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ABSTRACT OF THE DISSERTATION

COMPARISONS AND EXTENSIONS OF STRUCTURAL AND REDUCED FORM
APPROACHES TO THE PRICING OF COMMERCIAL REAL ESTATE SECURITIES AND
LOANS IN THE FINANCIAL CRISIS (2007-2010) AND THE RECOVERY (2013-2014)
By Andreas D. Christopoulos

Dissertation Directors: Professor Robert A. Jarrow and Professor Douglas Jones

To date, the ~$1Trillion CMBS sector in the US does not actively utilize widely accepted

advanced derivatives valuation methods. In the absence of risk neutral values for CMBS it is

proposed here that risks of default were neither correctly anticipated nor priced in the Crisis

(11/2007-12/2010) nor in the Recovery (1/2013-3/2014), thus far. If schisms between market

and model prices enable one to secure excess returns then one may reasonably question the weak

form efficiency of the CMBS sector. To investigate, I apply four model approaches (structural

form, reduced form, generalization of calibrated simulation, and a special case of the

generalization) in both the Crisis and the Recovery using two representative loan and bond

samples on a daily basis.

The key findings are: First, statistical analysis demonstrates the need for the generalized

approach. The special case is misspecified and inadequate to the task of modeling CMBS default

risk. Second, although the structural form yields results in keeping with the generalization, it

too is insensitive to risks associated with loan characteristics, borrower behavior, and bond

ii



pricing. Third, the reduced form represents a comprehensive and better approach than all others.
Building off details that characterize the generalized approach, the Cox Process of the reduced
form has embedded within its design the capability to accurately evaluate complex economic
relationships that govern the timing and amount of loan defaults. As the reduced form economy
is robust, accurate pricing at the bond level is an immediate consequence, given accurate
implementation. Finally, evidence indicates a sizable disconnect between fair value and market
pricing with differentiation amongst the models. Trading tests and statistical analyses suggest
an inefficient CMBS market evidenced by the earning of excess returns in backtesting. This

dissertation provides valuable insights pertaining to CMBS risk estimation, the pricing of those

risks, and CMBS market efficiency.

iii



Acknowledgements

This dissertation would not have been possible without the guidance, friendship and
generosity of many people to whom I would like to express my gratitude. I would first like to
acknowledge, and thank, my committee of Robert A. Jarrow, Douglas Jones, S. Abraham Ravid
and Andrzej P. Ruszczynski. Their generosity, expertise, support and patience with my
development in the PhD program is forever appreciated and my work and thinking are much
improved due to their guidance and interest over many years. Iwould also like to thank Jerome
Williams and Gongalo Filipe who provided invaluable experience in helping me design and
execute my program efficiently across departments and universities. Additionally, I want to
thank Joshua Barratt, Ivan Brick, Abram Connelly, Matthew Garner, Clifford Harris, Barry
Schachter and Mark Zifchock, and each of their respective families, for their support of my
pursuit into this line of inquiry. Finally, I want to thank my family who continue to see me
through thick and thin and provide personal insights, generosity of mind, and more, that have
enabled, enhanced and improved this pursuit. I want to thank my parents George and Georgia
Christopoulos, my brother Alexander G. Christopoulos, Jim and Sondra Farganis and the

Farganis Family, and Frieda Halivopoulos and the Halivopoulos Family.

This path evolves thanks to a// of you.

iv



Preface

The work contemplated in this dissertation finds it locus in the mid-1990s. At that time,
quantitative approaches to the evaluation of mortgage backed securities (MBS) were just
beginning. Prepayment models and related option adjusted spread valuation (OAS) techniques
were just beginning to be implemented. In that period in the market, however, credit risk
evaluation was not actively being contemplated in MBS. In part this was due to the fact that, in
the securitized field, the residential market was dominated by conforming government
guaranteed loans which necessarily dispensed with prospective losses as a risk to the bondholders.
Credit driven ‘prepayments’ were an anomaly, noise in the context of a well-constructed rate x
coupon dominated methodology. As the market evolved post-RTC, loans not guaranteed by the
government that faced substantial credit risk began to represent a larger portion of the market
overall. The threats of default and loss were argued to be relatively minor inconveniences
resulting in prepayment ‘speeds’ and OAS pricing to be ‘off a little bit’. Arguably a more difficult

risk to model than, say, prepayments, default risk was not actively pursued.

Modeling credit risk eventually did move to center stage and its developments
contributed to the genesis of the credit derivatives market that evolved in the wake of the dot-

com bubble and LTCM crisis towards the end of the 20™ century. Despite these developments



in non-securitized and securitized markets, however, credit risk evaluation and risk neutral

pricing within the commercial mortgage backed securities (CMBS) market remained unmoved.

It is my view, based upon direct experience and from several years of formal study, that
there continues to be a bias against the use robust derivative pricing technology in the securitized
market for commercial real estate loans (CRELs). This in part is due to the complexity of the
exercise involved in the modeling of default risk at the loan level and the subsequent pricing
exercise required at the bond level. There may also be other reasons for this perceived bias
including, but not limited to: small sample sizes relative to loans in RMBS, greater heterogeneity
amongst the CMBS loan collateral, more varied idiosyncratic borrower behavior, the historical
evolution of the commercial real estate market in the US, the persistent use of cap-rate methods
to estimate property values, and a resistance to acknowledging the influence of capital markets

on property valuation indirectly through CMBS pricing, among others.

Admittedly, the relationships are complex to model and often difficult to explain.
However, technology and theory in the academy are fusing well now to provide us with the
ability to approach previously intractable problems rigorously. This dissertation thus seeks in
earnest to demystify and formally explain the relationship between risks facing holders of

commercial real estate debt and the associated risk adjusted loan level valuation embedded within
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CMBS bond pricing. It continues to be my hope that this effort, and others like it, will bring

greater insight to academics and practitioners interested in this important area of capital markets

and will contribute to the thinking on lending/borrowing, trading/investments and regulation.

At its core, this dissertation is about evaluating risk and reward and I hope you find my

investigation into the risk estimation, pricing, and efficiency of the CMBS market convincing.

- Andreas D. Christopoulos
July 25, 2014
Ithaca, NY and Newark, NJ
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Introduction

Commercial mortgage backed securities (hereafter, “CMBS”) represent a nearly $1 trillion
component of the US economy. CMBS' are derivatives collateralized by commercial real estate
mortgage loans (hereafter, “CRELs”) which are typically 1% lien debt instruments secured by
commercial real estate property. Securitized CRELs underlying CMBS debt represent 35-40% of
all CRELs outstanding in the US. Despite the important presence of CMBS within capital markets,
to date widely accepted derivatives pricing and valuation methods are not actively utilized by CMBS
practitioners. By not utilizing advanced derivatives pricing methods, it is my view that CMBS
market practitioners are not correctly evaluating the risks of default, loss and concomitant
adjustments to the timing of cashflows in the event of default for underlying CREL objects and
CMBS bond objects. If this is in fact the case then, when considering market prices of CMBS and
related securities, I should see schisms between market prices and alternative pricing of the same

securities generated under risk neutral conditions (the mode/ prices).

This by itself is not necessarily surprising as all financial models are approximations to more
complex realities. Nevertheless, even if we consider the weak form of market efficiency (see Fama,

1970), then in an efficient market excess returns cannot be earned in the long run by using

LA summary primer of CMBS is Provided in AEEendix A.



investment strategies based on historical prices. Rather, future price movements should be
determined entirely by information not contained in the price series itself and market participants
should not be able to systematically profit from market 'inefficiencies’. In the case of pricing
derivatives with default exposure, it should then follow that if we observe (with the benefit of model
pricing), a set of signals that enable us to profit from schisms between market price and model
price, then the market we are investigating, (in this case the CMBS sector), might possibly be
inefficient; for if the CMBS sector were efficient, then no systematic profits should be able to be
secured, consistent with Fama’s theory. This investigation, identification, and reconciliation are

among the main focuses of this dissertation.

To do this, I consider three primary model approaches to the evaluation of risks associated
with CRELs that impact the pricing of CMBS and the index swap collateralized by CMBS tranches,
CMBX (described in detail in Section 1). In total there are four implemented models discussed
with important differences between them. The evolution of the model technology spans 40 years
of financial theory and this dissertation provides a comprehensive empirical testing of this theory.
Throughout the paper, the analysis of loans and bond pricing and risk values is daily based upon

evaluation of loan and bond objects which have monthly payment frequencies.



-3-

Two important periods in the history of finance are investigated. The initial period covered

is November 2007 thru December 2010 (the Crisis). The subsequent period studied is December

2012 thru March 2014 (the Recovery). In the Crisis I consider 1 transaction with 175 loans

underlying CMBX Series 1 totaling ~$4B. In the Recovery I consider 688 loans totaling ~$13B

across 11 transactions underlying CMBX Series 6. The inquiry into the Crisis and the Recovery

use the same four model approaches in an effort to determine which one provides the most reliable

signals of risk and opportunity and, further, to question assumptions about the efficiency of the

CMBS sector overall.

The four model approaches considered rigorously are adaptations of Merton’s “On the

Pricing of Corporate Debt” (Merton, 1974; the structural model; Model 1); a calibrated structural

model where the calibrated parameters are used in a simulation technology as introduced by

Driessen/Van-Hemert in “Pricing of commercial real estate securities during the 2007-2009 financial

crisis” (DVH, 2012; Model 2); a thorough generalization of which DVH, 2012 is a special case

(Model 3); and an adaptation of the approach introduced by Jarrow (with Christopoulos and

Yildirim) in “Commercial Mortgage Backed Securities (CMBS) and Market Efficiency with Respect

to Costly Information” (Jarrow, etal 2008; the reduced form model; Model 4). Additionally, in




A
Appendix B I review other quantitative approaches taken in the literature related to CMBS valuation

in Eom, Helwege and Huang, 2004; and Kau, Keenan and Yildirim, 2009 among others.

Model 1, the adaptation of Merton, 1974 to CMBS valuation is critical as it represents the
classic foundation for risk neutral valuation of debt instruments. The adaptation I propose uses
several new innovations necessary to accurately accommodate complexities related to loan level
collateral and bond level priced objects. Model 3, implements a generalized approach to calibrated
simulation that builds off Merton, 1974 and which specifically considers the heterogeneity of loan
characteristics by accurately incorporating correct cashflows and ruthless default.  The
generalization is important because it incorporates many realistic features of the loan building blocks
of CMBS in a well specified simulated economy. In my study, I secure new insights into CMBS
market efficiency and new results that contrast with Model 2, proposed by DVH, 2012 which is
incorporated in this dissertation as a special case of the generalized approach. We see, in so doing,
that the generalized approach (Model 3) provides a more precise perspective on CMBS efficiency
than Model 2. Finally, I turn to Model 4, the adaptation of the reduced form approach introduced
by Jarrow, etal 2008. The first three models indicate that quantitative methods applied to CMBS
valuation vary in precision due in part to limiting assumptions and restrictions in implementation

at both the loan and bond levels. With a robust simulated economy and historically validated



,5,
default ‘triggers’ the reduced form further eliminates many unnecessary simplifications. The
insights garnered from the different model approaches indicate that assumptions regarding the loan
objects given their heterogeneity with respect to timing and amount, clearly need to be eradicated
as shown in this study. In the case of the reduced form, broader issues pertaining to the realism of
the simulated economy and its interaction with loan objects and the default decision-making
behavior of loan borrowers matter further still. The results demonstrated by Model 4 demonstrate

increased precision with respect to risk navigation.

The key findings of this dissertation are as follows. First, the implementation of the model
approaches indicate that the accurate capture of the amounts of principal and interest cashflow
payments on both a promised and default adjusted basis is essential to any rigorous analysis of risk
and pricing of CMBS/CMBX. In their absence erroneous signals as to the risk profile of the
securities can occur. Eradication of simplifying assumptions, while difficult, does yield
improvements in identifying risks, enriching the simulated values, and capturing key loan
characteristics of the objects underlying the derivatives. I consider all the cashflows of all the loans
in great detail, and are thus able to make fair value estimates across simulation with default adjusted
cashflows. As a result, this study across four models makes more meaningful statements regarding

the efficiency of the CMBS market overall than many other studies in the literature.



6-

Second, the market seems to contemplate ‘ruthless default’ in the expectations process
through which prices are arrived at, where ruthless default is defined as the occurrence of default
immediately when the borrower has an economic incentive to do so. In the context of Merton,
1974 and DVH, 2012 default is contemplated to only occur at the maturity date of the debt when
the equity position in the company drops to zero such that the firm value under such circumstances
is entirely debt. In the context of commercial real estate properties if the value of the property
declines for a variety of reasons such that a sale of the property at the implied value of the property
would be insufficient to pay off the debt obligation/mortgage secured by the property, the borrower
then has an incentive to default /mmediately on the mortgage. This may or may not occur in reality

and I present arguments for and against implementing this behavior in the modeling.

Third, calibrated simulation approaches benefit greatly from ex-post statistical analysis using
publicly available market information. Ex-post statistical analyses improve R-sq to the 0.80-0.90
level across all CMBX classes over 792 trading days in the Crisis with significance across all
explanatory variables during the Crisis versus low raw ex-ante ranges of 0.17 to 0.70. An example

demonstrating, in the most credit-risk sensitive portion of the capital structure, the increase in



precision to be secured from ex-post analyses including variables exogenous to Model 2 can be

found in the estimates for the BBB- tranche shown Figure 1 which shows a very good fit*.

Fourth, there is considerable evidence in both the Crisis and the Recovery of the ability to
earn extraordinary profits in the CMBS sector through the use of various model approaches that I
implement. To test for CMBS efficiency, I backtested models against market pricing using the
metric Theta as a barometer of the relative riskiness of observed prices in the market compared with
the theoretical risk neutral pricing adjusted for default and loss risks, and implemented a series of
long/short and long only trading strategies (described in detail in Section 3).  For all historical

trading dates, 7, for each time ¢, on each simulation path [, for a given bond tranche k, Theta,
6, (t,1), is defined as the difference between the Fair Value or risk neutral estimate of the bond
price and the market price of the bond, 6, (t,l) =Db, (t,|)— M, (t). The composite history for fair

value, B(t,1), is weighted by the tranche balance for the i-th tranche at time t across k tranches

and [ simulations. The composite history of the market price, m(t), is also tranche balance

2 One of the critical questions we have to ask then is ‘If the CMBS sector is truly inefficient, what is the purpose of seeking to map model to
market price?’ In one sense, the use may only be found in disclosing an absence of explanatory power. This suggests inquiries into tracking

the effectiveness of model driven signals through backtesting trading strategies hold greater promise in arguments related to efficiency than fit.
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weighted®. The composite Theta across all k bond tranches is depicted in Figure 2a over three years

of daily pricing through the crisis®. The results show clear differentiation amongst the models

perception of default risk at the composite levels. In backtesting (Figure 2b), the ‘good’” models

categorically outperform the long-only CMBS sector benchmark and, during the Crisis, also directly

outperform the market portfolio. The model approaches that incorporate accurate cashflows in the

simulation and valuation exercise (Models 1, 3 and 4) are grouped generally above the x-axis

indicating that on a composite basis, the bond pricing in the market place was relatively inexpensive
vs. the risks as contemplated in such model approaches. In contrast, the approach of Model 2 that
does not incorporate either a.) accurate cashflows or b.) ruthless default, shows a markedly different
profile indicating, consistent with the claims of DVH, 2012 and others that CMBS bonds during
the financial crisis were relatively expensive to fairly valued vs. their underlying collateral risks and

were not sold at fire sale prices.

3 The composite history for fair value, b(t, |) , is weighted by the tranche balance for the [-th tranche at time = t , WI (t) , or

N
b(t,1) = z b, (t, w. (t) across N tranches and j simulations. The composite history of the market price, M(t), is also tranche balance

i=1

weighted, M(t) = ZN: m, (Hw, (t) .

i=1

4 All models shown in Figure 2a contemplate a.) six types of commercial properties (Multifamily (MF), Retail (RT), Office (OF), Industrial
(IN), Hotel/Lodging (LO), and Other (OT), and b.) the accurate maturity date for each of the 172 loans collateralizing the Greenwich Capital
Commercial Funding Corp. Commercial Mortgage Trust, Series 2005-GG5 (“GCCFC 2005-GG5”, or just “GG5”).
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Based upon the evidence provided in this study, the three alternative approaches make the
strong case that the opposite conclusion is true. Namely, relative to the risks of the underlying loan
objects, that there were many instances of bonds in the CMBS market that were sold at fire sale
prices during the financial crisis. As noted in Jarrow, etal 2008 the CMBS market is characterized
by the absence of the use of advanced derivatives pricing. Therefore, in the absence of such
technology practitioners were exposed to ad-hoc pricing of complex risks in a truly difficult time in
the financial market. It is thus not surprising to see, as shown in three of the models, persistent

periods in the financial crisis when CMBS were priced ‘cheaper’ relative to their underlying risks.

“How much cheaper?” In part the answer to that question depends on the model chosen.
However, making such choices should not be arbitrary. Thus, #inally, as initially suggested by the
need for ex-post statistical adjustment with exogenous variables in the calibrated approaches, the
Model 4 reduced form approach yields better results than any of the other approaches considered.
The reduced form actively considers in its structure both static and dynamic information sets within
the Cox Process that interact with many of the characteristics of loan and marketplace dynamics

more precisely and realistically than any of the Model 1, 2, or 3 approaches. As the reduced form

Model 4 is, through careful construction, inherently more sensitive to the risks of the loan objects,

the valuation of such loans and the corollary bond capital structure is necessarily more precise. This
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is evident in the historical analysis. Figure 2b shows the cumulative portfolio returns for the main
model approaches investigated on a daily basis through the Crisis using long/short strategies
informed by Theta as compared to the long-only, buy and hold, and purely random strategies. Of
the model approaches I investigate, and for the reasons I discuss below, the reduced form approach

(Model 4) is the most accurate and reliable indicator of risk and reward in CMBS.

In the literature, this dissertation represents a thorough assessment of 40 years of financial
theory applied for the first time to CMBS and its derivatives in one paper. It demonstrates an
important alternative to real estate economics approaches that focus on cap rate deltas and real
estate cashflow analysis (see Conner 2003, Corcoran 2004, Peyton 2009 and others, see Appendix
B). These considerations are not necessary®. Nevertheless, elements can be helpful at the data level.
In fact, in several of the approaches in this dissertation, certain real estate information related to the
property value and loan level characteristics are incorporated to estimate values of securities based
on loan objects. The approaches in this dissertation utilize important real estate loan object

characteristics and place them within the correct derivatives pricing context. The technology

3 In Appendix C, I provide a working paper study covering 22 years and 2 distinct real estate cycles, I estimated, completely independently
from property net operating income and estimated caprates the property value \7(t) =b+2 akxk (t—tk) with V (t) as the synthetic value for

k
NCREIF at the national level in the OLS. The regression demonstrates.94 R-SQ at the national level simulating NCREIF from i.)
Unemployment, ii.) Case-Shiller Housing Index, iii.) Credit Risk Slope, iv.) Mortgage Rates, v.) RiskFree Slope, vi.) CRE Charge-Off Rate, and

vii.) Percent of Private CRE Construction. Thereby demonstrating a macro driven property value estimator distinct from traditional real estate

economics property specific methodology.
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developed allows for evaluation of any CMBS transaction, given data. In light of the financial crisis,
it is evident that much can be achieved with respect to risk transparency and cost savings by actively
considering alternative approaches such as those proposed herein. The analysis in this dissertation
makes evident that not all models are the same, and thus, it is hoped that this and other work stand
as testimony in favor of securing rigorous insights into a complex product type that results in more

accurate signals of risk and reward for CMBS and better decision-making by practitioners.

The contribution of this dissertation to the literature then is simple: a.) Demonstrate
increased realism in modeling risks facing holders of commercial real estate securities by being
thorough and attentive to critical real estate loan characteristics and capturing the heterogeneity of
the collateral within a more complex economy. Implementing various models that estimate and
price default behavior; and b.) Disclose, through high performance simulation and statistical
analysis, the efficiency (or lack thereof) of CMBS and the concomitant CREL risks with rigorous
theory, tested empirically both within the worst financial Crisis since the Great Depression and the
aftermath economic Recovery period. In so doing, this dissertation makes a contribution in support
of increased modeling precision using quantitative approaches to evaluate CMBS risks and market

efficiency.
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The remainder of this dissertation is organized as follows. Section 1 focuses on the Crisis
(2007-2010). An overview of the data utilized is provided on a section by section basis. Next, I

introduce formally each of the four models implemented for CMBS. To clarify they are, again:

® Model 1: Structural Form (Merton, 1974)

® Model 2: Special Case of Generalized Calibrated Approach (DVH, 2012)

® Model 3: The Generalized Calibrated Approach

® Model 4: Reduced Form (Jarrow, etal 2008)

An in depth statistical evaluation of Model 2 is provided which discloses model misspecification.
This analysis prompts the investigation into other models in more depth. I then conclude with
comparison of all four models on a daily basis using Theta and query the purpose of ‘fitting” within

the context of market efficiency inquiry.

Section 2 focuses on the Recovery (2013-2014) following the Crisis. In this section I apply

the same model techniques to a new set of loans and bond objects, again on a daily basis.

The comparisons of Theta then invite rigorous analysis in Section 3 which is focused on the
statistical analysis of market efficiency of the CMBS sector in both the Crisis and the Recovery. In
this section I introduce the trading tests and consider a few statistical evaluations including the

intertemporal CAPM to test for the efficiency of the CMBS sector which is called into question.
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Finally, in the Conclusion, I provide some further observation on the results, offer suggestions for
further extensions to the historical periods studied, and provide supplemental information in

supporting Appendices that include proofs and important summaries.
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Section 1: The Financial Crisis (2007 thru 2010)

1.1 Data - Crisis: The CMBX pricing data (11/8/2007 — 12/31/2010, daily) was provided
through Markit. CMBX is the name of a family of indexed swap derivatives for which the
underlying collateral are commercial mortgage backed securities (CMBS). The CMBX data for this
study was secured from Markit. There are currently 6 series of CMBX issues outstanding. Each
series (1,2...6) is associated with a unique set of 25 CMBS transactions referred to as reference
transactions. The CMBX series are partitioned into tranches (AAA, AJ, AM, AA, A, BBB, BBB-
and BB) that are secured by the corresponding CMBS tranches, which are the reference assets for
the CMBX. The reference assets are in turn backed by loan cashflows according to the tranche
cashflow allocation structure from the reference deal. So, for example CMBX.AAA. 5 is secured by
25 AAA tranches, 1 from each of the reference transactions and each comprising a weighting of 4%
to the CMBX derivative price. Each of the reference transactions is secured by cashflows from
hundreds of mortgages in the reference transaction trust that are secured by commercial real estate
properties. Across all reference transactions for a given series, the risks of thousands of loans and
(indirectly pricing/valuation risks) are represented in the CMBX pricing. The loans underlying the
reference transactions are characterized by diversification across all major property types and

property submarkets in the US. The reference assets are priced daily by dealers and these prices
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are then submitted to Markit which, in turn, aggregates the prices from the multiple firms into a

single price published at the end of the trading day (4:15PM EST). The 125 CMBS reference

transactions and corresponding reference assets amount to hundreds of billions of dollars currently

outstanding.

The purpose of the creation the CMBX family of indices was to provide dealers and non-

dealer investors with the ability to readily hedge the credit risk exposure associated with CMBS held

in portfolios. Investors can hedge the risk free interest rate risk component of CMBS risk premia

through Treasuries and futures. With the introduction of CMBX they also were able to hedge the

volatility of CMBS specific credit risk premia with varying measures of effectiveness depending on

the correlation between the volatility of the risk premia of CMBX compared with that of the actual

CMBS underlying the CMBX as securing collateral. As with other credit default swaps, CMBX are

essentially a derivative contract between two counterparties. Figure 3 shows the buyer of protection

hedge diagram where the investor, X, with exposure to Y cashflows and mark to market risk on

the swap pays a fixed coupon to a counterparty Z, and ‘receives’ or is marked to market on floating

spread basis. Quotes and bid/ask spreads change daily and intraday.

In this first study concentrating on the Cirisis, I use pricing for CMBX Series 1 and the

collateral characteristics from many loans underlying Series 1. The testing is conducted on the 172
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loans totaling $4.405 billion that serve as collateral for the Greenwich Capital Commercial Funding
Corp Series 2005-GG5 CMBS transaction issued in November 2005 (GG5) within CMBX Series 1.
For GGS5, a single month of updated loan data was made available for April 2010 from the Trepp
Loan file. Additionally, the prospectus supplement and Moody’s Pre-Sale Report were used to
adjust the data for proforma cashflow origination profiles and the presence of junior (second liens).
The economic data used throughout is data provided from ACLI, NCREIF, the Federal Reserve,
and CohenSteers/Bloomberg. The maximum likelihood estimates (hereafter, “MLEs”) are from
Jarrow, etal 2008 are used for the Reduced Form adaptation in this dissertation for the
delinquency/current intensity process and the default intensity process. The discussion of the
method of the delinquency and default intensity process which considered more than 2.2mm loan

life observations can be found in Appendix D. Figure 4 provides a snapshot of the parameter

estimates used for multifamily properties located in the Northeast. Ideally, these MLE’s would be
updated with data from Trepp but that is not currently possible. Nevertheless, because the estimates
cover substantial historical relationships between the economy x loan characteristics x event history

they seem to perform well.

Independent prices of the loans are not observable after origination except in the case of

auction (FDIC). In contrast bonds in the secondary market (and auction) are observable. Since
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the value of interest here is are bonds the aggregation of the simulated loan level cashflows gets

distributed to the bond capital structure in the cashflow algorithms discussed for each Model.

For CMBS loan level information and delinquency status I used information provided to

members of the Commercial Real Estate Finance Council. Interest rates were provided through the

Federal Reserve Board. REIT prices were provided from Yahoo! Finance. REIT debt levels and 90

day volatilities for REITs and the S&P500 were provided by WRDS. As the data are used differently

in each model considered, I will provide summary information in the sub-sections where

appropriate.

1.2. Model 1: Structural Form - Merton, 1974: Merton cannot be used to directly evaluate

CRELs and CMBS — extensions and adaptation in the form of changes to the assumptions and

calibration are required. However, these changes are in fact minor. If carefully constructed, an

adaptation of Merton provides a powerful set of insights to the task of CMBS valuation.

The value of a corporation can be characterized by the equation V = D + E (see Brealey,

Myers, Allen 2011), where V'= the total value of the corporation, D = the value of the debt of the
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corporation and £ = the value of the equity of the corporation. Merton extended this fundamental

understanding into the well-known option framework®.

Since the debt secured by commercial properties typically is non-recourse to the borrowing
entity, and typically with a balloon amortization structures (with little, if any principal payments,
prior to balloon, the structure of the commercial property is directly comparable to a small
corporation (see Jarrow, etal 2008) with a bullet debt obligation. As such, one approach to the

valuation of commercial real estate would be to apply Merton.

A defining characteristic of commercial real estate is that it is income producing property
(1993 Brueggeman, Fisher). A commercial property is both a physical plant and a business that
generates income. The non-recourse provisions and balloon profile of the debt make such a
simplified framework reasonable by substituting the company contemplated under Merton with the
CRE property. 1f the debt secured by the property exceeds the property value at maturity date of
the debt, the borrower will default at maturity. Otherwise, the borrower will pay off the debt. Thus,

in this basic sense, the Merton framework is consistent, though a simplification of, the profile of a

6 The discussion and review of Merton and a proof of Black Scholes Merton is found in Appendix E.
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typical CREL and the decision-making process related to debt valuation and default. There are a

few differences from the typical restrictions facing initial Merton that have to be addressed.

I must adjust for the fact that CRELSs are coupon bearing, possibly amortizing and possibly
ballooning”. Retaining the maturity default restriction®, a very simple extension to Merton would

change the coupon bearing fact such that the strike at maturity reflects fixed coupons, so

D — Doecoupon*T (1)

However, this change would not adequately address the differences in interest payments associated
with ballooning cashflow structures in which interest payments on debt may be made according to
say a 30 year regular amortization for 119 months, and then in the 120" month the entire principal
payment is due with no interest (or principal) payments after balloon maturity T. The equation
would overstate the amount of interest typically paid under a balloon amortizing loan structure, and

thus influence the size of D which would influence the closed form solution of Merton applied to

7 Balloon and amortizing cashflow examples generated from the code are provided in Appendix F.

8 As supported by several studies including, Jarrow, etal 2008, KKY, 2009, and others, loans frequently default prior to maturity
(term defaults) due to failures to meet growth rental targets, failed rent roll re-leasing, declines or flat rents and other reasons.
While ruthless default is not part of Model 1 by construction or Model 2 by assumption, but it has been implemented in Model 3
and Model 4.
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CRELs. Fortunately, I calculate the correct promised interest and principal cashflows for each loan

at each time t, and I thus implement the more precise calculation of:
7
Di(t)=> (¢ +p) (2)
t=r

T T
so D,(t) represents the remaining interest ZCt and principal Z P, payments as promised in the

t=r t=r

loan note from any time t to maturity T for the i —th CREL, where 7 is the historical sim date.

The second important extension is to the equity position. In Merton, the equity position
of the corporation is observable through the stock market. Additionally, the volatility is also
observable. For CRELs there are two distinct periods in which information about CRE and CRELs

takes on different characteristics: i.) the date of origination and ii.) every date thereafter until the

maturity date of the CREL. Thus, at origination, the value of the CRE, V,, is actually known as

are the value of the debt, D, and the value of the equity, E,. Specifically, I observe in the data

the Loan to Value ratio (LTV) for each loan in a collateral pool. Since LTV, =%and
0

VO=D0+EO,Isay,

V, =LTV,'*D, = E, =(LTV;' *D,)- D, = E, =V, - D, (3)
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and thus know the equity value at origination. However, for every day after origination, we cannot
observe the equity position of the CRE, E(l), we cannot directly observe DXt), and we do not
have a reliable volatility for the equity, o¢(t). Since I need to solve for V(t) and o (t) for all
times after origination of the loan, the implied value of the company and the implied company
volatility, respectively, I need a proxy for Ej(t) and o (t) the equity value and the volatility of the
equity, respectively. As is common practice in the literature, (see Appendix B, and others) I have

to make assumptions to proceed.

The National Council of Real Estate Investment Fiduciaries (NCREIF) provide a quarterly
total return index for commercial real estate properties going as far back as 1978. The properties
are held by banks and other institutional investors and are self-reported from sales and mark to
market procedures. The property indices are recorded across both property and regional subsets
for the entire US. Underlying NCREIF are properties at the submarket level across the 5 major
income producing property types. The total return of all property elements underlying NCREIF is
comprised of mark to market valuation of CRE assets by the NCREIF member banks and
institutions combined with actual sales of any such CRE underlying properties. Information is
gathered from major financial institutions (banks, pension funds, and insurance companies) with

substantial hard real estate assets in actual (not proxy) submarket locations. The outstanding value
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of the NCREIF property values exceeds $1 trillion and over time the rolling annualized national
NCREIF return index (calculated from quarterly reported total returns) accurately captures and
reflects the real estate cycle (Figure 5). As such, NCREIF represents a good proxy for US

commercial real estate values.

Since I seek to find an estimator for property values in valuation, I proxy in the simple case
for the property value securing a specific CREL with the corresponding NCREIF return volatility.
As NCREIF is only reported quarterly, but our project is to estimate CRE value daily, I computed
a cubic spline from the actual NCREIF lognormal quarterly index returns o (t)to form a daily
spline estimate of the annualized volatility observed daily, as required under Merton (Model 1).
Specifically, I observe NCREIF index values quarterly, Ny(u) for the y — th property type with, u,
the quarterly time of observation of the index values for
i =1-31; with 1=7/2006,2 =10/2006,..31=1/2014, for each of they =1..6 property
types (1=Multifamily or MF, 2, =Office or OF, 3=Retail or RT, 4=Industrial or IN, 5=Lodging or

LO, and 6=Other or OT). I calculate the lognormal return for each property index over the quarter,

R, =In [M] (@
: N, (U, 1)

From the set of returns R, ; I calculate the quarterly volatility as standard deviation, so
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(5)

In the context of natural cubic spline interpolation, the set of i quarterly volatility of lognormal
returns can be expressed as 31 (ui, 0r,,,) ‘knots’ per y = 6 property types. I then interpolate
pairwise between (u;_4, ORy;_1) and (ui, URyi) V i,y with polynomials of degree 3 setting Or,,; =

q;(u;) , such that under the constraint of passing through all knots O"Ry’i and O'”Ry’l. will be

"

O R, :
continuous everywhere with curvature  k = ﬁ , q'i(w) =q'i:1(w) and q¢";(wy) =

(1+0Rzyi

q”l. +1(ui) forall i,1 <i <n— 1. Implementing the natural cubic spline numerical interpolation,
from the 31 observed knots (ui,0r,,) 1 then calculate t = 1,2,...1878 interpolated daily points
(t,0g,) required for Merton (Figure 6)°. Finally, since I have the daily return index for NCREIF
for all 6 property types and since I have the correct inverse LTV at origination, I can estimate the

implied equity value for the i-th property of the y-th property type (y= 1...6), E; (1), as:

E,, (t) = LTV, x NCREIF, (¢) (6)

® We conduct the same procedure in the reduced form where we also need daily volatility values for NCREIF expanding the

indexing to y = 1.,.6 property types and k = 1, ... 4 geographic regions.
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where NCREIF is the indexed value of NCREIF for each of the 6 property types, with an index
start date of 7/1/2006 NCREIF=100. I am not calibrating Merton to any other values observed in
the marketplace such as S&P returns or volatilities. However, since I have made changes to the
original Merton equations, I have to consider that there may be errors in estimation. As such I
incorporate a beta coefficient ﬂEi'y for the i — th property of the y — th property type (y = 1...6)
to modify our NCREIF driven volatility O, (t). The changes in notation are shown below

N(d)Vi(®ay, (©) _ 0

(7)
P, e, )

Vi(ON(d)) - D;(t)e "' N(d,) -

I solve the non-linear system of the final set of equations for parameters V,, o, , and B¢

simultaneously using the numerical solution,

min| f (X)] = min( f(x)"+ f,(x)" + 1, (x)z) (8)
X X

for each of the i=172 loans on each of the historical dates.

1.2.1. Outputs and results: The outputs are V,(t), oy, (1), and 5 with Vl(t) representing

the daily risk neutral estimate for the loan’s value under Merton. Additionally, I capture the

probability of default 75.(t) for each loan over the historical study and aggregate according to the
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loan’s property type, Y = 1...6, and balance weight Wl(t) , giving property type level probability of

default based upon this implemented Model 1 as:

IT, (t) = ZWi,y(t)”i,y(t) (9)

With 7;(t)=N(—d,) The computed historical property type probabilities of default IT, are
provided in Figure 7. I notice that they are quite large. At the same time, however, it is useful to
consider immediately the actual historical experience of the actual loans considered in my adaptation
of Merton for CMBS over this historical period. These loans exhibited nearly 20% actual default
rate through the Crisis (Figure 8) with multiple downgrades by the rating agencies up until this

past year. As such, while the estimation of risk for Model 1 may be high, given the realization of

losses, shown in Figure 8, the estimates for 7Z'|(t) are not unreasonable. The loans utilized in this
dissertation represent approximately 8% of all loans underlying CMBX Series 1 and are reasonably
diverse. The sample is not a large as some studies'® but it is a larger sample than others'. As in

DVH, 2012 I assume that loans underlying GG5 proxy for all loans underlying CMBX Series 1.

10 Jarrow, etal 2008 and, Kau, 2009

' DVH, 2012
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To test the fair value under Model 1, I have to consider the mock securitization or risk
guideline argument. From those perspectives the collateral pool at a bank originator represents an
ongoing risk until the loans are distributed through to the capital markets. During normal
conditions, the loans are held in the ‘held-for-sale’ portion of the balance sheet. Under these
conditions, the aggregate profile of the loans is considered in bond form. Meaning, estimates for
the subordination levels associated with the TBA securitization for which these loans are
contemplated to serve as collateral in the near future are determined from observations in the market
and discussions with leading rating agencies. When one hedges interest rate and credit risks of the
portfolio of loans, one considers the loan no longer as an individual loan, but rather as a component
of the TBA securitization. As such, it is not only reasonable, but actually necessary to consider the

loans in the aggregate as I do.

The aggregate value of the entire securitization can be arrived at in two ways. Let by (%)
represent the implied fair value price of the TBA security made up of K bonds. Let B(t) represent
the value of the entire securitization and V;(t) the fair value of the i — th loan in the securitization.

Then,

i w, (Db, (t) = B(t) (10)
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but, B(t) = ZN: w, (H)V,(t) , so:

ZK: w, (Db, (1) =ZN: w, (1)V; (1) (11)

Therefore, the fair value of the bonds can be determined by simply allocating realized proceeds from
the ‘sale’ of the entire securitization at any time t according to the priority payment rule of the
securitization. In this study I (as well as DVH 2012) assume a simple senior subordinate structure
based upon the attachment points observed in CMBX Series 1. The weights are found in Figure 9;

no Interest Only strip (IO) is contemplated.

The allocation algorithm for Model 1 is straightforward. I have the face amount of the

bonds based upon the remaining promised principal cashflows for the trust and the class percent

;
I or h (t)= Z P77, - On each historical evaluation date a sale of all the loan assets at the

t=7

N
computed fair value is contemplated as B(t) = Z W, (t)V,(t) . The sale proceeds are allocated from

i=1

the top down. The AAA class receives all proceeds from the sale up to the maximum of N (D),
so, pmt,,, =min(h,,,(t),b(t)). Then, AJ receives all remaining proceeds pmt,; =b(t)— pmt,,, (t)

up to a maximum of hAJ (t); then AM receives all remaining  proceeds
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pmt,,, = min {Z Paw (1), b(t) — pmt,,, (1) — pmt,, (t)} to a maximum of Ny, (t) and so forth

until pmt, . =min{z Porer (s D= pmt, (t)}. If the proceeds from the dilution of the
K

securitization at fair value are insufficient to cover the promised payment to the bondholder in the

payment allocation (aka waterfall/cascade), then the bondholder experiences a loss on that date, t.

Allocation of raw proceeds to the tranches have an upper bound of par, consistent with the
value of fixed-income securities at maturity. But the proceeds are generated assuming an immediate
distribution artificially compressing the investment period to zero. Therefore, I generate the future

value of proceed dollars today at the prevailing risk free rate at time t, such that for each bond I

r(HT

have fair value under Merton of bk (t)= pmt,e where T is remaining time to maturity of the

bond. Figure 10 shows a numerical example.

The top panel of Figure 11 shows the fair value b, (t) for the bonds'? and the bottom panel

K cen
shows the composite fair value B(t) = Z b, (t) compared with the composite market price from
=

K
the CMBX Series 1 M (t) = > m, (t), with My and 7, representing the observed market price for
=t

12 Market price history is not available for the entire history for A] and AM and they are deliberately excluded from Theta

analyses and depiction.
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the CMBX Series 1 tranche and the balance weight of the tranche. What we observe in the top
panel is despite the very high probability of default, the realization in the tranche allocation leaves
the AAA securities untouched. The pricing of the AAA declines converging as it should to par in
an orderly manner. The other securities are exposed in varying degrees to losses as contemplated
under the allocation algorithm discussed above. In the bottom panel, however, a very interesting

picture emerges. Despite the evidence of losses under the distribution at a fair value mark to market,

the overall profile of the entire composite securitization, B(t) (in blue) is categorically above the

composite market price equivalent M(t) (in black). The implication is that despite the risk
contemplated in the Merton model, the overall risk of the securitization during the financial crisis

was lower than anticipated by the market.

I examine the profile further by introducing Theta, 6, (t) =0, (t)—m, (t) which is a reliable
benchmark for the richness or cheapness of individual securities or the entire securitization overall.
In Figure 12, I show Theta first for the composite price histories in the upper left in black, and then
provide time series comparisons of Theta for each of the bonds in the capital structure compared

with the composite Theta (in black). Generally,
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6,1t)>0— bk (t) > m, (t) = "mkt px cheap vs. risks"

6, (t) <0 — b, (t) <m, (t) - "mkt px rich vs. risks"

6,1t)=0—> bk (t) = m,(t) — "mkt px appropriately reflects risks"
What we see is within the capital structure, the AAA classes (blue) are less expensive than the capital
structure overall (black), and empirically cheap versus market pricing of the risks with high Theta.
At the other end of the capital structure the BBB- class (red) are almost categorically rich relative
to the capital structure overall (black) and relative to the market pricing of the risk it faced in the
Crisis. Only at the peak of the Crisis in this time series when BBB- prices reached their nadir does
the measurement Theta indicate fair valuation of the risks. The classes in between these extremes
(AA, A and BBB) move in keeping with the realization of risks in the distribution algorithm at fair
value. If one accepts the validity of the Merton model as applied to CMBS valuation as I have cast
it, then one would have insights into the relative risk and reward profile of the entire securitization

as well as the relative risk/reward profile of the individual bonds.

This analysis is performed by investigating the comparative merits of the different models

at this point. As suggested previously in Figure 2a and 2b, the evidence support the view that the

Reduced Form approach (Model 4) gives the greatest insight into risks and is thus most reliable.

As such, doing statistical analysis on the ‘fit’ of the Merton Model 1 vs. the market pricing observed
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is not of particular consequence at this time. Suffice it to say at this point, that this Model 1 is
reasonable and its conclusions (Theta’s are quite large) and underpinnings (probabilities of default
are quite large) seem to point in the intuitively correct direction. Some bonds were priced very
cheaply during the Crisis, however, overall, the risk of the securities when considering the entire

capital structure was more than offset by chaotic, if not panicked.

1.3. Model 2: Calibrated Merton Hybrid - DVH, 2012: 1 now turn to an alternative
approach to Merton. The authors build upon some work in Jarrow, etal 2008 by considering

3. Importantly, as

multiple property types linked to loans, but the approach overall is less rigorous'
we shall see, Model 2 (immediately below) is simply a special case of the generalized approach I

propose in Model 3 later in this Section.

In DVH, 2012 the valuation method of CMBS implemented is essentially a two-step hybrid
approach which correctly implements a ‘bottom-up’ approach to the modeling of the risks of default
and loss of underlying loan collateral and then, in turn, transforming the meaning of those loan
level risks into meta bond level pricing for which the loan sample serves as collateral. In the first

step, the authors implement a calibrated parameterization of Merton, 1974 where such parameters

13 For example, the location of the property is not considered, nor is the historical relationship between defaults and the simulated economy,

just to name a few.
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are the outputs of a numerically solved non-linear system of six equations which calibrate to daily
S&P option volatility, REIT pricing covariances and other observable market metrics relevant to
simulation. In the second step, the calibrated parameter outputs (determined in the first step) are
then combined with other values as inputs for use in simulation of REIT prices using a correlated
multivariate Wiener process. In the simulation, the simulated REIT prices are linked to loan
parameters, where the loan sample of 30 loans (unreported) proxy for the set ~1500 loans underlying

the tranches that serve as the collateral for the CMBX Series 1 credit derivative swap contract. The

trigger for default which is simulated is the inverse LTV metric, #Vt that interacts with the
simulated property values captured for each of the loans in the sample. If the metric falls below 1
at maturity only then at maturity a default state for the loan is captured. From the set of simulated
loan states simulated loan cashflows are generated allowing construction of synthetic tranche level

CMBX swap prices under risk neutral conditions independent of actual CMBX tranche prices.

