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To date, the ~$1Trillion CMBS sector in the US does not actively utilize widely accepted 

advanced derivatives valuation methods.  In the absence of risk neutral values for CMBS it is 

proposed here that risks of default were neither correctly anticipated nor priced in the Crisis 

(11/2007­12/2010) nor in the Recovery (1/2013­3/2014), thus far.  If schisms between market 

and model prices enable one to secure excess returns then one may reasonably question the weak 

form efficiency of the CMBS sector.  To investigate, I apply four model approaches (structural 

form, reduced form, generalization of calibrated simulation, and a special case of the 

generalization) in both the Crisis and the Recovery using two representative loan and bond 

samples on a daily basis.   

The key findings are: First, statistical analysis demonstrates the need for the generalized 

approach.  The special case is misspecified and inadequate to the task of modeling CMBS default 

risk.  Second, although the structural form yields results in keeping with the generalization, it 

too is insensitive to risks associated with loan characteristics, borrower behavior, and bond 
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pricing.  Third, the reduced form represents a comprehensive and better approach than all others.  

Building off details that characterize the generalized approach, the Cox Process of the reduced 

form has embedded within its design the capability to accurately evaluate complex economic 

relationships that govern the timing and amount of loan defaults.  As the reduced form economy 

is robust, accurate pricing at the bond level is an immediate consequence, given accurate 

implementation. Finally, evidence indicates a sizable disconnect between fair value and market 

pricing with differentiation amongst the models.  Trading tests and statistical analyses suggest 

an inefficient CMBS market evidenced by the earning of excess returns in backtesting. This 

dissertation provides valuable insights pertaining to CMBS risk estimation, the pricing of those 

risks, and CMBS market efficiency. 
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Preface 

The work contemplated in this dissertation finds it locus in the mid­1990s.  At that time, 

quantitative approaches to the evaluation of mortgage backed securities (MBS) were just 

beginning.  Prepayment models and related option adjusted spread valuation (OAS) techniques 

were just beginning to be implemented.  In that period in the market, however, credit risk 

evaluation was not actively being contemplated in MBS.  In part this was due to the fact that, in 

the securitized field, the residential market was dominated by conforming government 

guaranteed loans which necessarily dispensed with prospective losses as a risk to the bondholders.  

Credit driven ‘prepayments’ were an anomaly, noise in the context of a well­constructed rate x 

coupon dominated methodology. As the market evolved post­RTC, loans not guaranteed by the 

government that faced substantial credit risk began to represent a larger portion of the market 

overall.  The threats of default and loss were argued to be relatively minor inconveniences 

resulting in prepayment ‘speeds’ and OAS pricing to be ‘off a little bit’.  Arguably a more difficult 

risk to model than, say, prepayments, default risk was not actively pursued.   

Modeling credit risk eventually did move to center stage and its developments 

contributed to the genesis of the credit derivatives market that evolved in the wake of the dot­

com bubble and LTCM crisis towards the end of the 20th century.  Despite these developments 
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in non­securitized and securitized markets, however, credit risk evaluation and risk neutral 

pricing within the commercial mortgage backed securities (CMBS) market remained unmoved. 

It is my view, based upon direct experience and from several years of formal study, that 

there continues to be a bias against the use robust derivative pricing technology in the securitized 

market for commercial real estate loans (CRELs).  This in part is due to the complexity of the 

exercise involved in the modeling of default risk at the loan level and the subsequent pricing 

exercise required at the bond level.  There may also be other reasons for this perceived bias 

including, but not limited to: small sample sizes relative to loans in RMBS, greater heterogeneity 

amongst the CMBS loan collateral, more varied idiosyncratic borrower behavior, the historical 

evolution of the commercial real estate market in the US, the persistent use of cap­rate methods 

to estimate property values, and a resistance to acknowledging the influence of capital markets 

on property valuation indirectly through CMBS pricing, among others.   

Admittedly, the relationships are complex to model and often difficult to explain.  

However, technology and theory in the academy are fusing well now to provide us with the 

ability to approach previously intractable problems rigorously.  This dissertation thus seeks in 

earnest to demystify and formally explain the relationship between risks facing holders of 

commercial real estate debt and the associated risk adjusted loan level valuation embedded within 



 

vii 
 

CMBS bond pricing.  It continues to be my hope that this effort, and others like it, will bring 

greater insight to academics and practitioners interested in this important area of capital markets 

and will contribute to the thinking on lending/borrowing, trading/investments and regulation.  

At its core, this dissertation is about evaluating risk and reward and I hope you find my 

investigation into the risk estimation, pricing, and efficiency of the CMBS market convincing.  

­ Andreas D. Christopoulos  
July 25, 2014 
Ithaca, NY and Newark, NJ 
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Introduction 

Commercial mortgage backed securities (hereafter, “CMBS”) represent a nearly $1 trillion 

component of the US economy.  CMBS1 are derivatives collateralized by commercial real estate 

mortgage loans (hereafter, “CRELs”) which are typically 1st lien debt instruments secured by 

commercial real estate property.  Securitized CRELs underlying CMBS debt represent 35­40% of 

all CRELs outstanding in the US.  Despite the important presence of CMBS within capital markets, 

to date widely accepted derivatives pricing and valuation methods are not actively utilized by CMBS 

practitioners.  By not utilizing advanced derivatives pricing methods, it is my view that CMBS 

market practitioners are not correctly evaluating the risks of default, loss and concomitant 

adjustments to the timing of cashflows in the event of default for underlying CREL objects and 

CMBS bond objects.  If this is in fact the case then, when considering market prices of CMBS and 

related securities, I should see schisms between market prices and alternative pricing of the same 

securities generated under risk neutral conditions (the model prices).    

This by itself is not necessarily surprising as all financial models are approximations to more 

complex realities.  Nevertheless, even if we consider the weak form of market efficiency (see Fama, 

1970), then in an efficient market excess returns cannot be earned in the long run by using 

                                                            
1 A summary primer of CMBS is provided in Appendix A. 
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investment strategies based on historical prices.  Rather, future price movements should be 

determined entirely by information not contained in the price series itself and market participants 

should not be able to systematically profit from market 'inefficiencies'.   In the case of pricing 

derivatives with default exposure, it should then follow that if we observe (with the benefit of model 

pricing), a set of signals that enable us to profit from schisms between market price and model 

price, then the market we are investigating, (in this case the CMBS sector), might possibly be 

inefficient; for if the CMBS sector were efficient, then no systematic profits should be able to be 

secured, consistent with Fama’s theory.   This investigation, identification, and reconciliation are 

among the main focuses of this dissertation. 

To do this, I consider three primary model approaches to the evaluation of risks associated 

with CRELs that impact the pricing of CMBS and the index swap collateralized by CMBS tranches, 

CMBX (described in detail in Section 1).  In total there are four implemented models discussed 

with important differences between them.  The evolution of the model technology spans 40 years 

of financial theory and this dissertation provides a comprehensive empirical testing of this theory. 

Throughout the paper, the analysis of loans and bond pricing and risk values is daily based upon 

evaluation of loan and bond objects which have monthly payment frequencies.   
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Two important periods in the history of finance are investigated.  The initial period covered 

is November 2007 thru December 2010 (the Crisis).  The subsequent period studied is December 

2012 thru March 2014 (the Recovery). In the Crisis I consider 1 transaction with 175 loans 

underlying CMBX Series 1 totaling ~$4B.  In the Recovery I consider 688 loans totaling ~$13B 

across 11 transactions underlying CMBX Series 6.   The inquiry into the Crisis and the Recovery 

use the same four model approaches in an effort to determine which one provides the most reliable 

signals of risk and opportunity and, further, to question assumptions about the efficiency of the 

CMBS sector overall.  

The four model approaches considered rigorously are adaptations of Merton’s “On the 

Pricing of Corporate Debt” (Merton, 1974; the structural model; Model 1); a calibrated structural 

model where the calibrated parameters are used in a simulation technology as introduced by 

Driessen/Van­Hemert in “Pricing of commercial real estate securities during the 2007­2009 financial 

crisis” (DVH, 2012; Model 2); a thorough generalization of which DVH, 2012 is a special case 

(Model 3); and an adaptation of the approach introduced by Jarrow (with Christopoulos and 

Yildirim) in “Commercial Mortgage Backed Securities (CMBS) and Market Efficiency with Respect 

to Costly Information” (Jarrow, etal 2008; the reduced form model; Model 4).  Additionally, in 
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Appendix B I review other quantitative approaches taken in the literature related to CMBS valuation 

in Eom, Helwege and Huang,  2004; and Kau, Keenan and Yildirim, 2009 among others. 

Model 1, the adaptation of Merton, 1974 to CMBS valuation is critical as it represents the 

classic foundation for risk neutral valuation of debt instruments.  The adaptation I propose uses 

several new innovations necessary to accurately accommodate complexities related to loan level 

collateral and bond level priced objects.  Model 3, implements a generalized approach to calibrated 

simulation that builds off Merton, 1974 and which specifically considers the heterogeneity of loan 

characteristics by accurately incorporating correct cashflows and ruthless default.  The 

generalization is important because it incorporates many realistic features of the loan building blocks 

of CMBS in a well specified simulated economy.  In my study, I secure new insights into CMBS 

market efficiency and new results that contrast with Model 2, proposed by DVH, 2012 which is 

incorporated in this dissertation as a special case of the generalized approach.  We see, in so doing, 

that the generalized approach (Model 3) provides a more precise perspective on CMBS efficiency 

than Model 2.  Finally, I turn to Model 4, the adaptation of the reduced form approach introduced 

by Jarrow, etal 2008.  The first three models indicate that quantitative methods applied to CMBS 

valuation vary in precision due in part to limiting assumptions and restrictions in implementation 

at both the loan and bond levels.  With a robust simulated economy and historically validated 
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default ‘triggers’ the reduced form further eliminates many unnecessary simplifications.  The 

insights garnered from the different model approaches indicate that assumptions regarding the loan 

objects given their heterogeneity with respect to timing and amount, clearly need to be eradicated 

as shown in this study.  In the case of the reduced form, broader issues pertaining to the realism of 

the simulated economy and its interaction with loan objects and the default decision­making 

behavior of loan borrowers matter further still.  The results demonstrated by Model 4 demonstrate 

increased precision with respect to risk navigation. 

The key findings of this dissertation are as follows.  First, the implementation of the model 

approaches indicate that the accurate capture of the amounts of principal and interest cashflow 

payments on both a promised and default adjusted basis is essential to any rigorous analysis of risk 

and pricing of CMBS/CMBX.  In their absence erroneous signals as to the risk profile of the 

securities can occur.   Eradication of simplifying assumptions, while difficult, does yield 

improvements in identifying risks, enriching the simulated values, and capturing key loan 

characteristics of the objects underlying the derivatives.  I consider all the cashflows of all the loans 

in great detail, and are thus able to make fair value estimates across simulation with default adjusted 

cashflows.  As a result, this study across four models makes more meaningful statements regarding 

the efficiency of the CMBS market overall than many other studies in the literature.   
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Second, the market seems to contemplate ‘ruthless default’ in the expectations process 

through which prices are arrived at, where ruthless default is defined as the occurrence of default 

immediately when the borrower has an economic incentive to do so.  In the context of Merton, 

1974 and DVH, 2012 default is contemplated to only occur at the maturity date of the debt when 

the equity position in the company drops to zero such that the firm value under such circumstances 

is entirely debt.  In the context of commercial real estate properties if the value of the property 

declines for a variety of reasons such that a sale of the property at the implied value of the property 

would be insufficient to pay off the debt obligation/mortgage secured by the property, the borrower 

then has an incentive to default immediately on the mortgage.  This may or may not occur in reality 

and I present arguments for and against implementing this behavior in the modeling.   

Third, calibrated simulation approaches benefit greatly from ex­post statistical analysis using 

publicly available market information.  Ex­post statistical analyses improve R­sq to the 0.80­0.90 

level across all CMBX classes over 792 trading days in the Crisis with significance across all 

explanatory variables during the Crisis versus low raw ex­ante ranges of 0.17 to 0.70.  An example 

demonstrating, in the most credit­risk sensitive portion of the capital structure, the increase in 
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precision to be secured from ex­post analyses including variables exogenous to Model 2 can be 

found in the estimates for the BBB­ tranche shown Figure 1 which shows a very good fit2.    

Fourth, there is considerable evidence in both the Crisis and the Recovery of the ability to 

earn extraordinary profits in the CMBS sector through the use of various model approaches that I 

implement.  To test for CMBS efficiency, I backtested models against market pricing using the 

metric Theta as a barometer of the relative riskiness of observed prices in the market compared with 

the theoretical risk neutral pricing adjusted for default and loss risks, and implemented a series of 

long/short and long only trading strategies (described in detail in Section 3).   For all historical 

trading dates,  ߬ , for each time ݐ, on each simulation path ݈, for a given bond tranche ݇, Theta, 

( , )k t l , is defined as the difference between the Fair Value or risk neutral estimate of the bond 

price and the market price of the bond,    , , ( )k k kt l b t l m t   . The composite history for fair 

value, ( , )b t l , is weighted by the tranche balance for the ݅­th tranche at time ݐ across ݇ tranches 

and ݈ simulations.  The composite history of the market price, ݉ሺݐሻ, is also tranche balance 

                                                            
2 One of the critical questions we have to ask then is ‘If the CMBS sector is truly inefficient, what is the purpose of seeking to map model to 
market price?’  In one sense, the use may only be found in disclosing an absence of explanatory power.  This suggests inquiries into tracking 
the effectiveness of model driven signals through backtesting trading strategies hold greater promise in arguments related to efficiency than fit.   
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weighted3.  The composite Theta across all ݇  bond tranches is depicted in Figure 2a over three years 

of daily pricing through the crisis4.  The results show clear differentiation amongst the models 

perception of default risk at the composite levels.  In backtesting (Figure 2b), the ‘good’ models 

categorically outperform the long­only CMBS sector benchmark and, during the Crisis, also directly 

outperform the market portfolio.  The model approaches that incorporate accurate cashflows in the 

simulation and valuation exercise (Models 1, 3 and 4) are grouped generally above the x­axis 

indicating that on a composite basis, the bond pricing in the market place was relatively inexpensive 

vs. the risks as contemplated in such model approaches.  In contrast, the approach of Model 2 that 

does not incorporate either a.) accurate cashflows or  b.) ruthless default, shows a markedly different 

profile indicating, consistent with the claims of DVH, 2012 and others that CMBS bonds during 

the financial crisis were relatively expensive to fairly valued vs. their underlying collateral risks and 

were not sold at fire sale prices.   

                                                            
3 The composite history for fair value, ( , )b t l , is weighted by the tranche balance for the ݅­th tranche at time = ݐ , ( )

i
w t , or 

1

( , ) ( , ) ( )
N

i i

i

b t l b t l w t


   across ܰ tranches and ݆ simulations. The composite history of the market price, ( )m t , is also tranche balance 

weighted, 
1

( ) ( ) ( )
N

i i

i

m t m t w t


  . 

 
4 All models shown in Figure 2a contemplate a.) six types of commercial properties (Multifamily (MF), Retail (RT), Office (OF), Industrial 
(IN), Hotel/Lodging (LO), and Other (OT), and b.) the accurate maturity date for each of the 172 loans collateralizing the Greenwich Capital 
Commercial Funding Corp. Commercial Mortgage Trust, Series 2005­GG5 (“GCCFC 2005­GG5”, or just “GG5”).   
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Based upon the evidence provided in this study, the three alternative approaches make the 

strong case that the opposite conclusion is true.  Namely, relative to the risks of the underlying loan 

objects, that there were many instances of bonds in the CMBS market that were sold at fire sale 

prices during the financial crisis.  As noted in Jarrow, etal 2008 the CMBS market is characterized 

by the absence of the use of advanced derivatives pricing.  Therefore, in the absence of such 

technology practitioners were exposed to ad­hoc pricing of complex risks in a truly difficult time in 

the financial market.  It is thus not surprising to see, as shown in three of the models, persistent 

periods in the financial crisis when CMBS were priced ‘cheaper’ relative to their underlying risks.     

“How much cheaper?”  In part the answer to that question depends on the model chosen.  

However, making such choices should not be arbitrary.  Thus, finally, as initially suggested by the 

need for ex­post statistical adjustment with exogenous variables in the calibrated approaches, the 

Model 4 reduced form approach yields better results than any of the other approaches considered.  

The reduced form actively considers in its structure both static and dynamic information sets within 

the Cox Process that interact with many of the characteristics of loan and marketplace dynamics 

more precisely and realistically than any of the Model 1, 2, or 3 approaches.  As the reduced form 

Model 4 is, through careful construction, inherently more sensitive to the risks of the loan objects, 

the valuation of such loans and the corollary bond capital structure is necessarily more precise. This 
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is evident in the historical analysis.  Figure 2b shows the cumulative portfolio returns for the main 

model approaches investigated on a daily basis through the Crisis using long/short strategies 

informed by Theta as compared to the long­only, buy and hold, and purely random strategies.  Of 

the model approaches I investigate, and for the reasons I discuss below, the reduced form approach 

(Model 4) is the most accurate and reliable indicator of risk and reward in CMBS. 

In the literature, this dissertation represents a thorough assessment of 40 years of financial 

theory applied for the first time to CMBS and its derivatives in one paper.  It demonstrates an 

important alternative to real estate economics approaches that focus on cap rate deltas and real 

estate cashflow analysis (see Conner 2003, Corcoran 2004, Peyton 2009 and others, see Appendix 

B).  These considerations are not necessary5.  Nevertheless, elements can be helpful at the data level.  

