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ABSTRACT OF THE THESIS 

 

Identifying features of legible manipulation paths 

 

By MIN ZHAO 

 

Dissertation Director: 

Professor Kostas Bekris 

 

This work performs an experimental study on the legibility of paths executed by a 

manipulation arm available on a Baxter robot. In this context, legibility is defined as the 

ability of people to effectively predict the target of the arm's motion. Paths that are 

legible can improve the collaboration of robots with humans since they allow people to 

intuitively understand the robot's intentions. Each experimental trial in this study 

reproduces manipulator motions to one of many targets in front of the robot. An 

appropriate experimental setup was developed in order to collect the responses of people 

in terms of the perceived robot's target during the execution of a trajectory by Baxter. The 

objective of the experimental setup was to minimize the cognitive load of the human 

subjects during the collection of data. The extensive experimental data provide insights 

into the features of motion that make certain paths more legible for humans than other 

paths. For instance, motions where the end-effector is oriented towards the intended 

target appear to be better in terms of legibility than alternatives. 

Key words: Human robot interaction, Legible paths, Manipulator, Co-robots  
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1. General Introduction 

1.1. Human-Robot Interaction 

Human-Robot interaction (HRI) focuses the interaction processes between human 

and robot. Before becoming as a research topic, Human-robot interaction as an idea had 

been pointed out by Isaac Asimov (1941) in his short fiction story. He stated three laws 

of Robotics: “(1) A robot may not injure a human being or, through inaction, allow a 

human being to come to harm; (2) A robot must obey any orders given to it by human 

beings, except where such orders would conflict with the First Law; (3) A robot must 

protect its own existence as long as such protection does not conflict with the First or 

Second Law”. Namely, an interaction between human and robot should be a safe 

interaction. As the robot and human beings getting closer, the risks that human beings are 

harmed by the robot could increase. For descent of years, in order to avoid such risks, 

human beings and robots were separated and not allowed to share the same workspace.   

Recently, the increasing availability of low-cost, compliant and human-friendly 

manipulators allows robots, such as Rethink Robotics’ Baxter [1], to be placed in close 

proximity to human workers. Unlike traditional automation systems, which needed to be 

kept in cages, these compliant robots can share a common workspace with human 

workers. A clear benefit of this close proximity is the opportunity for cooperation 

between a human worker and an assistive robot. One important task for robots is to move 

items that humans cannot reach. For example, robots may deliver food or water to a 

person who cannot move due to age or disability. Another example is warehouse-based 

robots. The warehouse-based robots navigate within the warehouse, find the product and 

transport it back to a human operator. In all situations involving assistive robots and 
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human beings, there are two main directions to make the interaction safe and human-

friendly: (1) Robot can better understand humans’ intention and then provides 

appropriate actions; and (2) human beings can easily understand robots’ intention and 

response appropriately. The first direction requires the cognitive models and theory of 

mind of human beings. The second direction requires the better design of robot’s actions. 

It is useful for that the robot to be programmed human-friendly so that people can 

interpret the robot’s action accurately. For example, if a robot brings a cup of water to a 

person, the person should be able to interpret the robot’s actions so as to make a proper 

response about when and where to reach the cup.  Accurate and timely interpretation of 

robots’ action will allow people to make better use of robots, and further improve the 

software design of robots to provide more useful interactions. The current study focused 

on the second direction, and examined how human beings perceive robot’s intention by 

just observing its actions. 

 

1.2. Related Work 

1.2.1. Legible Motion 

In order to make a robot play an assistive role efficiently, it is important that the 

human is able to easily and quickly understand the robot's intentions by just observing its 

actions. Ideally, this understanding will come in an intuitive manner, similar to how 

humans are innately able to communicate with one another non-verbally when working in 

close quarters. When interacting with humans, robot has to adopt legible behavior, which 

contains crucial social cues and expresses robot’s intention [22, 23]. Legible motion plans 

are an important part of making the robot understandable by human co-workers 
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intuitively. In this context, the legibility of a motion corresponds to whether human 

subjects can realize the actual target out of many possible choices from the arm 

movement. Legibility could be improved from varies of aspects, such as improving the 

safety by increasing the distance between human and robot [23], increasing the visibility 

of all parts of the robot [23], minimizing the cost of reaching of human beings [23], 

explicitly expressing the intention of the robot by making the robot looking at the target 

[24], etc. 

Previous work has emphasized the importance of anticipatory motion [2]. The 

robot’s actions could be easily and quickly interpreted by human being observers by 

using alarms, such as symbol, noise, particular social representative components, at early 

stage of the motion. It has also been indicated that legible, anticipatory motion greatly 

assists in collaborative tasks.  

