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The current types of rate structures for the electricity retailing create a disconnection between 

retail and wholesale markets. The rate structures expose utility providers to the full risks of 

wholesale markets, while prohibiting the response of end-use customers to market dynamics. 

This disconnection is considered to be the primary cause of unusual volatility in electricity 

markets. In this dissertation, the author proposes a Cost-for-Deviation (CfD) retail pricing 

scheme, which is designed to minimize the demand uncertainty of individual customers. A series 

of experiments demonstrate that CfD pricing is able to reduce the demand uncertainty by 10%, 

as measured by the root mean squared deviation of the demand. Consequently, the community’s 

cost of hedging the quantity risk in the real-time market is reduced by 38%. This dissertation 

also demonstrates the formulation and solution techniques for the day-ahead planning and real-

time tracking optimizations that each customer faces under CfD. An efficient and robust 

approach, called Optimal Strategy Pool (OSP), is introduced to solve simulation-based on-line 

planning problems; and dynamic programming is adopted in neural network model-based 

predictive control. Both centralized and distributed mechanisms are studied for customers to 
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reduce CfD charges via collaborative demand management. Overall, CfD pricing effectively 

reduces the demand uncertainty by promoting a predictable consumption behavior. 
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Chapter 1 Introduction 

1.1 Objective 

This dissertation proposes a new Cost-for-Deviation (CfD) retail pricing which charges the 

demand deviation of individual customers. Under this pricing scheme, the customers are 

encouraged to plan their demand carefully, and track the planned demand schedule as closely as 

possible in real-time. The two-phase control – the day-ahead planning and the real-time tracking 

– is expected to reduce the demand deviation of individual customers, and then minimize the 

overall demand uncertainty. In order to demonstrate the design and effectiveness of CfD, the 

author starts with the modeling and control optimization of a single building, under both 

conventional time-varying price and the new CfD price. Then, the scope extends to the demand 

side management within community microgrid, under CfD. A series of experiments demonstrate 

that (1) individual buildings are capable of the optimal control under time-varying price, but 

some special algorithm may be needed if simulation is involved in the on-line decision making; 

(2) CfD encourages the day-ahead planning and the real-time tracking, which are able to reduce 

the customer’s demand deviation; (3) CfD reduces the community demand uncertainty and 

ultimately lowers the community cost; and (4) CfD promotes a predictable consumption 

behavior and collaborative demand management among customers. 

1.2 Motivation 

The electricity markets in many countries, including the US, consist of a wholesale market and 

a retail market. The wholesale markets are further split into a day-ahead market and a real-time 

market. The supply side and the demand side settle most of the electricity transactions in the 



2 
 

 
 

day-ahead markets and deal with the generation and consumption deviations in the real-time 

markets. The real-time electricity price is inherently more volatile than the day-ahead price. It is 

also likely that the real-time price is higher than the day-ahead price. 

Utility providers function as brokers who participate in both wholesale and retail markets. In 

wholesale markets, utility providers act as buyers and electricity generators are sellers. And in 

retail markets, utility providers are sellers, who sell electricity to end-use customers. If actual 

demand is different to that submitted into day-ahead markets, utility providers will have to settle 

the deviation in real-time markets – by either purchasing the additional electricity or selling the 

excessive electricity. The cost of utility providers includes the costs in both day-ahead and real-

time markets together with the risk hedging cost. If utility providers are assumed to be not-for-

profit, their cost will eventually be shared by all the customers. Obviously, it is in utility providers’ 

interest, and then in customers’ interest,  to have a predictable demand when submitting demand 

bids, because predictable demand means less demand uncertainty, and more reliance on day-

ahead markets rather than risky real-time markets. 

However, with the flat rate tariff, which is commonly implemented in the retail markets of the 

US, utility providers sell electricity at a fixed price. Customers are not incentivized to keep a 

predictable consumption manner. Utility providers, on the other hand, are exposed to the full 

risks in wholesale markets, including the price risk (due to the difference between predicted and 

actual price) and the quantity risk (due to the difference between predicted and actual demand). 

In order to hedge against those risks, utility providers have to raise the retail price, resulting in 

an unfair situation, where those customers with predictable demand share the elevated cost that 

is caused by the uncertain consumption behavior. 
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The proposed CfD rate structure is designed to address this problem. This rate structure first 

provides an hourly retail price schedule for the next operating day, and then requires the 

customers to submit their individual demand schedules. The customers are to follow their own 

demand schedules as closely as possible during the operating day, because the deviation of actual 

demand from the schedule will incur CfD charges. The demand side management under CfD, 

therefore, includes a planning stage and a tracking stage, resembling the day-ahead and real-time 

operations of electricity wholesale markets. 

Compared to the flat rate and other time-varying pricing schemes, CfD is expected to have two 

major advantages. First, the day-ahead announcement of hourly rate schedule can be seen as a 

hybrid of the Time-of-Use (TOU) and the Real-time Pricing (RTP). The hourly rate carries the 

information about hourly dynamics of the market (although it is based on a forecast, rather than 

a realization), and the day-ahead announcement allows customers to plan consumption in 

advance, in order to fully utilize their demand response capacity. Second, CfD adds a novel, but 

crucial concept into the demand side management, which is the demand uncertainty. By charging 

on the demand deviation, CfD drives customers to maintain a predictable consumption 

behavior. The community as a whole will have less quantity risk in the wholesale market. As a 

consequence, a lower cost can be expected. The design of CfD pricing is well in line with the 

concept of “transactive energy”, which proposes to use economic incentives to promote active 

participation of the demand side in wholesale and retail markets [1]. 

1.3 Contributions 

In this dissertation, the author makes the following contributions: 
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 Introduces the concept of “demand uncertainty reduction” as an additional goal of the 

demand side management, which traditionally only includes energy saving and peak 

demand reduction; 

 Proposes and demonstrates the use of an economic approach (i.e. the CfD retail pricing) 

in reducing the demand uncertainty; 

 Formulates the day-ahead planning and the real-time tracking optimizations for the 

controls of a building under CfD; 

 Explores a number of mechanisms by which collaborative demand management can be 

performed under CfD; 

 Provides a solution technique for individual buildings to make on-line decisions under 

time-varying pricing. 

1.4 Background and Literature Review 

According to the International Energy Agency (IEA), the global energy consumption increased 

by 86% from 1973 to 2010, and the total carbon emission increased by 94% during the same 

period [2]. Among all primary energy sources, the fossil fuel (i.e., oil, coal and natural gas) 

accounts for over 80% in total [2]. This trend has raised increasing concern worldwide about the 

sustainability of the energy supply, and further about the possible, yet disastrous change of the 

world climate. The United States consumes 97.7 quadrillion BTU energy annually (2010) [3], 

which is about 27% of the entire world [2]. Buildings, both residential and commercial, account 

for 41% of total US energy consumption, more than industrial (31%) and transportation sectors 
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(28%) [3]. Over 75% of electric energy are consumed by building users [3]. This percentage is 

expected to increase, as a recent prediction shows that the commercial and residential energy 

uses will continue to grow, while the industrial and transportation consumption will most likely 

maintain their current levels [4]. Among different end uses, heating, ventilation and air 

conditioning (i.e. the HVAC system) and water heating together claim about 72% of the 

residential building energy and 36% in the commercial consumptions [5]. The implication is 

obvious: a more energy efficient and more environment friendly lifestyle, especially when it is 

related to the activities within building environment, would not only be in America’s national 

interest, but also a critical goal for the entire world to pursue. 

Researchers are actively investigating new technologies from various perspectives. Some are 

seeking new sources of energy. Some are trying to achieve higher efficiency in energy conversion, 

transition and storage. And others are applying intelligent planning, optimization and controls 

to both generation and consumption to minimize energy waste. In the past decades, we have 

seen many new techniques emerge, such as photovoltaic panels, wind turbine, Lithium-ion 

battery, building automation system (BAS) and smart grid technologies. The penetration of the 

renewable energy has reached 8% in 2011 and  is projected to 11% by 2040 [4]. Although, to 

this point, some techniques may still be in the prototyping stage, many have reached, or are 

approaching, commercialization in different markets. The economic impact of the technology 

advancement is that the overall energy efficiency in the developed countries such as the US, has 

been nearly doubled from 1980 to 2011, according to the energy use per dollar of gross domestic 

product [4]. 
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The energy system related studies can be roughly categorized into three domains: “building 

modeling and control optimization”, “power grid” and “electricity markets”. General overviews 

of these domains will be given in this section. 

1.4.1 Building Modeling and Control Optimization 

1.4.1.1. Simulation and Data-Driven Modeling 

Prediction models are important for model-based control of building energy systems. Because 

the building energy system is a non-linear complex system with many subsystems and 

components interact with each other, it is extremely difficult to model using detailed physical 

modeling. Instead, the black-box and the gray-box approaches seem more suitable. 

A typical gray-box approach is to first assume the structure of the system model based on laws 

of fundamental thermodynamics, and then estimate the system specific parameters with 

measured data, or using expert knowledge. A number of simulation software packages have 

integrated gray-box models for different components and subsystems. From those 

component/subsystem models, simulation platforms develop partial differential equation 

(PDE) systems at the whole building level. The equation systems are often solved to obtain the 

transient-state solutions (e.g. in TRNSYS [6]) or the quasi-steady-state solutions (e.g. in 

EnergyPlus [7]). Many researchers have adopted simulation techniques in the studies of building 

energy system controls. Morris et. al. built a test facility simulation model with TRNSYS, and 

used that simulation to examine the performance of temperature reset in reducing the cooling 

cost. They concluded that up to 51% of the total cooling load can be shifted to off-peak hours 

with the optimal temperature control [8]. Elliott coupled the computational fluid dynamic 

calculation with general purpose mechanical system simulation platform, ADAMS [9]. Mathews 
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and Botha constructed an HVAC system model on QUICKcontrol simulation platform [10]. 

They used that model to study the energy impact of component fault and degradation, as well 

as the performance of HVAC optimal operation strategies. Djunaedy et. al. connected a 

computational fluid dynamics module with a building simulation model, in order to get accurate 

result about the thermodynamic behavior of indoor air [11]. Xu and Zagreus [12], Xu and Yin 

[13] and Yin et. al. [14] used EnergyPlus simulation models to identify the optimal “precooling” 

strategy that can achieve most peak load reduction and least occupant thermal comfort loss. 

Trcka and Wetter et. al. from the Laurence Berkeley National Laboratory (LBNL) developed the 

Building Control Virtual Test Bed (BCVTB) which is able to couple a number of simulation 

software packages (such as EnergyPlus, Modelica, Radiance, MATLAB, etc.) as well as real BAS 

system or HVAC hardware [15-19]. Sagerschnig et. al. used BCVTB to link an EnergyPlus model 

of a large office building with MATLAB computing environment for simulation-based 

optimization [20]. Zhu et. al. used MLE+, which is a MATLAB program package derived from 

BCVTB [21], to couple EnergyPlus simulation evaluation with MATLAB global optimization 

algorithm [22]. Zhu et. al. linked building energy simulation with asset degradation and failure 

simulation in the study of building asset maintenance optimization [23]. Pang et. al. coupled an 

EnergyPlus model with real BAS (through BACnet protocol) for proof-of-concept 

demonstration of simulation-based predictive supervisory control [24]. Eisenhower et. al. used 

an analytical meta-model to extract the influential factors in a series of EnergyPlus models, and 

used the meta-model for control optimization [25]. 

In some other studies, where black-box modeling was used, the measured data were subject to 

statistical analysis and fitting to various statistical models or machine learning models. Compared 

to the simulation-based approaches, the data-driven model-based approaches demand less 
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engineering effort for model development and calibration. The optimization based on the black-

box model is usually more computationally tractable than the simulation-based optimization. 

Popular data-driven modeling approaches include time-series model [26], Fourier series model 

[27], regression model [28], artificial neural network (ANN) [29-41], support vector machine 

(SVM) [42, 43] and fuzzy logic model [33, 38, 44-46]. MacArther et. al. fit the metered building 

energy consumption to a regression model to predict the building consumption profile [26]. 

Kreider et. al. enhanced the expert control system by ANN model for efficient and semi-

automatic supervisory control [37]. Dhar et. al. used a Fourier series model to predict the heating 

and cooling load in a commercial building with outdoor air temperature [27]. Kajl et. al. combined 

ANN with fuzzy rule selection to evaluate building energy consumption [33]. Kalogirou and 

Bojic trained ANN models with simulated data, and used the network models to predict the 

energy consumption of a passive solar building [35]. Alcala et. al. applied genetic rule weighting 

and selection mechanism to construct a fuzzy logic controller for HVAC supervisory control 

[44]. Dong et. al. [42], Li et. al. [43] and Solomon et. al. [47] used SVMs to forecast building energy 

consumption with weather conditions. Yalcintas and Akkurt successfully used ANN to predict 

the chiller consumption in tropical climate [48]. Yang et. al. used adaptive ANN for on-line 

building demand prediction [41]. Their ANN is able to adapt itself to unexpected system changes 

through on-line accumulative training or sliding window training. Neto and Fiorelli compared 

an EnergyPlus simulation and an ANN model for the same building, and the conclusion was 

that both models are good for energy consumption forecast [39]. Zhou et. al. used a regression 

model to predict solar radiation, outdoor temperature and relative humidity, and the predicted 

weather was used in a gray model for building energy prediction [49]. Li et. al. used a hybrid 

genetic algorithm-adaptive network-based fuzzy inference system to forecast building energy 
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consumption [38]. Ferrieira et. al. used ANN based predictive control to optimize the indoor 

thermal comfort and energy saving [32]. 

1.4.1.2. Optimization Techniques 

After a prediction model is developed, the model-based control problems will be formulated 

and solved by optimization algorithms. As stated above, the building energy system is a non-

linear complex system whose analytical, physical model is difficult to obtain. Therefore, control 

optimization can only be performed with simulation models or black-box models. Wetter 

studied a wide spectrum of optimization algorithms in his doctorate dissertation [50], and later 

he compared the performance of optimization algorithms for EnergyPlus simulation-based 

optimization [51]. One of the important conclusions in his studies was that, due to the quasi-

steady-state assumption and adaptive integration algorithm programmed in EnergyPlus engine, 

EnergyPlus simulation model is a discontinuous numerical approximation to the modeled 

system with respect to the design and control parameters, and the discontinuity can be 

substantial. The same issue exists in other quasi-steady-state simulation platforms. As a result, 

those optimization algorithms that require the system behavior to be continuous or smooth will 

not have good performance in these simulation-based optimizations. For example, in Wetter’s 

study [51], when detailed simulation model was used, general pattern search (GPS), simplex 

algorithm and gradient based approaches all failed far from the optimal solutions. Instead, the 

evolutionary algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), 

produced much better results. 

In black-box model-based optimization, however, the selection of optimization algorithm 

becomes case dependent. For pure fuzzy logic model-based controllers, the optimization can 

only be done by brutal force search within entire rule spaces. Linear models are rare, and 
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therefore, linear optimization is usually seen in simple local control optimization problems. Non-

linear models and non-linear optimizations are dominant in the HVAC model-based controls. 

Wang and Ma reviewed the non-linear local and global optimization algorithms in supervisory 

control application [52]. The strength and weakness of the optimization techniques are 

compared in [52]. 

Olafsson and Gopinath studied a new algorithm for simulation-based optimization with a finite 

but large number of decision variables [53]. In their algorithm, a “ranking-and-selection” 

approach was applied to significantly improve the performance of traditional adaptive random 

search. Chow et. al. used GA in their study of chiller control optimization [31]. Alcala et. al. 

applied GA on fuzzy logic rule base to select the optimal controls for HVAC systems [44]. Fong 

et. al. solved a simulation-based optimization problem for HVAC system control by GA [54]. 

Huh and Brandemuehl used complex search method to optimize the air-conditioning system 

operation parameters [55]. Yao and Chen studied decomposition-coordination algorithm in the 

HVAC control optimization [56]. The result showed that this algorithm and direct search 

algorithm found the same optimal solution, but decomposition-coordination algorithm works 

more efficiently in ultrahigh-dimensional optimization problems. 

In Chapter 2, the author proposes a novel algorithm to solve the on-line optimization problem 

of the simulation-based controls for HVAC systems. In Chapter 3 and 4, existing and validated 

EnergyPlus simulation models are used to replace real buildings in data generation and testing. 

A class of ANN models, namely the non-linear auto-regressive network with external inputs 

(NARX), are used to develop system prediction models. To solve the control optimization 

problems, the dynamic programming technique is applied. The NARX prediction models, 

optimization formulation and solutions will be discussed in Chapter 3. 
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1.4.2 Power Grid and Electricity Market 

Electricity is a form of secondary energy source. It is generated from a variety of primary energy 

sources (natural gas, coal, nuclear material, solar radiation, etc.) by power generation facility, 

transmitted and distributed by circuit network to the customers. Unlike other commodities, the 

delivery of electricity requires practically no time. With few exceptions, electricity is very difficult 

to store in bulk quantities. Therefore, the electricity supply and demand has to match exactly, in 

all locations and at all times. The supply/demand condition is reflected by the frequency on 

specific nodes. Under normal conditions, the frequency is maintained within a very narrow range 

around a certain level, indicating the balance between supply and demand. Imbalance of supply 

and demand will result in a frequency higher or lower than the defined level, which can 

potentially cause severe equipment damage. 

However, meeting this requirement is challenging. First, the electricity generation needs 

considerable time to ramp up or down, which varies depending on the generation technology 

and plant operation condition. Second, a large portion of the demand is inelastic, meaning it is 

not sensitive to price changes, and difficult to predict. Third, there are physical constraints, 

security constraints and transmission loss in the transmission and distribution networks. Most 

importantly, uncertainty is ubiquitous in almost all elements of the energy system, for example, 

volatile fuel price, unstable wind and solar intensity, random outages of the equipment and 

unexpected peak demand due to human activity. 

In this section, the demand and generation dispatching on the power grid will be discussed, 

followed by the background of electricity market operations. 

1.4.2.1. Demand 
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Electricity demand is often characterized by base load and peak load. The base load is the 

demand that is stable in quantity throughout a period of time. For example, kitchen refrigeration 

and hot water generation constitute the base load of the vast majority of residential units. The 

peak load is the demand that appears during the peak consumption period of a day or a year, 

such as HVAC load in commercial buildings. The other loads are demand with less deterministic 

schedule and magnitude, such as home appliances. The aggregated load profile normally presents 

cyclic patterns. The daily and weekly cycles are obviously related to human activities; and the 

yearly cycle is usually a result of HVAC response to the seasonal change of the climate. 

In general, electricity demand is not sensitive to short term price change (price inelasticity). The 

primary reason is that most customers, especially those residential and small commercial 

customers, do not receive dynamic price signals, as the flat rate and TOU rate dominate the retail 

markets. Another reason is that the major portion of individual demand is a necessity for their 

life or businesses. Only HVAC, lighting and some plug loads make the smaller portion, which 

may be used in response to price changes. However, in a longer term, demand can be much 

more responsive to price signals, including financial incentives provided by governments. The 

increasing installations of renewable on-site generation (wind turbines and photovoltaics), 

energy efficient lighting and expansion of the electric vehicle (EV) market are the most recent 

examples. 

Because of its price inelasticity, demand forecasting becomes an important first step in the grid 

operation. Instead of individual building load prediction reviewed in Section 1.4.1, demand 

forecasting is conducted at an aggregated level. For example, a utility provider acts as buyer in 

the wholesale market. It procures electricity based on the predicted demand of all its customers. 

Therefore, the overall demand can be seen as a random non-stationary process composed of 
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tens of thousands of individual components. Individual components, i.e., individual customer 

demand, can be categorized into a number of groups, such as residential, commercial, industrial, 

as well as public or municipal uses. Each customer group can be further divided according to 

various demographic and economic factors – sizes, building types, business types, etc. Other 

than this, weather is the most important predictor that affects the hour-to-hour electricity 

demand. Almost all demand forecasting models involve weather factors either directly or 

indirectly (e.g. via time cycles). Similarly, social factors also contribute in certain cyclic (e.g., 

weekly pattern) or incidental (e.g., sport event) behaviors. A demand forecasting model is such 

a mathematical model that takes the historical data as well as forecasts of the aforementioned 

predictors and predicts the aggregated demand. A short-term forecast model usually predicts 

hourly or sub-hourly demands for a period of hours to days. A long-term forecast model predicts 

daily or monthly demand for a period of weeks to months, or, sometimes of years. 

A large number of modelling techniques for demand forecasting have been reported. Several 

reviews are provided by Matthewman and Nicholson (1968) [57], Abu El-Magd and Sinha (1982) 

[58], Gross and Galiana (1987) [59], Moghram and Rahman (1989) [60] and Alfares and 

Nazeeruddin (2002) [61]. According to Alfares and Nazeeruddin, demand forecasting models 

can be grouped into nine categories: multiple regression, exponential smoothing, iterative 

reweighted least-squares, adaptive load forecasting, stochastic time-series, time-series models 

based on GA, fuzzy logic, ANN, and knowledge-based expert systems. 

Forecasting the aggregated demand has been the only way of obtaining overall demand profile, 

which is required to enter the electricity wholesale market. Forecasting on the level of individual 

customers has been considered neither feasible nor necessary. The primary reason is that 

advanced forecasting requires investment in computation instrument and data access, which is 
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considered costly for individual customers, especially small households. Also, a model 

aggregating individual demand forecasts tends to have larger error than one predicting overall 

demand. The disadvantage of predicting aggregated demand is also obvious. Human behavior 

is the second major source of uncertainty (after weather) in demand forecasting and it varies 

substantially among customers. Aggregated techniques are unable to account for such 

uncertainty. When the utility provider uses this demand forecast to bid in the electricity market, 

it faces the quantity risk. The additional costs incurred by the quantity risk is shared by all the 

customers, by means of raising unit price. This is considered unfair, because it fails to distinguish 

the customers with predictable usage profile from the ones with irregular (hence uncertain) 

profile. Recent technical advancements in smart metering, internet-of-things, cloud data storage 

and computation have largely reduced the cost of home energy management systems. Especially 

with the provision of growing EV charging needs in residential and commercial communities, 

demand forecasting and management capability for individual customers will become a 

necessity. 