In fact, in several of the approaches in this dissertation, certain real estate information related to the 

property value and loan level characteristics are incorporated to estimate values of securities based 

on loan objects.  The approaches in this dissertation utilize important real estate loan object 

characteristics and place them within the correct derivatives pricing context.  The technology 

                                                            
5 In Appendix C, I provide a working paper study covering 22 years and 2 distinct real estate cycles, I estimated, completely independently 
from property net operating income and estimated caprates the property value ˆ ( ) ( )

k k k
k

V t b a x t t    with ˆ ( )V t as the synthetic value for 

NCREIF at the national level in the OLS.  The regression demonstrates.94 R­SQ at the national level simulating NCREIF from i.) 
Unemployment, ii.) Case­Shiller Housing Index, iii.) Credit Risk Slope, iv.) Mortgage Rates, v.) RiskFree Slope, vi.) CRE Charge­Off Rate, and 
vii.) Percent of Private CRE Construction.  Thereby demonstrating a macro driven property value estimator distinct from traditional real estate 
economics property specific methodology. 
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developed allows for evaluation of any CMBS transaction, given data.  In light of the financial crisis, 

it is evident that much can be achieved with respect to risk transparency and cost savings by actively 

considering alternative approaches such as those proposed herein.  The analysis in this dissertation 

makes evident that not all models are the same, and thus, it is hoped that this and other work stand 

as testimony in favor of securing rigorous insights into a complex product type that results in more 

accurate signals of risk and reward for CMBS and better decision­making by practitioners.      

The contribution of this dissertation to the literature then is simple:  a.) Demonstrate 

increased realism in modeling risks facing holders of commercial real estate securities by being 

thorough and attentive to critical real estate loan characteristics and capturing the heterogeneity of 

the collateral within a more complex economy.  Implementing various models that estimate and 

price default behavior; and b.) Disclose, through high performance simulation and statistical 

analysis, the efficiency (or lack thereof) of CMBS and the concomitant CREL risks with rigorous 

theory, tested empirically both within the worst financial Crisis since the Great Depression and the 

aftermath economic Recovery period.  In so doing, this dissertation makes a contribution in support 

of increased modeling precision using quantitative approaches to evaluate CMBS risks and market 

efficiency. 
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The remainder of this dissertation is organized as follows.  Section 1 focuses on the Crisis 

(2007­2010). An overview of the data utilized is provided on a section by section basis. Next, I 

introduce formally each of the four models implemented for CMBS.  To clarify they are, again: 

• Model 1:  Structural Form (Merton, 1974)  

• Model 2:  Special Case of Generalized Calibrated Approach (DVH, 2012) 

• Model 3:  The Generalized Calibrated Approach 

• Model 4:  Reduced Form (Jarrow, etal 2008) 

An in depth statistical evaluation of Model 2 is provided which discloses model misspecification.  

This analysis prompts the investigation into other models in more depth.  I then conclude with 

comparison of all four models on a daily basis using Theta and query the purpose of ‘fitting’ within 

the context of market efficiency inquiry.     

Section 2 focuses on the Recovery (2013­2014) following the Crisis.  In this section I apply 

the same model techniques to a new set of loans and bond objects, again on a daily basis.   

The comparisons of Theta then invite rigorous analysis in Section 3 which is focused on the 

statistical analysis of market efficiency of the CMBS sector in both the Crisis and the Recovery.  In 

this section I introduce the trading tests and consider a few statistical evaluations including the 

intertemporal CAPM to test for the efficiency of the CMBS sector which is called into question.  
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Finally, in the Conclusion, I provide some further observation on the results, offer suggestions for 

further extensions to the historical periods studied, and provide supplemental information in 

supporting Appendices that include proofs and important summaries.  
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Section 1: The Financial Crisis (2007 thru 2010) 

1.1 Data ­ Crisis:  The CMBX pricing data (11/8/2007 – 12/31/2010, daily) was provided 

through Markit.  CMBX is the name of a family of indexed swap derivatives for which the 

underlying collateral are commercial mortgage backed securities (CMBS).  The CMBX data for this 

study was secured from Markit.  There are currently 6 series of CMBX issues outstanding.  Each 

series (1,2…6) is associated with a unique set of 25 CMBS transactions referred to as reference 

transactions.  The CMBX series are partitioned into tranches (AAA, AJ, AM, AA, A, BBB, BBB­ 

and BB) that are secured by the corresponding CMBS tranches, which are the reference assets for 

the CMBX.  The reference assets are in turn backed by loan cashflows according to the tranche 

cashflow allocation structure from the reference deal.  So, for example CMBX.AAA.5 is secured by 

25 AAA tranches, 1 from each of the reference transactions and each comprising a weighting of 4% 

to the CMBX derivative price.  Each of the reference transactions is secured by cashflows from 

hundreds of mortgages in the reference transaction trust that are secured by commercial real estate 

properties.  Across all reference transactions for a given series, the risks of thousands of loans and 

(indirectly pricing/valuation risks) are represented in the CMBX pricing.  The loans underlying the 

reference transactions are characterized by diversification across all major property types and 

property submarkets in the US.  The reference assets are priced daily by dealers and these prices 
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are then submitted to Markit which, in turn, aggregates the prices from the multiple firms into a 

single price published at the end of the trading day (4:15PM EST).  The 125 CMBS reference 

transactions and corresponding reference assets amount to hundreds of billions of dollars currently 

outstanding.    

The purpose of the creation the CMBX family of indices was to provide dealers and non­

dealer investors with the ability to readily hedge the credit risk exposure associated with CMBS held 

in portfolios.  Investors can hedge the risk free interest rate risk component of CMBS risk premia 

through Treasuries and futures.  With the introduction of CMBX they also were able to hedge the 

volatility of CMBS specific credit risk premia with varying measures of effectiveness depending on 

the correlation between the volatility of the risk premia of CMBX compared with that of the actual 

CMBS underlying the CMBX as securing collateral.  As with other credit default swaps, CMBX are 

essentially a derivative contract between two counterparties.  Figure 3 shows the buyer of protection 

hedge diagram where the investor, X,  with exposure to Y cashflows and mark to market risk on 

the swap pays a fixed coupon to a counterparty Z, and ‘receives’ or is marked to market on floating 

spread basis.  Quotes and bid/ask spreads change daily and intraday.   

 In this first study concentrating on the Crisis, I use pricing for CMBX Series 1 and the 

collateral characteristics from many loans underlying Series 1.  The testing is conducted on the 172 
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loans totaling $4.405 billion that serve as collateral for the Greenwich Capital Commercial Funding 

Corp Series 2005­GG5 CMBS transaction issued in November 2005 (GG5) within CMBX Series 1.  

For GG5, a single month of updated loan data was made available for April 2010 from the Trepp 

Loan file.  Additionally, the prospectus supplement and Moody’s Pre­Sale Report were used to 

adjust the data for proforma cashflow origination profiles and the presence of junior (second liens).  

The economic data used throughout is data provided from ACLI, NCREIF, the Federal Reserve, 

and CohenSteers/Bloomberg.  The maximum likelihood estimates (hereafter, “MLEs”) are from 

Jarrow, etal 2008 are used for the Reduced Form adaptation in this dissertation for the 

delinquency/current intensity process and the default intensity process.  The discussion of the 

method of the delinquency and default intensity process which considered more than 2.2mm loan 

life observations can be found in Appendix D.  Figure 4 provides a snapshot of the parameter 

estimates used for multifamily properties located in the Northeast.  Ideally, these MLE’s would be 

updated with data from Trepp but that is not currently possible.  Nevertheless, because the estimates 

cover substantial historical relationships between the economy x loan characteristics x event history 

they seem to perform well.   

Independent prices of the loans are not observable after origination except in the case of 

auction (FDIC).  In contrast bonds in the secondary market (and auction) are observable.  Since 
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the value of interest here is are bonds the aggregation of the simulated loan level cashflows gets 

distributed to the bond capital structure in the cashflow algorithms discussed for each Model.   

 For CMBS loan level information and delinquency status I used information provided to 

members of the Commercial Real Estate Finance Council.  Interest rates were provided through the 

Federal Reserve Board.  REIT prices were provided from Yahoo! Finance.  REIT debt levels and 90 

day volatilities for REITs and the S&P500 were provided by WRDS.  As the data are used differently 

in each model considered, I will provide summary information in the sub­sections where 

appropriate.  

1.2. Model 1:  Structural Form ­ Merton, 1974:  Merton cannot be used to directly evaluate 

CRELs and CMBS – extensions and adaptation in the form of changes to the assumptions and 

calibration are required.  However, these changes are in fact minor.  If carefully constructed, an 

adaptation of Merton provides a powerful set of insights to the task of CMBS valuation.   

The value of a corporation can be characterized by the equation V D E   (see Brealey, 

Myers, Allen 2011), where V = the total value of the corporation, D = the value of the debt of the 
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corporation and E = the value of the equity of the corporation.  Merton extended this fundamental 

understanding into the well­known option framework6.   

Since the debt secured by commercial properties typically is non­recourse to the borrowing 

entity, and typically with a balloon amortization structures (with little, if any principal payments, 

prior to balloon, the structure of the commercial property is directly comparable to a small 

corporation (see Jarrow, etal 2008) with a bullet debt obligation.  As such, one approach to the 

valuation of commercial real estate would be to apply Merton. 

A defining characteristic of commercial real estate is that it is income producing property 

(1993 Brueggeman, Fisher).  A commercial property is both a physical plant and a business that 

generates income.  The non­recourse provisions and balloon profile of the debt make such a 

simplified framework reasonable by substituting the company contemplated under Merton with the 

CRE property.  If the debt secured by the property exceeds the property value at maturity date of 

the debt, the borrower will default at maturity.  Otherwise, the borrower will pay off the debt.  Thus, 

in this basic sense, the Merton framework is consistent, though a simplification of, the profile of a 

                                                            
6 The discussion and review of Merton and a proof of Black Scholes Merton is found in Appendix E. 
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typical CREL and the decision­making process related to debt valuation and default. There are a 

few differences from the typical restrictions facing initial Merton that have to be addressed.  

I must adjust for the fact that CRELs are coupon bearing, possibly amortizing and possibly 

ballooning7.  Retaining the maturity default restriction8, a very simple extension to Merton would 

change the coupon bearing fact such that the strike at maturity reflects fixed coupons, so  

  *
0

coupon TD D e   (1) 

However, this change would not adequately address the differences in interest payments associated 

with ballooning cashflow structures in which interest payments on debt may be made according to 

say a 30 year regular amortization for 119 months, and then in the 120th month the entire principal 

payment is due with no interest (or principal) payments after balloon maturity ܶ. The equation 

would overstate the amount of interest typically paid under a balloon amortizing loan structure, and 

thus influence the size of ܦ which would influence the closed form solution of Merton applied to 

                                                            
7 Balloon and amortizing cashflow examples generated from the code are provided in Appendix F. 
 
8 As supported by several studies including, Jarrow, etal 2008, KKY, 2009, and others, loans frequently default prior to maturity 
(term defaults) due to failures to meet growth rental targets, failed rent roll re­leasing, declines or flat rents and other reasons.  
While ruthless default is not part of Model 1 by construction or Model 2 by assumption, but it has been implemented in Model 3 
and Model 4. 
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CRELs.  Fortunately, I calculate the correct promised interest and principal cashflows for each loan 

at each time ݐ, and I thus implement the more precise calculation of: 

  ( ) ( )
T

i t t
t

D t c p


     (2) 

so ( )iD t  represents the remaining interest 
T

t
t

c

  and principal 

T

t
t

p

 payments as promised in the 

loan note from any time t to maturity T  for the i th  CREL, where ߬ is the historical sim date.   

The second important extension is to the equity position.  In Merton, the equity position 

of the corporation is observable through the stock market.  Additionally, the volatility is also 

observable.  For CRELs there are two distinct periods in which information about CRE and CRELs 

takes on different characteristics:  i.) the date of origination and ii.) every date thereafter until the 

maturity date of the CREL.  Thus, at origination, the value of the CRE, 0V , is actually known as 

are the value of the debt, 0D , and the value of the equity, 0E .  Specifically, I observe in the data 

the Loan to Value ratio (LTV) for each loan in a collateral pool. Since 0
0

0

LTV
D

V
 and 

0 0 0V D E  , I say,  

  1 1
0 0 0 0 0 0 0 0 0 0LTV * (LTV * )V D E D D E V D           (3) 
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and thus know the equity value at origination.  However, for every day after origination, we cannot 

observe the equity position of the CRE, ( )E t , we cannot directly observe ( )D t , and we do not 

have a reliable volatility for the equity, ( )E t . Since I need to solve for 0 ( )V t  and ( )V t  for all 

times after origination of the loan, the implied value of the company and the implied company 

volatility, respectively, I need a proxy for 0( ) and ( )EE t t  the equity value and the volatility of the 

equity, respectively.  As is common practice in the literature, (see Appendix B, and others) I have 

to make assumptions to proceed.   

The National Council of Real Estate Investment Fiduciaries (NCREIF) provide a quarterly 

total return index for commercial real estate properties going as far back as 1978.  The properties 

are held by banks and other institutional investors and are self­reported from sales and mark to 

market procedures.  The property indices are recorded across both property and regional subsets 

for the entire US.  Underlying NCREIF are properties at the submarket level across the 5 major 

income producing property types.  The total return of all property elements underlying NCREIF is 

comprised of mark to market valuation of CRE assets by the NCREIF member banks and 

institutions combined with actual sales of any such CRE underlying properties.  Information is 

gathered from major financial institutions (banks, pension funds, and insurance companies) with 

substantial hard real estate assets in actual (not proxy) submarket locations.  The outstanding value 
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of the NCREIF property values exceeds $1 trillion and over time the rolling annualized national 

NCREIF return index (calculated from quarterly reported total returns) accurately captures and 

reflects the real estate cycle (Figure 5).  As such, NCREIF represents a good proxy for US 

commercial real estate values.   

Since I seek to find an estimator for property values in valuation, I proxy in the simple case 

for the property value securing a specific CREL with the corresponding NCREIF return volatility.  

As NCREIF is only reported quarterly, but our project is to estimate CRE value daily, I computed 

a cubic spline from the actual NCREIF lognormal quarterly index returns 
,

( )
i yE t to form a daily 

spline estimate of the annualized volatility observed daily, as required under Merton (Model 1). 

Specifically, I observe NCREIF index values quarterly, ( )yN u  for the ݕ െ  ,ݑ ,property type with ݄ݐ

the quarterly time of observation of the index values for 

1 31 ; with 1=7 / 2006, 2 10 / 2006,...31 1 / 2014i     , for each of the	ݕ ൌ 1…6 property 

types (1=Multifamily or MF, 2, =Office or OF, 3=Retail or RT, 4=Industrial or IN, 5=Lodging or 

LO, and 6=Other or OT).  I calculate the lognormal return for each property index over the quarter,  

  ,

( )
ln

( 1)
y i

y i
y i

N u
R

N u

 
    

   (4) 

From the set of returns ܴ௬,௜ I calculate the quarterly volatility as standard deviation, so 
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 
 ,

, ,

1y i

y i y i

R

R R

n








   (5) 

In the context of natural cubic spline interpolation, the set of ݅ quarterly volatility of lognormal 

returns can be expressed as 31 ሺݑ௜, ݕ ோ೤,೔ሻ ‘knots’ perߪ ൌ 6 property types.  I then interpolate 

pairwise between ሺݑ௜ିଵ, ,௜ݑோ೤,೔షభሻ and ቀߪ ,݅	∀	ோ೤,೔ቁߪ ோ೤,೔ߪ with polynomials of degree 3 setting 	ݕ ൌ

ோ೤,೔′ߪ , such that under the constraint of passing through all knots	௜ሻݑ௜ሺݍ  and ߪ′′ோ೤,೔ will be 

continuous everywhere with curvature    ݇ ൌ
݅,ݕܴ′′ߪ

ቀଵାݕܴߪ,݅
′2 ቁ

య మ⁄ ௜ሻݑ௜ሺ′ݍ ,   ൌ ௜ሻݑ௜ሺ′′ݍ  ௜ሻ andݑ௜ାଵሺ′ݍ ൌ

,݅ ௜ሻ for allݑᇱᇱ௜ାଵሺݍ 1 ൑ ݅ ൑ ݊ െ 1.  Implementing the natural cubic spline numerical interpolation, 

from the 31 observed knots ሺݑ௜, ݐ ோ೤,೔ሻ I then calculateߪ ൌ 1,2, … 1878 interpolated daily points 

ሺݐ,  ா௬ሻ required for Merton (Figure 6)9.  Finally, since I have the daily return index for NCREIFߪ

for all 6 property types and since I have the correct inverse LTV at origination, I can estimate the 

implied equity value for the i­th property of the y­th property type (y= 1…6), , ( )i yE t , as: 

 
1

, 0( ) LTV NCREIF (t)i y yE t      (6) 

                                                            
9 We conduct the same procedure in the reduced form where we also need daily volatility values for NCREIF expanding the 
indexing to ݕ ൌ 1. , .6 property types and ݇ ൌ 1,…4 geographic regions. 
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 where NCREIF is the indexed value of NCREIF for each of the 6 property types, with an index 

start date of 7/1/2006 NCREIF=100.  I am not calibrating Merton to any other values observed in 

the marketplace such as S&P returns or volatilities.  However, since I have made changes to the 

original Merton equations, I have to consider that there may be errors in estimation.  As such I 

incorporate a beta coefficient
,i yE for the ݅ െ ݕ property of the ݄ݐ െ ݕ) property type ݄ݐ ൌ 	1…6) 

to modify our NCREIF driven volatility
,

( )
i yE t . The changes in notation are shown below 

 

, ,

1( )
1 2

( ) ( ) ( )
( ) ( ) ( ) ( ) 0

( )
i

i y i y

i Vr t T
i i

E E

N d V t t
V t N d D t e N d

t


 

      (7) 

I solve the non­linear system of the final set of equations for parameters , ,  and 
i ii V EV    

simultaneously using the numerical solution, 

        2 2 2 2

1 2 32
min ( ) min

x x

f x f x f x f x  
 

   (8) 

for each of the i=172 loans on each of the historical dates. 