Research has also focused on exploiting the repeatability of common 

collaborative tasks to generate anthropomorphic motions [3]. There has been work on 

creating metrics that can reproduce motion plans to be more human-like [4]. Another 

philosophy in generating motion plans has been learning by demonstration. Motions, that 

are demonstrated by human teachers, are used to build the policy for the robot to map its 

state to an appropriate motion [5, 6]. This line of work leverages anthropomorphic 

motions. The legibility problem, however, does not necessarily correspond to the 

capability of a robot to reproduce human-like motion, but how a human perceives the 

robot's motion.  

This crucial motivation has resulted in recent important efforts in identifying 

aspects of and generating legible robot motion [7, 8], which have inspired and influenced 
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the current work. The legible motion was defined as the motion that enables an observer 

to quickly and confidently infer the correct goal (action-to-goal), while the predictable 

motion was defined as the motion that matches what an observer would expect, given the 

goal (goal-to-action). In particular, these efforts have resulted in a formalization of robot 

motion legibility, and approaches for autonomously generating legible robotic motion 

plans. They stated that the legibility motion generator should always find the maximum 

probability among candidate goals along the paths from the start location to the target. 

And there is a trust region that constraint legible motion to make it understandable. They 

listed numbers of factors that could influence the understanding of legible trajectories, 

such as ambiguity, scale, timing, numbers of possible goals, and obstacle.  Further work 

by the authors along this line has focused on distinguishing between predictability and 

legibility. Researchers tried to compare the legible motion and the predictable motion in a 

two-target situation. Predictable motion was defined as the motion that matches what an 

observer would expect, given the goal (goal-to-action), which appears as lower cost, less 

surprise and more efficient trajectories. In the corresponding experimental process the 

focus was on discriminating the legibility of motion using a simulated point robot, video 

recordings of a robot, and human actors that can potentially reach two goals in an 

otherwise uncluttered workspace. They found subjects tend to make correct estimations 

faster and more confident with legible motion than predictable motion, particularly for 

the simulated point robot. Familiarization [9] has been shown to improve predictability 

when coupled with learning. 

 



5 
 
 

 
 

1.2.2. Human Motion 

Human beings are good at interpreting actions and relative intentions of other 

moving agents in their environment. This ability is developed during the first fourteen 

months of a person's life [10]. During daily life, there are usually two action 

interpretation processes [11]: 

1. Action-to-Goal inference, in which people try to predict the result of the action 

based on the information accumulated during the action's execution. 

2. Goal-to-Action inference, in which people try to predict a type of action that 

could achieve a determined goal. 

The focus of legibility is on understanding action-to-goal inference, namely how 

humans interpret the observed actions and then discover the underlying intention [7]. 

Adults, young children, and even infants are able to selectively focus on the key 

components of the behavior of others, which is relative to their intention. In 

psychophysical experiments the human hand was discovered to play a crucial role during 

interpreting and sharing actions and intentions of people with others [12, 13]. Previous 

psychological studies show that between nine months and twelve months, infants develop 

a perceptual link between pointing to the target object and the target, itself. They 

understand that pointing is an object-oriented action [13]. These results motivate the 

focus of this study on features related to the robot's end-effector. 

 

1.3. Current Study – Perceiving the action of the robot 

The goal of the current study was to identify the key features of robotic motion 

for manipulators that contribute to their legibility. Five different types of trajectories were 
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generated to cover a variety of discriminant legibility features. Some of the features 

correspond to arm policies, such as the shortest path in the configuration space, and other 

correspond to “hand", i.e., end-effector, policies, such as the orientation of the end-

effector relative to the target. A human-robot face-to-face experiment was setup to 

examine how human perceive the goal of the robot by observing its arm action. In the 

experiment, trajectories were executed by two seven degrees-of-freedom manipulation 

arms that were mounted on a Baxter robot. The arms moved towards grasping multiple 

targets, which were positioned linearly in front of the robot. As the manipulator moves, 

human subjects observed the robot and reported their belief regarding the intended target 

of the arm. An appropriate experimental setup was developed in order to collect these 

responses, so as to minimize the cognitive load of the human subjects and achieve good 

accuracy. 

The experimental results show that the legibility of different trajectories was 

indeed different and consistent across different targets. Motions which allowed the end-

effector to point towards the intended target and move along a straight line in the 

workspace result in enhanced legibility. The learning effect was also examined by repeat 

testing trajectories. 

