c-ePbnm and ab-ePbnm. The critical point in the energy func-

tion simulation is near 0% strain, while in the first principles calculations it is at 1.5%.

This discrepancy between first-principles calculations and energy function simulations

is due to the fact that the shearing strain component η6 was omitted in the energy

function. The four ferroelectric phases with in-plane polarization at tensile strains

are also observed in the simulations of the energy function, with the same ground

state Pmn21 as in the first-principles calculations. However, at compressive strains,

only the two ferroelectric phases with out-of-plane polarization, Pna21 and Pm, are

stabilized by the epitaxial strain. The strain-induced geometric ferroelectric phase
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Figure 3.9: Total energy per formula unit estimated by the energy function for various
epitaxially constrained structures as a function of square misfit strain. At each strain,
the energy of c-ePbnm structure is taken as the zero of energy.

P21 is not observed in the energy function simulation, even though the multilinear

coupling terms Γ−
4 R

+
4 M

+
3 X

−
5 and Γ−

4 X
+
5 X

−
5 are included in the energy function. The

missing of P21 phase in the simulation is because the eigenvector of the polar mode

in P21, which is A-cation dominated, is different from the eigenvector of the polar

mode in other phases, which is B-cation dominated and used in the determination

of the energy function coefficients. At large compressive strain, there exist several

spurious low-energy states, which results from poor behavior of extrapolation of the

polynomial expansion for outside the physical reference region.

The energy expansion in Appendix B quantitatively describes the energy surface

of bulk CaTiO3. As will be discussed in Chapter 4 and 5, it is useful in the investi-

gation of long-period superlattices, in which the direct first-principles calculations is

not feasible. The energy expansion also helps us understand the coupling or compe-

tition between the distortion modes and elastic strains. For example, as previously
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discussed, the energy function of CaTiO3 indicates that the geometric ferroelectric

phase P21 arises from the multilinear coupling term Γ−
4 R

+
4 M

+
3 X

−
5 and Γ−

4 X
+
5 X

−
5 .

The energy expansion also shows that all of the coupling terms between X+
5 and

rotational modes have positive coefficients, which indicates the mutual competition

between the X+
5 and rotational modes. Similarly, from the energy expansion, we can

see that the X+
5 mode also arises from a trilinear term (R4x +R4y)M3X5.

The energy expansion of bulk CaTiO3 also illuminate the interactions between

the polar model, which yields spontaneous polarization, and the oxygen octahedron

rotational modes. As previously discussed, the corresponding phonons of the polar

and rotational modes are all unstable in the ideal cubic Pm3m structure, while in the

bulk orthorhombic Pbnm structure, there are only the rotational modes, R+
4 and M+

3 .

It is widely known that the absence of the polar mode Γ−
4 in bulk CaTiO3 is because

of the inhibition of the oxygen octahedron rotations and tilts. However, in our energy

expansion, both the coupling terms (Γ2
xR

2
y +Γ2

yR
2
x +Γ2

zR
2
x +Γ2

zR
2
y) and ((Γ2

x +Γ2
y)M

2)

have negative coefficients, which indicates that the rotational mode enhances the

polar modes perpendicular to its rotational axis (50). This rotational enhancement

of polarization is because with fixed lattice constant the rotations and tilts increase

the volume of the oxygen octahedra and favor the polar mode perpendicular to their

rotational axises. One thing should be mentioned is that our observation does not

contradict the conclusions of previous work that rotational modes suppresses the polar

instability in the bulk CaTiO3. Previous work studied the impact of the rotational

modes on the spontaneous polar instability in the cubic Pm3m structure, whose

eigenvector is A-cation dominated, while in our study the strain-induced polar mode

is B-cation dominated. Therefore, whether the rotational modes enhance or suppress

the polar mode depends on the eigenvector of the polar mode.
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3.5 Geometric ferroelectricity in CaTiO3

Ferroelectricity produced by a primary polar instability of a paraelectric high-symmetry

reference structure is characteristic of prototypical perovskite ferroelectrics such as

BaTiO3 and PbTiO3 (51), and is referred to as proper ferroelectricity. In improper

ferroelectrics (52; 53; 54; 55; 56; 57; 58; 59; 60; 61), the primary instability is non-

polar, and polarization P is induced through a coupling of the nonpolar instability

Φ to a polar lattice distortion. Improper ferroelectrics can be further classified by

the form of the coupling and the nature of the nonpolar instability. In conventional

improper ferroelectrics, the coupling has the form PΦγ where γ ≥ 2. In hybrid im-

proper ferroelectrics, two nonpolar instabilities Φ1 and Φ2 combine to induce the po-

larization through a trilinear coupling PΦ1Φ2. In a pseudoproper ferroelectric (REF

TOLEDANO BOOK), a stable polar lattice mode and a nonpolar instability have the

same transformation property with respect to the symmetry of the paraelectric phase

and are coupled by a bilinear term PΦ, so that the nonpolar instability induces a

polarization. The nonpolar instability may be physically distinct from a lattice distor-

tion, for example it may be a magnetic ordering instability (REFS), or it may itself be

a lattice distortion. In the latter case, for pseudoproper ferroelectrics, the paraelectric

phase must itself be a nonpolar distortion of a higher-symmetry reference phase, so

that the distinction between the polar lattice mode and the nonpolar distortion can

be made on the basis of transformation properties under the symmetry operations of

the reference phase. We will collectively refer to pseudoproper, improper and hybrid

improper ferroelectrics with nonpolar lattice instabilities as geometric ferroelectrics.

To investigate the origin of the polarization in P21, we adopted the approach in the

YMnO3 study of Fennie and Rabe (52). As shown in Fig. 3.10, we plotted the energy

functions of X−
5 and Γ−

4z with ab-ePbnm at 5% compressive strain as the reference

structure. We can see that in the reference structure, X−
5 is unstable while Γ−

4z is

stable, which indicates that the X−
5 mode drives the polar-nonpolar phase transition.
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Fig. 3.11 shows that with increasing X−
5 mode amplitude, the energy curve of the

Γ−
4z mode remains a single well, but the position of its minimum shifts from zero to a

non-zero position. This means that X−
5 distortion induces the polar Γ−

4z mode in the

ab-ePbnm structure. Thus, this is an example of geometric ferroelectricity.