1.2.1. Outputs and results:  The outputs are ( ),  ( ),  and 
ii V iV t t   with ( )iV t representing 

the daily risk neutral estimate for the loan’s value under Merton.  Additionally, I capture the 

probability of default ( )i t  for each loan over the historical study and aggregate according to the 
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loan’s property type, 1...6y  , and balance weight ( )iw t , giving property type level probability of 

default based upon this implemented Model 1 as: 

  , ,
1

( ) ( ) ( )
N

y i y i y
i

t w t t


      (9) 

With 2( ) ( )i t N d    The computed historical property type probabilities of default y  are 

provided in Figure 7.  I notice that they are quite large.  At the same time, however, it is useful to 

consider immediately the actual historical experience of the actual loans considered in my adaptation 

of Merton for CMBS over this historical period.  These loans exhibited nearly 20% actual default 

rate through the Crisis (Figure 8) with multiple downgrades by the rating agencies up until this 

past year.  As such, while the estimation of risk for Model 1 may be high, given the realization of 

losses, shown in Figure 8, the estimates for ( )i t are not unreasonable.  The loans utilized in this 

dissertation represent approximately 8% of all loans underlying CMBX Series 1 and are reasonably 

diverse.  The sample is not a large as some studies10 but it is a larger sample than others11.  As in 

DVH, 2012 I assume that loans underlying GG5 proxy for all loans underlying CMBX Series 1. 

                                                            
10 Jarrow, etal 2008 and, Kau, 2009 
 
11 DVH, 2012  
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To test the fair value under Model 1, I have to consider the mock securitization or risk 

guideline argument.  From those perspectives the collateral pool at a bank originator represents an 

ongoing risk until the loans are distributed through to the capital markets.  During normal 

conditions, the loans are held in the ‘held­for­sale’ portion of the balance sheet.  Under these 

conditions, the aggregate profile of the loans is considered in bond form.  Meaning, estimates for 

the subordination levels associated with the TBA securitization for which these loans are 

contemplated to serve as collateral in the near future are determined from observations in the market 

and discussions with leading rating agencies.  When one hedges interest rate and credit risks of the 

portfolio of loans, one considers the loan no longer as an individual loan, but rather as a component 

of the TBA securitization.  As such, it is not only reasonable, but actually necessary to consider the 

loans in the aggregate as I do.   

The aggregate value of the entire securitization can be arrived at in two ways. Let ܾ௞ሺݐሻ 

represent the implied fair value price of the TBA security made up of ܭ bonds. Let ܤሺݐሻ represent 

the value of the entire securitization and ௜ܸሺݐሻ the fair value of the ݅ െ   .loan in the securitization	݄ݐ

Then, 

 
1

( ) ( ) ( )
K

k k
k

w t b t B t


    (10) 
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but, 
1

( ) ( ) ( )
N

i i
i

B t w t V t


   , so: 

 
1 1

( ) ( ) ( ) ( )
K N

k k i i
k i

w t b t w t V t
 

     (11) 

Therefore, the fair value of the bonds can be determined by simply allocating realized proceeds from 

the ‘sale’ of the entire securitization at any time ݐ according to the priority payment rule of the 

securitization.  In this study I (as well as DVH 2012) assume a simple senior subordinate structure 

based upon the attachment points observed in CMBX Series 1.  The weights are found in Figure 9; 

no Interest Only strip (IO) is contemplated.   

The allocation algorithm for Model 1 is straightforward.  I have the face amount of the 

bonds based upon the remaining promised principal cashflows for the trust and the class percent 

k  or ( )
T

k t k
t

h t p





  .  On each historical evaluation date a sale of all the loan assets at the 

computed fair value is contemplated as
1

( ) ( ) ( )
N

i i
i

B t w t V t


  .  The sale proceeds are allocated from 

the top down.  The AAA class receives all proceeds from the sale up to the maximum of ( )AAAh t , 

so, min( ( ), ( ))AAA AAApmt h t b t .  Then, AJ receives all remaining proceeds ( ) ( )AJ AAApmt b t pmt t   

up to a maximum of ( )AJh t ; then AM receives all remaining proceeds 
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 min ( ),  ( ) ( ) ( )AM AM AAA AJpmt p t b t pmt t pmt t    to a maximum of ( )AMh t  and so forth 

until min ( ),  ( ) ( )Other Other k
K

pmt p t b t pmt t  
 
 
  .  If the proceeds from the dilution of the 

securitization at fair value are insufficient to cover the promised payment to the bondholder in the 

payment allocation (aka waterfall/cascade), then the bondholder experiences a loss on that date, ݐ.   

Allocation of raw proceeds to the tranches have an upper bound of par, consistent with the 

value of fixed­income securities at maturity.  But the proceeds are generated assuming an immediate 

distribution artificially compressing the investment period to zero.  Therefore, I generate the future 

value of proceed dollars today at the prevailing risk free rate at time ݐ, such that for each bond I 

have fair value under Merton of ( )( ) r t T
k kb t pmt e  where ܶ is remaining time to maturity of the 

bond.  Figure 10 shows a numerical example. 

The top panel of Figure 11 shows the fair value ( )kb t for the bonds12 and the bottom panel 

shows the composite fair value 
1

( ) ( )
K

k
k

B t b t


    compared with the composite market price from 

the CMBX Series 1 
1

( ) ( )
K

k k
k

M t m t 


  with and k km  representing the observed market price for 

                                                            
12 Market price history is not available for the entire history for AJ and AM and they are deliberately excluded from Theta 
analyses and depiction. 
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the CMBX Series 1 tranche and the balance weight of the tranche. What we observe in the top 

panel is despite the very high probability of default, the realization in the tranche allocation leaves 

the AAA securities untouched. The pricing of the AAA declines converging as it should to par in 

an orderly manner.  The other securities are exposed in varying degrees to losses as contemplated 

under the allocation algorithm discussed above.  In the bottom panel, however, a very interesting 

picture emerges.  Despite the evidence of losses under the distribution at a fair value mark to market, 

the overall profile of the entire composite securitization, ( )B t  (in blue) is categorically above the 

composite market price equivalent ( )M t  (in black).  The implication is that despite the risk 

contemplated in the Merton model, the overall risk of the securitization during the financial crisis 

was lower than anticipated by the market.   

I examine the profile further by introducing Theta, ( ) ( ) ( )k k kt b t m t    which is a reliable 

benchmark for the richness or cheapness of individual securities or the entire securitization overall.  

In Figure 12, I show Theta first for the composite price histories in the upper left in black, and then 

provide time series comparisons of Theta for each of the bonds in the capital structure compared 

with the composite Theta (in black). Generally, 
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
  

What we see is within the capital structure, the AAA classes (blue) are less expensive than the capital 

structure overall (black), and empirically cheap versus market pricing of the risks with high Theta.  

At the other end of the capital structure the BBB­ class (red) are almost categorically rich relative 

to the capital structure overall (black) and relative to the market pricing of the risk it faced in the 

Crisis.  Only at the peak of the Crisis in this time series when BBB­ prices reached their nadir does 

the measurement Theta indicate fair valuation of the risks.  The classes in between these extremes 

(AA, A and BBB) move in keeping with the realization of risks in the distribution algorithm at fair 

value.  If one accepts the validity of the Merton model as applied to CMBS valuation as I have cast 

it, then one would have insights into the relative risk and reward profile of the entire securitization 

as well as the relative risk/reward profile of the individual bonds.   

This analysis is performed by investigating the comparative merits of the different models 

at this point.  As suggested previously in Figure 2a and 2b, the evidence support the view that the 

Reduced Form approach (Model 4) gives the greatest insight into risks and is thus most reliable.  

As such, doing statistical analysis on the ‘fit’ of the Merton Model 1 vs. the market pricing observed 
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is not of particular consequence at this time. Suffice it to say at this point, that this Model 1 is 

reasonable and its conclusions (Theta’s are quite large) and underpinnings (probabilities of default 

are quite large) seem to point in the intuitively correct direction.  Some bonds were priced very 

cheaply during the Crisis, however, overall, the risk of the securities when considering the entire 

capital structure was more than offset by chaotic, if not panicked.  

1.3. Model 2:  Calibrated Merton Hybrid ­ DVH, 2012:  I now turn to an alternative 

approach to Merton.  The authors build upon some work in Jarrow, etal 2008 by considering 

multiple property types linked to loans, but the approach overall is less rigorous13.   Importantly, as 

we shall see, Model 2 (immediately below) is simply a special case of the generalized approach I 

propose in Model 3 later in this Section. 

In DVH, 2012 the valuation method of CMBS implemented is essentially a two­step hybrid 

approach which correctly implements a ‘bottom­up’ approach to the modeling of the risks of default 

and loss of underlying loan collateral and then, in turn, transforming the meaning of those loan 

level risks into meta bond level pricing for which the loan sample serves as collateral.  In the first 

step, the authors implement a calibrated parameterization of Merton, 1974 where such parameters 

                                                            
13 For example, the location of the property is not considered, nor is the historical relationship between defaults and the simulated economy, 
just to name a few. 
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are the outputs of a numerically solved non­linear system of six equations which calibrate to daily 

S&P option volatility, REIT pricing covariances and other observable market metrics relevant to 

simulation.  In the second step, the calibrated parameter outputs (determined in the first step) are 

then combined with other values as inputs for use in simulation of REIT prices using a correlated 

multivariate Wiener process.   In the simulation, the simulated REIT prices are linked to loan 

parameters, where the loan sample of 30 loans (unreported) proxy for the set ~1500 loans underlying 

the tranches that serve as the collateral for the CMBX Series 1 credit derivative swap contract.  The 

trigger for default which is simulated is the inverse LTV metric, ଵ

௅்௏೟
, that interacts with the 

simulated property values captured for each of the loans in the sample.  If the metric falls below 1 

at maturity only then at maturity a default state for the loan is captured.  From the set of simulated 

loan states simulated loan cashflows are generated allowing construction of synthetic tranche level 

CMBX swap prices under risk neutral conditions independent of actual CMBX tranche prices.   

1.3.1. Step1 ­ Calibration and estimation:   An extension to Merton is incorporated that requires 

solving a system of six non­linear equations for each time step, t, in the study. The equations for 

the non­linear system are defined below:    

   2 2 2 , , , ,    1, ....3j j s j j j jE BS V D T j        (12) 
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   
2

2 2 2 ,    1,...3j j j j j j
j s j

j j j j j j

dE V E dV V E
Var Var dt j

E E V V E V
  

        
                         

   (13) 

  2, ,    1,...,3j j j
j s

j j j

dE V EdM
Cov dt j

E M E V
 

   
          

   (14) 
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dt j k

E V E V

  

  

     
             

   
      

   (15) 

  2
s

dS
Var dt

S
   

 
   (16) 

The LHS of the equations represent the values observed in the historical data which are then 

“matched empirically on each calibration day.”  They use 3 property types with 1=Multifamily (MF), 

2=Office (OF), and 3=Retail (RT) and they are indexed ݆ , ݇ ൌ 1,… ,3. The subscript ݏ represents the 

S&P 500.  These parameters are for REITs and not commercial real estate loans, underlying CMBS.  

The equity volatility term instead of being observed as in Merton, is now a composite term of the 

known volatility on the S&P 500 index ߪ௦, and unknown REIT property­type parameters ߚ௝ and ߛ௝ 

giving: 
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



   
             (17) 

and 

  2, 1j jd d T     (18) 

The Black Scholes condition is given by ܧ௝ ൌ ௝ܸԳ൫݀ଵ,௝൯ െ  ௝݁ି௥்Գ൫݀ଶ,௝൯, and the Ito’s Lemmaܦ

condition is given by ൫ߚ௝ߪ௦ ൅ ௝ܧ௝൯ߛ ൌ ௝ܸߪ௝Գ൫݀ଵ,௝൯.  Having specified, ݀ଵ,௝ and ݀ଶ,௝ which are used 

throughout the system, I set the Black­Scholes and Itó conditions equal to zero to obtain the first 

two of six equations in the system.  I thus recast Merton representing the first two equations for 

each date of calibration, in addition to the remaining equations, making the substitution for the 

cumulative normal distribution function, డா
డ௏
	 ൎ Գሺ݀1ሻ, as appropriate.  I numerically solve the non­

linear system of equations simultaneously using 

        2 2 2 2

1 2 162
min ( ) min ...

x x

f x f x f x f x       (19) 

which yields outputs calibrated daily to option prices and other data.   
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Briefly, ܧ௝and ܧ௞ are the daily average equity market capitalizations within REIT property­

type sector ݆ , ݇ ൌ 1, … ,3 across the 15 property­type sector specific REITs selected.  Specifically there 

are 4 REITs for apartments/multifamily (݆ ൌ 1), 6 REITs for office (݆ ൌ 2), and 5 REITs for retail 

(݆ ൌ   .௦ଶ is calculated directly from the pricing of three­month (90­day) ATM S&P 500 optionsߪ  .(3

 ௝ is the indexed property specific REIT debt principal value outstanding calculated by taking theܦ

daily average of the sum of (long term debt + current liabilities) within property­type sector ݆, ݇ ൌ

1,… ,3 across the 15 property­type sector specific REITs selected by DVH as above in with ܧ௝  and 

௝ܧ .  The maturity date for REIT debt is assumed to be 5­years14. The risk­free rate ݎ is determined 

from five­year and ten­year swap rates (for each calibration date) as the corresponding linearly 

interpolated rate for ߬ ൌ ܶ െ is assumed ൌ ݍ time to maturity.  The dividend rate ݐ 0%.  The charts 

(Figure 13) show the calibrated outputs for the system that correspond well with the results of DVH, 

2012. 

 

 

                                                            
14 I age the debt over the year and then ‘roll’ the debt every December 31 such that on January 1 the maturity of the debt is 5 years whereas 
by December 31 of the year the maturity of the debt is 4 years. 
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1.3.2. Step 2 ­ Simulation:  Once the calibration is complete, I then simulate REIT values 

and link the REIT value evolution to individual loans.  The risk event for loans is default only, 

initially assumed to occur only at maturity.  The multivariate Brownian motion process that 

generates simulated returns on REITs in implementation is:  

  0

j

j s j j
j

dV
(r - q)dt dW dW

V
        (20) 

The Brownian motion, ݀ ଴ܹ , is associated only with the S&P 500 and is ‘shared’ and constant 

across all ݆ REITs (modified with the interaction with ߚ௝ߪ௦) and ݀ ௝ܹ is the property­type sector 

specific Brownian motion (three total) that interacts with their corresponding volatility term ߛ௝ .  In 

the implementation I simulate four Brownian motions ݀ ଴ܹ and  ݀ ௝ܹ , 	݆ ൌ 1,… ,3 and interact them 

with the estimated and observed parameters.  They anchor the observed simtime values (where each 

simtimeൌ 0 ൌ ߬ corresponds to 1 of 795 historical trade dates) and construct the simulation paths 

on a daily basis, where each simulation path has 120 monthly time steps (10 years).  The 120 month 

projection is used because at the point of origination of the loan, there are 120 months (per their 

assumption) until balloon maturity when the entire loan balance is due.  The parameters ߚ ,ݍ ,ݎ௝  ௦ߪ ,

and ߛ௝ are all as of the simulation date.  In my rendering there were 795 simulation dates run from 

11/1/2007 thru 12/31/2010 reflecting 795 separate sets of calibrated parameters.  The observed 
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parameters are ݎ, the constant risk­free rate; ݍ,	the dividend rate; and ߪ௦ , the volatility on the S&P 

500.  The estimated parameters ߚ௝ and ߛ௝  are both indexed to ݆ ൌ1,…,3 indexed property types which 

characterize the REIT returns being simulated.  So, for example, VNO (Vornado) is an office REIT 

(index ݆ ൌ 3) whereas EQR (Equity Residential) is an apartment REIT (index ݆ ൌ 1).  Figure 14 

lists the REITs used. 