1.3.1. Stepl - Calibration and estimation: An extension to Merton is incorporated that requires
solving a system of six non-linear equations for each time step, # in the study. The equations for

the non-linear system are defined below:

E;=BS(Bjol+7;.V;,D;,T)), i=1..3 (12)
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The LHS of the equations represent the values observed in the historical data which are then
“matched empirically on each calibration day.” They use 3 property types with 1=Multifamily (MF),
2=Office (OF), and 3=Retail (RT) and they are indexed j, k = 1, ...,3. The subscript s represents the
S&P 500. These parameters are for REITs and not commercial real estate loans, underlying CMBS.
The equity volatility term instead of being observed as in Merton, is now a composite term of the

known volatility on the S&P 500 index 05, and unknown REIT property-type parameters f8; and y;

giving:
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(17)

and

d,;=d,— T (18)

The Black Scholes condition is given by E; = VjN(dl,j) - Dje_TTN(dz,j), and the Ito’s Lemma
condition is given by (Bjo5 + v;)E; = V;0;N(d, ;). Having specified, d; ; and d; ; which are used
throughout the system, I set the Black-Scholes and Ité conditions equal to zero to obtain the first
two of six equations in the system. I thus recast Merton representing the first two equations for

each date of calibration, in addition to the remaining equations, making the substitution for the

. C. . . 0E . .
cumulative normal distribution function, 7 = N(d1), as appropriate. I numerically solve the non-

linear system of equations simultaneously using

min || f (%) = min( f(x) +1,(x) +.1, (x)z) (19)
\—ﬁf_—J

X

X

which yields outputs calibrated daily to option prices and other data.
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Briefly, Ejand Ej are the daily average equity market capitalizations within REIT property-
type sector j, k = 1, ...,3 across the 15 property-type sector specific REITs selected. Specifically there
are 4 REITs for apartments/multifamily (j = 1), 6 REITs for office (j = 2), and 5 REITs for retail
(j = 3). 0¢ is calculated directly from the pricing of three-month (90-day) ATM S&P 500 options.
D; is the indexed property specific REIT debt principal value outstanding calculated by taking the
daily average of the sum of (long term debt + current liabilities) within property-type sector j, k =
1, ...,3 across the 15 property-type sector specific REITs selected by DVH as above in with E; and
E;. The maturity date for REIT debt is assumed to be 5-years'®. The risk-free rate r is determined
from five-year and ten-year swap rates (for each calibration date) as the corresponding linearly
interpolated rate for 7 = T — t time to maturity. The dividend rate q is assumed = 0%. The charts
(Figure 13) show the calibrated outputs for the system that correspond well with the results of DVH,

2012.

14 age the debt over the year and then ‘roll’ the debt every December 31 such that on January 1 the maturity of the debt is 5 years whereas
by December 31 of the year the maturity of the debt is 4 years.
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1.3.2. Step 2 - Simulation: Once the calibration is complete, I then simulate REIT values
and link the REIT value evolution to individual loans. The risk event for loans is default only,
initially assumed to occur only at maturity. The multivariate Brownian motion process that
generates simulated returns on REITSs in implementation is:
dV

v =(r-q)dt+ g,o,dW, + y,dW, (20)
i

The Brownian motion, dWj , is associated only with the S&P 500 and is ‘shared’ and constant
across all j REITs (modified with the interaction with f;05) and dWj is the property-type sector
specific Brownian motion (three total) that interacts with their corresponding volatility term y;. In
the implementation I simulate four Brownian motions dW, and aw;, j=1,..,3 and interact them
with the estimated and observed parameters. They anchor the observed simtime values (where each
simtime= 0 = 7 corresponds to 1 of 795 historical trade dates) and construct the simulation paths
on a daily basis, where each simulation path has 120 monthly time steps (10 years). The 120 month
projection is used because at the point of origination of the loan, there are 120 months (per their
assumption) until balloon maturity when the entire loan balance is due. The parameters 7, q, B}, o5
and y; are all as of the simulation date. In my rendering there were 795 simulation dates run from

11/1/2007 thru 12/31/2010 reflecting 795 separate sets of calibrated parameters. The observed
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parameters are 7, the constant risk-free rate; g, the dividend rate; and o, the volatility on the S&P
500. The estimated parameters f8; and y; are both indexed to j=1,..,3 indexed property types which
characterize the REIT returns being simulated. So, for example, VNO (Vornado) is an office REIT
(index j = 3) whereas EQR (Equity Residential) is an apartment REIT (index j = 1). Figure 14

lists the REITSs used.

1.3.3. Pricing: The simulations consider changes in the observed and estimated parameters
as well as changed anchor points for the value being simulated. In Figure 15, for example, I observe
two simulation paths for the Apartment REIT Composite Index (j = 1) on two different simulation
dates 9/1/2006 (blue) and 12/30/2008 (red). Notice that the blue simulation initiated in 2006 has
a higher initial anchor value reflecting the composite value of REITs on 9/1/2006 of about 7.05
whereas the red simulation has a lower anchor value of 3.31 reflecting the accurate decline in REIT
value over the 2.25 years. Additionally, the blue simulation path generated in 9/2006 exhibits much
lower volatility than the red simulation path generated in 12/2008, as it should. The simulations
accurately reflect the differences in the volatility, uncertainty and value in the market at those

periods of time'>. So, what I would expect is that at simulations initiated in ‘bad’ times the incidence

15 It is true, then, that as the loans in the sample age, that it is unnecessary strictly to simulate beyond maturity, but to preserve the
robustness of the code for future study, I keep track of the age of the loan and its maturity date. The REIT evolution always is
simulated 10 years into the future, the loan maturity which governs the time at which default may occur in simulation < 120.

Figure 16 shows 100 simulations for dWj for 1 trade date projected 120 months.
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of loss events projects should increase resulting in simulated synthetic price compression. In Figure
17, I show for 10,000 simulation paths initialized on each of 9/1/2006 (blue) and 12/30/2008 (red),
the rank ordered distribution of the cumulative portfolio loss across the 32 loan sample, with the x-
axis showing simulation paths 1 thru 10,000 and the y-axis showing the corresponding portfolio
loss generated on such path. The impact of the simulation process on the loans is clear and they
in turn govern price. Empirically, the losses from the simulation correspond to the intuition of the
earlier plot which showed increased volatility of paths generated in bad times (12/30/2008, red) vs.
good times (9/1/2006, blue). The blue points shows low to no simulated portfolio losses on 9/2006
in the 120" maturity month whereas the red points show non-trivial simulated defaults in the 94%
maturity month (aging) with levels that, interestingly, are consistent with recent history. The losses
generated at the portfolio level in the simulation are the result of linking the loans, underlying the

tranches, underlying the CMBX Series 1, to the simulated REIT values. The pricing process begins

with the simulated REIT valueV,; as well as the initial value of the V, o which represents the

observed value of the REIT at initialization (simdate= ) of the simulation.

i x it *e—o.SGftmj\ﬁgi o1)
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V)0 is an initialization value visited on each day in the historical record. They introduce the

historical factor 1/ LTVOi’k which represents the historical (at origination) inverse of the loan to
value ratio for the i — th loan in the k — th CMBS transaction'®. The i = 32 Brownian idiosyncratic
shocks associated with the individual loan risks is captured in the discrete representation of the
Brownian random walk in the remaining terms. The value on the LHS of the equation is thus the
set of i = 32 simulated property values. The values Vti,k act as a rolling barometer for the health of
the loan. In the simulation at maturity the loan defaults “if the value per dollar loan drops below
a default trigger value which is set equal to the loan amount to be paid at maturity”". Specifically
if V} <1 at time of Maturity (t = T) then the loan defaults as the debt obligation is greater than
the company value. This borrows from Merton’s condition in both restriction and action but the
restriction is arguably unnecessary and unrealistic. Consider Figure 18 which shows two simulations

of the MF REIT on two separate days (9/1/2006 and 12/30/2008). Figure 19 shows the

1
LTV,

= 1.33 and

corresponding calculated value for a single MF loan with LTV, = 0.75 with
maturity at 120 months (blue) and 92 months (red). Since the barometer is above 1 at maturity for

both simulations, no default ensues. One objection to the assumption is that in the interval between

16 Only one transaction is implemented.

17 DVH, 2012



_40-
the start of the simulation, t = 0, and maturity on the loan t =T, the value of the property may
drop below the value of the debt (“underwater”). Thus, one could make the argument that ‘If the
property is underwater, why not trigger a ‘ruthless’ default in the simulation intertemporally if Vti <
1, Vt € (0,T) as has been demonstrated in the literature including Jarrow, etal 2008’ I return to

this later in the paper when introducing my generalization, Model 3.

The contra-argument is that debt service on an 1O loan is the coupon which is typically less
than principal and interest amortization. Thus if the income generated by the property at any time
in the future is sufficient to pay debt expenses (and non-mortgage operating costs of the property)
then the borrower might be willing to continue to make debt service payments even if the property
was ‘underwater’ wagering that at maturity, the property value would have turned to a level 1771; > 1.
As the vast majority of CRE loans are paid at maturity through refinancing ( ro/ling’ the debt), this
perspective, implicitly assumes that lenders at such time in the future would be willing to lend at
leverage levels at maturity (T) such that the amount that could be borrowed at time T maturity
would at least be sufficient to payoff the original mortgage issued at t = 0. The loss at the portfolio

level is expressed below and represents the aggregation of all the losses at maturity.

| . . ~.
L7k =L+ 2w * Dy *max{1.0-V,..0} 22
i=1
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The weight wj. represents the contribution of the loan balance to the k — th portfolio. Dj.
is the “indicator function taking the value of one if at time t loan i of CMBS deal k defaults.” They
assume the i loans are equally weighted and that k = 1, and, as stated, maturity default decisions
are fixed to t = T maturity. Next, I allocate the Losses to the CMBX tranches by deducting the
credit enhancement attachment points (low, Z and high, /) as maximums from the portfolio loss

normalizing by attachment

tranche __ maX{LtptII _CELaO}_maX{L[prI —CE" ,0}
C : L (23)
| CEF —CE

The insurance responsibility thresholds for which sellers of protection have to provide cash
in the event of actual default are tranche insurance boundaries (attachment points, shown also with
coupons in the Figure 20). The CMBX swap contract has fixed-rate and floating-rate legs. The
fixed coupon (‘/eg’) is paid to the seller of protection. In exchange, the floating leg is insured against
defaults. A typical swap like CMBX is described Figure 3. One way to price out the risk of these
responsibilities in the index swap contract is to use Monte Carlo simulation to articulate the impact
of the default event on the underlying loan and corresponding tranche cashflows, as well the
resultant tranche pricing. The floating rate cashflow which in this example with default simulated

only at maturity must be = 0 for all t other than t =T is given by:
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floating __ y tranche tranche
CR T =Ly —Lox (24)

followed by the computation for the fixed leg

C thfkixed _ (1 _ Lir_alrjﬁhe ) % ¢ (25)

The notation is imprecise, because if the default can only occur at maturity T and the cashflow for
the fixed tranche is based upon the loss of the prior period, then the cashflow at maturity must also
be certain as defaults cannot occur prior to maturity. This is inconsistent. I correct for this in the
code ensuring that that default occurs at maturity and that the fixed and floating rate summations
and difference accommodate the correct cashflow calculation. Finally, the equation below describes

calculation of the present value of cashflows for tranches AAA, AM, AJ, AA, A, BBB, and BBB-:

> r.teQ fixed _ ~r floating
P(CEL,CEH)=100+4*ZZeftE (CRi™ cri™™)

k=1 t=1

(26)

The cashflows are discounted at the risk-free rate which is appropriate as the model price is
understood to be taken as ‘known’ and riskless. The risk free rate in this implementation does not
vary with time (static term structure), nor is it path dependent (dynamic term structure). In

contrast, under the risk-neutral measure Q the cashflows represented within the expectations
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operator, E Q are path dependent. So, for purposes of clarification 77 = r(7) is the observed 5-year

on the run risk-free rate at historic date 7, as specified by DVH, 2012.

1.3.4 Testing and ex-post analysis of Model 2: 1 implement an OLS suggested by DVH who

claim R-sq overall of 91%:

CVBX vt = O+ Branere OO, +€ (27)

My initial results are reasonable visually (Figure 21), and statistically (Figure 22), but they do not
map consistently to their claim. Figure 21 shows pricing based on the calibrated simulation. I
know that the value of REIT prices (equity values, observed) recovered rapidly in the wake of
support from the Fed in the QE programs. During this period, volatility on the S&P began to wane
and REIT prices more than recovered their levels prior to 11/1/2007. Similarly, AAA CMBX prices
which, relative to REIT prices, were relatively stable, also recovered but BBB- CMBX credits did not
recover (Figure 23). Investigating further, looking at all the CMBX prices over the same period, I
see a pattern of persistent muting in the recovery of lower credit rated instruments (Figure 24).
Why? Knowing that the volatility terms in Merton are not designed to identify state variables
outside of the closed form equations, I ask a few follow-up questions:  First, what causes the

compression in prices; and Second, if my simulation and calibration are correct, how is
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‘compression’ captured solely within parameterized Merton where f; and y; capture non-explicit

volatility drivers?

I observe empirically a lagging price recovery in CMBX lower credit rated classes relative
to REIT equity price recovery over the same period. As such, this faster recovery is coming through
into my simulation in the Merton conditions in the E; terms 0¢ terms which are observed and
inputs. In fact other sources of signals that were CMBX specific may have been influencing CMBX
pricing. If any of such CMBX specific data demonstrated significance, then I could say that the
model proposed by Merton and parameterized by DVH in their implementation is not adequately
specified. All information public in semi-strong efficient markets needs to be incorporated into
pricing. But the pricing estimator as specified first in the Merton calibration, and second in the
parameterized simulation did not account for explicit changes in the fundamental credit health of
the CMBS universe. To verify, I incorporated the most general form of a CRE credit warning with
30 plus days delinquency rates (Figure 25) for the entire CMBS Universe released monthly and
available to CMBS practitioners constant intra-month. Although Merton’s model does not allow
for the use of other information such as delinquency as input to valuation, in the context of CRE
Loan and CMBS valuation delinquency is significant (see Jarrow etal, 2008). Loan level delinquency

status for underlying collateral as well as sector level delinquency should play a formal role in semi-
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strong form efficient markets. Thus considering the macro delinquency status as an ‘environmental
input’ can be considered as public information that is informing prices of illiquid securities. The
information is public to those practitioners trading the objects, though it may be private to others.
Adding the delinquency information and expanding the regression to incorporate 30+ delinquency
status for the CMBX Universe shows delinquency status to be significant for all tranches increasing

the R-sq especially for lower rated credits.

QVBX e =0+ B g IOVBX, 131, 30010+ (28)

The results of the regression specified above are summarized in Figure 26 with the impact shown
in the plot of BBB- (Figure 27). Additionally, I show all my results for the regression in time series
plots below for all classes (Figure 28). Including delinquency ex-post as exogenous and additive to
the Merton calibration, does seem to interact more significantly with the lower rated tranches, but

also demonstrates significance in the higher rated tranches as well.

Continuing my analysis, I want to see if the risk free rate had any explanatory relevance to
pricing. To investigate, I layered into the regression the slope of the US Treasury Curve (10s-2s)
which is a standard technique to incorporate the prospect of changes in borrowing costs of the US

and prospects for inflation into expectations of ancillary instruments. The slope of the treasury
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curve contributed to the explanation of CMBX prices and demonstrated improved results (Figure
29 and Figure 30 significant in all classes, AAA shown). Looking at the coefficients, higher AAA
prices are associated with higher delinquencies which is sensible as managers migrate to better
credits in periods of uncertainty. I repeat the same calculations for (Figure 31) BBB- and see similar
intuitive results. Higher BBB- prices are associated with lower delinquency (30days plus) and a
flatter yield curve two indications of economic health which allay investor concerns thereby raising
prices of credit sensitive BBB- securities. In this period, since delinquencies are increasing and the
yield curve is steepening (Figure 32), I would thus expect to see the opposite effect, which I do.
Finally, given the central role of residential property value deterioration in the Crisis and the
concomitant steepening in credit spreads (Figure 33), I consider both factor to improve the
explanatory profile of the model ex-post and to test for misspecification of the Option Model. As
with both treasuries and delinquency status, the Case-Shiller 20 Housing Index, an established
indicator of macroeconomic health, demonstrated significance over the period studied and the credit

slope were considered in the regression (Figure 34 and Figure 35). In contrast to Treasuries, and

to be expected, the credit slope was insignificant for the AAA classes but significant for the lower
rated classes, in particular for BBB-. The Credit Slope was insignificant for AAA but significant for

BBB-. Additionally as the Credit Slope would be inappropriate for pricing exercises it should be
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dropped. With the modest selections of relevant explanatory variables, I am able to achieve adjusted

improvements.

I observe some significant correlation amongst the Independent Variables (Figure 36),
especially between the Credit Slope and the option model, but, no omitted variable from the
RAMSEY Reset as Fitted F = 72.13 > Fyi¢(3,786) = 3.78, (Figure 37). Additionally, the Variance
Inflation Factor Test indicates that since none of the VIF(f8;) > 10 then on my first pass, there does
not appear to be a problem with multicollinearity amongst the explanatory variables. Not
surprisingly, the Option Model does exhibit the highest VIF (Figure 38). Also, the condition index
at n>30 and p>.50 indicates some competing dependency between the option model, CaseShiller
and the CreditSlope (Figure 39). Since Credit Slope is insignificant with AAA and for other reasons
related to pricing it should be dropped. Finally, the White and Breusch Pagan Tests (Figure 40)
does indicate that non-constant variance heteroskedasticity may be present. However, the Durbin-
Watson Test for autocorrelation (Figure 41) between the error terms (the residuals) is inconclusive
because at 6 degrees of freedom and 795 observations, the statistic is between the upper and lower
bounds. While there were some problems with layering in additional variables, the significance of

them in many ways is compelling (Figure 42 and Figure 43). The significance of the sparse yet
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intuitive added variables is that Model 2 can be rejected as an unbiased estimator of market prices.

Theta is not white noise and it is correlated with other variables.

1.3.5 Initial extensions to Model 2: 1 extend Model 2 to incorporate 6 property types18 by
increasing the number of REITs. This allowed me to expand the number of loans in the sample
from 30 to 172 reflecting all the loans in GG5. Necessarily each of the equations are re-indexed to
j,k =1,...,6 and the system is solved with more parameter outputs:

min | f (x)[ = min( f(x) +f,(x) +..f, (x)z) (29)
%,—/

X

X

As CMBX Series 1 has more than 1500 loans associated with it, there was still a possibility of sample
selection bias. As my sample of 172 loans is the exhaustive set of loans from one of the deals
actually associated with CMBX Series 1 and as the loans are accurately weighted and distributed
across all property types, this set should more accurately reflect the distribution of risks of CMBX
collateral in the form of securing underlying CMBS tranches. The summary statistics of the GG5
transaction sample are shown in Figure 44. As is evident, the weighting of the transaction is not

out of line with my weightings using blind property type distributions and sample weightings

18The six property types are: Multifamily (MF), Retail (RT), Office (OF), Industrial (IN), Hotel/Lodging (LO), and Other (OT)
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though, admittedly, the representation of MF in this trust is less than the universe average for this
vintage cohort. The evolutions below are correlated,

dVL j

VR (r—q)dt + B,o,dW, +y,dW, +o,dZ; ,

—=rdt+o,dW,
S

where r denotes the risk-free rate, g the dividend rate, dS/S the return on the S&P500 index driven
by Brownian motion dWy. dW; a Brownian motion representing sector level shocks for the property
sector j and dZ; j a property specific shock. All factors are orthogonal to each other except that the

sector level shocks, dw; are correlated with each other, so the original equation:

Cbrr(d\/\/j,o\/\()zpj,kdt J,k=1..3 (31)
is now, in my extension for 6 property types, written as:
Corr(o\/\/j,d\/\/k):pj,kdt J,k=1L...,6 (32)

For each draw governing the sector level shocks I use the correlations determined from the

calibration to populate for each simulation date the calibrated correlation matrix:
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Py P Piy Pis Pis P (33)

Each row is associated with a given property-type (1, 2,...,6). This expands the approach where the

calibrated correlation matrix is across (1,...,3) property types. I calculate the calibrated correlations

with the output shown in Figure 45a; in Figures 45b thru 45d I show the other calibrated output of

V.,%, B for the 6 property-type implementation as previously shown for 3 property-types.

The set of charts in Figure 46 show the average simulated inverse LTV evolutions across
1000 simulations for 1092 trading days for all 6 property types. This is the trigger for default when
it goes <1 for any loan in any simulation. As is evident, several evolutions show similarities, but
there are important differences that are consistent with intuition. The Industrial (IN4) property
type exhibits a more muted evolution associated with its lower volatility, but also exhibits some of
the most severe triggering on average. This is consistent with intuition that Industrial property
types are safe unless they go bad at which point they default with no ready alternative use. The
Other/Diversified property type (OT6) appear at times counter cyclical and the lodging property
type (LO5) appears to demonstrate a muted response post the worst of the Crisis. What is a bit

surprising is that the levels for the triggers for LO5 and OT6 on average appear better than expected
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and better than all the other property types. This could be attributed to a sample bias previously
discussed where the economic profile of these particular loans are not representative of the portion

of the CMBS universe occupied by these property types.

Simply incorporating 6 property types, however, does not produce markedly improved
results vs. those analyzed in the 3 property-type case. There are some differences and influences of
more REITs and that may be impacting pricing. The top panel of Figure 47 shows the fair value
pricing somewhat choppier for the lower rated tranches than with the earlier study. However, the
bottom panel showing the composite fair value vs. the composite market price tells the story. The
signal of Theta, as in the 3 property type rendering, indicates that the market prices are expensive

relative to the risks®.

1.4. Model 3: A Generalized Calibration Hybrid: A central conclusion of DVH, 2012
(CMBS were not sold at firesale prices during the crisis) invites three important questions: First,
given their results, if their model was comprehensive then there should be few, if any, exogenous
variables that demonstrate statistical significance in ex-post analysis. Second, as DVH state, many

assumptions they made and the small loan sample they use invite inquiries as to whether or not a

19 Again, perhaps we are asking the wrong ‘questions’ by seeking a better fit to market prices?
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larger, more representative sample reflecting a greater number of loans, more varied property types,

and more accurate loan and bond cashflow and maturity profiles, will further explain differences

between market and model prices. Finally, if the market is efficient then it should not be possible

to earn extraordinary profits in backtesting by using model driven signals®. Thus by inquiring into

the comprehensiveness of the model and generalizing it to accommodate any and all types of loan

collateral, I should more readily be able to assess the efficiency of the CMBS sector.

In order to address the question above, it was necessary to examine in greater detail and

eliminate many assumptions to create a richer model (Figure 48). Additionally my numerical

procedure applies 1000 simulations to each historical date, 7. This section thus presents a general

structural model for pricing CMBS using a calibrated hybrid approach. The method of

implementation is a calibrated simulation that specifically considers the heterogeneity of loan

characteristics by accurately incorporating correct cashflows and ruthless default. The 172 loan

sample is examined over 795 trading days in the Crisis. Backtesting indicates a sizable disconnect

between fair value and market pricing and simple trading tests suggest that extraordinary profits

can be earned with the generalized model. Statistical analysis provides results suggesting an

2 See Jarrow, etal 2008.
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inefficient CMBS market and the need for the generalized model to precisely evaluate CMBS risks

and opportunities.

The generalization presented in this section is important because it incorporates many

realistic features of the loan building blocks of CMBS in a well specified simulated economy. In

the examination, this dissertation gives new insights into CMBS market efficiency and new results

that contrast with DVH, 2012 which is incorporated in this dissertation as a special case of the

generalized approach. In so doing, this section provides a more precise perspective on CMBS

efficiency.

1.4.1. Cashflows and pricing: With the introduction of principal and interest cashflows that

are correctly timed, the determination of fair value requires some changes to DVH’s approach to

calculating fair value. The building block of CMBS and CMBX is the mortgage loan collateralized

by the income producing property. Commercial mortgages have a variety of profiles that have

evolved over time to provide the borrower with important flexibility in both the purchasing of

properties and refinancing of existing debt. One of the staples of commercial mortgage lending is

the balloon mortgage. In a balloon mortgage maturity attime T, the monthly Payments of principal

and interest from month 1 to month T — 1 are based upon a level payment amortization schedule

calculated using some fixed multiple, n, of T, or nT. So, for if T = 120, n = 3, then the level
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payment amortization schedule for months 1: 120 — 1 = 1: 119 would be based on an amortization

schedule?! with nT = 3 * 120 = 360.

A typical balloon loan in a CMBS transaction would be a 10/30 which is a 10-year balloon
where the mortgage payments monthly for the 1 119 months of the life of the loan are based upon
fully amortizing level pay mortgage formulas, but in the 120" month (10" year) of the life of the
loan, the entire loan outstanding principal balance is due. So, for the first 119 months we see in

Figures 49a and 49b the familiar level pay mortgage profile with constant monthly payments for a

10mm 6% mortgage of $59,955.05 with increasing amounts of principal and decreasing amounts of
interest. When we consider the 120" month of the balloon mortgage the promised principal
repayment dwarfs all the prior payments, but to be sure as shown in the summary of month 1:2
and then 116:120, the payments are being made as scheduled per the balloon note terms in Figures

50a and 50b.

In addition to the balloon maturity profile, there are other variations to mortgage terms that
provide borrowers with flexibility. These include shorter or longer balloon dates, periods of interest-

only payments where no principal is paid, step-up provisions that follow interest only periods where

2 See Fabozzi, 1994; Hayre, 2001; Jarrow etal, 2008; and several other sources for standard mortgage payment formulas.
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payments are increased based upon increases in building occupancy, and many combinations and
variations of these themes. The set of inputs for each loan in the GG5 transaction that dictate the
i —th mortgage payment schedule are straightforward. The inputs for one mortgage in GG5 are

summarized in Figures 51a and 51b. Figure 52 shows total promised payments from origination

for all loan underlying the GG5 transaction. As is evident, the heterogeneity in the timing and
amounts of cashflows is considerable®. For valuation purposes, therefore getting the promised
cashflows correctly modeled at the loan level linking the payment schedules to the simulation with

the algorithms described below, should yield different results.

1.4.2. Cashflow algorithms: Since the priced objects of our inquiry are bonds and not loans,

the simulated trust level cashflows must also be allocated accurately through the bond capital
structure. Here there are k = 8 classes and their weights, coupons and beginning balances are
summarized® in Figure 53. Although the cashflows of the loans (and the trust and bonds) are
monthly, the simulations are conducted daily. So, intramonth the promised cashflow balances of

the loans, trust and bonds do not decline, but intermonth they may decline. The promised cashflow

22 The loan origination dates of some loans Precede others. GGS5 is not full until the 19" month (12/1/2005) which Precedes T=1=
11/13/2007. Property location attributes are not included in Model 1, 2, or 3 but are collected for use included in the reduced form Model 4.

3 There is no Interest-Only strip (IO) contemplated, though it could be incorporated. The structure assumed corresponded to that used by
DVH as do the coupons and balance weights. All values are estimated from sources I found to be reliable, but could be adjusted further if

necessary.
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balances of the loans, trust and bonds only decline intermonth based upon the promised cashflow
schedules determined at origination. Nevertheless, as market pricing is available daily, a daily
pricing exercise intramonth is conducted based on daily simulations which may exhibit simulated
defaults based on the implemented simulated methods which also reflect different initialized risk
free rates on each initialized simulation date. Let each historical time, 7, with 1 < 7 < 795, be the
historical date at which a simulation is initialized with daily frequency. I don’t have historically
updated cashflows from industry vendors or trustees* (only promised) and state this data limitation
and account for it in the notation and code. The total actual ‘trust’ principal cashflows across all i-

loans determined from promised principal schedules is:

P(1)- 1) s

C(t)=>c(t) (35)

24 For this dissertation the balance at each initialization period is assumed to be based upon the promised historic cashflows as opposed to the

‘real” historical cashflows which would reflect aberrations to the Promised payment schedule due to actual default or actual prepayments.



57-
At the end of each monthly payment period there is an outstanding principal balance for each of
the loans, trust and bonds reflecting monthly payment. The allocation of principal at the beginning
of each monthly payment period, t, is made from P(t) and such payments are said to be sequential
pay, senior/subordinate with ‘top-down’ priority payment of principal made first to the AAA class
until its balance is reduced to zero, then to the AJ class until its balance is reduced to zero,..., then
to the Other class until its balance is reduced to zero. In each monthly payment period, t, the
beginning balance of the bond, trust and loan objects are adjusted for the principal payment made

in the prior period, t — 1.

Let Py (t) represent the principal payment to the k —th bond at the beginning of the
payment period. Then Q@ (t) represents the end of payment period outstanding principal balance

on the k —th bond, and 0 (0) the original bond balance, so:

O (1) =0, (t-1) B (t) (36)

and for each payment month ¢, principal payments Py (t), for V k tranches are determined as:

fork = 1,(max(0,min(©1 (t-1),P (t)))),

forvk > 1,[max{o,min(@k (t-1), P(t)—kZK;Pkl (t)DJ

P (t)= (37)



-58-
Whenever there is excess principal such that at any time ¢, and for V k > 1 P(t) — X5_; P_, (t) >
0 then such positive principal payment will be captured and allocated to the next k —th tranche in

the sequential pay structure. The chart and corresponding table in Figures 54a and 54b build

intuition with the exact values in the chart of principal allocation for a fictitious $500mm
transaction®. The algorithm for allocation demonstrates the payments as expected with the
maximum principal amount allocated in any given month equal to the total amount in the trust
(“All k”) column on the left of Figure 54b. For example in 3/2008 3 bonds k = 5,6, and 7 each
receive some payment of the $16.789mm principal paid in that month. After the payments of the
outstanding principal balance due to the tranches are made in full, the tranche receives no further

payments of principal. The totals at the bottom are identical to the initial balances at the top (in

grey) as expected.

The interest paid to each of the classes is paid from the trust interest collected from the

loans, C(t) as defined above. The algorithm for promised interest payment, I;(t) to the bonds is:

% A more extensive example showing generated output from the code is provided in AEEendix F.
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L (t)= (38)

with 1, representing the fixed rate coupons for the bonds. Figure 55 shows the corresponding
interest for the same $500mm sample transaction in the previous table above. The total interest
collected C(t) in this example is identical to the amount paid in each month (grey), as expected.

Finally, the total promised payment for the k-th bond in any month ¢ is then:

T)=B®+L) (39

To extend for simulation is largely a matter of notation and capturing the items in the code.
Once the loan and bond cashflows are correctly modeled in the promised case as shown above, then
the exercise becomes straightforward. For eachi loan, on each simulation path, [ at each simulated
time step 7 there is an associated simulated principal cashflow p; (¢, [) and a corresponding simulated
interest cashflow ¢;(t,[). The total ‘trust’ simulated principal cashflow on each simulation path,

at each time step t is the aggregated loan level principal cashflows for N loans is:

|5(t,l)=ir)i (1) (40)
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and the total ‘trust’ simulated interest cashflow is:

C(th)=Y

i=1

(L) (41)

However, since I am substituting (and allocating) the promised loan cashflows with
simulated cashflows, I have to adjust in the allocation algorithms. Let Py (t,[) represent the
simulated principal payment to the k —th bond, at time ¢ on simulation path [, and O(t,) the
corresponding pathwise outstanding principal balance on the k —th bond, with Oy (z = 0,1) the
original k —th promised bond balance and @ (z, 1), the simulated initialized promised outstanding

principal balance for the k —th bond initialized as the identical historical value used in all

simulations | beginning at historical date 7 so that the value corresponds with the outstanding

principal balance at time t = 0:

@k(r,l)z(@k(t:()),VI,r (42)

Then, necessarﬂy, forallt >0

Oy (t.1) =0, (t-11) -B(t,1) (43)

where for each simulated payment month ¢ > 1, simulated principal Py (t, 1), for V k tranches are:
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fork = 1,(max(0,min(((~])1 (t-11), I5(t,|))));

B (t.1)= ~ ~ K _ (44)
for vk >1, max((),min(@k (t=1,1),P(t.1)-D P, (t,I)D
k=1
The corresponding simulated interest payments, I (¢, 1) to the bonds is then:
fork = 1,[max(0, min(@l (t —1,|)xll—12,é (t,l))D;
I, (t,1)= . (45)
forvk > 1,(max(0,min(@k (t —l,I)xll—kz,(f (t,l)—Z‘:k (t,I)D]
k=1
Finally, the total simulated cashflow payment is then:

T, (t1) =B (t,1)+L (L) (46)

Going back to the promised cashflows for a moment, I need to note that the face amount of the

bond based upon the promised principal cashflows is:

F ®)=>P,(t) (47)

and so I can represent the risk-neutral fair value price as a percent of par for the k-th bond as:

¥ h e

F, (t)L

bk(t,l):[

(48)
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where, as before, T is the historical simulation date and r(7) is the 5 year on the run risk free rate
as utilized by DVH, 2012 who do not specify an interest rate process. The observed market price

for the k-th bond is m (t). So, the risk metric of Theta for the k-th bond is:

g (t.1)=b (t.1)-m(t) (49)

When I want to calculate the composite value for Theta across Vk I first weight the fair

value by the relevant outstanding principal balance and total trust principal such that the weight of

the k-th bond is:

_ ZtT:l@)k (t)

t)==tzl—~~ 50
w, (t) S* R (50)

which of course is not the same percentage as the bond weight at origination. As principal pays
down according to schedule, the AAA bond, k = 1, will decline in relative weight vs. the other

bonds. This weight then is used to give a composite fair value price as:

K

2 W (t)b(t1) (51)

k=1

b(t,I)

and the composite market price as:
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m(t):gwk (O)m () (52)

which allow us to then express Theta as a composite value across all bonds in the trust as:

o(t,1)=b(t,1)-m(t) (53)

1.4.3. Term vs. ruthless default: Importantly, I pursued further the issue of ruthless default
versus default at maturity. In Merton, 1974 the closed form solution restricts default from occurring
prior to the debt maturity date. So, in the life span of a loan, the date of primary interest from a
creditor perspective to the company is the date at which the loan is meant to be repaid. There are
arguments for and against this approach. Jarrow, etal 2008 show that many loans in the sample
that exhibited default did so prior to maturity. Similarly, in the small sample of 172 loans used in
this analysis, 10 actually defaulted in the historical period following the analysis, and all 10 exhibited

default prior to their maturity date. The contra position speaks to ruthless default behavior speaks

directly to leverage. If, as is the case with a sizable portion of outstanding loans in the CMBS

universe, the borrower has an Interest Only loan, from the borrower perspective, as long as the

NOI on the property is sufficient to pay the debt service on the loan, then temporary declines in

the price driving it below the amount of debt outstanding may not drive the property holder to

default on its obligations to the creditors. A rebuttal of course is that with no principal payments,
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there is no ‘skin’ in the game and the likelihood of ruthless default increases. The debate is ongoing
one and not resolved here. What is resolved is that evidence of ruthless default does exist in the

literature and anecdotally in industry business practice. The risk is real and it should be considered.

Shown are two plots (Figure 56 and Figure 57); one for AAA and one for BBB- across 3

years of trading, daily. The Black series are the actual prices of CMBX from the marketplace. The
Gold series are DVH’s model with 30 loans and 3 property types with maturity restricted default
and no statistical adjustment ex-post. The Blue series is also maturity restricted default, but with
all the adjustments made this Fall (172 loans, 6 property types, correct maturity date, etc.). The
Redis the most recent version of DVH extension incorporating ruthless default. These plots suggest
that bond traders anticipate ruthless default as a behavior to be expected of CRE borrowers, thereby

pricing it into CMBX, resulting in greater convergence to market pricing.

Corresponding to intuition, the lower rated BBB- tranche exhibits greater sensitivity to the
prospect of this borrower threat of exercising the default option versus the exercise of default
restricted to the maturity date of the loan. As a result, the BBB- Ruthless simulated price remains
more compressed in keeping with the market price observations than the maturity default
simulation for the same instrument. Finally, particularly for the BBB- series, the incorporation of

the improvements in the data and expansion of the property types reflected in both Red and Blue
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series show significant improvement over the model from the DVH (Go/d) with respect to the fit
to market prices (Black). As such, when I layer in the ex-post statistical analysis, I would expect to
see somewhat different, if not better, results those previously calculated. As anticipated the
probability of default associated with Ruthless Default behavior is larger for all property types than
the pdef restricted to maturity under simulation (Figure 58). Interestingly, Merton’s closed form
which is restricted to maturity approaches the ruthless behavior under simulation at the REIT driver
level with results similar to those discussed at the loan level in the sample in Model 2. Finally, the
Expected Losses over the study period generated under the Ruthless Default simulation and non-

Ruthless default are as shown in (Figure 59).

1.4.4. Results: In the initial comparison (Figure 60) the profile of fair value across all bonds
is much more stable. This reflects the modified incorporation of the cashflows, as well as ruthless

default. Most striking is the reversal of the composite profile of fair value in Model 3 vs. Model 2.

I see a tighter relationship with market pricing and, consistent with the results of Model 2 a strong

indication that the market pricing of the securitization overall (black line) more than compensated

buyers for the risks as contemplated in the application of the Model 3 assumptions to the 172 loans

underlying GG5. This reflects the importance of the accurate timing of cashflows when making

judgments about the relative risk and rewards of securities within the securitized markets. Figure
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61 shows again clearly that not all bonds are exposed to default risk equally. Some are more exposed
to risks than others; and Theta does a good job of disclosing the relative risk/reward profile of the

tranches and when they are more/less sensitive to changes.

1.5. Model 4: Reduced Form - Jarrow, etal 2008: In this section I consider the reduced
form approach of Jarrow, etal 2008 as an alternative to the Merton, 1974 approach (Model 1) and
the generalized approach to the calibrated simulation (Model 3) and its special case (Model 2). A
27 factor correlated economy is simulated and CREL valuations are conducted under a 9 factor HJ]M
where loan level default barriers are governed by State variables with events modeled using a Cox
Process. Despite the difference with other approaches in ‘triggering’ default the goal of the reduced
form approach is the same: specifically, to seek the present value of default/loss adjusted simulated

cashflows.

I use the notation and allocation algorithm provided in Model 3 where the simulated

cashflow for the k-th bond at time t on simulation path [ is given as:

T (t1) =P, (t.1)+ L, (t.I) (54)

and the face amount of the bond based upon the promised principal cashflows is:
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.

F () =>P(t) (55)
t=1

This enables us to represent the risk-neutral fair value price as a percent of par for the k-th bond

as:

(SR (e ]

A= F(HL

(56)

Given the observed market price for the k-th bond is m(t) the risk metric of Theta for the k-th

bond is then:

g (t.1)=b (t,1)-m(t) (57)

The notable sole distinction between the expression for fair value in Model 4 and Model 3 (above)

is that the risk free rates in Model 4 are path dependent (not static and historic as of time 7) and
generated within a multifactor Heath-Jarrow-Morton, 1992 (“HJM”) term structure framework®

such that for Model 4:

26 T4 ensure that there is continuity with Models 1, 2 and 3 where term structure is not contemplated, though I only select r(t = 60,1) the 5
year pathwise simulated forward risk-free rate, f(60, t), so r(t,1) = f(60, t, 1) from the vector of rates that make up the pathwise term structure
generated under HJM. I thereby eliminate concerns as to whether the different rates that constitute the term structure are disproportionately
responsible for differences among Model 4 fair value compared to the other three models. The forward rate are pathwise and determined under
HJM, but I only select a single rate for each path and apply it to all simulated cashflows for discounting. In the Cox Process, I use the entire

pathwise forward term structure under HJM. This is a useful simplification; it does beg the question, however, as to the impact of the entire
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XA (e ]

F, (t)L G8)

b (t.1)=

As discussed, I have historic volatilities for NCREIF and each of its property x regional
elements, simulation of each of them is as comprehensive for our modeled economy as simulating
each of the components of synthetic NCREIF. I seek to generate a composite view of the economy
in the future of which actual NCREIF is simulated as one of several cross-correlated random
variables. This gives us greater precision in mapping the loan level parameters of interest related

to default to elements of our simulated economy.

While NCREIF is quite informative, (see Appendix C) it is surely not the entire US
economy. To gain a correlated and distributed perspective on possibilities in the future I broaden
the components of NCREIF to include property x region sub-indices (traded) and BBREIT indices
(also traded) in addition to the entire risk-free term structure. It is worth reiterating a point on the
choices of NCREIF and BBREIT/ICF. NCREIF reflects a stable and well regarded source for
property values throughout the US. It reflects values of CRE reported by commercial banks,

investment banks, pension funds, and life insurance companies. In contrast, BBREIT/ICF reflects

term structure on Theta, as well as the value of interest rate risk, and credit-risk decomposition, all of which are areas of inquiry in current

research building on this dissertation, but outside its scope.
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property specific REIT prices. By including both types of indices (both of which are tradable) I

capture a difference between the market’s view of property specific risks (BBREIT, much more

volatile) versus a property fundamentals perspective on a mostly unlevered long term buy and hold

portfolio of CRE assets (NCREIF, less volatile). Figure 62 shows the differences in the historical

volatility of the national NCREIF across all property types and the National BBREIT index, which

confirms intuition that REITs are much more volatile than the properties owned by them.

To ensure that our inputs were consistent with the historical record, I examined the

historical record for the daily returns for the Office (OF) property type for NAREIT (a REIT index)

and NCREIF. As expected the NCREIF index historically exhibits more muted volatility than the

REIT index as NCREIF is a measure of longer term property value, while REITs are a measure of

pricing daily expectations that may be influenced by factors apart from those traditionally associated

with CRE valuation. This pattern is consistent across all property types in comparing REITs to

NCREIF. The historical daily volatility for REITs exhibits much greater volatility than the spline

fitted NCREIF indices for all property types, is consistent with the historical record (Figure 63).

The stochastic processes for all i = 1, ...,27 factors of the economy including the property

x regional indices, the regional property indices, the REITs and the interest rates are:
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dv,, =rdt+c,dz, (59)

Where 1 denotes the risk-free rate and dZ;; the i = th Brownian motion representing correlated
shocks for the economy. All factors are correlated with one another as described in the procedure

above. So, for this model with i = 27 correlated components of the economy I write:

Corr(dZ;,dZ,)=p,dt j.k=1,..,27 (60)

for each draw.