Now using the high-symmetry cubic structure as the reference structure, we ex-

pand the total energy function E as a 4th-order polynomial in distortion modes

R+
4 ,M

+
3 , X

+
5 ,Γ

−
4 and X−

5 (see Figure 3.6) and elastic strains η1, η2 and η3:

E = EPbnm(R,M,X, η1, η2, η3)

+ κ(Γ2
x + Γ2

y + Γ2
z) + α(Γ2

x + Γ2
y + Γ2

z)
2

+ λ(Γ2
yΓ

2
z + Γ2

xΓ
2
y + Γ2

zΓ
2
x) + κ5X

2
5 + α5X

4
5

+Bx(Γ
2
x + Γ2

y)R
2 +BzΓ

2
zR

2 +B′
x(Γ

2
x + Γ2

y)M
2

+B′
zΓ

2
zM

2 + B̃x(Γ
2
x + Γ2

y)X
2 + B̃zΓ

2
zX

2

+B5X
2
5R

2 +B′
5X

2
5M

2 + B̃5X
2
5X

2

+B5x(Γ
2
x + Γ2

y)X
2
5 +B5zΓ

2
zX

2
5 +B15(η1 + η2)X

2
5

+B35η3X
2
5 +B1x(η1Γ

2
x + η2Γ

2
y + η3Γ

2
z)

+B1z((η2 + η3)Γ
2
x + (η1 + η3)Γ

2
y + (η1 + η2)Γ

2
z)

+ C1XX5Γz + C2RMX5Γz

(3.5)

For simplicity, the sub- and superscripts are omitted when there is no ambiguity;

to distinguish the two X modes, X is used for X+
5 and X5 is used for X−

5 . To keep

the energy polynomial concise, only terms involving Γ−
4 and X−

5 are shown explicitly

and a single term EPbnm represents the energy function of non-polar structures. The

determination of coefficients from first-principles results, which will be discussed later,

shows that all biquadratic terms, such as (Γ−
4z)

2(X−
5 )2, have positive coefficients,

which indicates the mutual competition between any pair of distortion modes. We

see that the coupling between Γ−
4z and X−

5 originates from the higher order terms

X+
5 X

−
5 Γ−

4z and R+
4 M

+
3 X

−
5 Γ−

4z, which is the signature of geometric ferroelectricity.
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Figure 3.10: Energy as a function ofX−
5 and Γ−

4z. The reference structure is ab-ePbnm
at 5% compressive strain.

Figure 3.11: Energy as a function of Γ−
4z at fixed X−

5 .
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The coefficients of X+
5 X

−
5 Γ−

4z and R+
4 M

+
3 X

−
5 Γ−

4z are 0.46 eV/a.u. and 1.93 eV/a.u..

In the Pbnm phase, R+
4 , M+

3 and X+
5 are all nonzero. According to Table 3.1, the

product R+
4 M

+
3 has an amplitude (0.33 a.u.) similar to that of X+

5 (0.31 a.u.), so that

the contributions of the two terms to the induced polarization are comparable. This

analysis provides a natural way of understanding the instability of the epitaxially-

strained nonpolar Pbnm phase to the polar P21 phase observed in first-principles

identification of low-symmetry phases described above. The unstable distortion is a

mixture of a nonpolar X−
5 mode and a polar Γ−

4z mode of the cubic reference structure;

we see from the discussion that this coupling results from the pre-existing R+
4 , M+

3

and X+
5 distortions in the Pbnm phase. While a transition from the Pbnm phase

to the P21 phase would be accompanied by a divergence in the dielectric constant,

following the study of TbMnO3 (56) this would be characterized as a geometric, rather

than a conventional proper, ferroelectric transition (62).

In geometric ferroelectrics, the multilinear coupling term couples the switching of

the zone-center and zone-boundary modes. In the P21 phase, switching of polarization

would result in switching of either a single mode X−
5 or both X+

5 and the product

R+
4 M

+
3 . Switching of a rotation mode has an estimated energy barrier of several

hundred meV. Fig. 3.10 shows that the well depth of the X−
5 mode is only 2.0 meV,

so the X−
5 switching path would be preferred. However, detection of the switching of

X−
5 is difficult. It would be possible if there was magnetic order in the system that

coupled to X−
5 , suggesting further study of other compounds with magnetic order.

In CaTiO3, the geometric ferroelectric phase is not the ground state at any value of

epitaxial strain in our “strained bulk” calculation. However, for out-of-plane polarized

thin films there are depolarization field effects, which in general would be expected to

produce domain structures (63), at a cost of free energy increasing with domain wall

density. Since for the large polarizations predicted for the out-of-plane polar phases

in compressively strained CaTiO3 the domain wall density should be rather high, it

might be that the in-plane polarized P21 phase in ultrathin perovskite films is lower
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in free energy for some range of strain. In addition, the set of perovskites exhibiting

the Pbnm structure is quite large, and it might be possible to find a system in which

the geometric ferroelectric phase is in fact the ground state for some range of epitaxial

strain.

3.6 Summary

Our first-principles study of epitaxially strained CaTiO3 revealed the existence of

two polar phases with out-of-plane polarization and an unexpected metastable polar

phase with in-plane polarization at compressive strain. Detailed symmetry analy-

sis indicated that the unusual polarization is due to geometric ferroelectricity and is

induced by a strain-induced nonpolar instability at the X point combined with dis-

tortion modes present in the nonpolar orthorhombic structure. This discovery of a

novel strain-induced ferroelectric phase in the simple perovskite CaTiO3 provides a

new mechanism for the design of functional materials with improper ferroelectricity.

We also expanded the total energy of CaTiO3 with the cubic Pm3m structure as ref-

erence and the energy expansion semi-quantitatively reproduces the strain-induced

para- and ferroelectric phase transitions in CaTiO3. The study of the coefficients in

the energy function also reveals that rotational distortion modes enhance the B-cation

dominated polar distortion modes.
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Chapter 4

Interface-driven enhancement of piezoelectricity in

PbTiO3/BaTiO3 superlattices

4.1 Introduction

Artificially structured oxides present exciting opportunities for the design of func-

tional materials with specified and/or novel properties.(64; 65; 66) With dramatic

advances in epitaxial growth techniques allowing atomic-scale control, there has been

much experimental and theoretical attention focused on multicomponent strained-

layer superlattices. The strain in the layers, which is controlled both by the lattice

mismatch between the constituents and by the epitaxial constraint to the substrate,

the electrostatic boundary conditions and atomic and electronic reconstruction at

the interfaces all play important roles in determining the properties of superlattices.

These features can produce desirable functional properties, such as switchable electric

polarization, dielectric response and piezoelectricity, distinct from those of their bulk

constituents. (64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79)

Previous work indicates that the d33 piezoelectric response of these superlat-

tices is of interest, despite the clamping by the substrate. First-principles calcu-

lations on ferroelectric/ferroelectric PbTiO3/BaTiO3 (PTO/BTO) superlattices on a

SrTiO3 (STO) substrate indicate an enhanced piezoelectricity at a PTO concentra-

tion of ≥ 50%(80). Subsequent first-principles calculations for unclamped superlat-

tices showed dramatic enhancements achievable by tuning uniaxial stress or pressure.