1.3.3. Pricing:  The simulations consider changes in the observed and estimated parameters 

as well as changed anchor points for the value being simulated.  In Figure 15, for example, I observe 

two simulation paths for the Apartment REIT Composite Index ሺ݆ ൌ 1ሻ on two different simulation 

dates 9/1/2006 (blue) and 12/30/2008 (red).  Notice that the blue simulation initiated in 2006 has 

a higher initial anchor value reflecting the composite value of REITs on 9/1/2006 of about 7.05 

whereas the red simulation has a lower anchor value of 3.31 reflecting the accurate decline in REIT 

value over the 2.25 years.   Additionally, the blue simulation path generated in 9/2006 exhibits much 

lower volatility than the red simulation path generated in 12/2008, as it should.  The simulations 

accurately reflect the differences in the volatility, uncertainty and value in the market at those 

periods of time15. So, what I would expect is that at simulations initiated in ‘bad’ times the incidence 

                                                            
15 It is true, then, that as the loans in the sample age, that it is unnecessary strictly to simulate beyond maturity, but to preserve the 
robustness of the code for future study, I keep track of the age of the loan and its maturity date.  The REIT evolution always is 
simulated 10 years into the future, the loan maturity which governs the time at which default may occur in simulation ൑ 120.   
Figure 16 shows 100 simulations for ݀ ଷܹ for 1 trade date projected 120 months. 
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of loss events projects should increase resulting in simulated synthetic price compression.  In Figure 

17, I show for 10,000 simulation paths initialized on each of 9/1/2006 (blue) and 12/30/2008 (red), 

the rank ordered distribution of the cumulative portfolio loss across the 32 loan sample, with the ݔ­

axis showing simulation paths 1 thru 10,000 and the y­axis showing the corresponding portfolio 

loss generated on such path.  The impact of the simulation process on the loans is clear and they 

in turn govern price.  Empirically, the losses from the simulation correspond to the intuition of the 

earlier plot which showed increased volatility of paths generated in bad times (12/30/2008, red) vs. 

good times (9/1/2006, blue).  The blue points shows low to no simulated portfolio losses on 9/2006 

in the 120th maturity month whereas the red points show non­trivial simulated defaults in the 94th 

maturity month (aging) with levels that, interestingly, are consistent with recent history.  The losses 

generated at the portfolio level in the simulation are the result of linking the loans, underlying the 

tranches, underlying the CMBX Series 1, to the simulated REIT values.  The pricing process begins 

with the simulated REIT value	 ఫܸ,௧തതതത as well as the initial value of the	 ఫܸ,଴തതതത which represents the 

observed value of the REIT at initialization (simdateൌ ߬) of the simulation.    
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ఫܸ,଴തതതത  is an initialization value visited on each day in the historical record.  They introduce the 

historical factor 1/ܶܮ ଴ܸ,௞
௜  which represents the historical (at origination) inverse of the loan to 

value ratio for the ݅ െ ݇ loan in the ݄ݐ െ ݅ CMBS transaction16. The	݄ݐ ൌ 32 Brownian idiosyncratic 

shocks associated with the individual loan risks is captured in the discrete representation of the 

Brownian random walk in the remaining terms.  The value on the LHS of the equation is thus the 

set of ݅ ൌ 32 simulated property values.  The values ௧ܸ,௞
௜  act as a rolling barometer for the health of 

the loan.  In the simulation at maturity the loan defaults “if the value per dollar loan drops below 

a default trigger value which is set equal to the loan amount to be paid at maturity”17.  Specifically 

if  ෨ܸ௧௜ ൏ 1 at time of Maturity ሺݐ ൌ ܶሻ then the loan defaults as the debt obligation is greater than 

the company value.  This borrows from Merton’s condition in both restriction and action but the 

restriction is arguably unnecessary and unrealistic.  Consider Figure 18 which shows two simulations 

of the MF REIT on two separate days (9/1/2006 and 12/30/2008).  Figure 19 shows the 

corresponding calculated value for a single MF loan with ܶܮ ଴ܸ ൌ 0.75 with ଵ

௅்௏బ
ൌ 1.33 and 

maturity at 120 months (blue) and 92 months (red).  Since the barometer is above 1 at maturity for 

both simulations, no default ensues.  One objection to the assumption is that in the interval between 

                                                            
16 Only one transaction is implemented. 
   
17 DVH, 2012   
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the start of the simulation, ݐ ൌ 0, and maturity on the loan ݐ ൌ ܶ, the value of the property may 

drop below the value of the debt (“underwater”).  Thus, one could make the argument that ‘If the 

property is underwater, why not trigger a ‘ruthless’ default in the simulation intertemporally if  ܸ෨௧௜ ൏

1, ݐ	∀	 ∈ ሺ0, ܶሻ as has been demonstrated in the literature including Jarrow, etal 2008’  I return to 

this later in the paper when introducing my generalization, Model 3. 

The contra­argument is that debt service on an IO loan is the coupon which is typically less 

than principal and interest amortization.  Thus if the income generated by the property at any time 

in the future is sufficient to pay debt expenses (and non­mortgage operating costs of the property) 

then the borrower might be willing to continue to make debt service payments even if the property 

was ‘underwater’ wagering that at maturity, the property value would have turned to a level ෨்ܸ௜ ൐ 1.  

As the vast majority of CRE loans are paid at maturity through refinancing (’rolling’ the debt), this 

perspective, implicitly assumes that lenders at such time in the future would be willing to lend at 

leverage levels at maturity ሺܶሻ such that the amount that could be borrowed at time ܶ maturity 

would at least be sufficient to payoff the original mortgage issued at ݐ ൌ 0.  The loss at the portfolio 

level is expressed below and represents the aggregation of all the losses at maturity.   

  , 1, , ,
1

* *max{1.0 ,0}
I

ptf ptf i i i
t k t k k t k t k

i

L L w D V


       (22) 
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The weight ݓ௞௜  represents the contribution of the loan balance to the ݇ െ ௞௜ܦ  .portfolio ݄ݐ  

is the “indicator function taking the value of one if at time ݐ loan ݅ of CMBS deal ݇ defaults.” They 

assume the ݅ loans are equally weighted and that ݇ ൌ 1, and, as stated, maturity default decisions 

are fixed to ݐ ൌ ܶ maturity.  Next, I allocate the Losses to the CMBX tranches by deducting the 

credit enhancement attachment points (low, L and high, H) as maximums from the portfolio loss 

normalizing by attachment 

 
, ,

,

max{ ,0} max{ ,0}ptf L ptf H
t k t ktranche

t k H L

L CE L CE
L

CE CE

  



   (23) 

The insurance responsibility thresholds for which sellers of protection have to provide cash 

in the event of actual default are tranche insurance boundaries (attachment points, shown also with 

coupons in the Figure 20).  The CMBX swap contract has fixed­rate and floating­rate legs.  The 

fixed coupon (‘leg’) is paid to the seller of protection.  In exchange, the floating leg is insured against 

defaults.  A typical swap like CMBX is described Figure 3.  One way to price out the risk of these 

responsibilities in the index swap contract is to use Monte Carlo simulation to articulate the impact 

of the default event on the underlying loan and corresponding tranche cashflows, as well the 

resultant tranche pricing.  The floating rate cashflow which in this example with default simulated 

only at maturity must be ൌ 0 for all ݐ other than ݐ ൌ ܶ  is given by: 
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  , , 1,
floating tranche tranche

t k t k t kCF L L      (24) 

followed by the computation for the fixed leg   

   , 1,1 *fixed tranche
t k t kCF L c     (25) 

The notation is imprecise, because if the default can only occur at maturity ܶ and the cashflow for 

the fixed tranche is based upon the loss of the prior period, then the cashflow at maturity must also 

be certain as defaults cannot occur prior to maturity.  This is inconsistent.  I correct for this in the 

code ensuring that that default occurs at maturity and that the fixed and floating rate summations 

and difference accommodate the correct cashflow calculation.  Finally, the equation below describes 

calculation of the present value of cashflows for tranches AAA, AM, AJ, AA, A, BBB, and BBB­:   
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The cashflows are discounted at the risk­free rate which is appropriate as the model price is 

understood to be taken as ‘known’ and riskless.  The risk free rate in this implementation does not 

vary with time (static term structure), nor is it path dependent (dynamic term structure).  In 

contrast, under the risk­neutral measure ܳ the cashflows represented within the expectations 
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operator, ܧொ, are path dependent.  So, for purposes of clarification ݎ௙ ൌ  ሺ߬ሻ is the observed 5­yearݎ

on the run risk­free rate at historic date ߬, as specified by DVH, 2012.  

1.3.4 Testing and ex­post analysis of Model 2:  I implement an OLS suggested by DVH who 

claim R­sq overall of 91%: 

  tranchePx tranche trancheCMBX OptMod       (27) 

My initial results are reasonable visually (Figure 21), and statistically (Figure 22), but they do not 

map consistently to their claim.  Figure 21 shows pricing based on the calibrated simulation.  I 

know that the value of REIT prices (equity values, observed) recovered rapidly in the wake of 

support from the Fed in the QE programs.  During this period, volatility on the S&P began to wane 

and REIT prices more than recovered their levels prior to 11/1/2007.  Similarly, AAA CMBX prices 

which, relative to REIT prices, were relatively stable, also recovered but BBB­ CMBX credits did not 

recover (Figure 23).  Investigating further, looking at all the CMBX prices over the same period, I 

see a pattern of persistent muting in the recovery of lower credit rated instruments (Figure 24).  

Why?  Knowing that the volatility terms in Merton are not designed to identify state variables 

outside of the closed form equations, I ask a few follow­up questions:    First, what causes the 

compression in prices; and Second, if my simulation and calibration are correct, how is 
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‘compression’ captured solely within parameterized Merton where ߚ௝ and ߛ௝ capture non­explicit 

volatility drivers?   

 I observe empirically a lagging price recovery in CMBX lower credit rated classes relative 

to REIT equity price recovery over the same period.  As such, this faster recovery is coming through 

into my simulation in the Merton conditions in the ܧ௝ terms ߪ௦ଶ terms which are observed and 

inputs.  In fact other sources of signals that were CMBX specific may have been influencing CMBX 

pricing.  If any of such CMBX specific data demonstrated significance, then I could say that the 

model proposed by Merton and parameterized by DVH in their implementation is not adequately 

specified.  All information public in semi­strong efficient markets needs to be incorporated into 

pricing.  But the pricing estimator as specified first in the Merton calibration, and second in the 

parameterized simulation did not account for explicit changes in the fundamental credit health of 

the CMBS universe.  To verify, I incorporated the most general form of a CRE credit warning with 

30 plus days delinquency rates (Figure 25) for the entire CMBS Universe released monthly and 

available to CMBS practitioners constant intra­month.  Although Merton’s model does not allow 

for the use of other information such as delinquency as input to valuation, in the context of CRE 

Loan and CMBS valuation delinquency is significant (see Jarrow etal, 2008).  Loan level delinquency 

status for underlying collateral as well as sector level delinquency should play a formal role in semi­
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strong form efficient markets.  Thus considering the macro delinquency status as an ‘environmental 

input’ can be considered as public information that is informing prices of illiquid securities.  The 

information is public to those practitioners trading the objects, though it may be private to others.   

Adding the delinquency information and expanding the regression to incorporate 30+ delinquency 

status for the CMBX Universe shows delinquency status to be significant for all tranches increasing 

the R­sq especially for lower rated credits. 

  30tranche tranche tranche dlqCMBX synthCMBX Dlq         (28) 

The results of the regression specified above are summarized in Figure 26 with the impact shown 

in the plot of BBB­ (Figure 27).  Additionally, I show all my results for the regression in time series 

plots below for all classes (Figure 28).  Including delinquency ex­post as exogenous and additive to 

the Merton calibration, does seem to interact more significantly with the lower rated tranches, but 

also demonstrates significance in the higher rated tranches as well. 

Continuing my analysis, I want to see if the risk free rate had any explanatory relevance to 

pricing.  To investigate, I layered into the regression the slope of the US Treasury Curve (10s­2s) 

which is a standard technique to incorporate the prospect of changes in borrowing costs of the US 

and prospects for inflation into expectations of ancillary instruments.  The slope of the treasury 
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curve contributed to the explanation of CMBX prices and demonstrated improved results (Figure 

29 and Figure 30 significant in all classes, AAA shown).  Looking at the coefficients, higher AAA 

prices are associated with higher delinquencies which is sensible as managers migrate to better 

credits in periods of uncertainty.  I repeat the same calculations for (Figure 31) BBB­ and see similar 

intuitive results.  Higher BBB­ prices are associated with lower delinquency (30days plus) and a 

flatter yield curve two indications of economic health which allay investor concerns thereby raising 

prices of credit sensitive BBB­ securities.  In this period, since delinquencies are increasing and the 

yield curve is steepening (Figure 32), I would thus expect to see the opposite effect, which I do.  

Finally, given the central role of residential property value deterioration in the Crisis and the 

concomitant steepening in credit spreads (Figure 33), I consider both factor to improve the 

explanatory profile of the model ex­post and to test for misspecification of the Option Model.  As 

with both treasuries and delinquency status, the Case­Shiller 20 Housing Index, an established 

indicator of macroeconomic health, demonstrated significance over the period studied and the credit 

slope were considered in the regression (Figure 34 and Figure 35).  In contrast to Treasuries, and 

to be expected, the credit slope was insignificant for the AAA classes but significant for the lower 

rated classes, in particular for BBB­.  The Credit Slope was insignificant for AAA but significant for 

BBB­.  Additionally as the Credit Slope would be inappropriate for pricing exercises it should be 
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dropped.  With the modest selections of relevant explanatory variables, I am able to achieve adjusted 

improvements.   

I observe some significant correlation amongst the Independent Variables (Figure 36), 

especially between the Credit Slope and the option model, but, no omitted variable from the 

RAMSEY Reset as ݀݁ݐݐ݅ܨ	ܨ ൌ 72.13 ൐ ௖௥௜௧ሺଷ,଻଼଺ሻܨ ൌ 3.78, (Figure 37).  Additionally, the Variance 

Inflation Factor Test indicates that since none of the ܸ ௜ሻߚሺܨܫ ൐ 10 then on my first pass, there does 

not appear to be a problem with multicollinearity amongst the explanatory variables. Not 

surprisingly, the Option Model does exhibit the highest VIF (Figure 38).  Also, the condition index 

at n>30 and p>.50 indicates some competing dependency between the option model, CaseShiller 

and the CreditSlope (Figure 39). Since Credit Slope is insignificant with AAA and for other reasons 

related to pricing it should be dropped.  Finally, the White and Breusch Pagan Tests (Figure 40) 

does indicate that non­constant variance heteroskedasticity may be present.  However, the Durbin­

Watson Test for autocorrelation (Figure 41) between the error terms (the residuals) is inconclusive 

because at 6 degrees of freedom and 795 observations, the statistic is between the upper and lower 

bounds.  While there were some problems with layering in additional variables, the significance of 

them in many ways is compelling (Figure 42 and Figure 43).  The significance of the sparse yet 
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intuitive added variables is that Model 2 can be rejected as an unbiased estimator of market prices.  

Theta is not white noise and it is correlated with other variables.   

1.3.5 Initial extensions to Model 2:  I extend Model 2 to incorporate 6 property types18 by 

increasing the number of REITs.  This allowed me to expand the number of loans in the sample 

from 30 to 172 reflecting all the loans in GG5.  Necessarily each of the equations are re­indexed to 

݆, ݇ ൌ 1,… ,6 and the system is solved with more parameter outputs: 

        2 2 2 2

1 2 402
min ( ) min ...

x x

f x f x f x f x       (29) 

As CMBX Series 1 has more than 1500 loans associated with it, there was still a possibility of sample 

selection bias.  As my sample of 172 loans is the exhaustive set of loans from one of the deals 

actually associated with CMBX Series 1 and as the loans are accurately weighted and distributed 

across all property types, this set should more accurately reflect the distribution of risks of CMBX 

collateral in the form of securing underlying CMBS tranches.  The summary statistics of the GG5 

transaction sample are shown in Figure 44.  As is evident, the weighting of the transaction is not 

out of line with my weightings using blind property type distributions and sample weightings 

                                                            
18The six property types are: Multifamily (MF), Retail (RT), Office (OF), Industrial (IN), Hotel/Lodging (LO), and Other (OT) 
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though, admittedly, the representation of MF in this trust is less than the universe average for this 

vintage cohort.  The evolutions below are correlated,  
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where ݎ denotes the risk­free rate, ݍ the dividend rate, ݀ܵ/ܵ the return on the S&P500 index driven 

by Brownian motion ݀ ଴ܹ. ݀ ௝ܹ a Brownian motion representing sector level shocks for the property 

sector ݆	and ܼ݀௜,௝ a property specific shock.  All factors are orthogonal to each other except that the 

sector level shocks, ݀ ௝ܹ are correlated with each other, so the original equation: 

  ,( , )    , 1,...,3j k j kCorr dW dW dt j k     (31) 

is now, in my extension for 6 property types, written as: 

  ,( , )    , 1,...,6j k j kCorr dW dW dt j k     (32) 

For each draw governing the sector level shocks I use the correlations determined from the 

calibration to populate for each simulation date the calibrated correlation matrix: 
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1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

  

  

     
     
     
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 
 
 
 
 
 
 
 
  

   (33) 

Each row is associated with a given property­type (1, 2,…,6).  This expands the approach where the 

calibrated correlation matrix is across (1,…,3) property types.  I calculate the calibrated correlations 

with the output shown in Figure 45a; in Figures 45b thru 45d I show the other calibrated output of 

, ,   i i iV   for the 6 property­type implementation as previously shown for 3 property­types. 

The set of charts in Figure 46 show the average simulated inverse LTV evolutions across 

1000 simulations for 1092 trading days for all 6 property types.  This is the trigger for default when 

it goes <1 for any loan in any simulation.  As is evident, several evolutions show similarities, but 

there are important differences that are consistent with intuition. The Industrial (IN4) property 

type exhibits a more muted evolution associated with its lower volatility, but also exhibits some of 

the most severe triggering on average.  This is consistent with intuition that Industrial property 

types are safe unless they go bad at which point they default with no ready alternative use.  The 

Other/Diversified property type (OT6) appear at times counter cyclical and the lodging property 

type (LO5) appears to demonstrate a muted response post the worst of the Crisis.  What is a bit 

surprising is that the levels for the triggers for LO5 and OT6 on average appear better than expected 
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and better than all the other property types.  This could be attributed to a sample bias previously 

discussed where the economic profile of these particular loans are not representative of the portion 

of the CMBS universe occupied by these property types. 