I adopt the technology in a multifactor approach to simulate the entire forward rate term
structure for our economy using Heath-Jarrow-Morton, 1992 allowing the accurate modeling of the
evolution of the entire forward rate curve. For our simulation I require the elements of the risk free
term structure to be equivalent to a package of zero-coupon bond with unique discount rates that

satisfies

T T ) _
dce+pe" =) ce  +pe™ (61)
i=t i=t

where G is the coupon of a coupon bearing CMT on the run bond, [J;is its principal payment at

maturity, I is the constant CMT yield to maturity,t, is the time of receipt of cashflow, and 4 is the
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unique vector of discount rates with the interpretation of theoretical zero-coupon bond yields from
i =(0.5,30) and which, together, constitute the spot rate term structure of risk free interest rates.””
From the spot rates I can construct the entire forward rate curve where each forward rate is noted
as® F(t,T) and where the set of all forward rates on(t, T ) constitutes a forward rate evolution.
Since each unique spot rate of interest r(t) = F(0,0)is a forward rate where the maturity date is
equal when I say I am simulating forward rates, I use as the core the set of forward rates that are
also the spot rates for all(t,T), Unlike the other n parameters, under the multi-factor HIM

framework the forward prices each have a drift term that is correlated with their historic volatility

where in a nHactor model I will have n corresponding Brownian motions Zl(t),---, Zn(t) to work
with to generate forward rates from the initialization point of the simulation. So, for our purposes
the basic multifactor HIM model is

f(t,T)="1(0,T)+ Zn:j‘ai (t,T)dt+ j.O'i (t,T)dZ, (t) (62)

i=1

where the forward rate process starts at time t =0 with the forward rate F(0,T) and evolves driven

by various Brownian motions and a drift and in discrete terms as

27 For further explanation of the bootstrap method see Fabozzi, 1993.

28 For example, the 3 month forward rate in 3months, the 10 year forward rate in 10years, etc.).
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ft+dt)=f(t)+> aVdt+> o,z Jdt (63)

Zn =Z+# Zk where Zkis defined as the correlated random shock for parameter & across all &

parameters,

ft+dt) = f (D)+Y e dt+> o,z Vdt (64)

and where Z is simply a separate uncorrelated random draw for a given parameter k.

Since I want to correlate the HJM forward rate evolution ofk =1,2,...,9 forward rates

with the 18 other elements of the economy, I substitute the correlated Z, for Z, by implementing

the standard Cholesky decomposition applied to the variance-covariance matrix 2 determined from

the correlation history of required Z, values embedded within all historic % values within a

stochastic process framework. I observe the matrix 2 has three characteristics:

1. It is symmetric such that T =3,
2. The diagonal elements satisfy ¥ 205 and
3. It is positive semi-definite so that XI X, >0 forall Xe R".

Since these three conditions are met®, I can use the Cholesky decomposition which satisfies:

2 See Haugh (2004) for further review of this Procedure.
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>=C'C (65)

as the matrix 2 is 27x27, and I can find matrix C . Given matrix C , I create a row vector W of

independent random draws on ~N(0,1) and take the product of matrix C and vector

w; (t,1) = rand (N (0,1)) of 27 random draws to create 27 correlated random draws, Z (t, ), for

each time step

27
Z(t,)=> Cow(t,]) (66)
i=1

where each Z, is correlated amongst all 9 forward rates and 18 property indices and the discrete

form of the HJM evolution is then

ft+d)=>" f O+ Vdt+> 6,z dt (67)

which then allows us to simulate k =1,2,...,27 State variables, representing the cross correlated

US Economy

xk(t+dt,l)=xk(t,l)+aka(t,I)\/a (68)

together, X (t,1):
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Xl(l’l) Xz(l’l) X27(1’|)
Xk(t,l): Xl(:zvl) Xz(:zal) X27(:2’|) (69)
X,(360,1) X,(360,1) - %,.(360,1)

While I simulated the state variables in our economy for each month forward for 30 years,
I discount for valuation purposes with an associated path-wise term structure which is transformed
from the simulated forward rates. A smoothing procedure of interpolation is used to construct !
theoretical monthly term structures that are consistent with our simulated economy and appropriate

for loan level simulated cashflows of principal.

In Figures 64a, 64b and 64c I show snapshots of the correlation matrix, the variance

covariance matrix and the Cholesky decomposition generated in the simulation code®. This
procedure is initialized on each simulation date, T. I show for descriptive purposes a few snapshots
of values generated by the correlated simulation in Figure 65. The results are intuitive with respect
to the volatility of NCREIF vs. REITs as well as the difference in the periods of the Crisis with
REITs exhibiting broader distribution of paths prior to the Crisis versus property values measured

by NCREIF and both REITs and NCREIF exhibiting sustained levels of volatility as the worst of

30 Whenever practical parallelized computation was utilized to optimize speed distributed across internal microprocessors.
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the crisis subsides with NCREIF showing relatively more persistent uncertainty than REITS when

compared with their pre-crisis levels.

1.5.1. The state of the loan: Now that I have established the simulation of the US economy,
I have to discuss the risk of default pathwise under simulation. The state of the loan (current,
delinquent, or default) is considered at each step of the simulation. Inputs to the realization of a
new state for the loan on the simulation path are the correlated random variables of the economy
previously described as well as the state of the loan at the time step. In this sense the state of the
loan which is stochastic governs the cashflow and future cashflow of the loans by either defaulting
or not as per the method below. What I am going to do is to link the state variables to property
characteristics and to employ a choosing process, or modified Cox Process, to visit the risk of
defaults. The link between the simulated economy and the loan state is established by using the
MLE’s as coefficients within the Cox Process. The coefficients that govern our choices at each (t,I)
are thus the MLE’s where the hazard rate estimation was done separately for fixed-rate and floating-
rate loans. Figure 66 shows the loan state transitions over 2.2mm loan life observations from 1998
to 2005; Figure 67 contains a summary of the loans contained in the estimation. For non-CTLs,
the focus of this dissertation, there are 94,011 fixed-rate loans. The number of defaults for the fixed-

rate loans is 2,153. The parameter estimates for a competing risk current versus delinquent point
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process and for the default point process are shown in Figure 68. The parameter estimates are based

on

1

—Z ; coefficient; -variable; )

intensity = (70)

(1 +e
and I discuss the specific implementation further below.

1.5.2. Property characteristics, U;(t): To simulate defaults in our economy made up of 27
State variables I need to link the state variable to property specific parameters with significance to
the events of default and loss. Formally, I identify 10 property characteristics of any commercial
real estate loan that demonstrated significance in Jarrow, etal 2008 with respect to modeling
historical defaults, U(t). 2 are time dependent 8 are static determined at origination. The 8 static

Property Variables related to a property’s potential default in the simulated economy are:

° ACLI foreclosure index at origination

. NOI = (Original NOI/Original Loan Balance)

®  Original Loan Balance = Log of Original Loan Balance
° DSCR

i LTV

° Loan Coupon

o

Coupon Spread = Coupon — Risk Free Rate at Origination
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The 2 time dependent Property Variables related to a property’s potential default in the simulated

economy are:

. Age of loan (t): = (1 — remaining term/original term)
. Delinquency Status of the Loan (t):

B 0, current

"

1, delinquent

® 2, defaulted loan, real estate owned (REO)

1.5.3. Delinquency Status, N;(t): The delinquency status of the loan contributes to the

likelihood of a loan defaulting at some future point in time. In REE 2008 2.2mm loan life transitions

were evaluated. The results of that study showed a tendency for loans at 60-89 days delinquency to

transition to a worse state. As such, for continuity with 2008 the study and for reasons supported

by it, I compress the characteristic delinquency state of loans at initialization of the simulation into

current (0-59 days), delinquent (60-90+), or default (REO/Foreclosure) as of the initialization date

of the simulation. This data characteristic for each loan is provided by Trepp, LLC. Once the

simulation begins, the delinquency status is no longer historic, but simulated, based on the default

process discussed below.

1.5.4. Use of MLE Coefficients: 1 utilize in this dissertation the MLE’s associated with the

state variables and the Property Characteristics in the simulation in the choosing process of the

simulation to visit whether a loan will default at some time t on some path [ in the simulation’'. I

31 The detailed account of all MLE’s and discussion of the delinquency and default intensity process are provided in Appendices D & H.
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assume, necessarily, that the present relationships between the simulated economy and the loan
profiles in my sample are substantively similar to those in the historical study which covered 1998-
2005 from which the MLEs were determined. Refer to Figure 4, previously mentioned, which shows

a sample of MLE for one property x regional pairing of multifamily x northeast. The state variables
X, =X (t,]) and are non-deterministic (random) as they are simulated and vary through times.

Each Xk(t,l) state variable has a corresponding parameter estimate (coefficient) Y which are

constants and do not vary through time, giving:

X, (L) X,@n - XD
X200 XD o X2

pxh=| D RGD e XBDL o
X,(360,1) X,(360,1) - X,,(360,1)

Notice that only k=14 of 27 state variables are represented. This is of course because the loan level
characteristics associated with the MLE are only relevant for the subset of all kK = 27 state variables
that were simulated. So, for example an MLE associated with Office Indices is irrelevant to a Retail
property being simulated even though both Office and Retail property indices were simulated under
the correlated procedure discussed. Similarly, a property with location in the Northeast does not

have a corresponding MLE estimator in the Midwest. Thus, the state variables considered in the

code are a subset of the total state variables simulated, X,_,,(t,1)C X (L, ). Specifically,
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9 Forward Treasuries (3mo, 6mo, 1yr, 2 yr, 3 yr, 5 yr, 7yr, 10yr and 30 yr)

® 3 NCREIF Property Value indices
o 1 All Properties/All Regions

0 1 Property Specific Indices (Multifamﬂy, Lodging, Industrial, Office, Retail,

Other)
0 1Regional Specific Indices (East, West, South, Midwest)

® 2 BBREIT/ICF Stock Price indices
o 1 All Properties
0 1 Property Specific Indices (Multifamily, Hotel, Industrial, Office, Retail,
Other)

Like the state variables, property specific characteristics U(t) for all i loans are also modified

with parameter estimates ¢ which is a vector of constants (determined again from the MLE study)
corresponding to each property specific characteristic, dJ; (1) . The purpose of @, (1) is to relate
the loan specific characteristics U() for a given loan i on the simulation path [. Coupled with the
state variables, we see the beginning of a joined influence of the simulated events WX, (1),

deterministic loan profiles M. (1), and the GN (t)updated loan payment status, in @i (%))
forward through time (t:T) across different outcomes (I:L) in the simulated economy. This

leaves us approximately with

Qi) =, X, (L) +O,N, (D) + U, (1) (72)

macro micro




-80-
where the two influences on the payment status l//kxk(t,l) and 0d Ni(t)+wi(t) can be

considered macro- and micro-economic influences, respectively.

1.5.5. Reduced form probability of default: 1 consider one risk, default, to illustrate the basic
technique of comparison between simulated (macro) and loan specific (micro) influences on the
loan payment status. This has the characteristic of questioning the valuation of such loans amidst
an evolving economy. The basic technique is similar to what I did previously. Earlier I simulated
variables that were informed by a calibration. Here I also simulate variables and relate them to

coefficients for the purpose of estimating the probability of default, or specifically, default intensity*

.

ﬂ'd [t, Ni (t), Ui (t), Xk (t, I)] — e‘ﬂd +O5N; (D+U; (D+pg X (L1) (73)

where the interval between sequential time observations is A given the loan payment histories and

the times series observations for the state variables X DT,

32 A primer on the use of the Poisson process in modeling default intensity Ieading into the use of the Cox Process as introduced by Lando

and an advancement from ordinary jump diffusions is found in Appendix G. A detailed account of the ‘switching’ is found at the end of
AEEendix H.
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Ay [t N, (0),U; (1), X (,D)]A = I (74)

(1 + e—[(/’d +0g N (D) +4U; (D)+y g Xy (1.1)] )
has the interpretation® of being the probability of default over the interval [t,t + A].

1.5.6. Payment State Transition Process: 1 consider the simple Cox process which can
thought of as a kind of measuring stick with which to gauge a conditional action of default within
the simulation. I use the MLE to determine estimates for default payment states on a simulation
path informed by their prior switching state on the path between current and delinquent. I initialize

the simulation in the current state, 0, (it could be initialized as delinquent, 1). At each time step ¢

I calculate an intensity for a current state ic,

U; (t X (t
/,i’c [t,Ui (t)a Xk (t, I)] = e¢C+¢° i (DX, (G 75)

with associated probability of being current as

1
ALV (O, X, (DA = (1+ ¢ P 0O ATy (76)

33 See Jarrow, etal 2008, pg 458.
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and an intensity for a delinquency state ﬂq where

U, (O)+p X, (L1
ALU (0, X, (t,1)] =" (77)

with associated probability of being delinquent as

1
(1 _+_ ei[@ +ﬂUi (t)+l//| Xk (tal)])

lq[taui(t)a Xk(tal)]A = (78)

The tree below describes the payment state assignment at each time and each path for each loan.

p Si(t:t+1,1)=cur(t:t+1, j)=Si(t+1,1)
[e ah=tz)]

| g /s Si(t:T,1)=def (t:T,1)=>absorb/end
Si(t—y=eur (t- )~ et A Si(t,h=cur(t,l)
Si(t==dia(e—1)” T se=digcey

Si(t:t+1,1)=def (t:t+1,1)=Si(t+1,)
Q, th=1(2)]
Si(t:T,l)=def (t:T,I)=absorb/end

N
(79)

Let Si (t=,1) be the payment state of the loan at the beginning of each simulation period. The loan
enters the system as either current or delinquent. Default is an absorbing state and thus in the

interval from the time of a realized default on a simulation path 7 to the stated maturity date T, the

loan will remain in default in each period of the simulation. Let Ci (t,1)in the model structure be

the choosing process to determine the state of the loan immediately following entrance into the
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system. At this stage the loan may transition/switch to another state of delinquent or current based
upon the random draw from the Poisson distribution with the stochastic interarrival rates, ic and
ﬂ,q as described below; I can call (Ci (t1) the delinquency process. Immediately following this loan

payment state assignment, the loan is then exposed to another process @i (t,]) to determine the

final payment state for the loan at time t. This also entails a random draw from the Poisson

distribution with the stochastic interarrival rates, 4. I call Qi (t,1) the default process, as described
below. When the loan transitions to a worse state the indicator variable is set equal to 1. 1 make a

separate Uniform random draw Z (t,|) outside the simulated economy to determine the state prior

to the choice with the threshold condition here defined as the transitioning value for Ci (t,1) where:

'C,(t,l) = current & Z < 4, = delinquent = 1;

If C.(t,1)=current& Z > 2, = current = 0;
C . (t,1) = delinquent & Z < A4, = current = 0;and

C,(t,1) = delinquent & Z > 4, = delinquent =1

with 7=delinquent and O=current. 1 do not have prepayment penalty criteria information, for the

loans in this study and thus I do not consider the intensity process

A LN, O,U, 1), X, (t,D]= a7 0N (O AU (D47 X (L) -
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and associated probability of prepayment®. Importantly, by eliminating prepayment, a direct
comparison with ‘credit-only’ models in the future (from rating agencies, for example) is made

much easier.

In summary, the delinquency/current process Ci (t,l)occurs at every timestep for each of

the 1loans and has the effect of turning the delinquency status coefficient on or off in default
intensity, 4. Specifically, when S;(t,1)=1=N, t,h=1 :>‘ed N (t, |)‘ >0 which is then used in
the default process Q; (t, | ) . Q, (t, | ) is the Cox Process for the hazard of default that considers

the payment state Si (t,1) of the loan determined by the process Ci (t,'). The delinquent status

is not always arrived at, and when it is, it does not guarantee default®, as default is governed by
Aqlt, N; (), U; (), X, (t, 1)]A which is statistical, not deterministic. As in C, (t,'), the process

Q; (t, | ) where the absorbing default state’® may be realized requires:

34 Treatment of prepayment is done effectively in Jarrow, etal 2008 and is outside the scope of this study.

35 Importantly, note that upon arriving to the default process Q; (¢, [) which utilizes the default intensity A4 as a lower bound, that
if the payment state S;(t,l) = 1 indicating delinquency, then this has the explicit effect of updating the credit State variable
N(t,1) to N(t,1) = 1 at time t on path [. The impact on the default intensity A4 is that |4 N;(t, )| > 0 at time t on path
L. Otherwise, of course, QdNi(t, D=0o.

36 In the code we convert the 0,1 non-event/event notation to the familiar industry status 2=default, 1=delinquent and O=current.
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Q. (t, j)=current & Z < 2, = default = 1;
" Q,(t, j)=current & Z > 2, = current = 0,
Q ,(t, j) = delinquent & Z < 4, = default = 1;and
Q (t, j) = delinquent & Z > 2, = delinquent =0
As we see the model contemplates the realistically unlikely, but nevertheless possible (as
seen in data), event of a transition from the current state to the default state¥, bypassing
delinquency. Default is an absorbing state, such that if default occurs at some time t, on some path

j the loan cashflow on that path terminates on (t,1) and the recovery rate process begins for that

loan on the path. If default does not occur, the payment state Si (t+1,1) of the loan following both

choices at each time step becomes the persistent ‘new’ state of the loan at simulated t + 1. At T,
the loan matures as promised on a path [ if no default occurs prior to T. Again, a detailed

description of ‘switching’ is found in Appendix H.

For any simulation path that generates a payment state of default, the loan is immediately
captured and stored and indexed with respect to its default time t and path . In this implementation
I assume a simple constant loss rate for a loan that reaches default and a constant time to recover

proceeds from sale of the property38. Depending on whether one is interested in valuing only the

37 This can be changed to ignore this possibility resulting in choices from Q; (¢, 1) currentto delinquent vs. to default.

38 Recovery and loss rates could be modeled as stochastic processes; see Jarrow, etal 2008.
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loan, or the loan in a securitization, or both, the technique is equipped with the HJM interest rate
process to immediately discount the default adjusted cashflows reflecting deterministic recovery

rates on risk neutral term structure suitable for pricing of all path dependent objects.

1.5.7. Results — Fair Value: 1 repeat the snapshot for fair value and Theta results presented
in each of the prior models. What we see is the ‘calmest’ of all the models. The risks captured
through the Cox Process, the state variables, the incorporation directly of delinquency and default
data enable us to secure a perspective on the risk of the loans and valuation for the bonds with the
most comprehensive data and technique of the Models presented. The composite pricing shows
substantially attractive pricing versus risks in Fair Value versus pricing of the market (Figure 69).
Again, as in prior cases, this is categorically the case across all bonds at all times. Figure 70 provides
us with a precise view into the risk/reward profile of the bonds under the reduced form technique
using Theta. As before there is considerable differences amongst bonds x time both relative to one
another and versus the capital structure overall. Finally, we refer back to Figure 2a in which I
compare the measurement Theta across all four Model approaches. Based upon the evidence, the
reduced form approach is the most compelling. It is unique in its ability to incorporate vital
information about the loan profiles in balanced way. As such, the signals appear to counter those

proposed by DVH, 2012 regarding efficiency and pricing in the CMBS market and are more
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consistent with those suggested by Jarrow, etal 2008. As noted the actual default experience of the

GG5 transaction with a more than 20% lifetime default rate, bolsters this perspective.

1.5.8. Limitations: As always there are caveats and limitations. First, the MLE’s are ‘stale’;
meaning that although they were estimated over more than 2mm loan life observations, the cut-off
date for that data was in 2006. As such, while the relationships contemplated in the MLE’s is
probably still valid, the financial crisis may have impacted them. Nothing can be done about this
without access to data which is costly and difficult to obtain. Second, the delinquency and default
experience is estimated from actual default tables of GG5, but they were not provided for each
historical date at the loan level. The mapping of the deal level default experience which was available
for all historical dates combine with sporadic loan level defaults for the Crisis mapped well.

Nevertheless, more granular and regular data would be beneficial.
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Section 2: Recovery Period (January 2013 thru March 2014)

In the previous section, I considered the underlying risk profile of CMBS/CMBX and the
risks of the underlying cashflows within the financial crisis. Our bond pricing data for the Crisis
was isolated to CMBX Series 1 from the period 11/1/2007 thru 12/31/2010 (the Crisis). In Figure
71 (boxed in purple) we see a spike in probabilities of default for all CRE property types, in early
2012, from the perspective of the Merton model. Since the Merton model is forward looking to the
maturity of the debt one implication from Merton is that the Recovery began in earnest around the

beginning of the 3rd quarter of 2012 (Figure 71, arrow).

2.1. Data — Recovery: While the loan level data is representative of the CMBS Universe it
is not comprehensive. Additionally, I only have pricing for CMBX Series 6 tranches, and not the
underlying bond tranches (collateralized, by the loans) and may therefore only consider at most 6
priced bond objects on any trading day from which to select a portfolio. This is similar to the
limitation of the earlier section during the Crisis where we were limited to discussion of CMBX

Series 1 and similar to the limitation of DVH 2012.

To reiterate, however, the prices of CMBX are quite rich and generally must reflect the

pricing of the 125 underlying tranche collateral. Where this study and model approach adds insight
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is that it peers through to the loan collateral securing the tranche collateral that secures the top level

CMBX tranche pricing. If there is a disconnect between the loan level risk and bond level risk

then we should see differences across model approaches in comparison of model fair value to market

prices. A discussion of the cashflows produced by the code can be found in Appendix F.

The CMBX Series 6 capital structure is provided in Figure 72. The subordination levels

and coupons are determined from the average subordination levels and from review of the

prospectus supplements of the underlying 25 transactions. The CMBX Series 6 structure

implemented assumes a simple senior subordinated structure as previously discussed for the CMBX

Series 1. The pricing of the CMBX tranches through BB were obtained from Markit. Tranches

below BB are not priced but exist and serve as the first loss piece of the capital structure. The data

for pricing and the underlying economy is daﬂy and Provided thru 3/7/2014.

2.2. Valuation - Recovery: As in Section 1, I compute the fair value price and Theta for each

of the tranches in this case for CMBX Series 6. I consider the exact same models, and only alter

the loan and capital structure required to reflect the new period and objects under consideration.

Otherwise the approach is identical. Since the purpose of the study is loan and bond valuation, I

begin the analysis on 1/28/2014 which was the date of issuance of the CMBX Series 6 swap objects.
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The overview snapshots for each of the models showing the tranche level Theta as well as

Theta for composite price are found for Model 1 (Figures 73 & 74), Model 2 (Figures 75 & 76),

Model 3 (Figures 77 & 78), and Model 4 (Figures 79 & 80). As is evident, there are substantial

differences in the default adjusted pricing for each of the models. Overall, across all models the
difference between fair value and the market price (Theta) is much more muted than what was

generated by the models in the sample during the Crisis.

This should not be surprising for a few reasons. Unlike the loan collateral underlying
CMBX Series 1 during the Crisis study where the average age of the loans at the outset of the study
was 32 months, the loans underlying CMBX Series 6 are new, with the age of the loans as of January
2013 ranged from 2 months to 16 months. It would be highly unusual for new issue loans to exhibit
default this early in the loan life cycle and, as stated before, the delinquency profile for all the loans
in this transaction is 0 in each month during the study, within a broader market environment shift
in credit characterized by substantial declines in the seasoned CMBS universe overall. Generally,
loans will exhibit greater delinquency and default manifestation as they get older in the CRE
universe and this has been argued to be the result of exposure of CRE property leases to
uncompensated termination driven by tenant business failures as well as speculative lease-ups of

properties that simply did not occur according to plan, or failure of the management company to
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secure new tenancy in building when existing tenants decided as their right to not renew. These
and many other property specific events may occur in the loan’s borrowing period (see
Brueggeman/Fisher) and may result in deterioration of cashflow proceeds in the form of rents that
cause defaults prior to maturity. However, lockboxes and the integrity of conduit lending programs,

at least early on, mitigate such immediate deterioration in loan health early in its life.

Loans do age however, even in the Recovery, and this is surely going to be picked up in the
Model 4 reduced form approach that captures the non-static information of the age in the Cox
Processes that govern its delinquency default simulation. Additionally, in the case of Model 4 the

information related to current delinquency status = 0 also represents a key dynamic factor. Model

4 thus stands apart from the other models considered in having by its structure the unique ability
to ‘digest’ such telling updated loan level information as age and delinquency status of collateral
which, using such updated information necessarily informs simulations of future loan cashflows at
initialization for each time t. In the recovery period, marked by low volatility marketwise and
characterized by current health of the loans, Model 4 will thus generate defaults assuming,
accurately, the current state of the loans (dlg = 0) but with increasing age. Thus the transition to
the default state from the current (non-delinquent) state will be less likely than in the Crisis (marked

by observed delinquent profile of loans) and older collateral, but the age (and other characteristics)
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will also be considered resulting in non-trivial simulated delinquencies and defaults during the
Recovery period as is appropriate. Transitions to the default state are taking place because of the
interaction between the loan parameters (static and in the case of delinquency status, dynamic) and

the simulated economy under a rich simulation which can consider extreme possibilities.

Turning to the tranchewise Theta comparison charts (Figure 80) for the reduced form
Model 4, we see the black line (composite Theta) is stable across the study. The tighter AAA Theta
vs. the composite Theta, indicates that AAA are more fairly priced than the composite of all tranches
in the CMBX Series 6 transaction overall. Moving to the right, the AS class, subordinate to the
AAA class, indicates a reasonably stable profile, but shows a shift relative to the composite, not
categorically higher than it or lower than it. The AA Class exhibits higher Theta values relative to
the composite, indicating greater relative value than the composite transaction overall when
considering the market pricing x risk. This perspective is even more pronounced in the case of the
A and BBB- tranches that too exhibit ‘cheap’ pricing in the market vs. the risk contemplated under
Model 4. In contrast, the BB tranche is clearly absorbing simulated losses early on. Though it is
not the first loss piece, there is only 3.2% subordination to the BB and any loan losses in excess of
3.2% will impact the BB tranche. Early on in the Recovery, there was greater uncertainty about the

future with higher anticipated default likelihoods in the CRE sector. During the periods from
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1/2013 thru 6/2013, BB pricing appears expensive outright relative to the market pricing with Theta
<0. During the summer, however, following discussion by the Fed on continued accommodative
policies, the underlying risk considered by the Model 4 clearly indicate a shift in the relative value

of BB versus market pricing resulting Theta >0.

These relationships discussed in depth for Model 4, however are not consistent across all
models. To build the intuition across the four models, we consider Theta for the composite CMBX
price versus the composite market price for all four models (Figure 81). In the case of Merton,
(Model 1) we see there is some differentiation in the risk estimation early on with increased
distinction relative to the market price in 5/2013. Following that period, Theta becomes more
muted contemporaneous with increases in CMBX Series 6 pricing. If you consider the loan level
probabilities of default generated from Merton’s structural form model previously discussed we see,
overall, a decline in probabilities of default that are occurring contemporaneous with declines in
Theta. The implication, from an investment management perspective would be that while risk is
declining, and the bonds are ‘cheap’ overall, the opportunities are more muted than they were at

the beginning of 2013. Prices are starting to look ‘expensive’ vs the underiying risks.

In the second panel on the right of the top row Figure 81, we consider Model 2 which is

the basic calibration hybrid approach. Relative to Model 1, Model 2 exhibits a higher risk profile
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than Model 1. Generally, Model 2 indicates favorable pricing opportunities versus the underlying
risks under the calibrated simulation, but there are periods, recently, where Model 2 seems to pick
up conditions of increased uncertainty. Anecdotally, we know that there were a few days of
precipitous drops in the market responding to events in the Ukraine, and this would be picked up
in the volatility parameters calibrated under Model 2. Nevertheless, the serious deficits in the
assumptions of Model 2, questions just how accurate estimates of Fair Value (and thus Theta)
generated can be* and I investigate the statistical veracity of claims from Model 2 in the statistical

section below where I consider efficiency.

In the second row of Figure 81 on the left we see composite Theta for in Model 3 (the
‘evolved’ version of Model 2). In Model 3 all assumptions in Model 2 were addressed, and
eliminated®. What we see in Model 3 is a very tight relationship between fair value and market
pricing that accurately considers the loan level collateral and default adjusted cashflows under
calibrated simulated conditions. It is a much richer model than Model 2 and the trend down
towards Theta=0 is consistent with Model 1 and its associated loan level probabilities of default.

The conjecture that things are getting expensive for the reasons stated are clear and a quick glance

» We attempt to answer this question in the Section 3 in the discussion of trading tests.

40 Specifically, I incorporate the accurate maturity, balance, interest only periods, amortization and balloon dates for the loans in

the sample; increase the number of REITSs from 10 to 35, informing 6 property type diffusions; and incorporate ruthless default.
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at the lower rated tranche Thetas indicate indeed that defaults are being simulated (BB), but /ess so

as evidenced by increases in Theta for BBB- tranche.

Finally, on the right panel of row 2 in Figure 81 we see the composite level Theta for the

reduced form Model 4. In Model 4 we see a profile similar the other models with a downward

compression of Theta indicating decreasing attractiveness in market prices relative to underlying

risks. The profile can be said to be the most regularly conservative of the approaches with shifts in

risk assessment vs. market pricing appearing to exhibit frequent and precise sensitivity. Anecdotally,

when early in the summer 2013, Chairman Bernanke’s comments on tapering caused markets to

swoon, Theta under Model 4 increased. Similarly, in October 2013 when uncertainty surrounding

the nomination of Chairman Yellen (also related to tapering) emerged causing uncertainty in the

market, Theta for Model 4 also increased. At the same, time, recent events in the Ukraine did not

have the immediate and transitory impact on Model 4 through the volatility parameters as they

seem to have impacted Model 2. Nevertheless, prices, from the perspective of Model 4, are judged

to be most expensive relative to the underlying risk compared with the three other models.
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Section 3: Testing of Efficiency (Crisis and Recovery Periods)

The models discussed provide us with perspectives and insights into the pricing of their
underlying risks. In the earlier portion of the study on the Crisis, I investigated with some rigor
the pricing capabilities of Model 2. In particular I saw considerable evidence of significance among
many explanatory variables exogenous to the Model 2 structure. In light of the significance of these
explanatory variables I called into question the viability of Model 2 as a source for market price

estimation.

As we saw in the Crisis portion of the study as well as the Recovery portion, the estimates
for fair value are quite different across the different model technologies at the composite level, and
vary broadly across time and rating within and across model approaches. While I had considerable
success in determining accurately with high statistical significance and R-sq the missing components
of price not contemplated in Model 2, the statistical exercise was motivated by the pursuit of the
‘ultimate’ model that would map precisely to the market price. This motivation, however, is

predicated upon the assumption that market prices are efficient.

But what if market prices are not efficient?
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In the case of fair value pricing, then, we wouldn’t necessarily seek to map the fair value price to
the market price and use such mapping as a barometer for success. In fact, if market prices are
inefficient, we might rather wanta low explanatory relationship between market price and the model

fair value.

Based on the statistical evidence below, the prior work in this study and in other works*,
there is strong evidence that the CMBS market is inefficient consistent with groupthink behavior
of crowds. CMBS has, to date, not adopted derivatives pricing technology to assist in the evaluation
of underlying risks at the loan and bond level. As a sector highly exposed to several subtleties in
risk exposure and valuation complexity that grapples with possibilities of default, loss, prepayment
and dramatic changes of timing at the loan and bond levels, it should not be at all surprising to see
evidence of imprecision in market pricing versus the underlying risk exposure. Since the Crisis and
the Recovery exhibit dramatically different pricing profiles environments, they provide a rich
proving ground to investigate claims of inefficiency. If my claim of CMBS market inefficiency is
correct then at least two conditions should be readily disclosed from an analysis of the data across

different fair value pricing models:

41 Gee Jarrow, etal 2008; Stanton & Wallace, 2012; KKY, 2010; Ashcraft & Scheurmann, 2010, and others
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Condition 1a — In High Stress Environments a Bad ‘Fit’ should indicate a Good Signal:

The relationship between fair value prices generated independently from market prices should

exhibit low explanatory power for the market price. This should be borne out in both OLS and

quantile regressions. In the presence of several fair value estimators, the better the fair value

estimator, the lower the explanatory power for market price. The conjecture is that in high stress

times, the information related to the risk events cannot be parsed efficiently by market participants

in the absence of a robust technology specifically designed to evaluate the likelihood of risks

manifesting and quantify, dispassionately, the pricing of such events at the bond level.

Condition 1b — In Low Stress Environments a Good ‘Fit’ should indicate a Good Signal:

In the absence of stress in the marketplace the threat of risk manifestation dissipates. In these

market conditions, the market participants are able to determine pricing without having to articulate

the underlying risks in a sophisticated manner. As such, the fair value in these conditions should

also be sensitive to changes in market conditions concomitant with the market actors and good fair

value pricing should begin to map more closely to the market pricing. So, in these environments,

the conjecture is: the better the fit, the better the model, though clearly since the pricing methods

differ from the market, the relationship should still be relatively weak. Exogenous factors here may
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contribute to explanation of market pricing in conjunction with fair value and should improve the

fit.

Condition 2 - Systematic and Extraordinary returns should be made with the best model

earning a.) the greatest relative returns and b.) the best empirical returns: Finally, the ‘proof’ is in

the results of trading strategy returns using Theta. Conditions 1 and 2 in some sense are only valid
if Theta generated from the fair value with the worst fit to market price actually generates the best
returns. Theta should provide clear, non-random, buy and sell signals such that a portfolio manager
following such signals should be able to systematically earn extraordinary returns. Additionally, if
the claim of inefficiency is correct, then the better Theta, the better the relative extra ordinary
returns for portfolios constructed using Theta where the better Theta is the one generated from the
fair value price with the lowest explanatory power for the market price. The implication being that
the market price does not reflect well the underlying risks and, as such, the veracity of claims of
comprehension and transparency of risks as embedded within the market price may readily be called

into question.

Necessarily, as is a common assumption, the fictitious portfolio manager must engage in
small enough trades such that such moves do not unduly influence the market price. This is non-

trivial, particularly in the CMBX synthetic market. Swaps below investment grade in the market
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such as BB frequently (as with the underlying collateral) traded on a ‘by appointment’ basis. The
liquidity for such securities is sporadic and bid/offer spreads factor multiples of higher rated classes
such as AAA. I keep these institutional subtleties in mind in the design of the trading test below,

but they do represent a caveat to the conclusions.

3.1. Condition testing: The testing for Condition 1a is straightforward. I perform the most
basic OLS and quantile regressions for each of the four models across the two study periods on a
daily basis, the Crisis (11/2007-12/2010) and the Recovery (1/2013-3/2014). For the Cirisis, I regress
the composite market price CMBX Series 1 against the composite fair value price for each of Models
1 thru 4. The condition 1 testing, provides some initial support for inefficiency in the market with
differentiation amongst the four models and consistent ranking across OLS and quantile regressions

which are summarized in Figure 82.

All fair value metrics are significant, and it is clear that not all fair values have the same fit
to the market price. The model with the tightest relationship to the market price is Model 2, my
adaptation of DVH 2012 with an R-sq of .68 using OLS and a ‘pseudo-R-sq’ of 0.38 in the quantile
regression. In contrast, the model with weakest relationship to the market price is Model 4. For

that model, the R-sq exhibited is 0.18 using OLS and 0.06 using the quantile regression. If the
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Model 4 metric Theta provides greater insight in the Crisis than Theta generated from Model 2, I

may say the results stand in support of claims of CMBS inefficiency during the Crisis.

The testing for Condition 1b is identical to 1a. I perform OLS and quantile regressions for

each of the four models which are summarized in Figure 83. What we see is a near perfect reversal

from the Crisis ranking with Model 2 now showing no explanatory relationship with market pricing

and also becoming insignificant. In contrast Model 3 and Model 4 show a relatively higher degree

of explanatory power mapping the fair value to the market price. As before, if the reduced form

Model 4 provides greater trading insight than Model 2, we may say this ordering also supports the

claims of CMBS inefficiency during less stressful times of the Recovery.

For the testing of Condition 2, if we are querying the efficiency of a sector within the
market, we do not necessarily seek to predict the market price with our models. Rather we seek to
secure reliable signals of risk and reward using the fair value price (established independently from

the market price) and then compare it to the market price, with Theta.

3.2. Trading tests: Fundamentally, if one is querying the efficiency of a sector within the
market, one does not necessarily seek to match the market price to our model price. Rather one

seeks reliable signals of risk and reward using the fair value price (established independently from
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the market price) and then comparing it to the market price, with Theta, which is a reliable
benchmark for the richness or cheapness of individual securities or the entire securitization. The
trading backtesting uses Theta as the sole means for navigating opportunities amidst risks.

Generally,

6.(t,1)>0—Db, (t,1) >m, (t) > "mkt px cheap vs. risks"
6.(t,1)<0—Db (t,I) <m (t) > "mkt px rich vs. risks"
g.(t,1)=0—Db,(t,1)=m, (t) > "mkt px appropriately reflects risks"

While CMBS cannot be shorted outright, CMBX are credit swaps and are readily used, for
example, by macro hedge funds and other leveraged investment managers to articulate long/short
perspectives on term structure of credit within a sector. Additionally, sell-side firms issuing CMBS
will frequently utilize CMBX to hedge the credit risk of the loan portfolio with weightings that
correspond to the anticipated weighting of the TBA securitization for which the loans will serve as
collateral. Since I have the CMBX price series during the Crisis and since these instruments are
used to go long/short the sector, synthetically, I am well positioned to examine the market efficiency
of the sector. To test the ability of each of the models to identify and achieve extraordinary returns

I implemented the following procedure for a trading test using the historical data.

Step 1 — Calculate Tranche level Thetas: At the beginning of each period (day, month, or

quarter) I calculate the value Theta for each of the tranches of the CMBX Series I am investigating.
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In the Crisis study this is CMBX Series 1. I exclude from the study the AJ] and AM tranches for

CMBX Series 1 because they are not priced for the entire history — this leaves me with 5 tranches

(AAA, AA, A, BBB and BBB-) from which to select the long/short portfolio®.

Step 2 — Construct the long/short portfolios: I establish a long/short portfolio at time ¢

From the set of tranches available I purchase (long) the cheapest tranche of the set as indicated by

the largest value Theta at that time. Execution is at the observed CMBX price at time &

long = CMBX tranche . , (81)

I simultaneously sell (short) the most expensive tranche from the set of tranches available as

indicated by the smallest value of Theta at that time. Execution is at the observed CMBX price.

short, = CMBX _tranche ;, , (82)

An apriori view of the market is not contemplated, only a systematic approach to identify relative
value. Additionally, I do not explicitly introduce secondary sensitivity measurements to weight the
strategies such as durations in a barbell strategy (see Fabozzi, 1994). For our portfolios, these
sensitivity estimators are not relevant as I am testing price x valuation and so I equally weight the

long and short positions.

42 The Other tranche is not priced but is included in the capital structure.
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Step 3 — Unwind the Trade: The position is held over the horizon period and is then

automatically unwound (sold in the case of the long, and purchased back in the case of the short)
at the end of the horizon at the then observed CMBX price. The lognormal raw returns of the
positions are calculated over the period based on price with gains/losses for price increase/decreases
for the long position and gains/losses for price decrease/increases for the short position. The
portfolio return is then the weighted sum of these two returns with each weight =0.50, of the return

on the long position and the absolute value of the return on the short position.

Step 4 — Rebalance and Repeat: The process is immediately repeated with the new values

for Theta on the trade day in the testing period. The procedure is conducted for all models. It is
important to emphasize that in this computation I do not include explicit transaction costs.
However, because I am comparing matched portfolios, each exhibiting similar rebalancing across
time, the transaction costs would be roughly equivalent for the portfolios. This implies that, as a
first approximation, the relative performance differential between the portfolios should be

unaffected by exclusion of explicit transaction costs.

3.3. Horizons — daily, monthly, quarterly: The holding period horizon tests are conducted
with daily, monthly and quarterly investment horizons. The monthly frequency would represent

the perspective of a hedge fund or levered investment managers who may seek to rebalance with
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greater frequency due to leverage considerations. Such an investor may be seeking to articulate a

‘macro’ view on the CMBS sector through the use of CMBX instruments. The quarterly horizon

test represents the perspective of a sell side bank hedging a large portfolio of loans to be securitized

and sold that might take 3 months (or more) to build to a critical mass to sell the market in bond

form. I also conduct the test with a daily horizon as the test is ultimately one of efficiency which

assumes frictionless markets®. It is true that CMBS and CMBX are not as liquid as say RMBS

passthroughs, government bonds, or currencies, for example.  As such, while trading is not

categorically by appointment (except for below investment grade), it is nevertheless slower and

OTC, with the understanding that large blocks don't get bought and sold (crossed) readily amongst

dealers with great frequency. At the same time, nevertheless, the CMBX market is competitively

bid amongst all of the largest dealers and as such, pricing may not be uniform across all of them

simultaneously. Since the data observation period is relatively short for the Crisis (~3 years) I want

to take advantage of a rich data set with respect to observations. So, while portfolio managers might

‘suffer’ the bid/ask on a daily basis, this influence is reasonably assumed to dissipate with monthly

and quarterly horizons. [ investigate the daily horizon also, attentive to the caveat of the bid/ask,

and note the potential problems with respect to claims about efficiency. For the moment it is quite

“3 Incorporating bid/ask spreads that might expand and contract across credits (AAA tighter than BBB-) and across time (tighter in
low vol periods, wider in high vol periods) would be a nice evolution in the analysis. Without a system like TRACE in place,

however, which does not currently incorporate CMBS or CMBX, such analysis is not possible.
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simply the best that can be done with the data of mid-market closing prices, and it is reasonable,

especially in light of recently improved liquidity in the CMBS sector.

3.4. Return results: For each of the four Theta driven strategies I provide the raw returns.

In Figure 84 panel A I show the monthly horizon strategy and in Figure 84 panel B for the quarterly

horizon strategy for during the Crisis. In Figure 85 panel A for the monthly horizon strategy and

in Figure 85 panel B for the quarterly horizon strategy for the Recovery. Additionally, I calculate a

long-only sector portfolio which is the weighted composition of all the tranches based upon their
weights in the transaction. As with Theta selected securities, I compute the total return for the

long-only portfolio based upon the composite prices.

From the raw returns I assume an initial portfolio size of $100mm and calculate its
cumulative value from the raw periodic portfolio returns. The plots reflect the intuition. Figure 86
reflects the monthly strategy during the Crisis (/eff) and the monthly strategy during the Recovery
(right). The long-only sector portfolio is represented by the grey bars, Model 1 (magenta) is Merton,
Model 2 (red) is the basic calibration model, Model 3 (green) is my expansion of Model 2, and
Model 4 (blue) the reduced form approach. Consistent with what we anticipated the reduced form

model, Model 4, with among the lowest explanatory relationship to market prices categorically

outperformed all other models as well as the long-only portfolio. Categorically, Model 2 (red)
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underperforms having shown the greatest fit with the market price in regression. As such, the
efficiency of the CMBS market may be called into question as the necessary conditions for

challenging efficiency are met.