Traditionally, the goals of the demand side management only include energy efficiency and peak 

load reduction. Various demand response (DR) programs and retailing tariffs are 

proposed/implemented to pursue these two goals, which will be detailed later in the “Retail 

Market” section (Section 1.4.2.3.C). Another important characteristic of the demand is its 

uncertainty. Demand uncertainty has been recognized in all studies about demand forecasting 

and many studies about stochastic optimizations for load scheduling. For example, in the studies 

of Samadi et. al. [62, 63], Conejo et. al. [64], Li et. al. [65] and Kim and Poor [66], the authors 

considered the uncertainty in residential demand when solving real-time load scheduling 

problems under time-varying prices. In the electricity wholesale market operations, demand 



15 
 

 
 

uncertainty is also considered as a major risk for both generation side and demand side. Ferrero 

and Shahidehpour studied the electricity procurement strategy considering the uncertainties in 

both demand and wholesale price [67]. Wang et. al. proposed oligopoly models describing 

strategic behavior in electricity markets with supply and demand uncertainties [68]. The 

uncertainty of demand is also considered when grid operators solve the unit commitment and 

real-time dispatch problems. Wu et. al. considered demand uncertainty when solving a stochastic 

model for the long-term security-constrained unit commitment problem [69]. However, in all 

those studies, the demand uncertainty is only considered as a set of statistical estimates, which 

are given and uncontrollable. There have been no studies, to the knowledge, that treat 

uncertainty as a controllable feature of the demand or set uncertainty reduction as a goal of 

demand side management. 

In this dissertation, the author proposes to apply an economic measure to minimize demand 

uncertainty. Given that demand uncertainty is a source of risk in the wholesale market, 

uncertainty reduction is expected to reduce demand side risks and consequently reduce the 

customers’ cost. 

1.4.2.2. Transmission 

Electric power transmission refers to the bulk transfer of electricity from generation facilities to 

substations near the end users. It is distinct from the local wires that transfer electricity from 

substations to individual customers, which are usually referred to as “power distribution”. 

Electricity transmission is done through transmission networks, or “the grid”. Most of 

transmission lines are high-voltage three phase alternating current lines. High voltage is necessary 

to reduce the energy losses in long distance transmission. As mentioned earlier, the supply and 

demand of electricity on the grid must be balanced all the time. This is a challenging task, as 
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many uncertain factors exist in both supply and demand ends, as well as the transmission grid 

itself. In North America (the US and part of Canada), most transmission lines are operated by 

Regional Transmission Organizations (RTOs) or Independent System Operators (ISOs). RTOs 

and ISOs only have subtle technical differences. This dissertation refers to them all as ISOs. 

There are 7 ISOs in North America: California ISO (CAISO), New York ISO (NYISO), Electric 

Reliability Council of Texas (ERCOT), Midwest Independent Transmission System Operator 

(MISO), ISO New England (ISO-NE), PJM Interconnection (PJM) and Southwest Power Pool 

(SPP). Most of ISOs are nonprofit organizations run under Federal Energy Regulatory 

Commission (FERC) and North American Electric Reliability Corporation (NERC). The main 

responsibility of ISOs includes: (1) coordinate the generation and transmission across the 

regional grid, and maintain supply and demand of electricity balanced; (2) operate the 

marketplaces for the trading of bulk electricity and some financial products; and (3) initiate long-

term investment in generation and transmission infrastructure. 

All dispatchable capacities within an ISO’s jurisdiction form a power pool. To balance the supply 

and demand, ISOs dispatch the least costly capacity of the pool to meet the energy demand, 

while keeping the entire grid operating within the physical and reliability limits. The dispatch 

process has two stages: (1) day-ahead unit commitment, or day-ahead planning stage; and (2) 

economic dispatch, or real-time dispatching stage. 

A. Day-ahead Unit Commitment 

In unit commitment stage, ISOs determine what combination of generation units should be 

committed at each hour of the planning horizon (typically, 24 hours of the next day), based on 

the forecast of the hourly demand. This planning is often done on the day before the operation 

day, because some generators require up to several hours lead time before they can be brought 
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into service. Other physical constraints are also considered such as response time to the signal 

of changing output level, minimum and maximum output, minimum uptime and downtime, 

maintenance schedule, etc. The most important question is, given all of the above constraints, 

what unit combination incurs the least cost. The cost hereby includes fuel cost, non-fuel 

operation and administration cost. The overall per Megawatt-hour cost of each generation unit 

varies each hour, depending on many factors including, but not limited to, fuel prices and 

weather condition. Given the demand forecast, cost function of all units, and all constraints, the 

unit commitment problem that the ISO is trying to solve is a complex optimization problem 

with both integer and continuous variables [70-73]. A generic formulation given by [73] is as 

follows: 

Decision 
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 Generator output limit constraint  

 Reactive power limit constraint  

 Voltage limit constraint  

 Phase angle limit constraint  

 Transmission thermal limit constraint  

 

“Must up/down”, “Spinning Reserves” and “Crew 

Limit” constraints 
 

where,  

itP  denotes the power output of plant i  ( i =1, 2, 3, …, N) at time t  ( t =1, 2, 3, …, T); 

In Eq. 1, the overall operational cost ( OC ) is formulated as the summation of fuel cost ( FC , 

maintenance cost ( MC ), startup cost ( ST ) and shutdown cost ( SD ); 

In Eq. 2, fuel cost ( FC ) is formulated as a quadratic function of power output; 

In Eq. 3, maintenance cost ( MC ) is a linear function of power output; 

In Eq. 4, startup cost ( ST ) includes fixed cost of turbine start (TS ), variable cost for boiler 

start ( BS , assuming exponential cool down process) and fixed maintenance cost for a start 

( MS ); 
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In Eq. 5, shutdown cost ( SD ) is proportional to power output; 

Eq. 6 defines the ramp limit; 

Eq. 7 defines the load balance with offset term (loss); 

Since the 1980s, there has been a trend of restructuring and deregulation of energy markets. In 

restructured or deregulated markets, generation units offer their bids to supply the demand. A 

bid is consisted of a cost function and some operational constraints of the unit. The final market 

clearing price is set by the maximum cost of the committed generation units, i.e. the locational 

marginal price (LMP). All committed units are required by contract to supply the specified 

quantity of electricity at the specified time, and will be paid at LMP rate. In this case, the previous 

objective that minimizes operational cost does not guarantee lowest prices. Instead, a new 

objective is adopted which is to maximize the profit (i.e., the revenue minus the operational cost) 

[74], as shown below [75]: 
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 Generator output limit constraint  

 Reactive power limit constraint  

 Voltage limit constraint  

 Phase angle limit constraint  

 Transmission thermal limit constraint  

 

“Must up/down”, “Spinning Reserves” and “Crew 

limit” constraints 
 

where, 

in Eq. 8, the profit ( J ) is defined as the total revenue minus operational cost ( OC ). And the 

revenue is calculated as the power output ( P ) multiplied by forecasted LMP ( C ); 

in Eq. 9, a softer demand constraint replaces the previous load balance constraint (Eq. 7), as 

has been explained in [74]. 

Many modifications are made to the above generic formulations in different studies. For 

example, the formulations of fuel cost, maintenance cost, startup cost and shutdown cost (Eq. 

2~Eq. 5) can be replaced by different models. Besides generation units, the scheduling of other 

types of power injection can also be considered, such as imports from other utilities and 

purchases from distributed generation [76]. 

A wide spectrum of numerical optimization techniques has been adopted to solve the unit 

commitment problem, including Exhaustive Search, Priority Listing, Dynamic Programming, 
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Integer Linear Programming, Branch-and-Bound, Lagrangian Relaxation, Interior Point 

Optimization, Taboo Search, Simulated Annealing, Expert System, Fuzzy System, ANN, GA, 

Evolutionary Programming, Ant Colony Search and various hybrid models. Comprehensive 

review can be found in [73]. 

B. Real-time Dispatch 

Similar to unit commitment, the objective of real-time dispatch is to achieve the most efficient 

(minimum cost or maximum profit) scheduling of generation and to meet the demand. But real-

time dispatch is required to respond in (near) real-time. Due to many uncertainties, the actual 

demand and generator operating conditions may be different from the forecast in day-ahead unit 

commitment. The grid operator has to adjust the generation dispatch accordingly. The 

adjustment is done by automatic generation control. The idea is the dispatchable generators with 

the lowest marginal cost should be used first. And the marginal cost to serve the last Megawatt 

demand sets the real-time market price. Figure 1 illustrated a typical power pool of an ISO. All 

generation units are sorted by marginal generation cost and represented by dots in the chart of 

marginal cost versus cumulative generation. This type of curves is usually referred to as 

“generation stack” or “supply stack”. 
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Figure 1 Typical generation stack of an ISO  

Since the last dispatched unit defines the price, price spikes may occur when no more low cost 

generation is available for dispatch. Therefore, it is beneficial to maintain a set of relatively low 

cost generation units (called “operating reserves”) whose output level can be quickly adjusted 

(“spinning reserves”) or can be brought up online in short notice (“non-spinning reserves”). 

Some ISOs have DR programs called “Direct Demand Curtailment” that allows the operator to 

control certain demand directly. 

Similar to real-time dispatch, some scholars have proposed “environmental dispatch” which 

adds environmental cost minimization as another objective of the optimization [77-79]. 

1.4.2.3. Market Operation 

The solution to the day-ahead unit commitment and real-time dispatch problems relies on the 

realization of the cost function of each generation unit. There are two approaches by which the 

generation cost can be determined. In traditionally regulated markets, the utility companies are 

usually naturally formed monopolies that have vertical market power, which means the 

companies own generation plants, transmission lines, distribution networks and access to 
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customers. Such markets are noncompeting but their operation has to comply with regulations. 

The generation costs in these markets are calculated by the utility companies. This is called “cost-

based rate”, which may include the capital cost, fuel cost, maintenance cost, tax and 

administrative expenses. The grids in Southeast, Southwest, Inter-Mountain West and 

Northwest regions operate in this manner. 

Grids in other regions are using market-based approach. The ISOs organize regional markets 

that are open to generators, utility providers (also known as load serving entities, or LSEs) and 

transmission customers. The generation cost is resolved in competing auctions among 

generation units. Corresponding to the day-ahead unit commitment and the real-time dispatch 

problems, regional markets also have day-ahead and real-time components, together with several 

more sophisticated markets where various hedging arrangements can be traded, such as swing 

contracts, virtual bidding, financial transmission rights, call options and put options. The price 

calculation in both day-ahead and real-time markets is based on the concept of LMP [80], which 

is defined as the marginal price at a specific location and a specific time. The resulting LMPs 

have incorporated: (1) energy generation cost with optimal dispatch, (2) locational congestion 

cost, and (3) transmission loss marginal cost. 

A. Day-ahead Wholesale Market 

The day-ahead market is a forward market in which hourly clearing LMPs are determined for 

each hour of the next operating day based on submitted generation offers, demand bids, 

increment offers, decrement bids and bilateral transaction schedules. A typical sequence of day-

ahead market operation is as follows: 
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 The utility providers submit hourly demand schedules for which they commit to 

purchase the electricity at day-ahead LMPs.  They may also submit decrement 

demand bids which define the demand quantity with various LMP ranges; 

 The generators submit unit availability schedules, self-scheduled generation and 

supply offers. The supply offers are increment generation levels conditioned with 

LMPs. Certain system parameters are also required in offer submission, including the 

minimum and maximum output level, minimum and maximum uptime/downtime, 

lead time, etc.; 

 The transmission customers may submit bilateral transaction schedules; 

 The grid operator solves the day-ahead unit commitment problem and determines 

the generation dispatch schedule for each generation unit, quantity schedule for each 

utility to purchase, together with the corresponding day-ahead LMP schedule. The 

resulted schedules consist of financially binding commitments of the generators and 

the utility providers. 

 Day-ahead accounting settlements for these contracts are performed: the generators 

are obligated to inject electricity of the quantity specified in the day-ahead schedule, 

and get paid based on the generation bus day-ahead LMPs; the utility providers are 

obligated to withdraw the electricity as determined by the day-ahead schedule, and 

pay based on the load bus day-ahead LMPs. 

Such design of day-ahead market ensures all market participants have the opportunity to 

schedule generation, consumption and transmission activities in advance, and largely mitigate 

the price risk in real-time operation. The supply offer competition, together with unit 

commitment optimization, lead to the most efficient grid operation, while the involvement of 
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generator physical operating limitation, transmission capabilities and reserve requirements 

ensures robust operation of the system. 

B. Real-time Wholesale Market 

The real-time market is also called balancing market. After the day-ahead market has been 

cleared, those generation resources that are selected by day-ahead unit commitment will carry 

their supply offers into the real-time market. Generators that are available, but not selected or 

have extra capacities, are able to submit modified offers to the real-time market. During each 

hour of the operating day, at a specific time interval (e.g., 5 minutes as in PJM market), real-time 

LMPs are calculated for all generation and load buses. Real-time LMP calculation considers a 

series of input data that reflect the actual real-time operating conditions. Such input data include 

the latest supply offers, dispatchable external transactions, current and past grid conditions and 

updated constraints for generation and transmission. The grid operator will solve a real-time 

dispatch problem to determine what additional generation resources or external transactions 

should be involved to meet the projected system demand in the next time interval (e.g. 5 

minutes). The real-time LMPs are set by the most costly generation/transaction needed by the 

optimal dispatch to meet the last unit of demand. 

Real-time market financial transactions are settled at real-time LMPs. Real-time accounting 

settlement is separated from the day-ahead market settlement. Utility providers will pay for the 

demand that exceeds their day-ahead scheduled quantities, or will receive payment for the 

deviation if demand is lower than the day-ahead scheduled quantities, based on real-time LMPs 

of corresponding load buses [80]. Generators will get paid for the electricity that is more than 

the day-ahead scheduled quantities, or will pay for the deviation if generation is lower than the 

day-ahead scheduled quantities, based on real-time LMPs of corresponding generation buses 
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[80]. Transmission customers pay congestion charges for bilateral transaction quantity difference 

from day-ahead schedules, based on the real-time LMPs [80]. 

The real-time market provides strong financial signals to generators and drives electricity 

generation to adjust according to the actual demand and grid conditions. In well designed and 

operated markets, the real-time LMPs are converging towards day-ahead LMPs [80]. Greater 

price convergence between day-ahead and real-time markets suggests higher efficiency in grid 

operation. 

C. Retail Market 

Electricity retailing deals with the distribution of electricity from substations to end-use 

customers. Historically, most retail markets are dominated by naturally formed monopolies. 

Customers in those markets do not have alternative choices for electricity supply. In recent years, 

competition in electricity supply has been introduced in many countries, such as Norway, the 

United Kingdom, Australia, New Zealand and the entire European Union. In the US, by 2010, 

17 states and the District of Columbia have adopted electric retail choice programs that allow 

customers to buy electricity from competitive retail suppliers.  Introduction of competition in 

electricity retails was considered beneficial for market health, technology and service innovations 

and lower generation cost [81, 82]. However, the experiences of retail competitions tell a 

different story. In most European countries, the customer switching rates are very low – below 

10% in many counties, like Italy, Denmark, France, Germany, Netherlands and Belgium. And 

85 to 95% of electricity is provided by incumbent companies, rather than new entrants [83]. In 

the US, electric retail choice programs are most welcome by large commercial and industrial 

customers, however, the participation rates in residential customers are low in almost all of those 

states [84]. A 2005 report from US FERC attributes the low participation to absence of 
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incentives for suppliers to enter the retail market [85]. On one hand, most states require utilities 

to sell electricity at regulated retail prices, therefore, market competition has a limited role in 

setting the price. On the other hand, the electricity wholesale price has been increasing during 

the test period, but the regulated retail price failed to follow this trend. Defeuilley argues from 

the perspective of customers that the cost for switching suppliers is potentially high [83]. This 

cost includes transaction cost (contracting and negotiation), search cost (looking for a better 

supplier) and learning cost (becoming familiar with the new service). Defeuilley also adds that 

electricity retailing itself does not generate significant revenue, and homogeneity of the good 

results in limited innovation in value-added services, which makes it difficult to offer any 

differentiation. Therefore, the status quo is that most electricity retail markets are non-competing 

and subject to regulation. Most studies are focusing on improving the market efficiency and 

reliability by introducing better design of rate structure or demand side management into 

regulated retail markets. 

Flat rates are most commonly implemented in the retail markets. The utilities sell electricity to 

the customers at a fixed price defined by service agreements. This price typically represents the 

average cost of generating and delivering electricity, and it is not updated frequently. Fixed retail 

price leads to disconnection between retail and wholesale markets, which has been considered 

by most scholars as the primary cause of unusual price spikes in wholesale markets [86]. With 

fixed price, the customers are not exposed to the dynamics of the wholesale market. When there 

is an imbalance between supply and demand (e.g., unit outages and transmission congestion), 

the customers are unable to adjust their demand accordingly. Costly generation units have to be 

brought online, sending spot price roaring. This explains the price spikes of June 1998 (a 

$7,500/MWH bid) and July 1999 (a $10,000/MWH bid) in the wholesale market of the Midwest. 
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From December 2000 to January 2001, the electricity spot price in the CAISO market reached 

$1,400/MWH and triggered 2001 California Electricity Crisis. Although many coincidental 

events have been blamed to cause this crisis, such as drought, delayed construction of new plants 

and market manipulations, the fixed retail price became the top of the tier. This crisis drove 

Pacific Gas and Electric and Southern California Edison into bankruptcy because they 

purchased electricity at extremely high spot prices and sold at low fixed rates. In fact, using fixed 

prices, the utility companies have to absorb full risks in wholesale markets, including price risk, 

quantity risk, as well as regulation risk [87]. It is commonly agreed since the crisis that demand 

side participation is necessary to maintain system stability. How to reform the power industry 

towards more and better demand response (DR) has become a hot topic. 

DR, as defined by FERC, is “changes in electric usage by end-use customers from their normal consumption 

patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower 

electricity use at times of high wholesale market prices or when system reliability is jeopardized.”[88] In response 

to the stress on the grid, the electricity customers have basically three types of choices. They can 

reduce the demand (i.e. load shedding) by turning off some electrical equipment. Or, they can 

reschedule energy uses from peak periods to off-peak period (i.e. load shifting). Some customers 

may choose to bring on on-site generators to reduce the net power draw from the grid [89]. 

DR programs have been established by almost all ISOs in the US. Generally, these programs 

can be classified into incentive-based programs (IBPs) and price-based programs (PBPs) [89, 

90]. IBPs pay participating customers to reduce their loads upon requests by grid operators. The 

classical IBPs reduce the customer loads through direct load control or using interruptible loads. 

Direct load control allows the grid operator to remotely shutdown participating customers’ 

equipment on a short notice, while interruptible load programs ask customers to reduce net 
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demand to a predefined level. In these two types of IBPs, the participating customers usually 

receive payment upfront in the form of bill credit or reduced rate. Market-based IBPs also exist, 

such as emergency DR program, demand bidding, capacity market and ancillary services market 

[89, 90]. Emergency DR pays customers incentives for measured load reduction during grid 

emergencies. Demand bidding lets customers who are capable of load reduction participate as 

negative demands in electricity wholesale markets. Capacity market allows customers to submit 

load reduction capacity as supply offer in the wholesale market. In the ancillary services market, 

customers can bid load curtailment in the spot market as operating reserves. 

Some PBPs, on the other hand, incur demand charge on the maximal demand during a billing 

cycle in addition to the usage charge. The demand charge rate is given and fixed. This demand 

charge structure drives customers to reduce peak load and avoid demand spikes. More PBPs 

now use time-varying price to convey the information of supply/demand relation in the 

wholesale market. The three basic dynamic pricing structures are critical peak pricing (CPP), 

TOU and RTP. With CPP, the utility is permitted to declare peak periods on short notice, a few 

times in a year. During the peak periods, electricity price is very high due to observed high 

demand. The total number of peak period declarations is limited by agreement. The price during 

peak periods can be fixed (CPP-F) or variable (CPP-V). In TOU pricing, the peak periods, off-

peak periods and normal periods within a day or during a year are defined by agreements, 

corresponding price for each period is also defined. With RTP, the retail price updates in real-

time (actually every 5 to 60 minutes) following the dynamics of the wholesale spot price. The 

performance of time-varying pricing is studied in a number of simulation and implementation 

experiments. 
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Caves, et. al. reported that exposure of a small portion of retail loads to real-time market can 

provide significant price relief and stability [86]. They also recognize the diversified price 

elasticity of customer demand. Customers with higher elasticity may benefit from dynamic 

prices, while those with less flexibility can choose to stay with fixed price. 

Faruqui and George analyzed the result of California’s Statewide Pricing Pilot experiment, and 

claim that dynamic rates (CPP and TOU) are able to reduce the peak demand of residential and 

small to medium commercial and industrial customers, but the effect varies depending on many 

factors [91]. 

In another experiment carried out by NYISO, price-responsive load programs were established 

to offer customers limited and highly structured participation in the wholesale market. The result 

showed that the participation of customers in wholesale markets helps the system prevent forced 

outages when demand is high [92]. 

Kirschen showed that customer price elasticity is a critical indicator of the demand 

responsiveness towards market dynamics [93]. Increasing short-run elasticity may improve the 

operation of markets. However, the author also acknowledged that enhancing customer 

elasticity is not an easy task. 

Borenstein studied the long-term efficiency gain from TOU and RTP using simulation [94]. He 

reported that even with relatively low price elasticity, the long-term efficiency gain from RTP is 

still significant. TOU can only capture a very small share of the efficiency gains from RTP. 
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Allcott conducted simulation studies which exposes customers to PJM wholesale markets [95]. 

The author discovered that the customer demand tends to be price sensitive, and the net 

response to peak price would be conservation of energy rather than delayed consumption. 

The real-time price elasticity of customers has been estimated using data collected from different 

countries or regions, for example, Gulf Cooperation Council countries [96], the US [97], Cyprus 

[98], Taiwan [99], Israel [100], Netherlands [101, 102], Sweden [103] and India [104]. Although 

it is reasonable that customers with different cultural backgrounds may have diverse elasticity, 

all results show that the customer elasticity is generally low. Lijesen argues that low elasticity is 

due to lack of awareness of real-time prices [102]. The implication of this argument is, in order 

to achieve the full benefit of dynamic pricing, technical investment in load and price monitoring 

will be necessary.  