The long term objective of identifying these legibility characteristics is the design 

of motion planners that incorporate these features into the planning process so as to 

automatically generate legible motion, and thus co-robots, which can generate legible 

motion plans, can more effectively collaborate with humans. 
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2. Generating Different Manipulator Paths 

Two main factors were considered as key features of the legible trajectories for a 

dual arm manipulator, i.e., a Baxter robot by Rethink Robotics. One is the path from the 

start position to the target location (arm policy). The other is the orientation of the end-

effector (hand policy). For the path from the start position to the target location, there are 

four arm policies considered in this study: 

1. Shortest path in configuration space (i.e., minimizing change in joint angles), 

2. Overhead motion frequently appearing in “pick and place" paths, 

3. Shortest, straight-line path for the end-effector in workspace, and 

4. “Curved" path for the end-effector in the workspace to exaggerate intent (see 

Fig. 1a).  

         

Figure 1. Left(a) : “curve" and Center(b): “straight" paths seen from above. The points on the left 

side of each plot represent the starting position for the left (red) and right (blue) end-effector. The 

lines show paths to reachable targets. Each hand has its own reachable region (green curve for right; 

purple curve for left hand). Right(c): one of the “overhead" paths in simulation [14]. The end-

effector remains vertical and points downward. 

 

And there were two possible hand orientations (potential hand policies):  

1. Hand goes immediately to final joint position (e.g., overhead grasp) and stays 

there for the duration of the motion, and 



8 
 
 

 
 

2. Hand points toward the goal in the workspace at all times. The pointing feature 

of these paths can be seen as a symbol generating anticipation of the motion [2]. 

By combining the above mentioned policies and pruning incompatible 

combinations, five different classes of path were considered in the experimental study: 

1. “Shortest" path: This was the shortest path in the configuration space computed 

on an asymptotically near-optimal version [15, 16] of a probabilistic roadmap [17] in the 

Open Motion Planning Library [18]. This class was resulted from arm policy 1 (Fig. 2a) 

and immediately provided a path for the hand as well. 

2. “Overhead Down" path: Similar to paths employed for pick-and-place tasks by 

Baxter robots in industrial settings, where the end-effector moved in a position over the 

target and points downwards throughout the motion (see Fig. 1c). This class was resulted 

from the combination of arm policy 2 and hand policy 1 (fig. 2b). 

3. “Straight" path: The robot moved its end effector along a linear path from the 

initial position to the target object while the end effector pointed towards the target (see 

Fig. 1b). This class was resulted from the combination of arm policy 3 and hand policy 2. 

(Fig. 2c) 

4. “Straight Down" path: The robot moves its end effector along a linear path 

from the initial position to the target object while the end effector remains in a vertical 

orientation pointing down. This class was resulted from the combination of arm policy 3 

with hand policy 1. (Fig. 2d) 

5. “Curved" path: The robot moves its end effector along an exaggerated curved 

path while pointing at the target. This class is inspired by ideas in previous work towards 
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generating legible paths [7] (see Fig. 1a). This class was resulted from the combination of 

arm policy 4 combined with hand policy 2. (Fig. 2e) 

 

 

Figure 2. Left to right: 1: Shortest C-space path, 2: Overhead down, 3: Straight pointing to target, 4: 

Straight down, 5: Exaggerated \curved" motion pointing to target 

 

 

Both hands were tested in the experiment, so trajectories were generated for both 

hands of the robot. For each arm and for every type of trajectory, a fixed start position 

that was raised from the at-rest position of Baxter is used. It helped in terms of target 

reachability. The targets are placed evenly along a line on a table in the manipulator's 

reachable workspace (see Fig. 1a, b). For each target, one unique trajectory was 

generated for each trajectory class. Left hand can only reach 5 targets on the left side, 

while right hand can only reach 5 targets on the right side (see Fig. 1a, b, for reachable 

range of each hand). The left 5 possible targets were not overlapped with the 5 ones on 

the right. In total, there were 50 unique trajectories generated in the preparing process.  

The above set of trajectories was designed to avoid confounding the effects of 

hand policies with the effects of arm policy, while keeping the total number of 

trajectories to a reasonable number so as to be able to finish testing and as well to extract 

useful conclusions. Note that there are two types of trajectories that are sharing the same 
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arm policy (straight-line for the end effector in the workspace) but are different in terms 

of the employed hand policy. There are also two control classes, reflecting standard 

manipulation strategies (“shortest" and “overhead down" trajectories). In this way, the 

relative importance of these features can be discovered by comparing the time it takes for 

human subjects to realize the motion's target.  

To ensure that for all classes there is ample time for subjects to give feed- back 

about their belief of targets, all trajectories in this study are scaled to be performed in 8 

seconds. 
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3. Human Robot Interaction Experiment 

 A human-robot-interaction experiment was run in order to examine human’s 

perception and interpretation of the robot’s intention by observing robot’s actions.   

 

3.1. Methods 

3.1.1. Subjects 

Thirty subjects were tested. All of them were paid volunteers. All subjects had 

normal vision, hearing condition and were naïve as to the purpose of the experiments. 