Simply incorporating 6 property types, however, does not produce markedly improved 

results vs. those analyzed in the 3 property­type case.  There are some differences and influences of 

more REITs and that may be impacting pricing.  The top panel of Figure 47 shows the fair value 

pricing somewhat choppier for the lower rated tranches than with the earlier study.  However, the 

bottom panel showing the composite fair value vs. the composite market price tells the story.  The 

signal of Theta, as in the 3 property type rendering, indicates that the market prices are expensive 

relative to the risks19.   

1.4. Model 3:  A Generalized Calibration Hybrid:  A central conclusion of DVH, 2012 

(CMBS were not sold at firesale prices during the crisis) invites three important questions:  First, 

given their results, if their model was comprehensive then there should be few, if any, exogenous 

variables that demonstrate statistical significance in ex­post analysis.  Second, as DVH state, many 

assumptions they made and the small loan sample they use invite inquiries as to whether or not a 

                                                            
19 Again, perhaps we are asking the wrong ‘questions’ by seeking a better fit to market prices? 
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larger, more representative sample reflecting a greater number of loans, more varied property types, 

and more accurate loan and bond cashflow and maturity profiles, will further explain differences 

between market and model prices.  Finally, if the market is efficient then it should not be possible 

to earn extraordinary profits in backtesting by using model driven signals20. Thus by inquiring into 

the comprehensiveness of the model and generalizing it to accommodate any and all types of loan 

collateral, I should more readily be able to assess the efficiency of the CMBS sector. 

In order to address the question above, it was necessary to examine in greater detail and 

eliminate many assumptions to create a richer model (Figure 48).  Additionally my numerical 

procedure applies 1000 simulations to each historical date, ߬.  This section thus presents a general 

structural model for pricing CMBS using a calibrated hybrid approach.  The method of 

implementation is a calibrated simulation that specifically considers the heterogeneity of loan 

characteristics by accurately incorporating correct cashflows and ruthless default.  The 172 loan 

sample is examined over 795 trading days in the Crisis.  Backtesting indicates a sizable disconnect 

between fair value and market pricing and simple trading tests suggest that extraordinary profits 

can be earned with the generalized model. Statistical analysis provides results suggesting an 

                                                            
20 See Jarrow, etal 2008. 
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inefficient CMBS market and the need for the generalized model to precisely evaluate CMBS risks 

and opportunities. 

The generalization presented in this section is important because it incorporates many 

realistic features of the loan building blocks of CMBS in a well specified simulated economy.  In 

the examination, this dissertation gives new insights into CMBS market efficiency and new results 

that contrast with DVH, 2012 which is incorporated in this dissertation as a special case of the 

generalized approach. In so doing, this section provides a more precise perspective on CMBS 

efficiency. 

 1.4.1. Cashflows and pricing: With the introduction of principal and interest cashflows that 

are correctly timed, the determination of fair value requires some changes to DVH’s approach to 

calculating fair value.  The building block of CMBS and CMBX is the mortgage loan collateralized 

by the income producing property.  Commercial mortgages have a variety of profiles that have 

evolved over time to provide the borrower with important flexibility in both the purchasing of 

properties and refinancing of existing debt.  One of the staples of commercial mortgage lending is 

the balloon mortgage.  In a balloon mortgage maturity at time ܶ , the monthly payments of principal 

and interest from month 1 to month ܶ െ 1 are based upon a level payment amortization schedule 

calculated using some fixed multiple, ݊, of ܶ, or ݊ܶ.  So, for if ܶ ൌ 120,   ݊ ൌ 3, then the level 
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payment amortization schedule for months 1: 120 െ 1 ൌ 1: 119 would be based on an amortization 

schedule21 with ݊ܶ ൌ 3 ∗ 120 ൌ 360. 

A typical balloon loan in a CMBS transaction would be a 10/30 which is a 10­year balloon 

where the mortgage payments monthly for the 1st 119 months of the life of the loan are based upon 

fully amortizing level pay mortgage formulas, but in the 120th month (10th year) of the life of the 

loan, the entire loan outstanding principal balance is due.  So, for the first 119 months we see in 

Figures 49a and 49b the familiar level pay mortgage profile with constant monthly payments for a 

10mm 6% mortgage of $59,955.05 with increasing amounts of principal and decreasing amounts of 

interest. When we consider the 120th month of the balloon mortgage the promised principal 

repayment dwarfs all the prior payments,  but to be sure as shown in the summary of month 1:2 

and then 116:120, the payments are being made as scheduled per the balloon note terms in Figures 

50a and 50b.   

In addition to the balloon maturity profile, there are other variations to mortgage terms that 

provide borrowers with flexibility.  These include shorter or longer balloon dates, periods of interest­

only payments where no principal is paid, step­up provisions that follow interest only periods where 

                                                            
21 See Fabozzi, 1994; Hayre, 2001; Jarrow etal, 2008; and several other sources for standard mortgage payment formulas. 
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payments are increased based upon increases in building occupancy, and many combinations and 

variations of these themes.  The set of inputs for each loan in the GG5 transaction that dictate the 

݅ െth mortgage payment schedule are straightforward.  The inputs for one mortgage in GG5 are 

summarized in Figures 51a and 51b.  Figure 52 shows total promised payments from origination 

for all loan underlying the GG5 transaction.  As is evident, the heterogeneity in the timing and 

amounts of cashflows is considerable22.  For valuation purposes, therefore getting the promised 

cashflows correctly modeled at the loan level linking the payment schedules to the simulation with 

the algorithms described below, should yield different results. 

1.4.2. Cashflow algorithms:  Since the priced objects of our inquiry are bonds and not loans, 

the simulated trust level cashflows must also be allocated accurately through the bond capital 

structure.  Here there are ݇ ൌ 8 classes and their weights, coupons and beginning balances are 

summarized23 in Figure 53.  Although the cashflows of the loans (and the trust and bonds) are 

monthly, the simulations are conducted daily.  So, intramonth the promised cashflow balances of 

the loans, trust and bonds do not decline, but intermonth they may decline.  The promised cashflow 

                                                            
22 The loan origination dates of some loans precede others.  GG5 is not full until the 19th month (12/1/2005) which precedes ߬ ൌ 1 ൌ

11/13/2007.  Property location attributes are not included in Model 1, 2, or 3 but are collected for use included in the reduced form Model 4. 
 
23 There is no Interest­Only strip (IO) contemplated, though it could be incorporated.  The structure assumed corresponded to that used by 
DVH as do the coupons and balance weights.  All values are estimated from sources I found to be reliable, but could be adjusted further if 
necessary. 
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balances of the loans, trust and bonds only decline intermonth based upon the promised cashflow 

schedules determined at origination.  Nevertheless, as market pricing is available daily, a daily 

pricing exercise intramonth is conducted based on daily simulations which may exhibit simulated 

defaults based on the implemented simulated methods which also reflect different initialized risk 

free rates on each initialized simulation date.  Let each historical time, ߬, with 1 ൑ ߬ ൑ 795, be the 

historical date at which a simulation is initialized with daily frequency.  I don’t have historically 

updated cashflows from industry vendors or trustees24 (only promised) and state this data limitation 

and account for it in the notation and code.  The total actual ‘trust’ principal cashflows across all ݅­

loans determined from promised principal schedules is: 

     
1

N

i
i

P t p t


    (34) 

and corresponding trust promised interest cashflows is:  

     
1

N

i
i

C t c t


    (35) 

                                                            
24 For this dissertation the balance at each initialization period is assumed to be based upon the promised historic cashflows as opposed to the 
‘real’ historical cashflows which would reflect aberrations to the promised payment schedule due to actual default or actual prepayments.    
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At the end of each monthly payment period there is an outstanding principal balance for each of 

the loans, trust and bonds reflecting monthly payment.  The allocation of principal at the beginning 

of each monthly payment period, ݐ, is made from ܲሺݐሻ and such payments are said to be sequential 

pay, senior/subordinate with ‘top­down’ priority payment of principal made first to the AAA class 

until its balance is reduced to zero, then to the AJ class until its balance is reduced to zero,…, then 

to the Other class until its balance is reduced to zero.  In each monthly payment period, ݐ, the 

beginning balance of the bond, trust and loan objects are adjusted for the principal payment made 

in the prior period, ݐ െ 1.     

Let ℙ௞ሺݐሻ represent the principal payment to the ݇ െth bond at the beginning of the 

payment period.   Then ॹ௞ሺݐሻ represents the end of payment period outstanding principal balance 

on the ݇ െth bond, and ॹ௞ሺ0ሻ the original bond balance, so: 

        1  k k kt t t        (36) 

and for each payment month ݐ, principal payments ℙ௞ሺݐሻ, for ∀	݇ tranches are determined as: 
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Whenever there is excess principal such that at any time ݐ, and for ∀	݇ ൐ 1 ܲሺݐሻ െ ∑ ℙ௞ିଵሺݐሻ
௄
௞ୀଵ ൐

0 then such positive principal payment will be captured and allocated to the next ݇ െth  tranche in 

the sequential pay structure.  The chart and corresponding table in Figures 54a and 54b build 

intuition with the exact values in the chart of principal allocation for a fictitious $500mm 

transaction25.  The algorithm for allocation demonstrates the payments as expected with the 

maximum principal amount allocated in any given month equal to the total amount in the trust 

(“All k”) column on the left of Figure 54b.   For example in 3/2008 3 bonds ݇ ൌ 5, 6, ܽ݊݀	7 each 

receive some payment of the $16.789mm principal paid in that month.  After the payments of the 

outstanding principal balance due to the tranches are made in full, the tranche receives no further 

payments of principal.  The totals at the bottom are identical to the initial balances at the top (in 

grey) as expected.   

  The interest paid to each of the classes is paid from the trust interest collected from the 

loans, ܥሺݐሻ as defined above.  The algorithm for promised interest payment, ॴ௞ሺݐሻ to the bonds is: 

                                                            
25 A more extensive example showing generated output from the code is provided in Appendix F. 



­59­ 
 

 
 

   
   

     

1
1

1
1

 1, max 0, min 1 , ;
12

  1, max 0, min 1 ,
12

k
K

k
k k

k

for k t C t

t

for k t C t t








          
    

                





 
   (38) 

with ߡ௞ representing the fixed rate coupons for the bonds.  Figure 55 shows the corresponding 

interest for the same $500mm sample transaction in the previous table above.  The total interest 

collected ܥሺݐሻ in this example is identical to the amount paid in each month (grey), as expected.  

Finally, the total promised payment for the ݇­th bond in any month ݐ is then: 

  ( ) ( ) ( )k k kt t t       (39) 

To extend for simulation is largely a matter of notation and capturing the items in the code.  

Once the loan and bond cashflows are correctly modeled in the promised case as shown above, then 

the exercise becomes straightforward.  For each ݅	loan, on each simulation path, ݈ at each simulated 

time step ߬  there is an associated simulated principal cashflow ݌෤௜ሺݐ, ݈ሻ and a corresponding simulated 

interest cashflow ܿ̃௜ሺݐ, ݈ሻ.  The total ‘trust’ simulated principal cashflow on each simulation path, ݈ 

at each time step ݐ is the aggregated loan level principal cashflows for ܰ loans is:  
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and the total ‘trust’ simulated interest cashflow is:  

     
1

, ,
N

i
i

C t l c t l


     (41) 

However, since I am substituting (and allocating) the promised loan cashflows with 

simulated cashflows, I have to adjust in the allocation algorithms.  Let ℙ෩௞ሺݐ, ݈ሻ represent the 

simulated principal payment to the ݇ െth bond, at time ݐ on simulation path ݈, and ॹ෩௞ሺݐ, ݈ሻ the 

corresponding pathwise outstanding principal balance on the ݇ െth bond, with ॹ෩௞ሺ߬ ൌ 0, ݈ሻ the 

original ݇ െth promised bond balance and ॹ෩௞ሺ߬, ݈ሻ, the simulated initialized promised outstanding 

principal balance for the ݇ െth bond initialized as the identical historical value used in all 

simulations ݈ beginning at historical date ߬ so that the value corresponds with the outstanding 

principal balance at time ݐ ൌ 0: 

     , 0 , ,k kl t l        (42) 

Then, necessarily, for all ݐ ൐ 0 

       ,  1,  ,k k kt l t l t l          (43) 

where for each simulated payment month ݐ ൐ 1, simulated principal ℙ෩௞ሺݐ, ݈ሻ, for ∀	݇ tranches are: 
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The corresponding simulated interest payments, ॴ௞ሺݐ, ݈ሻ to the bonds is then: 
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Finally, the total simulated cashflow payment is then: 

       , , ,k k kt l t l t l         (46) 

Going back to the promised cashflows for a moment, I need to note that the face amount of the 

bond based upon the promised principal cashflows is: 
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and so I can represent the risk­neutral fair value price as a percent of par for the ݇­th bond as: 
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where, as before, ߬ is the historical simulation date and ݎሺ߬ሻ is the 5 year on the run risk free rate 

as utilized by DVH, 2012 who do not specify an interest rate process.  The observed market price 

for the ݇­th bond is ݉௞ሺݐሻ.  So, the risk metric of Theta for the ݇­th bond is:  

       , ,k k kt l b t l m t      (49) 

When I want to calculate the composite value for Theta across ∀݇ I first weight the fair 

value by the relevant outstanding principal balance and total trust principal such that the weight of 

the ݇­th bond is: 
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which of course is not the same percentage as the bond weight at origination.  As principal pays 

down according to schedule, the AAA bond, ݇ ൌ 1, will decline in relative weight vs. the other 

bonds. This weight then is used to give a composite fair value price as: 

       
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b t l w t b t l
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and the composite market price as: 
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which allow us to then express Theta as a composite value across all bonds in the trust as: 

       , ,t l b t l m t      (53) 

1.4.3. Term vs. ruthless default:  Importantly, I pursued further the issue of ruthless default 

versus default at maturity.  In Merton, 1974 the closed form solution restricts default from occurring 

prior to the debt maturity date.  So, in the life span of a loan, the date of primary interest from a 

creditor perspective to the company is the date at which the loan is meant to be repaid.  There are 

arguments for and against this approach.  Jarrow, etal 2008 show that many loans in the sample 

that exhibited default did so prior to maturity.  Similarly, in the small sample of 172 loans used in 

this analysis, 10 actually defaulted in the historical period following the analysis, and all 10 exhibited 

default prior to their maturity date.  The contra position speaks to ruthless default behavior speaks 

directly to leverage.  If, as is the case with a sizable portion of outstanding loans in the CMBS 

universe, the borrower has an Interest Only loan, from the borrower perspective, as long as the 

NOI on the property is sufficient to pay the debt service on the loan, then temporary declines in 

the price driving it below the amount of debt outstanding may not drive the property holder to 

default on its obligations to the creditors.  A rebuttal of course is that with no principal payments, 
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there is no ‘skin’ in the game and the likelihood of ruthless default increases. The debate is ongoing 

one and not resolved here.  What is resolved is that evidence of ruthless default does exist in the 

literature and anecdotally in industry business practice.  The risk is real and it should be considered. 

Shown are two plots (Figure 56 and Figure 57); one for AAA and one for BBB­ across 3 

years of trading, daily.  The Black series are the actual prices of CMBX from the marketplace. The 

Gold series are DVH’s model with 30 loans and 3 property types with maturity restricted default 

and no statistical adjustment ex­post.  The Blue series is also maturity restricted default, but with 

all the adjustments made this Fall (172 loans, 6 property types, correct maturity date, etc.).  The 

Red is the most recent version of DVH extension incorporating ruthless default.  These plots suggest 

that bond traders anticipate ruthless default as a behavior to be expected of CRE borrowers, thereby 

pricing it into CMBX, resulting in greater convergence to market pricing.   

Corresponding to intuition, the lower rated BBB­ tranche exhibits greater sensitivity to the 

prospect of this borrower threat of exercising the default option versus the exercise of default 

restricted to the maturity date of the loan.  As a result, the BBB­ Ruthless simulated price remains 

more compressed in keeping with the market price observations than the maturity default 

simulation for the same instrument.  Finally, particularly for the BBB­ series, the incorporation of 

the improvements in the data and expansion of the property types reflected in both Red and Blue 
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series show significant improvement over the model from the DVH (Gold) with respect to the fit 

to market prices (Black).  As such, when I layer in the ex­post statistical analysis, I would expect to 

see somewhat different, if not better, results those previously calculated.  As anticipated the 

probability of default associated with Ruthless Default behavior is larger for all property types than 

the pdef restricted to maturity under simulation (Figure 58).  Interestingly, Merton’s closed form 

which is restricted to maturity approaches the ruthless behavior under simulation at the REIT driver 

level with results similar to those discussed at the loan level in the sample in Model 2.  Finally, the 

Expected Losses over the study period generated under the Ruthless Default simulation and non­

Ruthless default are as shown in (Figure 59).  

1.4.4. Results:  In the initial comparison (Figure 60) the profile of fair value across all bonds 

is much more stable. This reflects the modified incorporation of the cashflows, as well as ruthless 

default.  Most striking is the reversal of the composite profile of fair value in Model 3 vs. Model 2.  

I see a tighter relationship with market pricing and, consistent with the results of Model 2 a strong 

indication that the market pricing of the securitization overall (black line) more than compensated 

buyers for the risks as contemplated in the application of the Model 3 assumptions to the 172 loans 

underlying GG5. This reflects the importance of the accurate timing of cashflows when making 

judgments about the relative risk and rewards of securities within the securitized markets.  Figure 
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61 shows again clearly that not all bonds are exposed to default risk equally.  Some are more exposed 

to risks than others; and Theta does a good job of disclosing the relative risk/reward profile of the 

tranches and when they are more/less sensitive to changes.   