Moreover, the price responsiveness also varies by end uses. End uses like refrigerator are not 

elastic at all. Other end uses may have distinct elasticity to TOU and RTP. For example, 

customers are likely to accept delayed use of microwaves; therefore, such loads have a higher 

elasticity to both TOU and RTP. As a contrast, building HVAC systems have restrictions that 

prevent complete shutdown. So planning in advance will be needed to minimize energy cost 

while meeting all operational requirements. As a result, HVAC loads can be elastic to TOU, but 

not so much to RTP. Recognizing the variation of elasticity among end uses suggests that it is 

possible to achieve the maximum elasticity by applying hybrid rate structure of TOU and RTP, 

such as day-ahead retail pricing (DAP). 

Mohsenian-Rad and Leon-Garcia studied the optimal control of residential load under RTP 

combined with inclining block rates. They concluded that the capability of price prediction is 
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necessary to achieve optimal load control under RTP. Even a rudimentary weighted average 

price prediction can help in load scheduling and minimize the energy cost [105]. 

Goldman et. al. studied the DR strategies for customers in government, education, public works, 

commercial, healthcare and manufacturing. They found that public works customers have the 

lowest substitution elasticity while manufacturing customers are most responsive to the price. 

Reasonably, DR strategies differ among the studied customer groups too [106]. 

As mentioned before in the “Demand” section (Section 1.4.2.1), all the existing DR tariffs are 

designed to send proper signals to the customers so that the customers are able to respond to 

the supply/demand condition on the grid. The demand side management under those tariffs are 

targeting to energy saving and/or peak load reduction. Although, the importance of demand 

uncertainty has been well recognized in load scheduling, market strategy and grid operations, the 

current demand side management practices do not include uncertainty reduction into its 

objective. No rate structure has been proposed to promote such controls. In this dissertation, 

the author proposes a new retail rate structure, called CfD, which incurs charge on the deviation 

between the customer’s actual demand and the day-ahead plan. By charging on the demand 

deviation, CfD is expected to force the customers to keep a predictable consumption manner, 

and thus reduce the demand uncertainty that is caused by human behavior. Given that quantity 

risk is a major risk that the utility providers (or the community microgrids) are faced in the 

wholesale markets, CfD is expected to lower that risk, and, in the end, reduce the energy cost. 

1.4.3 Microgrid 

The concept of microgrid emerged when the potential of distributed generators (DGs) became 

recognized [107, 108]. In order to better utilize DGs, Lasseter et. al. proposed a system approach 
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that views a cluster of distributed generators, storage and associated loads as a subsystem, which 

can operate either in connection with utility grids or as an isolated smaller network [107, 108]. 

According to USDOE Microgrid Exchange Group, a microgrid is defined as “a group of 

interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single 

controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to 

operate in both grid-connected or island-mode”. As illustrated by Figure 2, a typical architecture of a 

community microgrid consists of residential loads (individual households), non-residential 

building loads (e.g., restaurants, stores), public facility loads (e.g., street lights), DGs (e.g., PV 

panels, wind turbine, gas turbines, etc.), community energy storage (CES), connecting lines 

(including circuits, feeders, breakers and fuses), controllers (microgrid central controller, DG 

controllers and load controllers) and communication instruments. The microgrid is connected 

at low voltage, and interfaces with the utility grid through point of common coupling (PCC).  

 

Figure 2 Typical architecture of a community microgrid 
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Compared to the traditional utility grid, a microgrid has a lot of benefits. First of all, it enhances 

the reliability and security of the grid operation. Traditional utility grids are vulnerable to 

component outages, transmission congestion and sabotage. When the grid is experiencing stress, 

for example, in a heat wave, outage of one node can easily get propagated to other nodes, causing 

a massive blackout. In such circumstances, part of the grid being able to isolate itself and operate 

without interruption will be attractive, especially for mission-critical operations. A few successful 

examples were reported after Hurricane Sandy striking the Mid-Atlantic region in 2012. During 

the hurricane, the local grid failed, and the microgrid at Federal Drug Administration research 

facility in Maryland switched into island mode, relying entirely on natural gas turbines for two 

and half days without interruption [109]. Princeton University campus in New Jersey isolated its 

grid from the utility grid, and sustained for three days with about 11 Megawatts total on-site 

generation. Second, as DGs co-localize with loads, the transmission loss will be minimal, the 

power quality can be improved, and heat exhaust produced by power generation can be reused 

locally by combined heat and power (CHP) equipment, which significantly increases the overall 

energy efficiency. Third, the use of renewable energy substantially reduces the fuel cost and 

carbon emission in power generation. Fourth, microgrid promotes distributed load control and 

generation control, as well as cooperation between customers, driving the innovations in optimal 

energy management of the microgrid. Intelligent controls are particularly important in the 

context of dynamic pricing. And last but not least, a microgrid can be seen from the grid 

operator’s point of view as one entity. More cost reduction can be expected if microgrid actively 

participates in the operation of the utility grid and electricity markets. When microgrid is in 

connection with the utility grid, and microgrid load is low, microgrid may act as a net generation 

unit and submit a supply offer into the wholesale market. Also, with advanced load controls, 
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microgrid will be able to submit demand bids. Cost reduction comes from sales of both energy 

and ancillary services. 

Considering these benefits, microgrids are particularly suitable for commercial/industrial 

campuses, military bases, remote “off-grid” campuses and residential communities. However, 

microgrid also poses several challenges, including islanding protocols, standards, communication 

protocols, privacy concerns and instrumental cost. Moreover, several technical problems are also 

challenging: (1) reliable and seamless transition between grid-tied and island modes is technically 

difficult; (2) voltage and frequency control becomes difficult when complex generation and load 

situation is encountered; (3) bulk energy storage is still relatively expensive; (4) energy 

management of intermittent generation by renewables (PV panels and wind turbines) is still an 

actively studied topic; (5) with increased possession of electric vehicles (EVs), EV charging poses 

tremendous stress to the microgrid infrastructure; and (6) strategy and techniques for microgrid’s 

participation in the energy market. 

In microgrids, distributed control coupled with networked communication has enabled 

collaborative energy management. The collaboration is often accomplished by bidding and in a 

hierarchical manner. For example, a common practice to solve competing EV charging demand 

problem is as follows: each EV charging controller maintains its own utility function together 

with a list of operational constraints. All charging controllers submit their utility functions and 

constraints to a higher level coordinator who aggregates all the demand bids, solves an 

optimization problem maximizing the overall utility within all constraints, and then dispatches 

the charging [110]. Similar solutions have been adopted in load scheduling control within a 

building [111], DG generation [112] and storage charging/discharging [113], among other 

microgrid applications. 
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In this dissertation, the microgrid operation under CfD creates opportunity for the customers 

to collaborate in tracking their demand schedules. Such collaboration can be accomplished in 

various ways, including a centralized tracking control and a distributed tracking control. The 

centralized tracking control is conducted by the higher level coordinator, or the MGCC in this 

case, similar to the hierarchical system mentioned above. And the distributed tracking only 

involves two customers, one of which plays as the buyer and the other is the seller. The 

transaction is determined in a proposal-approval fashion between the two parties. Details will 

be discussed in Chapter 4. 

A selection of microgrid literatures are reviewed in the following. 

Heydt studied the impact of EV charging to the power grid in 1983 [114]. The author pointed 

out that, on-peak or near-peak recharging is an important factor to consider in EV deployment. 

He suggested load management that shifts on-peak charging to off-peak period. 

Lasseter described the earliest architecture design of microgrid and a conceptual design for load 

management and protection [107, 108]. He also proposed a basic approach of voltage and 

frequency regulation through droop. 

Dimeas and Hatziargyriou proposed an agent-based control scheme for the microgrid operation 

[110]. This is a decentralized approach where entities are represented by agents at three levels: 

utility grid/market operator, microgrid central controller (MGCC) and local controller (load 

controller or generator controller). Each agent has its own input, output and decision criteria. 

Higher level of agent coordinates the microgrid operation by conducting market-like auctions 

and negotiations. This system was tested by both simulation and laboratory environment. 
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Katiraei et. al. studied the autonomous operation of microgrid during and subsequent to islanding 

[115, 116]. The authors used a generation unit that is interfaced via a power electronic converter, 

which has independent real and reactive power control to maintain angle stability and voltage 

quality within the microgrid. The author concluded that the presence of an electronically-

interfaced generation unit can ensure stability of the microgrid. 

Guttromson et. al. studied the detailed load modeling for residential units, including the explicit 

models for HVAC and non-HVAC appliances [117]. The models considered such exogenous 

factors as weather, grid voltage and frequency, fuel prices, etc. The models are implemented in 

a packed simulation environment named Power Distribution System Simulation. 

Chassin et. al. from USDOE’s Pacific Northwest National Laboratory developed GridLAB-D, 

an open-source power system modeling and simulation environment [118-121]. This platform 

incorporates generation modeling, power flow modeling, end-use modeling, dynamic pricing 

and demand response, and market operation. It is also capable of integrating with other existing 

simulation tools. 

Galus and Andersson did simulation studies on demand management of grid with large amount 

of EV charging [122]. In their model, each charging EV is represented by an independent agent 

that solves its own optimization decision problem. All EVs are connected to an energy hub that 

has multiple energy sources. An EV manager agent is managing the charging activities of all EV 

agents, by implementing a non-linear pricing scheme and optimization. The optimal dispatch 

maximizes the total utility of the EV agents connected. 

Shi et. al. simulate prototype microgrid operations for urban area and rural area of China [123]. 

The simulation was conducted on the platform of MATLAB/Simulink. The model simulates 
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both steady and dynamic characteristics of the three phase microgrid prototype. Various 

operation modes and possible disturbances have been taken into account during the simulation. 

Badawy et. al. reviewed two approaches of agent-based demand side management: a price-based 

control (indirect control) and direct load control [124]. The price-based control relies on a 

hierarchical system that passes market signals (price) through coordinator agent, local controller 

agents and device controller agents. At each control level, the coordination is done through 

auctions and negotiations. Non-market-based control is conducted by a higher level controller 

maximizing the overall utility, while the utility function of each lower customer is generated by 

the lower controller agent. The author concluded that both approaches are able to achieve the 

goal, but both have strengths and weaknesses. 

Huang and Liu applied a self-learning, neural network-based mechanism to manage residential 

energy use [125]. Special emphasis was put on home battery use in connection with the 

microgrid. The proposed management scheme is able to improve the performance as it learns 

from the real-time operation and environment. Simulation studies demonstrated the financial 

benefit gained from this management scheme. 

Li et. al. investigated the optimal demand response of households towards dynamic pricing [65]. 

Each household solves an optimization problem that maximizes its individual net benefit subject 

to consumption and power flow constraints. The utility company solves another optimization 

problem to determine the optimal price to maximize social benefit. The authors proposed a 

distributed algorithm for both utility and households to jointly determine the optimal price and 

demand schedule. 
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Tanaka and Maeda proposed a simulation-based design method for microgrids with energy 

storage [126]. This designing method consists of a time-marching simulation with an energy 

storage management algorithm and the evaluation method for the microgrid. The method was 

implemented to optimize the design of the resort community. 

Vuppala et. al. brought up the argument of fairness in microgrid demand response [127]. With 

fairness in consideration, the authors proposed a simplified pricing model which, according to 

the simulation experiments, is fair and is able to flatten the demand curve. 

Zhu et. al. studied demand management problem in community microgrid, with home EV 

charging and community energy storage in the system [128]. The authors showed that EV 

charging significantly influences the microgrid peak load, while the combination of a number of 

demand management strategies could effectively alleviate the peak load by as much as 8%. 

Widergren et. al. presented their preliminary findings in a residential DR control demonstration 

project [129]. In this project, an RTP retail tariff was implemented to a community microgrid. 

The microgrid demand management is accomplished by distributed load scheduling of 

individual customers, and real-time bidding transactions of supply and demand. 

1.5 Summary 

The main objective of this dissertation is to propose and demonstrate the new CfD retail pricing. 

This new pricing is designed to minimize the demand uncertainty of individual customers. It 

introduces the concept of uncertainty reduction into demand side management. Under CfD, the 

customers are going to share the quantity risk in the electricity wholesale market, while the price 

risk is left to the utility providers. Such risk sharing is considered to be fair and efficient. This 
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chapter reviews the background about building energy system modeling and control 

optimization, power grid operation, electricity market and microgrid. Literature reviews are 

provided in those fields. 

The rest of this dissertation is organized as follows: in Chapter 2, a simulation-based 

optimization technique is demonstrated for HVAC demand response. Chapter 3 studies the day-

ahead planning and real-time tracking control optimizations in a single building, under CfD. 

Chapter 4 examines CfD within a microgrid environment. Its effectiveness of reducing overall 

cost and promoting collaborative demand management will be investigated. 

  



41 
 

 
 

Chapter 2 Simulation-Based Optimization for HVAC 
Demand Response 

Abstract 

Model-based control optimization is crucial for buildings to reduce cost under time-

varying price-based DR. Detailed simulation is a powerful gray-box modeling tool but 

suffers from intensive computation requirement, and therefore, is challenging to use 

for on-line planning applications. In this chapter, the author presents a novel two-stage 

approach, named Optimal Strategy Pool (OSP). This approach moves time-consuming 

simulation evaluations to off-line as much as possible. It creates a compact set of 

candidate solutions (i.e., the optimal strategy pool), based on clustering guided, off-line 

evaluations, and hence minimizes the requirement for on-line simulation evaluations. 

The case studies with both small and large solution spaces all demonstrate that OSP is 

superior to traditional genetic algorithm and other heuristic methods, in terms of 

greater efficiency and robustness, for on-line planning optimization. 

2.1 Introduction 

Simulation is a gray-box modeling approach in the building energy domain. With simulations, 

the system operation and control processes can be described with considerable details and also 

with high accuracy. For this reason, simulation tools have received increasing attention in recent 

years, for the purpose of design verification as well as code compliance. However, using 

simulation models in model predictive control (MPC) faces significant obstacles. First of all, 

running simulation models is usually very time consuming. Secondly, in simulation-based 

optimization, there exists no system model in analytical form, so any algorithm that requires 

computation of Hessian matrix or gradient cannot apply directly. Wetter and Wright [51] 
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compared different optimization algorithms for the performances in simulation-based 

optimization. They concluded that, simulation evaluation introduces significant discontinuity 

(2% as reported) to the objective function. Because of this discontinuity, those algorithms 

requiring objective function to be smooth, such as GPS and gradient-based approaches, all failed 

far from the optimum. Instead, heuristic search methods such as PSO and GA obtained better 

optimal solutions with a relatively small number of simulation evaluations. Even with such 

algorithms as PSO and GA, it still takes a long time to find a suboptimal solution for a moderate 

size simulation-based control optimization problem. This is why simulation is rarely seen in any 

on-line applications, as on-line decision making requires problems to be solved in a relatively 

short time. 

This chapter addresses the problem of simulation being too time-consuming for simulation-

based on-line control optimization. The rest of this chapter is organized as follows: In Section 

2.2, the control optimization problem for HVAC demand response is formulated; Section 2.3 

explains different optimization techniques studied in this work, including a novel approach 

named Optimal Strategy Pool (OSP); Section 2.4 presents a case study that implements OSP 

optimization in on-line strategy selection; and some arguments are made in Section 2.5. 

2.2 Problem Formulation 

A simulation-based on-line optimization problem for HVAC DR control is studied in this 

chapter. The subject building is assumed to be a large commercial building equipped with 

advanced BAS. The building owner has signed into a DR program with the utility, which allows 

the utility to declare CPP a few times in a year, for the expected peak period in the next day. The 
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electricity price during the peak period will be significantly higher than usual. Figure 3 shows a 

simplified CPP price schedule used in this study. 

 

Figure 3 Simple CPP rate schedule 

Under this price schedule, the building operator is motivated to plan in advance to lower the 

energy usage during the peak period, in order to minimize the energy cost. Another objective of 

the control optimization is to minimize the thermal comfort loss, as measured by Fanger’s 

Predicted Percent of Dissatisfied (PPD) [130]. One way of consolidating multiple objectives into 

one objective function is by weighted sum (Eq. 10). 

 uwcwF uc   Eq. 10 

where,  

c  denotes the energy cost; 

u  denotes the thermal comfort loss; 
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c  and u  are energy cost and thermal comfort loss after min-max normalization, 

respectively; 

cw and uw are the weight coefficients of energy cost and thermal comfort loss, respectively. 

Choosing the weights is up to the building owner’s decision. 

2.2.1 Subject Building and Simulation Model 

In this chapter, a large education facility in Berkeley, California, is used as the subject (Figure 4). 

The subject building has 7 floors and total of 141,000 square feet conditioned area, hosting 

research labs, offices, auditoriums, etc. There are 135 zones, 6 Air Handling Units (AHUs), 110 

Variable Air Volume (VAV) terminals, 1 electrical chiller, 1 absorption chiller, 2 cooling towers 

and other HVAC components. All HVAC systems are operating with 24×7 schedules. 

A detailed simulation model is developed by Yin et. al. for the subject building on DOE’s whole 

building energy simulation engine, EnergyPlus. All the HVAC components and chilled water 

and hot water plants are modeled. The internal gains, equipment operations and controls are 

also included. The occupancy schedules are based on field survey; office rooms are occupied 

from 8:00 to 21:00 each day. The lighting and plug loads are calibrated using the data from 

dedicated sub-meters on each floor. The HVAC component performance curves are derived 

from trending data, which is recorded by the existing BAS. Model calibration is done on both 

whole building and component levels. If the simulation time step is set at 15 minutes, the 

difference between simulated and measured monthly energy is within 10%. The hourly energy 

has less than 20% error [131]. 
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Figure 4 Simulation model of the subject building 

2.2.2 DR Strategies of HVAC system 

In commercial buildings, HVAC equipment, lighting and other appliances can be used for DR. 

Most lighting and appliance loads can be turned off immediately upon requests, so they have the 

instantaneous load reduction capability. As a contrast, HVAC system requires sophisticate 

controls and planning in order to contribute in the peak load reduction. The reason is two fold. 

First, the HVAC system is responsible for maintaining a comfortable and healthy indoor 

environment, complete shutdown of the HVAC system or certain components is prohibited. 

Instead, sophisticate controls are necessary to reduce the peak load, while keeping the indoor 

environment within acceptable ranges. Second, the HVAC energy consumption is influenced by 

control inputs and many other factors, such as weather and occupancy. The building thermal 

system is a non-linear complex system with considerable time delay. Therefore, planning will be 

necessary to take all these factors into peak load reduction optimization. 

The DR strategies of HVAC systems have been studied extensively using analytic, simulation 

and field approaches [8, 13, 132-134]. Advanced controls of thermostat setpoints and HVAC 

equipment operations have been developed to reduce the building peak load. For example, Xu 

and Yin [13] tested the potential of “pre-cooling” thermostat setpoint strategy in reducing the 
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peak HVAC load in large commercial buildings in California hot climate zone. The authors 

observed 20-30% peak load reduction being achieved on hot days, with night pre-cooling and 

raising the cooling setpoint in the critical time period. Field survey results showed that the 

thermal comfort had not been compromised during the test. Yin, et. al. [134] presented their 

studies on optimization of pre-cooling strategies using calibrated simulation model. They 

developed a Demand Response Quick Assessment Tool (DRQAT), which was built based on 

EnergyPlus. Optimal DR strategies were identified by simulations, and were implemented in a 

test building. The measured consumption agreed with the simulation result, and the power 

consumption during the peak period was reduced by 15%-30%. 

In general, a control strategy can be represented by a vector of controllable variables. In this 

chapter, pre-cooling and exponential set-up strategy is applied [12, 13], namely the global 

temperature setpoint adjustment (GTA). Plus, supply air temperature setpoint (SAT), and supply 

fan pressure setting (SFP) are considered in DR control. The strategy designs are detailed as 

follows. 

GTA: The cooling setpoints of all zones are subject to change throughout the peak event day. 

As depicted in Figure 5, between 0:00 and 1T , the cooling setpoint is set at the baseline value; 

between 1T and 2T , the cooling setpoint is set at a lower value for pre-cooling; between 2T  and 

3T , the cooling setpoint is set up exponentially; and between 3T  and 24:00, the cooling setpoint 

is set back to the baseline level. All zones are assumed to follow the same GTA strategy. To 

reduce the size of solution space, only the three time points (i.e., 1T , 2T  and 3T ) are considered 

as decision variables. The setpoint values at 1T , 2T  and 3T are fixed (they are 72 ºF, 70 ºF and 

78 ºF, respectively, in the case study). Furthermore, discretization and boundary constraints 
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apply to the time points (in the case study, time points can only be integer hours within the 

following ranges: 95 1 T , 1421 TT , and 1917 3 T ). 

 

Figure 5 Thermostat setpoint schedule of GTA strategy 

SAT: Two AHUs in the building are subject to DR control optimization. They use the same 

SAT setpoint, whose baseline value is 56 ºF; and they share the same supply air duct. SAT 

setpoint values between 51 and 60 ºF are explored, with an interval of 1 ºF. It is assumed that 

SAT setpoint only changes at the beginning of the peak event day and maintains constant 

throughout the entire day, in order to simplify the problem. 

SFP: The two supply fans (SF-2A and SF-2B) in the building are variable air volume fans. The 

operation speed is controlled by a proportional-integral-derivative controller (PID controller) to 

maintain the fan pressure at a fixed setpoint, which is currently 1350 Pa. SFP setpoint values 

between 1150 Pa and 1350 Pa are explored, with an interval of 50 Pa. Similarly, to reduce the 

complexity of the problem, it is assumed that SFP setpoint only changes at the beginning of the 

peak event day and maintains constant during the entire day. 



48 
 

 
 

To this point, a DR strategy vector has five decision variables, which are GTA(T1), GTA(T2), 

GTA(T3), SAT and SFP. The total number of strategies is 5250, according to the above 

discretization. 

2.3 Optimization Techniques 

2.3.1 Exhaustive Search (ES) 

The first step is to establish the “ground-truth”, i.e. the optimal DR strategy for each 

representative profile, which we consider as the true optimum. It is accomplished by exhaustively 

evaluating all 5250 candidates in the search space. This step is extremely time-consuming; 

therefore, ES is only performed off-line, and not considered as an option for on-line 

optimization. However, by doing so, a benchmark can be established for comparing the accuracy 

and efficiency of different optimization algorithms. 