We see similar results for the quarterly strategy in Figure 87 for the Crisis (/eff) and the
Recovery (right). Again, the Model 2 approach significantly underperforms the sector portfolio and
the three other models, and the reduced form approach of Model 4 performs well and categorically

better than Model 2 and the sector overall. = Finally, the results for the daily strategy in Figure 88

for the Crisis (/eff) and the Recovery (right) show considerable consistency with both the monthly

and quarterly results, again with the reduced form Model 4 approach performing well and

categorically better than Model 2 and the sector overall.

To be sure, the compounding of returns matter and it should also be evident that the

reduced form techniques lose considerable ground (in these purely automated strategies) during the

Crisis. Additionally, it does seem that Model 4 really stands out during the Crisis whereas, during

the Recovery (so far at least), it outperforms, but not as dramatically. This represents further

demonstration of the value of the reduced form technology and insight into the efficiency of markets

and the insights of market actors, or lack thereof.
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When times are ‘good’ as characterized by the observables in the Recovery, the complexity

of issues facing securities pricing may not take priority with the prospects of default and loss
undervalued by market actors. In such an environment, such as the Recovery, where the observable
information set includes no delinquency manifestations at the loan level and no macroeconomic
warnings at the economy level as represented in REIT, NCREIF or interest rate pricing, Model 4
should perform better than the long-only portfolio if there are risks, but since the risks are muted
at initialization of simulations, governed by data, the simulations will produce low frequency of risk
events. Under such conditions, since market pricing is also considering with low likelihood in ad-
hoc way the default events, the fair value prices and the market prices should be similar, which is
seen in the plots and it should be difficult to differentiate in trading strategies using models. As a
result, the performance of Model 4 while better is not dramatically better than the rest. When times
are ‘bad’ however, the information set and the meaning of the information to the default event is
systematically considered by all the models, but most rigorously in Model 4, in contrast to market
actor ad-hoc approaches. Under these conditions, such as the Crisis, the Model 4 approach should

dramatically outperform, and it does.

3.5. The perfect’ portfolio: All the models provide insights; some provide better advice than

others. But none of the models are perfect. Perfection, however, has a role in our analysis of
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efficiency. If we can consider what the perfect portfolio selection looks like in our trading tests, and
the implication of the statistics related to the perfect portfolio, I may be able to shed some further
light on the model driven portfolios, the market portfolio and the efficiency of the CMBS sector,
overall. T am limited to a set of bonds associated with the CMBX Series 1 in the Crisis and CMBX
Series 6 in the Recovery. I define the ‘perfect’ portfolio as the portfolio which, in hindsight, would
have delivered the maximum/(minimum) return over the horizon for the long/(short) positions.
Obviously the ‘perfect’ portfolio dwarfs all the other models (Figure 89) and I thus report it on a
log scale* as I consider it in the initial statistical analyses and the intertemporal CAPM efficiency

tests in the discussion below.

3.6. Trade strategy results composite: To be sure the compounding of returns, the timing
of gains and losses, and their magnitude all interact to create the return of the strategy. So, while
it is true that the reduced form Model 4 outperforms in both the Crisis and the Recovery, it is also
true that the automated strategy in the Crisis gave up significant gains for Model 4. To get a sense
for why this might be so, I reviewed the profile of the returns for the trading strategy portfolios and
the long-only portfolio. I computed first the frequency of ‘correct’ calls, where a correct call is

defined as a strategy where the return over the horizon resulted in a positive return (>0).

44 However, during the Crisis, the Model 4 Theta’s corresponded with the ‘perfect’ approach for both long and short selections
20% of the time. Model 3 13% of the time. Model 1 and Model 2 corresponded 0% of the time under monthly selections.
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Immediately after I wanted to get a sense for the magnitude of the right calls and so I calculated

also the average correct call return and the maximum correct call return.

Figure 90 provides a summary of the information discussed and it does provide some
interesting information. In panel A I present the frequency of the gain strategies. Not surprisingly,
Model 2 underperforms all the other models and the long-only portfolio for both daily and monthly
investment horizons in both the Crisis (panel A) and the Recovery (panel B). What is interesting,
of course is that the other active trading strategies driven by Theta all outperform the long-only
portfolio with gains >50% of the time in the crisis, and generally so in the Recovery. Focusing

further, it is also quite interesting that Model 4, the given its cumulative portfolio performance

described in the plots, actually did not pick gains as frequently as either Model 1 or Model 3 in the

Crisis. Model 4 only picked gains 63.33% of the time while Model 1 picked gains 70% of time and

Model 3 66.67% of the time on a monthly basis during the crisis. On a daily basis during the crisis,

the good trading strategies perform better than 50% of the time, but still Model 4 lags Model 1.

During the Recovery (panel B) Model 4 outperforms all others strategies on a daily basis
with correct calls 57.04% of the time. However, over a monthly horizon, actually Merton’s Model

1 significantly outperforms with correct calls 84.62% of the time which is consistent with Model
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1’s outperformance during the crisis as well (70%). This profile begs the question then “How did

Model 4 dramatically outperform during the Crisis?”

The answer is cleared up somewhat in panel C. There we see that during the Crisis the
profile of the correct calls made by Model 4 was quite good on for both daily and monthly trading
horizons, but not categorically the largest. In the case of the Recovery (panel D) we see that Model
4 lags in terms of the frequency of correct calls and their magnitude. In panel E I show the joint
occurrence frequency and correct call. There we see the product of the frequency of correct calls
(as a percentage) and the average gain return. With the joint product as a ranking we see that
Model 4 performed best across the Crisis and so far in the Recovery on both a daily and monthly

basis with respect to gains which is consistent with what is shown in the plots.

One takeaway from this (and the plots) is that there is no perfect model approach.
Additionally, if we consider the efficiency of the CMBS sector as questionable, for the reasons stated,
during bad times the reduced form technology should significantly outperform the other models.
Is it always right? No. Only 20% of the time does it correspond with the perfect portfolio strategy;
but this is better than the other technologies, and the implementation in a long/short paradigm,
informed by Theta, significantly outperforms the long-only portfolio in the Crisis and the Recovery.

At the same time, given the fact that there was a deterioration from the peak performance at the
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height of the crisis when uncertainty was at its apogee, we must always allow for human judgment

to work with the model technologies to optimize portfolio performance.

3.7. Initial statistical tests: Since we are considering the efficiency the CMBS market, and

we have Theta driven long/short strategies we can compare the portfolio returns across strategies

and the perfect portfolio to i.) the long-only portfolio of the CMBX composite index (all ratings)

and ii.) the Fama French market portfolio®. For the paired t-test the null hypothesis is that the

mean returns on the portfolio strategy and benchmark (first the CMBX long portfolio and second

the Fama French Market portfolio) are the same such that the difference equals zero. There are

no surprises in the results, but they are not as compelling. We are concerned with the direction of

the differences and so I consider both the statistical difference for the null hypothesis as well as the

alternative hypothesis that the mean of the difference is <0. In Figure 91 I start with the perfect

portfolio and we may reject the null in favor of the alternative that any observed mean difference

shall be less than the mean difference in our sample with probability 1 across both the t-test and

Wilcoxon sign test panels A thru D. Unfortunately none of the other tests are significant at the

95% level, though the signs and direction are intuitive. Models 1, 3 and 4 all point towards positive

differences from the mean and median respectively for the t-test and one-sided Wilcoxon sign tests,

> The market portfolio consists of all NYSE, AMEX and NASDAQ firms. It is obtained from Ken French’s site:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french



113-
in contrast to Model 2 which points to negative differences from the mean and median. Even
though these results are strongly supportive of the argument of CMBS inefficiency, they are not
conclusive for Theta driven strategies, though they are supportive of the perfect strategy. Given the
extreme outperformance during the Crisis but absence of conclusive results, I don’t consider these
pairwise tests for the Recovery period. I turn to the possibility of omitted risk premia are governing

outperformance.

3.7.1. Intertemporal CAPM test for omitted risk premia: In order for the Model 1-4
strategies to challenge the efficiency of CMBS the abnormal returns implemented in the long/short
trading strategies informed by the given Model’s Theta must not be readily explained away by
factors exogenous to the Model construction. Given the complexity of the modeling exercises for
all four models and in light of the significance of exogenous variables in the initial statistical tests*.
I test for the possibility of omitted risk premia using a standard intertemporal CAPM (ICAPM).

The expected return on each of the portfolios is a multi-beta model:

M .
ERP =1+ 3, (ER -1 (83)
i=1

46 Following Jarrow, etal 2008; and Merton, 1990



-114-
where RY is the p portfolio’s return over [t,t + 1], R} is the return over [¢, t + 1] on a portfolio
perfectly correlated to the { — th systematic risk component, and f3,; is the beta of portfolio p to

the i — th risk component portfolio. There are M possible risk factors. Using the relation

R)=ER/+¢! (84)

where € g have zero means and are independent across t and J, I can rewrite the multi-beta model

as

M .
R =1+ B, (R -1)+e (85)
i=1

where g, = Y1, ﬁpie{l have zero means and are independent across t. To construct the regression
model for omitted risk premia it is reasonable to assume that one of the systematic risk factors is a
CMBS portfolio of equal credit risk as the model driven portfolio under consideration. Letting the
return on the index portfolio be denoted by i = 1 I can write this last expression as:

M
Rtp=rt+18p1(Rtl_rt)+Z:Bpi(Rti_rt)+gt (86)

=2

And, it is reasonable to also assume that the beta of the model portfolio with respect to the index is

unity, that is, £; = 1, yielding our final regression model to test for omitted risk premia as:
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p 1 _ i
R, _Rt_a+2ﬂpi(Rt_rt)+gt (87)
where, in this specification, the constant & captures abnormal returns. I estimate four different

ICAPM regressions (Regression 1 thru Regression 4) to capture various risk premia across all four

Theta driven portfolios (Model 1 thru Model 4) and the ‘Perfect’ portfolio as described above. Some

of the assets considered in Regressions 1 thru 4 were tested in the earlier statistical analysis to map
to pricing, but are specifically considered here in the context of their horizon returns compared with
the returns of each of the Models 1 thru 4 and the ‘perfect’ portfolio. I perform the Regressions 1

— 4 for Cirisis and for the Recovery evaluating efficiency for Daily investment horizons.

3.7.2. Regressions: In Regression 11 use the following assets to capture various risk premia:
(i.) the REIT stock price index to capture property value risk premium, (ii.) the return on the
CaseShiller housing price index*” (iii.) the 1-year, 2-year, 5-year, 7-year and 10-year zero-coupon
bond prices to capture interest rate risk premium and (iv.) a stock market index, the SMB index
(small minus big), and the HML index (high minus low) to capture equity market risk premium.
In Regression 21 consider only the Fama-French 3 factor model of (i.) the stock market index, (ii.)

the SMB index (small minus big), and (iii.) the HML index (high minus low) to capture equity

47 For the daily analysis, we don’t have CaseShiller and so we use the ETF REZ to capture residential exposures.
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market risk premium. In Regression 31 consider what a sparser ‘credit’ regression model drawing
from both Regression 1 and Regression 3. The factors are credit composite factor returns that were
tested earlier in a different form: (i.) the REIT stock price index to capture property value risk
premium, (ii.) the return on the housing price index, (iii.) FF model of a stock market index, and
(iv.) 10-year zero-coupon bond prices. In Regression 41 consider only (i.) the FF model of a stock

market index.

3.7.3. Results and discussion: Figure 92 Panel A summarizes the results of Regression 1.

While the regressions across all but Model 2 are significant by the F-test, we also see that of the
variables considered in the significant regressions (Models 1, 2, and 4) is the Market portfolio. While
it is true that returns associated with 10 year zero coupon bond are significant for Model 2, the
regression for Model 2 is insignificant overall. Additionally, if all variables were set equal to zero,
the perfect portfolio would deliver a 2.9% positive daily return on average and it would be
significant. This is perfectly reasonable given that the perfect portfolio has 20/20 hindsight by
construction. Models 1, 3, and 4 would also deliver positive daily returns of about 0.01%, whereas
Model 2 would deliver negative returns on average. The number of factors in this regression is
quite large and I perform a few diagnostic tests to see if I can pare it down. It is possible that some

of the terms are interacting with one another and drowning out the significance of each other.
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In Figure 93 we observe some significant correlation amongst the Independent Variables.

Not surprisingly we see REIT and house price indices highly correlated with the market portfolio.
Across the zero coupon bond returns five, seven and ten year zeroes are virtually identical in terms
of performance and home prices and REIT performance are also highly correlated. This suggests a
possible need to omit some of the variables that are correlated with one another. From the RAMSEY
Reset test, it would appear, that some key variables are either omitted or possibly being drowned
out by overfitting as the test statistics is less than the critical value Fitted F = 0.47 < Fipit(3,628) =
2.60., (Figure 94). Additionally, the Variance Inflation Factor Test indicates that many of the
variables exhibit high degrees of multicollinearity with VIF(8;) > 10 not shockingly based on the
correlation assessment for a// of the treasuries as well as the REIT index (Figure 95). To address
concerns of dependency among the variables I use the condition index (Figure 96). Instances where
the variable exhibits a condition index n>30 and p>0.50 indicates some competing dependency
between variables. In this I don’t see any instances of condition index>30, however I do see many
p-values >0.50, specifically amongst the zero coupon bonds. As such, I should be able to express
the set of zero coupon bonds in term of the remaining variates. Finally, the White and
BreuschPagan Tests (Figure 97) does indicate that non-constant variance heteroskedasticity may be

present. However, the Durbin Watson Test for autocorrelation (Figure 98) between the error terms
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(the residuals) is inconclusive because at 11 degrees of freedom and 642 observations, the statistic

of 1.53 is between the lower (1.38) and upper (1.72) bounds.

Based upon the discussion above I take a somewhat extreme view of eliminating all variables
specifically related to fixed income and real estate and consider Regression 2, the Fama French three

factor regression, referring to Figure 92 Panel B. In this regression, I capture only the model of a

stock market index, the SMB index (small minus big), and the HML index (high minus low) to
capture equity market risk premia. Interestingly, in this sparser regression, the same general story

repeats. The regressions are significant for Models 1, 3, and 4 with only the market portfolio

exhibiting significance across these models and the perfect model. The signs are consistent with
Regression for the mean returns assuming the independent variable values equaled zero. In
Regression 41 consider only (i.) the FF model of a stock market index. The results summarized in

Figure 92 Panel D mimic the result pattern of statistical significance of the market portfolio for

Models 1, 3, and 4 and the perfect portfolio with significance amongst the regression as indicated

by the F-test.

Since the choices of variables in Regression 2 and 4 specifically ignore issues that we know
to be significant from the fair value x price matching in the Crisis analysis, I try to find a middle

ground between Regression 2 and the earlier analysis of missing independent variables related to
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real estate credit and fixed income to test for exogenous significance to the model. In Regression 3
I include (i.) the REIT stock price index to capture property value risk premium, (ii.) the return on
the housing price index, (iii.) Fama French model of a stock market index, and (iv.) 10-year zero-
coupon bond prices. The issues of borderline codependency seen in Regression 1 amongst the
variables with the condition indices all much lower than 10 (Figure 99). I check to see that in the
sparser model I have no omitted variables and the Ramsey RESET test confirms this (Figure 100).
I also do a check for the presence heteroskedasticity with the White and Breusch Pagan Tests (Figure
101) which has been eliminated with chi-square of 14df test stat of 17.86 < the critical value 23.68
indicating non-constant variance is not present in the sparser Regression 3 model. Finally, the
Durbin Watson Test for autocorrelation (Figure 102) between the error terms (the residuals) does
seem to exhibit autocorrelation with 5 degrees of freedom and 642 observations. The statistic of
1.53 is below the lower boundary of 1.72 and thus the null of no autocorrelation is rejected in favor
of positive autocorrelation and the BreuschGodfrey LM test statistics (Figure 103) reject no

autocorrelation in favor of AR(1) and AR(2) processes which is noted.

As in Regressions 1 and 2, the pattern of significance of the market portfolio repeats with
correct signs for the constant coefficients and overall significance for the Model 1, 3 and 4 and the

perfect portfolio regressions with no significance for the Model 2 regression. Based upon this
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analysis I do not see evidence of omitted risk premia in any of the models considered as none of
the risk premia considered are significant other than the market overall. The statistics show low
explanatory power between the returns on the market portfolio (significant) and excess returns over
the CMBX benchmark long index as articulated in the long/short strategies governed by bond level
Thetas. Therefore, based on the analyses, we can be comfortable that the models are well specified
and do not omit risk premia. Since there are significant problems with Regression 1 in the Crisis
and since Regression 2 ignores considerations fundamental to fixed income and credit, I do not

compute them. In Figure 104 Panel C I repeat sparse credit Regression 3 and the even sparser

Regression 4 in Figure 104 Panel D for the Recovery period. None of Model 1 (Merton), Model 4

(reduced form) or the perfect portfolio are significant in either approach. In the case of the

Regression 3 (Panel C) there Model 2 and Model 3 regressions are significant and suggest omitted

risk premia of REITs. Interestingly, the signs of the significant REIT return variable are opposite

for Model 2 and Model 3.
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Conclusion

It was my intention to consider the reduced form technology versus other competing
approaches robustly with application to CMBS and to contemplate the efficiency profile of CMBS
in both the Crisis and the Recovery. This dissertation analyzes the four approaches rigorously and
provides an important generalization to the calibrated approach. The power of Merton, 1974 was
a bit surprising given the limitation of information considered in the structural form and particularly
given the historical periods considered. There is considerable evidence presented in both the Crisis
and the Recovery of the ability to earn extraordinary profits with model driven trading strategies
thereby supporting claims of CMBS market inefficiency. Clearly, seriously implementation for any
model must consider the heterogeneity of loan characteristics and accurately incorporating correct
cashflows and ruthless default behavior of borrowers. This care builds the realism of the loan
collateral and priced bond objects being investigated. By extension as we have seen, efforts to be
thorough in the implementation of the loans and bonds and their interaction with the simulated
economy, increases precision still further. The reduced form approach yields better results than any
of the other approaches considered because of the more realistic and thorough approach through
the modified Cox Process. As such, from this study it appears to provide the best approach to

accurately anticipate and price default risk for CMBS supported by the ability to earn extraordinary
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profits in two important periods in finance history and compelling statistical results. While I cannot

unambiguously reject the market efficiency of the CMBS sector, there is strong support for

inefficiency in the statistical analysis of excess returns over two important periods in market history.

The insights provided by the reduced form technology, in particular in both the Crisis and the

Recovery support the increased use of such technology in areas of investment management and risk

evaluation.

There are additional areas worth exploring related to this investigation. One thing to do

would be to expand the technology to perform the many risk calculations used in the industry and

evaluated in the academic literature. Capturing Basel values for all models as well as option adjusted

spread, weighted average lives, duration and convexity all hold interest for analyses of spread

decomposition and portfolio management risk optimization. In the area of spread decomposition,

some preliminary work was begun and given the analyses that query efficiency of the sector, spread

decomposition analyses might be able to provide further evidence supporting the integrity of the

model specification. Additionaﬂy, to delve deeper into the area of price formation in the area of

market microstructure, some interesting testing of computation of fair value with Model 4 might

be able to be performed with frequency of minutes (seconds, milliseconds...) vs. days. Efforts to

compare such computations to market pricing of the bonds would however not be possible given it
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is still largely a negotiated OTC market without electronic trading. Nevertheless, markets change

and the adoption of advanced derivative pricing technology in CMBS may be prompted, ultimately,

by competitive needs. Regardless of the state of real time frequency of market prices, real time

computation of fair value using Model 4 reduced form technology may also hold interest for

managers and academic studies. Given the development of my technology for this work, analyzing

the efficiency of the CMBS market is limited only by time and data.
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Appendix A — A Short Review of CMBS

CREL’s are quite heterogeneous and when they are utilized as collateral for securities they
can make valuation of such securities challenging. CRELs are typically quite large with an average
loan size >$8mm and when found within securitizations typically number about 200*. As such,
unlike residential mortgages which are more homogenous, smaller in size, and greater in number
within securitizations, CREL valuations do not benefit from statistical techniques sometimes used
in the residential mortgage sector associated with the law of large numbers®. As such, to make any
reasonable statements about the risks associated with CRELs or securities collateralized by such
CRELs, and valuations thereto, one must be prepared to implement methods of evaluation that

adequately identify and treat the many idiosyncratic risks of CRELSs briefly discussed here.

Income Producing Property: CRE is defined as income producing property, where such

income is generated from rents charged by property owners to tenants. This key feature of income
distinguishes CRE from single family residential property which is underwritten assuming no

income is produced on the residential property from rents and where the property is typically the

“8 CRELs >= $20mm represent 85% of the market (ref. Trepp Database 12/2011).

49 See Hayre, 2000
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borrower’s primary residence®. In this sense while both CRELs and residential mortgages are
amortizing debt the fundamental use of the collateral securing such debt are quite different. CREL’s

are backed by a business enterprise, residential mortgages are backed by someone’s home.

Property Types: There are 5 primary property types that make up the CRE sector: Office,
Retail, Multifamily, Industrial and Lodging. Within each of these property types there are
subdivisions. For example within Lodging there are divisions associated with extended stay hotels,
motels, and deluxe hotels. Similarly within retail, there are divisions associated with anchored retail
malls and strip malls. Sometimes there are hybrid structures, or so-called mixed use properties in
which a portion of the revenue on the property is generated from office tenants and a portion is
generated from retail tenants. Despite these sub-divisions, from a macroeconomic perspective, the
incentives facing the leasing occupants are consistent within the primary groups. Distinctions
between properties within the same category will be evidenced in the observed leverage and coupon

compensating the lender for different risks.

Location: Each of the CRE properties can be found in a specific location. In the context

of conducting a study, depending on the data each of these locations for types of properties been

% This may change in the case of distressed bulk purchases of foreclosed or distressed homes that may be sold with a rental

strategy. See L. Goodman and M. Meyers Bloomberg News 11/30/2011.
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categorized at from as micro as zip code, and then ascending in order to central business district,

county, city, state, region, and finally nation.

Leverage: As with residential real estate, the leverage on a CRE is captured by the loan to

value ratio (LTV) which reflects the ratio of the mortgage amount, M, at origination over the value

of the property at origination V' so,

LTV =— (88)

Borrowers purchasing CRE properties typically invest a portion of their own capital and
borrow the remainder. In this sense, the CRE property can be considered to be single purpose
corporate entity with a single plant (the CRE property site) and a single product (the space for lease

to tenants). As with any corporation (see Brealey, Meyers), the value of the CRE property, V, is:

V=D+E (89)

At origination, the value of the equity position, E, of the borrower is reflected by the amount the

borrower has invested in the purchase of the property, with the remaining value of the property

associated with the value of the debt, D. As the value of the property may change through time, so

too will the implied value of the debt and the implied value of the equity or,
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Vi=D+E (90)

NOI: When CRE is underwritten, the income of the property less expenses to operate the
property (or net operating income, NOI, 0) is of central importance to lenders because mortgage
payments to the lender are made from NOI. The debt service coverage ratio (DSCR) is the ratio

of the NOI (annual) to the mortgage debt service (annual), S, so,

DSCR = = (91)

w|O

DSCR represents a quick measure of the ability of the borrower to pay the debt obligations

associated with the mortgage. DSCR > 1.0 reflects adequate revenue produced by the property to

service the debt. A DSCR < 1.0 reflects inadequate revenue generated by the property to service

the debt.

Standard Industry Value Metric: The industry standard method (see Brueggeman/Fisher)

for estimation of value of a CRE property is provided as the ratio of the net operating income, O,

to the capitalization rate K:

(92)

e
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This becomes interesting as now we have two equations for the same property allowing us to say:

D+E=2 (93)
K

As CRE may change through time, I will visit these conditions again, indexed to time, so

D, +E, =—t (94)

ProForma: While it might seem implausible that mortgages secured by CRE property could
be underwritten based on NOI in place at DSCR<1.0x, in point of fact in the realm of CRE,
especially in the case of mortgages secured by larger properties, mortgages are frequently
underwritten with NOI in place at DSCR<1.0x. These loans, are underwritten on a so-called pro-
forma or stabilized basis. In such instances, a loan is underwritten based upon expectations of the
future growth trajectory of rents on the securing property. While NOI in place at the point of
origination may be insufficient to service the debt, the anticipated future income generated by the

property is expected by lenders to be more than adequate to meet debt obligations.

To offset the inadequacy at origination of the income generated by the property, the lender
and borrower will agree to establish a cash reserve account. In the interim period between the loan

origination date and the anticipated date of stabilization of the property, the reserve account ensures
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that the debt service due to the lender over this period is paid in full should income generated by

the property income be insufficient in any given month. If the cash reserve becomes depleted

following the date of origination and the property does not ‘stabilize’, the income generated by the

property will be insufficient to service the debt and the borrower will have an incentive to default™".

Loan Structures, Coupon, and Default/Refi Risk: Typically the CREL will have balloon

amortization structure. In a balloon structure, the monthly debt service for a period of time (eg 779
months) will reflect mortgage payments of principal and interest® for a longer term (eg 360
months). At the maturity date of the loan, say month 120, the borrower must pay off the
outstanding principal balance of the mortgage. Typically, the borrower will pay off the outstanding
principal with a new loan. This assumes, of course, that the lending criteria will be favorable to the
borrower at such time and that availability of capital will be in place by lenders. As I have discussed
previously seen in this financial crisis since 2008, and expected going forward into 2012, not only

have lending criteria tightened (lower LTV), but they have declined in parallel with declining

5! It is worth mentioning, that at times, the cash reserve fund is established by the lender directly, (lender-financed) or a
consortium of co-investors in the property in exchange for preferred returns. As such, the reader should not assume that the
borrower has a 100% ‘hard-equity’ position in the property as evidenced by the presence of a cash-reserve. The borrower may

have invested a portion of the proceeds in the reserve fund, but often times <100%.

52 Sometimes only interest payments (so-called IO loans) or sometimes a blend (interest only for an initial period of say 20
months, stepping up 360 amortization principal and interest for 99 months.). These features vary but overall are mechanisms that

were implemented by industry professionals to encourage CRE activity.
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property values. This is important as it represents two linked criteria for credit availability both of
which make it more difficult for borrowers at the point of balloon to secure a new mortgage, thereby

increasing the likelihood of default in the current economic crisis®.

Cross-Collateralization and Subordinate—Leverage: Not all CREL’s are standard first lien

debt on the property underwritten by lenders secured by income generated from a single property.
Sometimes, CRELs are secured by portfolios of properties. Such CREL’s are referred to as cross-
collateralized, where the loan debt service obligations are secured by all properties in the portfolio.
This provides additional flexibility and comfort to lenders using portfolio diversification arguments
where if one property falls on difficult times, excess NOI from the other properties can make up

such shortfalls.

Additional leverage, subordinate in terms of payment priority to the senior first lien, are
also underwritten with interest in single properties or portfolios of properties. In the most basic
example, second liens, junior/subordinate loans can represent additional leverage (junior, or B-
Notes) on the CRE much in the way that a home equity loan may represent additional leverage on

a residential property. More complex encumbrances on the property can be accompanied with

33 This is borne out per the S&P comments and several other data sources.
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sophisticated voting rights in the case of Mezzanine Financing. Mezzanine capital can take the

form of debt or preferred equity. Because of the highly situational profile of Mezzanine capital, and

its relatively small amount (<1% of all loans) only the encumbrance aspect as a junior lien are

considered in this study.

Prepayment Lockout and Defeasance Features: Unlike residential mortgages which may be

prepaid without restriction, CREL’s are typically restricted from prepayment for several years prior

to the balloon maturity. Typically CRE debt has one or more type of prepayment restriction

according to some schedule. The simplest of these restrictions is the hard lockout in which the loan

covenant states that no prepayment may undertaken by the borrower for a certain period of time.

Alternatives to the hard lockout restriction include, yield maintenance in which a ‘make-

whole’” provision is written in which the borrower repays the lender the present value of the future

interest payments under the loan covenant discounted at the current risk free rate associated with

the remaining maturity on the loan. Sometimes an additional percentage fee or sequence of fees

(3% for prepay in first 12 months, 2% for month 12 — 60, 1% thereafter) may accompany yield

maintenance or stand alone (in older loans). Finally, a more recent feature was the inclusion of a

defeasance option in which the borrower would swap out risk debt payment obligations to the
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lender and replace them with treasury strips that mimicked identically the cashflow originally

intended to be paid to the lender>.

All lock outs are intended to compensate the lender from the foregone interest payments

and to increase the certainty of a return. Such features have changed over time. Thus, from a

prepayment incentive modeling perspective one must pit i.) the cash-out refinancing incentive as

well as ii.) the pure interest rate savings incentive, against the ‘cost’ of the prepayment restriction.

Mock Securitization Profile of Origination: Having considered the certain loan

characteristics it is worth noting a few key aspects to the business of origination under mock
securitization. More than 50% CRELs are originated in securitization warehouses or conduit
pipelines. What this means is that investment banks utilize their capital to lend to borrowers
interested in purchasing CRE or refinancing existing CRELs. Regardless of the purpose, the CRELs
are held on balance sheet until an aggregate amount of loans is built up to satisfy market demand
for the CRELs as collateral within a securitized transaction. At the point of securitization, the
investment banks sell the loans off their balance sheet into a special purpose vehicle, or trust. The

trust’s sole operational function is to issue bonds. At closing of the transaction, optimally, all the

> This particular type of lockout has the effect of credit enhancement to the lender as the cashflows, once defeased, are no longer

generated by the commercial real estate borrower and CRE property but are now cashflows generated by the US Treasury.
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bonds issued by the trust are sold to institutional investors and the originating banks collect the
present value of the cashflows associated with the bonds collateralized by the underlying CRELs at
the clearing price on the closing date. If the investment bank was accurate in their estimate of
demand and in their estimate of the rating agency treatment of the originated loans, and if they
were hedging both interest rate and credit risk correctly, then at the closing date the investment
bank should realize a gain on sale of the loan collateral issued in bond form. From a capital
allocation perspective, their balance sheet is freed up from originated loans and the bank can now
engage in lending more capital for new loans in keeping with regulatory leverage restrictions. After
closing date of securitization, typically originating trading desks of investment banks that originated
the loans will make markets for institutional investors in over the counter transactions trading ‘their

deals for the customers as well as others.

There is no rule for aggregation set in stone, but typical CMBS transactions, for example,
range from just under $1B to as much as $6B. What this means is that the aggregate principal
amount of the CMBS trust at any time 4 C{%), is equal to the sum of the principal balance

outstanding on each of 7loans (), so:

C=Y L), (95)
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From this trust, which can be made up of collateral from multiple originators, a corresponding set
of bonds is determined through an iterative process such that the principal paying bonds B(t)

correspond in value to C{(), so:

Zn:B(t)i :C(t):zn:L(t)i (96)

In a typical senior-subordinated structure, originators estimate the rating agencies future evaluation
of the credit risk of the collateral which is distilled into a vector of subordination levels for the pool
that correspond to different ratings. The interpretation is that the subordination level required by
the rating agencies is sufficient to adequately protect investors from loss of principal. Recall from
Jarrow, etal 2008 that in a typical senior-subordinate structure, payments of principal received are
paid in order of seniority until the class is paid off in full (so AAA, then AA,...then UR). If losses
are incurred through default on any of the i loans, those losses of principal reduce the amount of

the classes in reverse order (so, UR, then B, then...then AAA)
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Ratings agencies have a variety methods for determining the probability of default (PD),
loss given default (LGD), for any loan 7°. Once the expected loss (E[Loss]) is determined at the

loan level

E[Loss] = PD(t), *LGD(t), * EAD(t), (97)

then for any trust C(¢)

E[Loss]c(lzo)zZH:E[LOSS]i (98)

The E[Loss] for C(#=0) determines the sizes of the Unrated thru single-B tranches of the transaction.
Once the sizes of the Unrated and single-B tranches are determined, further linear multiples are

calculated for the remaining tranches in reverse seniority. So,

Zn:Bi(t) = (AAA,AA,...B,UR) (99)

i=1

It is important to keep in mind that many loan level parameters used by the rating agencies
for loans that exist are considered in the origination process prior to the loan being made. In this

sense, originators are aware of the approximate judgment ratings agencies will make on a loan in a

3 Exposure at Default, EAD;(t), is simply the outstanding principal balance at the time of the default, B; (t).
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trust before the loan is actually originated. By providing guidance on the model parameters of
interest (so called drivers of their models) originators frequently reverse engineer the sizing of the
loans into their tranches using origination grids. A typical E[Loss] grid will be a 12 x 2 matrix with
LTV x DSCR for a given property type. As DSCR increases the E[Loss] declines and as LTV

declines E[Loss] decreases.

Tranche/class sizes can simply be expressed as a percentage of the total outstanding
principal balance of the transaction. For Subordination levels, the percentage expressed is
cumulative and descending with respect to the outstanding principal balance of h classes over the

entire trust so,

"
trustprinbal(t) = ) totprinbal, (t) (100)
h=1

H
> totprinbal, ()

SubLevel, (t) =1-| 2= _ (101)
trustprinbal(t)
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Appendix B — Other Alternatives/Literature

B.1. Eom, Helwege & Huang, 2004: Eom, Helwage & Huang (EHH) published a survey of
5 corporate structural form corporate bond pricing models. One is an extension to Merton in which
they provide simulation. In, Model 2, I adopt EHH’s extension of Merton which adjusts for coupon,

term structure and an American style Default Barrier and further their work by making adjustment

for CRE. Let Vt, K[, and I represent the time t values of the firm’s assets, total liabilities, and the

risk-free interest rate, respectively. Assume that

where for CRE properties, the payout ratio , 0=0, Gyis the volatility of the CRE property, and
dz2is a one dimensional standard Brownian motion under the risk neutral measure, Q . For
simplicity, consider now a simplified CREL with maturity T and unit face value that with fixed debt

service (coupons) at an annual rate of ¢. Let Tn, N=L2..,T be the nth coupon date. In EHH,

the extended Merton model, Kt =KWt €[0,T]and default is triggered if the asset value is below

the default barrier, K on coupon dates. In the EHH extension of Merton, the price of a loan is

equal to a portfolio of zero coupon bonds and can be written as:
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T-1
P(0.T) = D(O.T,)E[cl .y, +min(we,Vy )y, ] 103
i=1

+D(0,T)E?[(1+¢) Ly oy +min(W(l+C), Vo)l ],

where D(O,T, ) denotes the time 0 value of a default free zero coupon bond maturing at 7. | _is

the indicator function, EQ[] is the expectation at time Ounder the Q measure, and w is the

recovery rate following a default.
From EHH, it is known that:

E®[1 ., 1= N(d,(K, 1) (104)

and

E°Tly, i, min(y, V)=V, D(0,1) e N(=d, (3, 1)) + ¥ IN(d, (y, 1)) - N(d,(K,1))]  (105)

where y €[0,K], N(:) represents the cumulative standard function, and

vy o,
d, ) =2 ;4,60 =0, (D)~ E

(106)
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Given any term structure D(0,-), with the equations above, I can calculate the price of a defaultable
CREL with fixed coupons under Merton’s assumptions. The assumption that do remain are that
that the loan is a balloon, such that all principal is repaid at time T. If one wanted to convert this

to monthly cashflows one could do so.

B2 Kau, Keenan and Yildirim (2008): In 2008, Kau, Keenan and Yildirim (KKY)
approached the implementation of Merton specifically to CRELs. In that paper, the key insight
comes from construction of first passage time model with an implied ‘current LTV’. The purpose

of the study is to determine implicit default probabilities in commercial real estate loans.

Specifically they cast the first time to default, ¢, as the first time the underlying process,

LTV, crosses the default barrier b; that is

r=inf{t >0: LTV, by}, (107)

where b > 0and where LTV follows a geometric Brownian motion of the form,

dLTV,
LTV,

t

= ydt+o,dW, (108)
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where £4 and o; are the drift and volatility parameters for implied current LTV and W is a standard

Brownian motion process defined on the probability space (Q, F, P) and initialized at LTV, <b.

KKY recognize the complicated decision making process of default in their suggested
approach and thus make the simplified assumptions of the loan as perpetual and non-amortizing
(so, IO) with continual constant payments, and where such loan is in an environment of constant

interest rates. The borrower retains the right to default and the loan is non-recourse to the lender.

They then resolve to simulate the value of the property \fwhere,

Vt :Voe(/.t—O.SO' Yt+oW, (109)

subject to the default barrier b, such that

V.
%z(y—s)dwad\/\/t (110)

t

for service flow, s, such that the current implied LTV ratio, and the value of the mortgage

LTV, = (112)

<|r

And follows the geometric Brownian motion as they claim.
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They continue and discuss optimal strike prices as extensions of Black and Cox (1976), and

then further construct the implied LTV, "—TVt as distinct from LTVt 56 the reason presumably
that the volatility of the property value is insufficiently linked to REIT values. In KKY they calculate

the implied LTV as:

_current _balance,

ILTV, =—— (112)
implied _ value,
where,
implied _ value, = (1+Areit, ) *implied _ valug, , (113)
and where, reitis the property type REIT index and
implied value, = L (114)
— 0 LTV

They acknowledge that in the literature (and in industry) that there are several ways to infer current

LTV and this is simply one approach.

56 They claim that the current LTV is not observable, and of course that is true.
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Finally, given the default barrier, b, the express the default probability on the loan as

P(r<t)= P(max LTV, > b)
0<s<t

—In b + —0-—'2 t
ol v T (115)
_ -

2 ) 0

g

+€

To find this default probability, the drift and volatility parameters, 44 and o, need to be calculated
which is straightforward because, the log return of the process is an independently drawn random

variable from the Normal, or

LTV ,
o[22}

LTV,

t

where sample moments of ln(
t-1

]were calculated from the property x region REIT indices to

find £4and O;. KKY go on to test their results and make the claim that no feasible reduced form
model based on actual data is likely to assign much probability to a particular loan in a particular

period. I find such claim to be erroneous from the study above.



-143-

Appendix C — NCREIF as Proxy for Property Values (ex-NOI)*”

In practice and the literature there is a school of thought that posits that property values
may only reasonably be estimated directly from property net operating income cashflows using the
familiar cap-rate calculation discussed previously. In this section I formulate the regression model
on the data described using a multivariate ordinary least squares (OLS) with a modification to
accommodate for the optimized lead time of some of the explanatory variables to estimate

yt) =b+> ax(t-t) (117)
where y(t) is the synthetic estimate of the NCREI]FK' Total Return value determined from the OLS
Regression on the x, parameters (Unemployment, Case-Shiller, etc.) at time , and where b is a
constant, g, is the correlation coefficient of the k —th parameter, and X, (t—t,)is the value of each
such k—th parameter at time {, minus the optimized delay for the k —th parameter, t, , where
such delay was determined by maximizing the correlation between each X, and NCREIF as
previously discussed. Several of the K parameters that contribute to a best prediction of y(t)can
be considered /eading indicators for NCREIF Total Returns. For example, the optimal value for the
Case-Shiller total return index as a contributing parameter to y(t) is determined to be 4 periods, so

for any time t, where k= CaseShiller, t, =t — 4 . None of the parameters used to estimate NCREIF

57 From Jarrow, etal 2008.
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Total Returns are /agging indicators and thus the maximum value for (t - t, ) for all kparameters
used is 0 and the minimum value is -4. The initial results for the rolling return for NCREIF are
somewhat promising with an R-sq of 0.89 (Figure 105). However as we can see from the Durbin-
Watson d-statistic, this OLS has within it some autocorrelation issues.

Before examining closely the regression above in its final form, it is worth taking a moment
to consider each of the explanatory variables on a solo basis, taking the remaining x variables to =0.
The purpose of this check is to get a further statistical profile on solo value each of the explanatory
variables I have chosen (cum lags) over the 22 year history. Figure 106 summarizes the key findings
for the individual x variables and 4 autocorrelation tests (discussed below) with Y NCREIF Actual
as the dependent variable and each of X1 thru X7 as the sole explanatory independent variable.

With the exception of X4, the FHLMC Residential Mortgage Rate, each of the x-variables
have t-stats of magnitude such that the null hypothesis HO: x is insignificantly different from zero
must be rejected. As expected then, the validity of the regression overall provided by the F-Test,
also show validation, with the exception of X4, evidenced by reasonable to high RSQs. Finally, I
look at the signs of the coefficients for each of the explanatory variables to see if intuition in the
simple model bears out. We see that X1, Unemployment and property values in synthetic NCREIF
have a negative relationship as expected (high/low unemployment correspond with low/high CRE

property values). Continuing, we see a positive sign for X2, CaseShiller implying that (high/low
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residential property values correspond with high/low CRE property values). For X3 we see as

expected, steepening credit (more perceived risk)/narrowing credit (less perceived risk)

corresponding with lower/higher CRE property values. In X5, Risk Free Slope we see steepening

risk free credit (high long term borrowing)/narrowing risk free credit (lower long term borrowing)

corresponding with lower/higher CRE property values which also follows intuition. For X6, the

CREChgOffRate (or the percentage of CRE holdings that banks writeoff to a value of $0), also

corresponds in sign with higher/lower charge offs corresponding with lower/higher CRE property

values. Finally, the sign of X7, Private CRE Construction follows the industry knowledge of

countercyclicality with higher/lower levels of construction occurring in an environment of

lower/higher property values. Finally, though I cannot reject the null that X4, the FHLMC

Residential Mortgage is statistically indistinguishable from zero with a p-value of 0.231, I still look

at the sign of the coefficient and note that, as with the other six 6 explanatory variables that are

significant on a solo basis, the sign of the coefficient of X4 corresponds with intuition indicating

higher/ lower prevailing mortgage rates correspond with lower/ higher CRE property values.

Regardiess of the fact that I have aiready lagged the data, checking for autocorrelation in the

residual at this stage is appropriate. We do the check here for each of these sub values for
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autocorrelation. The four autocorrelation tests are i.) Durbin-Watson®® which provides the d-

statistic to test for first order serial correlation in the disturbance when all the regressors are strictly

exogenous; ii.) Durbin’s Alternative Test for serial correlation in the disturbance. This test does

not require that all the regressors be strictly exogenous. Here we are provided with the chi-sq test
value for the df (in this case df=1) with Hy:no serial correlation. If the chi-sq test value > chi-sq
critical value for df=1, then we reject the null and accept that there is serial correlation; iii.) Breusch-

Godfrey LM test for autocorrelation used to determine higher-order serial correlation in the

disturbance. This test does not require that all the regressors be strictly exogenous. Again, as with
durbinalt. we are provided with the chi-sq test value for the df (in this case df=1) with
Hy:no serial correlation. If the chi-sq test value > chi-sq critical value for df=1, then we reject the

null and accept that there is serial correlation; and Engle’s ARCH LM test for autoregressive

conditional heteroskedacity which tests for time-dependent volatility.  In particular, performs

Engle's Lagrange multiplier test for the presence of autoregressive conditional heteroskedasticity in
the residuals Here we are provided with the chi-sq test value for the df (in this case df=1) with
Hy:no ARCH ef fects. If the chi-sq test value > chi-sq critical value for df=1, then we reject the null

and accept that there is serial correlation.