1.5. Model 4:  Reduced Form ­ Jarrow, etal 2008:  In this section I consider the reduced 

form approach of Jarrow, etal 2008 as an alternative to the Merton, 1974 approach (Model 1) and 

the generalized approach to the calibrated simulation (Model 3) and its special case (Model 2).  A 

27 factor correlated economy is simulated and CREL valuations are conducted under a 9 factor HJM 

where loan level default barriers are governed by State variables with events modeled using a Cox 

Process.  Despite the difference with other approaches in ‘triggering’ default the goal of the reduced 

form approach is the same:  specifically, to seek the present value of default/loss adjusted simulated 

cashflows.   

I use the notation and allocation algorithm provided in Model 3 where the simulated 

cashflow for the ݇­th bond at time ݐ on simulation path ݈ is given as: 

       , , ,k k kt l t l t l         (54) 

and the face amount of the bond based upon the promised principal cashflows is: 
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This enables us to represent the risk­neutral fair value price as a percent of par for the ݇­th bond 

as: 
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Given the observed market price for the ݇­th bond is ݉௞ሺݐሻ the risk metric of Theta for the ݇­th 

bond is then:  

       , ,k k kt l b t l m t      (57) 

The notable sole distinction between the expression for fair value in Model 4 and Model 3 (above) 

is that the risk free rates in Model 4 are path dependent (not static and historic as of time ߬) and 

generated within a multifactor Heath­Jarrow­Morton, 1992 (“HJM”) term structure framework26 

such that for Model 4:  

                                                            
26 To ensure that there is continuity with Models 1, 2 and 3 where term structure is not contemplated, though I only select ݎሺݐ ൌ 60, ݈ሻ the 5 
year pathwise simulated forward risk­free rate, ݂ ሺ60, ,ݐሺݎ ሻ, soݐ ݈ሻ ൌ ݂ሺ60, ,ݐ ݈ሻ from the vector of rates that make up the pathwise term structure 
generated under HJM.  I thereby eliminate concerns as to whether the different rates that constitute the term structure are disproportionately 
responsible for differences among Model 4 fair value compared to the other three models.  The forward rate are pathwise and determined under 
HJM, but I only select a single rate for each path and apply it to all simulated cashflows for discounting.  In the Cox Process, I use the entire 
pathwise forward term structure under HJM.  This is a useful simplification; it does beg the question, however, as to the impact of the entire 
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 As discussed, I have historic volatilities for NCREIF and each of its property x regional 

elements, simulation of each of them is as comprehensive for our modeled economy as simulating 

each of the components of synthetic NCREIF.  I seek to generate a composite view of the economy 

in the future of which actual NCREIF is simulated as one of several cross­correlated random 

variables.  This gives us greater precision in mapping the loan level parameters of interest related 

to default to elements of our simulated economy.     

 While NCREIF is quite informative, (see Appendix C) it is surely not the entire US 

economy.  To gain a correlated and distributed perspective on possibilities in the future I broaden 

the components of NCREIF to include property x region sub­indices (traded) and BBREIT indices 

(also traded) in addition to the entire risk­free term structure.  It is worth reiterating a point on the 

choices of NCREIF and BBREIT/ICF.  NCREIF reflects a stable and well regarded source for 

property values throughout the US.  It reflects values of CRE reported by commercial banks, 

investment banks, pension funds, and life insurance companies.  In contrast, BBREIT/ICF reflects 

                                                            
term structure on Theta, as well as the value of interest rate risk, and credit­risk decomposition, all of which are areas of inquiry in current 
research building on this dissertation, but outside its scope. 
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property specific REIT prices.  By including both types of indices (both of which are tradable) I 

capture a difference between the market’s view of property specific risks (BBREIT, much more 

volatile) versus a property fundamentals perspective on a mostly unlevered long term buy and hold 

portfolio of CRE assets (NCREIF, less volatile).  Figure 62 shows the differences in the historical 

volatility of the national NCREIF across all property types and the National BBREIT index, which 

confirms intuition that REITs are much more volatile than the properties owned by them.  

To ensure that our inputs were consistent with the historical record, I examined the 

historical record for the daily returns for the Office (OF) property type for NAREIT (a REIT index) 

and NCREIF.  As expected the NCREIF index historically exhibits more muted volatility than the 

REIT index as NCREIF is a measure of longer term property value, while REITs are a measure of 

pricing daily expectations that may be influenced by factors apart from those traditionally associated 

with CRE valuation.  This pattern is consistent across all property types in comparing REITs to 

NCREIF.  The historical daily volatility for REITs exhibits much greater volatility than the spline 

fitted NCREIF indices for all property types, is consistent with the historical record (Figure 63). 

The stochastic processes for all ݅ ൌ 1, … ,27 factors of the economy including the property 

x regional indices, the regional property indices, the REITs and the interest rates are: 
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  , ,i l i i ldV rdt dZ     (59) 

Where ݎ denotes the risk­free rate and ܼ݀௜,௟ the ݅ ൌ  Brownian motion representing correlated ݄ݐ

shocks for the economy.  All factors are correlated with one another as described in the procedure 

above. So, for this model with ݅ ൌ 27 correlated components of the economy I write: 

  ,( , )    , 1,..., 27j k j kCorr dZ dZ dt j k     (60) 

for each draw.   

I adopt the technology in a multifactor approach to simulate the entire forward rate term 

structure for our economy using Heath­Jarrow­Morton, 1992 allowing the accurate modeling of the 

evolution of the entire forward rate curve.  For our simulation I require the elements of the risk free 

term structure to be equivalent to a package of zero­coupon bond with unique discount rates that 

satisfies 

  i i
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i i i i
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c e p e c e pe  

 

       (61) 

where ic is the coupon of a coupon bearing CMT on the run bond, ip is its principal payment at 

maturity, r  is the constant CMT yield to maturity,ݐ, is the time of receipt of cashflow, and iz is the 
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unique vector of discount rates with the interpretation of theoretical zero­coupon bond yields from 

(0.5,30)i  and which, together, constitute the spot rate term structure of risk free interest rates.27   

From the spot rates I can construct the entire forward rate curve where each forward rate is noted 

as28 ( , )F t T  and where the set of all forward rates on ( , )t T constitutes a forward rate evolution. 

Since each unique spot rate of interest ( ) (0, 0)r t F is a forward rate where the maturity date is 

equal when I say I am simulating forward rates, I use as the core the set of forward rates that are 

also the spot rates for all ( , )t T , Unlike the other n parameters, under the multi­factor HJM 

framework the forward prices each have a drift term that is correlated with their historic volatility 

where in a n­factor model I will have n corresponding Brownian motions 1( ),..., ( )nZ t Z t to work 

with to generate forward rates from the initialization point of the simulation.  So, for our purposes 

the basic multifactor HJM model is 

 
1 0 0

( , ) (0, ) ( , ) ( , ) ( )
t tn

i i n
i

f t T f T t T dt t T dZ t 


        (62) 

where the forward rate process starts at time 0t   with the forward rate (0, )F T  and evolves driven 

by various Brownian motions and a drift and in discrete terms as 

                                                            
27 For further explanation of the bootstrap method see Fabozzi, 1993. 
 
28 For example, the 3 month forward rate in 3months, the 10 year forward rate in 10years, etc.). 



­72­ 
 

 
 

  ( ) ( ) n n nf t dt f t dt Z dt         (63) 

n kZ Z Z  where kZ is defined as the correlated random shock for parameter k across all k 

parameters,   

  ( ) ( )k k k kf t dt f t dt Z dt         (64) 

and where Z is simply a separate uncorrelated random draw for a given parameter k.    

Since I want to correlate the HJM forward rate evolution of 1, 2, ..., 9k   forward rates 

with the 18 other elements of the economy, I substitute the correlated kZ  for nZ  by implementing 

the standard Cholesky decomposition applied to the variance­covariance matrix  determined from 

the correlation history of required kZ  values embedded within all historic kx values within a 

stochastic process framework.  I observe the matrix  has three characteristics: 

1. It is symmetric such that T   ; 
2. The diagonal elements satisfy 

, 0i l  ; and 
3. It is positive semi­definite so that 0T

k kx x  for all nx  . 
 

Since these three conditions are met29, I can use the Cholesky decomposition which satisfies: 

                                                            
29 See Haugh (2004) for further review of this procedure. 
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  TC C     (65) 

as the matrix  is 27x27, and I can find matrix C .  Given matrix C , I create a row vector iw  of 

independent random draws on ~ (0,1)N  and take the product of matrix C and vector 

( , ) ( (0,1))iw t l rand N of 27 random draws to create 27 correlated random draws, ( , )kZ t l , for 

each time step 
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i

Z t l C w t l


    (66) 

where each kZ  is correlated amongst all 9 forward rates and 18 property indices and the discrete 

form of the HJM evolution is then   

  ( ) ( )k k k k kf t dt f t dt Z dt         (67) 

which then allows us to simulate 1, 2, ..., 27k   State variables, representing the cross correlated 

US Economy  

  ( , ) ( , ) ( , )k k k kx t dt l x t l Z t l dt      (68) 

together, ܺ௞ሺݐ, ݈ሻ: 
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   (69) 

While I simulated the state variables in our economy for each month forward for 30 years, 

I discount for valuation purposes with an associated path­wise term structure which is transformed 

from the simulated forward rates.  A smoothing procedure of interpolation is used to construct ݈ 

theoretical monthly term structures that are consistent with our simulated economy and appropriate 

for loan level simulated cashflows of principal.  

In Figures 64a, 64b and 64c I show snapshots of the correlation matrix, the variance 

covariance matrix and the Cholesky decomposition generated in the simulation code30.  This 

procedure is initialized on each simulation date, ߬.  I show for descriptive purposes a few snapshots 

of values generated by the correlated simulation in Figure 65.  The results are intuitive with respect 

to the volatility of NCREIF vs. REITs as well as the difference in the periods of the Crisis with 

REITs exhibiting broader distribution of paths prior to the Crisis versus property values measured 

by NCREIF and both REITs and NCREIF exhibiting sustained levels of volatility as the worst of 

                                                            
30 Whenever practical parallelized computation was utilized to optimize speed distributed across internal microprocessors.    
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the crisis subsides with NCREIF showing relatively more persistent uncertainty than REITS when 

compared with their pre­crisis levels. 

1.5.1. The state of the loan:  Now that I have established the simulation of the US economy, 

I have to discuss the risk of default pathwise under simulation.  The state of the loan (current, 

delinquent, or default) is considered at each step of the simulation.  Inputs to the realization of a 

new state for the loan on the simulation path are the correlated random variables of the economy 

previously described as well as the state of the loan at the time step.  In this sense the state of the 

loan which is stochastic governs the cashflow and future cashflow of the loans by either defaulting 

or not as per the method below.  What I am going to do is to link the state variables to property 

characteristics and to employ a choosing process, or modified Cox Process, to visit the risk of 

defaults.  The link between the simulated economy and the loan state is established by using the 

MLE’s as coefficients within the Cox Process.  The coefficients that govern our choices at each ( , )t l  

are thus the MLE’s where the hazard rate estimation was done separately for fixed­rate and floating­

rate loans. Figure 66 shows the loan state transitions over 2.2mm loan life observations from 1998 

to 2005; Figure 67 contains a summary of the loans contained in the estimation.  For non­CTLs, 

the focus of this dissertation, there are 94,011 fixed­rate loans. The number of defaults for the fixed­

rate loans is 2,153.  The parameter estimates for a competing risk current versus delinquent point 
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process and for the default point process are shown in Figure 68.  The parameter estimates are based 

on 

 

 coefficient variable
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   (70) 

and I discuss the specific implementation further below. 

1.5.2. Property characteristics, ௜ܷሺݐሻ:  To simulate defaults in our economy made up of 27 

State variables I need to link the state variable to property specific parameters with significance to 

the events of default and loss.  Formally, I identify 10 property characteristics of any commercial 

real estate loan that demonstrated significance in Jarrow, etal 2008 with respect to modeling 

historical defaults, ܷሺݐሻ.  2 are time dependent 8 are static determined at origination.    The 8 static 

Property Variables related to a property’s potential default in the simulated economy are: 

• ACLI foreclosure index at origination 
• NOI = (Original NOI/Original Loan Balance) 
• Original Loan Balance = Log of Original Loan Balance 
• DSCR 
• LTV 
• Loan Coupon 
• Coupon Spread = Coupon – Risk Free Rate at Origination 
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The 2 time dependent Property Variables related to a property’s potential default in the simulated 
economy are: 

• Age of loan (ݐ):  = (1 – remaining term/original term) 
• Delinquency Status of the Loan (ݐ): 

 0, current 
 1, delinquent 
 2, defaulted loan, real estate owned (REO) 

1.5.3. Delinquency Status, ௜ܰሺݐሻ:  The delinquency status of the loan contributes to the 

likelihood of a loan defaulting at some future point in time. In REE 2008 2.2mm loan life transitions 

were evaluated.  The results of that study showed a tendency for loans at 60­89 days delinquency to 

transition to a worse state.  As such, for continuity with 2008 the study and for reasons supported 

by it, I compress the characteristic delinquency state of loans at initialization of the simulation into 

current (0­59 days), delinquent (60­90+), or default (REO/Foreclosure) as of the initialization date 

of the simulation.  This data characteristic for each loan is provided by Trepp, LLC.  Once the 

simulation begins, the delinquency status is no longer historic, but simulated, based on the default 

process discussed below. 

1.5.4. Use of MLE Coefficients:  I utilize in this dissertation the MLE’s associated with the 

state variables and the Property Characteristics in the simulation in the choosing process of the 

simulation to visit whether a loan will default at some time ݐ on some path ݈ in the simulation31.  I 

                                                            
31 The detailed account of all MLE’s and discussion of the delinquency and default intensity process are provided in Appendices D & H. 
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assume, necessarily, that the present relationships between the simulated economy and the loan 

profiles in my sample are substantively similar to those in the historical study which covered 1998­

2005 from which the MLEs were determined.  Refer to Figure 4, previously mentioned, which shows 

a sample of MLE for one property x regional pairing of multifamily x northeast.  The state variables 

( , )t kX X t l  and are non­deterministic (random) as they are simulated and vary through times.  

Each ( , )kX t l  state variable has a corresponding parameter estimate (coefficient) k  which are 

constants and do not vary through time, giving:  

   
1 2 14

1 2 14
1 2 14

1 2 14
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 
 
 
 
 
 





   



   (71) 

Notice that only 14k   of 27 state variables are represented.  This is of course because the loan level 

characteristics associated with the MLE are only relevant for the subset of all 27k  state variables 

that were simulated.  So, for example an MLE associated with Office Indices is irrelevant to a Retail 

property being simulated even though both Office and Retail property indices were simulated under 

the correlated procedure discussed.  Similarly, a property with location in the Northeast does not 

have a corresponding MLE estimator in the Midwest.  Thus, the state variables considered in the 

code are a subset of the total state variables simulated, 14 27( , ) ( , )k kX t l X t l  .  Specifically, 
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• 9 Forward Treasuries (3mo, 6mo, 1yr, 2 yr, 3 yr, 5 yr, 7yr, 10yr and 30 yr) 
• 3 NCREIF Property Value indices  

o 1 All Properties/All Regions  
o 1 Property Specific Indices (Multifamily, Lodging, Industrial, Office, Retail, 

Other) 
o 1Regional Specific Indices (East, West, South, Midwest) 

• 2 BBREIT/ICF Stock Price indices 
o 1 All Properties 
o 1 Property Specific Indices (Multifamily, Hotel, Industrial, Office, Retail, 

Other) 

Like the state variables, property specific characteristics ( )iU t  for all ݅  loans are also modified 

with parameter estimates which is a vector of constants (determined again from the MLE study) 

corresponding to each property specific characteristic, ( )iU t .  The purpose of ( )iU t is to relate 

the loan specific characteristics ( )iU t  for a given loan ݅ on the simulation path ݈.  Coupled with the 

state variables, we see the beginning of a joined influence of the simulated events ( , )k kX t l , 

deterministic loan profiles ( )iU t , and the ( )d iN t updated loan payment status, in ( , )i t l

forward through time ( : T )t across different outcomes ( : )l L  in the simulated economy.  This 

leaves us approximately with 

  ( ) ( , ) ( ) ( )i k k d i i

macro micro

t X t l N t U t          (72) 
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where the two influences on the payment status ( , )k kX t l  and ( ) ( )d i iN t U t  can be 

considered macro­ and micro­economic influences, respectively.   

1.5.5. Reduced form probability of default:  I consider one risk, default, to illustrate the basic 

technique of comparison between simulated (macro) and loan specific (micro) influences on the 

loan payment status.  This has the characteristic of questioning the valuation of such loans amidst 

an evolving economy.  The basic technique is similar to what I did previously.  Earlier I simulated 

variables that were informed by a calibration.  Here I also simulate variables and relate them to 

coefficients for the purpose of estimating the probability of default, or specifically, default intensity32

d ,   

 
( ) ( ) ( , )

[ , ( ), ( ), ( , )]
d i

d d i d i d kN t U t X t l
i kt N t U t X t l e          (73) 

where the interval between sequential time observations is Δ given the loan payment histories and 

the times series observations for the state variables 
1( , ) T

tkX t l 
 

                                                            
32 A primer on the use of the Poisson process in modeling default intensity leading into the use of the Cox Process as introduced by Lando 
and an advancement from ordinary jump diffusions is found in Appendix G.  A detailed account of the ‘switching’ is found at the end of 
Appendix H.   
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 [ ( ) ( ) ( , )]1

1[ , ( ), ( ), ( , )]
d d i d i d kN t U t X t li id k e

t N t U t X t l
   


   

     (74) 

has the interpretation33 of being the probability of default over the interval [ , ]t t   .   