2.3.2 Pattern Based Selection (PBS) 

To apply PBS in on-line decision making, a look-up table is created to map each weather pattern 

to one DR strategy. The lookup table is created by first identifying patterns in the daily weather, 

and then for each pattern, identifying the optimal strategy for the representative weather profile 

(though off-line ES). While in on-line optimization, the weather pattern of the next day is first 

determined based on the weather forecast. Then, according to the lookup table, a strategy is 

selected and implemented for the next day control. The PBS optimization assumes that the 

weather pattern identification carries enough insight about the association between weather 

patterns and optimal DR strategy. Such assumption is subject to test in this chapter. 
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Since, in Berkeley, California, the peak events are usually announced for hot summer days, 

typically in August, local weather conditions of August are subject to study in this chapter. In 

the work by Liao, et. al. [135], 19 patterns are identified from the historical weather records of 

the months of August between 2002 and 2010. For each August day, the hourly dry bulb 

temperature and its simulated baseline peak load form a 25-dimensional sample point. Using 

principal component analysis (PCA), the 25-dimensional sample points are projected to 3-

dimensional space, and about 85% of sample variance remains. Then K-means algorithm is 

applied to partition the samples into clusters. Liao et. al. found at least 19 clusters are required to 

ensure the variance in each cluster is lower than a pre-determined threshold. The Euclidean 

mean of each cluster is considered as the representative profile for a weather pattern. The 

representative profiles of all 19 August weather patterns are depicted in Figure 6. The sample 

frequencies of all weather patterns are plotted in Figure 7. This chapter uses this pattern 

identification result for PBS and OSP optimizations (which will be detailed later). Pattern 2, 4 

and 19 are selected as the typical hot, mild and cool August weather pattern, respectively, for 

result presentation. The technical detail of weather pattern identification is out of the scope of 

this dissertation. 
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Figure 6 Representative profiles of 19 daily weather patterns 

 

Figure 7 Sample frequency of weather patterns 

2.3.3 Genetic Algorithm (GA) 

GA can be dated to 1950s when biologist Barricelli [136] and quantitative geneticist Fraser [137] 

simulated the evolution process of natural species using computer programs. Later, 
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Bremermann [138] and Bledsoe [139] and many others started to apply this concept to solve 

optimization problems. GA finds applications in many fields successfully, including building 

energy area. Chow, et. al. [31] applied GA in absorption chiller control. Nassif, et. al. [140] used 

GA in the HVAC component models of building Energy Management and Control System, so 

the component models are able to adapt themselves to changing dynamics by self-tuning. More 

studies employ GA in parameter estimation in system identification. For example, Xu and Wang 

[141] apply GA in frequency domain regression and obtained optimal simplified thermal models 

of a building envelope. Azadeh, et. al. [30] use GA to identify the best structure of artificial neural 

network to predict electrical energy consumption. And Huang and Lam [142] optimizes HVAC 

controller parameters by GA. 

There are two requirements in GA. One is a genetic representation of solutions – either binary, 

which is widely used, or other encodings. The other requirement is a fitness function that 

evaluates the relative preference of each solution. In this chapter, the candidate strategies are 

translated into binary strings, and Eq. 10 serves as fitness function. 

GA initializes by randomly generating a collection of candidate solutions (individuals), called 

“population”. In each generation, all individuals are evaluated by the fitness function. A portion 

of the population is selected through a fitness-based process, where solutions with better fitness 

values are more likely to be selected. The selected individuals generate the next generation of 

population by recombination and mutation. Recombination operation takes a fragment from 

each of the two parents, and forms the genomes of the child individuals. Mutation simply 

changes a small part of the genome with a certain probability so as to introduce variations to the 

population. As soon as a new population is generated, the algorithm repeats the cycle of 
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evaluation, selection and reproduction, until the stopping criteria is met – either the population 

remains homogeneous for several generations, or the maximal number of generations is reached. 

In this chapter, GA optimization is implemented in MATLAB with the Global Optimization 

Toolbox. The configuration of GA is listed in Table 1. The discussion about tuning the GA 

parameters is beyond the scope of this dissertation. 

Table 1 GA configuration 

Population size 50 
Creation function Uniform 

Scaling function Rank 
Selection function Stochastic Uniform 

Elite count 2 
Crossover fraction 0.8 

Crossover function Scattered 
Mutation function Uniform with rate=0.3 

Maximum generation 20 
Function tolerance 1.00E-06 

 

2.3.4 Optimal Strategy Pool (OSP) 

In this dissertation, a new optimization scheme is tested, namely the Optimal Strategy Pool. The 

scheme includes two stages: Stage I is off-line stage and Stage II is on-line decision making. 

Stage I: ES is performed off-line first. So F in Eq. 10 is obtained, for representative profile of 

Pattern i ( i =1, 2, 3, …, 19), and for candidate strategy j ( j =1, 2, 3, …, 5250). Instead of 

choosing only one optimal strategy, a few top strategies are chosen to form a strategy pool of 

Pattern i , denoted by iJ . The selection follows Eq. 11.  

 *
iij FF   Eq. 11 
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where *
iF  denotes the best fitness value among all strategies, for the representative profile of 

pattern i , and   is the pre-determined threshold, and 1.1  is used in this study. Let iN  be 

the number of strategies in iJ . The selected strategies are sorted by ascending fitness values. Let 

kj  be the k -th strategy in iJ  ( k =1, 2, 3, …, iN ). Each of the selected strategies will be 

assigned with “likelihood” score, L . The likelihood scores are determined by Eq. 12 and Eq. 

13. 
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where  is a pre-determined ratio, and 5.0 is used in this study. 

To aggregate strategy pools for all patterns, i.e. to generate the optimal strategy pool (OSP), the 

overall likelihood score of strategy j  for all weather patterns is calculated by Eq. 14: 

 





I

i

ijij LpL

1

 Eq. 14 

where I is the total number of weather patterns, and ip is the probability that the weather of 

planning day is of Pattern i . ip  can be estimated by the sample frequency of each pattern, as 

presented in Figure 7. If a strategy is only selected by strategy pools of one or two patterns and 

with low likelihood in each pool, such strategy will have a low overall likelihood, and can be 

removed from the OSP. Since, the resulting OSP will contain a smaller number of candidate 
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strategies, ES within the pool can provide the best solution for a given profile of forecasted 

weather. And this search can be conducted on-line. 

2.4 Experiment Results 

2.4.1 Exhaustive Search (ES) 

Off-line ES is extremely time-consuming, as it takes about 2 minutes to evaluate a strategy for 

one weather profile by simulation (on a personal PC laptop). So it takes about 7.3 days (5250 

evaluations) to finish ES for one weather profile. True optimal strategies identified by ES are 

presented in Table 2, and the comparison between the baseline and optimal consumption 

profiles are plotted in Figure 8. 

 

Figure 8 HVAC demand schedules with optimal DR strategies 

Table 2 Optimization by ES 
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1 4817 9 10 18 60 1150 531 480 51 

2 4823 9 12 18 60 1150 603 495 109 

3 4818 9 10 19 60 1150 520 476 43 

4 4818 9 10 19 60 1150 512 473 38 

5 4818 9 10 19 60 1150 512 474 38 

6 4755 6 7 19 60 1150 482 457 24 

7 4818 9 10 19 60 1150 487 462 25 

8 4800 8 9 19 60 1150 478 454 25 

9 4818 9 10 19 60 1150 502 469 32 

10 4818 9 10 19 60 1150 497 469 29 

11 4818 9 10 19 60 1150 500 469 31 

12 4818 9 10 19 60 1150 495 468 27 

13 4818 9 10 19 60 1150 481 458 23 

14 4818 9 10 19 60 1150 475 452 24 

15 4818 9 10 19 60 1150 476 452 24 

16 4755 6 7 19 60 1150 467 444 23 

17 4755 6 7 19 60 1150 472 449 23 

18 4755 6 7 19 60 1150 468 445 23 

19 4755 6 7 19 60 1150 463 441 22 

ES optimization shows that the optimal DR strategies are able to reduce the peak load by as 

much as 18% - about 109 kW - on a typical hot day (Pattern 2), 38 kW on a typical mild day 

(Pattern 4) and 22 kW on a typical cool day (Pattern 19). 

2.4.2 Genetic Algorithm (GA) 

For the representative profile of each weather pattern, GA is tested with 20 trials. Table 3 shows 

the optimal strategy for the representative profile of Pattern 2 obtained in all 20 trials. In 19 out 

of 20 GA trials, except Trial #5, the true optimal DR strategy can be obtained ([9, 12, 18, 60, 

1150] as identified by ES). This is a 95 % probability of obtaining the optimum. The average 

number of simulation evaluations is 372. Similar results can be obtained for all 19 weather 

patterns (Table 4). Generally, with GA, obtaining the optimum is not guaranteed, but the 

probability of obtaining a top 3 DR strategy is high (p(3) in Table 4). Meanwhile, the number of 

simulation evaluations is reduced from 5250 to about 372, in average. 

Table 3 GA result for representative profile of weather Pattern 2 

Trial # GTA(T1)* GTA(T2)* GTA(T3)* SAT* SFP* # of evaluations 

1 9 12 18 60 1150 357 

2 9 12 18 60 1150 470 
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3 9 12 18 60 1150 319 

4 9 12 18 60 1150 400 

5 8 9 18 60 1150 310 

6 9 12 18 60 1150 361 

7 9 12 18 60 1150 342 

8 9 12 18 60 1150 390 

9 9 12 18 60 1150 322 

10 9 12 18 60 1150 334 

11 9 12 18 60 1150 432 

12 9 12 18 60 1150 386 

13 9 12 18 60 1150 360 

14 9 12 18 60 1150 366 

15 9 12 18 60 1150 369 

16 9 12 18 60 1150 378 

17 9 12 18 60 1150 422 

18 9 12 18 60 1150 395 

19 9 12 18 60 1150 376 

20 9 12 18 60 1150 347 

ES (Ground Truth) 9 12 18 60 1150 5250 

 

Table 4 GA success rates and efficiency 

Weather Pattern p(1)1 p(2)2 p(3)3 Ave. # of evaluations 

1 95% 95% 95% 346 

2 95% 95% 95% 372 

3 50% 50% 95% 365 

4 35% 35% 100% 359 

5 75% 75% 75% 379 

6 95% 95% 100% 337 

7 30% 70% 85% 365 

8 35% 100% 100% 356 

9 95% 95% 95% 392 

10 60% 60% 95% 388 

11 80% 80% 80% 381 

12 40% 85% 85% 378 

13 20% 70% 90% 354 

14 10% 50% 70% 352 

15 30% 75% 100% 359 

16 90% 100% 100% 327 

17 100% 100% 100% 337 

18 90% 100% 100% 315 

19 85% 100% 100% 337 

 

2.4.3 Optimal Strategy Pool (OSP) 

2.4.3.1. OSP Construction 

                                                 
1 probability of obtaining the optimum 

2 probability of obtaining the optimum or the 2nd best 

3 probability of obtaining the optimum, the 2nd or the 3rd best 
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From the ES result for the representative profiles of all 19 weather patterns, a strategy pool is 

established for each pattern. The strategy pools for Pattern 2, 4 and 19 are presented in Table 5. 

Notice that 7 strategies are selected for Pattern 2, and 2 strategies for Pattern 4 and Pattern 19, 

respectively. Strategy 4817 has been selected for both Pattern 2 and 4. The OSP is constructed 

by aggregating all strategy pools, Table 6. Notice that only 13 strategies are included in the OSP, 

so 13 simulation evaluations will be required for Stage II on-line decision making. 

Table 5 Optimal and near-optimal DR strategies 

Weather Pattern 2 Weather Pattern 4 Weather Pattern 19 

DR 
Strategy 

F 
Likelihood 

Score 
DR 

Strategy 
F 

Likelihood 
Score 

DR 
Strategy 

F 
Likelihood 

Score 

4823 0.4242 0.5039 4818 0.3391 0.6667 4755 0.2926 0.6667 

4820 0.4246 0.2520 4817 0.3399 0.3333 4728 0.2938 0.3333 

4826 0.4247 0.1260       

4817 0.4248 0.0630       

4829 0.4279 0.0315       

4827 0.4284 0.0157       

4824 0.4284 0.0079       

 

Table 6 Optimal strategy pool 

DR strategy ID 
Overall 

likelihood score 
GTA 
(T1)* 

GTA 
(T2)* 

GTA 
(T3)* 

SAT* SFP* 

4818 8.2381 9 10 19 60 1150 

4755 4.2000 6 7 19 60 1150 

4817 2.3963 9 10 18 60 1150 

4800 1.8857 8 9 19 60 1150 

4728 0.6667 5 6 19 60 1150 

4779 0.6095 7 8 19 60 1150 

4823 0.5039 9 12 18 60 1150 

4820 0.2520 9 11 18 60 1150 

4826 0.1260 9 13 18 60 1150 

4754 0.0667 6 7 18 60 1150 

4829 0.0315 9 14 18 60 1150 

4827 0.0157 9 13 19 60 1150 

4824 0.0079 9 12 19 60 1150 

 

2.4.3.2. OSP Validation 

To validate the OSP, 13 historical August days of Berkeley, California, are randomly sampled 

for testing. The result of OSP is compared with the ES optimization and other two on-line 
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optimization algorithms – PBS and GA. The optimal DR strategies obtained by each algorithm 

are shown in Table 7. 

Table 7 Optimal DR strategies identified by different algorithms 

Sample Day (Pattern) 
Algorithm 

ES PBS GA OSP 

1 (Pattern 19) 4728 4755 4728 4728 

2 (Pattern 3) 4818 4818 4818 4818 

3 (Pattern 9) 4818 4818 4818 4818 

4 (Pattern 8) 4779 4800 4755 4779 

5 (Pattern 14) 4818 4818 4779 4818 

6 (Pattern 13) 4800 4818 4800 4800 

7 (Pattern 16) 4755 4755 4755 4755 

8 (Pattern 8) 4800 4800 4755 4800 

9 (Pattern 18) 4755 4818 4755 4755 

10 (Pattern 18) 4755 4755 4755 4755 

11 (Pattern 17) 4755 4755 4755 4755 

12 (Pattern 14) 4800 4818 4779 4800 

13 (Pattern 16) 4755 4755 4755 4755 

As discussed in Section 2.3.2, PBS seems to be a perfect on-line optimization algorithm, because 

it does not require any on-line simulation evaluations. However, according to our result, PBS 

algorithm identifies optimal strategies different than those identified by ES (the “ground-truth”), 

for Sample Day 1, 4, 6, 9 and 12, which means PBS fails for those sample days. The success rate 

of PBS is thus 8 out of 13 (62%). GA performs slightly better, as it fails for Sample Day 4, 5, 8 

and 12, thus the GA success rate is 9 out of 13 (69%). As a contrast, OSP successfully identifies 

the optimal DR strategies for all sample days (100% success rate). Furthermore, OSP only 

requires 13 on-line simulation evaluations, which is 3.5% of evaluations needed by GA, and 

0.2% of evaluations needed by ES. On a PC with 2.40 GHz CPU, ES takes 7.3 days, GA takes 

12 hours, but OSP only takes less than 30 minutes to identify the optimal DR strategy for a given 
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weather profile. This result is good enough for simulation-based on-line optimization for HVAC 

DR control. 

2.4.3.3. Larger Solution Space 

The previous solution space contains 5250 DR strategies. Although the size of this solution 

space has been reduced intentionally, as only a few controllable points are involved, and only 

discrete values are considered for each point, simulation-based ES optimization still requires 

several days to reach an optimum. In real applications, an on-line DR controller is supposed to 

deal with more controllable points, and higher resolution would be expected. Thus, ES 

optimization is not feasible for on-line response. Its use for off-line optimization with pattern 

representative weather profiles will become less tractable. For this reason, the performance of 

the OSP optimization scheme needs to be tested with larger solution spaces. 

Consider the case where condenser water supply temperature setpoint (CWST) and chilled water 

supply temperature setpoint (CHWST) are added to the decision variables. These are two control 

points in the water system, and they are related to the other two major consumers of energy in 

HVAC system – the chiller and the tower fans. The baseline values of these two setpoints are 

78.4°F for CWST and 50°F for CHWST. When adding to the previous GTA, SAT and SFP, 

CWST has an integer value between 75 and 81 °F, and CHWST takes an integer value between 

40 and 60 °F. With two more dimensions, the search space expands from 5250 solutions to over 

700,000, making off-line ES optimization too expensive. Therefore, the “ground-truth” has to 

be established via a global optimization method other than ES, e.g. GA. The result is presented 

in Table 8. Notice that, in this study, the EnergyPlus model has been modified and the constraint 

is relaxed so that GTA(T1) can be equal to GTA(T2), so the optimal peak load is different to the 



60 
 

 
 

result of Table 2. The relaxing of the constraint is inspired from the previous result, which 

suggests that pre-cooling phase may not be necessary for cool days of Berkeley, California. 

Table 8 GA optimization result on larger solution space 

Weather 
pattern 

GTA 
(T1)* 

GTA 
(T2)* 

GTA 
(T3)* 

SAT* CWST* 
CHW
ST* 

SFP* F* 
Peak 
Load 

# of 
runs 

1 8 8 18 60 81 41 1150 0.7174 700 893 

2 9 13 18 60 78 40 1150 0.7852 742 708 

3 9 10 19 60 81 40 1150 0.7437 704 805 

4 9 9 19 60 80 41 1150 0.6896 684 1052 

5 9 9 18 60 80 41 1150 0.6821 689 775 

6 8 8 19 60 75 41 1150 0.6260 626 829 

7 8 8 19 60 76 41 1150 0.6329 643 780 

8 9 9 19 60 75 40 1150 0.5762 620 852 

9 9 12 19 60 76 40 1150 0.6005 653 925 

10 9 9 19 60 76 40 1150 0.6002 656 827 

11 9 9 19 60 77 40 1150 0.6216 668 830 

12 8 8 19 60 76 40 1150 0.6208 660 916 

13 8 8 19 60 75 40 1150 0.6051 625 954 

14 8 8 19 60 75 41 1150 0.5605 613 801 

15 7 7 19 60 75 41 1150 0.5443 616 954 

16 7 7 19 60 77 41 1200 0.5849 586 1323 

17 7 7 19 60 75 40 1150 0.6111 606 769 

18 7 7 19 60 75 41 1150 0.5314 583 824 

19 7 7 19 60 75 40 1150 0.5767 573 840 

GA optimization requires about 877 simulation evaluations on average to identify the optimal 

strategy. It takes approximately 10 hours (for the modified model, which is faster than the 

previous one). An OSP is created off-line based on this result. A total of about 3800 DR 

strategies have been evaluated by GA optimization. Among all those strategies, 97 are selected 

into OSP, as 97 spikes are identified from the strategy overall likelihood spectrum (Figure 9). 
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Figure 9 Strategy likelihood spectrum 

To validate the OSP algorithm, PBS, GA and OSP algorithms apply to the same 13 sample days 

in Table 7. The new comparison is shown in Table 9. 

Table 9 Comparison of PBS, GA and OSP on larger solution space 

Sample Day 
Algorithm 

PBS GA OSP 

1 (Pattern 19) 

Opt. DR 
strategy 

[7,7,19,60,75,40,1150] [7,7,19,60,75,41,1150] [7,7,19,60,75,40,1150] 

F* 0.5858 0.5858 0.5858 

2 (Pattern 3) 

Opt. DR 
strategy 

[9,10,19,60,81,40,1150] [9,9,19,60,80,40,1150] [9,9,19,60,80,41,1150] 

F* 0.7008 0.6923 0.6923 

3 (Pattern 9) 

Opt. DR 
strategy 

[9,12,19,60,76,40,1150] [9,12,19,60,76,40,1150] [9,12,19,60,76,40,1150] 

F* 0.6063 0.6063 0.6063 

4 (Pattern 8) 

Opt. DR 
strategy 

[8,8,19,60,75,40,1150] [8,8,19,60,75,40,1150] [9,9,19,60,75,40,1150] 

F* 0.5899 0.5899 0.5886 

5 (Pattern 14) 

Opt. DR 
strategy 

[8,8,19,60,75,40,1200] [8,8,19,60,75,40,1150] [9,9,19,60,75,40,1150] 

F* 0.5669 0.5639 0.5608 

6 (Pattern 13) 

Opt. DR 
strategy 

[7,7,19,60,75,41,1150] [8,9,19,60,75,40,1150] [9,9,19,60,75,40,1150] 

F* 0.606 0.608 0.6016 

7 (Pattern 16) 

Opt. DR 
strategy 

[6,6,19,60,75,41,1150] [8,8,19,60,75,40,1150] [7,7,19,60,75,40,1150] 

F* 0.5973 0.5961 0.5961 

8 (Pattern 8) 

Opt. DR 
strategy 

[8,8,19,60,75,40,1150] [7,7,19,60,75,40,1150] [9,9,19,60,75,40,1150] 

F* 0.5956 0.5977 0.593 

9 (Pattern 18) 

Opt. DR 
strategy 

[7,7,19,60,75,40,1150] [7,7,19,60,75,40,1150] [7,7,19,60,75,40,1150] 

F* 0.5385 0.5385 0.5385 
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10 (Pattern 18) 

Opt. DR 
strategy 

[7,7,19,60,75,40,1150] [8,8,19,60,75,40,1150] [8,8,19,60,75,41,1150] 

F* 0.5296 0.5295 0.5295 

11 (Pattern 17) 

Opt. DR 
strategy 

[7,7,19,60,75,41,1150] [6,6,19,60,75,41,1150] [9,9,19,60,75,40,1150] 

F* 0.5798 0.5816 0.5792 

12 (Pattern 14) 

Opt. DR 
strategy 

[8,8,19,60,75,40,1200] [8,8,19,60,75,40,1150] [9,9,19,60,75,40,1150] 

F* 0.557 0.5541 0.552 

13 (Pattern 16) 

Opt. DR 
strategy 

[6,6,19,60,75,41,1150] [7,7,19,60,75,40,1150] [7,7,19,60,75,40,1150] 

F* 0.5683 0.5674 0.5674 

In this study, OSP requires 97 simulation evaluations, 89% less than GA (877 evaluations, on 

average). The strategies identified by OSP are the same or even better ones than the ones 

identified by GA and PBS, in terms of the smaller objective values. Thus we are able to claim 

that the two-stage optimization scheme with OSP is more advantageous than GA and PBS for 

on-line simulation-based HVAC DR control optimization. 