58 i.) estat dwatson; ii.) estat durbinalt; iii.) estat bgodfrey; and iv.) estat archlm, respectively
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A set of analyses is summarized in Figure 107 for X7 PrivateCREConstruction. For the standard

Durbin-Watson d-statistic we see serial correlation for all x-variables. Additionally for each of

durbinalt, bdgodfrey, and archlm the chi-sq value exceeds the chi-square critical value for each x-

variable and so in all tests we reject the null that there is no serial correlation and accept that there

is some serial correlation present in the residual in all variables.

Serial autocorrelation has the impact of understating the variance in the OLS and in so doing

mutes the standard error for positive autocorrelation (generally the case). As such, reliance upon

coefficients from OLS with associated standard error may increase t-stats and, as such, may increase

the number type I errors where the null of the OLS (Hy:B; coefficient is zero) is rejected

erroneously. The standard adjustment technique for serial autocorrelation is the Prais-Winsten

Regression in which we estimate a linear regression for the dependent variable from a set of

independent variables that is corrected for serially correlated residuals using the Prais—Winsten,

1954 estimator. This estimator improves on the Cochrane—Orcutt, 1949 method in that the first

observation is preserved in the estimation routine. In particular we seek the rho that minimizes

SSE (ref, Cameron, Trivedi). In Figure 108, I provide a summary for all seven explanatory variables

run solo Prais-Winsten Regressions vs. OLS. I show the updated coefficient, R-sq, t-stat, p-value,

and importantly the original Durbin Watson statistic and the adjusted Durbin-Watson Statistic
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determined post-adjustment. So, as anticipated there is improvement in the Durbin-Watson statistic
in all cases, however, only in the case of X1 Unemployment is the improvement sufficient (>1) to
indicate no serial autocorrelation in the error term. However, when we consider all variables
together we see a different effect in the Prais-Winsten regression (Figure 109), consistent with, yet

improved over, the initial OLS.

As hoped, the autocorrelation has been removed in the multivariate Prais-Winston with the
d-stat increasing from .776107 to 1.350785. All of the signs of the coefficients now map to intuition
in concert and each of X1 Unemployment and X2 CaseShiller (Residential Housing), X3 Credit
Slope and X6 CRE ChargeOff Rates have t-stats supporting rejecting the null. With respect to the
X4 Mortgage Rate and the X5 Risk Free Slope I would expect to see contemporaneous correlation
between these two regressors in a Hausman Test. With respect to X7 the CRE Private Construction,
some additional testing might also further light on this. Additional testing can always be done. For
example, while Prais-Winsten is a GLS estimator®, the decline in the RSQ to .6459 from .8857
suggests a further GLS analysis might also provide additional insight into estimating the unknown

parameters in a linear regression model. Nevertheless, based on this analysis of 22 years, the notion

59 The GLS is applied when the variances of the observations are unequal (heteroscedasticity), or when there is a certain degree of correlation

between the observations. In these cases ordinary least squares can be statisticaﬂy inefficient, or even give misleading inferences.
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that macroeconomic variables cannot be used to estimate property value returns, separately and

independently from property specific Net Operating Income and cap rates is reasonably challenged.
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Appendix D — The Delinquency and Default Intensity Process®

In this dissertation I am only concerned with delinquency and default for fixed-rate CRELS.
There are no floating-rate loans and no CTLs in our sample. The estimates used in the computation
in this dissertation are taken directly from Jarrow, etal 2008. Care to calculate the default and
prepayment intensities separately was conducted in that study in which we had access to the loan
history database—including defaults, prepayments and loan characteristics—was provided by
Trepp®. This database contains information on over 100,000 commercial loans. The data provides
monthly observations of the relevant variables over the time period June 1998 to May 2005. In this
database, the loans are classified as current, 30-59 days delinquent, 60-89 days delinquent, 90 plus
days delinquent and defaulted. Loans exhibiting REO or Foreclosure status are considered to be in
default. Defaults are distinct from delinquencies. Because our model has only three classifications
(current, delinquent or default), not five, I needed to determine a coarser partitioning of the
classification. A statistical analysis was done to see if 30-59 days delinquent should be classified as

delinquent or current and if 90 plus days delinquent should be classified as delinquent or default.

0 From Jarrow, etal 2008.

61 See Reilly and Golub, 2000; and Trepp and Savitsky, 2000.
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In Jarrow, etal 2008, we conducted a 6-year study of delinquency transitions of more than
2.3million loan life observations. Recall Figure 66 which shows the transitions over all loans from
healthy to worse or conversely over the period June 1998 to June 2004. A healthy state is defined
as current (0 days delinquent). A worse state is defined as the next higher delinquency status. So,
for example, a loan that is current in month 1 is characterized as having transitioned to a worse
state in month 2 if its delinquency status in month 2 is 30-59 days delinquent. Similarly, if a loan
in month 1 is 90 plus days delinquent, it is said to have transitioned to a healthy state if it becomes
0 days delinquent in month 2. Loans that persist in non-transition for multiple months either due
to aberrations in the data (found in loans exhibiting 30-59 or 60-89 loan delinquency status for
multiple months in a row) or due to categorization (90 plus days delinquent is, by definition, a
multiple month state) are not transitioned until they migrate to either healthy (0 days delinquent)

or a worse delinquency or defaulted (REO, Foreclosure) state.

Historically, more loans that were 30-59 days delinquent went to current then on to a further
delinquent status, hence they were so classified as current. In contrast, more loans that were
observed in 60-89 days delinquent migrated to a worse state and were therefore classified as
delinquent. Finally, the majority of 90 days plus delinquent loans did not default. Hence, they too

were classified as delinquent. In summary, in our model current loans are defined as actually current
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and 30-59 days delinquent, while delinquencies are classified as 60-89 days delinquent and 90 days

plus delinquent. Defaulted loans are those loans that are classified as either REO or in foreclosure.

For the intensity process estimation, the loan-specific characteristics included are: (1) age of
the loan (as a percent of the life of the loan), (2) the delinquency status of the loan (dlgstatus), (3)
an American Council of Life Insurers (ACLI) foreclosure survivor bias variable (fore index)®?, (4)
the NOI at origination divided by the loan balance at origination (noi), (5) the prepayment
restriction (normalized, monthly) (pen), (6) the logarithm of the original loan balance (origloanbal),
(7) the debt service coverage ratio at origination (dscr), (8) the loan-to-value ratio at origination
(Itv), (9) the weighted average coupon at origination (wac), (10) the loan spread at securitization
(only for fixed-rate loans) (coupon spread), (11) a dummy variable for property type (IN, LO, NF,
OF, OT) and (12) a dummy variable for geographical location (R1-R8). The choice of many of the
variables were dictated by data availability. Our database contained reliable data on loan

characteristics at origination, but not afterwards.®

62 This is the average foreclosure rate over the past 14 years for each propertyx region, constructed from the ACLI foreclosure

database (see Figure 110).

63 For example, some but not all of the loans had data on NOI after origination. The sparsity of the updated NOI observations made this
variable inappropriate to use. In addition, the updated NOI information is self-reported and not reliable. Whereas, at the origination date, the

information is audited by the originator and a third party appraiser.
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The hazard rate estimation was done separately for fixed-rate and floating-rate loans. Recall

that Figure 67 contains a summary of the loans contained in the estimation. For non-CTLs, the
focus of this dissertation, there are 94,011 fixed-rate loans. The number of defaults for the fixed-rate
loans is 2,153. Recall that the parameter estimates for a competing risk current versus delinquent
point process and for the default point process are shown in Figure 68. The parameter estimates

are based on the equation:

1
(1 i ez:lcoefﬁcientI -variable; )

intensity = (118)
The first column contains the variables: N (t) =1th property x region stock price index at time ¢;
PI = industrial property dummy variable; P2 = lodging property dummy variable; 23 = multifamily
property dummy variable; P4 = office property dummy variable; P5 = other property dummy
variable; P6 = retail property dummy variable (omitted); R1 = East—North—Central region dummy
variable; R-SQ = Mideast region dummy variable; R3 = Mountain region dummy variable; R4 =
Northeast region dummy variable; R5 = Pacific region dummy variable; R6 = Southeast region
dummy variable; R7 = Southwest region dummy variable; 8 = West—North—Central dummy
variable; R9 = other region dummy variable (omitted); age = (1 - remaining term/original term);

dlgStatus = delinquency status; fore index = ACLI foreclosure index; noi = net operating income at
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origination divided by the original loan balance; pen = penalties divided by outstanding balance at
time t; origloanbal = logarithm of the original loan balance; Hi (t) =ith property stock price index

at time t; dscr = debt service coverage ratio at origination; ltv = loan to value ratio at origination;

r(t) = spot rate of interest at time ¢; H(t) = Reit stock price index at time ¢; f (t,10)—r(t) =10
year forward rate minus the spot rate at time t; wac = weighted average coupon at origination;
coupon_spread = coupon minus treasury rate spread at loan origination; The remaining columns

give the coefficients and standard errors.

For the current and delinquent intensity process note that the coefficients are equal and
opposite in sign for current and delinquency. I concentrate on explaining the intensity of going
from current to delinquent. For fixed-rate loans: (i) as the age of the loan increases, the likelihood
of delinquency increases, (ii) as historical foreclosures increase (fore index), the likelihood of
delinquency declines, (iii) the NOI (noi) is insignificantly different from zero®, (iv) the higher the
prepayment penalties (pen), the higher the likelihood of delinquency, (v) the larger the original
loan balance, the higher the likelihood of delinquency, (vi) the higher the debt service coverage ratio

(dscr), the higher the likelihood of delinquency, (vii) the higher the loan-to-value ratio at

64 This is probably due to the endogeneity of the origination process. The terms of the loan contract are set to reflect the NOI of the given

property, making its explanatory power zero.



155-
securitization (Itv), the lower the likelihood of delinquency®, and (viii) the higher the weighted
average coupon (wac) and coupon spread, the lower the likelihood of delinquency. As the property
indices increase (h, (1), H (1), and F (1) )» the likelihood of delinquency declines. As either the spot
rate (r(t) ) or the slope of the forward rate curve ( f (,10)— r(t) = 10 ) increases, the likelihood of

delinquency increases. All of these comparative statics are as expected.

For the default intensity, the signs of these coefficients are mostly as expected. For fixed-
rate loans: (i) the larger the age of the loan, the more likely to default, (ii) if the loan is delinquent,
then probability of default increases, (iii) as historical foreclosures increase (fore index), the
likelihood of default decreases, (iv) net operating income (noi) appears to have no impact on
likelihood of default, (v) the higher the prepayment penalties (pen), the higher the likelihood of
default (vi) the larger the original loan balance, the more likely it is to default, (vii) the higher the
debt service coverage ratio, the less likely to default, (viii) the higher the loan-to-value ratio at
securitization (ltv), the higher the likelihood of default, (ix) the higher the weighted average coupon
(wac), the higher the probability of default and the higher the coupon spread at origination, the
lower the probability of default. As the spot rate (r(t) ) increases or the term structure (

f(t,10)—r(t) =10 ) becomes more steep default is more likely. Lastly, as the property x region

65 Again, this is probably due to the origination process. Those loans that have high initial loan-to-value ratios are probably viewed as having

less default risk at origination. Otherwise, the originators would have reduced the loan-to-value ratio of the borrowing entity.
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index (H.(t) ) increases, default is unchanged. As the property index (h(t)) increases, the

likelihood of default declines. Finally, as the REIT index increases ( Fl(t) ) default declines.

A standard method for measuring out-of-sample performance is the area under the receiver
operating characteristic (ROC) curve. For comparison across models, a value of 0.5 for the ROC
measure indicates a random model with no predictive ability, while a value of 1.0 indicates perfect
forecasting. The ROCaccuracy ratios for the different intensity processes estimated for Fixed Rate
Loans are all quite high with ROC ratios for Default=0.830, Current=0.886, and Delinquent = 0.886.
These numbers are comparable to those obtained in the estimation of corporate bankruptcies (see

Chava and Jarrow, 2004).
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Appendix E —Merton, BSM Proofs, and Brownian Motion

E.1. Merton, 1974: Suppose for simplicity that a firm has one zero coupon bond outstanding

and that the bond matures at time 7. Merton defines for us the following:

: Value of the company’s assets today
: Value of the company’s assets at time 7’

: Value of the company’s equity today

mm < <

: Value of the company’ equity at time 7°

D; : Amount of debt interest & principal due at time 7’
0y : Volatility of assets

Og: Volatility of equity

r: Constant spot risk free rate of interest
In theory, if VT <D it is rational for the company to default on its debt, D, at time 7. If
VT >D then the company should make the payment at time 7"and the value of the equity, £ at

this time is VT —D. In this sense, the equity holder has both a junior and contingent claim on the
residual value of assets in the future (#me 7), which by Merton can be constructed as the maximum

of assets minus debt or zero (0),

E. :max[(vT - D), 0] (119)

This shows that the equity holder is effectively a call option holder with the strike price on

the call option equal to the value of the repayment of the debt (D) at time 7. Thus the equity
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holder is exposed to changes in value with respect to time. If at time 7; the value of D is greater

than or equal to the total value of the company (M), the equity (modeled thus as a call option) will

expire as worthless (0). Such expiration will evidenced by a default on the debt at time 7. If the
value of the debt is less than the total value of the company (VT) at time 7, then the option will

expire and the equity value E will be positive resulting in a repayment of the debt at time 7.
Thus, the risk of default and reward of equity value are transferred to the equity holder at the time
of the expiration of the debt. For our purposes in determining the probability of default under
Merton, such expiration will be evidenced by a default on the debt (D) at time T as the company is
‘underwater’. Equity (E_T) only begins to exhibit values greater than zero when the value of the
company V_T exceeds the amount of the debt (D). Thus, I can consider the value of the debt at
expiry as a barrier. If the company value falls below it, it will have an incentive to default. Since
the value of the Equity can be said to be contemplated as a European Call option on a non-dividend

paying stock, then I simply build upon the familiar notation from BS and make a few minor
adjustments to the notation for Merton. Specifically, c=S5,N (d1 ) - Ke_rT N (d,) can be altered

for the Merton notation by noting that C:Eg so I can say, under Merton

c=E,=V,N(d,)-De " N(d,) (120)
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where, VO’ the value of the company today is substituted for SO the price of the Stock today; and

where D, the amount of Debt due at maturity is substituted for K, the Strike Price on the call at

expiration. Finally, I substitute G, the volatility of the company for », the volatility of the stock

price and I then adjust for the notation for each of N(dl) and N (d2) to get,

In(V, /D) +(r +o,> / 2)T
d = 121
| — 12y
and

d,=d,—o,NT (122)

Given Merton’s framework and assumptions, I now have the implied value of the debt based on the

parameters and framework, as

D, =V, —E (123)

What’s missing of course is that that observing the true value of a company, VO, or the volatility of
a company, Gy, is not typically observable. However, if the company is publicly traded, we can
observe E, (the LHS) directly and can estimate O, the equity volatility from historical data. Since

we know, EO, to solve for Vo and G, we simply need one more equation that is also constrained
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by the same two unknowns. Importantly, by Ito’s Lemma , 0E/0V represents a draw on the Normal

distribution for the term in Merton, d1, so dE/dV ~N(d1). And so I write:

o.E,=N(d,)o,V, (124)

Now I have two simultaneous equations in two unknowns that can be solved for the implied

company value and implied company volatility, Vo and G respectively, where,

Merton/BSM condition: F(x,y)=F(V,,0,)=E,=V,N(d,)-De ""N(d,) (125)
and
Ito Condition: G(x,y)=G(V,,0,)=E,or = N(d,V,0, = E, _N@ Vo, (126)
Ok

so, G(x,y)=F(x,y) iff

VON(d])—De’rTN(dZ):M (127)

Og

The perspective brought by solving F(x,y) =0 and G(X, y) = 0 by finding the x and y

values that minimize [F (x, y)]2 +[G(x, y)]2 allows us to contemplate the payoff or default of the

company with respect to its debt obligation in terms of the Normal probability distribution.
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E.2. Put/call parity proof for Black Scholes Merton: The Black-Scholes price at time t ofa

European put option with strike Kand maturity T is F (t, S;) where

F(t,x) = Ke"®(-d,)—xd(-d,) (128)

The value at time t of a European option whose payoff at maturity is Cr = f(St) is V; = F(t,S;)

where

r—a—z](T—t)+ayJTTt] 1

F(t,x)zer(”)Tf SteH ? e[z ]dy (129)

Let 0 =T —tandlet S, = x. So I get

F(t,x)=er6'Tf xe[[r_az}gwy@] X ! e[_zyz]dy (130)

F(t,x):emTf xe[mwwg—(fgJ X ! e[_zyz]dy (131)

%/—/
—0 curr pxof stock at t \} 2r
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Now I can write the European put with a strike price K which has value greater than zero so Put =

P, = max{K — x, 0} which I could derive by integrating:

P=e" T fl K- xe[mwwg_zg} X ! e[_zy]dy (132)
t —0 curr pxof stock at t \ 27[

Instead of deriving the price of the put directly, however, I can use the put-call parity
theorem. Suppose portfolios exist, one consisting of a European call option and a riskless discount
bond, and the other consisting of a European put option and a share of stock against which both
options are written. The call and put both have exercise price K and t periods to expiration. And
the riskless bond pays off K dollars at time t. Then these portfolio payoffs are identical since the

payoff on the first portfolio is

Max {x—K,0} +K = Max{x,K} (133)

and the payoff on the second portfolio is

Max{K —x,0} +x = Max{x, K} (134)
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Consequently, the current value of these portfolios must also be the same; otherwise there would
be a riskless arbitrage opportunity. Therefore, the price of a European put option P; can be

constructed from the call C;, the strike K and the stock Price x .”%

P=C +Ke " -x
=x®(d,)-Ke™®(d,)+Ke" —x

cally,
=Ke™ —Ke"®(d,)+x®(d1)-x (135)
=Ke ™ (1-@(d,))-x(1-@(d1))
=Ke"®(-d,)-x®(-d1)

As required. Now, to prove C;, we derive, and solve for the boundary condition of y in function

f (*) so the price condition is:

_1.2
xeMfeoyV0e 277 > K (136)

therefore,

€ See Garven, James R. 2/26/2012
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1
K cererivg =
X
X 1
—<
K erHeay\/—
X <e—r€e o-y«/?eig
X o a0
In| = |<In| e eV ¢2
LK1
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X —ro-cyJo+=c*0
Inf— |<In|e 2
LK
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(137)

which is the lower bound of integration. Changing signs:

d, = (138)

Therefore, if y < —d; — ¥ = d,, and the integrand will be positive on the bounds of integration

» s
F(t,x)=e [xe“’e"yf —KJx e2dy (139)
! r



And I multiply through and make the observation

o 1 -y o -y
| - -y
C =e" jxeme"y@e 7 —e?2dy-e"”K j

e 2
-d2 \/ﬂ —dZ\/ﬂ

std Normal
integral =0(d 2)

% L ¥
C =e" j xeeg 2 e 2 dy—e"'Kd(d2)

1
n J2r

Re—arranging

% g Y
C =e" j xele™g 27 g 2 dy—e""K®(d2)

1
—d2 V 27
But I can take out e™®in the first integral

520 —y
C, =e %" jxe“yfe 2 g2 Ldy e Ko (d2)

—d2 V2r

* oy Y 1
C =e”" [xe"e2""e2 ——_dy—e"Kd(d2
=] Tz )
20 i 1
C =e’ [xe?Pe?” e 2 ——dy-e"Kd(d2
_L e (d2)
= Txe“y@ e_éazge% ! dy —e ""Kd(d2)
—d2 V27
< o @—lozﬁ;yz 1
C=[xe”" 27" —_dy—e"Kd(d2
=l N T (¢2)
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(140)

(141)

(142)

(143)
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Re-arranging
I N VLR
C=| T —

xe 2

b Jam

dy—e*“’ KCD(dZ) (144)

Now I complete the square for the exponent

-y? 1 >
5 +Gx/§y—50'0 (145)

For any quadratic when I complete the square I use ax? + bx + ¢ = 0 then solve for the roots

2
(x —h)? +k =0,where h = — % and k =c— :—a. In the case where a dne 1 I normalize to make

=1

_y2?
—2*[ ;/ +0J§y—%029:0J

y> =200y +50=0
(_20\/5) (146)

So, a=1, b=-200, c=c, h:—T:o-\/E,
2
—26\/5 2
and k=026’—¥2020—ﬁ2020—02020
Therefore, I get:
2
(x—h) +k=0

(147)

(y-ov8) +0=0



But I have to multiply through by the reciprocal I initially normalized with so I get:

_%(y—o'\/g)2+0=0

(y-ovo)

2

y2 +g\/§y_lgzg = _Mz
2

2 2
And T substitute in the exponent in the integral
) (y_o_\/g)z 1
C.=|xe 2?2 —dy—-e"Kd(d2
t —'!-2 V27 ( )
~N density

unit variance
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(148)

(149)

Finally, I substitute u = y — aVeo. If y runs from -d2 — oo thenu + aVo = y , then u runs from

-d2—0oV0 <u <. So,dl =d2+ aV0.
=d1

Therefore:

C,= |xe 2 ——du—e"Ko(d2
TR
C = xf ef7Ldu—e‘r9K<D(d2)
—dl

N

\_qf_—/
~N density

unit variance

C, =x®(dl)—e""K®(d2)

(150)



which is the Black Scholes Pricing Formula for a European Call Option C; .l
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E.3. Black Scholes Merton with Stochastic Calculus: Suppose that the value of a European

Call option can be expressed as V; = F(t,S;). Then V; = e "V, and I may define F by V, =

F(t,Sy). Under the risk neutral measure the discounted asset price follows dS, = 05,dX, where,

(under probability measure) {X;};5¢ is a standard Brownian motion

67

To find the stochastic

differential equation satisfied by F(t,S;), I note that I have an SDE for discounted asset price that

follows (satisties)  dS, = 0S,dX;. So, the discounted European Call that satisfies (follows):

F(t, .S:t) = ()dt + ()dX; . I proceed by Ito,

. .
0F (1,8, ) = T dt+ - d§, + = 20 (a,)
a w2
. -
0F (1,8, ) = = dt+ - dS, + = Ot
ol s
. T
(R +[8—F+la~5]dt
Lo a2
So,
. .
dﬁ(t,gt):a_f(agtdxt){ﬂia_s]dt
o5 o 238
Also, since,

F(L.S)=V,=e",

67 Discussed at the conclusion of this Appendix.

(151)

(152)

(153)
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We can determine that

% =e "dV, +V, (-re")dt
§= e "dv, —r\ﬂe;dt (154)
% =e"dV, —rV,dt
So I can substitute for Z—f in
dF (t,5,) = 2—§(o-§tdxt )+ {e‘"dvt —rV,dt +%%} dt (155)

The first two terms in parentheses vanish as they are differential products with dt and negligible.

So,
=(. &\ _OF [ = 1 0°F
Rearranging, then I get
Y= -
dF (t,St) =lgdt+aistdxt (157)
2 05, 0S,

which is the SDE satisfied by F(¢,S;) in the form as required, and I note S, = Sy + @ fot S,dX,

then, using the fact that V; is a martingale under the risk-neutral measure, I find the partial

differential equation satisfied by F (¢, x), and show that:

2
F Lo P F _rog (158)

o 2 ox* OX

is the Black-Scholes equation. Since V; is a martingale under the risk neutral measure I write
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f(S)=V,=e""TUEQV, | £],0<t<T (159)
where V7 is the payoff at expiration T, F is the filtration generated by process {W,} under Q.

And, we know from Feynman-Kac that

F(tx)=E[e" TV (S;)I8, =x] (160)

which can be written

F(tx)=E% e "NV, |V, =x]
F(t,x)=e TYEQV, |V, =]

So, the key claim to make is that conditioning on the filtration ¥, and conditioning on the value Vr

(161)

are the same things provided that V; = ¢(x(T)), which it is.

E.4. The Wiener Process and Brownian Motion: One example of random processes with
independent and stationary increments is a Wiener Process. Schaum and Ross tell us a random

process {X(t),t = 0} is called a Wiener Process if:

e X(t) has stationary independent increments
e The increment X(t) — X(s)(t > s) is Normally distributed

e E[X(®)]=0
e X(0)=0

In the discrete time setting a widely adopted model for stock price dynamics is

S(t+At)-S(t)

S(t)

= uAt+o AB(t) (162)
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With At a time interval, S(t) and S(t + At) the stock prices at current time t and future time

(t + At), and AB(t) the Brownian motion increment over At with y and o constants. By Wiersema

The change in the stock price, relative to its current value at time t grows at a non-
random rate of i per unit of time and that there is also a random change which is
proportional to the increment of the Brownian motion over At, with proportionality
parameter 0. The standard Brownian motion importantly models the rate of return
on a stock (and thus can take on negative values). The analogue in the continuous
time world, the analogue is the arithmetic®® Brownian motion stochastic differential
equation:
dS(t)=pudt+odB(t) (163)

With 4 and o known constants, and 0 > 0. The growth (driff) coefficient
ult,S(t)] = p and the diffusion (volatility) coefficient o[t,S(t)] = o are both

constant. Expressing this in integral form I get:

T T T
J'ds(t): jydt+ jadB(t) (164)

which can be written as 7 7 7
S(T)-S(0)=u[T-0]+c[B(T)-B(0)] (165)
S(T)=S(0)+ uT +o B(T) (166)

non-random ~N(0,t-s)

s<t

And so the solution S(T) can take on negative values, which is required for the modeling of
random variables as returns (which will do extensively).

Finally, the distribution parameters for the arithmetic Brownian Motion SDE are given by:

68 Contrasting with Geometric Brownian motion dS(t) = u S(t)dt + o S(t)dB(t) which cannot take on negative values.
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E[S(T)]=E[X(0)+uT +cB(T)]
=X

(0)+uT +aE[B(T)]
%/_/
M) (167)
E[-]:mean:O
=X (0)+ uT

= uT, for X (0)=0

and

Var[S(T)]=Var[ X (0)+ 4T +oB(T)]|=Varc[B(T)]=0"T (168)

A discretized representation of generated arithmetic Brownian Motion W (t) is provided in
Figure 111 as equivalently W(t,1) with each [ representing a realization, or sample path, of the

Brownian Motion W ().
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Appendix F: Cashflow Verification

Using principal and interest cashflows require careful calculation of fair value at the bond
level. T implement the exact allocation algorithm for Model 3 and simply adjust for pathwise risk

free discount rates for Model 4. Below I provide detailed examples from the R-code implementation.

In order to allocate the cashflows to the bond structure, I needed to sum the default adjusted
cashflows for each period for each of the loans. This gives us an aggregate, or trust level default
adjusted set of periodic cashflows, for each of the simulations. I show a small example of 4 loans
across 5 simulations. Figure 111b shows the 1% 36 (of 120) periods for each of the 4 loans across
each of the 5 simulations. The organization of the cashflows is #loans*simulations , so, again, in
this example, the first 5 columns represent the cashflows for loan 1 across the 5 simulations, the
second 5 columns represent the cashflows for loan 2 across the 5 simulations, and so forth. I now
must capture the loan cashflows for each of the simulations. Figure 112 shows the aggregation

across the 4 loans for each of the 5 simulations for the first 36 periods.

To check for accuracy, consider Loan payment period 23. The cashflows are highlighted in

Figure 111b and 112. The period cashflows are then broken out in Figure 113 summing to what is

reported in the Trust Cashflow table. The 0.52 cents on more than $24mm in anticipated payments

is due to formatting and so the calculations appear to be correct. I now turn to the bond allocation.
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I have ensured that the trust cashflows are captured and accurate with the above and many

other tests. Additionally, only for those loans that default strictly ‘prior’ to origination data (only)
I retain the default pushing it to the 2nd promised payment date. This preserves the default in
highly volatile periods but uses the historical rate as a proxy. Truly this is just a computational
convenience for very rare exceptions, but it does what is intended and ensures that 100% loss does
not ensue by utilizing the historical loss rate for commercial real estate property types. Additionally,
instead of rigidly (and unrealistically) assuming that recoveries are instantaneous, I use recovery

periods specific to property types - and this is flexible.

In this summary, I am just looking at the principal cashflows including recoveries (with
their timing) for 8 multifamily loans across 10 simulations (for display). The bond capital structure
used is identical to the CMBX Series 1 (of which these loans are members). The percentage of the
original balance of the loans in this example reflect the subordination as given (Figure 114). For
each simulation date each of the 120 months of simulated cashflows must be allocated in full to the
classes. At the end of each month that is simulated on a simulation date the Trust Cash Balance
must equal 0 reflecting total allocation of all cashflows for that period. I consider 10 simulations
and as before I show the trust cashflows which now reflect the sum of the simulated principal

cashflow (with recoveries) for the 8 multifamily loans in the trust (Figure 115). I see, as before that
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the amounts vary in the periods reflecting different default, promised payments and timing of

recovery.

In the senior Sub Structure, the principal is allocated first to the AAA, then to the AJ, then

to the AM, and so forth thru the BBB-. I show Trust next to AAA (Figure 116-a) in the aggregate

followed by the remaining tranche and then Figure 116-b which breaks out the Trust and AAA

across 10sims. It is clear that only a portion gets allocated from the Trust to the AAA. But how

much? If things are working, only the amount up to the cumulative remaining balance of the AAA

in any given period. Consider simulation 10. The Trust (left) generates cashflows which are

completely allocated to the AAA in periods 32 and 33, however in period 34 only 673.22 is allocated

to the AAA.  Why? Because that was the amount of the remaining balance of the AAA in that

period under simulation. With the balance paid down in month 34, the AAA is no longer entitled

to any other principal and so in months 35:120 (only up to month 50 shown), I see that the AAA

receives $0 while the trust is still generating cashflows (Figure 117 and 118). I stay with simulation

10 for convenience and show the cascade of the remaining balance for each of the securities and the

trust. It is worth highlighting that in addition to accurate cashflow allocation under simulation,

there is of course, the possibility under such simulation that there is insufficient cash for the classes

due to default and loss. In this particular simulation 10 the BBB- class never receives any payments



-176-
(there are no principal payments in this simulation after month 50). Additionally, the BBB only

gets paid off slightly. All the other classes AAA thru A all get paid off in full. This is reasonable

given the loss experience in this Crisis®.

For the Recovery portion of the study the relevant cashflow schedule information related to
amortization and interest is from the EDGAR/prospectus supplement data in the Annex A tables.
From this information, I was able to generate the promised cashflows from origination. At each
simulation date (daily) I initialize the simulation reflecting the paid down balance of all the loans
within the trust at that time and then allocate the cashflows under default adjustment in the

simulation across the structure.

I know the allocation of principal™ to each of the AAA, AS, AA, A, BBB-, BB and Unrated
tranches is correct. Figure 119 sums to the maximum amounts of principal at the point of
initialization of the simulation with 0.20% associated with rounding and timing mismatches only
for the Unrated class on a $13.3B pool which is reasonable. Figure 120 shows the output for the
promised cashflows allocation (over three pages) to the bond structure and Figure 121 shows the

timing over the 145 month simulation horizon (as some loans expire >120 months in this pool). I

9 See US CMBS Market Trends — December 2013 Natixis & Moody’s, among others.

7 Similarly, we know that the interest cashflows are being paid correctly and that the pricing reflects this correctly
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also know that I am capturing the default adjusted cashflows correctly. Consider Figure 122 in
which one loan that defaults on path 8. The recovery time is 2 months and the recovery rate is
74.23% of remaining balance at the time of default. This particular example is from the reduced
form technology. The third column is the default adjusted cashflow that correctly captures the
promised cashflows to period 29. A default occurs in period 30 and the recovery is realized in
period 32. I use a short recovery period simply to be economical with simulation processing time

as I must simulate as many months as the longest scheduled maturity of any loan in the sample

plus the recovery at maturity of the longest dated loan contemplating a balloon default. The
recovery time and rate can always be adjusted. I next show in Figure 123 the allocation of principal
cashflows for the promised and an average across paths contemplating default. The sum of the
principal balance for each of the classes (on average across all paths is provided). It accurately
reflects the default occurrence (cashflows sooner than expected from recoveries from defaults) and
also accurately reflects the seasoning. The average across paths for the default plot was computed
as of simdate 3/7/2014 and there is also amortization that pays down the AAA over that period. In
Figure 124 in which the default adjusted principal is as of simdate 3/7/2014, there is no loss of
principal to the AAA, (or for that matter all the classes through BBBmin). Rather, the AAA was
paid off partly based on loans that originated as early as 8/2011. On average the BB as of this

simdate across all simulations was showing a small loss. This is consistent with the pricing intuition.
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Because of shortening in duration of the cashflows, however, there will be less interest paid to them

as they will exist over a shorter period of time.

Finally, it is important to note that while I do not have as a resource updated ‘real’ cashflow
data for the loans, what I do have is updated delinquency and default information on each of the
transactions for which each of the 688 loans in this sample serve as the exhaustive collateral set.
From origination of the loan through March 1, 2014 there were 0 delinquencies and 0 defaults in
each of the transactions represented. As such it must be the case that the historical updated real
cashflows for the simulation initialization period in each of the four models, must follow exactly the

promised cashflow schedule. Therefore, I have no information deficit in the underlying sample data

used for the Recovery period.
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Appendix G— Primer on Poisson and Cox Processes

The Appendix serves as a primer on the use of Poisson and Cox Processes in this
dissertation. It attempts to succinctly use references that take us from the basic counting process

to the Cox Process.

G.1. Poisson and the Poisson Process as a counting process: Schaum and Ross tell us a

Poisson Process X(t) is an important counting process that fulfills the following criteria:

1. X(0)=0
2. X(t) has independent and stationary increments

3. The number of events in any interval of length ¢ is Poisson distributed with mean At such

that for all s,t > 0:

P[X(t+s)—x(s)=n}:e‘”% .n=0,12... (169)

It follows from (3.) that a Poisson Process has stationary increments and that using the moment
generating function ¢(t) I can determine the mean py = E[X(t)] = At and the variance

Var[X(t)] = At which are the same as is required of a Poisson random variable”. The implication
is that for any unit length interval (t=1), such as (0,1), (4,5),(100,101) ... etc, the expected
number of events that take place in that interval is then just A, the intensity.

Following Shreve, I let the sequence Ty, Ty, ...T,be independent exponential random

1
variables, all with the same mean T I note the attribute on the memorylessness property of the

71 The mathematics associated with this are provided at the end of this Appendix.
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exponential random variable and in particular emphasize “After waiting S time units, the
probability that I will have to wait an additional ¢ time units is the same as the probability of having
to wait t time units starting at time t = 0. The fact I have already waited s time units does not
change the distribution of the remaining time”. The T} random variables are, the interarrival times.

The arrival times (or jump times) are then:

S = Zrk (170)

where S, is the time of the n — th jump and the Poisson Counting Process, N(t), which counts

the number of jumps that occur at or before time ¢ is:

0 ifo<t<S§,

Lif S <t<§S,

) (171)
2 if S2 <t< S3

nifS <t<§S

1

with jump times S, right continuous. Because the expected time between jumps is n the jumps are
arriving at an average rate of A per unit time and the Poisson Counting Process has intensity A. In

the first panel of Figure 124 I see that for constant intensity A = 0.25 over the course of 15 years

in one simulation [, the first jump occurs in the 97 time step, with each step k = 5 SO Sp =
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H % = 8.083 and N(t) = 1. In the second panel of Figure 124 the first jump occurs at the 1

time step, the second occurs at the 78" time step, and the third jump occurs at the 96™ time step
96 1 _

so Sy, = 21— = 8.0 and N(t) = 3. I describe some of mathematics required to describe the
12

distribution of the Poisson Process N (t) at the end of this section.

G.2. The Compound Poisson Process and Jump Diffusion: As before I note that
N(t +s) — N(s) is independent of the filtration F(s). For the stationarity claim Shreve shares
with us “When a process has the property that the distribution of the increment depend only on
the difference between the two time points, the increments are said to be stationary. Both Poisson

and Brownian Motion have stationary independent increments.

One direction we could pursue would be to simulate asset prices or the components of our
simulated economy using Merton using Jumps where the combination of the Brownian Motion and
the jumps is a Jump Diffusion. To get there using Shreve’s notation I restate Corollary 11.3.4, Let
Y1 -, Yube a finite set of nonzero numbers and let p(y;) ... p(yy) be positive numbers that sum
to 1. Let Y3,Y,,..be a sequence of iid random variables with P{Y; = y,} = p(y,), m —

1, .., M. Let N(t) be a Poisson process with parameter A and {Y;};>1be a sequence of independent

N(t)

identically distributed random variables and define Q(t) = X,_;

Y; as a Compound Poisson

Process.
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For m =1,...,M let Ny,(t)denote the number of jumps in Q of size yup to and
including time t.  Then, N(t) = Xm_; Ny () and Q(t) = Xm—1 YmNm(t). The processes
Nj, ..., Ny defined this way are independent Poisson Processes and each Ny, has intensity Ap(y,).
Shreve provides us with a graph in Figure 125 of one path of a Compound Poisson Process. The
Compound Poisson Process is a generalization where the waiting times between jumps are
exponential but the jump sizes can have an arbitrary distribution. So, the key point to take away
from this is that while a process is incrementing through time the Compound Poisson Process times
between jumps are following an exponential distribution. Both Shreve and Tankov/Voltchkova tell
us that the amplitude of the jump when it occurs is of random size/arbitrary. The amplitude/size

could be Normally Distributed/Gaussian, or could follow some other distribution or process.

Focusing more on the question of “when” the jump occurs, I revisit the exponential
distribution for Poisson. Recall a continuous random variable that follows an exponential

distribution with parameter A(> 0)has probability density function (pdf) of

—Ax
fx(x) = {ge ’ iz% (172)

Let’s assume that parameter A = 1. This reduces to the form

_ e™ x>0
fx (x) _{0, <0 (173)
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This means that if a process is following an exponential distribution through time, I would adjust

the notation for time index t, or a Unit Exponential. Using Lando’s notation:

e" Y x(t)>0 (174)
0, X(t)<0

F. (E (1)) :{

If E; (t) is allowed to be random I can simulate the value of E; (t) using the Uniform distribution
similar to what we would do to simulate a normally distributed random variable, where in both
instances, the input is the Uniformly distributed random value between 0 and 1 and the output is
the distributed value. This is consistent with the explanation provided in the algorithm of
Tankov/Voltchkova in which they simulate the Compound Poisson Process as described below with

a Gaussian amplitude (see Figure 126)

“Conditionally on Ny = n, the jump times Ty,..., T, of a Poisson
process on the interval [0,T | are distributed as n independent
ordered uniforms on [0, T ]. This leads to the following algorithm:

* Simulate N7 from the Poisson distribution with parameter T .

e Simulate Ny uniform random variables {U i}év=T1 on [0, T].
* Simulate Ny independent variables variables {Yi}IiV=T1 with law f

(meaning with distribution/density of ;).
The process is then given by X, = Zival Yily<e

Combining a Brownian motion with drift and a compound Poisson process, I obtain the simplest

case of a_Jump Diffusion — a process which sometimes jumps and has a continuous, but random
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evolution, between the jump times. Following Tankov/Voltchkova they present us with the simplest
form of Jump Diffusion proposed which is a Levy process

Ny
X, = put+oB +>Y, (175)

i=l

The best known model of this type is proposed by Merton, 1976 model where stock price (modeled
as an exponential to ensure positivity) is S; = Spe*" with X; as expressed above and the jumps
{V;} following a Gaussian distribution. Tankov/Voltchkova provide us with a simulation and in
the figure below show us one sample path of the jump diffusion process X; (Brownian motion +
compound Poisson). As we see in Figure 127 “in between jumps, the process evolves like a
geometric Brownian Motion, and after each jump, the value of S; is multiplied by €¥i> As such,

the model proposed by Merton can be considered a generalization of Black Scholes:

% = fdt + odB, +dJ, (176)

t—

where “J; is the compound Poisson Process such that the i-th jump of J is equal to e'i — 1.
Whenever there is a jump the value of the process before the jump is used on the left hand side of

the formula (S;_).” Shreve also provides us with similar expression in his Definition 11.4.3.

G.3. Reduced Form Default Intensity Models: The discussion of Jump Diffusion above has

direct application to the modeling of asset price evolutions (stocks and bonds). In the reduced form
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approach of Model 4, however, I will be taking a different route. Instead of modeling the asset price

evolution directly with a jump process as per Merton, I will be using an adaptation of the Poisson

Process found in the default modeling literature.

Following Trueck/Rachev, reduced form models (in general) allow for surprise defaults. “At
the heart of the reduced form models lies the instantaneous rate of default, the default intensity A.
Let F; be the information up to time ¢, and T the default time, At a marginally short time interval,
and A(t) the default intensity as a function of time only. Assuming no defaults up to time t the

basic default intensity is expressed as:

P(re(t+At)|§)~A(t)At (177)
which is approximately the proportionality factor between the default probability within a given
time interval At and the length of this time interval.” In other words, A is the intensity of the
process that specifies the default time 7. In the literature, Poisson processes are used to model the
default times of rare and countable events. In this context the time of default is interpreted as the
first jump of the Poisson process. So, revisiting the Poisson Process in Figure 124, as a default
process, the default time in the first example would be 7 = 97 and the default time in the second

example would be 7 = 1.
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The reduced form (Model 4) default process I implement is more complex than this.

Further, it is distinct amongst the other models studied in my dissertation. In Model 1, the default

event is relegated to maturity and based upon the option value of the equity determined under

Merton. In Models 2 and 3, the default event is triggered by the single factor (the inverse LTV)

dependent on the REIT evolution corresponding to the property type. In Model 2, the event is

restricted to the implied property value vs the debt value at Maturity (like Model 1, though it is a

simulated event and property type specific); in Model 3 the default event may occur anywhere on

the interval [t, T] on any simulation path [.

In contrast, Model 4 considers the event of default to be a function of the relationship

between loan level characteristics and the entire simulated economy. What I am going to do is

consider use the intensities of states of the loans (current, delinquent or default) as time and path

dependent random variables interacting with loan and economy characteristics. The method will

be the Cox Process as introduced by Lando and Duffie in the literature and expanded on in Jarrow,

etal 2008. The end result will be the simulation of the correlated economy (as discussed in the main

text) and a default process that will perturb the cashflows with respect to the historical experience,

statistically, using Maximum Likelihood Estimates. Then, using the cashflow algorithms of loan to

bond allocation, the default adjusted bond level cashflows will be produced pathwise, and ultimately
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valued using the HJM term structure. The linkage between the loan and the simulated economy is

the maximum likelihood estimates.