The procedures were all approved by of the Rutgers University Institutional Review 

Board for the Protection of human subjects.   

 

3.1.2. Design 

  There were 5 different types of trajectories (see details in section 2). The 

trajectories were stored and played back during the trials in order to ensure that artifacts 

from the random sampling in our motion planning do not cause discrepancies between 

trials of the same class to the same target. Moreover, the overhead of planning for the 

execution for the trajectories was avoided by generating the trajectories once and 

replaying them. For each of the workspace constrained paths, MathWorks’ MATLAB 

[19] is used to perform linear interpolation among a series of points in the workspace. 

Then, the MoveIt! Package [20] with a KDL kinematics solver [21] and an OMPL [18] 

implementation of a PRM* variant is used to plan trajectories between the interpolated 

points. The final trajectories can be played on the robot using the Baxter RSDK [1]. 
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  Both hands (left and right) of the robot were tested. The experimental setup is 

designed to effectively record the responses of subjects’ belief about the target of 

trajectories executed by the robot. A requirement was that both the targets and the robot 

were within the view of the subjects. The subjects also had a clear view of the entire 

motion of the robot manipulators. For studying legibility, the subject must be able to pay 

attention to the motion of the robot without distractions. Minimizing the cognitive load of 

the subject during the experiment involves minimizing distractions as well as making the 

data recording interface intuitive and effortless. In order to achieve this, an efficient 

recording mechanism is desired, which is both accurate in recording the responses and 

easy to assemble. The recording interface should also be resilient enough to withstand 

repeated experimental trials. The experimental setup consists of a Baxter robot, a 

workstation, a table with 15 colored cups, and a pointing device (Fig. 3). Among the 

cups, the 10, that can be reached by the robot from its starting position with all 5 types of 

trajectories, were designated as potential targets. 

 

        

Figure 3. (left) The start position of the trajectories on the Baxter robot during the experimental 

setup. (right) A view of the pointing device from the subject's perspective. 
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 A pointing device was designed to better record subjects’ responses. The pointing 

device is fixed to the spindle of a linear potentiometer. The edges of the resistive track 

are then connected to the 5 volt and ground pins of an Arduino device and the wiper to an 

analog input pin. An Arduino device sketch then performs the necessary calculations to 

extrapolate from the wiper voltage the position along the line of targets at which the ray 

of the pointer will intersect. This distance is then forwarded to the Arduino’s USB port. 

 

3.1.3. Procedure 

 During the experiment, Subjects were seated around 150 cm in front of the Robot. 

There was a table located between the subject and the Robot. 15 colored cups were 

placed on the table.  

 For each trial, subjects pressed the “space” key on the keyboard placed beside 

them to start the trial. Once the trial started, they heard either a “Bell” sound to indicate 

the left arm would move, or a “Buzz” sound to indicate the right arm would move. The 

sounds alert the subject regarding which are they should direct their attention toward. 

Then the robot played the trajectory from its starting position to a selected target, which 

has been scaled to run in 8 seconds. Subjects were asked to continuously guess which cup 

was the target that the robot was trying to reach, from the beginning of the trial to the 

point when they were very confident with their estimations. Subjects used the pointer in 

the pointing device located in front of them to indicate their belief of the target of the 

robot’s motion. The position of the pointing device was then recorded in a log together 

with the target number and the class of the trajectory. The pointer position was recorded 
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till the end of the trajectory (8s). After the robot reached the target, the robot’s arm 

returned to a start position which is common to all the trajectories. Then the subject was 

shown the number of trials that haven been completed, and was prompted to press any on 

the keyboard to continue the next trial. 

 Each subject was tested in 3 blocks. Each block contained 50 trials. For each 

subject, three random permutations of the 50 recorded trajectories were generated using a 

python script. There were 50 different recorded trajectories (2 hands * 5 possible targets 

for each hand * 5 different trajectory classes), thus each playback trajectory was played 

one time and only one time in each block. The trajectories of each permutation are then 

executed in order, recording a log of the trajectory filename and pointer position, with 

time-stamps, captured from the Arduino during the playback of each trajectory. In this 

manner it is possible to ensure even coverage among the classes and targets while 

minimizing the chance of subjects guessing the target through means other than visual 

perception of the robot’s motion. 