2.5 Discussion 

Whole-building detailed energy simulation is a gray-box modeling technique, which blends in 

both equation systems from physical modeling (the white-box model) and parameter 

approximation from empirical studies and statistics (the black-box model). The simulation 

models are mainly used for design verification, energy audit, local control optimization and code 

compliances. There also exist studies that attempt to apply simulations in supervisory control 

optimization [14, 22, 25, 143]. However, simulation-based approach has several drawbacks 

which render it very challenging for control optimization applications. 

First, it takes an enormous engineering effort to develop and calibrate a detailed model. A model 

for whole-building control optimization requires sufficient accuracy – not only on whole-

building and annual simulation level, but also on subsystem level (air handlers, chilled water loop 

and condenser loop), component level (chiller, fans and pumps), and sometimes zone level, with 

hourly or sub-hourly time resolution. In order to reach that accuracy level, large amount of 
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trending data will be required for calibration, existing control logics need to be studied and 

implemented in the simulation, and field surveys and audits have to be conducted to generate 

good internal gain profiles. In any cases, none of these would be a trivial task. For example, in 

the study by Zhu, et. al. [22], it took the authors 12 months to calibrate the model, and 70% of 

the time was spent in developing fan and chiller performance curves and implementing cooling 

tower control logics. 

Secondly, even after careful modeling and calibration, the model accuracy may be still 

questionable. The fact is that most information about a building and its system’s behavior is 

hardly certain. The actual weather condition (recorded or forecasted) includes more factors than 

only dry bulb temperature, relative humidity and a hand-full others that are considered in the 

simulation, and it has more frequent dynamics than 15-minute or 60-minute average that is often 

used. Infiltration rate, plug-in uses, occupancy levels and occupant body heat gain are very hard 

to measure. The actual performance of major equipment often deviates significantly from the 

technical documentations, due to variations in installation and maintenances. Plus, noisy sensors, 

faulty systems and false implementations of control logics, can all contribute to the uncertainty 

of the HVAC system. According to an in-person discussion with Dr. Jin Wen from Drexel 

University, substantial differences are observed from the energy consumption of two HVAC 

systems which are intentionally built to be identical. The implication is that if a system can behave 

differently from its design, a simulation-model that tries to approximate this system may also 

deviate. Therefore, in the actual modeling practices, a 10~20% error would be generally 

acceptable for whole-building hourly consumption, and even larger error can be expected for 

more detailed levels and finer time resolutions. 
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And last, but most importantly, simulation is a computation-intensive process, and simulation-

based optimization often involves extensive simulation evaluations. Therefore, heavy 

computation burden is nearly inevitable. This is especially true if traditional search algorithms 

are employed [22, 51]. In this chapter, a new two-stage optimization scheme, OSP, is proposed 

in order to move simulation evaluations to off-line as much as possible. The comparison 

between OSP and PBS suggests that on-line simulation evaluation is still needed in order to 

identify the optimal DR strategy with enough confidence. In this study, OSP requires about 30 

to 40 minutes to identify an optimal control strategy, which is acceptable for day-ahead planning, 

but definitely unacceptable for faster response. 

The key of this OSP optimization scheme is that a knowledge base, which is represented by the 

“optimal strategy pool”, can be created based on off-line computation. This optimal strategy 

pool is supposed to contain a smaller number of candidate strategies, and therefore, turns on-

line simulation-based optimization feasible. The PBS strategy is heuristically qualified for this 

type of two-stage scheme, and is seemingly more favorable, as no on-line simulation would be 

needed. However, the experiment results (Table 7 and Table 9) suggest that the optimal strategy 

for the representative profile of a weather pattern is not necessarily the optimum for the 

individual profile that belongs to this pattern. This further means that the patterns obtained by 

the way described in [135] have weak inference power in the DR strategy selection. The success 

of OSP optimization suggests that the optimal strategy for an individual weather profile is among 

the top choices for the pattern’s representative profile. Ideally, if all top choices for all 

representative profiles are selected to generate a “pool”, such pool should be able to cover the 

optimal strategy of most individual profiles. 
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Chapter 3 Day-ahead Planning and Real-time Tracking Under 
Cost-for-Deviation Pricing 

Abstract 

A new retail tariff called Cost-for-Deviation (CfD) is proposed in this dissertation. CfD 

targets to reduce the demand uncertainty at individual customer level, and then mitigate 

the utility provider’s quantity risk in the wholesale market. Under this new rate 

structure, individual buildings will perform day-ahead planning and real-time load 

tracking control optimizations in order to reduce the cost. This chapter provides the 

formulation of the two-stage control problems. An ANN model is used in the model-

based optimizations in both stages. The experiments demonstrate that, under CfD, 

day-ahead planning and real-time tracking are effective in reducing the building 

demand deviation, especially in the case where some unexpected event might cause 

significant demand surge. It is also shown that accurate forecasts of weather and 

occupancy are helpful in demand uncertainty reduction. In the end, CfD encourages 

the predictable consumption behavior among individual customers. This is expected 

to reduce the quantity risk of the entire community in the wholesale market. 

3.1 Introduction 

Flat rate and static TOU price are typical in the current electricity retail markets of the US. With 

these rate structures, the wholesale market and the retail market are loosely connected [86]. The 

utility providers absorb the full risk of the market uncertainties, including the price risk [144] 

and the quantity risk [93]. On the other hand, even though the customers tend to be price 

sensitive, they do not actively respond to the dynamic supply/demand condition in the market 

due to absence of incentives. Consequently, the utility providers have to hedge against the risks 



66 
 

 
 

by raising retail price, and the customers have to accept the higher prices [145]. This process 

does not account for the diversity in individual consumption behavior. 

In order to avoid the above “lose-lose” situation, stakeholders are seeking for a new rate 

structure, which connects supply ends and customer ends more tightly, and promotes efficient 

energy usage as well as fair sharing of the risk. In the past few years, various DR programs have 

been implemented in the regional markets of the US. The time-varying price-based DR is 

particularly popular, including, but not limited to, TOU, DAP and RTP. TOU pricing scheme 

divides daily consumption into peak and off-peak periods. Different prices apply to different 

periods. Weekday/weekend and summer/winter variations are also accounted for. The prices 

are often issued weeks or months ahead and remain unchanged for the entire period of the 

contract. Due to lack of timeliness and time granularity, TOU pricing conveys a limited amount 

of information about the hour-to-hour dynamics of the market. Therefore, it can only 

moderately shape the demand profile. As a contrast, RTP gives residential customers access to 

an hourly electricity price that is based on the wholesale market price. Although the long-term 

benefit of RTP has been widely recognized [94], it remains debatable whether full exposure to 

the wholesale market is, in the short term, beneficial to the customers. The reason is that it is 

quite challenging for individual customers to be sufficiently equipped to retrieve highly dynamic 

market information, and make quick and wise decisions, proactively. Failure in doing so will 

yield high volatility of the cost on the customer side. DAP can be considered as a hybrid of TOU 

and RTP. It announces hourly retail price schedule day-ahead based on the predicted spot 

market price. With DAP, customers are able to schedule demand in advance and fully utilize 

their demand elasticity to achieve maximum energy saving and/or demand reduction. Also, 
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hourly price schedule carries substantial information about market dynamics, although it is based 

on prediction rather than realization. 

The primary goal of DR programs is to reduce the demand when the grid is experiencing peak 

load. According to US FERC’s report [146], DR programs have achieved success in terms of 

lowering the peak demand on the grid. However, DR programs do not reduce the uncertainty 

of the market demand, even though demand uncertainty has been recognized by many 

researchers as an important factor in demand side management, market strategies and grid 

operations (see the review in Section 1.4.2.1). In those studies, demand uncertainty is represented 

by a set of statistical parameters that are given or subject to learning, but not controllable. It is 

only a condition that must be accounted for while making energy saving or cost reduction 

control decisions. Few, if any, of those studies set uncertainty reduction as one of the demand 

management targets, because currently no retail tariff has been designed to mitigate the quantity 

risk that faces the utilities in wholesale markets. The common practice to hedge quantity risk is 

by raising the retail price. This approach does not consider the variety in customer behavior, and 

hence creates an unfair situation where those customers who are not the major source of 

uncertainty have to share the elevated cost that is caused by the uncertainty in the other 

customers’ consumption. 

A new CfD rate structure is proposed in this chapter, aiming to promote fair sharing of the risk 

among utility and individual customers. CfD assumes that the customers have good 

understanding of their own behavior and, therefore, are able to predict their individual demand 

schedules with sufficient certainty. Then the customers are responsible for making the 

commitment of the demand schedule ahead of time (e.g. commit a 24-hour demand schedule 

one day in advance) and tracking such schedule in real-time. The difference between the planned 
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and actual demand schedules will incur CfD charge, whose rate is defined by contractual 

agreement. By aggregating demand schedules planned by all individual customers, the utility will 

be able to calculate its demand bid to the day-ahead wholesale market. Since the quantity risk is 

hedged by CfD charge, the utility can rely more on the day-ahead market, which has less risk, 

rather than on the risky real-time market. As a result, the overall cost of the utility may be 

reduced. With the assumption that the utility company is not-for-profit, lower cost is equivalent 

to smaller utility bills for all customers. The risk sharing is accomplished by transferring the 

quantity risk to the customers and leaving most of the price risk to the utility. Note that, this 

CfD pricing differentiates from the existing “contract for difference”, which is a type of price 

hedging contracts between the retailers and the generators in the wholesale markets. 

The details and performance of the CfD rate structure at microgrid or community level will be 

discussed in Chapter 4. In this chapter, the study focuses on individual building optimal control. 

Under CfD, the customers will face two problems: (1) given hourly retail price schedule and the 

forecasts of the weather and occupancy for the next day, how to identify the optimal demand 

schedule; this is a “Day-ahead Planning” optimization problem. Once obtained, the optimal 

demand schedule is submitted to the utility. (2) Given a planned demand schedule, how to 

minimize the CfD charge in real-time, i.e. how to control the actual demand in order not to 

deviate far from the planned schedule. Hence, a “Real-time Tracking” optimization must be 

solved at each hour, considering the latest realization of weather, occupancy and system 

response, as well as the updated forecasts for the near future. 

This chapter gives an example of using ANN for the model-based predictive control in planning 

and load tracking. The ANN model is developed to approximate an office building that is 

simulated by an EnergyPlus model. Based on the nature of the ANN model and the problem 
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formulation, dynamic programming technique is used to solve both planning and tracking 

problems. The performance of CfD in terms of lowering the building’s demand deviation is 

investigated, and additional experiments are designed to study the influences of such factors as 

weather forecast, occupancy forecast and CfD rate. It is shown that, under CfD, day-ahead 

planning and load tracking, together with timely update of the condition forecast, are able to 

reduce the building’s demand deviation. It is worth pointing out that ANN is only one of many 

modeling approaches that could work for the predictive control under CfD. The presented 

problem formulations along with the solution technique are not the only way of addressing the 

problems. 

The main purpose of this dissertation is to introduce the concept of uncertainty reduction in 

demand management, in addition to the conventional energy efficiency and peak demand 

reduction. The uncertainty management is implemented via an economical approach, which is 

the proposed CfD retail pricing. 

The rest of this chapter is organized as follows: Section 3.2 details the formulations of the day-

ahead planning and the real-time load tracking optimization problems. Section 3.3 describes the 

ANN model development. Section 3.4 presents the validation for the prediction model and 

control optimization. The results of a base case and a series of experiments are presented in 

Section 3.5. Section 3.6 discusses the results and gives concluding remarks. 

3.2 Problem Formulation 

3.2.1 Day-ahead Planning 
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In both “Day-ahead Planning” and “Real-time Tracking” optimizations, the decision variable is 

the control action (thermostat setpoint, in this study) at each hour of the next day. While making 

a day-ahead plan, the customer is provided with the hourly retail price schedule for the next day. 

The hourly forecast of the next day’s weather can be obtained from internet weather services. 

The customer is assumed to be able to forecast the building’s occupancy schedule. The planning 

objective will be to minimize the sum of total energy cost and thermal comfort violation penalty 

(Eq. 15). The energy cost is calculated by multiplying the hourly demand with the hourly price. 

The comfort violation penalty at each hour is proportional to the comfort range violation. At 

any time, if the room air is too cold, the thermal comfort violation is defined by how much (in 

degrees) the room temperature is lower than the lower bound of comfort range; or, if it is too 

hot, the violation equals to the temperature difference between the room air and the upper 

bound of comfort range (Eq. 16). The energy consumption and average room temperature are 

calculated from a prediction model (Eq. 17). Also boundary constraint applies to the control 

input (Eq. 18). The Day-ahead Planning optimization problem can be formulated as follows: 

The Day-ahead Planning optimization (Phase I, deterministic): 

Decision variable: Ix   

Minimize:  
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where, 

t : the time step; 

H : the planning horizon (the next day); 

C : the vector of the hourly price schedule ( tC  is the element associated with time 

step t ); 

F : the function of the prediction model; 

IP : the vector of planned demand schedule ( I
tP is the element associated with 

time step t ); 

IT : the vector of average room temperature ( I
tT  is the element associated with 

time step t ); 

̂ : the vector of weather and occupancy forecast ( t̂ is the element associated 

with time step t ); 

uT  and lT : the upper and lower bound of thermal comfort range, respectively; 

Iu  and Il : the vectors of violations of upper and lower bound of comfort range, 

respectively ( I
tu  and I

tl  are the elements associated with time step t ); 

1p  and 2p : the coefficients to convert comfort violation into dollar cost; 
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Ix : the vector of thermostat setpoint schedule ( I
tx is the element associated with 

time step t ); 

By solving this problem, the optimal solution, Ix , will be the control action schedule, and the 

corresponding demand schedule, IP , will be submitted to the utility. 

3.2.2 Real-time Tracking 

During the next day, from 0:00 to 0:59, the planned control action for the first hour, i.e. Ix1 , will 

be executed. Starting from 1:00, the recourse optimization will be needed, because the observed 

occupancy and weather start to deviate from their forecasts. For the real-time tracking during 

the next day, the optimization is to minimize the expected CfD cost and penalties due to thermal 

comfort violation and change of action for the remainder of the day (Eq. 19). The CfD cost is 

defined to be proportional to the squared difference between planned demand and the actual 

one. The change of action penalty is proportional to the squared difference between the planned 

setpoint and the actual one. 

The Real-time Tracking optimization (Phase II, At time step k ): 

Decision variable: 
H
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Subject to: 
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where, 

IIP : the vector of actual demand conditioned on the realization of weather and 

occupancy,  ( II
tP is the element associated with time step t ); 

1q : the Cost-for-Deviation (CfD) charge rate; 

2q : the penalty rate of the change of action (setpoint); 

H

kt

II
tx


: the vector of thermostat setpoint schedule determined at time step t  for the 

remainder of the time horizon ( II
tx  is the element associated with time step t

); 

The real-time tracking optimization is conducted at each hour since 1:00, because the weather 

and occupancy forecasts together with system responses are updated every hour for the 

remainder of the day. As a result, only the first element of the optimal solution (i.e. II
ktx  ) will be 

executed, at each hour. 

The bill for the building ( Z ) is calculated as shown in Eq. 23. 
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At the end, the performance of the day-ahead planning and real-time tracking, under CfD, will 

be evaluated by root mean squared deviation, or RMSD, of hourly demand (Eq. 24). 
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 Eq. 24 

where, P  is the vector of actual demand ( tP  is the element associated with time step t ). 

Eq. 17 and Eq. 20 in the above optimization problems involve a system prediction model. This 

model is crucial to model-based predictive control. Section 3.3 and 3.4 give an example of 

developing and validating such model. 

3.3 Prediction Model 

The implementation of CfD rate structure requires individual customers to be capable of 

predicting their demand based on occupancy and weather forecasts. This prediction model must 

be accurate, robust, and adaptive to the behavior change of customers. However, as in Chapter 

2, the study of simulation-based control optimization shows that simulation evaluation could be 

a very time-consuming process. It can be impractical to involve many simulation evaluations in 

on-line optimization. Instead, a fast, yet accurate model is necessary for control optimization, 

especially for fast response and real-time predictive control. Several data-driven modeling 

approaches fit such needs, including time-series model [26], Fourier series model [27], regression 

model [28], ANN [29-41], support vector machine [42, 43] and fuzzy logic model [33, 38, 44-

46]. Among these approaches, ANN is particularly popular. 
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ANN is a mathematical and simplified representation of biological neural networks. Depicted 

in Figure 10 is a typical Multilayer Perceptron (MLP) ANN proposed by Rumelhart, et. al. [147], 

in 1986.  An MLP consists of at least three layers, namely “input layer”, “hidden layer” and 

“output layer”. On each layer, inputs from the neurons on the previous layer to neuron j of this 

layer ( jx1 , jx2 ,…, Mjx ) are weighted (by timing jw1 , jw2 ,…, Mjw ) and summed by the cell body 

(Eq. 25), when the sum exceeds a certain threshold, the neuron is activated ( 1y , 2y ,…, Ny ).The 

activation function can be written as Eq. 26. 

 
i

ijijj xwh  Eq. 25 
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It was proven by Cybenko [148] that, with one or more hidden layers with sigmoid activation 

functions, MLP can approximate any continuous function, no matter the function is linear or 

not. 

 

Figure 10 Multilayer Perceptron model 
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Given that the building thermal system is a non-linear system, whose current state is influenced 

by the states and control inputs back in time, a Non-linear Auto-Regressive with eXogenous 

inputs (NARX) network will be a suitable model for such a system. The mathematical expression 

of this model can be formalized as follows: 
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where z is the system state variable, x  is the control inputs and y  is the uncontrollable inputs 

from external of the system. xd , yd  and zd are the corresponding time delays. The NARX 

network architecture is depicted in Figure 11. 

 

Figure 11 NARX network structure 

Because the network model is most sensitive to the input range between -1 and 1, min-max 

normalization and de-normalization are conducted for data pre- and post-processing. The 

normalization procedure also ensures no particular factor will outweigh others due to large 

numerical values. 
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The activation function of the hidden nodes is sigmoid function shown in Figure 12a. The 

activation function of the output nodes is a linear output function shown in Figure 12b. The 

Levenberg-Marquardt back-propagation algorithm (LMA) [149] implemented by MathWorks 

MATLAB Neural Network Toolbox [150] is employed to train the NARX network. 

 

Figure 12 a. Sigmoid activation function of hidden nodes; b. Linear 
activation function of output nodes 

Ideally, the prediction model should be trained using dataset collected from a real building, and 

the model-based predictive control should be tested on the same building. However, the author 

does not have a real building readily available for data collection and testing. As an alternative, 

the author uses an existing EnergyPlus simulation model of a “Reference Medium Office” 

building, which is developed and validated by the National Renewable Energy Laboratory of 

USDOE [151]. The basic information about the building is summarized in Table 10, and the 

geometry is illustrated in Figure 13. 

Table 10 Summary of the demonstration building (Reference 
Medium Office) 

Building Location Chicago, IL 
Building Function Type Office 
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Floor area 8361 m2 (90,00 ft2) 
Floor number 3 

Number of conditioned zones 15 
Window-to-wall ratio 0.50 

HVAC system 

Standard VAV system with minimum 
outside air, hot water reheat coils, 
central chilled water cooling coil. 
Central Plant is single hot water boiler, 
electric compression chiller with water 
cooled condenser. 

 

 

Figure 13 Reference medium office - building geometry 

Replacing a real building with a simulation model provides two benefits. First, data collection 

from a real building can be very expensive. The variation in the dataset, regarding weather, 

internal loads and control inputs, might be insufficient for developing a prediction model. As a 

contrast, if an existing and validated simulation model is used as a data generator, data variation 

can be ensured by intentionally introducing variation into simulation input. Second, a simulation 

model can be a test bed for extensive experiments. Another yet to prove hypothesis is that a 

fairly calibrated simulation model could serve as an initial training dataset generator to develop 

a first prediction model. This prediction model can then be refined by on-line adaptive training 

using measured data (if available from the real building). 

In this study, a dataset is generated by a simulation using the weather of the months of July in 

the years 2001-2012 along with random occupancy and thermostat setpoint. The dataset includes 
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time (day-of-week and hour-of-day), weather (dry bulb temperature, relative humidity and wind 

speed), occupancy level (normalized to 0~1, and lighting and plug-load levels are assumed to be 

the same as occupancy), thermostat setpoint as well as corresponding system responses (energy 

consumption and average room temperature). The inputs and responses of years 2001~2003 are 

used for training and those of 2004 are used for validation to avoid model over-fit. All 

permutations of network parameters are tested – the size of the first hidden layer is between 2 

and 14, the size of the second hidden layer ranges between 0 and 6, and the delay is from 1 step 

to 4 steps. All trained networks are subject to both hourly and day-ahead prediction tests. The 

network that makes the best predictions in both tests is selected for planning and tracking 

optimization. 

3.4 Validation 

3.4.1 Prediction Model 

The NARX model predictions are subject to both hourly and day-ahead prediction validation 

tests. In the hourly prediction test, the prediction model is called at each hour to make prediction 

for the next hour. In the day-ahead prediction test, prediction is made for the next 24 hours, by 

calling the model recursively and using the information available in the day-ahead. In both tests, 

model responses to randomly sampled weather, randomly generated occupancy and control 

inputs are compared to EnergyPlus simulation results. Statistical metrics are used to evaluate the 

prediction accuracy on building demand, including mean absolute percentage error (MAPE), 

root mean square error (RMSE), coefficient of variation (CV) and coefficient of determination 

(R2) [36]. The formulas of these metrics are given as follows. 
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Eq. 31 

 

where, ty  is the observed (EnergyPlus simulated) system response at time t , and tŷ  is the 

corresponding prediction by the NARX network. 

Among all tested NARX configurations, the one with 5 first layer nodes, 4 second layer nodes 

and 2-step delay (denoted by NARX-H05H04D02) gives the best prediction results. Compared 

to similar studies in [36, 39, 41, 152-154], the number of layers and number of neurons may be 

different but around the same magnitude. Our model has 2 time step delays (2-hour lag), similar 

to 1~2 hour lags in other cases with similar building size. 