G.4. Use of Maximum Likelihood Estimates: Briefly, in the context of my dissertation, the
MLE’s were estimated using three logisitic regressions to capture the binary response of an event
(the delinquent state, g, or the default state, d, ) or non-event (the current state, ¢, aka the paying
as promised state) from a set of 100,000 loans over a seven year period 1998-2005. The logistic

function always takes on values between 0 and 1 with

e’ 1 1 1
) 1+¢’ 1+e¢’ 1 , 1+e” (178)
ey e

If we view y as a linear function of an explanatory variable x and its associated coefficients f and

intercept I may write:

E(Y1%) = F (B, + X0 = s (179)

which is the logistic CDF with the interpretation as the probability of success, or presence of the

event. The intensity associated with the events is written as the multiple regression:

1

intensity =
Y —z i coefficient; -variable; )

(180)
(1+e
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G.5. Duflie on State variables & Parameter Estimates in Reduced Form: To interact the
intensities described above with the loans, Dulffie provides a succinct overview of the procedure for
establishing a dependence of the default intensity upon State variables vis a vis parameter estimates
(in this case MLEs). I learn that the maximum likelihood estimation of term structures of
conditional default probabilities require both the estimation of default intensities at each point in
time and the estimation of the probabilistic behavior of default intensities over time. Thus the
default estimation problem is partitioned into a two part procedure: i.) estimate the parameter vector
p determining the dependence of each default intensity 44 (X¢, B) on the underlying state variable

vector X;; and ii.) estimate the probabilistic time series behavior of X;. Specifically, Duffie tells us:

We fix some probability space ({1, F,P) and information filtration
{F:t = 0}. For a given stopping time T, say a default time, we wish
to estimate the term structure {P(7 > t):t > 0}of survival
probabilities. We suppose that T is doubly stochastic driven by a &
dimensional Markov process X with intensity 14(X¢, B) , where f €
R? is a vector of parameters. We suppose for simplicity that X is

constant between integer observation times, t = 1,2, ...

Therefore in the intensity expression above, the coefficient; term corresponds to Duffie’s
parameter coefficient vector, 5, and the variable; term corresponds with Duffie’s underlying state
variable X, such that each default intensity A4(X¢, f) is dependent on the simulated parameters
which are state variables X; and the state variable coefficients 8 (which in this dissertation are the

MLEs). In this dissertation, the time dependent state variable X; include the simulation of REITs,
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NCREIF property indices, and forward risk free rates under HJM. There are 27 such state variables
all of which have an explanatory relationship with the historical events of default and delinquency

as captured in the logisitic regression’ such that the intensity using Duffie’s notation is restated as:

1

intensity = (181)

The intensity then is said to be Stochastic allowing the default intensity to change over time.
As the method for implementation is simulation, one could express the intensity then as

Aqa(X¢j, B). According to Duffie, I say that a stopping time T with intensity A4 is doubly stochastic,

driven by X, if, conditional on the covariate path {X = X;:t = 0}, T is the first event time of some

Poisson process with time-varying intensity {4;:t = 0}. This Poisson property implies that

—jﬂ(s)ds

P(r>t|(X,8))=e" (182)

Applying the law of iterated expectations (over the simulations), then

—'I[A(s)ds

P(z>t)=E[P(r>t|(X.5))]=E|e" (183)

Additionally, stopping times, Ty, ..., T, that are doubly stochastic driven by state variable

Xwith respective intensities A; ... A, are said to be jointly doubly stochastic if these times are X-

72 T4 estimate we use a numerical Procedure, such as Newton Raphson, for MLE to maximize the log likelihood of the event of interest.
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conditionally independent. An implication is that Ty, ..., T, are correlated only through the joint

dependence of their intensities on the covariate state variable process X. For example, for any time

P(r,>t,z;>t)= E[P(Ti >z, >t‘(x’ﬂ))}

t t
—Iﬂi(s)ds —'[Aj(s)ds
=Ele°® e’ (184)

t
—.[[/li(s)+lj(s)]ds
=Ele°®

Therefore for some probability space (£, F, P) where () contains the possible state of the world,
the set F consists of the subsets of (), called “events” to which a probability can be assigned, the
probability measure P:F — R assigns a probability P(A) to each event A. I also fix an
information filtration {F;:t > 0} satisfying the conditions that specify for each time t the set F;
of events that are observable at that time. Then, given a stopping time T for say default, I say that

a progressively measurable process A is the intensity of T if a martingale Mis defined by

t

M =1, - [ 41

oy,.qds (185)
0
where for any event A, the indicator 1 has an outcome of 1 on the event A and 0 otherwise. This

means that at any time t before 7, conditional on the current information F, the mean rate of

arrival of default is A¢, the conditional default intensity conditioned on all information up to t. For
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example, with time measure in years, a default intensity of Ay = 0.1 means that default arrives at a

conditional mean rate of once every 10 years, given all information available at time t.

G.6. Lando on Cox Processes, State variables & Default Intensity: While Dulffie provides
support for the use of Lando extends the discussion further. Specifically, a primary focus of Lando
is to allow for dependence between default intensities and state variables. The timing of the jump
event (default, delinquency) is also considered a conditional Poisson Process, where the distribution
of the “when” of the jump is conditioned on the state variable X (t). Where I extend the discussion
is in the linking of the default time with the intensity process A which is a function of state variables

so, where A(Xy) is the Cox Process. Lando tells us:

A Cox Process is a generalization of the Poisson Process in which the intensity is
allowed to be random but in such a way that if we condition on a particular
realization [(*, w) of the intensity, the jump process becomes an inhomogeneous

Poisson process with intensity [(S, @)...where the random intensity

I(s,)=A(X,) (186)

is an R? valued stochastic process and A: R? — [0, ©0)is a non-negative continuous
function. The assumption that the intensity is a function of the current level of the
state variables, and not the whole history, is convenient in applications, but it is not
necessary...The state variables will include interest rates on riskless debt and may
include time, stock prices, credit ratings, and other variable deemed relevant for
predicting the likelihood of default. Intuitively, given that a firm has survived up to
time t, and given the history of X up to time t, the probability of defaulting within
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the next small time interval At is equal to A(X;)At + 0(At)73. Let E;be a unit
exponential variable which is independent of X; given also is A: R 4 5 R which we

assume non-negative and continuous. From these two ingredients we define the

default time, T as follows:

r=inf{t:jﬂ(xs)dSZEl} (187)
0
Thus, if the intensity is greater than or equal to the unit exponential variable (which is independent
of X), a default event occurs. X; is very rich on two levels. First, because the conditional intensity
is independent of the Exponential variable, the mathematics of the Poisson Process apply. Second,
the intensity itself is informed by X which incorporates a lot of information. In Jarrow, etal (2008)
some of X; is current information as Lando suggests such as parameters for time, current payment
status of the loan, outstanding loan balance, and many other factors. Many of these factors, are in
turn, driven by correlated Brownian Motion dZ (t, [) which serve as dynamic inputs to a regression
in which the amplitude for the jump is determined by a regression of the form:
Yo=a+BZ(t]) (188)

where [, represents the k-th corresponding coefficient for a time dependent variable determined
using MLEs and Y; represents the dependent variable of default.

To make some of the mathematics more explicit we just consider a little theory. T assert

that what Lando is saying is that the compound Poisson Process, call it C, is a conditional Poisson

73 Where O(At) represents any function of At such that in the limit f(At) /At — 0 faster than At.
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Process, where IP(C|X;) is Poisson, conditional on the information set in X; state variables. The
assumption is that we ‘know’ everything in the State variable and have complete path-wise
information. This is consistent with the idea of generating the correlated Brownian Motions and
linking such continuous processes which represent the economy, to the actual historical default
experience based upon loan level and economy wide characteristics experienced by the loan under
simulation on each path [ at each time ¢, found together in the state variables X¢, or actually X; .

With this perspective, then, over the interval [0, t], the integral can be divided into

[A(X,)ds>E, = ]z(xs)dsm(xl)m > E,
0 ﬁ_/

:ji(xs)ds

t t-A t
Iﬂ(xs)dszElz{jﬂ,(Xs)dHj/l(xs)ds}z E, (189)
0 t-A
t t—-A
[A(X,)ds+ jﬂ(xs)ds}z E,
0
So the takeaway is that the conditional Poisson Process is fully independent from the economy
under simulation, as it should be, but it is embedded in historical sense as the realization of the
intensity at any time ¢ on any path [. A(X;) informs the threshold of the default time 7. This
completes the main portion of the supplement to the text which discusses the implementation of

Model 4 in detail. The remainder of this Appendix provides some mathematics supplements

referred to in this Appendix.
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G.7. Basic Poisson mathematics: A discrete random variable X with parameter A > 0 is said

to be a Poisson random variable if its probability mass function (pmf) given by px (k) = P(X = k) =

k
e4 % for k = 0,1,2, ... and corresponding cumulative distribution function (cdf) given by Fx(x) =

k
e * 27{1:0% for n<x<n+1 with uyy =E(X) =21 and ¢ =Var(X) =A. Proof of the

expectation of a Poisson Random Variable is given by:

0 ne—/iln o0 e—ﬂin
E[X|= =
[X] HZ:;‘ n! nzz:‘(n—l)'
© Zn—l o k (150)
ety = et Y
: nz_:‘(n—l)' ° ~ k!
but =e”

A 'et =4

To get the variance, I use the mgf of a Poisson random variable with mean :

o) -e[e]-3 5

& (/1et )n & (/’Let )n o)

=€ =e
o N! o N!
- (2e)

_ ) _e—/lez,e‘
n=0 n'

So,



¢v(t) _ _eﬂ(e[—l) _ eﬂ(e(—l)/l t
d
and
. i A(e‘ 1) t
¢ (t)=—¢e Ae
dt
R ISP PO COPI
_ 26’ [1 + /”Let]
So,

¢ (t=0)=E[X]
") g0
=IxAx1=A4

#(t=0)=E[ X*]
_ 2e% ) [1 + /1e°]

=A[1+A]=2+2"

Var(X)=E[ X* |-{E[X]}’

A+ =AY =2

So I conclude for a Poisson Random Variable the mean and the variance are the same. H

,195,

(192)

(193)

(194)

(195)

(196)



,196,

G.8. Mathematics for the distribution of the Poisson Process: Beginning with the

convolution for the gamma density:

<
D

But I note from the determination of S, as having the gamma density that

n-1 n
0,(5)= ) e o 1 jen g )

(n-1)! (n—-1)!

(197)

(198)
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which matches the solution in Shreve, and for the Lemma for the distribution of the Poisson Process

N(t) with intensity A. (Shreve, pg 465),

t
P{N(t)2k+1}=P{S,, < I /Ie‘“ds (139)
0
By P 1 /1(/15) . du Ak)l()ls)k 1 AZ(As)k‘ld dy = e~ ds: e
y Parts, let U = = = = k—1)! V=e S,V = _/,L,so
k —As S = t 2 k-1
| (As)" | e j e’ /1 (/13) ds
ki -2 Js=0 3 ~1)!
(A9) _|s=t (/13)“1 s
= ° + Ae “ds
kI~ [s=0 3 (k-1)!
k t k-1
LGV fU9
k! ) (k-1)!
but this is the
gamma density from11.25
At
_ (k') % PIN() > k) (200
Therefore, from the initial expression
P{N(t)2k+1}:P{Sk+l_t}——( ) M LPIN(t) 2k} (201)
Then, with this result from Shreve for k > 1,
(202)

and for k = 0,
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P{N(t)=k} =P{S, >t} =P{r, >t} =e™ (203)

which is as Shreve tells us with k = 0. =
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Appendix H — Implementation of Switching

In the implementation, the payment state transition process (switching) is the result of the
delinquency/current process C, (t,|) and the default process, Q; (t,|). Beginning with the
process C, (t,l), I have stochastic intensities for lambda delinquent, ﬂq and lambda current, ﬂt

The payment state Si (t=1) is the payment state of the loan at the initialization of any simulation.

In all cases, the real payment state of the loan based on historical data will be used at initialization

time t = 0. For all subsequent dates, [t + 1:T], the loan state Si (t+1:T,l)will be determined by
the payment state transition process as described in the tree. Each period thereafter and updated
data (monthly) behaves as a unit exponential Poisson process, with the payment state the result of

a two stage transitioning to either the delinquent or default state indicated by 1 over the period so

P(=k=1)=——"—e"" (204)

becomes

P(=1)=2,(t1)e™" (205)

which has the interpretation of the lower bound for the current state such that if a Uniform random
draw Z < P(Si (t,l) = 1), then Si (t,l) =1 otherwiseS,(t,I):O. I simulate and capture the
intensities, ﬂq and ﬂt and ;ldand payment state Si (t, I) resulting from the delinquency/current

process C, (t,|) and the default process, Qi (t, |) for all times t and all simulations j.
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I see from the cascading screen shots (Figure 125) the first 13 months of 20 of 250
simulations for one individual loan on one simulation date. The loan delinquency status entering
the simulation was current (delinquency status=1.) The loan takes on a simulated delinquency
status for each of the simulated times t=1:120 of either delinquent or current. The instance of
delinquency of 250 possible simulated instances for each of the 120 simtimes are shown. 11,012
instances of delinquency status show up out of 30,000 simulated states resulting in average realized

delinquency status =1 frequency of 0.37.

Next I have the default process, Q; (t, [ ) which uses the default intensity, ﬂd I concentrate

on the case where the payment state Si (t, I) is delinquent such that the delinquency state variable,
N;(t, 1), is turned on to a value of 1 such that |6;N;(t,1)| > 0 on a particular path j. In one
example this occurs in a case in the Crisis where this loan was also conveniently in a delinquent

state entering the system (it doesn’t have to be, it could have transitioned to delinquent from current

at C;(t,1)), so in this caseS; ((t=0)—,1)=delg((t=0)—-1),V I.

In Figure 126 we observe the simulated default draw from an initial delinquent state for the

first 10months of simulation across 10 of 250 simulations. Next I show the default boundary for

the loan as determined byﬂd. Next I show the result of the delinquency process which “precedes’
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the default process. As we see in the initial state, the loan is categorically in the delinquent state. I

then show the result of the default process Q; (t, | ) which is determined by

2, (t.N)
P(= k)=—( d(k' ) g (! (206)
which becomes, .
P(=1)= 4, (t,1)e ™) (207)

and which has the interpretation of the lower bound for the default state such that if a Uniform

random draw Z < P(Si t = 1) then S,(t,]) =1=default . Though default may occur from

the current state, it is quite rare and in this rendering it does not occur. Additionally, simply by
being in the delinquent state does not guarantee going into default. For default to occur in the
process, the draw must be less than or equal to the boundary. I show the delinquent/current status
of the loan for the first 10 months, the result of C;(%, ). The first month in this example is always
delinquent. On path 9, the payment state persists through the tree as delinquent for the first 3
months. In the 4th month the loan transitions to default which is an absorbing state. In the code
I distinguish this payment status with a 2 corresponding to the industry data convention, but it is
only a code/visual designation. The loan has terminated at period t = 4 on path j = 9. Why?

Because in that month the Uniform draw Z = 0.218 < 0.2840666, the default boundary™.

74 Default is an absorbing state captured in the code, but for technical reasons, all default instances are generated pathwise even though only

the ‘first’ default realization matters in the sense of Perturbing the cashflow reflective of such absorbing event on the simulation path.
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Figures




Figure 1a: Ex-post analysis of Model 2 Pricing vs. Market Price (BBB-)

Prices of CMBX Series 1 BBB-
{Actual vs. Synthetic/Model, Nov 2007 thru December 2010)
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Figure 2a: Composite Theta — Crisis (daily)

Figure 2b: Theta Driven Returns — Crisis (daily)
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Figure 3: Basic Credit Default Swap
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Figure 4: MLE Parameter Estimates for Default
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Figure 5: NCREIF Rolling Returns
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Figure 6: Actual vs. Spline fit NCREIF
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Figure 7 — Loan Level Probability of Defaults aggregated by Property Type

Probability of Default Across Loan Types
Merton Model 1 (daily 7/2006 thru 7/2010)
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Figure 9: Tranche Structure for CMBX in Crisis

Class/Tranche Class Percent
AAA: 0.6440
AJ: 0.0584
AM: 0.0984
AA: 0.0742
A: 0.0205
BBB: 0.0274
BBB-: 0.0451
Other: 0.0320
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Figure 10: Numerical Example of Merton Fair Value Allocation

B(t) - Fairvalue Trust: 780
H(t) - Rembal of the Trust: 936
Disposition
Rembal| at FairValue Fairvialue
k=Tranche origbal h k pmt k|RawRecovery| T|r{t)(monthly)| bdot k
k=844 644.00 580.00 580.00 100.00%| 75| 0.000416667| 103.1743
k=4 58.40 58.40 58.40 100.00%| 75| 0.000416667| 103.1743
k=AM 98.40 98.40 98.40 100.00%| 75| 0.000416667| 103.1743
k=44, 74.20 74.20 43.20 58.22%( 85| 0.000416667| 60,31997
k=4 20.50 20.50 - 0.00%| 85| 0.000416667 0
k=BBB 27.40 27.40 - 0.00%(98| 0.000416667 0
k=BBBminus 45.10 45,10 - 0.00%| 98| 0.000416667 0
k=Other 32.00 32.00 - 0.00%| 98| 0.000416667 0
Total 1,000.00 936.00 780.00
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Figure 11: Fair Value Merton (All classes except A] and AM)
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Figure 12: Relative value comparisons using Theta for Merton

Composite Theta - Merton (11/2007 - 11/2009, daily)
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Figure 13: Calibrated Values 3 Property Case (9/2006-12/2010, Daily)
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Figure 14: REITs used in Models

symbol REIT Prop W2 M3
AVE  AvalonBay Communities MF * "
BKD Brookdale Senior Living oT *
BMR Biomed Realty Trust OF *
BRE BRE Select Hotels LO * "
BXP Boston Properties OF * *
cu Mack-Cali Realty Corp OF * .
DDR DDR Corp RT " .
DRE Duke Realty IN * *
ELS Equity Lifestyle MF *
EQR Equity Residential MF " .
ESC Emeritus Corp oT .
FCH Felcor LO *
FR First Industrial Realty IN *
GRT Glimcher Realty Trust RT .
HCN HealthCare REIT oT *
HIW Highwoods REIT RT * *
HOT Starwoods Hotels LO *
HST Host Hotels & Resorts LO *
KIM KIMCO Realty RT * *
LHO Lasalle Hotel Properties LO *
LRY Liberty Property Trust QOF * .
NNN  National Retail Properties RT *
PLD Prologis Inc. o7 *
Pse PS Business Parks OF *
REG Regency Centers Corp RT * *
SPG Simon Property Group RT * *
SSS Sovran Self Storage ar *
TCO Taubman Centers RT * .
UDR UDR, Inc. MF * *
VNO Vornado OF - *
WPC WP Carey IN *
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Figure 15: Two simulations for Apt REIT (1)
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Figure 16: Implementation of Simulations for Apartment REITs

V3 Sim (Eq 3, 1 trade date, 100 Sims of 10 years each)
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Figure 17: Simulated Portfolio, Cumulative across 10,000 simulations
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Figure 18: Two simulations of Apartment REITs

Two Simulations of ¥_1 (Apt, REIT)
(Eq 3)
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Figure 19: Simulated Inverse LTV for Apartment Loans

Proj PropVal Ratio (1/LTY) for
1 MF Loan in 2 Sims (Eq 9]
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Figure 20: CMBX Attachment Points and Coupons

CMIBX Series 1

Class Y A0 | by £ BBE  BBE-
Fixed Coupon, © 10 an a4 23 33 76 134
iZE~H A6.00% 29.76%  19.92%  12.50%  10.45% 7.71% 3.20%
iCEAL 29.76% 19.92%  12.30%  10.45% 7.71% 3.20% 0.00%
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Figure 21: Initial Model 2 (top) compared with DVH, 2012 (bottom)
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Figure 22: Initial Statistical Results of OLS

CMBEX1

AAA,
Al
B4,

A

BBB
BBBminus

R-s0 t-stat p-value obs(days)
0.73010 46.31000 0 795
0,70637 18.27894 0 752
0,59250 33.98000 0 793
0.46110 26.05000 0 795
0,21150 14.58000 0 795
0.,14000 11.36000 0 795
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Figure 23: Volatility vs. Indexed Price Series (AAA and BBB-)
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Figure 24: CMBX Price Series for Crisis
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Figure 25: 30 Plus Days Delinquency History in Crisis
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Figure 26: Ex-Post OLS Results with 30 Plus Dlq Exogenous Variable included

Comparitive Regression Results Summarized
CMBX 1 R-sq R-sqwDLQ p-value obs (days)
FAYAYLN 0.73010 0.73030 0 795
Al 0.70637 0.70598 752
A4
A

0
0.59230 0.69330 0 795
0.46110 0.68760 0 795
BBE 0.21150 0.70830 0 795
BBBminus  0.14000 0.77200 0 795
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Figure 27: BBB- ex-post with 30Plus Dlq included
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Figure 28: All other CMBX Classes with 30Plus Dlq included ex-post
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Figure 29: Regression results for 30Plus and the Treasury Slope (AAA)

regresz hctualhin OptionflodeIfAffA plus TeySlope

Source =35 df M= NMauber of obs = 795

Fi 3, 791y = 8#13.72

Model 19621 9867 3 6540_66225 Prob = F = 0_.0000

Beszidual 6358 04166 791 £_03797934 E-scuared = 0_.75953

Ady B-squared = 0.77543

Total Z5980. 0284 T894 32_7720438%8 Boot MBE = 2.8351
Aotualidd Coef. 2td. Err. T P=|t| [95% Conf. Interwvall
OptionModel il 2773369 0073061 37.96 0.000 2629903 2916784
plus=s 47_ 3622 5719217 8.28 0.000 36.13009 58_5838s
T=yESlope -. 0663141 0071483 -8_86 0.000 -.0810029 -.0516253
_cons T1.19482 1.050414 67.78 0.000 69.1329 13.25675
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Figure 30: AAA CMBX with 30Plus Dlq and Treasury Slope
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Figure 31: BBB- CMBX with 30Plus and Treasury Slope Ex-post

. regress ActualBBBm OptionliodelBBEm plus TsySlope

Source a5 df Jub Mumber of ohs = 195

Fi 3, 751 = 1003.52

Nodel 229815516 3 T6605.1719 Prob = F = 0.0000

Beszidual 60382.417F 791 76.3368108 B-zeuared = 0.7919

4dj B-squared = 0.7911

Total 290197.93F 194 365.488581 Boot MSE = §.713711
brtualEBEw Coef. Std. Err. t Pt [95% Conf. Interwall
OptiontodelEBEW Ced 0927 .0170428 32.10 0.000 .5H306382 L5154 71
plus -369 8638 19 04782 -19.42 0.000 -407.2541  -332.4716
Tsyilope - 20571768 0240209 -§.57 O0.000 -.252929 - 1586245
_cons 21.34939 2.90185 T7.36¢ 0.000 15. 65315 27.04563
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Figure 32: Treasury Slope vs. 30 Day Plus Delinquency
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Figure 33: Case-Shiller Housing vs. Corporate Credit Slope
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Figure 34: OLS for AAA w/ 30Plus, Treasury Slope, Case-Shiller and Credit Slope

. regress Actualinf OptionModelfififi plus TzySlope Cazefhil2ld CreditSlope

Source 58 df M= Mumber of ohs = 195

F{ 5, 783 = 524_16

Model 19968 4987 B 3993 69973 Prob * F = 0.0000

Beszidual 6011.52375 139 71619171584 B-zoquared = 0.7686

Adj B-zquared = 0.7671

Total 25980 0284 194 32.720438% Boot MEE = 2.7603
Actualddd Coef. Scd. Err. t Prlt| [35% Conf. Intervall
Optiontlodelidd S21717384 .0161335 13.50 0.000 1860688 .24940%
plus 64 30839 6930139 9.28 0.000 50_70469 1. 91208
T=yElope - 0442892 .0032061 -5_.40 0.000 -.0603916 -_0281%08
CazelhilZO 0904925 . 0135009 6.70 0.000 .063990% .1169943
CreditSlope - 0047408 .0035251 -1.34 0.179 -.0116605 .0021789
_cons 60 46176 2.583161 23.41 0.000 5h_3910% 65_53244
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Figure 35: OLS for BBB- w/30Plus, Treasury Slope, Case-Shiller and Credit Slope

. regress Actual BEBm OptionliodelBBEm plus TsySlope CaseShil2d CreditSlope

Source 3] df Ma Mupher of oks = 195

Fi &, 783) = 1508.69

Model 2627119 009 5 52543 %019 Prob = F = 0.0000

RBazidual 2478.9237 189 34.38275332 B-zeared = 0.9053

Ldjy B-zequared = 0.3047

Total 290197.933 7194 365H.483581 Boot MEE = b 9015
LetualEBBu Coef.  5td. Err. t Pt [35% Conf. Intervall
OptionModslEEB .3530238 (0260952 13.53 0.000 .3017995 4042481
plus -T6_ 87351  16.0133%1 -4 80 0.000 -108. 3084  -45.43861
T=yilope -. 0942483 . 01710%4 -5.51  0.000 -.1278335 -. 060663
CaszeBhilz0 .3835934 .031105 28.41 0.000 .B22535 .9446518
Creditilope .049878% 0070512 1.07 0000 -0360375 .0637203
_cons -127.4544  5.285171  -24.12 0.000 -137.829%1  -117.073¢%

-1vC-



Figure 36: Correlation Table

correlate OptiontModelBBEm plu=

Tsyilope Casefhil2d Creditflope

(ok=s=79E)
Optiomn~m plus T=sySlope CaseS~2Z0 Credit~e
OptionMode~m 1. 0000
plus 0.4314 i. 0000
TsyElope 0.0833 0.79210 1. 0000
CaseShilZz0 0_285%0 -0_.6222 -0_77373 1. 0000
Credit&lope -0.%01% -0.488% -0_.13%% -0._1425 1. 0000

Figure 37: Ramsey Reset Test

ovtest

Ho:

Pam=sey RESET test using powers of the fitted walues of ActualBEEm

model has no omitted wariables

Fi3, 78]
Prob = F

12.13
0. 0000
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Figure 38: Variance Inflation Factor

- vwif

Variahle VIF 1/VIF
Optiontlode~m &_08 0.123768
rlus 6_d6 0_154715
CreditSlope &_00 0166637
CaszeShilz0 4_61 0214312
T=ywElope 3_80 0.263012

Mean VWIF 5_80

Figure 39: Variance decomposition test

. colldiagq)
Cond |

Muuber |OptiontlodelEEEn
1| 0.0003 00016

3.28533 | 0.0001 0_08&&0

5.58041 | 0._01%0 0_0el12

20_5402 | 0.0162 0_5458

37.5846 | 0_8787 01147

5.7698 | 0_0868 0_1%06

Proportion of wariance associated with the decomposition

plus TsyS3lope CaseShilz0
0._0004 0_0001 0.0008
0._0002 0_0001 00171
0_0o027 0_0012 0. 0704
o737 0.0038 0._2050
0.037% 0_1064 0.6969
0._1852 0_g884 00037
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Figure 40: White test and IM-test

. imtest

Mhite's general test statistic :

298, 0449

Cameron & Trivedi's decomposition of IM-test

Chi-sqiZ0)

P-wvalus = 2_0e-51

Source chiZ df r
Heteroskedasticity 298 .05 20 0. 0000
Skevmess 3195 5 0. 0000
Eurtos=is 2.37 1 0.1235
Total 33237 26 0. 0000
Figure 41: Durbin Watson Test
. dw=tat
Durbin-Watson d-statistici] &, Th) = 0483615
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Figure 42: AAA final comparison in Crisis
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Figure 43: BBB- final comparison in Crisis
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Figure 44: Property Type Composition in CMBX deal GG5
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15.32%
6.33%
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Figure 45a: Rhos 6 Property Type Calibration
(MF:RT=Red, MF:OF=Blue, MF:IN=Black, MF:LO=Yellow, MF:OT=Orange).
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Figure 45b: Latent Property Type Values — 6 Property Type Calibration
(MF=Magenta, RT=Red, OF=Blue, IN=Black, LO=Yellow, OT=Orange)
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Figure 45c: Gamma 6 Property Type Calibration

(MF:RT=Red, MF:OF=Blue, MF:IN=Black, MF:LO=Yellow, MF:OT=Orange).
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Figure 45d: Beta 6 Property Type Calibration

(MF=Magenta, RT=Red, OF=Blue, IN=Black, LO=Yellow, OT=Orange)
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Figure 46: Inverse LTV by property type (simulated)
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Figure 47: Fair Value Pricing No Cashflows, 6 Property Types.
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Figure 48: Comparison of Special Case and Generalized Form of Calibration Hybrid Attributes

Special Case of Generalized Form (DVH, 2012; Model 2)

Generalized Form of Calibration Hybrid (Model 3)

33 loans with undisclosed relationship to CMBX Series 1

172 loans from GG5 in CMBX Series 1

3 of 6 property types (MF, RT, & OF)

6 of 6 property types (MF, RT, OF, IN, LO, OT)

Uniform Maturity Dates for all loans

Accurate Maturity/Balloon Dates for all loans

Uniform $Balance across all loans

Accurate $Balance across all loans

10 REITs combined for 3 diffusions

35 REITs combined for 6 diffusions

Assumed Maturity Default

Accurate Maturity and Term/Ruthless Default

Assumed Interest only Balloon Loans

Accurate Amortization of Interest & Principal
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Figures 49a and 49b: Mortgage Cashflow Composition
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Figures 50a and 50b: Mortgage Cashflows with Balloons

i,
totpmt 6% 10mm 10730 % coupon
months 1:120 120 balloon month

2 090, 000.00 beghal prinpmt intpmt totpmt endbal
£6,000,000.00 1 410,000,000.00 % 995505 &50,000.00  ©59,955.05 % 9,990,044.95
$7,000,000.00 2 % 9990,04495 ¢ 1000483 ©49,950.22  ©59,955.05 %9,980,040.12
$6,000,000.00 116 § 8457,790.72 ¢ 1766610 442,288.95  959,955.05 &58,440,124.62
55.000,000.00 117 § 844012462 S 1775443 442,200.62  559,955.05 &58,422,370.20
54,000,000.00
- 0000000 118 § 8422,370.20 ¢ 17,843.20 442,111.85  4959,955.05 &8,404,526.99
£2.000,000.00 119 & £,404,526.99 ¢ 17,932,427 %42,022.63  ©959,955.05 &§,386,594.50
$1,000,000.00 120 % 8,286,594,58 838659458 %41,932.97 08,428,527.55 &

S.

prin pmt ntpmt
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Figures 51a and 51b: Loan 1 in GG5 promised Profile

Loan # 1 Tatal Promised Payment Loan 1, GGS
OrigBal 17985284 |
Loan BalanceCurre 16979920
Coupon 6.052 | 000000
OrigTerm 132
AmTerm 360 12000000
Seasoning il
RemTerm 61 | 20000000
As0fDate 4112010
Orig Date 41202004 | E000000
Orig Period 1
6000000
PropType RT
Location, State MD
4000000
OrigL TV 55.34
CurLoanLifePeriod 72
2000000
OriglO Per 17
CurAmLifePeriod 55 S P
T T T =~ o e T B e B L I L T O O [
MasHististPmtPer 1 BRI R L L
5333333333533 335333533535353333333353333333533335333
Balloon 1 e R R e B B e e B S = e B e B e e A = S A e
RegamPmt $102,432.88
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Figure 52: All Promised Cashflows for GG5 from origination to maturity
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Figure 53: Allocation of CMBX Transaction for Model 3

Class/Tranche Class % Annual Coupon Original Balance
AAA 64.4% 5.68% $2,667,278,356

A 5.8% 6.44% $241,877,416
AM 9.8% 6.09% $407,546,879

AA 7.4% 5.88% $307,316,854

A 2.1% 5.98% $84,905,600

BBB 2.7% 6.45% $113,483,582
BBBminus 4.5% 7.04% $186,792,320
Other 3.2% 8.00% $132,535,570
Total/avg 100.0% 5.94% $4,141,736,573
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Figure 54a: Example Tranche Allocation of Principal
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Figure 54b: Principal Allocation from Trust to Bonds

init size 2 100,005 4405 554 3.84% 742 Z.05% 214 451 3.20
balance| 500,000,000 | 322,000,000 | 29200000 | 45,200,000 | 37,100,000 10,250,000 75,700,000 | 22550000 | 16,000,000
prt month Allk AAA k=) AlTk=2] AMIk=3] A k=4) A k=5 EEE (k=6 BEBmin (k=71 Dither k=)
Brizo0g - - = = . = = = =
THiz004 - - - - - - - - R
sriizo0d - - - - - - - - R
3riz004 - - - - - - - - -
101112004 - - - - - - - _ -
12004 - - - - - - - _ -
12Mi2004 - - - - - - - - -
1HI2005 - - - - - - - _ -
212005 - - - - - - - - R
3ti2005 - - - - - - - - R
4riz00s - - - - - - - _ -
SHiz005 496,533 436,539 - - - - - - -
612005 B34.735 634.738 - - - - - - -
72005 £39.102 699,102 - - - - - - -
3ri2005 4,993,225 4,993,225 - - - - - - -
32005 7.316.037 7.316.037 - - - - - - -
10MI2005 11,082,941 11,052,441 - - - - - - -
TIZ00S|  T1,522,236 11,822,236 - - - - - - -
122005 13,372.802 13,972,802 - - - - - - -
1I2006| 14,036,713 14,036,713 - - - - - - -
212008 4,100,915 4,100,915 - - - - - - -
312008 14,196,515 4,196,515 - - - - - - -
diz00E|  W.251.764 14,261, 764 - - - - - - -
Stiz006|  14,327.010 14,327,010 - - - - - - -
6MIZ00E| 14,332,557 14,392,557 - - - - - - -
THNZ008|  W.5Z1242 14,521,242 - - - - - - -
82006 14,598,338 4,598,938 - - - - - - -
IN2006|  M.EITTTT M.B9T.TTT - - - - - - -
10MIZ006| 14,750,713 14,780,715 - - - - - - -
THIZ006|  15,004.445 15,004,445 - - - - - - -
12Mi2008| 15,073,132 15,073,132 - - - - - - -
12007 15,142,137 15,142,137 - - - - - - -
2rizo07 15,211,461 15,211,461 - - - - - - -
3riz007 15,251,106 15,281,106 - - - - - - -
42007 15351073 15,351,073 - - - - - - -
SMi2007|  15.421363 15,421,363 - - - - - - -
Biz007| 15431378 15,491,375 - - - - - - -
THiz007| 15,583,657 443131 11,038,376 - - - - - -
sizo07| 15,763,643 - 15,763,649 - - - - - -
IN2007| 15,922,333 - 2,337,975 |  13.584.358 - - - - -
10MIZ007| 16,085,230 - - 16,085,230 - - - - -
TMiz007 16,245,311 - - 16,245,311 - - - - -
12MI2007| 16,445,715 - - 3,263,501 13,162,214 - - - -
HI2008|  16,520.939 - - - 18,520,333 - - - -
2riz008|  16.536.510 - - - 7416847 3,173,663 - - -
3tizo08| 16,753,003 - - - - 1,070,337 13,700,000 2,018,671 -
4Z008| 16,865,857 - - - - - - 16,865,857 -
212008 16,343,061 - - - - - - 3665472 13,277,589
B11i2005 2722411 - - - - - - - 2722411
TOTAL| 500,000,000 | 322,000,000 | 23,200,000 | 49,200,000 37.100,000 10,250,000 15,700,000 | 22550000 | 15,000,000
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Figure 55: Interest Allocation from Trust to Bonds

Coupon S 94 C.EE 6. e 6,09 5.8 e 645 7.0 2
imit size >0 100,002 B qi0s< 5.5d45< 9.5d5< T2 205 2T .51 F.20
balance| 500,000,000 [ 322,000,000 | 23,200,000 | 43,200,000 | 37.100,000 [ 10.250.000 | 13.700.000 | 22,550,000 | 16,000,000
pmt month All k Aulid [k=1) Adik=2] AMk=3] Ab k=41 A (k=5] BEE [k=E1| BEEmin [k=71| Other (k=51| manth match
EMZ004d4 - - - - - - - - -
THz004 - - - - - - - - -
aMizood - - - - - - - - -
SMz004 - - - - - - - - -
0Mz004 - - - - - - - - -
TMzZ004 - - - - - - - - -
122004 - - - - - - - - -
Mz005 - - - - - - - - -
2112005 - - - - - - - - -
3MNZ005 - - - - - - - - -
42005 = - - - - - - - -
SMIZ005| 2.475.936.67 | 1.524.133.33 | 156,706.67 | 243,630.00 | 151.730.00 5107317 | 7363750 | 132.233.33 | 106.666.67 2,475,937
EBMZ005| 247364468 | 152178134 | 156, 706.67 | 249,690.00 | 181,730.00 5107317 | T3.E37.50 | 132.293.33 | 106.666.67 2.473.645
THZ005) 247064025 | 1,518, 776.92 | 156, T06.67 | 243,6530.00 | 151,730.00 5107317 | T3.6537.50 132,293,335 | 10666667 2,470,640
SM1Z005| 246733117 | 1.515.467.83 | 156,706.67 | 243,630.00 | 151.730.00 5107317 | 7363750 | 132.233.33 | 106.666.67 2,467,331
MZ005| 244363657 | 1.491.833.23 | 156,706.67 | 249,690.00 | 181.730.00 5107317 | 7363750 | 132.293.33 | 106.666.67 2.443.697
0M2005] 2.4068,227.04 | 1.454,.363.71| 156, 70667 | 243,630.00 | 151,730.00 5107317 | T3.6537.50 132,293,335 | 10666667 2.408,227
NM2005] 235377015 | 140130652 | 156, 706.67 | 243.630.00 | 151.730.00 5107317 | T3.637.50 132,293,533 | 106.666.67 2,353,770
1212005 2.297.81.57 | 1.345,948.23 | 156.706.67 | 249.630.00 | 181.730.00 5107317 | 7363750 | 132.293.33 | 106.666.67 2.297.812
MNZ008| 223167364 | 1.273.810.30 | 15670667 | 243,630.00 | 151,730.00 5107317 | T3.6537.50 132,293,335 | 10666667 2,231,674
22006 2.165.235.20 | 1.213.369.86 | 156.706.67 | 243.630.00 | 151.730.00 5107317 | T3.637.50 132,293,533 | 106.666.67 2165235
3MZ006| 2.098.488.85 | 1.146.625.51| 156,706.67 | 249,690.00 | 181.730.00 5107317 | 7363750 | 132.293.33 | 106.666.67 2.035.483
4MZ006| 2.031.290.58 | 1.079.427.24 | 156, 706.67 | 249,690.00 | 181,730.00 5107317 | T3.E37.50 | 132.293.33 | 106.666.67 2.031.291
SMZ00G| 1,963, 7Ed. 30 1011321596 | 156, 706.67 | 243.630.00 | 151.730.00 5107317 | T3.637.50 132,293,533 | 106.666.67 1963, 785
Gi2006| 1.855.970.33 34410705 [ 156, 706.67 | 243,630.00 | 151.790.00 5107317 | 7363750 | 132.233.33 | 106.666.67 1.835.970
TIW2006| 1.827.845.62 g75,982.28 | 156,706.67 | 249.690.00 | 131,730.00 5107317 | T3.E37.50 | 132.293.33 | 106.666.67 1,827,846
SMz2008 1.753.111.74 S07.245.40 | 1SE.TOE.ET | 243.630.00 [ 151.730.00 51.073.17 | T3.6537.50 132,293,335 | 10666667 1753112
IM2006)  1.630.010.10 T35, 46,77 | 156.706.67 | 243,630.00 | 151.730.00 5107317 | 7363750 | 132.233.33 | 106.666.67 1.630.010
10MV2008[ 1.620.440.62 BEZ.57T.29 | 156, 706,67 | 249.690.00 | 131, 730.00 5107317 | T3.E37.50 | 132.293.33 | 106.666.67 1620441
TM2008| 1,550,475 56 595,615,253 | 156, 7OE.67 | 243,630.00 ( 151, 730.00 5107317 | T3.6537.50 132,293,335 | 10666667 1,550,479
122006 1.473.457.52 527.534.13 | 156.706.67 | 243,630.00 | 151.730.00 5107317 | 7363750 | 132.233.33 | 106.666.67 1479455
WW2007  1.408.111.36 456,248.03 | 156,706.67 | 249.650.00 | 131,730.00 5107317 | 7363750 | 132.293.33 | 106.666.67 1.408.111
22007 1,336,4355.58 35d4.575.25 | 156, TOE.EV | 2439,690.00 ( 181, 730.00 5107317 | T3.6537.50 132,293,335 | 10666667 1,336,439
SMWZ007| 1,264 437.66 312.574.33 | 196.7O06.67 | 243.630.00 ( 151.730.00 5107317 | T3.637.50 132,293,533 | 106.666.67 1.264. 435
412007 1.192.107.03 240,243.76 | 156.706.67 | 249.650.00 | 131,730.00 5107317 | 7363750 | 132.293.33 | 106.666.67 1132107
SM2007  1.119.445.35 167.582.02 | 156, 70667 | 249,690.00 ( 181, 730.00 5107317 | 73.637.50 132,293.33 | 10666667 1,119,445
GMZ007| 1.045.450.30 94.557.57 | 196.706.67 | 243.630.00 ( 151.730.00 5107317 | T3.637.50 132,293,533 | 106.666.67 1.046.451
THIZ007 37312221 21.258.87 | 156.706.67 | 249.650.00 [ 151,730.00 5107317 | 7363750 | 132.293.33 | 106.666.67 373122
2MZ007)  892.302.05 - 97,145,358 | 243,690.00 ( 151.730.00 5107317 | T3.E37.50 | 132.293.33 | 106.666.67 892,302
SMz007 807, 705.50 - 12594713 | 243.630.00 | 151.730.00 5107317 | T3.637.50 132,293,533 | 106.666.67 07, 70d
1012007 T26.213.00 - - 180.746.34 | 151, 730.00 5107317 | 7363750 | 132.233.33 | 106.666.67 T26.213
TMNZ007|  E44.580.45 - - 9.113.79 | 191, 730.00 5107317 | T3.E37.50 | 132.293.33 | 106.666.67 E44.520
1212007 SE2.150.435 - - 16.663.77 | 181.730.00 51.073.17 | T3.6537.50 132,293,335 | 10666667 S62.130
Mz00s 450.371.52 - - - M7.235.15 5107317 | 7363750 | 132.233.33 | 106.666.67 450,972
2Miz002 400.013.22 - - - 36,342.55 5107317 | 7363750 | 132,.293.33 | 106.666.67 400,019
IMz008 31795135 - - - - 5,3533.85 | T3.B37.50 132,293,335 | 10666667 jcalr-icy|
4M1Z008 2271713 - - - - - - 120.450.46 | 106.666.67 22717
SMIZ008 12817077 - - - - - - 21.504.10 | 106, 6BE.67 128.171
EMZ005 15,149.40 - - - - - - - 15,1459.40 15,149
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Figure 56: Price comparison of AAA fair value across models