1.5.6. Payment State Transition Process:  I consider the simple Cox process which can 

thought of as a kind of measuring stick with which to gauge a conditional action of default within 

the simulation.  I use the MLE to determine estimates for default payment states on a simulation 

path informed by their prior switching state on the path between current and delinquent.  I initialize 

the simulation in the current state, 0, (it could be initialized as delinquent, 1).  At each time step t  

I calculate an intensity for a current state c , 

 
( ) ( , )

[ , ( ), ( , )]
c i

c c i c kU t X t l
kt U t X t l e        (75) 

with associated probability of being current as 

  [ ( ) ( , )]

1
[ , ( ), ( , )]

(1 )c c i c kc i k U t X t lt U t X t l
e       


   (76) 

                                                            
33 See Jarrow, etal 2008, pg 458. 
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and an intensity for a delinquency state q where 

 
( ) ( , )

[ , ( ), ( , )]
q i

l l i l kU t X t l

kt U t X t l e        (77) 

 with associated probability of being delinquent as  

  [ ( ) ( , )]

1
[ , ( ), ( , )]

(1 )il l l kq i k U t X t lt U t X t l
e       


   (78) 

The tree below describes the payment state assignment at each time and each path for each loan. 

 
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  (79) 

Let ( , )i t l be the payment state of the loan at the beginning of each simulation period.  The loan 

enters the system as either current or delinquent.  Default is an absorbing state and thus in the 

interval from the time of a realized default on a simulation path ߬ to the stated maturity date ܶ, the 

loan will remain in default in each period of the simulation.  Let ( , )i t l in the model structure be 

the choosing process to determine the state of the loan immediately following entrance into the 
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system.  At this stage the loan may transition/switch to another state of delinquent or current based 

upon the random draw from the Poisson distribution with the stochastic interarrival rates, c  and 

q  as described below; I can call ( , )i t l  the delinquency process.  Immediately following this loan 

payment state assignment, the loan is then exposed to another process ( , )i t l  to determine the 

final payment state for the loan at time ݐ.  This also entails a random draw from the Poisson 

distribution with the stochastic interarrival rates, d .  I  call ( , )i t l  the default process, as described 

below.  When the loan transitions to a worse state the indicator variable is set equal to 1.  I make a 

separate Uniform random draw ( , )Z t l  outside the simulated economy to determine the state prior 

to the choice with the threshold condition here defined as the transitioning value for ( , )i t l  where: 

                              If 

( , ) &

( , ) &

( , ) &

( , ) &
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i c
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with 1=delinquent and 0=current.  I do not have prepayment penalty criteria information, for the 

loans in this study and thus I do not consider the intensity process  

 
( ) ( ) ( , )

[ , ( ), ( ), ( , )]p i
p p i p i p kN t U t X t l

i kt N t U t X t l e          (80) 
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and associated probability of prepayment34.  Importantly, by eliminating prepayment, a direct 

comparison with ‘credit­only’ models in the future (from rating agencies, for example) is made 

much easier. 

In summary, the delinquency/current process  ,i t l occurs at every timestep for each of 

the i loans and has the effect of turning the delinquency status coefficient on or off in default 

intensity, ߣௗ.  Specifically, when ( , ) 1 ( , ) 1 ( , ) 0i i d it l N Nt l t l      which is then used in 

the default process  ,i t l .   ,i t l is the Cox Process for the hazard of default that considers 

the payment state ( , )i t l  of the loan determined by the process  ,i t l .   The delinquent status 

is not always arrived at, and when it is, it does not guarantee default35, as default is governed by 

,ݐௗሾߣ ௜ܰሺݐሻ, ௜ܷሺݐሻ, ܺ௞ሺݐ, ݈ሻሿΔ which is statistical, not deterministic.   As in  ,i t l , the process 

 ,i t l where the absorbing default state36 may be realized requires: 

                                                            
34 Treatment of prepayment is done effectively in Jarrow, etal 2008 and is outside the scope of this study. 
   
35 Importantly, note that upon arriving to the default process ℚ௜ሺݐ, ݈ሻ which utilizes the default intensity ߣௗ as a lower bound, that 
if the payment state ॺ௜ሺݐ, ݈ሻ ൌ 1 indicating delinquency, then this has the explicit effect of updating the credit State variable 
ܰሺݐ, ݈ሻ to ܰሺݐ, ݈ሻ ൌ 1 at time ݐ on path ݈.  The impact on the default intensity ߣௗ is that |ߠௗ ௜ܰሺݐ, ݈ሻ| ൐ 0 at time ݐ on path 
݈.  Otherwise, of course, ߠௗ ௜ܰሺݐ, ݈ሻ ൌ 0. 

  
36 In the code we convert the 0,1 non­event/event notation to the familiar industry status 2=default, 1=delinquent and 0=current. 
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As we see the model contemplates the realistically unlikely, but nevertheless possible (as 

seen in data), event of a transition from the current state to the default state37, bypassing 

delinquency.  Default is an absorbing state, such that if default occurs at some time ݐ, on some path 

݆ the loan cashflow on that path terminates on ሺݐ, ݈ሻ and the recovery rate process begins for that 

loan on the path.  If default does not occur, the payment state ( 1, )
i

t l of the loan following both 

choices at each time step becomes the persistent ‘new’ state of the loan at simulated ݐ ൅ 1.  At ܶ, 

the loan matures as promised on a path ݈ if no default occurs prior to ܶ.  Again, a detailed 

description of ‘switching’ is found in Appendix H.   

For any simulation path that generates a payment state of default, the loan is immediately 

captured and stored and indexed with respect to its default time ݐ and path ݈ .  In this implementation 

I assume a simple constant loss rate for a loan that reaches default and a constant time to recover 

proceeds from sale of the property38.  Depending on whether one is interested in valuing only the 

                                                            
37 This can be changed to ignore this possibility resulting in choices from ℚ௜ሺݐ, ݈ሻ current to delinquent vs. to default. 

38 Recovery and loss rates could be modeled as stochastic processes; see Jarrow, etal 2008. 
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loan, or the loan in a securitization, or both, the technique is equipped with the HJM interest rate 

process to immediately discount the default adjusted cashflows reflecting deterministic recovery 

rates on risk neutral term structure suitable for pricing of all path dependent objects. 

1.5.7. Results – Fair Value:  I repeat the snapshot for fair value and Theta results presented 

in each of the prior models.  What we see is the ‘calmest’ of all the models.  The risks captured 

through the Cox Process, the state variables, the incorporation directly of delinquency and default 

data enable us to secure a perspective on the risk of the loans and valuation for the bonds with the 

most comprehensive data and technique of the Models presented.  The composite pricing shows 

substantially attractive pricing versus risks in Fair Value versus pricing of the market (Figure 69).  

Again, as in prior cases, this is categorically the case across all bonds at all times.  Figure 70 provides 

us with a precise view into the risk/reward profile of the bonds under the reduced form technique 

using Theta.  As before there is considerable differences amongst bonds x time both relative to one 

another and versus the capital structure overall.  Finally, we refer back to Figure 2a in which I 

compare the measurement Theta across all four Model approaches. Based upon the evidence, the 

reduced form approach is the most compelling.  It is unique in its ability to incorporate vital 

information about the loan profiles in balanced way.  As such, the signals appear to counter those 

proposed by DVH, 2012 regarding efficiency and pricing in the CMBS market and are more 



­87­ 
 

 
 

consistent with those suggested by Jarrow, etal 2008. As noted the actual default experience of the 

GG5 transaction with a more than 20% lifetime default rate, bolsters this perspective. 

1.5.8.  Limitations: As always there are caveats and limitations.  First, the MLE’s are ‘stale’; 

meaning that although they were estimated over more than 2mm loan life observations, the cut­off 

date for that data was in 2006.  As such, while the relationships contemplated in the MLE’s is 

probably still valid, the financial crisis may have impacted them. Nothing can be done about this 

without access to data which is costly and difficult to obtain.  Second, the delinquency and default 

experience is estimated from actual default tables of GG5, but they were not provided for each 

historical date at the loan level.  The mapping of the deal level default experience which was available 

for all historical dates combine with sporadic loan level defaults for the Crisis mapped well.  

Nevertheless, more granular and regular data would be beneficial.    
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Section 2: Recovery Period (January 2013 thru March 2014) 

In the previous section, I considered the underlying risk profile of CMBS/CMBX and the 

risks of the underlying cashflows within the financial crisis.  Our bond pricing data for the Crisis 

was isolated to CMBX Series 1 from the period 11/1/2007 thru 12/31/2010 (the Crisis).  In Figure 

71 (boxed in purple) we see a spike in probabilities of default for all CRE property types, in early 

2012, from the perspective of the Merton model.  Since the Merton model is forward looking to the 

maturity of the debt one implication from Merton is that the Recovery began in earnest around the 

beginning of the 3rd quarter of 2012 (Figure 71, arrow).   

2.1. Data – Recovery:  While the loan level data is representative of the CMBS Universe it 

is not comprehensive.  Additionally, I only have pricing for CMBX Series 6 tranches, and not the 

underlying bond tranches (collateralized, by the loans) and may therefore only consider at most 6 

priced bond objects on any trading day from which to select a portfolio.  This is similar to the 

limitation of the earlier section during the Crisis where we were limited to discussion of CMBX 

Series 1 and similar to the limitation of DVH 2012.   

To reiterate, however, the prices of CMBX are quite rich and generally must reflect the 

pricing of the 125 underlying tranche collateral.  Where this study and model approach adds insight 
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is that it peers through to the loan collateral securing the tranche collateral that secures the top level 

CMBX tranche pricing.   If there is a disconnect between the loan level risk and bond level risk 

then we should see differences across model approaches in comparison of model fair value to market 

prices.  A discussion of the cashflows produced by the code can be found in Appendix F. 

The CMBX Series 6 capital structure is provided in Figure 72.  The subordination levels 

and coupons are determined from the average subordination levels and from review of the 

prospectus supplements of the underlying 25 transactions.  The CMBX Series 6 structure 

implemented assumes a simple senior subordinated structure as previously discussed for the CMBX 

Series 1.  The pricing of the CMBX tranches through BB were obtained from Markit.  Tranches 

below BB are not priced but exist and serve as the first loss piece of the capital structure.  The data 

for pricing and the underlying economy is daily and provided thru 3/7/2014.       

2.2. Valuation ­ Recovery: As in Section 1, I compute the fair value price and Theta for each 

of the tranches in this case for CMBX Series 6.  I consider the exact same models, and only alter 

the loan and capital structure required to reflect the new period and objects under consideration.  

Otherwise the approach is identical.  Since the purpose of the study is loan and bond valuation, I 

begin the analysis on 1/28/2014 which was the date of issuance of the CMBX Series 6 swap objects.    
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The overview snapshots for each of the models showing the tranche level Theta as well as 

Theta for composite price are found for Model 1 (Figures 73 & 74), Model 2 (Figures 75 & 76), 

Model 3 (Figures 77 & 78), and Model 4 (Figures 79 & 80).  As is evident, there are substantial 

differences in the default adjusted pricing for each of the models.  Overall, across all models the 

difference between fair value and the market price (Theta) is much more muted than what was 

generated by the models in the sample during the Crisis.   

This should not be surprising for a few reasons.  Unlike the loan collateral underlying 

CMBX Series 1 during the Crisis study where the average age of the loans at the outset of the study 

was 32 months, the loans underlying CMBX Series 6 are new, with the age of the loans as of January 

2013 ranged from 2 months to 16 months.  It would be highly unusual for new issue loans to exhibit 

default this early in the loan life cycle and, as stated before, the delinquency profile for all the loans 

in this transaction is 0 in each month during the study, within a broader market environment shift 

in credit characterized by substantial declines in the seasoned CMBS universe overall.  Generally, 

loans will exhibit greater delinquency and default manifestation as they get older in the CRE 

universe and this has been argued to be the result of exposure of CRE property leases to 

uncompensated termination driven by tenant business failures as well as speculative lease­ups of 

properties that simply did not occur according to plan, or failure of the management company to 
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secure new tenancy in building when existing tenants decided as their right to not renew.  These 

and many other property specific events may occur in the loan’s borrowing period (see 

Brueggeman/Fisher) and may result in deterioration of cashflow proceeds in the form of rents that 

cause defaults prior to maturity.  However, lockboxes and the integrity of conduit lending programs, 

at least early on, mitigate such immediate deterioration in loan health early in its life.  

Loans do age however, even in the Recovery, and this is surely going to be picked up in the 

Model 4 reduced form approach that captures the non­static information of the age in the Cox 

Processes that govern its delinquency default simulation.  Additionally, in the case of Model 4 the 

information related to current delinquency status = 0 also represents a key dynamic factor.  Model 

4 thus stands apart from the other models considered in having by its structure the unique ability 

to ‘digest’ such telling updated loan level information as age and delinquency status of collateral 

which, using such updated information necessarily informs simulations of future loan cashflows at 

initialization for each time ݐ.  In the recovery period, marked by low volatility marketwise and 

characterized by current health of the loans, Model 4 will thus generate defaults assuming, 

accurately, the current state of the loans (݈݀ݍ ൌ 0) but with increasing age.  Thus the transition to 

the default state from the current (non­delinquent) state will be less likely than in the Crisis (marked 

by observed delinquent profile of loans) and older collateral, but the age (and other characteristics) 
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will also be considered resulting in non­trivial simulated delinquencies and defaults during the 

Recovery period as is appropriate.  Transitions to the default state are taking place because of the 

interaction between the loan parameters (static and in the case of delinquency status, dynamic) and 

the simulated economy under a rich simulation which can consider extreme possibilities.   

Turning to the tranchewise Theta comparison charts (Figure 80) for the reduced form 

Model 4, we see the black line (composite Theta) is stable across the study.  The tighter AAA Theta 

vs. the composite Theta, indicates that AAA are more fairly priced than the composite of all tranches 

in the CMBX Series 6 transaction overall. Moving to the right, the AS class, subordinate to the 

AAA class, indicates a reasonably stable profile, but shows a shift relative to the composite, not 

categorically higher than it or lower than it.  The AA Class exhibits higher Theta values relative to 

the composite, indicating greater relative value than the composite transaction overall when 

considering the market pricing x risk.  This perspective is even more pronounced in the case of the 

A and BBB­ tranches that too exhibit ‘cheap’ pricing in the market vs. the risk contemplated under 

Model 4.  In contrast, the BB tranche is clearly absorbing simulated losses early on.  Though it is 

not the first loss piece, there is only 3.2% subordination to the BB and any loan losses in excess of 

3.2% will impact the BB tranche.  Early on in the Recovery, there was greater uncertainty about the 

future with higher anticipated default likelihoods in the CRE sector.  During the periods from 
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1/2013 thru 6/2013, BB pricing appears expensive outright relative to the market pricing with Theta 

<0.  During the summer, however, following discussion by the Fed on continued accommodative 

policies, the underlying risk considered by the Model 4 clearly indicate a shift in the relative value 

of BB versus market pricing resulting Theta >0.   

These relationships discussed in depth for Model 4, however are not consistent across all 

models.  To build the intuition across the four models, we consider Theta for the composite CMBX 

price versus the composite market price for all four models (Figure 81).  In the case of Merton, 

(Model 1) we see there is some differentiation in the risk estimation early on with increased 

distinction relative to the market price in 5/2013.  Following that period, Theta becomes more 

muted contemporaneous with increases in CMBX Series 6 pricing.  If you consider the loan level 

probabilities of default generated from Merton’s structural form model previously discussed we see, 

overall, a decline in probabilities of default that are occurring contemporaneous with declines in 

Theta.  The implication, from an investment management perspective would be that while risk is 

declining, and the bonds are ‘cheap’ overall, the opportunities are more muted than they were at 

the beginning of 2013. Prices are starting to look ‘expensive’ vs the underlying risks.   

In the second panel on the right of the top row Figure 81, we consider Model 2 which is 

the basic calibration hybrid approach.  Relative to Model 1, Model 2 exhibits a higher risk profile 
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than Model 1.  Generally, Model 2 indicates favorable pricing opportunities versus the underlying 

risks under the calibrated simulation, but there are periods, recently, where Model 2 seems to pick 

up conditions of increased uncertainty.  Anecdotally, we know that there were a few days of 

precipitous drops in the market responding to events in the Ukraine, and this would be picked up 

in the volatility parameters calibrated under Model 2.  Nevertheless, the serious deficits in the 

assumptions of Model 2, questions just how accurate estimates of Fair Value (and thus Theta) 

generated can be39 and I investigate the statistical veracity of claims from Model 2 in the statistical 

section below where I consider efficiency.   

In the second row of Figure 81 on the left we see composite Theta for in Model 3 (the 

‘evolved’ version of Model 2).  In Model 3 all assumptions in Model 2 were addressed, and 

eliminated40.  What we see in Model 3 is a very tight relationship between fair value and market 

pricing that accurately considers the loan level collateral and default adjusted cashflows under 

calibrated simulated conditions.  It is a much richer model than Model 2 and the trend down 

towards Theta=0 is consistent with Model 1 and its associated loan level probabilities of default.  

The conjecture that things are getting expensive for the reasons stated are clear and a quick glance 

                                                            
39 We attempt to answer this question in the Section 3 in the discussion of trading tests. 
 
40 Specifically, I incorporate the accurate maturity, balance, interest only periods, amortization and balloon dates for the loans in 
the sample; increase the number of REITs from 10 to 35, informing 6 property type diffusions; and incorporate ruthless default.    
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at the lower rated tranche Thetas indicate indeed that defaults are being simulated (BB), but less so 

as evidenced by increases in Theta for BBB­ tranche.  