The evaluation matrices of NARX-H05H04D02 network are summarized in Table 11 and Table 

12. The interpretation of this result is as follows. This network gives very good load predictions 

in both tests. The load predictions in the hourly test are slightly more accurate than those in the 

day-ahead prediction test. In hourly predictions, the predicted load by this model has about 7.6 
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KW error (5.3%), in average. The prediction model explains 98% of the variation of the building 

demand. The error relative standard deviation is about 5.9%. This prediction accuracy is better 

than the results in [36, 38, 39], which are two studies using ANN models to approximate real 

building data. Our result is about the same level as reported by [36], which uses ANN models 

to fit EnergyPlus simulation data. Therefore, the NARX-H05H04D02 network load prediction 

is validated. 

The room temperature predictions have 0.7 °C errors (2.5%), in average. The prediction model 

explains 90% of the variation of the room temperature. The error relative standard deviation is 

about 3.1%. The temperature prediction error is slightly higher than those in [152-154], where 

errors range between 0.1 °C and 0.6 °C. The results of those studies are based on the measured 

room temperature of single spaces without HVAC or with simple heater. As a result, those 

datasets have less variation. The simulated system in our study is a medium size multi-zone office 

building with complex HVAC system and controls. The room temperature subject to prediction 

is a weighted average across all conditioned zones. Plus the training and testing datasets are 

generated with random control signals. Therefore, a slightly less accurate temperature prediction 

model is considered acceptable in our case, because it is built for a much more complicated 

subject system. 

Table 11 NARX-H05H04D02 network load prediction evaluation 

Test MAPE RMSE CV R2 

Hourly 0.053 7.6 0.0587 0.9815 

Day-ahead 0.058 8.5 0.0647 0.9702 
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Table 12 NARX-H05H04D02 network room temperature 
prediction evaluation 

Test MAPE RMSE CV R2 

Hourly 0.025 0.7 0.0314 0.9032 

Day-ahead 0.025 0.7 0.0305 0.8767 

The time series plots of load and room temperature, comparing the NARX model prediction 

and EnergyPlus simulation are presented in Figure 14 and Figure 15. 

 

Figure 14 NARX-H05H04D02 network hourly prediction 
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Figure 15 NARX-H05H04D02 network day-ahead prediction 

3.4.2 Control Optimization 

Under CfD pricing, individual buildings are charged for the demand deviation. Therefore, in 

real-time load tracking control, an optimization problem is solved at each time step to minimize 

the CfD charge for the remainder of the day. Also, included in the real-time optimization 

objective function are the penalties for thermal comfort violation and change of actions. It is 

reasonable to hypothesize that with a greater CfD rate, the optimal solution will lean towards 

more thermal violations and change of actions and less demand deviation. We validate the 

control optimization by testing this hypothesis. 

Various CfD rates are tested, with other parameters as summarized in Table 13. The 

optimization algorithm used to solve the problem is detailed in the next section. The 

corresponding RMSDs and the customer’s billed costs are shown in Figure 16 and Figure 17. It 

is clear that greater CfD rate will drive the customer harder in load tracking, and result in lower 
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RMSD. However, the improvement is relatively minor, when CfD rate is greater than 0.01 

$/KW2, because RMSD approaches to the error of load prediction by the NARX model (7.6 

KW, see Section 3.4.1). Meanwhile, the combined consequence of slow reduction of demand 

deviation and increase of CfD rate is that CfD charge grows steadily and becomes a greater 

portion of the customer’s bill, from 8% when CfD rate is 0.005 $/KW2 to 42% when it is 0.03 

$/KW2. This result proves the previous hypothesis that the control optimization, especially the 

real-time tracking, works as expected.  

The CfD rate of 0.01 $/KW2 is used in all the following experiments in Chapter 3 and Chapter 

4. With this CfD rate, the CfD charge makes about 27% of the customer’s utility bill (Figure 17). 

 

Figure 16 Impact of CfD rate to the demand deviation 
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Figure 17 Impact of CfD rate to the customer's utility cost 

3.5 Experiments 

In this section, the performance of planning and load tracking optimizations under CfD is 

studied using designed experiments. The influence on the demand deviation by planning 

optimization, tracking optimization, weather forecast, occupancy forecast, unexpected event and 

forecast update are investigated. 

3.5.1 The Base Case 

Consider July 12th, 2013 for the base case. At 21:00 on the day-ahead, i.e. July 11th, 2013, the 

hourly weather forecast for the next day is pulled from wunderground.com. The dry bulb 

temperature forecast is plotted by the red curve in Figure 18a. And the occupancy forecast 

plotted by the red curve in Figure 18b is the average occupancy schedule of typical office 

buildings, as reported by [155]. During the operating day, at each hour, the latest hourly weather 

forecast for the next 24 hours is pulled from wunderground.com. Meanwhile, the occupancy forecast 

remains unchanged. The actual occupancy ratio is randomly generated according to the same 

profile and distribution as reported in [155]. 
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Figure 18 Actual conditions vs. forecasts 

The hourly retail price schedule used in the base case study is illustrated in Figure 19. This 

schedule is announced day-ahead by the utility. 

 

Figure 19 Hourly retail price ( C ) of the operating day 

Other parameters involved in the day-ahead planning and real-time tracking optimizations are 

summarized in Table 13. 
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Table 13 Optimization parameters 

Parameter Value 

1p  100 

2p  100 

1q  0.01 

2q  0.5 

lT  21 

uT  25 

lx  18 

ux  27 

Section 1.4.1.2 has reviewed the optimization techniques involved in other supervisory control 

studies. In this study, the prediction model (NARX network) is a non-linear approximation of 

the simulated building. Therefore, only non-linear optimization techniques are suitable. Dynamic 

Programming (DP) can be a good choice for the optimization, because the prediction model has 

the following characteristics: 

(1) The prediction model is to be evaluated at discrete steps, and there are a finite 

number of steps; 

(2) At each step, the system state in the next step is determined by the current decision, 

the current state, and the states several steps back; 

(3) At each step, the decision is limited within a finite candidate set (discretized 

setpoint); 

(4) The objective function is additive at each step. 

Note that, characteristic (2) does not rigorously meet the recursive requirement for applying DP, 

because DP requires that the next state is a function of only the current state and current decision 

– previous states should not enter the formula [156]. In other words, due to the thermal inertial 

nature of the system, any decision made at current step will have influence to not only the 



88 
 

 
 

immediate next state but also states several steps in the future. However, a simple modification 

of the DP algorithm can solve this problem, as long as the number of future states affected by 

current decision is fixed and known ( xd  in Eq. 27). In this case, the decision to make, at any 

step, is the setpoint for the current step plus the ones of 1xd  steps in the future, i.e., the 

solution space increases from 1-Dimensional to xd -Dimensional. Correspondingly, the state 

space also increases from 1-Dimensional to xd -Dimensional. Then the new formulation meets 

all requirements for DP. 

DP guarantees to obtain the global optimal setpoint sequence, however, it can easily become 

intractable when the size of solution space increases (e.g., xd is too large). Fortunately, the 

thermal system is usually considered as a second order system, third- or higher order models are 

rarely used to describe building thermal behavior. Thus, the dimension of the solution space is 

usually lower than or equal to 4. The resolution of indoor temperature control is at 0.5~1 °C – 

finer resolution does not have a significant advantage in terms of cost-benefit. Consequently, 

the solution space is within controllable range. If higher resolution control, together with higher 

order system, are considered and DP becomes inappropriate for this problem, other solvers can 

be employed, such as GA and PSO. The exploration of using those solvers other than DP is 

beyond the scope of this study. 

By solving the planning stage problem, the planned demand schedule (red curve in Figure 20a) 

and corresponding thermostat setpoint schedule (red curve in Figure 20b) are determined. If the 

planned control is executed without tracking control, the actual consumption will be the one 

shown by the green curve in Figure 20a. If real-time tracking is conducted, the actual demand 

schedule will be as shown by the blue curve in Figure 20a. 
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Figure 20 The base case results 

As demonstrated, the real-time tracking optimization keeps the actual demand schedule close to 

the planned schedule. The RMSD is reduced by 1.1 KW (about 10%), as shown in Figure 21. 

 

Figure 21 The base case demand deviation 
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In day-ahead planning, the optimal demand schedule is obtained based on the next day’s hourly 

retail price, together with the weather and occupancy forecast available at the time of planning. 

The weather forecast could be a major source of uncertainty. Hypothetically, an accurate day-

ahead weather forecast may help in limiting the demand deviation. To prove this hypothesis, 

three historical July days are selected as examples for typical weather forecasts with low, medium 

and high error, respectively (Figure 22). The result, as plotted in Figure 23, shows clearly that 

inaccurate weather forecast raises the building RMSD from 9.1 KW (low error) to 11.6 KW 

(high error). Also, the load tracking optimization is able to partially mitigate the demand 

deviation caused by weather forecast error. A medium error weather forecast is used in all other 

experiments in this chapter. 

This result also suggests that the customers under CfD will be motivated to improve their 

weather forecast. A better weather forecast will help the customers lower demand deviation, and 

thus reduce the CfD charges. 
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Figure 22 Weather forecasts with various levels of error 

 

Figure 23 Impact of weather forecast error on demand deviation 
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The occupancy level is another major source of uncertainty in the day-ahead planning. CfD 

pricing holds individual customers responsible for forecasting their own occupancy schedules. 

An occupancy schedule is the aggregated level of non-HVAC consumption, including lighting 

and plug-in appliances. It is assumed without proof that the customers are capable of making 

such prediction, either by averaging over ordinary operation days in the past or based on activity 

schedules. In order to examine the impact of occupancy forecast error to demand deviation, 

three scenarios are subject to tests, where the occupancy forecasts are the same as the average 

occupancy reported in [155], but the actual occupancy profiles are randomly generated with low, 

medium and high deviations, respectively (Figure 24). 

 

Figure 24 Occupancy forecasts with various levels of error 
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Figure 25 Impact of occupancy forecast error on demand deviation 

According to the result shown in Figure 25, it is clear that the RMSD increases from 9.5 KW to 

12.3 KW as the occupancy forecast error grows from low to high. This suggests that CfD retail 

pricing also drives the customers to better predict their demand level, or in other words, 

encourages a predictable consumption behavior. This is expected to reduce the overall 

uncertainty in the community demand, which will lead to savings of cost in the wholesale market. 

Such hypothesis is subject to test in Chapter 4. A medium error occupancy forecast is used in all 

other experiments in this chapter. 

3.5.4 Unexpected Event and Forecast Update 

Occupancy forecast error sometimes may be due to unexpected events. It is reasonable to 

believe that customers are able to update the occupancy forecast in real-time, if certain 

unexpected incident is about to happen. A major goal of CfD pricing is to reduce the demand 

fluctuation under those circumstances. 
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level reaches maximum from 14:00 to 18:00, due to an event. Also assume that this event was 

not accounted for in the day-ahead plan. The actual occupancy and the forecast at the time of 

planning are illustrated in Figure 26a. The demand deviation of these two scenarios is plotted by 

the bar series of “No Event” and “Unexpected Event” in Figure 27. The result shows that the 

unexpected event raises the RMSD by 3.2 KW (about 31%) when load tracking is not conducted. 

Load tracking does not reduce the RMSD. Instead, it adds another 0.5 KW to the RMSD. This 

is because the occupancy forecast used in load tracking optimization is not updated with the 

event. 

 

Figure 26 Occupancy level with unexpected event and forecast 
update 
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Figure 27 Impact of unexpected event and forecast update 

A major question here is to determine if the demand deviation will be reduced by load tracking, 

if the occupancy forecast is updated with unexpected event several hours before. Three 

additional tests are conducted where the occupancy forecast is updated at 9:00 (5 hours in 

advance, denoted by “-5h”, Figure 26b), 13:00 (1 hour in advance, denoted by “-1h”, Figure 26c) 

and 15:00 (1 hours after the beginning, denoted by “+1h”, Figure 26d), respectively. The bar 

graph in Figure 27 clearly shows that with forecast update, load tracking is able to reduce the 

RMSD by as much as 3.8 KW (about 28%). The most demand deviation reduction is achieved 

by an update 5 hours in advance. However, load tracking with forecast update only partially 

mitigates the deviation caused by the unexpected event, because the resulting deviation level is 

still slightly higher, compared to the case with tracking and without event. 

The implication of this result is obvious, in order to have a lower CfD charge, the customers 

will be willing to avoid unexpected event and maintain a predictable consumption profile. In 

case an unexpected event happens, the customers will try to update the occupancy forecast as 
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3.6 Discussion 

Current retail rate structure completely exposes utility providers to the market risk caused by 

demand uncertainty. Raising the unit price seems to be the only countermeasure. However, 

higher prices mean more cost for all customers. The author intends to design a new rate structure 

which incentivizes individual customers to reduce demand deviation. The logic is that customer 

activities are a major source of demand uncertainty. It is reasonable to assume that individual 

customers are able to understand, and then forecast their own activities. Therefore, it is fair for 

them to bear the risk associated with their activities. 

Under the proposed CfD pricing structure, the customers are responsible to pay for the usage 

charge plus the CfD charge related to the deviation between actual and planned demand. 

Individual customers will need models to predict their energy demand. Optimizations are 

conducted in both day-ahead planning and second day real-time tracking. Simulation 

experiments demonstrate that real-time load tracking is able to reduce the RMSD by 10%, in the 

base case. The accuracy of weather and occupancy forecasts significantly influence the demand 

deviation. As a result, CfD drives the customers to make as accurate forecasts as possible for 

planning and tracking. If an event happens which was not accounted for in the day-ahead plan, 

significant increase of demand deviation will be expected (as much as 31% RMSD increase). The 

load tracking control is able to partially mitigate the deviation rise (about 28% RMSD reduction) 

as long as the forecast is updated with the event. And the experiment shows that the earlier 

update may help reduce the demand deviation slightly. The CfD rate affects both demand 

deviation and the customer’s cost. According to the experimental result, CfD rate increase from 

0.005 $/KW2 to 0.03 $/KW2 will reduce the RMSD by 15%, but raises the customer’s CfD 

charge by 7.3 times. 
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A deterministic formulation of the day-ahead planning is studied in this chapter. An attempt of 

using stochastic optimization, which considers the uncertainty of forecasts in day-ahead planning 

failed, as the stochastic formulation suffers from major dimensionality issues. How to 

incorporate CfD charge minimization into planning optimization remains to be solved in future 

studies. 

This chapter studies the model-based predictive control for day-ahead planning and real-time 

load tracking, for a single building under CfD pricing. The experiment results prove that CfD 

pricing gives strong incentive to the customers to (1) make consumption plans, (2) maintain real-

time demand close to the plan, (3) invest in the improvement of weather forecast and demand 

prediction models and (4) keep full awareness about their own activity schedules. In all, CfD 

pricing promotes the customers to maintain a predictable consumption profile. It is 

hypothesized that predictable consumption profiles of individual customers are able to bring 

down the community’s cost in the wholesale market. This is subject to tests in Chapter 4. 
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Chapter 4 Reduce Community Demand Uncertainty by Cost-
for-Deviation Pricing 

Abstract 

In the previous chapter, it has been demonstrated that individual customers will 

perform planning and load tracking optimizations in order to reduce cost under CfD. 

These control optimizations can reduce the demand deviation of individual customers. 

In this chapter, the details of CfD rate structure is provided. The author shows that 

the reduction of individual demand deviation will lower the community’s cost for 

hedging the risk in the real-time wholesale market. This will, in the end, generate 

savings for all customers. Furthermore, CfD creates opportunity for buildings to 

manage demand collaboratively. A centralized collaboration and a distributed 

collaboration mechanisms are presented in this chapter. By conducting “demand 

transaction” between two customers, the participants are able to avoid high CfD 

charges. 

4.1 Introduction 

In Chapter 3, the demand deviation defined by Eq. 24 is used to measure the demand uncertainty 

at the individual building level. It has been demonstrated by experiments that CfD tariff drives 

individual customers to conduct day-ahead planning and real-time tracking in order to reduce 

demand deviation, and ultimately to lower CfD charges. Better demand prediction model, 

accurate weather forecast and occupancy forecast as well as event update are all encouraged by 

CfD. Therefore, CfD can be an effective economic approach to control demand uncertainty at 

individual customer level. Adding the CfD charge to the customers’ utility bills can only be 
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justified if it leads to a reduction of the customers overall cost. This chapter examines the 

effectiveness of CfD at a community level. 

In this chapter, a community microgrid with multiple buildings is considered. Under CfD 

pricing, individual buildings conduct day-ahead planning and real-time tracking controls 

independently, as is discussed in Chapter 3. At microgrid level, the utility provider or the MGCC 

calculates the demand bid to submit to the day-ahead wholesale market, by aggregates the day-

ahead demand plans of individual customers. During the operating day, the utility provider will 

be charged at the day-ahead price and the real-time price for its procurement in the 

corresponding wholesale markets. On the other hand, the utility provider will get paid by 

individual customers for the electricity usage as well as CfD charges. Under the assumption that 

the utility provider is not-for-profit, the customers’ overall payment will be equal to the 

community’s cost in the wholesale markets, with a proper risk measure considered. 

Risk hedging is involved in most, if not all, retail pricing models. The cost for hedging the market 

risks makes a significant portion of the community’s electricity cost [157, 158]. Therefore, 

reducing the market risk contributes to the cost reduction. There are a number of measures to 

characterize risks of portfolio, such as variance, value-at-risk (VaR) and conditional value-at-risk 

(CVaR). Variance is usually employed by mean-variance model with the assumption of normal 

or log-normal distribution. So it can fail to characterize asymmetric risk distribution or 

distributions with fat tails. [159] Also, because it will lead to a non-convex formulation, it is 

challenging to incorporate mean-variance model into stochastic optimizations [160, 161]. VaR 

is a widely used risk measure. For a specific confidence level  and time horizon, VaR of a 

portfolio is defined as the threshold value such that the probability that the loss will not exceed 

this value is  [162]. VaR works well with normal or log-normal risk distribution, but it is not a 
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coherent risk measure because it may lack sub-additivity when applied to non-normal 

distributions [162]. CVaR is a modification of VaR, but it is a coherent risk measure [162, 163] 

because it satisfies the requirements of monotonicity, sub-additivity, homogeneity and 

translational invariance [164]. For a specific confidence level  and time horizon, CVaR of a 

portfolio is defined as the expected loss in the %100)1(  worst cases [162, 163]. CVaR 

measure has been widely adopted in electricity retail price determination, as has been reported 

by [157, 158]. In this dissertation, CVaR is used to measure the risk associated with real-time 

market transaction. 

At a community microgrid level, CfD also creates opportunity for individual buildings to 

collaborate in real-time load tracking in order to reduce CfD charges. In previous studies of 

microgrid, collaboration is seen between DGs and loads [112], between DGs and CES [113], 

among different loads within one building [111], or among competing EV chargers [110]. In 

those cases, collaboration is accomplished by a higher level controller who conducts 

optimization and allocates the resources – this is centralized decision making. The centralized 

load tracking collaboration that is to be demonstrated in this chapter follows the same idea. 

Additionally, this chapter explores a new distributed load tracking mechanism, where decisions 

are made by individual customers who are assumed to be independent and reasonable. 

The rest of this chapter is organized as follows: Section 4.2 details the problems, including a 

description of the subject community model, the CfD tariff calculation, the calculation of the 

community cost function, and the formulation of collaborative load tracking optimizations. 

Section 4.3 describes the prediction model used in the experiments. Section 4.4 presents the 

validation for the building prediction model, the community model and the collaboration model. 
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The results of a base case and a series of experiments are presented in Section 4.5. Section 4.6 

discusses the results and gives concluding remarks. 

4.2 Problem Formulation 

4.2.1 Community Microgrid 

CfD is an electricity retail pricing scheme. It is supposed to be implemented in a retail market 

where one utility provider and multiple customers form a microgrid. Such microgrid can be a 

community or an industrial/commercial campus. Without loss of generality, a community 

microgrid is subject to study in this chapter. 

A typical community microgrid consists of customer loads, DGs, CES, connecting lines, 

controllers (including MGCC and distributed generation and load controllers) and 

communication devices, as illustrated by Figure 2. A simplified community microgrid model is 

studied in this chapter, which only has two buildings and one MGCC (Figure 28). Each building 

has its own LC. LC is an intelligent device that monitors and controls the load it attaches to. 

There are many BASs available in the market for large commercial buildings. A number of home 

automation systems emerge for small residential buildings, in recent years, such as Synco from 

Siemens Building Technology. Existing products may be programmed with only simple decision 

making algorithms. Those with more sophisticated functionalities and stronger computation 

power can be expected in the near future [165]. The following four critical features of LCs are 

emphasized in this study: 
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 Communication. LCs are able to communicate with MGCC to get information 

such as price and weather forecast, and pass demand schedules to MGCC. LCs 

can also communicate to each other for collaborative demand management.  

 Monitoring. LCs are connected to meters, sensors and device controllers in the 

buildings. The consumption levels, as well as operation status, of all energy 

consuming devices are continuously monitored. 

 User interface. LCs have human-machine interface that allows users to input 

personal preferences and schedules. 

 Decision making. Most importantly, the day-ahead planning and real-time load 

tracking optimization algorithms are programmed in LCs. LCs are able to decide 

the demand schedules to submit day-ahead, as well as control action sequences in 

real-time. During real-time, LCs may also determine whether to conduct demand 

transaction with other buildings, and, if yes, what the optimal transaction 

schedule would be. 

 

Figure 28 A simplified community microgrid 
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MGCC is an automatic central controller for microgrid operation and energy management. 

Generally, it coordinates load, DG production, CES charging and discharging, power quality 

across the microgrid and the transition between “grid-tied” and “island” modes. In most 

microgrid designs, MGCC also functions as the representative of the entire microgrid on the 

utility grid operation and activities in electricity markets. In this study, the MGCC’s market role 

is emphasized. It can be seen as the representative of the utility provider, who is responsible for 

collecting demand schedules from all the customers, making forecasts for microgrid demand 

schedules, submitting demand bids in day-ahead wholesale market, and settling the demand 

deviation in real-time wholesale market. 

4.2.2 Retail under CfD 

Under CfD pricing, the bill that each customer pays for energy consumption during each hour 

is split into two parts. The first part is the energy cost, which is calculated by the customer’s 

energy usage during the hour multiplying by the energy price of that hour. The hourly price is 

announced before customers submitting demand schedules day-ahead. The second part is the 

CfD charge, which is proportional to the squared deviation between planned and actual demand 

in that hour. The coefficient in CfD charge calculation is called CfD rate, and is assumed to be 

given here. The overall bill is obtained by summing up all hourly bills for a billing cycle (e.g. a 

day or a month). The operation of individual building under CfD has been studied in Chapter 

3. In this chapter, the operation of multiple buildings within a community microgrid is subject 

to test. 