AAA Price Comparisons across models (no stats) vs, actual (11/2007 to 12,/2010, daily)
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Figure 57: Price comparison of BBB- fair value across models
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Figure 58: Probability of Default comparisons by property type

MARTFAMBY Pdef Comparisons

BLTAR Pdef Compaisons

OTMER Pdef Comparisans

-69C-



Figure 59: Expected Losses under Ruthless Default Simulation
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Figure 60: Final Generalized (Model 3) Fair Value
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Figure 61: Theta Comparison of Model 3 by Tranches

Model3 Theta, Ultimate JFE, 11/2007 - 12/2010, daily

Modeld Theta (comp vs. AAA), Ultimate JFE, 11/2007 - 12/2010, daily

Modeld Theta (comp ve. AA), Ulimate JFE, 11/2007 - 1212010, daily

0 00 400 600 &00

0 200 400 600

e

g g .
g g Y. - P s T = L
£ T ~_§;‘,‘¢f‘ ok g R __Q_ﬁ,-.,“v__d_,,«-:.,.,w-rxh',',« S .
T 3 g a- "
i
7 A & -
g =
' T T T T T T T T 2
0 200 400 600 800 0 00 am 600 o ! T r
aph 600 a0t
time brne
bme
Model3 Theta (comp vs. A), Ultimate JFE, 11/2007 - 1212010, daily Madel) Theta (Comp vs BBE), Ultimate JFE, 11/2007 - 1212010, daily Model3 Theta (omp vs BBBminus), Uimate JFE, 1412007 - 12/2010, daily
g i i
i -
W “.‘.w |1u U
Wl 1LY
- . ' M |
i Al g e a A g S B
£ A ok A v - £ . ™ v e R . .
‘: - \;-")\ M ‘\“ib\"w'\\"“‘” __' B v‘._r""\‘f\"‘—%*’ "“"\J«“w '\NM“"’\ j;) ) ﬁ I
g 2 f " ps | H [
£ H Lo \ 4 |
£ WY li £
# b 2
= o =
g g

o0 400 600 00

[

-89C-



Figure 62: Historical Volatility REITs vs. NCREIF (7/1/2006 to 1/1/2014)

REIT Vol vs. NCREIF Vol (All properties, daily 6/200610 10/2013)
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Figure 63: Volatilities for Simulated Values in the Correlated Economy
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Figure 64a: Correlation to VarCovar (partial, 27 x 10 (of 27), 1 day snapshot)
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Figure 64b: VarCovar Matrix, , based on Correlations and Standard Devs (partial, 27 x 10 (of 27), 1 day snapshot)
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Figure 64c: Matrix C, the Cholesky Decomposition of Matrix , X, (partial, 27 x 10 (of 27), 1 day snapshot)
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Figure 65: Time Snapshots of All REITs vs. All NCREIF over 3 historical dates
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Figure 66: Loan State Transitions

Trangition tothe
mame ot Better State

Tranzition to a
Worze State

Cuarrent (0 days delinquent)
Delinquent (30-59 days)
Delinquent (60—89 days)
Delinquent (904 days)

Q9%
62 %
365
61%

1%
38%
645
39%

Motes: This table gives the monthly transition frequencies of moving from the present
state (column 1) to the same orbetter state (column 2) versus a worse state (column 3,
for all cornmercial mottgage loans over the time period Tune 1988 to June 2004,
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Figure 67: Commercial loans in database from June 1998 to June 2004 (from JCY 2008)

Non-CTLs CTLs

Fixed Floating Fixed Floating
Prepaid 8989 2960 102 4
Default 2153 130 56 1
Total 94011 7198 1358 10

Notes: The loans are partitioned into those that are credit tenant leases (CTLs), fixed- ver-
sus floating-rate, prepaid and defaulted. There are atotal of 102,577 loans in the sample.
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Figure 68: Intensity process parameter estimates based on monthly observations (June 1998 to May 2005, Jarrow, etal 2008)

FixedRate - Current FixedRate - Dig FixedRate - Def
Intercept 2,3819350 0.152430 -8,381930 0.158430 -10.963945 0.62173
hift) -0.000370 0.001160 0.000370 0.001160 0.001z20 0.00361
F1 1.574940 0.033860 -1.574940 0.039860 0.61829 0.12335
P2 -0.948430 0.033080 0.9428430 0.033080 -0.31815 0.13029
F3 0.943300 0.024580 -0.943300 0.0245580 -0.05465 0.07467
P4 1.318660 0.033980 -1.218660 0.033980 0.93022 0.10274
P35 -1.396210 0.023570 1.396210 0.029570 -1.84097 0.14846
R1 -3, 704560 0.073460 2.704560 0.073460 0.38011 0.21273
R2 -3,034860 0.080140 3,034860 0.080140 0.57580 0.21331
R3 -3,3086350 0.080930 3,308630 0.080930 0.27483 0.21869
R4 -2,619160 0.020430 2,619160 0.080430 0.10622 0.21273
RS -2,289500 0.082310 2,289500 0.082310 -0,29227 0.21897
RE -3.809760 0.078550 3.809760 0.078550 0.41256 0.21108
R7 -3.1440390 0.073140 3.144030 0.073140 0.72144 0.21030
R& -3, 767120 0.073520 3767120 0.073520 0.69113 0.22325
age 0,4559310 0.031540 -0,4559310 0.031540 3.24458 0.114591
dgstares [ A A N 538973 0.05648
foreindex -7.715300 0.755930 7715300 0.735930 1.73865 -6.5444%
noi 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000
Fen 0.000360 0.000010 -0.000360 0.000010 0.00109 0.00006
origloankbal 0.338350 0.00&220 -0.3383350 0.00&220 0.03524 0.02220
Hi(t) -0.004550 0.000230 0.004550 0.000230 -0.00954 0.00107
dscr 0.005910 0.003080 -0.005910 0.003080 -0.42866 0.06687
[t -0.019760 0.000440 0.019760 0.000440 0.01134 0.00123
spot 06632370 0.011200 -0.663370 0.011200 0.2194% 0.0401%
HIt) -0.0059340 0.000510 0.009340 0.000510 -0.00924 0.00194
ft, 100-r(t) 0.2729350 0.014420 -0.272330 0.014420 0.32873 0.05438
wac -0.384940 0.002370 0.354240 0.008370 0.11201 0.03162
coupon_spread -0,4559250 0.010747 0,4559250 0.010747 -0.05213 0.03074
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Figure 69: Reduced Form Fair Value across classes and Composite view
Fair Value Form (Al Ad & AM) 1172007 - 1202010 - daily
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Figure 70: Reduced Form Theta across different classes and Composite view
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Figure 71: Merton Pdefs for REITs (6/2007 — 3/2014)

Merton pdef
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00

Merton REIT Pdefs all 6 PTypes (8/2006 to 3/2014, daily)
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Figure 72: CMBX 6 Capital Structure

Class S5ize % of Deal Subordination Coupon
AAA S 9,244,254,655.33  £9.50% 30.50%  2.50%

AS % 1,064,086,866.80  2.00% 22,50%  3.00%

A6 % 798,065,150.10 6.00% 16.50%  3.50%

A % 532,043,432.40 4.00% 12,50%  4.00%
BRBminUs & 665,054,291.75  5.00% 7.50%  5.00%
BE & 266,02L,71670  2.00% 5.50%  7.00%

UR & 731,559,720.93  5.50% 0.00% M

Total 913,301,085,835.00  100.00% |G
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Figure 73: Model 1 Merton Plot Composite

Composite Prices (panel A) and Composite Theta (panel b), Pure Merton JFE Series 6 Sample (1/28/2013 — 3/7/2014, daily)
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Figure 74: Model 1 — Merton Plots Individual Thetas v. Composite
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Figure 75 — Model 2 Composite Theta

Composite Prices (panel A) and Composite Theta (panel b), NO CFlow JFE Series 6 Sample (1/28/2013 — 3/7/2014, daily)

Composile Mkt Px vs, Composite Fair Value Px
(noCFlow |, Series 6 Sample, 1/28/2013 - 3/7/2014, daily)

Composite Theta
{nocr, Series 6 Sample, 1/28/2013 - 3/7/2014, daily)
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Figure 76 — Model 2 Tranchewise Theta

Composite Prices (panel A) and Composite Theta (panel b), NO CFlow JFE Series 6 Sample (1/28/2013 — 3/7/2014, daily)
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Figure 77 — Model 3 Composite Theta

Composite Prices (panel A) and Composite Theta (panel b), W/CFlow JFE Series 6 Sample (1/28/2013 — 3/7/2014, daily)

Composite Mkt Px vs. Composite Fair Value Px
(w/CF, Series 6 Sample, 1/28/2013 - 3/7/2014, daily)

Composite Theta
{w/cF, Series 6 Sample, 1/28/2013 - 3/7/2014, daily)
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Figure 78 — Model 3 Tranchewise Theta

Composite Prices (panel A) and Composite Theta (panel b), W/CFlow JFE Series 6 Sample (1/28/2013 — 3/7/2014, daily)
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Figure 79 — Model 4 Composite Theta

Composite Prices (panel A) and Composite Theta (panel b), Reduced Form Series 6 Sample (1/28/2013 — 3/7/2014, daily)

Composite Mkt Px vs. Composite Fair Value Px
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Figure 80 Model 4 Tranchewise Theta

Composite Prices (panel A) and Composite Theta (panel b), Reduced Form Series 6 Sample (1/28/2013 — 3/7/2014, daily)
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Figure 81: Composite Thetas, All Models

MODEL 1 MODEL 2
Composite Theta Composite Theta
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MODEL 3 MODEL 4
Composite Theta Composite Theta
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Figure 82: Efficiency OLS and Quantile Regression Results - Crisis

Crisis
OLS Quantile
Model R-SQ p-val R-SQ p-val
Model 2 68 0.000 0.38 0.000
Model 3 47 0.000 0.24 0.000
Model 1 26 0.000 0.12 0.000
Model 4 .18 0.000 0.06 0.000

Figure 83: Efficiency OLS and Quantile Regression Results -Recovery

Recovery
OLS Quantile
Model R-SQ p-value R-SQ p-value
Model 3 0.310 0.000 0.195 0.000
Model 4 0.271 0.000 0.168 0.000
Model 1 0.027 0.006 0.024 0.003
Model 2 0.003 0.344 0.017 0.000
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Figure 84: Monthly and Quarterly lognormal horizon return across models (Crisis)
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Figure 85: Monthly and Quarterly lognormal horizon return across models (Recovery)
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Figure 86: Cumulative monthly returns from Theta strategies vs. long only
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Figure 87: Cumulative quarterly returns from Theta strategies vs. long only
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Figure 88: Cumulative daily returns from Theta strategies vs. long only
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Figure 89: Log daily returns from Theta strategies and long only (w/’Perfect’ port)
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Figure 90: Frequency and Marginal Returns

Frequency of Gain Strategies (Return >0)

Panel A: Crisis (11/2007 — 6/2010) —
Model 1

Model 2 Model 3 Model 4 LongOnlyCMP N
Daily 351 (54.8%) 285 (44.5%) 340 (53.1%) 350 (54.7%) 322 (50.3%) 640
Monthly 21 (70.0%) 13 (43.3%) 20 (66.7%) 19 (63.3%) 16 (53.3%) 30
Panel B: Recovery (1/2013 — 3/2014) — Frequency of Gain Strategies (Return >0)
Model 1 Model 2 Model 3 Model 4 LongOnlyCMP [ N
Daily 147 (53.1%) 140 (50.4%) 143 (51.6%) 158 (57.0%) 151 (54.5%) 277
Monthly 11 (84.6%) 6 (46.2%) 6 (46.2%) 7 (53.9%) 7 (53.9%) 13
Panel C: Crisis (11/2007 — 6/2010) — Averages and Maximums for Gain Strategies (Return >0)
Daily Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N
Average 1.2% 1.7% 1.3% 1.7% 0.8% 640
Maximum 10.5% 19.3% 12.2% 11.2% 9.8% 640
Monthly Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N
Average 13.2% 8.1% 14.4% 20.5% 6.1% 30
Maximum 51.4% 14.7% 69.7% 67.7% 9.9% 30
Panel D: Recovery (1/2013 — 3/2014) - Averages and Maximums for Gain Strategies (Return > 0)
Daily Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N
Average 0.3% 0.4% 0.3% 0.3% 0.1% 277
Maximum 3.1% 1.6% 1.9% 1.2% 1.0% 277
Monthly Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N
Average 1.2% 2.5% 2.5% 2.3% 1.1% 13
Maximum 2.5% 4.8% 7.3% 4.8% 1.5% 13
Panel E: Product Ranking Frequency (Frequency * Average Return)
Model 1 Model 2 Model 3 Model 4 LongOnlyCMP [ N
Daily 0.68% 0.77% 0.68% 0.92% 0.39% 640
Monthly 9.20% 3.50% 9.62% 13.00% 3.26% 30
Model 1 Model 2 Model 3 Model 4 LongOnlyCMP [ N
Daﬂy 0.65% 1.27% 1.29% 1.30% 0.59% 277
Monthly 1.03% 1.16% 1.15% 1.22% 0.58% 13
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Figure 91: Paired t-test and Paired Wilcoxon Sign tests

PANEL A: Paired t-test : HO: mean (port-CiMBXlong)=0

port Ha: mean(diff1 <0 Ha: mean(diffi!=0 Ha: mean(diffi=0
perfect 1.0000 0.0000 0.0000
ool 0.9576 0.0847 0.0424
roo 2 0.1547 0.3093 0.8453
rmod3 0,9092 01817 0.0%08
modd 0.9436 0.1128 0.0564
cvexion [
FFRAKE 0.4730 0.9460 0.3270

PANEL C: Wilcoxon Sign Paired test : HO: med {port-CMBXlong)=0

port Ha: med(diff1=0 Ha: med(diffl=0

perfect 0.0000 1.0000
rool 0.2637 0.7614
rmod?2 0,9974 0.0028
rmod3 0.2902 0.7363
rmodd 01522 0.8656
cvexionz [
FFRAKE 0.1924 0.8284

PANEL B: Paired t-test : HO: mean {port-FFkt)=0

port Ha: mean(diffl1 =0 Ha: meanidiffl =0 Ha mean(diff]=0
perfect 1.0000 0.0000 0.0000
ool 09121 0.1737 0.0873
roo 2 0.1848 0.3996 0.8152
rmod3 0.87a4 0,2431 0,1216
modd 0.9102 0.1796 0.0893
CMBX long 0.5270 0.94e0 0.4730

PRkt |

PANEL D: Wilcoxon Sign Paired test: HO: med (port-FFiAkt)=0

port Ha: med(diffi=0 Ha: med(diffi<0

perfect 0.0000 1.0000
rool 0.0667 0.9430
rmod?2 0,9964 0,0045
rmod3 0.2386 0.7352
rmodd 01924 0.8284
ChBX long 0.8284 0.1924

PRIkt —
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Figure 92: ICAPM Regressions (Crisis, daily)

PANEL A: REE 2008 Efficiency Regression for Omitted Risk Premia, (11/2007 - 6/2010, daily)

MODEL 1 intercept REZ-spoi  RT-spoi  Iyr-spot 2yr-spotl Syr-spot Fyr-spot I0vr-spot ME-RE SMB HML M F-test adirR2
coef .00z -0.082 0.026 -0.782 1.458 -1.40% 1.838 -0.244 -0.254 -0.019 -0.228 642 2605 0.039
serr 0.001 0.075 0.084 1.653 2.294 1.569 1.128 0.658 0.107 0.157 0.148 0.000

t-stat 1.6l -0.240 1.01%5 -0.473 0.636 -0.896 1.629 -l.282 -2.747 -0.119 -1.523

p-val 0.097 0.401 0.310 0.636 0.525 0.371 0.104 0.200 0.006 0.905 0.126

MODEL 2

coef -0.001 0.084 -0.067 -1.338 3.728 -2.236 -1.337 1.457 0.042 0.027 -0.023 642 1.283 0.004
serr 0.o01 0.080 0.090 1.765 2.450 1675 1.205 0.703 0.114 0.1e8 0.158 0.236

t-stat -0.487 1.050 -0.741 -0.732 1.522 -1.335 -1.153 2.072 0.370 0.163 -0.148

p-val 0.626 0,254 0,459 0,428 0.129 0,182 0,247 0.039 0,712 0,870 0.883

MODEL 3

coef 0.001 -0.024 0.066 0,142 -0.700 -0.419 1.623 -0.899 -0.263 0.083 -0.135 642 1.877 0.013
serr 0.o01 0.07a 0.029 1,724 2,407 Lede 1.124 0.e31 0,112 0.1e5 0.155 0.045

t-stat 0.240 -0.300 0.746 0,082 -0.291 -0.255 1.370 -1.302 -2.339 0.505 -0.869

p-val 0.401 0.764 0.456 0,935 0.771 0.7339 0171 0.134 0.020 0.614 0.385

MOOEL 4

coef 0.o01 -0.128 0.214 -0.673 -0.1239 0.11%5 1.668 -1.350 -0.547 -0.041 -0.070 642 4,339 0.050
serr 0.002 0.086 0.087 1.834 2.628 1.737 1.293 0.754 0.123 0.130 0.169 0.000

t-stat 0.963 -1.493 2,217 -0,356 -0.049 0,064 1,290 -1.790 -4.455 -0,225 -0.412

p-val 0.226 0.136 0.027 0.722 0.9e1 0.9439 0,198 0.074 0.000 0.822 0.e21

PERFECT

coef 0.029 o.o0s7 -0.047 -1.716 4,772 -L.7ed 1.021 -0.558 -0.186 -0.114 -0.048 642 2,515 0.022
serr 0.001 0.082 0.093 1.815 2.520 1.723 1.239 0.723 0.118 0.173 0.162 0.006

t-stat 15.428 1056 -0.511 -0.9435 1.824 -1.024 0.e23 -0.771 -L.573 -0.6539 -0.296

p-val 0.000 0.291 0.609 0.345 0.059 0.306 0.411 0.441 0.115 0.510 0.768

PANEL B: FamaFrench 3Factor Regression, (11,2007 - 6/2010, daily)

MODEL D intercept  Mki-AF SMEB HML N Ftest  gdif2
coef .00z -0.239 -0.010 -0.201 642 10.262 0.042
serr 0.001 0.066 0.145 0.138 0.000

t-stat 1.622 -2.609 -0.0e2 -1.453

p-val 0.105 0.000 0.946 0.147

MODEL 2

coef -0.001 0.047 0.0339 -0.0239 642 0.176 -0.004
serr 0.001 0,071 0,156 0,148 0,912

t-stat -0.247 0,664 0.247 -0.198

p-val 0,397 0.507 0,805 0,843

MODEL 3

coef 0.002 -0.191 0.117 -0.095 642 5.189 0.019
serr 0.o01 0.0e39 0.152 0,145 0.002

t-stat 1.315 -2.754 0.765 -0.659

p-val 0.1839 0.006 0.444 0.510

MODEL 4

coef 0.002 -0.374 0,008 0,032 542 11,257 0.050
serr 0.o01 0.07e 0.1e7 0,159 0.000

t-stat 1.528 -4.908 0.045 0.203

p-val 0.127 0.000 0.964 0.240

PERFECT

coef 0.02e -0.151 -0.045 -0.051 642 2,434 0.007
serr 0.001 0.073 0161 0.153 0.059

t-stat 21.475 -2.054 -0.273 -0.332

p-val 0.000 0.040 0.781 0.740
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Figure 92: ICAPM Regression (Cirisis, daily - continued)

PAMEL C: My Sparse Regression for Omitted Risk Premia, (11,2007 - 6/2010, daily)

MODEL T fntercept REZ-gspot  RT-spot I0vr-spot  Mki-Rf N F-test adir2
coef 0.002 -0.071 0.071 0.022 -0.330 642 7.407 0.03s
serr 0.001 0.072 o.0s0 0.154 0.102 0.000

t-stat 1576 -0.954 0.285 0.145 -3.126

p-val 0,115 0.321 0.377 0.885 0.002

MODEL 2

coef -0.001 0.063 -0.051 -0.28¢8 0.035 642 1121 0.001
serr 0.001 0.077 0.02e 0.165 0.110 0,245

t-stat -1.197 0.881 -0.597 -1.735 0.316

p-val 0.232 0.379 0.551 0.083 0.752

MODEL 2

coef 0.002 -0.010 0.04e 0.000 -0.285 642 3,773 0.017
SErr 0.001 0.073 n.0e4 016l 0.107 0.003

t-stat 1.342 -0.138 0.544 -0.002 -2.662

p-val 0.180 0.831 0.587 0.998 0.008

MODEL 4

coef 0.002 -0.134 0.209 -0.072 -0.553 642 9.833 0.052
serr 0.001 0.082 0.091 0,176 0.117 0.000

t-stat 1.538 -1.634 2.284 -0.408& -4.732

p-val 0,125 0.105 0.023 0,685 0.000

PERFECT

coef 0.026 0.042 0.000 0,112 -0.220 642 2,113 0.007
serr 0.001 0.080 0.083 0.170 0.113 0.073

t-stat 21078 0.527 -0.002 0.656 -1.943

p-val 0.000 0.593 0.99g2 0512 0.052

PANEL D: Theta vs. the FF 1Factor Market Portfolio, {11/2007 - 6/2010, daily)

MODELT [ntercept  Mkt-Rf N Ftest  adiRz2
coef 0.002 -0.293 642 28,655 0.041
SErr 0.001 0.055 0.000

t-stat 1.577 -5.353

p-val 0.115 0.000

MODEL 2

coef -0.001 0.033 642 0,434 -0.001
serr 0.001 0.059 0.510

t-stat -0.847 0.653

p-val 0.397 0.510

MODEL 3

coef 0.002 -0.219 642 14606 0.021
serr 0.001 0.057 0.000

t-stat 1325 -3.822

p-val 0126 0.000

MODEL 4

coef 0.002 -0.365 642 33.830 0.049
serr 0.001 0.063 0.000

t-stat 1539 -5.816

p-val 0124 0.000

PERFECT

coef 0.026 -0.164 642 7.303 0.010
serr 0.001 0.0el 0.007

t-stat 21,509 -2.704

p-val 0.000 0.007
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Figure 93 - Correlation

correlate housertrn reitrtrn oneyr twmoyry fiveyr sewyr tenyr FEmkitrf FFsmb FFhml
[oh=s=542)
houser~n reitrtrn oneyr tWoyE fiwveyr SEeWyE tenyr FFmktrf FF=zuh FFhml
housertrn 1. 0000
reitrtrn o_9%110 1. 0000
Oneyyr 0_0435 0.0592 1.0000
WO 0_0085 0. 0464 0. 8996 1.0000
fiveyr -0.0163 0.0125 05781 0.8319 1.0000
vy -0.0315 -0.0026 04721 0.7324 0.9683 1.0000
tenyyr -0.0337 -0.0061 0.404%8 0. 6555 0.92717 0.9673 1_0000
FFuktr £ 0.7341 0. 8412 0.0134 -0.0072 -0_0206 -0.0240 -0D.01%9 1.0000
FF=mh 0_2031 01261 0.0003 0.0458 0.0809 0.0815 0_0824 -0.0471 1.0000
FFhml 0_5409 06185 -0_.024% -0_0124 0.007% 0.0075 00211 05617 0. 0035 1.0000

Figure 94: Ramsey RESET

. ovrtest

Ho: mwmodel has no omitted wariahles
Fi3, &z8) = 0_47
Prob = F = 0_7058

Bam=ey BESET test using powers of the fitted walues of wdlrtrn
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Figure 95: VIF test of Multicollinearity among variables

. ik

Wariahle VIF 1/VIF
fiveyr 43 99 0.022735
Seyyr 37.01 0. 02r021
Loy 30_47 0.032g22
tenyr 18_40 0.054353
OREYY 1175 0. 085128
reitrtrn 10_ &0 0D.09%94361
housertrn 6_bh8 0_152071
FFuktrf 3.82 0.261575
FFhml 1.67 0.599424
FF=uh 1.17 0. 852670

Mean VIF 16_54

Figure 96: Condition Index among variables

. colldiagi()
Proportion of wariance associated
Cond |
Mumber |housertrn reitrtrn
1| 0o._0000 0. 0000 [}
117172 | 0._0130 0.0089 [}
1.881%89 | 0o._0000 0. 0000 [}
2.07126 | D0.0036 0.0001 ]
286141 | 0.0166 0.0064 ]
3.1133 | 0.0018 0.0004 ]
4.34017 | 0._2367 00098 1]
T.98225 | D_4886 06692 1]
¥ 88612 | D_1836 0.2683 1]
203212 | 0.0454 0.0305 1]
15_12%6 | 0.0106 00063 1]
Cond |
Munber | FFmktrf FFsub
_________ o e
i | O0.0000 0.0002 ]
117172 | 0.0210 0.0012 ]
1_881%% | 00005 0.1258 1]
2.07126 | O0.0077 0.6285 1]
2. 86141 | 00345 0.0304 1]
3.1133 | 0.0122 00036 1]
4._34017 | 0.6332 0._z2041 1]
T.98225 | 0.1%64 00007 1]
& 88612 | 0_0956 0. 0004 1]
20_3212 | 00021 00029 [}
15_12%86 | 0._0005 0.0024 [}

with the decomposition

ONETE TWOFE fiwveyr
onzo 0.0011 o_0010
oo 0. 0000 o_0000
05 o.o0007 o_ooo7
0014 0.0001 00002
0015 0.0004 00000
0308 0.0074 00000
LILITITY o._0002 o_ooo1
0685 0.0182 00128
1569 0.039% 0_081%
5255 0.7584 0_§846
2053 0.1736 o_0187
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Figure 97: White test for heteroskedasticity in the error term

egtat imtest, white

White's test for Ho: homoskedasticity

against Ha: uwnrestricted heteroskedasticity

chilZ (65)
Prob = chiZ

137.66
0. 0000

Cameron & Triwvedi's decomposition of IM-test

Source chiZ df B
Heteroskedasticity 137. 66 65 0. 0000
Skewmess 2.74 10 0_4634
Furtosis T.88 1 00050
Total 155. 2% 16 0. 0000

Figure 98: Durbin Watson

dvstat

Durbin-Wat=son d-statistic( 11, 6d2) = 1_h535462
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Figure 99: Condition Index for the Credit Regression

colldiag
Proportion of wariance associated with the decomposition
Cornd |
Number |housertrn reitrtrn tenyr FFuktrf _rcons
_________ o
1| 0.020% 0.0111 0. 0000 0.0333 0. 0006
6._32882 | 0_7588 097171 0._005% 0.3245 0. 0005
312459 | 0_2206 00087 0_000% 0. 6410 0. 0072
1.47564 | 0._0000 0. 0000 0_3880 0.0003 0.3339
185141 | 0_0000 00001 0_6053 0.0009 0_&079

Figure 100: Ramsey RESET for Credit Regression

ortest

Ramsey RESET test using powers of the fitted walues of mdlrtrn

Ho: model has no omitted wariables
Fiz, &324) = 0.17
Prob = F = 0.919%4

Figure 101: White Test for Credit Regression

estat imtest, white

Thite's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chiZ (14} = 17, &6
Prob = chiz = 02123

Cameron & Triwvedi's decomposition of IM-test

Source chiz df B
Heteroskedasticity 17. &6 14 0.2133
Skevmess 5.26 4 02617
Furtosis T.61 1 0_0058
Total I 2 19 0.0433
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Figure 102: Durbin Watson test for autocorrelation

. du=tat

Durbin-WMat=son d-statistic| 5, 642 = 1.535353

Figure 103: BreuschGodfrey test of AR(1) and AR(2)

- estat bgodfrey, lags(1l,2)

Breusch-Godfrey LM test for autocorrelation

lagsip) chiz df Prob » chiZ
1 24.793 1 0. 0000
=4 35.592 z 0. 0000

HO: no serial correlation
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Figure 104: Panel C and D: Recovery

PANEL C: My Sparse

Regression for Omitted Risk Premia, (172013 - 3/2014, daily)

MODELI [ntercept MK:-RF 10yrspt RETsf  REZrf N Ftest  adjR2
coef 0.o00 -0.033 -0.186 0.027 -0.023 277 L&74 0.010
SErr 0.o00 0.046 0.085 0.024 0.033 0.156

t-stat 0.462 -0.718 -2.195 0.604 -0.878

p-val 0.64% 0.474 0.029 0.422 0.381

MODEL 2

coef o.ooo 0.053 0.007 0.090 -0.014 277 2,150 0.030
serr o.ooo 0.028 0070 0.oz2g 0.028 0.015

t-stat -0.281 1.407 0.100 2,248 -0.508

p-val 0.779 0.160 0.920 0.001 0.614

MODEL 3

coef 0.o00 -0.054 0.038 -0.132 -0.030 277 5.008 0.055
serr 0.o00 0.043 0.079 0.031 0.031 0.001

t-stat 0.638 -1.260 0.476 -4,192 -0.370

p-val 0.524 0.209 0.634 0.000 0.333

MODEL 4

coef 0.o00 0.010 0.024 0023 -0.023 277 0.644 -0.005
SErr 0.o00 0.087 0.068 0.027 0.027 0.632

t-stat 0.543 0.271 0.34a 1075 -1.074

p-val 0.584 0.786 0.728 0.283 0.284

PERFECT

coef 0.006 -0.017 -0.077 0.004 0.041 277 0.764 -0.003
sErr o.ooo 0.043 0.073 0031 0.031 0.543

t-stat 19.21%2 -0.410 -0.972 0.127 1.327

p-val 0.000 0.882 0.332 0.eal 0.186

PANEL D: Theta vs. the FF 1Factor Market Portfolio, (1/2013 - 3/2014, daily)

MODELT [ntercept  pict-Rf N Fetest  adiR2
coef 0.o00 -0.042 277 0.846 -0.00056
sErr 0000 0.045 0,353

t-stat 0.647 -0.920

p-val 0.518 0.258

MODEL 2

coef 0.o00 0.043 277 1658 0.00237%
SErr 0.o00 0.038 0,133

t-stat -0.215 1.288

p-val 0.830 0.193

MODEL 3

coef o.ooo -0.051 277 1333 0.0012
serr o.ooo 0.044 0.243

t-stat 0.526 -1.154

p-val 0.593 0.243

MODEL 4

coef 0.o00 0.007 277 0.041 0.000149
SErr 0.o00 0.037 0.840

t-stat 0.564 0.203

p-val 0.573 0.840

PERFECT

coef 0.00e -0.017 277 0,156 -0.0030e
serr 0.o00 0.042 0,893

t-stat 19.432 -0.385

p-val 0.000 0.6593
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Figure 105: Initial NCREIF OLS Regression

. regress ActualNCREIFRollingReturnsY XlUnemployment X2CaseShiller X3CreditSlope X4MortgageBRate X5RiskFreeSlope X6CREChargeoffRate XTPrivated]
REConstruction
Source 58 df Ms HNumber of obs = 20
Fi 7, 2z = 2078
Model _616142563 7 088020366 Prob = F = 0.0000
Residual .079509099 82 .000969623 B-squared = 0.8857
Adj B-seuared = 08759
Total .695651662 29  .007816311 Root MEE = .03114
fotualNCEEIFRollingRet~T Coef. gtd. Err. t D=t [9E% Conf. Interval
KlUnewployment .1210283 . 102552 017 0864 -1.276571 1.518628
HZCaseBhiller _5872378 _0836527 7.02 0_o00 .4208259 - 1536498
H3CreditElope -. 0683469 . 0099054 -6.90 0. 000 -. 0880519 -. 048642
HdMortgageRate - 0193576 _002é2 -1.62 0_000 - 0251696 - 0147456
HERiskFreeSlope -.0229351 -0035865 -6.39 0_o00 -_ 0300697 - 0158004
KECREChargeofflate -. 0105854 .0109283% -0.97 0.336 -.0323265 .0111557
TPrivateCREConstruction -1223219 .0530472 231 0.024 S0167941 .2278497
_cons .248462 .0480129% 5.17 0. 000 .152949 .343975
. estat dwatson
Purbin-Watson d-statistici &, 00 = .TI61072
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Figure 106: Summary Statistics for solo regressions each of 7 x-variables & associated autocorrelation tests for synthetic NCREIF

x-variable Coeff StdError t-stat pval IE Prb>F | RSQ. Dwtsn daltX2 bgX2 arch

X1 Unemployment -4.630307 0.4048245 | -11.44 | 0.000 | 130.82 | 0.000 | 0.5978 | .139699 740.454 | 80.537 | 71.063
X2 CaseShiller 0.9076193 | 0. 0822733 | 11.03 | 0.000 | 121.70 | 0.000 | 0.5804 | .1400557 | 561.166 | 77.920 | 57.820
X3 CreditSlope -0.1293126 | 0.0176354 | -7.33 0.000 | 53.77 0.000 | 0.3793 | .2563417 | 268.912 | 68.000 | 51.575
X4 MortgageRate -0.0072094 | 0.0059769 | -1.21 0.231 | 1.45 0.231 | 0.0163 | .0983784 | 820.009 | 81.367 | 69.177
X5 RiskFreeSlope -0.0389995 | 0.0050204 | -7.77 0.000 | 60.34 0.000 | 0.4068 | .2090902 | 375.331 | 73.064 | 54.970
X6 CREChgOffRate -0.0850968 | 0.0066281 | -12.84 | 0.000 | 164.83 | 0.000 | 0.6519 | .2365583 | 301.704 | 69.856 | 60.757
X7 PrivateCREConstr -0.3386575 | 0.1023531 | -3.31 0.001 | 10.95 0.014 | 0.1106 | .1112442 | 758.625 | 80.741 | 59.401
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Figure 107: Sample of solo regression for X7 Private CRE Construction & associated autocorrelation tests

. regress Rctuwal NCRETFREollingBetuwrns¥ X7PrivateCREConstruction

Source =3 df ot Number of obs = 0

Fi 1, 88) = 10.95

Model 076967279 1 _076967279 Prob = F = 0.0011

Pesidual .618684384 88 _ 007030504 P-scuared = 0.110&

Adj B-scuared = 0_1005

Total -695651662 89 _ 007816311 Root MSE = _08385
ActualNCREIFRollingRet~T Caosf. Std. Err. *t D=t [9E5% Conf. Interwall
HPPrivateCREConstruction —.3386575 -1023531 -3.31 o.o001 -.5420627 —-.1352523
_cons -2101974 0424434 4.95 o_o000 1258501 - 2945447

. estat dwvatson

Durbin-Watson d-statistic{ 2, 20 = 1112442

esgtat durbinalt

Durbin's alternative test for autocorrelation

lags (p) chiz df Prob » chiZ

1 T58. 625 1 0.0000

HO: no serial correlation

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p) chiZz df Frob = chiz

1 80. 741 1 0.0000

HO: no serial correlation

estat archlm

LM test for autoregressive conditional heteroskedasticity (ARCH)

lags (p) chiZ df Prob > chiZ
1 59. 401 1 0_0000
HO: no ARCH effects 5. HLl: ARCH(p! disturbance

-0l¢-



Figure 108: Solo Prais-Winston Regressions for all 7 XVariables and associated DurbinWatson Stats

x-variable Coeff StdError t-stat pval F Prb>F RSQ dwtsn (orig) | dwtsn (adj)
X1 Unemployment -6.740923 6688781 -10.08 0.000 101.57 0.0000 0.5386 .139699 1.077457
X2 CaseShiller 9514761 | .1280446 7.43 0.000 | 55.22 0.0000 | 0.3883 | .1400557 0.772544
X3 CreditSlOpe -.0374255 .0104165 -3.59 0.001 12.91 0.0005 0.1292 .2563417 0.752473
X4 MortgageRate -.0002898 .0071868 -0.04 0.968 0.00 0.9679 0.0000 .0983784 0.412529
X5 RiSkFreeSlope -.0121825 .0045507 -2.68 0.009 7.17 0.0089 0.0761 .2090902 0.573268
X6 CRECthffRate -.053743 .0113599 -4.73 0.000 22.38 0.0000 0.2046 .2365583 0.756099
X7 PrivateCREConstr -.1273278 .0896643 -1.42 0.159 2.02 0.1592 0.0227 1112442 0.463369
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Figure 109: Prais-Winsten Multivariate for all 7 X variables

. prais Rctual NCRETFRollingRetuwrnsY X1Unemployment X2CazeShiller X3CreditSlope XdMortgageRate XS5RiskFreeSlope X6CREChargeoffRate X1PrivateCRE
> Construction, rhotype{dw) corc ssesearch
Iteration 1 rho = 0.8944 , criterion = -.0Z28459443
Iteration & rho = 0.8944 , criterion = -.0Z28459443
Iteration 2 rho = 0.8944 , criterion = -.0Z28459443
Iteration 4 rho = 0.9480 , criterion = -.0ZE69376%
Iteration &: rho = 1.0236 , criterion = -_0Z537404
Iteration & rho = 1.0236 , criterion = -.0Z2537404
Iteration 7 rho = 1.0524 , criterion = -.0ZE5ZZE07
Iteration & rho = 1.0806 , criterion = -.0ZE5ZZl%86
Iteration 2 rho = 1.0806 , criterion = -.0ZE5ZZl%86
Iteration 10: rho = 1.051% , criterion = -.0ZEEEL17E
Iteration 11: rho = 1.0512 , criterion = -.0ZEEEL17E
Iteration 12: rho = 1.0512 , criterion = -.0ZEEEL17E
Iteration 12: rho = 1.0512 , criterion = -.0ZEEEL17E
Iteration l4: rho = 1.0512 , criterion = -.0ZEEELl7E
Iteration 15: rho = 1.0512 , criterion = -.0ZEEEL17E
Iteration l6: rho = 1.0512 , criterion = -.0ZEEELl7E
Cochrane-Orcouct AR(L) regression -- SEE search estimates
Source 55 df us HNumber of obs = 82
Fio7, g8l = 21.11
Nodel _045003888 7T .006571984 Prob = F = 0.0000
Besidual _02522171717 21 -00031138 B-suared = 0.6459
Adj B-scuared = 0_.6153
Total 071225665 88 000809383 Root MBE = 01765
ActualNCREIFRollingRet~T Coef. 2td. Err. t =t [258% Conf. Interwall
Hllnenployment -3.422226 - 8613997 -3.97 0.000 -5.136141 -1.70831
HZCaseShiller _B624644 _125466 4_48 0.000 -3128264 _8121024
HiCreditB8lope -.0202848 - 0076906 -2.64 0.010 —-. 0355867 -.0049829
Ha4MortgageRate - 0003061 - 0045049 007 0946 -. 0086573 _0092695
HERiskFreeSlope —-. 0001548 _003175 -0_05 0.961 -. 006472 0061624
HECREChargeoffRate -.0181193 - 0090195 -2.01 0.048 —-. 0360653 -.0001733
H7PrivateCREConstruction -.0305621 _0615191 -0_50 0.621 -. 1529658 _0918416
_cons _2376305 0721733 3.29 0.001 - 0940284 _3g12321
rho 1.05124
Durbin-TMatson statistic {original) 0.176107
Durbin-Tatson statistic (transformed) 1.350785
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Figure 110: ACLI Historical Foreclosures

Commercial Mortgage Delinquency and Foreclosure Rates
2Q 1993 - 2Q 2013
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Figure 111a: W(t,l) Discretized Simulation (from Wiersema)
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Figure 111b: 5 simulations for 4 loans

» ¥FdefadjprinCF[1:50,]

(1 (2] (3] (4] 2T T B P S - R L P 1) (1] (][] (1] (13 18] (17 [,18] [, 18] [-20]
1] 418207 4182.07 4182.,07 4182.,07 4182,07 2332117 2332117 2332117 2332117 2332117 0.00 0,00 0.00 0,00 0.00 7748.96  7748.96  TM48.96  7748.96  7748.96
2] 4201,68 4201,68 4201,68 4201,68 401,68 2342262 2342262 2342262 2342262 2342162 0.00 0,00 0.00 0,00 0,00 7783.67  TM83.67  TIEE.ET TIER.ET TTER.ET7
3] 4221.40 4221.40 4221.40 4221.40 4221,40 2352450 2352450 2352450 2352450 2352450 0.00 0,00 0.00 0,00 0.00 7818.%4  7818.%4  7818.54  7818.54  7818.54
41 4241.20 4241.20 4241.20 4241.20 4241,20 2362684 2362684 2362654 2362684 2362604 0.00 0,00 0.00 0,00 0,00 7853.56 0.00 0,00 0.00 0,00
51 4261,10 4261,10 4261,10 4261,10 4261,10 2372961 2372961 2372861 2372961 2372961 0.00 0,00 0.00 0,00 0.00 7888.73 0.00 0,00 0.00 0,00
B, 4281.09 4281.09 4281.09 4281.09 4281,09 2383264 2383284 2393284 2383264 2383204 0.00 0,00 0.00 0,00 0.00 7924.07 0.00 0,00 0.00 0,00
7
81
81

; 4301.18 0.00 0.00 0.00 0.00 2393651 2393651 2383651 2393651 2383651 0.00 0,00 0.00 0.00 0.00 959,536 0.00 0.00 0.00 0.00