A previous experimental study used MgO (a = 4.213Å) as the substrate, so that

both BTO and PTO were under tensile strain, promoting an in-plane direction for
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the polarization. In the present case, we consider PTO-BTO on STO, in which the a

lattice parameter of tetragonal PTO layer is a close match to the substrate, favoring

out-of-plane polarization. Further, growth on STO puts the BTO under compressive

strain, enhancing its tetragonality and its polarization normal to the layers. Due to

electrostatic coupling, the larger polarization of tetragonal PTO leads to a further

enhancement of the polarization of BTO.

The first-principles calculation and modeling described in this chapter is moti-

vated by recent synthesis and measurements on PTO/BTO superlattices on STO

that confirm the prediction of enhanced piezoelectricity at a PTO concentration of

≥ 50%.(80). An experimental-theoretical team including myself, Valentino Cooper,

Tahir Yusufaly, Premi Chandra, Karin Rabe and the group of Matthew Dawber at

Stony Brook has studied the origin of this enhancement using a phenomenological

model in conjunction with additional first-principles calculations. The model can

address questions such as the maximum d33 achievable in the superlattices by vary-

ing composition and epitaxial strain. We find that the piezoelectric enhancement is

interface-driven, and thus these results suggest a new pathway towards developing

nanocomposites with high piezoelectric coefficients by design.

4.2 First-principles computational details

Our first-principles calculations are performed using the same methodology as that

of the previous study (80); we use density functional theory for PTO/BTO superlat-

tices PmBn with m and n layers of PTO and BTO respectively. The superlattices

considered were P1Bn (n=1-9), P2Bn (n=1-7), P3Bn (n=1-5), P4Bn (n=1-4), P5Bn

(n=1-3).1 Experimental measurements were carried out for P8B2, P7B3, P6B5 and

P2B4 by the group of Matthew Dawber at SUNY Stony Brook (7). First-principles

calculations of crystal structure, polarization, d33 and dielectric constant for these

1Crystal structure, polarization, and d33 for these superlattices were computed by Tahir Yusufaly.
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four superlattices were performed for comparison with experiment.

All calculations used projector augmented wave (PAW) potentials with the Vienna

ab initio simulation package (VASP v4.6.26), with the local density approximation

for the exchange correlation functional. A 700 eV (22 Ha) cutoff and a 8 × 8 ×

1 k-point mesh were used. For BTO in the tetragonal P4mm five-atom unit-cell

structure, the computed lattice constants are a = 3.947Å and c = 3.996Å. The

tetragonal PTO constants were computed as a = 3.987Å and c = 4.033Å. In all

superlattice calculations, the in-plane lattice constant was constrained to that of the

theoretical value for an STO substrate (3.863Å) while the structure, including the c

lattice parameter, was optimized within the P4mm space group with 1 x 1 in-plane

periodicity; we note that with the STO substrate, both BTO and PTO are under

compressive strain so that polarizations in both are expected to be aligned along the

ẑ direction.(80) All ionic coordinates were relaxed until the Hellmann-Feynman forces

on the ions were less than 5 meV/Å.

4.3 Results

In Fig. 4.1 and 4.2 we display the measured polarization (P ) and the tetragonality

( 1
n+m

c
a
) in PTO/BTO superlattices as a function of PTO concentration (x), plotted

together with the first principles results for the full set of superlattices considered.

The agreement between theory and experiment for the polarization is excellent. As

has been seen in many previous first-principles studies of PbTiO3, the tetragonality of

PbTiO3 is substantially underestimated in the local density approximation; however,

the trend in which a minimum occurs for superlattices at high PbTiO3 concentrations

observed in the experiments is well reproduced by the calculations. Both the polar-

ization and tetragonality depend primarily on the concentration x. Where multiple

superlattices at the same x are considered (e.g. 1:1, 2:2, 3:3), there is little dependence

of polarization or tetragonality
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Figure 4.1: Polarization of PTO/BTO superlattices from experiment, first-principles
and slab model prediction, from Ref (81).
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The measured dielectric coefficient (ε33) is presented in Fig. 4.3 with the first-

principles results for the corresponding superlattices (7). A peak in ε33 at intermediate

values of x is seen both in the experimental and first principles results. Fig. 4.4 shows

the comparison of the measured piezoelectric response d33 with the experimental

measurements for the same set of superlattices. The enhancement of d33 observed at

intermediate values of x in the experiments is substantially greater than that obtained

by first-principles calculations. However, for shorter period superlattices, the first-

principles results presented in Fig. 4.5 show a comparable enhancement of d33 over

pure PTO, consistent with previous first-principles calculations (80) . According

to the first-principles results, d33 depends rather strongly on interface density, with

the d33 decreasing as the thicknesses of constituent layers increase at fixed PbTiO3

fraction. The results for polarization and tetragonality for the full set of superlattices

considered were shown in Fig. 4.1 and 4.2. In Fig. 4.5, we present the piezoelectric

response for the full set of superlattices. The enhancement at intermediate x is seen

to be strongest for the superlattices with the thinnest layers. As the layer thicknesses

increase at a given x, the piezoelectric responses decreases; this can in particular be

seen at x=0.50 (1:1, 2:2, 3:3, 4:4) and x=2/3.

4.4 Discussion

There are several aspects of this piezoelectric response enhancement that demand

further study, including the atomic-scale mechanism for the enhancement, and iden-

tification of the superlattice layer sequence and epitaxial strain that will maximize

the d33 achieved. Here, we explore these questions using first principles calculations

and modeling.

Our first step in the construction of a model is the dielectric slab model (27). In

this model, each layer is treated as strained bulk material with the electric boundary

conditions imposed by the superlattices.(80; 75; 66) In particular, the absence of
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free charge (short-circuit boundary conditions) implies continuity of the electrical

displacement field across the interfaces. Combined with the assumption of short-

circuit boundary conditions, this relates the polarizations and the electric fields in

the various layer. Details of the energy function and determination of the model

parameters from bulk first-principles calculations on bulk PTO and BTO are discussed

in Appendix C.

The model results for the polarization and tetragonality are shown in Figs. 4.1

and 4.2. The dielectric slab model describes the polarization and tetragonality of

the superlattices remarkably well. Since bulk PTO has higher polarization than does

BTO, the tendency of electrostatics to equalize polarization of the layers will drive

a decrease in the PTO polarization and an increase in the BTO polarization. Thus,

we we expect P (x) to increase with x in PTO/BTO superlattices. The monotonic

behavior of 1
n+m

c
a
(x) is more surprising, but can be understood within the slab model

through polarization-strain coupling. At low x, the polarization of the PTO layer is

suppressed, and the tetragonality is reduced. In this regime, with increasing x, the

average tetragonality is reduced. However, as the polarization increases with higher

values of x, the tetragonality of the PTO layer increases towards its pure value, while

the tetragonality of the BTO layer increases above its pure value, though not strongly

enough to yield any superlattice polarizations greater than that of pure PTO.