 After each block of 50 trials, which forms a permutation of the full set of 

trajectories, the subject was given a mandatory two minutes break. These breaks allowed 

the subject to rest, and to maintain attention on the perception task. Each subjects 

participated in the experiment only once, in order to compare the perception of base 

legibility of the paths and the learning effects among subjects. 
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A. Curve Pointing

 
B. Straight Pointing 

 
C. Overhead Down 

 
D. Shortest 

 
E. Straight Down 

 
Figure 4. Examples of pointer traces for randomly selected individual subject. Grey represents target 

area. 
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3.2. Results 

 The pointer can only be moved in one dimension – in horizontal direction. For 

each trial, the horizontal positions of the pointer were recorded from the beginning to the 

end of the trial. The pointer position was averaged in a 160ms window, so that there were 

50 position points along 8s trajectory length. Fig. 4 shows the examples of pointer traces 

for a randomly selected individual subject. It includes the example of traces for each 

individual trial. Grey areas represent the correct target area. Three traces were from three 

blocks that subject ran. 

 

3.2.1. Predicted Target over time 

The root mean square of the distance between the pointer and the correct target 

reflects the subject’s prediction of the target as time passed. It is averaged across trials 

within subjects, and then across all subjects. Fig. 5 shows the root mean square was 

varied for different types of trajectories at the beginning and converged to the correct 

target location in the end over a normalized time scale. The convergence was fast during 

the middle range of trials (0.3-0.7) for all trajectories. The predictions for the shortest 

trajectory were further away from the correct target than for the other types of 

trajectories, which was consistent with the results of root mean square. 

The pointer velocities (Fig. 6) which was how fast subjects moved the pointer, 

were peaked at the middle (.4-.6) range of trials. It again shows that the shortest type was 

different from the other four. These results suggest that the subjects might not able to 

predict the target during the early parts of the shortest trajectories as well as the other 

types. Frequently during the shortest paths, the end-effector was overshooting the target 
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and then returning back to it, which complicated the interpretations of the motion even 

close to the completion of the path.  

 

 

Figure 5. Root mean square of distance from the target along the normalized time scale for five types 

of trajectories: shortest (black), curve-pointing (blue), straight-pointing (red), overhead-down (pink) 

and straight-down (green). 

 

 

 

Figure 6. Pointer velocity along the normalized time scale for five types of trajectories: shortest 

(black), curve-pointing (blue), straight-pointing (red), overhead-down (pink) and straight-down 

(green). 
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3.2.1. Reaction Time 

In order to compare different types of trajectories in more detail, we further 

examine the reaction time of subjects’ response. Reaction time is the time duration from 

the start of the trial to the point subjects made a corresponding decision. Fig. 7 plots three 

types of reaction time (RT):  

(1) RT of converging to the range within 2 cups away from the target (Fig. 7a), 

which happened at the beginning of trials;  

(2) RT to converging to the range within 1 cup away from the target (Fig. 7b), 

which happened at the middle range of trials; and  

(3) RT to converging to the target itself (Fig. 7c), which happened at the late part 

of trials.  

Data from three blocks were presented in the order from left column to right 

column. In general, the straight-pointing type (red bars) was always the best. The curve-

pointing (blue bars) was the second best. And the shortest type (grey bars) was worst, 

especially when converging to large error range (2 cups away, or 1 cup away from the 

target). One-way ANOVA test shows that there were significant difference among 

different types of trajectories for all groups (Table 1, F scores and p values).  

First, let’s just look at the block 1 (plots on the leftmost column), in which every 

trajectory was first presented to subjects.  The performance to the shortest (grey bars) 

type was always the worst when converging to all types of error range. The disadvantage 

of the shortest type was obviously when converging into relative large error range (2 cups 

or 1 cup away from the target). Pairwise comparison shows that it is significantly longer 

than the other four types (Table 1). This disadvantage decreased when approaching to the 
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correct target finally. It suggests that the confusion of the shortest type usually appeared 

as the early stage of the trajectories.  

 

 

Figure 7. Reaction time (RT): the time converging to (a) the correct target; (b) 1 cup away from the 

correct target; (c) 2 cups away from the correct target. There were five different types of trajectories: 

curve-pointing (blue), straight-pointing (red), overhead-down (pink), shortest (gray) and straight-

down (green). There were three blocks of 50 trajectories in order: block 1 (left), block 2 (middle) and 

block 3 (right). The error bars represent -/+ 1 standard deviation error. 

 

The reaction time for the straight-pointing type (red bars) was significantly 

shorter than the others when converging to the range 1 cup away from the target and to 

the target, and it is marginally shorter than the others when converging to the range 2 

cups away from the target. The curve-pointing was always longer than the straight-

pointing but shorter than the rest three. It means that the straight-pointing is the best, and 
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the curve-pointing is the second best among all five types. The easiness of understanding 

the straight-pointing and the curve-pointing trajectories could be due to the fact that end-

effector (robot’s hand) was always pointing to the target. The end effector (the hand) was 

previously reported as an important cue in understanding others’ intention [12, 13, 10]. 