Regarding the hourly price announced day-ahead, three assumptions are made for the utility 

provider: 
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Assumption 1: It is assumed that over a long period of time, the cost of purchasing electricity 

from wholesale market is fully shared by all customers, and that the income from sale is fully 

used by the utility provider to cover the cost. Proper risk hedging cost is considered as part of 

the utilities’ cost. For those utility companies that are seeking for profit, the customers’ total bill 

can be calculated by adding a certain level of profit to the cost - it will not change the conclusion 

on CfD’s effectiveness. 

Assumption 2:  The utility provider only operates one microgrid. Therefore, it is assumed to be 

a price taker in both day-ahead and real-time markets. This assumption is valid because a 

microgrid is supposed to have a much smaller load and generation capacity compared to the 

load and capacity on the grid that is operated by an ISO. 

Assumption 3:  CfD requires an accurate hourly retail price to be given prior to customers 

submitting demand schedules. Therefore, it is assumed that the utility provider is able to 

accurately predict the day-ahead wholesale price. According to many studies, day-ahead 

wholesale price prediction can be very accurate [166-169]. With this assumption, the utility 

provider will face price risk in the wholesale market. However, price risk is inevitable to the 

utility provider, no matter what retail pricing is implemented, except RTP. This dissertation does 

not focus on price risk mitigation, so the risk hedging cost of the utility only includes the cost of 

quantity risk. 

To summarize, the steps of the day-ahead and real-time operation under CfD are as follows: 

Day-ahead 
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 Step 1: The utility provider predicts the day-ahead wholesale price, and 

announces hourly retail price; 

 Step 2: Each building conducts day-ahead planning optimization 

(detailed in Chapter 3), and submits demand schedule for the 

next operating day; 

 Step 3: The utility provider calculates the demand bid by aggregating the 

demand schedules submitted by all the customers; 

 Step 4: After the day-ahead wholesale market is cleared, the demand 

schedule that the utility provider submitted becomes a financially 

binding contract. Meanwhile, the demand schedule submitted by 

each customer is also binding under CfD;  

Operating day (each hour) 

 Step 1: Each building executes its most updated control action 

sequences; 

 Step 2: Each building updates the weather and occupancy forecasts as 

well as system responses, and then conducts real-time tracking 

optimization (detailed in Chapter 3). It then decides the control 

action sequence for the remaining hours of the day. Collaborative 

load tracking optimization/negotiation is also performed at this 

step; 

Bill generation 
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  Each building’s energy bill is calculated based on the submitted 

demand schedule, actual energy consumption and hourly retail 

price. 

 

4.2.3 Community Cost Function 

Consider the hourly cost of the community at time t , tY . It is formulated as the summation of 

three elements: the procurement the cost in day-ahead market ( tDAU , ), the procurement cost in 

real-time market ( tRTU , ), and the risk hedging cost ( R ), as shown by Eq. 32 

 RUUY tRTtDAt  ,,  Eq. 32 

The two procurement cost terms are defined by Eq. 33 and Eq. 34, respectively. 

 I
ttDAtDA PU ,,   Eq. 33 

  I
t

II
ttRTtRT PPU  ,,   Eq. 34 

where, 

IP : the planned demand of the community ( I
tP is the element 

associated with time step t ); 

IIP : the actual demand of the community ( II
tP is the element 

associated with time step t ); 
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DA : the day-ahead LMP ( tDA, is the element associated with time step 

t ); 

RT : the real-time LMP ( tRT , is the element associated with time step 

t ); 

This dissertation focuses on mitigating the quantity risk that is caused by demand uncertainty. 

Therefore, the risk in real-time market is considered. The risk hedging cost is hence formulated 

as the CVaR of the real-time procurement cost multiplied by a user specific risk parameter, 

(Eq. 35) [158]. 

 )( RTUCVaRR   Eq. 35 

Use  uf  and  uF to represent the probability distribution function and cumulative distribution 

function of RTU , respectively. Then )( RTUCVaR can be expressed as: 

  









duuufUCVaR RT

1

1
)(  Eq. 36 

where,  is the VaR of RTU , which can be obtained by solving Eq. 37. 

    F  Eq. 37 

4.2.4 Collaborative Load Tracking 

In the original design of community microgrid, each LC only exchanges price and demand 

schedules with MGCC. LCs conduct day-ahead planning and real-time load tracking 

optimizations independently, based on the forecasts of the weather and their own occupancy. 
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The optimization objectives are the building’s total cost, including energy cost, CfD charges as 

well as penalties for thermal comfort violation and change of action. 

It is possible that certain unexpected events (e.g., occupancy surge) occur in an operating day 

without any provisions for them in the day-ahead plan. This can cause serious demand deviation 

and hence significant CfD charges, even with the building owner having the ability of adjusting 

the occupancy forecast several hours before the event, the real-time load tracking may still be 

inadequate to lower CfD charges through any proper control actions. Meanwhile, another 

building may suffer from elevated CfD charges due to demand lower than the planned level. If 

these two buildings are aware of the problems facing the other, they may be willing to collaborate 

via what we called “demand transaction” mechanism. The building that is about to experience 

an occupancy surge (the buyer) may want to “buy” electricity from the other building, instead 

of buying from the utility provider. This will keep its demand in check, as measured by the utility 

provider. On the other hand, the building whose demand is lower than planned (the seller) may 

want to draw more than enough electricity from the utility, and “sell” the excessive amount to 

the buyer, so that the seller’s demand is close to the planned level. In all, the demand transaction 

lowers the CfD charges of both buildings. 

The collaborative load tracking can be implemented in many ways. In this dissertation, the 

author explores two simplest designs of tracking collaboration mechanisms – the centralized 

load tracking and the distributed tracking with fixed transaction rates. 

4.2.4.1. Centralized Load Tracking 

In the previous design of community microgrid, MGCC is not responsible for any planning or 

tracking optimization. Individual LCs perform day-ahead planning and real-time tracking 
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controls. A minor modification, which turns MGCC responsible for real-time tracking of all the 

buildings, can enable collaborative load tracking. 

Consider the case of two-building community. The buildings are annotated by A and B. Assume 

that MGCC has, for each building, the same load prediction model as is used by the LC. Then, 

MGCC solves, in real-time, an optimization problem with respect to the control actions of all 

the buildings and the demand transactions for the remaining time of the planning horizon, 

minimizing a cost function that integrates CfD charges, thermal comfort violation penalty and 

change of action costs, for all buildings. The optimization problem is formulated as follows:  

The Centralized Real-time Tracking optimization: At time step k  
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where, 

H

kt

IIA
tx



,  and 
H

kt

IIB
tx



, : the vectors of thermostat setpoint schedule obtained at time step 

t for the remainder of the time horizon ( IIA
tx , and IIB

tx , are the 

elements associated with time step t , for building A and B, 

respectively); 

E : the vectors of electricity A purchases from B ( tE is the element 

associated with time step t ). The negative value means 

transaction is from B to A; 

IAP ,  and IBP , : the vectors of planned consumption for the next day ( IA
tP ,  and 

IB
tP , are the elements associated with time step t , for building A 

and B, respectively); 

AF  and BF : the function of the prediction model for building A and B, 

respectively; 
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IIAP ,  and IIBP , : the vectors of actual consumption conditioned on the realization 

of weather and occupancy,  ( IIAP ,  and IIBP , are the elements 

associated with time step t , for building A and B, respectively); 

IIAT ,  and IIBT , : the vectors of actual average room temperature ( IIA
tT , and IIB

tT ,  

are the elements associated with time step t , for building A and 

B, respectively); 

IAx ,  and IBx , : the vectors of thermostat setpoint planned schedule ( IA
tx , and 

IB
tx , are the elements associated with time step t , for building A 

and B, respectively); 

IIAu ,  and IIBu , : the vectors of actual violations of upper bound of comfort range 

( IIA
tu , and IIB

tu , are the elements associated with time step t , for 

building A and B, respectively); 

IIAl ,  and IIBl , : the vectors of actual violations of lower bound of comfort range 

( IIA
tl

, and IIB
tl

, are the elements associated with time step t , for 

building A and B, respectively); 

k̂ : the vector of forecasted weather and occupancy, updated by time 

step k  ( k
t̂ is the element associated with time step t ); 

uT  and lT : the upper and lower bound of thermal comfort range, 

respectively; 
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uE  and lE : the upper and lower bound of demand transaction, respectively; 

ux  and lx : the upper and lower bound of setpoint, respectively. 

Eq. 38 is the new objective function. It is different than the previous version (Eq. 19) in two 

ways. First, the new function is the summation of the objectives of real-time tracking 

optimization for both buildings. Second, in the new objective function, the actual demands used 

in CfD charge calculation are the actual grid demand, which, for the buyer of the demand 

transaction, equals to actual demand minus demand transaction quantity ( t
IIA

t EP , ), and for the 

seller, it equals to the actual demand plus demand transaction quantity ( t
IIB

t EP , ). Most of 

constraints are the same as in previous individual tracking optimization, except that a new 

boundary constraint is added to demand transaction quantity (Eq. 43). 

With centralized load tracking, MGCC performs the above optimization and determines the 

setpoint sequences for both buildings as well as the demand transaction, if any, between them. 

At the end, the bill for each building ( AZ  and BZ ), is the energy cost based on actual 

consumption plus CfD charge based on actual grid demand, as shown in Eq. 46 and Eq. 47. 
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4.2.4.2. Distributed Tracking Control 
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In contrast to the centralized tracking conducted by MGCC, distributed tracking is performed 

by individual LCs. When LCs perform tracking optimization during real-time, the demand 

transaction is just another decision variable. We assume that each demand transaction has a 

corresponding financial transaction with a predetermined fixed rate and variable rate. For 

example, given that, during time step t  a demand transaction of quantity tE  is executed, the 

corresponding cost of this transaction becomes as follows: 

 










0

00

ttvf

t

t EfECC

Eif
Y  Eq. 48 

where, 

fC : the fixed cost per transaction; 

vC : the variable cost per KWh demand transaction. 

During each hour of the operating day (except the first hour – when no tracking is needed), each 

LC solves a real-time tracking optimization problem to determine the setpoint sequence and 

how much demand it needs to purchase from the other building for the remaining period of the 

operating day. The following real-time tracking optimization model determines the LC’s 

proposal on demand transaction.  

The Distributed Real-time Tracking optimization: at time step k  

Decision variable: 
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Minimize: 
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Having solved this optimization, if the subject LC decides that a demand transaction is needed, 

it will make a proposal to the other building. The LC of the other building will then perform a 

real-time tracking optimization, formulated as follows: 

The Distributed Real-time Tracking optimization: at time k  
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Minimize b: 
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Subject to: Eq. 48, Eq. 50, Eq. 51 and Eq. 53  

In the above real-time tracking optimization, the transaction schedule ( H

kttE


) is given by the 

proposal and the sale to the first building is included in the objective function as a cost reduction 

term (Eq. 54). The second building will only accept the transaction proposal if it will not increase 

its optimal objective value, i.e. 
IIb

kt
IIa

kt GG min,min,   . 

The above real-time load tracking formulation has a sliding-window style, so that, for a given 

sequence of actions determined from the above models, only the actions for the immediate next 

time step are executed. Then all the forecasts and system responses are updated, load tracking 

and collaboration restart for the time window that has shifted one time step forward. 

4.3 Microgrid Model 

4.3.1 The Hotel 

We consider a community with an office building and a hotel building. Each of these two 

buildings is represented by an EnergyPlus simulation model. As has been explained in Section 

3.3, this study uses existing and validated simulation models rather than real buildings for data 

collection and testing, because real buildings are not readily available for our study. Simulation 

models have some advantages in terms of inexpensive data collection and sufficient data 

variation. The simulation models are developed and validated by the National Renewable Energy 

Laboratory for a “Reference Medium Office” building and a “Reference Small Hotel” building 
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[151]. The basic information about the office model and its geometry have been presented in 

Table 10 and Figure 13, respectively. The basic information about the small hotel model is 

summarized in Table 14, and its geometry is illustrated in Figure 29. 

Table 14 Summary of the demonstration building (Reference Small 
Hotel) 

Building Location Chicago, IL 
Building Function Type Hotel 

Floor area 4,014 m2 (43,200 ft2) 
Floor number 4 

Number of conditioned zones 67 
Window-to-wall ratio 0.109 

HVAC system 

PTAC for guest rooms, PSZ-AC for 
common areas, Electrical unit heaters 
in stairs and storage areas. 
Economizers on common area 
systems per 90.1-2004. No 
economizers on guest room PTACs 

 

 
Figure 29 Small hotel model - building geometry 

Hotels generally have different occupancy patterns than an office. The assumed average 

occupancy ratio profile, together with standard deviations, are plotted in Figure 30. 

Similar to the study with the office model in Chapter 3, a NARX network model is developed 

to approximate the simulated hotel system. After the same procedure of data generation and 

training, the NARX model with 4 nodes on the first hidden layer, 3 nodes on the second hidden 
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layer and 2-step delay produces the best prediction results. This network is denoted as NARX-

H04H03D02. The validation of this NARX network will be detailed later in Section 4.4.1. 

 

Figure 30 Building occupancy ratio profile (small hotel) 

4.3.2 The Event 

In testing collaborative load tracking, in order to ensure that load tracking control without 

demand transaction is inadequate to reduce CfD charges and then that demand transaction is 

necessary, EV charging is added as an extra load associated with the event. It is assumed that, 

during the event, the occupancy level reaches to the maximum (i.e., the occupancy ratio equals 

to 1), and EV charging level is 80% of its capacity (Figure 31). The capacity of the charging 

facility is assumed to be 40 KW, therefore the EV charging load during the event is 32 KW. 
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Figure 31 Exemplary occupancy and EV charging profile (office, 
event 14:00-18:00) 

4.4 Validation 

4.4.1 The Prediction Model 

The same methods as detailed in Section 3.3 are involved to train an ANN model that 

approximates the Reference Small Hotel EnergyPlus simulation model. A NARX network with 

4 nodes in the first hidden layer, 3 nodes in the second hidden layer and 2-step delay produces 

the best prediction results in both hourly and day-ahead prediction tests. This network is denoted 

as NARX-H04H03D02. The evaluation matrices of this network are summarized in Table 15 

and Table 16. 

NARX-H04H03D02 network predicts hotel hourly demand with 5.3 KW error (4.6%), in 

average. The prediction explains 96% of the variation of the building demand, and the error 

relative standard deviation is about 6.2%. The day-ahead load prediction has a slightly larger 

error. Both prediction results are acceptable compared to those studies in literatures [36, 38, 39]. 

The room temperature predicted by the NARX network model has about 0.9 °C errors (3.1%), 
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which is greater than the error of temperature prediction of the office NARX model (0.7 °C), 

and also greater than those in the literatures (0.1~0.6 °C) [152-154]. For the same reasons as 

have been discussed in Section 3.4.1, this prediction error is considered acceptable. Figure 32 

and Figure 33 plot the load and room temperature comparison between model prediction and 

EnergyPlus simulation. 

Table 15 NARX-H04H03D02 network demand prediction 
evaluation 

Test MAPE RMSE CV R2 

1-Step 0.046 5.3 0.0619 0.9557 

24-Step 0.053 6.0 0.0695 0.9387 

 

Table 16 NARX-H04H03D02 network room temperature 
prediction evaluation 

Test MAPE RMSE CV R2 

1-Step 0.031 0.9 0.0388 0.8710 

24-Step 0.031 0.9 0.0378 0.8448 
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Figure 32 NARX-H04H03D02 network 1-step prediction 

 

Figure 33 NARX-H04H03D02 network 24-step prediction 

4.4.2 Control Optimization of the Community 
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In Section 3.4.2, the individual building control optimization is validated by testing the building’s 

demand deviation sensitivity to various CfD rates. The result shows building demand deviation 

declines as CfD rate increases. This validates the control optimization, as the greater CfD rate 

puts more weight on CfD charges than on penalties of thermal comfort violations and change 

of actions, in the objective function. It drives the building harder to track the demand schedule. 

To validate the control optimization in the context of a community, a similar sensitivity test is 

conducted. The community risk hedging cost, instead of demand deviation, is compared under 

various CfD rates ranging from 0.005 to 0.03 $/KW2. The reason for comparing the risk hedging 

cost, rather than the overall cost, is that CfD rate mainly affects load tracking, and the impact is 

reflected by lower demand uncertainty, and hence lower quantity risk. Figure 34 presents the test 

result with all settings the same as in the base case detailed later in Section 4.5.1.1. According to 

this result, greater CfD rate drives the risk hedging cost down. This result perfectly agrees with 

the demand deviation sensitivity test on individual buildings (Figure 17). Therefore, it validates 

the community control optimization. 

 

Figure 34 Risk hedging cost under different CfD rates 
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4.4.2.1. Centralized Tracking 

CfD charge is the driving force for individual buildings to conduct real-time tracking control. In 

the case where collaborative tracking control is necessary, it is expected to be sensitive to the 

CfD rate. Hypothetically, under greater CfD, the building that is experiencing an unexpected 

demand surge has more motivation to buy from another building, so more demand transaction 

must be conducted. The following test is designed to examine the sensitivity of collaborative 

tracking to various CfD rates. Consider the same scenario as will be detailed in Section 4.5.2.1, 

where the demand of the office building will rise significantly due to unexpected events, and the 

MGCC decides demand transaction will be needed to mitigate the resulting spike of CfD charge. 

Under CfD rates ranging from 0.005 to 0.03 $/KW2, the demand deviation of the two buildings 

is illustrated in Figure 35. The corresponding total transactions are plotted in Figure 36. 

 

Figure 35 Demand deviation with central tracking control under 
different CfD rates 
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Figure 36 Demand transaction with centralized tracking control 
under different CfD rates 

Apparently, when CfD rate is low (0.005 $/KW2), the centralized tracking control decides to 

perform 130 KWh demand transaction. Meanwhile, the office building has demand deviation as 

high as 17.0 KW, and the hotel demand deviation is as low as 15.6 KW. As CfD rate increases, 

the centralized tracking control determines that more demand transaction becomes required, 

and the office demand deviation is declining while the hotel demand deviation is increasing. 

Until CfD rate reaches 0.02 $/KW2, the total demand transaction is 150 KWh and the demand 

deviations of the two buildings are at similar levels (about 16.4 KW). Beyond this point, the 

greater CfD rate will not change the central controller’s decision about tracking control and 

demand transaction. 

This result demonstrates the theory that the centralized tracking control is sensitive to CfD rate, 

when CfD rate is lower than or equal to 0.02 $/KW2. Therefore, the proposed centralized 

tracking control optimization is validated. 

4.4.2.2. Distributed Tracking 
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When load tracking controls and demand transaction are determined by distributed 

optimizations and communication between the involved buildings, the price sensitivity becomes 

more complicated. Two types of costs are under consideration – the CfD charge and demand 

transaction cost (revenue for the seller). When CfD rate is high, the buyer is motivated to buy 

more electricity from the seller in order to mitigate the demand surge due to unexpected events, 

as long as the transaction cost is lower than CfD charge; however, high CfD rate also lowers the 

possibility that the seller will accept the proposed transaction because it will increase the seller’s 

CfD charge too. The rate for demand transaction cost also affects the tracking control. In this 

study, the demand transaction cost is assumed to have two rates – the rate for fixed cost, i.e. fC

in Eq. 48, and the rate for variable cost, i.e. vC . With lower transaction rates, the buyer is willing 

to propose demand transactions with larger quantity, but whether the seller will accept the 

proposal is determined by the comparison between the increased CfD charge and the revenue 

from selling demand. 

Figure 37 shows the total demand transaction under different combinations of fixed and variable 

cost rates, where CfD rate is assumed to be 0.01 $/KW2. When vC equals to 0.4 $/KWh (the 

red bars), the buyer tends to propose more transaction as fC decreases from 16 to 4 

$/transaction; then the total transaction rises. When fC is lower than 1 $/transaction, the seller 

starts to reject transaction proposals; then the total transaction reduces as well. When vC is 0.8 

$/KWh (the dark blue bars), the buyer starts to propose demand transactions when fC is greater 

than 8 $/transaction. When vC is 0.2 $/KWh (the green bars), the seller starts to decline demand 

transaction proposals when fC is lower than 8 $/transaction and when vC is 0.1 $/KWh (the 
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yellow bars), the seller starts to decline demand transaction proposals when fC is lower than 16 

$/transaction. 

 

Figure 37 Total demand transaction under different fixed and 
variable cost rates 

Figure 38 shows the sensitivity of the demand transaction to CfD rate under different 

combinations of fixed and variable transaction rates. Comparing the plots in each row, it is clear 

that with a lower variable rate ( vC ), the demand transaction will be performed under lower CfD 

rate. Similarly, when comparing the plots in each column, the demand transaction is shifted to 

lower CfD rate when the fixed transaction rate ( fC ) is lower. 
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Figure 38 Demand transaction with distributed tracking control 
under different CfD rates 

The sensitivity test result proves the previous hypothesis. The distributed load tracking control 

is hence validated. In the following studies, the CfD rate is assumed to be 0.01 $/KW2, demand 

transaction fixed cost rate is 8 $/transaction and variable cost rate is 0.4 $/KWh. 

4.5 Experiments 

CfD pricing is designed to minimize the demand uncertainty of individual customers. This is 

accomplished by incurring charges on the deviation between planned and actual demand. 

Experiments in Chapter 3 have shown that, under CfD pricing, individual buildings are 

encouraged to perform day-ahead planning and real-time load tracking control optimizations. 

The two-stage control effectively reduces the building’s demand deviation. In the case where 
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some unexpected event may cause significant surge of demand, the load tracking control is able 

to largely mitigate the demand deviation caused by the event, as long as the forecast is updated 

in a timely manner. In this chapter, the performance of CfD is studied at the community level. 

It is subject to test whether demand deviation reduction of individual customers generates saving 

in the overall cost of the community over a long period of time. If cost saving is achieved, its 

sensitivities towards wholesale market condition and customers’ occupancy forecasts are also 

evaluated by a series of experiments. Additionally, two collaborative load tracking mechanisms 

are demonstrated in this section. 