The dielectric and piezoelectric responses for the dielectric slab model are shown

in Figs. 4.3 and 4.5. Examination of the first-principles results at fixed x suggest that

they converge to the dielectric slab results as the thickness of the layers increases.

This is expected, as the dielectric slab model incorporates only the bulk-like responses

of the layers and is scale invariant (that is, depends only on x and not on individual

layer thicknesses). It should be noted that for the dielectric slab limit, there is no

enhancement of the responses at intermediate concentrations. This supports the idea

that the enhancement is due to the interfaces.

These results have stimulated discussion about how to develop a model that can
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better describe the dielectric and piezoelectric response as a function of layer thick-

ness. A natural approach is to extend the model to include degrees of freedom as-

sociated with the interfaces. Specially addition to a polar degree of freedom for

each interface would yield four polar modes instead of two. Analysis is in progress

to understand how to parametrize the extended energy function to reproduce the

contributions of the polar modes to the dielectric and piezoelectric responses.

4.5 Conclusions

Using a synergy of experiment and theory, we have investigated the origin of the

predicted enhancement of the piezoelectric coefficient in PTO/BTO superlattices as

a function of PTO concentation x. Motivated by prior DFT studies,(80) our ex-

perimental collaborators have performed polarization, tetragonality and piezoelectric

measurements on PTO/BTO superlattices and have confirmed the predicted dielec-

tric and d33 enhancement. These measurements have in turned inspired us to perform

further theoretical investigations into the origin of the d33 enhancement. Subsequent

DFT studies have filled out the P (x), c
a
(x) and d33(x) curves; furthermore we have

found that both the tetragonality and particularly the piezoelectricity are not only

dependent on PTO concentration (x), but also on the interfacial density. Indeed the

development of an effective energy functional describing only the layer degrees of free-

dom cannot explain any of the observed piezoelectric enhancement. First principles

calculations of the atomic positions in the constituent layers and at the interfaces, as

well as the eigenvectors, frequencies and mode effective charges of the polar modes

that contribute to the dielectric and piezoelectric response, provide valuable guidance

in our ongoing efforts to extend the model to include interface degrees of freedom and

a successful description of the functional properties with varying layer thicknesses.

Continuing the synergy between experiment and theory, further piezoelectric mea-

surements on BTO/PTO superlattices at fixed PTO concentration of x = 0.5 with
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varying period would be an excellent way to test our proposal; this value of x has

the largest variation of interfacial densities. In parallel, first-principles and associ-

ated modeling studies of the permittivity as a function of PTO concentration and

interfacial density would also be very useful.

An overall goal of this study is to design new materials with novel and/or enhanced

functionalities. Previous pathways to enhanced piezoelectricity in ferroelectric super-

lattices have been polarization rotation or compositional inversion, but neither are

applicable to the BTO/PTO superlattices we are studying here. By contrast, here

we are proposing that the observed piezoelectric enhancement is interface-driven and

is strongly dependent on the interfacial density at a given component concentra-

tion. study closely the effects of interfaces on the piezoelectricity that is most likely

present in others as well. Once we have understood the details and mechanism of

this interfacial-driven enhancement in BTO/PTO, then we will be able to propose

specific heterostructure systems for future integrated theoretical and experimental

study where such piezoelectric enhancement is optimized.
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Chapter 5

First-principles modeling of piezoelectric response

of perovskite superlattices: the case of

BaTiO3/CaTiO3

5.1 Introduction

In multicomponent ABO3 superlattices, instabilities belonging to individual bulk con-

stituents strongly interact with each other through the interfaces. Such interactions

in superlattices lead to rich behavior beyond that of simple perovskites (82; 27; 73;

83; 75; 54; 84), and in particular can lead to enhanced piezoelectric response (80).

The superlattice BaTiO3/CaTiO3 has been studied both experimentally (84) and

theoretically (85; 86; 87; 88; 89). One important feature of BTO/CTO superlattices

is the corner-shared oxygen octahedron rotations and tilts that suppress the polar

instability in bulk CaTiO3 structure. However, until recently, the oxygen octahe-

dron rotations and tilts were neglected in the first-principles studies of BTO/CTO

superlattices. Even in the recent two first-principles studies, either only oxygen octa-

hedron rotations were considered (88) or only the superlattices at one specific BaTiO3

concentration were computed (89).

In this study, we use first-principles method to study the BTO/CTO super-

lattices with both oxygen octahedron rotations and tilts at various compositions

(nBTO, nCTO = 1, 2, 3, 4). We find phase transitions of BTO/CTO superlattices that

depend on both the constituent fractions and layer thicknesses. In particular, the
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polarization in the stacking direction (z-axis) becomes nonzero at BaTiO3 concentra-

tions over 25%. An enhancement of piezoelectricity is also observed, with piezoelec-

tric constant d33 diverging at the phase transition point between zero and nonzero Pz

states.

First-principles methods have been extremely useful for the theoretical study of

superlattices. However, despite of the rapid development of computer hardware and

algorithms, the direct first-principles study of large superlattices is still prohibitively

computationally demanding. Therefore, first-principles modeling, which enables us

to study superlattices with arbitrary stacking sequences and helps us understand the

physics behind the novel properties of superlattices, is necessary for guiding high

throughput searches for novel superlattices. Previous work (27) shows that the su-

perlattices can be described as layers of bulk-like materials connected by appropriate

electrostatic boundary conditions. This dielectric slab model appropriately describes

the electrostatic interactions between different constituents, but neglects the inter-

facial effects, which might be important in certain systems (88). In this study, we

used the slab model to predict the polarization and the enhanced piezoelectricity in

BTO/CTO superlattices, and to identify cases in which interfacial effects are essen-

tially important.

5.2 First-principles computational details

In this study, the first-principles calculations were performed in the framework of

density functional theory within the local density approximation using VASP5.2

package. (46; 47) We used the Ceperley and Alder functional (48) and projector-

augmented wave potentials (20; 21) with a plane-wave energy cut off of 500 eV. We

used
√

2 ×
√

2 × (nBTO + nCTO) supercells with epitaxial strain a0 = 3.864Å, the

computed lattice constant of SrTiO3. The Brillouin zone of the unit cell was sampled

by a 4 × 4 × l Monkhorst-Pack k-point mesh (25) (l = 3 for B1C1 and l = 1 for
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others). Structural relaxations were performed until the force on each atom is less

than 1 meV/Å. The Berry-phase method was used to calculate the polarization in

the superlattices.