The advantages of the end-effector pointing to the target were strongest when converging 

to the range 1 cup away from the target. It suggests that the characteristics of curve-

pointing and straight-pointing helps people understand the intention of the robot by 

converging to the smaller error range more quickly.  

 

Table 1. One-Way ANOVA analysis for RT of 2 cups away, 1 cup away and pointing to the target for each 

block. In each cell, the values in the first row are the F-score (p-value). The second row lists all pairwise types 

which are significantly different from each other from post-hoc test (1- Curve-pointing; 2- Straight-pointing; 3- 

Overhead-down; 4- Shortest; 5- Straight-down). 

 

 

 

The “curve-pointing” did not perform as well as the “straight-pointing”, which 

was surprising given the conclusion of previous studies [7]. It could be due to the 

difference between two targets setting in previous studies and multiple and crowded 

targets setting in the current experiment. With multiple targets in a crowded environment, 

the curve path was more likely to confuse people, rather than providing legibility 

information. 
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The overhead-down was the third most legible trajectory and it was better than the 

straight-down. It also makes sense, because whenever the overhead-down trajectories 

reached to the top of the cup, subjects know the answer for sure. While the straight-down 

was still on the way to the top of the cup at the same time point. This leads to the 

performance as similar reaction time when converging to 2 cups or 1 cup away from the 

target between these two types of trajectories, and shorter RT for the overhead-down 

when converging to the correct target. 

 

3.2.3. Learning Effect 

As we mentioned in the Method section, three blocks were tested for each subject. 

In each block, every trajectory was randomly run and only run once. Fig. 8 shows that the 

time converging to the target was decreased across blocks, which means subjects did 

learn trajectories. The learning effect is larger from block 1 to block 2, than from block 2 

to block 3. This could be because subjects were already well trained before entering into 

block 2 and might get tired in block 3. Learning effect also varies among different types 

of trajectories. The shortest type shows greater learning effect than the others in all 

convergence situations (Fig. 8a,b,c). These results suggest that the shortest type was the 

hardest one to be interpreted at the early stage, but it can be learned by more training. 

Nevertheless, the learning does not allow it to reach the legibility level of alternatives 

such as the “straight-pointing” path. Additionally, the learning effect also appeared as 

less variance in later blocks (block 2 and 3). 
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Figure 8. Learning effects reflected in reaction time, the time converging to (a) the correct target; (b) 

within 1 cup deviation from the true target; (c) within 2 cups of the true target. There were five 

different types of trajectories: curve-pointing (blue), straight-pointing (red), overhead-down (pink), 

shortest (black) and straight-down (green). The error bars represent -/+ 1 standard deviation error. 

 

3.2.4. Performance for each cup 

The understanding of different types of trajectories was also related to the location 

of the target. In order to better analysis different trajectories, we further examined 

performance (mean position and pointer velocity along the time) for different cups. Fig. 9 

shows the mean distance from the target for each cup and Fig. 10 shows the pointer 

velocity for each cup. 

Comparing to cups located on edge of the target set (i.e. 3, 4, 12, 13), for cups 

located near to the center (i.e., 6, 7, 9, 10), the mean distance from the target was more 

easily to across 0 level to the opposite direction (Fig. 9). As the subjects typically begin 

with the pointing device centered, this suggests that subjects were more likely to 

overshoot the target. The overshoot could be due to many reasons. For example, when 

moving the pointer, people are more likely to move it fast and in a large range to roughly 

approaching to the target, and then move it carefully and precisely to hit the target. So 
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that, the overshoots happened more likely for center items, in which cases, the first step 

of movements took the pointer over the target. The starting position of the robot is nearer 

the edge cups than the center cups. The overshooting could indicate that they are 

following the arm rather than predicting the target accurately. Subjects were more likely 

to overshoot the target for the shortest type. As we mentioned in above, during the 

shortest trajectories, the end-effector was overshooting the target and then returning back 

to it. The traces here illustrated subjects’ corresponding reactions. The trajectories with 

the lowest reaction times also demonstrate the least overshooting.  

 

 
Figure 9. Mean distance from target along normalized time scale for each cup (cup No. labeled on the 

top of each plot). Five types of trajectories: shortest (black), curve-pointing (blue), straight-pointing 

(red), overhead-down (pink) and straight-down (green). 

 

 



24 
 
 

 
 

 
Figure 10. Pointer velocity along the normalized time scale for each cup (cup No. labeled on the top 

of each plot). Five types of trajectories: shortest (black), curve-pointing (blue), straight-pointing 

(red), overhead-down (pink) and straight-down (green). 