4.5.1 Community Cost 

4.5.1.1. The Base Case 

In the base case, the community microgrid is connected to the NYISO’s utility grid. Every day 

the utility provider submits demand bid for the next day into NYISO day-ahead wholesale 

market based on the demand predictions that all buildings provide. This day-ahead demand 

schedule will be charged at day-ahead price. During the next day, the utility provider settles the 

demand deviation in the real-time wholesale market. The NYISO day-ahead and real-time prices 

are plotted in Figure 39, for July of 2013. 
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Figure 39 NYISO electricity wholesale price 

As shown in Figure 39, NYISO day-ahead price ranges between 0 and $0.3/KWh, having an 

apparent daily pattern. The real-time price, most of the time, is close to the day-ahead price, but 

substantial spikes exist. The magnitude of the real-time price spikes can reach as high as 

$1.9/KWh. Negative real-time price is also observed, which is most likely contributed by the 

use of renewable generations, because renewable generation sometimes may have negative cost 

due to tax credit and other incentives. In the end, the real-time price is significantly more volatile 

than the day-ahead price. 

If CfD retail rate structure is implemented, individual buildings will use the day-ahead price to 

plan for the demand schedule. In fact, the day-ahead retail price that the utility provider 

announces is assumed to be proportional to the day-ahead wholesale price. Since the difference 

between day-ahead retail price and wholesale price is small, the planning result (including the 

demand and control action schedules) will not be significantly altered by this assumption. Figure 
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40 illustrates the procurement costs of the community under CfD in both wholesale markets 

(the CfD rate is assumed to be 0.01 $/KW2).  

 

Figure 40 Procurement costs of the community under CfD 

The mean and standard deviation of the hourly procurement cost in the real-time market is -

$0.09 and $1.75, respectively. The total cost in the day-ahead market is $7,744.39, and the total 

cost in the real-time market is -$66.01. Assuming normal distribution, the CVaR of hourly 

procurement cost in the real-time market at confidence level of 0.95, i.e., )(05.0 RTUCVaR , is equal 

to $3.51. Assuming that the risk parameter (  ) is 0.3, the risk hedging cost in each hour, R , is 

then equal to $1.054. Then the risk hedging cost for the month is $784.08. The overall cost of 

the community is $8,462.47. The calculation is summarized in Table 17. 

Table 17 Overall cost calculation sheet 

 Flat Rate DAP CfD 

Hourly Procurement 
Cost in Real-time 

Market ($) 

Mean 0.04 -0.05 -0.09 

Std. 2.73 2.30 1.75 

CVaR0.95 5.67 4.69 3.51 

Day-ahead Market 
Procurement Cost ($) 

8,585.69 7,744.39 7,744.39 
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Real-time Market 
Procurement Cost ($) 

26.64 -37.57 -66.01 

Risk Hedging Cost ($) 3.0  1,264.81 1,047.88 784.08 

Total Cost ($) 9,877.14 8,754.69 8,462.47 

 

Figure 41 Hourly procurement cost in real-time market under 
different retail tariffs 

If flat rate is implemented in the retail market, individual buildings will not conduct planning 

optimization. Instead, they will submit their demand schedules predicted using constant control 

actions (setpoint). If only day-ahead hourly price is implemented without CfD charge, individual 

buildings will perform planning optimization, with a similar formulation to Eq. 19~Eq. 22, but 

they will not conduct tracking control. It is hereby denoted as “DAP”. Under CfD rate, 

individual buildings will perform both planning optimization and load tracking controls. Figure 

41 plots the hourly procurement cost under these three tariffs. The calculation of overall cost is 

detailed in Table 17. The result is plotted in Figure 42. 
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Figure 42 Community overall cost under different retail tariffs 

According to the results in Table 17 and Figure 42, the real-time cost is negligible in all scenarios. 

This is because the deviation of the demand is nearly normally distributed, with mean close to 

0. Therefore, the expected cost in the real-time market will be close to 0. The day-ahead cost 

makes the largest portion of the overall cost, followed by the risk hedging cost. Compared to 

the flat rate, DAP drives the individual buildings to perform day-ahead planning, and as a result, 

the day-ahead cost is reduced by $841.31 (about 9.8%). DAP does not enforce tracking control, 

so the risk hedging cost is similar to that under flat rate. CfD, however, encourages both day-

ahead planning and real-time tracking. Therefore, the day-ahead cost is the same as under DAP. 

But CfD reduces the risk hedging cost by $480.72 (about 38.0%, compared to the flat rate 

scenario). In all, the total cost is reduced by $1,414.67 (about 14.3%). 

4.5.1.2. Impact of Occupancy 

In the base case, the buildings are operating in ordinary days, i.e. no unexpected events occur. 

As has been illustrated in Chapter 3, building occupancy forecast is crucial for the controls under 

CfD. CfD pricing promotes better occupancy forecasts and forces individual buildings to update 

occupancy forecast in order to minimize the demand deviation caused by unexpected events. At 
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community level, the cost is also sensitive to the occupancy forecast error. As shown by the box 

plots in Figure 43, three levels of occupancy forecast error are tested. When both buildings have 

high forecast errors, the risk hedging cost is high, resulting in a high overall cost (Figure 44). 

This is reasonable because occupancy is a major source of uncertainty other than weather. All 

the planning and load tracking (if applies) are based on such forecasts. Even if occupancy 

forecasts are updated but the updated forecasts are still inaccurate, load tracking is not able to 

reduce the demand deviation as expected. 

 

Figure 43 Occupancy forecast error 
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Figure 44 Community overall cost under different occupancy 
forecast errors 

Figure 45 shows the impact of unexpected events and occupancy forecast updates on the cost. 

If a building experiences 2 unexpected events during the month of July, it is considered as a low 

event frequency month, denoted as “Low Event Freq.” in Figure 45. If 6 unexpected events 

occurred, it is a high event frequency month, denoted as “High Event Freq.”. Likewise, the 

scenarios where the occupancy forecast is updated accordingly 2 hours before unexpected event 

are denoted by “w/ Update”, and “w/o Update” indicates the scenarios where the occupancy 

forecast update is not conducted. Apparently, with similar forecast error levels, CfD is capable 

of reducing the risk hedging cost with forecast update, especially in the high event frequency 

case. 
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Figure 45 Cost comparison on event and occupancy forecast 
updates 

4.5.1.3. Impact of Wholesale Market 

CfD is able to reduce the community cost, because it forces individual buildings to maintain a 

predictable demand profile so that the individual demand uncertainty is reduced, then the overall 

demand uncertainty of community can be minimized. As a result, the community is able to rely 

more on less risky day-ahead market, rather than riskier real-time market. When real-time 

electricity price is more volatile, CfD offers cost reduction for the community. However, if the 

real-time price is not volatile, cost reduction by CfD may not be as exciting. 

The wholesale prices for the month of July 2013 in three ISOs, including NYISO (which is also 

shown in Figure 39), PJM and MISO, are plotted in Figure 46. It seems that the real-time price 

in NYISO is substantially more volatile than those in PJM and MISO. The real-time and day-

ahead prices in MISO are very close to each other and are the least volatile. Figure 47 shows the 

comparison of costs under flat rate and CfD, in the three regional markets. 
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Figure 46 Electricity wholesale prices of different ISOs 

According to Figure 47, using the costs under flat rate as references, CfD reduces the monthly 

cost by $1,414.67 (or 14.3%) in NYISO, while the cost reduction is $ 308.50 (or 4.7%) in PJM 

and $ 162.31 (or 3.7%) in MISO. In NYISO, 34% cost reduction is contributed by risk hedging 

cost and 66% by day-ahead cost, while in PJM and MISO, almost all cost reduction is from day-

ahead cost reduction. This suggests that the day-ahead planning is able to reduce day-ahead cost, 

but load tracking control can reduce risk hedging cost only when the real-time price is volatile. 
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Figure 47 CfD cost reduction in different ISOs 

4.5.2 Collaborative Load Tracking 

Under CfD pricing, individual buildings are driven to conduct load tracking controls in order to 

minimize the CfD charges. However, load tracking control may have constraints. In previous 
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increases significantly due to unexpected events, load tracking may push thermostat setpoint to 
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will be justified as long as the cost for purchasing “load tracking capacity” is smaller than the 

potential saving in CfD charges. In this dissertation, the author investigates two basic 

mechanisms of tracking collaboration: the centralized and the distributed load tracking. 

4.5.2.1. Centralized Load Tracking 

The centralized load tracking assumes that individual buildings outsource their load tracking 

controls to a central controller (MGCC). MGCC receives the demand schedule planned day-

ahead and real-time update from each building. Tracking optimization with respect to the 

control actions of all the buildings can be performed based on the aggregated information. The 

optimal demand transactions can be determined at the same time. The objective function of the 

centralized tracking control is to minimize the CfD charges of all the buildings. Section 4.2.3 has 

detailed the optimization formulation for a simplified community microgrid with a medium 

office building and a small hotel building. 

In the case study, the office building is assumed to be experiencing an unexpected event, as 

illustrated in Figure 48. The event is between 14:00 and 18:00. It was not accounted for when 

making the day-ahead plan, but the occupancy forecast is updated 3 hours before the event (i.e., 

at 11:00). An EV charging load of 32 KW during the event is also assumed. EV charging is not 

included in the demand forecast until the occupancy forecast is updated at 11:00. During non-

event hours, EV charging is assumed to be zero (Figure 31). 
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Figure 48 Office occupancy level with an unexpected event and 
forecast update 

Since, the unexpected event together with corresponding EV charging causes significant increase 

of demand. It is not possible for the building operator to use only thermostat control to mitigate 

the demand surge and reduce the potential CfD charge. Figure 49 shows the result of centralized 

load tracking. The red curves show the demand profiles determined from the day-ahead 

planning. During the operating day, if only non-collaborative load tracking is performed, the 

office demand will deviate from its planned schedule by as much as 64 KW during the event 

(the blue curve). By collaborative load tracking, the centralized tracking control is able to lower 

the demand deviation to about 34 KW (the green curve). The 30 KW difference is covered by 

demand transaction from the hotel to the office (the bottom panel of Figure 49). 
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Figure 49 Load profiles with centralized collaborative load tracking 
(demand transaction) 

It is noticed that the centralized load tracking does not necessarily create demand transaction in 

one direction only, as the negative transaction is observed at 22:00. In other words, transferring 

electricity from the office to the hotel during those periods results in minimal overall CfD 

charges, as determined by the MGCC. 

With centralized load tracking, the cost reduction effect is significant. As shown in Figure 50, 

the total billed cost of the community is reduced by $50 (about 5.6%). Although, the office 

building is able to reduce its own CfD charge by $101 (about 59%) and reduce billed cost by 

$132 (about 21%), the hotel’s cost is increased, due to greater CfD charge. This is not a fair 

result, because the office’s failure to plan on the event is the cause of high CfD charge. The hotel 
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shares the consequence by paying more CfD charge while receiving no benefit. This is certainly 

not a sustainable solution. A financial transaction should associate with any demand transaction. 

It is possible for the office to pay the hotel a share from the saving in CfD charge. But under 

the centralized load tracking mechanism, bilateral financial transactions will not influence the 

tracking result. 

 

Figure 50 Billed cost under centralized load tracking 

4.5.2.2. Distributed Load Tracking 

As has been discussed in Section 4.5.2.1, centralized load tracking may result in an unfair cost 

increase in the building that does not cause the high CfD charge. To avoid such unfairness, it is 

necessary to associate any demand transaction with the proper financial transaction, so that the 

participant that is not the source of major risk, can benefit from the tracking collaboration, or at 
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least, will not bear any extra cost. A distributed load tracking mechanism is designed to 

accomplish that. With distributed load tracking, individual LCs perform their own tracking 

optimization independently. When one LC (the buyer, e.g. the office) finds it necessary to buy 

electricity from another building (the seller, e.g. the hotel), rather than from the utility provider 

in order to avoid the high CfD charge, the buyer’s LC will make a transaction proposal to the 

seller’s LC. This proposal includes the time and quantity of electricity that the buyer is willing to 

buy. Then the seller’s LC decides whether to accept this proposal by comparing the optimal 

objective value if the proposed demand transaction is carried out with the one without demand 

transaction. If the proposed transaction generates an even better optimal objective value, then 

the proposal is accepted, otherwise, it will be rejected and no demand transaction will be carried 

out in this time step. The tracking control optimizations are formulated as detailed in Section 

4.2.3.2. It is assumed that there are fixed cost and variable cost associated with demand 

transactions (Eq. 48), and the rates of these two costs are given. 

In the case study, the fixed cost of demand transaction is assumed to be $8/transaction, and the 

variable cost rate is assumed to be $0.4/KWh, the occupancy and weather conditions are the 

same as have been studied in Section 4.5.2.1. The distributed load tracking result is presented in 

Figure 51. Four demand transactions are performed between the two buildings, all of which 

occur during the event. A total of (35+30+30+40=) 135 KWh electricity is purchased from the 

hotel to the office. Those demand transactions help the office reduce the demand to the grid 

(from blue curve to green curve), but raise the demand of the hotel. In terms of cost, on one 

hand, the demand transactions substantially reduce the office’s CfD charge, but incur some 

transaction cost. The overall cost of the office is reduced by the tracking collaboration. On the 

other hand, the hotel’s CfD charge is increased, but the increased cost is compensated by the 
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revenue from demand transaction (Figure 52). The total billed cost of the community is reduced 

by $9 (about 1%). 

 

Figure 51 Load profiles with distributed collaborative load tracking 
(demand transaction) 



143 
 

 
 

 

Figure 52 Billed cost under distributed load tracking 

4.6 Discussion 

Electricity wholesale markets usually have day-ahead and real-time elements. The electricity price 

in day-ahead market is less volatile, therefore day-ahead market is less risky. As a contrast, the 

real-time price can be very volatile and poses significant risk to utility providers who act as buyers 

in the electricity wholesale markets and as sellers in electricity retailing. With conventional flat 

rate or TOU rate, the customers in retail markets are not adequately exposed to the wholesale 

market dynamics. Many believe that such disconnection between the wholesale and the retail is 

the primary cause of unusual price spikes. The CfD rate structure proposed in this dissertation 

is a retail pricing mechanism that promotes fair share of wholesale market risks among customers 

and utility providers. The reasoning is that individual customers are more capable than any others 
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of understanding and predicting their demand as well as tracking such demand schedule during 

real-time. If there is a tariff that can ensure all customers maintain predictable consumption 

behavior, the aggregated demand of a community would be predictable as well. Then the 

community may rely more on a less risky day-ahead market to purchase electricity, and less on 

the riskier real-time market. The community’s overall cost will ultimately be reduced. 

In Chapter 3, it has been demonstrated how individual building LCs are able to perform day-

ahead planning and real-time load tracking, under CfD pricing. Such two-stage control, together 

with proper forecast updating, is able to reduce the demand deviation, especially when there is 

an unexpected event. In this chapter, CfD pricing is studied at community level. A simplified, 

two-building community is adopted as a subject model. The two buildings, an office and a hotel, 

are assumed to be equipped with the LCs that have planning, tracking and necessary 

communication functionalities. The experiments using real market data prove that CfD pricing 

is able to reduce the community cost in the wholesale market. This is especially true if the real-

time electricity price is volatile. 

Another effect that CfD pricing may have on the community is that it promotes collaborative 

demand management among individual buildings. Since failure to predict demand may result in 

substantial CfD charge, individual customers will try to prevent this from happening. When an 

unexpected event does occur, the building LC may want to receive electricity from peers, rather 

than from the utility provider, in order to lower the potential CfD charges. This is accomplished 

via collaborative load tracking. This dissertation demonstrates two basic designs: the centralized 

and the distributed load tracking. The centralized load tracking is performed by a central 

controller who is also an information collector. The load tracking optimization is conducted 

based on the aggregated information on the operation of all the buildings. The objective to the 
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centralized tracking is to minimize the total CfD charges of all the buildings. The experiment 

shows that the centralized load tracking is able to achieve lower total CfD charge, and thus lower 

total cost to the community. But, this overall cost reduction is considered unfair to one of the 

collaboration participants, who is not the cause of unexpected event but faces increased CfD 

charges. To avoid such unfair result, a distributed load tracking mechanism is proposed. It 

associates proper financial transaction with demand transaction. The demand transaction is 

determined by bilateral communication between these two buildings. In the case study, a linear 

transaction cost is assumed. It shows that demand transaction can help the building that 

experiences unexpected event reduce CfD charge, while, at least, compensating the increased 

CfD charge of the other transaction participant with the revenue from demand transaction. 

Although the overall cost reduction is not as significant as the centralized load tracking may 

achieve, the distributed load tracking will not result in an unfair cost increase to any collaboration 

participant. 
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Chapter 5 Conclusion and Future Work 

Price risk and quantity risk are the two major risks that utilities face in electricity wholesale 

markets. The price risk is caused by the uncertain condition between supply and demand, as well 

as congestion, on the grid. The utilities are usually considered as price takers, therefore, their 

operations focus on maximizing the efficiency (maximum profit or minimum cost) given the 

estimate of price uncertainty. The quantity risk, however, is caused by the deviation between the 

predicted and the actual demand of all the customers served by the utility. Similar to the price 

uncertainty, the demand uncertainty is usually considered as a risk factor subject to estimation 

and works as constraint in the operation and management of the utilities. In a few studies that 

apply portfolio optimization concept in microgrid operation, asset management and market 

strategies, the demand uncertainty together with other uncertain factors appear in the objective 

function in the form of risk hedging cost or certainty equivalent [157, 158, 170]. Few studies, if 

any, consider managing the demand uncertainty at its source – the individual customers. There 

are several reasons: first, weather is the number one cause of uncertain demand, and error of 

weather forecast is inevitable. Second, human behavior is recognized as another major risk 

source, and human behavior is extremely difficult to characterize and predict. And last, but more 

importantly, there exists neither economic nor social measure that could promote a predictable 

consumption manner in the customer population. 

However, the author of this dissertation argues that it is possible to get individual customers 

involved in quantity risk mitigation because they are more capable of understanding their own 

activities than any others. The success of DR programs proves that individual customers are 

responsive toward economic measures. As long as a rate structure is properly designed so as to 
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convey the signal that uncertain consumption is more costly than others, it is able to influence 

the customers’ consumption decisions and promote a desired behavior. 

A CfD retail pricing is proposed in this dissertation. This new rate structure requires an hourly 

price schedule to be announced day ahead so that all customers are able to make optimal plans. 

Then it incurs CfD charge in the next day if the actual demand is different from the day-ahead 

plan. CfD has DAP element, which is a popular time-varying price scheme. DAP together with 

the day-ahead planning optimization are effective in reducing system peak demand, which has 

been discussed by many researchers. The notion of charging on the demand deviation is new. 

CfD charge forces individual customers to track their demand schedule in real-time in order to 

keep the demand deviation low. In other words, CfD promotes a low uncertainty consumption 

behavior. 

In this dissertation, simulation-based and black-box model-based predictive controls are studied. 

Both can be used in the control optimizations under time-varying price or under CfD. However, 

simulation-based approach may need special techniques to overcome the obstacle posed by 

intense computation requirement. A new two-stage approach called Optimal Strategy Pool (OSP) 

is designed to move time consuming simulation runs to off-line stage as much as possible, so it 

will take a much shorter time when making planning decisions on-line. The experiments, as well 

as scale-up tests, all demonstrate that OSP is efficient and robust. But simulation-based approach 

is still not the best choice for fast response or real-time control optimization. An ANN model 

is then used for the day-ahead planning and real-time tracking controls under CfD. The 

formulations of the planning and tracking control problems are presented in this dissertation. 

Simulation experiments show that the planning and tracking controls are able to reduce the 

building demand uncertainty as measured by demand deviation (RMSD). It is also shown that 
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accurate weather and occupancy forecasts are helpful in the demand deviation reduction. If 

certain demand surge is not expected while planning day-ahead, timely update will help mitigate 

the spike of demand deviation. This again proves that individual customers are encouraged to 

maintain full awareness of their own consumption activities in order to reduce the demand 

uncertainty. 

The author studies the effectiveness of CfD in reducing the overall cost of the community in 

the wholesale market. Simulation experiments using real price record from US regional markets 

demonstrate that the DAP element of CfD reduces the community cost in the day-ahead market, 

and the CfD charge element reduces the cost for hedging real-time market risk. The risk/cost 

reduction is substantial, especially when the real-time market price is volatile. This result justifies 

CfD pricing, because even with additional CfD charges on the utility bill, the total billed cost of 

the customers is expected to be lower under CfD. 

CfD also created an opportunity for collaborative demand management among individual 

customers. Under some circumstances, one customer may want to purchase electricity from 

another customer, rather from the utility provider, in order to maintain a low demand deviation. 

A centralized approach and a distributed approach are presented in this dissertation to 

coordinate such demand transaction. The centralized approach is similar to other collaborative 

management approaches in microgrid regime, where a higher level central coordinator gathers 

all the information, solves a comprehensive optimization problem and allocates the resources 

accordingly. Simulation experiments demonstrate that the centralized load tracking reduces the 

CfD charge of the buyer, but at the cost of increasing CfD charge of the seller. This consequence 

is considered unfair, even though it achieves minimal total billed cost of the two parties. A 

distributed approach solves this problem by asking the buyer to initiate a negotiation and make 
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a transaction proposal. The demand transaction is associated with financial transaction, so the 

seller may compensate the increased CfD charge by the transaction revenue. The seller, based 

on its own optimization results, accepts or rejects the transaction proposal, so the unfair cost 

increase can be completely avoided. 

Such collaborative demand management has the opportunity to evolve further into demand 

transaction market among individual customers. If that becomes true, those customers who have 

better awareness and control of their own properties, and those who invested in intelligent 

energy management systems, are able to benefit from selling the demand transaction capacity. 

In the end, the demand uncertainty reduction is accomplished not only with individual 

customers but also with the entire community. 

To sum up, CfD tariff is designed to expose the individual customers to the wholesale quantity 

risk. It adds the notion of uncertainty reduction into the demand management of individual 

customers. Extensive experiments have demonstrated that CfD is effective in reducing the 

community cost, and in the end reducing individual customers’ billed cost. More studies on the 

modeling, control optimization formulation and solution technique, refining the rate structure 

and strategy in collaborative demand management will be expected in the future. 
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