In perovskite superlattices AA′BO3, the cation ordering lowers the symmetry of

the crystal structure and increases the complexity of the system. Due to the existence

of multiple metastable states, the search for the ground state of perovskite superlat-

tices can be challenging. In our study, we used the stacking method (90) to search for

the ground states of BTO/CTO superlattices. In the stacking method, the structural

optimization starts from the combinations of strained low-energy bulk structures of

the constituents. The strained bulk BaTiO3 structure is simple and has only one

low-energy state, which is of space group P4mm. Because of the large Goldschmidt

tolerance factor, BaTiO3 is resistant to any oxygen octahedron rotations or tilts and

the only distortion mode is the out-of-plane polarization. However, the coexistence of

the oxygen octahedron rotations and tilts makes the strained bulk CaTiO3 more com-

plicated. The lattice constant of relaxed bulk CaTiO3 is 3.77Å. So in our study the

CaTiO3 constituents are under tensile strain. Previous work (44) shows that tensile-

strained bulk CaTiO3 has two low-energy orthorhombic states, Pmn21(a
−a−c+/uu0)

and Pmc21(a
−a−c+/uu0) (we introduce notation to show the rotations and polariza-

tions in the three directions with respect to the five-atom cubic cell. Plus or minus

superscripts indicate the in/out-of-phase rotations or the direction of polarization).

Of the two orthorhombic states, the Pmn21 structure has a lower energy at all tensile

strains (∆E = EPmc21 −EPmn21 = 3.0meV/f.u. with as = 3.864Å). The bulk CaTiO3

has another metastable structure R3c (a−a−a−/uuu) with out-of-phase rotations

along [111] direction and polarization in [111] direction, whose space group is lowered

to Cc under square misfit strain. The energy of the Cc is higher than the other two

orthorhombic structures, (∆E = ECc − EPmn21 = 36.4meV/f.u. with as = 3.864Å).

In all, there are three starting structures, P4mm+Pmn21(Pa/c
+ phase, space group

P1), P4mm + Pmc21(Pb/c
+ phase, space group Pc) and P4mm + Cc(Pb/c

− phase,
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Figure 5.1: Ground state structures of various BTO/CTO superlattices. The dashed
line represents 50% BTO concentration.

space group P1). The notations, Pa/c
+, Pb/c

+ and Pb/c
−, are referred to the direction

of the in-plane polarization with respect to the lattice vectors of the superlattice unit

cell (a = (
√

2,
√

2, 0), b = (−
√

2,
√

2, 0), c = (0, 0, nBTO + nCTO)) and in- or out-of-

phase of the rotation along c-direction within the CTO constituent, regardless of the

interface layers. In the superlattices with thin CaTiO3 layers (nCTO < 3), Pb/c
+ and

Pb/c
− phases are indistinguishable by symmetry, since the in-/out-of-phase rotations

along c-axis are undefined, denoted as Pb/c
+/−. When nCTO = 1, the in-plane oxy-

gen octahedron tilts within the CTO constituents also are undefined and the two

directions of in-plane polarization are actually equivalent. Therefore there is only one

single phase, denoted as Pa/b, in the superlattices with a single CTO layer. For each

combination of nBTO : nCTO, we optimized all distinct structures and compared the

energy of the relaxed structures to determine the ground state.
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Figure 5.2: Dependence of the BTO/CTO total energy on the thicknesses of con-
stituents (top) and BTO concentrations (bottom) with the energy of the correspond-
ing ground state structure as the reference.
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5.3 Results

The ground state structures in various BTO/CTO superlattices are shown in Fig. 5.1.

Those results indicate that the both the BTO concentration and thicknesses of con-

stituent layers affect the configurations of the BTO/CTO ground states. At 50%

BTO concentration, as shown in the top panel of Fig. 5.2, the Pb/c
− phase has

higher energy than the other two phases in BTO/CTO superlattices with short pe-

riod, e.g. n = 2. As the thicknesses of both constituent layers increase, the energy

difference between Pb/c
− phase and the ground states decreases and Pa/c

+ phase

becomes the ground state in B4C4 superlattices. The bottom panel of Fig. 5.2 in-

dicates that at low BTO concentration the ground state of BTO/CTO superlattices

is the Pa/c
+ phase, which corresponds to the ground state of the pure bulk CTO

materials. As the BTO concentration rises, the energy of Pb/c
+ and Pb/c

− phases

is lowered with respect to that of Pa/c
+ phase. Above approximately 30% BTO

fraction, Pb/c
+ phase is the ground states for some sequences. At high BTO con-

centration, e.g. B3C2, Pa/c
+ phase becomes unstable. The Pb/c

− phase is not the

ground state in any of the superlattices considered. However the decreasing of the

energy difference between Pb/c
− phase and the ground state suggests that at high

BTO concentration, the Pb/c
− phase will be favored.

Fig. 5.3-5.5 show the computed polarization of various BTO/CTO superlattices in

the three directions. In most structures, the in-plane polarization, such as P[100] in

Pa/c
+ phase, P[100] and P[010] in Pb/c

+ and Pb/c
− phases, changes almost linearly

as the BTO fraction changes. However, P[010] , which does not exist in the bulk

materials of the either constituent, rises at high BTO concentration. The P[010] in

Pa/c
+ phase is due to the incomplete cancellation of the antipolar mode X+

5 in the

CTO constituent at the interfaces (54). The inset graph of Fig. 5.4 also shows that

P[010] in all of the three structures decreases as the constituent thickness increases,

which indicates the interfacial enhancement of P[010].
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Figure 5.3: Computed polarization of various BTO/CTO superlattices in [100] direc-
tion
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Figure 5.4: Computed polarization of various BTO/CTO superlattices in [010] direc-
tion
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Figure 5.6: d33 of the three phases at various BTO concentrations.

Fig. 5.5 shows how the polarization in [001] direction varies in the three phases as

the BTO concentration and thicknesses of constituents change. In both Pa/c
+ and

Pb/c
+ phases, the polarization in [001] direction monotonically increases with the

BTO concentration and both phases exhibit a transition from zero to nonzero P [001]

state. The inset graph of the Fig. 5.5 shows the P [001] in various BTO/CTO superlat-

tices at 50% BTO concentration and indicates that the interfacial effect enhances the

out-of-plane polarization in Pa/c
+ and Pb/c

+ phases, except for B1C1 Pb/c
+ struc-

ture. The Pb/c
− structures have nonzero out-of-plane polarization at all epitaxial

strains in our study. The P [001] in Pb/c
− phase decreases as the density of interfaces

decreases, as shown in the results for the superlattices of 50% BTO concentration.