 

 

 

The mean position (Fig. 11-13) and the pointer speed (Fig. 14-16) were examined 

in each block separately, in order to see whether there was any adjustment of strategies 

across blocks. It shows that the patterns of three blocks were similar. Fig. 11- 13 plots the 

mean position of the pointer away from the correct target along the normalized time scale 

in block 1 (Fig. 11), block 2 (Fig. 12) and block 3 (Fig. 13). Each plot represents one 

target. There were five types of trajectories: Shortest (black), curve-pointing (blue), 

straight-point (red), overhead down (pink) and straight-down (green). Each lines were 

averaged the performance of 30 subjects. The yellow dash line represents the correct 

target.  It shows that the overshoot phenomena did not reduce in later block. The 

comparison across three blocks suggests the occurrence of overshoot might not due to the 

unawareness of the possible target range for each arm. Fig. 14- 16 plots the mean position 



25 
 
 

 
 

of the pointer away from the correct target along the normalized time scale in block 1 

(Fig. 14), block 2 (Fig. 15) and block 3 (Fig. 16). Each plot represents one target. There 

were five types of trajectories: Shortest (black), curve-pointing (blue), straight-point 

(red), overhead down (pink) and straight-down (green). Each lines were averaged the 

performance of 30 subjects. The yellow dash line represents 0 level. In all blocks, 

subjects tent to move the pointer slow at the beginning, fast in the middle and then slow 

again when approaching to the end. Subjects adjusted the pointer more frequently in 

block 3 than in block 1, which appears as more serrated shapes on velocity plots, 

especially for the shortest type. 

 

 

 
Figure 11. Mean distance from target along normalized time scale for each cup (cup No. labeled on 

the top of each plot) in block 1.  
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Figure 12. Mean distance from target along normalized time scale for each cup (cup No. labeled on 

the top of each plot) in block 2.  

 

 

 

 
Figure 13. Mean distance from target along normalized time scale for each cup (cup No. labeled on 

the top of each plot) in block 3.  
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Figure 14. Pointer velocity along the normalized time scale for each cup (cup No. labeled on the top 

of each plot) in block 1.  

 

 

 

 
Figure 15. Pointer velocity along the normalized time scale for each cup (cup No. labeled on the top 

of each plot) in block 2.  

 

 

 

 



28 
 
 

 
 

 
Figure 16. Pointer velocity along the normalized time scale for each cup (cup No. labeled on the top 

of each plot) in block 3.  

 

 

Given the above results, we could conclude several points. In general, the 

straight-pointing was the easiest to be understood, the curve-pointing was the second 

best, and the shortest type was the hardest one. The advantage of the straight-pointing and 

the curve-pointing is most probably due to the fact that the end-effector was always 

pointing to the target. This claim can be confirmed by the results that the straight-down 

was way behind the straight-pointing, through both of them followed the same straight 

paths.  

The advantages of legibility were previously reported, that the legible trajectories 

should be responded faster and interpreted more accurately [7]. This was partially 

supported by our results – the curve-pointing (legible trajectories) was the second, better 

than the rest three (illegible trajectories). However, the fact that the straight-pointing type 

was better than the curve-pointing type is different from previous findings – legible 
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trajectories should be better than the predictable ones. This difference might be due to 

multiple targets we used instead of just two targets in the previous studies.  

The disadvantage of the shortest type appears as slow convergence – it took more 

time to approaching a certain error range compared to the other types. The overhead-

down was better than straight-down when converging to the target, but these two were 

not different when converging to the location 2 cups or 1 cup from the target. It is also 

make sense that subjects could know the target for sure when the hand moved to the top 

of the cup, while at the same time point, the straight-down motion was still away from the 

target.  

The learning effect exists, however, varies for different types of trajectories. The 

general learning benefit appears as less variance in block 2 and 3. Three types – shortest, 

curve-pointing and straight-pointing – could be learned across blocks, while the 

overhead-down and the straight-down were barely learned across blocks. However, even 

though the shortest type can be learned, it still cannot beat the other four types of 

trajectories. In another words, we could not simple use the most efficient actions (in 

terms of joints movements) and expect people could learn such actions.  
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4. Discussion 

The current study, based on the previous legible motion work, aimed to examine 

the features of legibility of robot’s motion in a multiple targets environment. Such a 

crowed workspace was more similar to the natural working environment. The experiment 

with settings as natural environment might provide more valuable information which 

could be directly applied in real human robot collaboration. Two features of legibility 

were considered – arm path and hand orientation. Five different classes of trajectories 

were generated based on these two features. It shows that the most efficient class of 

trajectories (human could interpret it easily and quickly) is the ones that the robot’s arm 

moving straightly from start position to the target while the hand always pointing to the 

target.   

This study partially supports previous findings regarding the legibility of robot 

motion [7], i.e., different types of paths can have highly divergent levels legibility. 