; 4321.38 0.00 0.00 0.00 0.00 2404063 2404063 2404063 2404063 2404063 0.00 0,00 0.00 0.00 0.00 195.21 0.00 0.00 0.00 0.00
9, 4341.63 0.00 0.00 0.00 0.00 2414521 2414521 2414521 2414521 2414521 0.00 0,00 0.00 0.00 0.00 8031.03 0.00 0.00 0.00 0.00
[10,] 4362.00 0.00 0.00 0.00 0.00 2425024 2425024 2425029 2425024 2425024 0.00 0,00 0.00 0.00 0.00 8067.00 0.00 0.00 0.00 0.00
[11,] 4382.47 0.00 0.00 0.00 0.00 2435573 24353573 2435573 2430573 2435573 0.00 0,00 0.00 0.00 0.00 8103.13 0.00 0.00 0.00 0.00
[12,] 4403.03 0.00 0.00 0.00 0.00 2446168 2446168 2446168 2446168 2446168 0.00 0,00 0.00 0.00 0.00 8139.43 0.00 0.00 0.00 0.00
[13,] 4423.69 0.00 0.00 0.00 0.00 2456809 2456809 2456805 2456809 2456809 0.00 0,00 0.00 0.00 0.00 8175.48 0.00 0.00 0.00 0.00
[14,] 444444 0.00 0.00 0.00 0.00 2467496 2407496 2467496 2467495 2467496 0.00 0,00 0.00 0.00 0.00 8212.51 0.00 0.00 0.00 0.00
[15,] 4465.28 0.00 0.00 0.00 0.00 2478229 2478229 2478225 2478220 2478229 0.00 0,00 0.00 0.00 0.00 8249.29 4503762,32 4501889.33 4842854, 73 4421722.99
[16,] 4486.24 0.00 0.00 0.00 0.00 2489010 2489010 2489010 2489010 2485010 0.00 0,00 0.00 0.00 0.00 8286.24 0.00 0.00 0.00 0.00
[17,] 4507.28 0.00 0.00 0.00 0.00 2499337 2499837 2489837 2495837 2438837 0.00 0,00 0.00 0.00 0.00 8323.30 0.00 0.00 0.00 0.00
[18,] 4526.44 21209689.05 £1685331.51 18853162.30 20289742.19 2510711 2510711 2510711 2510711 2310711 0.00 0,00 0.00 0.00 0.00 8360.64 0.00 0.00 0.00 0.00
[18,] 4549. 68 0.00 0.00 0.00 0.00 2521633 2341633 2521033 2521633 2321633 0.00 0,00 0.00 0.00 0.00 §393.09 0.00 0.00 0.00 0.00
[20,] 4571.03 0.00 0.00 0.00 0.00 2532602 2332602 2532002 2532a02 2332602 0.00 0,00 0.00 0.00 0.00 5435.70 0.00 0.00 0.00 0.00
[21,] 4582.48 0.00 0.00 0.00 0.00 2543619 2343619 2543019 2543019 2343619 0.00 0,00 0.00 0.00 0.00 5473.49 0.00 0.00 0.00 0.00
4614.02 0.00 0.00 0.00 0.00 2354683 2394683 2554043 2524083 2354683 0.00 0,00 0.00 0.00 0.00 8511.44 0.00 0.00 0.00 0.00

0.00 0.00 0.00 35796| 2565796 2565796 1965796 2565736 0,00 0.00 0.00 D.DU 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2570957 2376957 2576937 2070857 2376007 4898.4%  4895.49 409G.459  4893.49  4090.49 8387.90 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2586167 2306167 2588167 2500167 2386107 0.00 0.00 4320.04 0,00 4320.04 B626.33 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2599426 2599426 2589426 2599426 2595426 0.00 0.00 4341.68 0,00 4941.69 B664.97 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2610733 2610733 2610733 261073% 2610733 0.00 0.00 4363.43 0,00  4963.43 8703.78 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2622090 2622080 2622090 2622000 2622090 0.00 0.00 4385.27 0,00  4985.27 B742.76 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2633496 2633496 2633496 2633495 2633496 0.00 0.00 5007.21 0,00 5007.21 8751.92 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2644952 2644952 2644952 2644952 2644952 0.00 0.00 5029.24 0,00 5029.24 B821.26 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2656457 2656457 2656457 2656457 2656457 0.00 0.00 5051.37 0.00 0.00 8860.77 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2668013 2668013 2668013 2668013 2668013 0.00 0.00 5073.58 0.00 0.00 8500.46 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2679619 2679619 2679619 2679619 2679619 0.00 0.00 5085.92 0.00 0.00 8540.33 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2691275 2691275 2631275 2691275 2691275 0.00 0.00 5118.34 0.00 0.00 8580.37 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2702952 2702982 2702962 2702962 2702982 0.00 0.00 5140.86 0.00 0.00 8020.60 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2714740 2714740 2714740 2714740 2714740 222336156 2223361.96 5163.48 2223361.56 0.00 8061.00 0.00 0.00 0.00 0.00
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Figure 112: Trust Composite across 5 simulations
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Figure 113: Aggregation

Per 23 CF 5iml

Loanl 21,753,910.91
Loanz 2,965, 796,00
Loan3 -

Loand 8,949.57

TotalCalc 24,328,256.48

TrustCalc 24,328,257.00

Diff 0.52

Figure 114: Class Percentages

Class/Tranche | Class Percent
AAA: 0.6440
AJ: 0.0584
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BBB: 0.0274
BBBminus: 0.0451
Other: 0.0320

AR



Figure 115: Trust CFs across 10sims
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Z757999
Z770006
Z78z066
2794178
2806343
Z5818561
2830832
2774302
2786370
2798490
2810664
Z8zz890
Z835170
2835170

o
o
o

[.9]
2561462
2558098
2569261
2518791
2529774
2352967
2403382
Z2413842
2424348
2434899
2445497
2456141

27914689
2477567
7002665
2499180
2644203
Z5z0982
2531955
2542975
2554043
2565159
2576323
2552435
2598798
2610109

10157378
Z6Z2090
Z633496
2644952
Z656457
Z665013
Z679619
2691275
2702982
4938102
2726549
2738410
27503zz2
ZT76ZZ86
2774302
2786370
2798490
2810664
2822890
2835170
2835170

o
o
o

[.,10]
2561462
2558098
2569261
2572620
2583846
2447282
2457942
2468648
2479401
2490201
2501048
2511942

27970741
2523801
7219449
z489010
2637116
2510711
2521633
2532602
2543619
2554683
2565796
2581856

10108971
2655378
2610733
2622090
2633496
2644952
2656457
2668013
2679619
2691275
z70z982
4938102
2726549
2738410
2750322
2762286
2774302
2786370
2798490
2810664
2822890
2835170
2835170

o
o
o
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Figure 116: Trust and Tranche Allocations

[13,]
[14,]
(15,]
[16,)
[17,]
[18,]
[19,]
[20,]
(21,)
(2z,)
[23,]
(24,1
(25,]
[26,])
27,1
(28,]
[29,]
[30,]
(31,)
[3z,)
[33,]
[34,]
[35,]
[36,]
(37,
(38,]
[39,]
[40,]
[41,]
[42,]
[43,]
[44,]
[45,]
[46,]
147,
[48,]
[49,]
[50,]

> as . matrix (MFerusc(, 10])

[.1]
2561462
2558098
2569261
2572620
2583846
24497282
2457942
2468648
2479401
2450201
2501048
2511942

27970741
2523801
7219448
24859010
2637116
2510711
2521633
2532602
2543619
2554683
2565796
2581856

10108571
2655378
2610733
2622090
2633496
2644952
2656457
2668013
2679619
2691275
2702982
4938102
2726549
2738410
2750322
2762286
2774302
2786370
27984590
2810664
2822850
2835170
2835170

0
0
0

> AlArembal
[.1]

[1,] 1.195717e408
(2,) 1.170136e+08
[3,) 1.144443e408
[4,) 1.118717e+08
[5,) 1.092879+08
[6,] 1.068406e+08
[7,] 1.043826e+08
[8,] 1.019140e+08
[5,) 9.943459e+07
[10,) 9.6944392407
[11,] 9.444334e407
[12,] 9.193140e407
[13,] 6.396066e+07
[14,] 6.143685¢407
[15,] 5.421741e407
[16,] 5.172840e+07
[17,) 4.5051282407
[18,) 4.658057e+07
[19,] 4.405894e+07
[20,] 4.152634e407
[21,] 3.898272e407
[22,] 3.642803e407
[23,] 3.3B6224e+07
[24,] 3.128038e+07
[25,) 2.1171412407
[26,) 1.851603e+07
[27,] 1.590530e+07
[28,] 1.328321e407
[29,] 1.064971e407
[30,] 8.004762e+06
[31,] 5.348305e+06
[32,] 2.680292e+06
[33,) 6.732211e402
[34,] 0.000000e+00
[35,] 0.000000e+00
[36,] 0.000000e+00
[37,] 0.000000£+00
[38,] 0.000000e+00
[39,] 0.000000e+00
[40,] 0.000000e+00
[41,] 0.000000e+00
[42,] 0.000000e+00
[43,] 0.000000e+00
[44,] 0.000000e+00
[45,] 0.000000e+00
[46,] 0.000000e+00
[47,) 0.0000002+00
[48,]) 0.000000e+00
[49,] 0.000000e+00

[50,] 0.000000e400 _|

> Mirembal
(.1
[1,] 17109769
[2,] 17109769
[3,] 17109769
[4,] 17109769
[5,]1 17109769
[6,] 17109768
[7,] 17109769
[8,] 17109769
[9,]1 17109769
[10,] 17109769
[11,] 17109769
[12,] 17109769
[13,] 17109769
[14,] 17109769
[15,] 17109769
[16,] 17109765
[17,] 17109769
[18,] 17109769
[19,] 17109769
[20,] 17109769
[21,] 17109769
[22,] 17109769
(23,] 17109769
[24,] 17109769
[25,) 17109769
[26,] 17109769
[27,] 17109769
[28,] 17109769
[29,] 17109769
(30,] 17109769
[31,) 17109769
[32,] 17109769
[33,] 17109769
[34,] 14419167
[35,) 11716185
(36,] 6778083
[37,] 4051534
[38,] 1313125
[39,] 0

s

o

—
00000000000

> AMrembal
[.1)

[1,] 12901879

[2,] 12901879

[3,) 12501879

[4,) 12901879

[5,) 12801879

6,1 12901879

[7,] 12501879

[8,) 12501879

[9,) 12501879

[10,] 12901879
[11,] 12901879
[12,] 12901879
[13,] 12901879
[14,] 12901879
[15,] 12901879
[16,] 12901879
[17,] 12901879
[18,] 12901879
[19,] 12901879
[20,] 12901879
[21,] 12901879
[22,] 12901879
[23,] 12901879
[24,] 12901879
[25,] 12901879
[26,] 12901879
[27,]) 12901879
[28,] 12901879
[29,] 12901879
[30,] 12901879
[31,] 12901879
[32,] 12901879
[33,] 12901879
[34,] 12901879
[35,] 12901879
[36,] 12901879
[37,] 12901879
[38,] 12501879
[39,] 11464681
[40,) 8702396
[41,] 5928094
[42,] 3141725
[43,] 343234
144,) 0
[4s,)
[46,]
47,1
[48,]
(49,
[50,)

OoOo0oO0O00O0O

> khrembal

(.1
) 3564535
] 3564535
] 3564535
] 3564535
] 3564535
[6,] 3564535
[7,] 3564535
(8, 3564535
[9,] 3564535
[10,] 3564535
[11,] 3564535
[12,) 3564535
[13,] 3564535
[14,) 3564535
[15,) 3564535
[16,] 3564535
[17,] 3564535
[18,] 3564535
[19,) 3564535
[20,) 3564535
[21,) 3564535
[22,) 3564535
[23,) 3564535
[24,] 3564535
[25,] 3564535
[26,) 3564535
[27,] 3564535
[28,) 3564535
[29,) 3564535
[30,] 3564535
[31,] 3564535
[32,] 3564535
[33,) 3564535
[34,) 3564535
[35,) 3564535
[36,] 3564535
[37,] 3564535
[38,] 3564535
[39,] 3564535
[40,) 3564535
[41,) 3564535
[42,] 3564535
[43,] 3564535
[44,) 1097105

(45,) 0
[46,) 0
(47,) 0
(48,) 0
[49,] 0
[s0,) 0

> Azembal
[.1]

[1,) 4764305.6

[2,] 4764305.6

[3,] 4764305.6

[4,] 4764305.6

[5,] 4764305.6

[6,] 4764305.6

[7,] 4764305.6

[8,) 4764305.6

[9,) 4764305.6

[10,) 4764305.6
[11,] 4764305.6
[12,] 4764305.6
[13,] 4764305.6
[14,) 4764305.6
[15,) 4764305.6
[16,) 4764305.6
[17,] 4764305.6
[18,] 4764305.6
[19,] 4764305.6
[20,] 4764305.6
[21,) 4764305.6
[22,) 4764305.6
[23,] 4764305.6
[24,] 4764305.6
[25,] 4764305.6
[26,] 4764305.6
[27,] 4764305.6
[28,) 4764305.6
[29,) 4764305.6
[30,] 4764305.6
[31,] 4764305.6
[32,] 4764305.6
[33,) 4764305.6
[34,]) 4764305.6
[35,) 4764305.6
[36,) 4764305.6
[37,] 4764305.6
[38,] 4764305.6
[39,] 4764305.6
[40,] 4764305.6
[41,) 4764305.¢6
[42,) 4764305.¢6
[43,] 4764305.6
[44,] 4764305.¢6
[45,] 3038520.5
[46,] 203350.7

> BEBre=bal
[.1]

[1,] 7841877

[2,] 784157

[3,) 7841877

[4,] 7841877

[5,] 7841877

[6,] 7841977

[7,] 7841877

(8,] 7841877

[9,] 7841877

[10,] 7841877
(11,] 7841977
[12,] 7841977
[13,] 7841977
[14,] 7841977
[15,] 7841977
[16,] 7841877
[17,] 7841977
[18,] 7841877
[19,] 7841877
[20,] 7841977
[21,] 7841977
[22,] 7841977
[23,] 7841977
[24,] 7841977
[25,] 7841977
[26,] 7841977
[27,] 7841977
[28,] 7841977
[29,] 7841977
[30,] 7841977
[31,] 7841977
[32,] 7841877
[33,] 7841977
[34,] 7841977
[35,] 7841977
[36,] 7841877
(37,] 784197
[38,] 7841877
[39,] 7841877
[40,] 7841977
[41,] 7841977
[42,] 7841877
[43,] 7841877
[44,] 7841877
[45,] 7841877
[46,] 7841877
[47,] 5210158
[48,] 5210158
[49,] 5210158

[50,] 5210158 |

> BBBminusrembal
[-1]
] 5251169
] 5251169
] 5251169
] 5251169
] 5251169
] 5251169
[7,] 5251169
[8,] 5251169
[9,] 5251169
[10,] S251169
[11,] 5251169
[12,]) 5251169
[13,) 5251169
[14,) S251169
[15,] 5251169
[16,] S251169
[17,]) 5251169
[18,) 5251169
[19,) S251169
[20,) 5251169
[21,] 5251169
[22,] s251169
[23,] S251169
[24,] 5251169
[25,) 5251169
[26,] S251169
[27,) S251169
[28,] 5251169
[29,] S251169
[30,) 5251169
[31,) S251169
[32,] 5251169
[33,] s251169
[34,]) S251169
[35,) S251169
[36,) S251169
[37,) 5251169
[38,] S251169
[39,] 5251169
[40,] S251169
[41,]) S251169
[42,) S251169
[43,) S251169
[44,] S251169
[45,] 5251169
[46,]) S251169
[47,) 5251169
[48,) S251169
[49,] 5251169
[50,] S251169
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Figure 117: Trust and AAA allocation 10 sims

(]
(2]
(3]
4]
(5,]
(6,1
(7]
(8]
9]

[10,]

[11,)

(12,]

[13,)

(14,]

[15,]

[16,]

[17,)

[18,)

[19,]

[20,)

[21,]

[22,)

(23,1

[24,)

(25,)

[26,)

127,)

[28,)

(23,)

[10,]

31,)

[32,)

(33,1

(34,]

[35,]

[36,)

[37,)

(38,]

[39,)

[40,]

[41,)

[42,)

[43,)

[44,]

[45,)

(46,1

47,1

[48,)

45,1

50,1

> MFtrust(1:50,)

(.1
2561462.48
25508098.23
2569261.48
2580473.46
2591734.35
2603044.41
2614403.83
2625812.8)
2637271.62
2648780.43
2660339.45
2671948.95

28131467.32
2695320.15
2707082.30
2718895.80
2730760.86
2742677.70
£754646.55
ZT66667.64
2778034.17
263203866
2643504.45
2659918.67
2671506.11
2683144.06

10230740.97
2695783.17
2707520.71
2719309.35
2731149.31
2743040.83
2754984.13
2766979.44
2779026.96
2791126.95
2803279.62
2815485.22
2827743.95
2840056.05
2847143.70
2859540.04
2871990.15
2884494.86
2897053.84
2909667.49
2910003.07

7517029
s213.11
9646.05

.2
2561462
2556098
2569261
2518791
2529774
2392967
2403382
2413842
2424348
24348599
2445497
2456141

27914689
241567
7113200
24991680
2650304
2520982
2531955
2542975
2554043
2565159
2576323
2592435
1598798
2610109

10157378
2622090
2633496
2644952
2656457
2668013
2679619
2691275
2702982
4938102
2726549
2738410
2750322
2762286
2774302
2786370
2798490
2810664
2822890
2835170
2835170

]
0
0

.3
2561462
2558058
2569261
2518791
252974
2392967
2403382
2413842
2424348
2434899
2445497
2456141

27914689
2477567
7081932
2499180
2664764
2520982
2531955
2542975
2554043
2565159
2576323
2582435
1598798
2610109

10157378
2622090
2633496
2644952
2656457
2668013
2679619
2691275
2702982
4938102
2726549
2738410
2750322
2762286
74302
2786370
2798450
2810664
28220890
2835170
835170

0
1]
0

(4]
2561462
2558098
2569261
2518791
2529714
2392967
2403382
2413842
2424348
2434899
2445497
2456141

27914689
2477567
6867917
2499180
2648092
2520982
2531955
2542975
2554043
2565159
2576323
2552435
2603718
2615051

10162341
2627078
2638503
2649581
2661509
2673086
2684715
2696393
2708123
2719904
2731735
2743619
2755554
2767541
2774302
2786370
2798490
2810664
2822890
2835170
2835170

0
]
0

(.5
2561462
1558098
2569261
2518791
52974
2392967
2401382
413842
2424348
2434899
243553
2446168

27904667
2467496
7161629
2489010
2631377
2510711
2521633
2532602
2543619
9618040
2565796
2581856
15088167
2599426
2610733
2622090
2633496
2644952
2656457
2668013
2679619

0

o
22062

[.6)
2561462.48
25508098.23
2569261.48
2572619.90
2583845.62
2447281.75
2457941.63
2468647.96
2479400.91
2450200.72
2501047.56
2511941.67

27970741.45
2533872.44
7193780.49
2555994.71
2702707.64
2578310.13
£569540.80
2600820.40
2612149.14
623820.22
2634954.88
2651330.81
2657959.74
2669537.40

10217073.76
2682085.14
2693731.58
2705458.85
M
2729066.78
2740947.88
2752880.73
2764865.50
$000264.03
2768991.83
2801133.84
2813328.70
2825576.65
2837877.94
2850232.78
2B62641.40
2875104.04
2887620.95
2900192.35
2900485.49

65610.08
£5610.08
0.00

[P
2561462
2558058
2569261
2518791
529714
2392967
2403382
2413842
2424348
2434899
2445497
2456141

27514689
24M567
6923434
24991680
2637535
2520982
2531955
2542975
2554043
2565159
2576323
2592435
2603718
2615051

10162341
2627078
2638503
1649581
2661509
2673086
2684715
2696393
2708123
2719904
2731738
2743619
2755554
2767541
2774302
2786370
2798450
2810664
2822890
2835170
2835170

0
]
0

[:8)
2561462
2558098
2569261
2572620
2581846
2447282
2457942
2468648
2479401
2490201
2501048
2511942

27970741
2533872
7372884
2555995
2719694
2578310
2569541
2600820
2612149
2623527
2634958
2651301
2662080
2674479

10222037
2687040
2698739
2710488
2722289
2734140
2746044
2757999
2770006
2782066
2794178
2806343
2818561
2830832
2774302
2786370
2798490
2810664
2822890
2835170
2835170

0
0
0

(.9
2561462
2558098
2569261
2518791
2529714
2392967
2403382
2413842
2424348
2434899
2445497
2456141

27914689
2477567
7002665
2499180
2644203
2520982
2531955
2542975
2554043
2565159
2576323
2552435
2598798
2610109

10157378
2622090
2633496
2644952
2656457
2668013
2679619
2691275
2702982
4938102
2726549
2738410
2750322
2762286
2774302
2786370
2798490
2810664
2822890
2835170
2835170

0
]
]

> Ahhcapture[1:50,]

(1)
[,10) [1,] 2561462.5
:::;;:: [2,] 2558098.2
[3,] 2569261.5
g::g::; [4,] 2580473.5
(S,] 2591734.4

2583846
[6,] 2603044.4
;:;:;2: [7,] 2614403.8
Sas0648 (8,] 2625812.8
Sareior 9,] 2637271.6
2490201 [10,] 2648780.4
[11,] 2660339.4
i::g:: [12,] 2671949.0
2990071 [13,] 28131467.3
[14,] 2695320.1
iﬁ;m [15,] 2707082.3
[16,] 2718895.8
mﬁ:g {17,] 2730760.9
2510711 [18,] 2742677.7
2521633 [19,] 2754646.5
2532602 [20,] 2766667.6
2543619 [21,] 27780%4.2
2554683 (22,] 2632038.7
2565796 [23,] 2643504.4
2581856 [24,) 2659918.7
10108971 [25,] 2671506.1
2655378 [26,] 2683144.1
2610733 (27,) 10230741.0
2622090 [28,] 2695783.2
2633496 {29,] 2707520.7
2644952 [30,] 2719309.4
25647 [31] 2731149.3
2668013 132,]] 2743040.8
2679619 [33,1| 2754984.1
2691275 (34,]] s12322.8
EH 0.0
4938102 [36,] 0.0
2726549 (37, 0.0
2738410 (38,1 0.0
2750322 (39,1 0.0
2762286 [40,1 0.0
2774302 [41,] 0.0
2786370 (42,) 0.0
2790450 [43,] 0.0
2810664 [44,] 0.0
2822890 (45,1 0.0
2835170 (46,1 0.0
2835170 (47.) 0.0
0 | 48] 0.0
0 | (49,) 0.0
_ L 0.0

(2]
2561462.5
2558098.2
2569261.5
2518791.1
25297M4.1
2392966.5
2403381.5
24138419
24243007
2434899.4
2445496.9
2456140.5

(3
2561462.5
2558098.2
2569261.5
2518791.1
25207M4.1
2392966.5
2403381.5
2413841.9
24243477
2434899.4
2445496.9
2456140.5

(4
2561462.5
2558098.2
2569261.5
2518791.1
2529774.1
2392966.5
2403381.5
2413841.9
24243977
2434899.4
2445496.9
2456140.5

27914686.8 279146868.8 27914688.8

2477567.0
7113200.4
2499180.5
2650304.2
2520962.5
2531954.7
25429747
2554042.6
2565158.7
2576323.2
2592434.9
2598798.3
2610109.2
10157377, 6
2622089.9
2633496.0
26449517
2656457.2
2668012.8
2679618.7

614961.6

C00000000000D0D00O0
0000000000000 00O

2477567.0
T081932.3
2499180.5
2664764.4
2520962.5
2531954.7
1542974.7
2554042.6
2565158.7
2576323.2
2592434.9
1598798.3  2603718.3
2610109.2 2615050.9
10157377.6 10162341.1
2622089.9 2627075.2
2633496.0 2638503.2
2644951.7  2649560.9
2656457.2 2661508.6
2668012.8 2673086.4
2679618.7 2684714.6
631769.4  B17389.4

2477567.0
6867917.1
2499180.5
2648091.9
2520962.5
2531954.7
25429747
2554042.6
2565158.7
2576323.2
2592434.9

C000000000000000
- - N-N-R-N-N-N-N-N-N-N-N-N-N-1
0000000000000 00O

[+5)
2561462
2558098
2569261
2518791
252974
2392967
2403382
2413842
2424348
2434899
2435573
2446168

(6]
2561462
2558098
2569261
2572620
2583846
2447282
2457942
2468648
2479401
2450201
2501048
2511942

27904667 27970741

2467496
7161629
2489010
2631377
2510711
2521633
2532602
2543619
9618040
2565796
2581856
2588167
2599426
2610733
2622090
2633496
2644952
2656457
2668013
2679619

o

0
1213196

C0O00000000000O

2533872
7193780
2555995
2702708
2578310
2589541
2600820
2612149
2623527
2634955
2651331
2657960
2669537
10217074
2682055
2693732
2705459
e
2729067
1611546

o N N - N-N-N-N-N-N-N-N-1

L7
2561462.5
2558098.2
1569261.5
2518791.1
2529774.1
2392966.5
2403381.5
2413841.9
24307
2434899.4
2445496.9
2456140.5

27914688.8
2477567.0
6923433.9
2499180.5
2637535.2
2520962.5
2531954.7
25429M4.7
2554042.6
2565158.7
2576323.2
2592434.9
2603718.3
2615050.9

10162341.1
2627075.2
2638503.2
2649960.9
2661508.6
2673086.4
2684714.6

7124293

C0000000000D0D00O0O
0000000000000 00O

(8]
2561462
2558098
2569261
2572620
2583846
244782
2457942
2468648
2479401
24%0201
2501048
2511942

27970741
25338m
TIT2884
2555995
2719694
2578310
2589541
2600820
2612149
2623827
2634955
2651331
2662880
2674479

10222037
2687040
26968739
2710488
2722289
2734140
1375484

0000000000000 00O0O

(.9 (,10]
2561462.5 2.561462e+06
2558098.2 2.55809Ce+06
2569261.5 2.569261e+06
2518791.1 2.572620e+06
2529774.1 2.583846e+06
2392966.5 2.447282e+06
2403381.5 2.457942e406
2413841.9 2.46086408e+06
2424347.7 2.479401e406
2434899.4 2.490201e406
2445496.9 2.501048e+06
2456140.5 2.511942e406

279146808.8 2.797074e+07
2477567.0 2.523801e+06
T002664.8 7.219449e+06
2499180.5 2.469010e+06
2644203.2 2.637116e406
2520962.5 2.510711e+06
2531954.7 2.521633e406
2542974.7 2.532602e+06
2554042.6 2.543619e+06
2565158.7 2.554683e406
2576323.2 2.565796e+06
2592434.9 2.581856e+06
2598798.3 1.010897e+07
2610109.2 2.655378e+06

10157377.6 2.610733e406
2622089.9 2.622090e+06
2633496.0 2.633496e406
2644951.7 2.644952e+06
2656457.2
2668012,
2679618,

731598,

2.668013e406
2.679619e+06
6.732211e402
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Figure 118 — AAA Rembal

> AldArermbal

[,1]

[1,] 1.195717e+08
[2,] 1.170136e+08
[3,] 1.144443e+08
[4,] 1.118717e+08
[S,] 1.092879e+08
[6,] 1.065406e+08
[7,] 1.043826e+08
[8,] 1.019140e+08
[9,] 9.943459e+07
[10,] 9.694439e+07
[11,] 9.444334e+07
[12,] 9.193140e+07
[13,] 6.396066e+07
[14,] 6.143685e+07
[15,] 5.421741e+07
[16,] 5.172840e+07
[17,] 4.909128e+07
[18,] 4.658057e+07
[19,] 4.405894e+07
[20,] 4.152634e+07
[21,] 3.898272e+07
[22,] 3.642803e+07
[23,] 3.386224e+07
[24,] 3.128038e+07
[25,] 2.117141e+07
[26,] 1.851603e+07
[27,] 1.590530e+07
[28,] 1.328321e+07
[29,] 1.064971e+07
[30,] S.004762e+06
[31,] 5.348305e+06
[32,] 2.680292e+06
[33,] 6.732211e+02
[34,] 0.000000e+00
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Figure 119: Cashflows promised by Tranche

AAL prin A5 prin
max 9,171,411,251.00  1,064,086,867.00
actul 9,171,411,246.00  1,064,086,867.00

A& rin
738,065,130.00
798,063,130.00

A prin
232,043,433.00
232,043,433.00

BBBmin_prin
665,094,252.00
663,094,292.00

BB prin
266,021, 717.00
266,021, 717.00

Unrated
T27300,157.72
T64,943,012.36
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Figure 120 — Promised Cashflow allocation to the Bond Capital Structure

chind (apply (ALACAapture, 1,mean) ,apply (AScapture, 1,mean) , apply (AACapture, 1,mean) , a
[,1] [.2] [,3] [,4] [,5] [,6] [.7]
[1,] 10953123 u] ] u} 0 u] 0.00
[z,1 11067599 0 0 0 0 0 0.00
[3.] 11112896 u] ] u} 0 [u] 0.00
[4,] 11158381 0 0 0 0 0 0.00
[5,] 11253483 [u] ] u} [} [u] 0.00
[6,] 11306745 0 0 0 0 0 0.00
[7.1 11425100 0 0 0 0 0 0.00
(8,1 11591366 0 0 0 0 0 0.00
(9,1 11840766 0 0 0 0 0 0.00
10,] 12118292 0 0 0 0 0 0.00
11,] 12317406 0 0 0 0 0 0.00
12,] 12528421 1] 1] u} 0 1] 0.00
13,] 12712917 0 0 0 0 0 0.00
14,] 12764761 0 1] u} u} 1] 0.00
15,] 12816819 0 0 0 0 0 0.00
16,] 12890975 0 ] u} [} u] 0.00
17,] 13252341 0 0 0 0 0 0.00
18,] 13484154 u] ] u} u} u] 0.00
19,] 14127295 0 0 0 0 0 0.00
20,] 14415323 u] ] u} [} u] 0.00
21,] 14563556 0 0 0 0 0 0.00
22,] 14664532 u] ] u} 0 u] 0.00
23,] 14823114 0 0 0 0 0 0.00
24,] 14967310 u] ] u} [} u] 0.00
25,] 15028359 0 0 o 0 0 0.00
26,] 15089660 u] ] u} [} u] 0.00
27,1 15151213 0 0 0 0 0 0.00
28,] 15213020 u] ] u} [} ] 0.00
29,] 15318210 0 0 0 0 0 0.00
30,) 15380694 [u] ] u} 0 u] 0.00
31,] 15490974 0 0 0 0 0 0.00
32,] 15724480 n] a u] ] n] 0.00
33,] 15876092 0 0 0 0 0 0.00
34,) 16081918 0 0 0 0 0 0.00
35,] 16147480 0 0 0 0 0 0.00
36,) 16574274 0 0 0 0 0 0.00
37,1 16641475 0 1] u} u} 1] 0.00
38,) 16708952 0 0 0 0 0 0.00
39,] 16776705 0 1] u} 0 0 0.00
40,] 16844736 0 0 0 0 0 0.00
41,] 16913046 1] 1] u} u} 0 0.00
42,] 16981636 0 0 0 0 0 0.00
43,] 17050507 1] ] u} 0 0 0.00
44,] 17119661 0 0 0 0 0 0.00
45,] 35216391 u] ] u} 0 u] 0.00
46,] 17215728 0 0 0 0 0 0.00
47,1 75817648 u] ] u} 0 u] 0.00
48,) 35284010 0 0 0 0 0 0.00
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Figure 120, cont’d. — Promised Cashflow allocation to the Bond Capital Structure

[45,] 17310285 o u] ] o u] o.oo
[50,] 54169953 o u] ] o u] o.oo
[51,1] 361646885 o u] ] o u] o.oo
[52,] TOTE1153 o u] ] o u] o.oo
[53,1] 35495546 o u] ] o u] o.oo
[54,] 75396954 o u] ] o u] o.oo
[55,1 06518042 o u] ] o u] o.oo
[56,] 115206547 o u] ] o u] o.oo
[57.1] 267580714 o u] ] o u] o.oo
[55,1] 162292895 o u] ] o u] o.oo
[59,] 95632358 o u] ] o u] o.oo
[60,] 196931745 o u] ] o u] o.oo
[&61,] 166750390 o u] ] o u] o.oo
[62,] 16924223 o u] ] o u] o.oo
[63,] 16992545 o u] ] o u] o.oo
[&64,] 1706115z o u] ] o u] o.oo
[65,] 17130037 o u] ] o u] o.oo
[66,] 17199z0z o u] ] o u] o.oo
[67,] 17z65651 o u] ] o u] o.oo
[65,] 17338383 o u] ] o u] o.oo
[65,] 17405399 o u] ] o u] o.oo
[7O,] 17475702 o u] ] o u] o.oo
[71,1] 17549z9z2 o u] ] o u] o.oo
[72,] 176z0170 o u] ] o u] o.oo
[73.1] 17691338 o u] ] o u] o.oo
[74,] 17762797 o u] ] o u] o.oo
[75.1 175834545 o u] ] o u] o.oo
[7E,] 17906591 o u] ] o u] o.oo
[77:1] 17975930 o u] ] o u] o.oo
[7&,1] 15051564 o u] ] o u] o.oo
[79,] 15124494 o u] ] o u] o.oo
[50,] 51542256 o u] ] o u] o.oo
[51,1] 15273751 o u] ] o u] o.oo
[B2,] 35945311 o u] ] o u] o.oo
[B3,] SeE66599 o u] ] o u] o.oo
[54,] 15440510 o u] ] o u] o.oo
[E5,1] 15515324 o u] ] o u] o.oo
[E6,] 1559014z o u] ] o u] o.oo
[57,1] 15781260 o u] ] o u] o.oo
[55,1] 150624705 o u] ] o u] o.oo
[59,] 155816435 o u] ] o u] o.oo
[20,] 15892487 o u] ] o u] o.oo
[21,] 15965547 o u] ] o u] o.oo
[22,] 19045520 o u] ] o u] o.oo
[93,] 191z=2506 o u] ] o u] o.oo
[24,] 19199507 o u] ] o u] o.oo
[25,1] 19277424 o u] ] o u] o.oo
[26,] 193553585 o u] ] o u] o.oo
[27.] 1943353611 o u] ] o u] o.oo
[95,] 19512185 o u] ] o u] o.oo
[29,] 19591079 o u] ] o u] o.oo
100,1] 19670296 o u] ] o u] o.oo
i01,1] 19749537 o u] ] o u] o.oo
10z .1 19529704 [u] u] ] [u] u] o0.0o0
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Figure 120, cont’'d — Promised Cashflow allocation to the Bond Capital Structure
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Figure 121: Cashflows promised by tranche

Promised Principal Cashflows (in R algo allocation)
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Figure 122: Default adjusted cashflows

> chind (LEMFdefprinCF[, 8] ,LEMFrecoveryCF3[,8] , LEMFdefadjprinCF[,8])

[,1] [.2] [,3]
[1,] 7539.282 0 7539.282
[2,] 7570.680 0 7570.680
[3,] 7602.209 0 7602.209
[4,] 7633.869 0 7633.869
[5,] 7665.661 0 7665.661
[6,] 7697.585 0 7697.585
[?,] 7729.642 0 7729.642
[B,] 7761.833 0 7761.833
[9,] 7794.158 0 7794.158
[10,] 7826.617 0 7826.617
[11,] 7859.212 0 7859.212
[12,] 7891.942 0 7891.942
[13,] 7924.809 0 7924.809
[14,] 7957.812 0 7957.812
[15,] 7990.953 0 7990.953
[16,] B8024.232 0 8024.232
[17,] 8057.650 0 8057.650
[18,] 8091.207 0 8091.207
[19,] B8124.903 0 8124.903
[20,] 8158.740 0 8158.740
[21,] B192.718 0 §8192.718
[22,] B8226.837 0 8226.837
[23,] B8261.098 0 §261.098
[24,] 8295.502 0 8295.502
[25,] 8330.050 0 8330.050
[26,] B8364.741 0 8364.741
[27,] 8399.577 0 8399.577
[26,] ©5434.557 0 8434.557
[29,] B8469.684 0 8469.684
[30,] 0.000 0 0.000
[31,] 0.000 0 0.000
[32,] 0.000 5597249 5597248.747
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Figure 123: Promised cashflows versus default adjusted (3/7/2014)

Promised Principal Cashflows (in R algo allocation)
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Figure 124: Promised vs. default adjusted (aggregated)

A58 prinorg A5 prinorig A8 prinorig
9,171,411,251.00 1,064,086,867.00  793,065,150.00

Ab8 defadjprin A5 defadjprin &8 defadjprin
9,005,572,5922,00 1,064,086,867.00  ¥58,065,150.10

& prinorig  BEBmin_prinorig
532,043,433.00 665,054,292,00

A defadjprin BBBmin_defadjprin
a32,043,433.40 6E65,054,291,.80

BB_prinorig
266,021,717.00

BB defadjprin
265,666,217.07
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Figure 125: Poisson Process as a counting process

N(t) 1
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Figure 126: One path of a Compound Poisson Process (from Shreve)
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Fig. 11.3.1. One path of a compound Poisson process.
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Figure 127: Simulated one path of the Compound Poisson Process (from Tankov/Voltchkova)
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Figure 128: Merton’s Jump Diffusion Process (from Tankov/Voltchkova)
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Figure 129: Lambda Current and Delinquent Switching Realizations in Simulation

[1]
[20]
[33]
[58]
[77]
[98]

[115]

[1]
[30]
[59]
(88)

[117]

0.368 0.356
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0.340 0.380
0.344 0.380
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94 89
102 101

dlgcey
(.11 (,2] [,3] (.
[1,1 o0 o 1
(2,1 0 1 1
[3.] 1 0 i
[4,] 0 1 0
[5,] 0 1 0
[6,] 0 0 1}
7,1 1 1 o
8,1 1 1 1
9.1 [\] i o
(10,1 1 0 1
[11,] o 1 1
[12,] 1 1 0
h13,] o o 1
> applyi(dlgtry,1,sum)
[1] 92 89 88 094
[30] 9z 93 B85 98
[59] 95 92 B85 &6
[88] 94 94 89 90
[117] 54 102 101 86

0.352
0.376
0.364
0.368
0.336
0.376
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> applyidlgtry,1,sum)

94
95
=1
a0
(=141

]

o
o
1
]
]
]
1
]
1
]
o
1
1

a6
a7
35
86

> sum(apply (dlgrry, 1, sum)

[1] 1101z
> sum (apply (dlgtey, 1, sum) )/ (250%120)
[1] O.3670667
> apply(dlgtry, 1, mean)

> sum(apply (dlgtry, 1, sum)
[1] 1i01z
> sum(apply(dlgeey, 1,sum) )/ (sims*sinlos)
[1] O0.36706887
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Figure 130: Lambda Current and Default Switching Realizations in Simulation

(10,]

> defZdraw[1:10,1:10]

[,1] [.2] [,3] [,4] [.5] [,6] [.7] [,8]
[1,] 0.161801678 0.4131677 0.931287368 0.7473191 0.33275869 0.56428315 0.89742654 0.28223441
[2,] 0.904220750 0.1502735 0.72257637 0.7351538 0.755834581 0.44093657 0.40401873 0.01220087
[3,] 0.461951720 0.2687959 0.96948804 0.7227733 0.31674224 0.38038878 0.50409254 0.765894584
[4,] 0.429416354 0.7706819 0.18199267 0.2867008 0.62945073 0.13400977 0.27760433 0.33775054
[5,] 0.462774547 0.4345343 0.31213407 0.39453659 0.74666053 0.49875220 0.41623113 0.81826810
[6,] 0.387759448 0.6331299 0.16650903 0.8261276 0.08402253 0.35697583 0.45866295 0.66943660
[7,] 0.347381163 0.2232542 0.48983977 0.2070705 0.72234787 0.17797691 0.01969225 0.37344731
[6,] 0.002383945 0.6850360 0.60077952 0.6971256 0.12055056 0.91956518 0.94637620 0.56709772
[9,] 0.790134650 0.6371770 0.04017813 0.9439457 0.32202212 0.36695626 0.84059824 0.39709427
[10,] 0.625990448 0.5497723 0.80578174 0.2299211 0.09686590 0.02053038 0.40134113 0.57366470
> defaultbound[1:10,1:10]
[,1] [.2] [,3] [,4] [,5] [,6] [.7] [.8] [,9]
[1,] 0.2862096 0.2862096 0.2862096 0.2862096 0.2662096 0.2862096 0.2862096 0.25862096 0.2862096
[2,] 0.2861989 0.2849438 0.2860790 0.2866399 0.2853873 0.28636828 0.25848082 0.2863265 0.2864765
[3,] 0.2846526 0.2866620 0.2867481 0.2852731 0.2854829 0.2851759 0.2837226 0.2870972 0.2842593
[4,] 0.2850404 0.2864559 0.2862597 0.2830951 0.2835646 0.2873556 0.2821227 0.2887980 0.2840666
[5,] 0.2858223 0.28529683 0.2546154 0.2820854 0.2638015 0.2863431 0.2819903 0.2876154 0.2839227
[6,] 0.2859909 0.2843546 0.2836718 0.26830619 0.2850092 0.2884589 0.2818667 0.2879561 0.2835012
[?,] 0.26684958 0.2833660 0.2828278 0.285834334 0.2846018 0.2899793 0.2822945 0.2587248 0.2842595
[8,] 0.2875629 0.2852492 0.2860244 0.2833589 0.2655208 0.2903511 0.2819712 0.2890400 0.2856339
[9,] 0.2890805 0.2820211 0.2876673 0.2850430 0.2864725 0.2893289 0.2837932 0.2906035 0.2849618
[10,] 0.2901103 0.2820707 0.2882899 0.2863156 0.2858422 0.2893772 0.2833059 0.2910559 0.2848305
> dlgeurrstate[1:10,1:10]
(11 .21 (,3) [,4 (,8) (.6 (.7 (,8 [,9 [,10]
[1,1] 1 1 1 1 1 1 1 1 1 1
[z,1 1 1 n} 0 1 a] [} 1 1 ]
[3,] 1 1 n] 1 0 1 1 1 1 n]
[4,] 1] 1 1 1 1 1 1 1 1 1
[5.] 1 [} n} 0 n] o [} [} 1 1
[6,] u} 1 1 n} 1 a] 1 u} [} n]
(7,1 1] 1 1 1 1 1 1 1] 1] 1
[8,] 1 n} 1 o 1 o 1 o 1 ]
(9.1 1 [} 1 0 ] 1 1 1 [} 1
[1o,] 1 1] 1 1 1 1 1 1] 1 0
> defstate[1:10,1:10]
(.11 .21 [,3) (.4) (.5] (,6) (.7 [.8] [,9] [,10]
[1,1] 2 u} 0 [} n] a] o 2 u} 2
(2,1 o 2 o o n] o o 2 o ]
[3,] o 2 n} 0 n] o [} o [} ]
[4,] u} [} 2 [n} n] 2 2 u} 2 n]
[5,] o o n} u} u] u] o o 0} u]
[6,] o [} 2 o 2 o] [} o n} ]
[7.1 u} 2 [} 2 n] 2 2 u} [} ]
(8,1 2 o 0 o 2 a] o o 2 n]
9.1 o [} 2 o n] o [} o [} 2
[} [} [} 2 2 2 u} 0 2 ]

[.9] [,10]

0.5802670 0.1987496
0.8185097 0.8752844
0.5202700 0.6371548
0.2181774 0.5644142
0.9290802 0.3480856
0.5845819 0.6252287
0.8437117 0.4040148
0.2422204 0.9260755
0.8289708 0.1031227
0.2475501 0.9141139

[,10]
0.2862096
0.2858101
0.2844479
0.2840966
0.2828652
0.2838259
0.2844421
0.2848445
0.2836693
0.2839493

-Gee-
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