As discussed in Chapter 2, the d33 of BTO/CTO superlattices is calculated ac-

cording to the formula,

d33 =
∂Pz

∂σ33

= − ∂Pz

∂η33

/
∂E

∂η33

,
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where Pz is the polarization in [001] direction, σ33 is a diagonal element of the stress

matrix, E is the total energy density and η33 is a diagonal element of the strain matrix.

The computed d33 of various BTO/CTO superlattices is shown in Fig. 5.6. All Pa/c
+,

Pb/c
+ and Pb/c

− phases with nonzero out-of-plane polarization show enhanced d33,

higher than that of either bulk constituent. In both Pa/c
+ and Pb/c

− phases, d33

increases as the thicknesses of constituent layers increase, which indicates that the

interfacial effect enhances the piezoelectric constant d33 in BTO/CTO superlattices.

5.4 Discussion

To study the physics behind the functional properties, such as polarization and piezo-

electric response, in the BTO/CTO superlattices, we constructed a first-principles-

based dielectric slab model. Fig. 5.7 shows the total energy of various structures pre-

dicted by the slab model. In the simulation of the pure slab model, the Pa/c
+ phase

is the ground state for all BTO concentrations. For x ≤ 0.5, this is the case for the

superlattices with the thickest layers, the limit in which the slab model is valid. For

x > 0.5, it would be necessary to perform calculations for longer-period superlattices

than those considered here to investigate this limit.

Fig. 5.8-5.10 shows the comparison of the out-of-plane polarization and piezoelec-

tric constant d33 of the Pa/c
+, Pb/c

+ and Pb/c
− phases at various BTO concentra-

tions from first principles and model predictions. The slab model predicts the phase

transition between zero and non-zero P [001] phases at about 50% BTO concentra-

tions in Pa/c
+ and Pb/c

+ phases. The slab model consistently underestimates the

out-of-plane polarization in all of the three phases. In previous work (54; 73; 91; 92),

the enhancement of polarization in perovskite superlattices has been reported. The

recent work (93) shows that the suppression of the oxygen octahedron rotations at the

interface causes the enhancement of polarization in BTO/CTO superlattices, which
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is consistent with our first-principles calculations, as shown in Fig. 5.11 and our mod-

eling. Especially, in Pb/c
+ phases, the out-of-phase rotation at one interface makes

the CTO constituent a mixture of Pmn21 and P1 structures and the localized P1

CTO layer enhances the polarization in the superlattices.

In Pa/c
+ and Pb/c

+ phases, the slab model predicts a divergence of the piezo-

electric constant d33 at the critical point of the zero and non-zero P[001] phase transi-

tion, which suggests that this phase transition contributes to the enhancement of the

piezoelectricity in Pa/c
+ and Pb/c

+ phases. However, for the Pb/c
− phase, in which

the out-of-plane polarization exists at all BTO concentrations, the slab model fails

to reproduce the high piezoelectricity at intermediate BTO concentrations, which is

greater than that of either bulk constituents. It indicates that the interfacial effect

also lead to the enhancement of the piezoelectric constant d33.

5.5 Summary

In conclusion, we calculated the energy and functional properties of the three candi-

date structures of BTO/CTO superlattices, Pa/c
+, Pb/c

+ and Pb/c
− phases. As the

BTO concentration increases, we observe two phase transitions, one from the Pa/c
+ to

the Pb/c
+ phase and the other from the Pb/c

+ to the Pb/c
− phase. The critical points

of the phase transitions depend on both BTO concentration and the thicknesses of the

constituents. Enhancement of piezoelectricity is observed in all of the three phases.

We also construct a first-principles slab model, which indicates that the interfacial ef-

fect enhances the out-of-plane polarization and the piezoelectricity in the BTO/CTO

superlattices.
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Chapter 6

Conclusions

The possibility of constructing simple models to describe the energetics of competing

phases in perovskite materials and superlattices is strongly suggested by the fact that

the mode decomposition of distorted perovskite structures generally shows only a

small number of dominant modes. Mode amplitudes clearly emergae as the degrees

of freedom for models of the energy landscape, to predict changes with electric field

and epitaxial strain, relevant to response functions of thin films and to the structure

and properties of superlattices.

First principles models are like phenomenological models in that they are fit to

data, the data being obtained in a ”computer experiment.” An important difference,

because the amount of experimental data is relatively limited, that phenomenological

models fit to experimental data can only have a correspondingly small number of free

parameters. This limitation is lifted in the first principles case, where an arbitrary

number of coefficients can be determined by suitable first principles calculations, and

therefore highly complex models with many degrees of freedom and coupling terms

can be considered.

To get quantitative and predictive models still presents challenges. While poly-

nominal expansions around a high-symmetry structure converge rapidly for systems

where the phases involve small distortions, the description of the energy landscape for

systems where there are only a small number of dominant modes but the amplitudes

are large requires careful treatment, as exemplified in the case of epitaxially-strained

CaTiO3 discussed in Chapter 3. Even when the distortions are small, the fact that
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there can be multiple modes of the same symmetry, most notably the polar mode in

perovskites, creates difficulties in modeling a range of properties, since the eigenvec-

tor for the mode needed to describe the low energy structure might be different from

the mode that describes to polar response to strain changes. In the case of superlat-

tices, the polar modes that determine the dielectric and piezoelectric response might

look quite different from the modes that are obtained within the slab model, which

assumes uniform distortion in the layer.

Development of successful procedures for constructing models for these systems

relies first on the careful analysis of individual systems that require addressing these

issues. This is what has been the central work of my thesis. My hope is that the tech-

niques and insights that have been worked out in these case-by-case studies will, in the

near future, form the basis for the systematic modeling of a wider range of materials

and superlattices, and that the models thus obtained will provide valuable guidance

in the design, laboratory realization and deployment of novel high-perfomance func-

tional materials for technologically important devices.
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Appendix A

Tables of action of symmetry operations on

selected distortion modes

Table A.1: Application of symmetry operations of the point group Oh on the elastic

strain components and the distortion modes whose corresponding k vectors have the

star of Oh.