Shortest C-space paths, frequently the focus of the motion planning literature, can be 

poor choices in terms of legibility. Similarly, paths that are currently used for pick-and-

place tasks in industrial setups (e.g., “overhead") also appear not to be intuitively 

interpreted. Paths that focus on the orientation of the end-effector seem to be 

advantageous in terms of legibility, since they exhibited the best performance in target 

estimation (high accuracy and less convergence time). 

It was different from previous findings that “straight-pointing" types were more 

legible relative to “curve-pointing" paths. The idea behind the “curve-pointing" paths is 

that legibility may increase by exaggerating the arms' motion so that it moves away from 

unintended targets (Fig. 1a). The difference seems to be due to the presence of multiple 
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targets in the current work. When there were only two possible targets, exaggerating the 

motion in one direction can significantly assist in identifying the target. However, such 

exaggeration can be confusing in the case of multiple targets, or in cluttered workspaces. 

This study is intended to inform legibility in such cluttered environments. 

A significant observation was the importance of the end-effector's orientation 

relative to the target. It was hypothesized that humans might pay particular attention to 

the pose and orientation of a robotic end-effector, similar to the way they respond to 

humans’ hands. The experimental results confirmed this hypothesis. It would be 

worthwhile to incorporate the maintenance of such end effector orientations into the cost 

functions of motion planners in the future. 

A question that needs to be answered is whether it is worthwhile to consider 

legibility of robotic motion planning paths, as opposed to relying on learning ability of 

human observers. There was a learning effect when the subjects repeat observed the same 

trajectories. The benefit primarily appears as reduced variance during repetitions of the 

same trajectories and varies across types of trajectories. Three types of paths, shortest, 

curve-pointing and straight-pointing, could be learned across blocks, while the overhead-

down and the straight-down did not exhibit significant learning behavior. Although the 

learning effect existed, the benefit of the learning might not be able to override the 

advantage of the legible information, which was supported by the fact that the 

performance of the shortest type was improved in later blocks, but still not as good as the 

performance of other types. 

Note that in the experiment the subjects witnessed the same path to a target 3 

times in three blocks rather than 3 variations of the same type of path to the same target. 
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Certain planners, such as sampling-based ones, can vary in the repeatability of their 

solutions. It is not necessarily the case that similar degrees of learning would occur for 

the general case of repeated exposure to motions plans generated from such motion 

planners. Furthermore, in this study the initial condition was always the same. When a 

robot needs to plan on the y and transition from one task to another, the human subject 

will not be exposed to the same exact trajectories repetitively. It is interesting to consider 

the effects of legibility in the context of trajectories that have different initial conditions. 

During the experimental study, there was a transition from a web-based UI in the 

pilot trials, to the physical pointer feedback device used in gathering the data included 

here. This change decreased the cognitive load placed on human subjects by the data 

collection interface and resulted in a reduction between the best-performing and worst-

performing path classes relative to the pilot study. A human co-worker in a collaborative 

setting is likely to have additional mental demands beyond the robot interaction. While 

minimizing the cognitive load might clarify the effects of legible features, such 

distractions might exaggerate the legibility of robot motions. An interesting line of future 

research is to analyze the effect of cognitive load on legibility. 

Initial pilot trials also used trajectories which varied in duration. Increasing 

duration of trajectory execution gives the subject more time to recognize the legible 

features of the motion. However, it is not clear whether the effect persists if the trajectory 

duration keeps on increasing. Unnaturally slow trajectories might obfuscate the features 

that contribute to legibility. A scope for future work would be to understand the effects of 

the duration and speed of trajectories on legibility consistent among different types of 

trajectory. 
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The overshoot phenomenon occurred for the items located in the center area, but 

not for edge area. It could be due to the habit of moving pointer – moving fast and not 

precisely at the beginning in order to bring the pointer near to the target, and then moving 

precisely to approaching to the target. It also could be due to the unawareness of subjects 

about the possible range of targets for each hand. Analysis on the performance (both 

positions and velocity of the pointer) for each block shows the occurrence of overshoot 

did not reduce by training. However, it might require more trials for further analyze each 

individual case. 

Future experiments could involve the random placement of targets over a two-

dimensional subspace, the presence of obstacles, as well as stopping the motion of the 

arm half-way towards the target and asking the user to guess the intended target. The 

longer-term objective is the definition of appropriate motion planners that generate 

highly-legible paths. It appears that such planners and accompanying cost metrics need to 

be reasoning for the orientation of the end-effector and its workspace path. This line of 

work can eventually lead to robots that use time-efficient paths when they operate in a 

dark factory floor and automatically switch to humanly-legible but less efficient paths 

when people enter their workspace and collaborate. 
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