Oh Γ−
4x Γ−

4y Γ−
4z R+

4x R+
4y R+

4z η1 η2 η3

xyz x y z x y z 1 2 3

xzy x z y −x −z −y 1 3 2

yxz y x z −y −x −z 2 1 3

yzx z x y z x y 3 1 2

zxy y z x y z x 2 3 1

zyx z y x −z −y −x 3 2 1

xyz x y −z −x −y z 1 2 3

xzy x −z y x −z y 1 3 2

yxz y x −z y x −z 2 1 3

yzx −z x y z −x −y 3 1 2

zxy y −z x −y z −x 2 3 1

zyx −z y x −z y x 3 2 1

xyz x −y z −x y −z 1 2 3

xzy x z −y x z −y 1 3 2

yxz −y x z −y x z 2 1 3

Continued on next page
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Table A.1 – continued from previous page

Oh Γ−
4x Γ−

4y Γ−
4z R+

4x R+
4y R+

4z η1 η2 η3

yzx z x −y −z −x y 3 1 2

zxy −y z x y −z −x 2 3 1

zyx z −y x z −y x 3 2 1

xyz x −y −z x −y −z 1 2 3

xzy x −z −y −x z y 1 3 2

yxz −y x −z y −x z 2 1 3

yzx −z x −y −z x −y 3 1 2

zxy −y −z x −y −z x 2 3 1

zyx −z −y x z y −x 3 2 1

xyz −x y z x −y −z 1 2 3

xzy −x z y −x z y 1 3 2

yxz y −x z y −x z 2 1 3

yzx z −x y −z x −y 3 1 2

zxy y z −x −y −z x 2 3 1

zyx z y −x z y −x 3 2 1

xyz −x y −z −x y −z 1 2 3

xzy −x −z y x z −y 1 3 2

yxz y −x −z −y x z 2 1 3

yzx −z −x y −z −x y 3 1 2

zxy y −z −x y −z −x 2 3 1

zyx −z y −x z −y x 3 2 1

xyz −x −y z −x −y z 1 2 3

xzy −x z −y x −z y 1 3 2

yxz −y −x z y x −z 2 1 3

yzx z −x −y z −x −y 3 1 2

Continued on next page
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Table A.1 – continued from previous page

Oh Γ−
4x Γ−

4y Γ−
4z R+

4x R+
4y R+

4z η1 η2 η3

zxy −y z −x −y z −x 2 3 1

zyx z −y −x −z y x 3 2 1

xyz −x −y −z x y z 1 2 3

xzy −x −z −y −x −z −y 1 3 2

yxz −y −x −z −y −x −z 2 1 3

yzx −z −x −y z x y 3 1 2

zxy −y −z −x y z x 2 3 1

zyx −z −y −x −z −y −x 3 2 1

Table A.2: Application of symmetry operations of the point group D4h on on the

elastic strain components and the distortion modes.

D4h Γ−
4x Γ−

4y Γ−
4z R+

4x R+
4y M+

3 X+
5x X+

5y X−
5x X−

5y η1 η2 η3

xyz x y z x y 1 x y x y 1 2 3

xyz x −y −z x −y −1 −x y −x y 1 2 3

xyz −x y −z −x y −1 x −y x −y 1 2 3

xyz −x −y z −x −y 1 −x −y −x −y 1 2 3

yxz y −x z y −x 1 y −x −y x 2 1 3

yxz −y x z −y x 1 −y x y −x 2 1 3

yxz y x −z y x −1 −y −x y x 2 1 3

yxz −y −x −z −y −x −1 y x −y −x 2 1 3

xyz −x −y −z x y 1 x y −x −y 1 2 3

xyz −x y z x −y −1 −x y x −y 1 2 3

xyz x −y z −x y −1 x −y −x y 1 2 3

Continued on next page
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Table A.2 – continued from previous page

D4h Γ−
4x Γ−

4y Γ−
4z R+

4x R+
4y M+

3 X+
5x X+

5y X−
5x X−

5y η1 η2 η3

xyz x y −z −x −y 1 −x −y x y 1 2 3

yxz −y x −z y −x 1 y −x y −x 2 1 3

yxz y −x −z −y x 1 −y x −y x 2 1 3

yxz −y −x z y x −1 −y −x −y −x 2 1 3

yxz y x z −y −x −1 y x y x 2 1 3
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Appendix B

Energy function for CaTiO3

The total energy of bulk CaTiO3 is expanded with the ideal cubic Pm3m structure

as reference in terms of structural parameters, Γ−
4x∼y, M

+
3 , R+

4x∼y, X
+
5 , X−

5 and η1∼3.

The unit of energy is meV/f.u. For simplicity all of the superscripts and subscripts

are omitted. X−
5 mode is denoted as Xm in order to distinguish from X+

5 mode.

E = (−44.080) + (−0.127)(η1 + η2 + η3) + 70.089(η2
1 + η2

2 + η2
3)

+ (−252.107)(η3
1 + η3

2 + η3
3) + 566.767(η4

1 + η4
2 + η4

3)

+ 36.187(η1η2 + η1η3 + η2η3) + (−37.448)η1η2η3 + 0.393X2
m + 0.052X4

m

+ (−0.021)X6
m + 0.012X8

m + (−1.998)(η1X
2
m + η2X

2
m) + 1.551η1η2X

2
m + 0.000X2

+ 0.296X4 + 0.059X6 + 0.004X8 + (−1.107)η3X
2 + 1.410(η1η3X

2 + η2η3X
2)

+ (−2.531)(η1X
2 + η2X

2) + 9.905η1η2X
2 + 0.002X2X2

m + (−0.340)M2 + 0.132M4

+ (−0.012)M6 + 0.001M8 + (−0.069)η3M
2 + 2.518η2

3M
2 + 1.390(η1M

2 + η2M
2)

+ 2.427(η1η3M
2 + η2η3M

2) + (−7.009)η1η2M
2 + (−14.131)η1η2η3M

2

+ (−0.008)M2X2
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Appendix C

Energy functions for strained BaTiO3 and PbTiO3

In the dielectric slab model, the constituent layers of the superlattice are modeled

as bulk materials responding to the changes in mechanical and electrical boundary

conditions produced by the lattice matching at the interface, which here constrains

the in-plane lattice parameter to that of the STO substrate, and the absence of free

charge, which results in equal displacement field D in the two layers.

The constitutive relations for each constituent material are determined from first

principles calculations and fit to a polynomial model. For the BTO/PTO superlattice,

each layer is described by two degrees of freedom: the c-axis strain, defined as η =

c
a
− 1, and the zero-field polarization along the normal direction, represented here by

u The energy per formula unit for each constituent layer is expressed by the lowest

order terms in a Taylor expansion:

E =
1

2
ku2 +

1

4
γu4 +

1

2
βu2η +

1

2
Cη2 + C ′η3 + C ′′η4

The coefficients k, γ, β, C, C ′ and C ′′ are determined from first principles calculations,

as follows. For both BTO and PTO, we consider the tetragonal P4mm structure with

five atoms per unit cell and the a parameter fixed to 3.86 Å, the lattice parameter

computed for the cubic SrTiO3 substrate. For a range of c values, we relax the internal

structural parameters to obtain the total energy and the polarization as a function

of η. This information, combined with the c lattice parameter and energy of the

minimum-energy P/4mmm structure (polarization zero), is sufficient to determine

the coefficients. The model should reproduce d33 and ε33 computed for the pure
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(strained) compounds.

The total energy of the superlattice is modeled as the sum of the energies of the

two slabs, including the electrostatic work done in each slab, included as the term

−uE for each layer. With the imposed short circuit boundary conditions are imposed,

corresponding to the periodic boundary conditions in the first principles calculations,

the relation D is εfsE + u is sufficient to determine E1 and E2, the electric fields in

each constituent layer. Then the total energy is minimized to obtain u1, u2 and c
a

for

each slab and hence total polarization P and total c
a
.

ε33 and d33 at E = 0 can be determined with a finite difference approach. we

consider the system at E = 0 and apply an infinitesimal field ∆E. This leads to

an infinitesimal change in the electric fields of the constituent layers. linearize the

response of each constituent at nonzero E. This also yields a finite difference value

for d33 = dη/dE at zero stress (converse piezoelectric effect).

To determine d33 = dP/dσ at E = 0 (direct piezoelectric effect), we optimized the

structure for several values of fixed c, computing the total energies and polarization.

Using the expression d33 = dP/dσ(E = 0) = (dP/dη)/(dσ/dη) where η = c/a− 1,we

fit P (η) and E(η), yielding σ = −dE/dη, and evaluate the d33.
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Appendix D

Energy functions for strained BaTiO3 and CaTiO3

In the slab model, the superlattice is treated as layers of bulk-like materials. The total

energy of the superlattice is described by the weighted average of energy functions of

bulk materials.

ESlab =
1

nB + nC

(nBEB(PzB, η3B) + nCEC(PzC, η3C, {φC}))

EB and EC are the energy function of strained bulk BTO and CTO. Tensile strained

bulk CTO has multiple metastable states, so we constructed different EC’s for each

individual phase. Pzα is the polarization in z-direction and η3α, α = B,C, is the elastic

strain of the constituents. {φC} is the group of distortion modes in bulk CTO besides

the Pz, such as oxygen octahedron rotations, tilts and in-plane polarization. Within

the framework of slab model, different constituents are connected via appropriate

electrostatic boundary condition. Strictly speaking, the correct boundary condition

should be constant electric displacement in z-direction: DzB = DzC. In our mod-

eling, we adapted an approximation of uniform polarization in z: PzB ∼ PzC = P ,

since BTO and CTO have similar permittivity. Therefore the total energy of the

superlattice changes to the following form:

ESlab =
1

nB + nC

(nBEB(P, η3B) + nCEC(P, η3C, {φC}))

As previously mentioned, the structure of bulk BTO is simple and the only dis-

tortion mode is the out-of-plane polarization P . According to the Landau theory, a
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Figure D.1: Fitting of the coefficients in BTO energy function. Top: fit the
polarization, P 2 = − 1

2κ
(α + B1xxη3); middle: fit the energy of polar structure,

Epolar = (E0 − α2

4κ
) + (B1 − αB1xx

2κ
)η3 + (B11 − β2

4κ
)η2

3; bottom: fit the energy difference
between the polar and nonpolar structures, ∆E = Epolar − Enonpolar = −κP 4
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forth order polynomial is sufficient to describe the anharmonic behavior of bulk BTO:

EB(P, η3B) = E0B + αBP
2 + κBP

4 +
1

2
B1xxBη3BP

2

+ B1Bη3B +
1

2
B11Bη

2
3B

All of coefficients are determined via the response of polarization with respect to

the change of elastic strain η3 from first-principles calculations (7), which is shown

in Fig. D.1. However, the energy function of bulk CTO is quite different from that

of bulk BTO. Because of the existence of other distortion modes, such as oxygen

octahedron rotations and tilts, increases the complexity of bulk CTO structure and

makes the complete form of bulk CTO explicitly including all possible modes too

complicated to be practical. Because the goal of our model is to reproduce Pz and

piezoelectric constant d33 and within the framework of slab model the only interaction

between the two constituents are via the polar instabilities Pz, we simplify the energy

function of bulk CTO by explicitly considering Pz and η3 only:

EC(P, η3C) = E0C + αCP
2 + κCP

4 +
1

2
B1xxCη3CP

2

+ B1Cη3C +
1

2
B11Cη

2
3C

All of coefficients are renormalized by integrating over all the other distortion modes,

such as rotations, tilts and in-plane polarization. So the energy function is differ-

ent for each of the three phases. Meanwhile, the determination of the renormalized

coefficients in bulk CTO is different from the process in bulk BTO, because there

is no spontaneous out-of-plane polarization in CTO Pmn21 and Pmc21 structures.

As shown in Fig. D.2, for the nonpolar structures Pmn21 and Pmc21, we applied

sufficient elastic strain to induce out-of-plane polarization and studied the response

of the induced polarization to the application of strain. The total energy of nonpolar

structure is fitted as a quadratic function of strain to determine the coefficients, E0,
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Figure D.2: Fitting of the coefficients in the energy function of CTO Pmc21 structure.
Top: fit the polarization, P 2 = − 1

2κ
(α + B1xxη3); middle: fit the energy of nonpolar

structure, Epolar = E0 +B1η3 +B11η
2
3; bottom: fit the energy difference between the

polar and nonpolar structures, ∆E = Epolar − Enonpolar = −κP 4

B1 and B1xx. The coefficient κ is determined by fitting the energy difference between

the polar and nonpolar structures as a function of polarization. The determination

of the coefficients of the energy function of CTO P1 structure is different from all of

the other ones. The coefficients are adjusted so that the energy function reproduces

the properties of the ground state such as total energy E, polarization in z-direction

P , elastic strain η3, ∂P
2/∂η3 and ∂2E/∂η2

3. Table D.1 shows the coefficients of the

energy function of the bulk materials, which is sufficient for the construction of the

slab model.
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Coefficients BaTiO3 CaTiO3

Pmn21 Pmc21 P1
E0 (eV/f.u.) -43.942 -44.350 -44.345 -44.306
B1 (eV/f.u.) -3.495 5.569 5.617 5.384
B11 (eV/f.u.) 45.364 67.598 67.660 64.738

α (eV/f.u./(C2m−4)) 0.221 -0.066 -0.108 -1.286
κ (eV/f.u./(C4m−8)) 2.403 0.892 0.980 8.148

B1xx (eV/f.u./(C2m−4)) -14.823 -10.635 -10.696 -17.343

Table D.1: Coefficients of energy function of bulk materials determined from first-
principles calculations.