Finally, on the right panel of row 2 in Figure 81 we see the composite level Theta for the 

reduced form Model 4. In Model 4 we see a profile similar the other models with a downward 

compression of Theta indicating decreasing attractiveness in market prices relative to underlying 

risks.  The profile can be said to be the most regularly conservative of the approaches with shifts in 

risk assessment vs. market pricing appearing to exhibit frequent and precise sensitivity.  Anecdotally, 

when early in the summer 2013, Chairman Bernanke’s comments on tapering caused markets to 

swoon, Theta under Model 4 increased.  Similarly, in October 2013 when uncertainty surrounding 

the nomination of Chairman Yellen (also related to tapering) emerged causing uncertainty in the 

market, Theta for Model 4 also increased.  At the same, time, recent events in the Ukraine did not 

have the immediate and transitory impact on Model 4 through the volatility parameters as they 

seem to have impacted Model 2.  Nevertheless, prices, from the perspective of Model 4, are judged 

to be most expensive relative to the underlying risk compared with the three other models.
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Section 3: Testing of Efficiency (Crisis and Recovery Periods)  

The models discussed provide us with perspectives and insights into the pricing of their 

underlying risks.  In the earlier portion of the study on the Crisis, I investigated with some rigor 

the pricing capabilities of Model 2.  In particular I saw considerable evidence of significance among 

many explanatory variables exogenous to the Model 2 structure.  In light of the significance of these 

explanatory variables I called into question the viability of Model 2 as a source for market price 

estimation. 

As we saw in the Crisis portion of the study as well as the Recovery portion, the estimates 

for fair value are quite different across the different model technologies at the composite level, and 

vary broadly across time and rating within and across model approaches.  While I had considerable 

success in determining accurately with high statistical significance and R­sq the missing components 

of price not contemplated in Model 2, the statistical exercise was motivated by the pursuit of the 

‘ultimate’ model that would map precisely to the market price.  This motivation, however, is 

predicated upon the assumption that market prices are efficient. 

But what if market prices are not efficient? 
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In the case of fair value pricing, then, we wouldn’t necessarily seek to map the fair value price to 

the market price and use such mapping as a barometer for success.  In fact, if market prices are 

inefficient, we might rather want a low explanatory relationship between market price and the model 

fair value. 

Based on the statistical evidence below, the prior work in this study and in other works41, 

there is strong evidence that the CMBS market is inefficient consistent with groupthink behavior 

of crowds.  CMBS has, to date, not adopted derivatives pricing technology to assist in the evaluation 

of underlying risks at the loan and bond level.  As a sector highly exposed to several subtleties in 

risk exposure and valuation complexity that grapples with possibilities of default, loss, prepayment 

and dramatic changes of timing at the loan and bond levels, it should not be at all surprising to see 

evidence of imprecision in market pricing versus the underlying risk exposure.  Since the Crisis and 

the Recovery exhibit dramatically different pricing profiles environments, they provide a rich 

proving ground to investigate claims of inefficiency.  If my claim of CMBS market inefficiency is 

correct then at least two conditions should be readily disclosed from an analysis of the data across 

different fair value pricing models: 

                                                            
41 See Jarrow, etal 2008; Stanton & Wallace, 2012; KKY, 2010; Ashcraft & Scheurmann, 2010, and others  
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Condition 1a – In High Stress Environments a Bad ‘Fit’ should indicate a Good Signal:  

The relationship between fair value prices generated independently from market prices should 

exhibit low explanatory power for the market price. This should be borne out in both OLS and 

quantile regressions.  In the presence of several fair value estimators, the better the fair value 

estimator, the lower the explanatory power for market price. The conjecture is that in high stress 

times, the information related to the risk events cannot be parsed efficiently by market participants 

in the absence of a robust technology specifically designed to evaluate the likelihood of risks 

manifesting and quantify, dispassionately, the pricing of such events at the bond level.  

Condition 1b – In Low Stress Environments a Good ‘Fit’ should indicate a Good Signal:  

In the absence of stress in the marketplace the threat of risk manifestation dissipates.  In these 

market conditions, the market participants are able to determine pricing without having to articulate 

the underlying risks in a sophisticated manner.  As such, the fair value in these conditions should 

also be sensitive to changes in market conditions concomitant with the market actors and good fair 

value pricing should begin to map more closely to the market pricing.  So, in these environments, 

the conjecture is:  the better the fit, the better the model, though clearly since the pricing methods 

differ from the market, the relationship should still be relatively weak.  Exogenous factors here may 
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contribute to explanation of market pricing in conjunction with fair value and should improve the 

fit. 

Condition 2 ­ Systematic and Extraordinary returns should be made with the best model 

earning a.) the greatest relative returns and b.) the best empirical returns: Finally, the ‘proof’ is in 

the results of trading strategy returns using Theta.  Conditions 1 and 2 in some sense are only valid 

if Theta generated from the fair value with the worst fit to market price actually generates the best 

returns.  Theta should provide clear, non­random, buy and sell signals such that a portfolio manager 

following such signals should be able to systematically earn extraordinary returns.  Additionally, if 

the claim of inefficiency is correct, then the better Theta, the better the relative extra ordinary 

returns for portfolios constructed using Theta where the better Theta is the one generated from the 

fair value price with the lowest explanatory power for the market price.  The implication being that 

the market price does not reflect well the underlying risks and, as such, the veracity of claims of 

comprehension and transparency of risks as embedded within the market price may readily be called 

into question.   

Necessarily, as is a common assumption, the fictitious portfolio manager must engage in 

small enough trades such that such moves do not unduly influence the market price.  This is non­

trivial, particularly in the CMBX synthetic market.  Swaps below investment grade in the market 
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such as BB frequently (as with the underlying collateral) traded on a ‘by appointment’ basis.  The 

liquidity for such securities is sporadic and bid/offer spreads factor multiples of higher rated classes 

such as AAA.  I keep these institutional subtleties in mind in the design of the trading test below, 

but they do represent a caveat to the conclusions. 

3.1. Condition testing:  The testing for Condition 1a is straightforward.  I perform the most 

basic OLS and quantile regressions for each of the four models across the two study periods on a 

daily basis, the Crisis (11/2007­12/2010) and the Recovery (1/2013­3/2014).  For the Crisis, I regress 

the composite market price CMBX Series 1 against the composite fair value price for each of Models 

1 thru 4.  The condition 1 testing, provides some initial support for inefficiency in the market with 

differentiation amongst the four models and consistent ranking across OLS and quantile regressions 

which are summarized in Figure 82.   

All fair value metrics are significant, and it is clear that not all fair values have the same fit 

to the market price.  The model with the tightest relationship to the market price is Model 2, my 

adaptation of DVH 2012 with an R­sq of .68 using OLS and a ‘pseudo­R­sq’ of 0.38 in the quantile 

regression. In contrast, the model with weakest relationship to the market price is Model 4.  For 

that model, the R­sq exhibited is 0.18 using OLS and 0.06 using the quantile regression.  If the 
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Model 4 metric Theta provides greater insight in the Crisis than Theta generated from Model 2, I 

may say the results stand in support of claims of CMBS inefficiency during the Crisis.   

The testing for Condition 1b is identical to 1a.  I perform OLS and quantile regressions for 

each of the four models which are summarized in Figure 83.  What we see is a near perfect reversal 

from the Crisis ranking with Model 2 now showing no explanatory relationship with market pricing 

and also becoming insignificant.   In contrast Model 3 and Model 4 show a relatively higher degree 

of explanatory power mapping the fair value to the market price.  As before, if the reduced form 

Model 4 provides greater trading insight than Model 2, we may say this ordering also supports the 

claims of CMBS inefficiency during less stressful times of the Recovery.   

For the testing of Condition 2, if we are querying the efficiency of a sector within the 

market, we do not necessarily seek to predict the market price with our models.  Rather we seek to 

secure reliable signals of risk and reward using the fair value price (established independently from 

the market price) and then compare it to the market price, with Theta. 

3.2. Trading tests:  Fundamentally, if one is querying the efficiency of a sector within the 

market, one does not necessarily seek to match the market price to our model price.  Rather one 

seeks reliable signals of risk and reward using the fair value price (established independently from 
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the market price) and then comparing it to the market price, with Theta, which is a reliable 

benchmark for the richness or cheapness of individual securities or the entire securitization. The 

trading backtesting uses Theta as the sole means for navigating opportunities amidst risks.  

Generally, 

  
( , ) 0 ( , ) ( ) "mkt px cheap vs. risks"

( , ) 0 ( , ) ( ) "mkt px rich vs. risks"

( , ) 0 ( , ) ( ) "mkt px appropriately reflects risks"

k k k

k k k

k k k

t l b t l m t

t l b t l m t

t l b t l m t







   

   

   
  

While CMBS cannot be shorted outright, CMBX are credit swaps and are readily used, for 

example, by macro hedge funds and other leveraged investment managers to articulate long/short 

perspectives on term structure of credit within a sector.  Additionally, sell­side firms issuing CMBS 

will frequently utilize CMBX to hedge the credit risk of the loan portfolio with weightings that 

correspond to the anticipated weighting of the TBA securitization for which the loans will serve as 

collateral.  Since I have the CMBX price series during the Crisis and since these instruments are 

used to go long/short the sector, synthetically, I am well positioned to examine the market efficiency 

of the sector.  To test the ability of each of the models to identify and achieve extraordinary returns 

I implemented the following procedure for a trading test using the historical data.   

Step 1 – Calculate Tranche level Thetas: At the beginning of each period (day, month, or 

quarter) I calculate the value Theta for each of the tranches of the CMBX Series I am investigating.  
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In the Crisis study this is CMBX Series 1.  I exclude from the study the AJ and AM tranches for 

CMBX Series 1 because they are not priced for the entire history – this leaves me with 5 tranches 

(AAA, AA, A, BBB and BBB­) from which to select the long/short portfolio42.  

Step 2 – Construct the long/short portfolios:  I establish a long/short portfolio at time t.  

From the set of tranches available I purchase (long) the cheapest tranche of the set as indicated by 

the largest value Theta at that time.  Execution is at the observed CMBX price at time t. 

  t maxθ, tlong = CMBX_tranche    (81) 

I simultaneously sell (short) the most expensive tranche from the set of tranches available as 

indicated by the smallest value of Theta at that time.  Execution is at the observed CMBX price. 

  t minθ, tshort = CMBX_tranche    (82) 

An apriori view of the market is not contemplated, only a systematic approach to identify relative 

value.  Additionally, I do not explicitly introduce secondary sensitivity measurements to weight the 

strategies such as durations in a barbell strategy (see Fabozzi, 1994).  For our portfolios, these 

sensitivity estimators are not relevant as I am testing price x valuation and so I equally weight the 

long and short positions.   

                                                            
42 The Other tranche is not priced but is included in the capital structure. 
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Step 3 – Unwind the Trade: The position is held over the horizon period and is then 

automatically unwound (sold in the case of the long, and purchased back in the case of the short) 

at the end of the horizon at the then observed CMBX price.  The lognormal raw returns of the 

positions are calculated over the period based on price with gains/losses for price increase/decreases 

for the long position and gains/losses for price decrease/increases for the short position.  The 

portfolio return is then the weighted sum of these two returns with each weight =0.50, of the return 

on the long position and the absolute value of the return on the short position.   

Step 4 – Rebalance and Repeat:  The process is immediately repeated with the new values 

for Theta on the trade day in the testing period.  The procedure is conducted for all models.  It is 

important to emphasize that in this computation I do not include explicit transaction costs. 

However, because I am comparing matched portfolios, each exhibiting similar rebalancing across 

time, the transaction costs would be roughly equivalent for the portfolios. This implies that, as a 

first approximation, the relative performance differential between the portfolios should be 

unaffected by exclusion of explicit transaction costs. 

3.3. Horizons – daily, monthly, quarterly:   The holding period horizon tests are conducted 

with daily, monthly and quarterly investment horizons.  The monthly frequency would represent 

the perspective of a hedge fund or levered investment managers who may seek to rebalance with 
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greater frequency due to leverage considerations.  Such an investor may be seeking to articulate a 

‘macro’ view on the CMBS sector through the use of CMBX instruments.  The quarterly horizon 

test represents the perspective of a sell side bank hedging a large portfolio of loans to be securitized 

and sold that might take 3 months (or more) to build to a critical mass to sell the market in bond 

form.  I also conduct the test with a daily horizon as the test is ultimately one of efficiency which 

assumes frictionless markets43.  It is true that CMBS and CMBX are not as liquid as say RMBS 

passthroughs, government bonds, or currencies, for example.   As such, while trading is not 

categorically by appointment (except for below investment grade), it is nevertheless slower and 

OTC, with the understanding that large blocks don't get bought and sold (crossed) readily amongst 

dealers with great frequency.  At the same time, nevertheless, the CMBX market is competitively 

bid amongst all of the largest dealers and as such, pricing may not be uniform across all of them 

simultaneously. Since the data observation period is relatively short for the Crisis (~3 years) I want 

to take advantage of a rich data set with respect to observations.  So, while portfolio managers might 

‘suffer’ the bid/ask on a daily basis, this influence is reasonably assumed to dissipate with monthly 

and quarterly horizons.  I investigate the daily horizon also, attentive to the caveat of the bid/ask, 

and note the potential problems with respect to claims about efficiency.  For the moment it is quite 

                                                            
43 Incorporating bid/ask spreads that might expand and contract across credits (AAA tighter than BBB­) and across time (tighter in 
low vol periods, wider in high vol periods) would be a nice evolution in the analysis.  Without a system like TRACE in place, 
however, which does not currently incorporate CMBS or CMBX, such analysis is not possible. 
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simply the best that can be done with the data of mid­market closing prices, and it is reasonable, 

especially in light of recently improved liquidity in the CMBS sector.   

3.4. Return results:  For each of the four Theta driven strategies I provide the raw returns.  

In Figure 84 panel A I show the monthly horizon strategy and in Figure 84 panel B for the quarterly 

horizon strategy for during the Crisis.  In Figure 85 panel A for the monthly horizon strategy and 

in Figure 85 panel B for the quarterly horizon strategy for the Recovery.  Additionally, I calculate a 

long­only sector portfolio which is the weighted composition of all the tranches based upon their 

weights in the transaction.  As with Theta selected securities, I compute the total return for the 

long­only portfolio based upon the composite prices.   

From the raw returns I assume an initial portfolio size of $100mm and calculate its 

cumulative value from the raw periodic portfolio returns.  The plots reflect the intuition.  Figure 86 

reflects the monthly strategy during the Crisis (left) and the monthly strategy during the Recovery 

(right).  The long­only sector portfolio is represented by the grey bars, Model 1 (magenta) is Merton, 

Model 2 (red) is the basic calibration model, Model 3 (green) is my expansion of Model 2, and 

Model 4 (blue) the reduced form approach.  Consistent with what we anticipated the reduced form 

model, Model 4, with among the lowest explanatory relationship to market prices categorically 

outperformed all other models as well as the long­only portfolio.  Categorically, Model 2 (red) 
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underperforms having shown the greatest fit with the market price in regression.  As such, the 

efficiency of the CMBS market may be called into question as the necessary conditions for 

challenging efficiency are met. 

We see similar results for the quarterly strategy in Figure 87 for the Crisis (left) and the 

Recovery (right).  Again, the Model 2 approach significantly underperforms the sector portfolio and 

the three other models, and the reduced form approach of Model 4 performs well and categorically 

better than Model 2 and the sector overall.   Finally, the results for the daily strategy in Figure 88 

for the Crisis (left) and the Recovery (right) show considerable consistency with both the monthly 

and quarterly results, again with the reduced form Model 4 approach performing well and 

categorically better than Model 2 and the sector overall.   

To be sure, the compounding of returns matter and it should also be evident that the 

reduced form techniques lose considerable ground (in these purely automated strategies) during the 

Crisis.  Additionally, it does seem that Model 4 really stands out during the Crisis whereas, during 

the Recovery (so far at least), it outperforms, but not as dramatically.  This represents further 

demonstration of the value of the reduced form technology and insight into the efficiency of markets 

and the insights of market actors, or lack thereof.   
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When times are ‘good’ as characterized by the observables in the Recovery, the complexity 

of issues facing securities pricing may not take priority with the prospects of default and loss 

undervalued by market actors.  In such an environment, such as the Recovery, where the observable 

information set includes no delinquency manifestations at the loan level and no macroeconomic 

warnings at the economy level as represented in REIT, NCREIF or interest rate pricing, Model 4 

should perform better than the long­only portfolio if there are risks, but since the risks are muted 

at initialization of simulations, governed by data, the simulations will produce low frequency of risk 

events.  Under such conditions, since market pricing is also considering with low likelihood in ad­

hoc way the default events, the fair value prices and the market prices should be similar, which is 

seen in the plots and it should be difficult to differentiate in trading strategies using models.  As a 

result, the performance of Model 4 while better is not dramatically better than the rest.  When times 

are ‘bad’ however, the information set and the meaning of the information to the default event is 

systematically considered by all the models, but most rigorously in Model 4, in contrast to market 

actor ad­hoc approaches.  Under these conditions, such as the Crisis, the Model 4 approach should 

dramatically outperform, and it does.   

3.5. The ‘perfect’ portfolio:  All the models provide insights; some provide better advice than 

others.  But none of the models are perfect.  Perfection, however, has a role in our analysis of 
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efficiency.  If we can consider what the perfect portfolio selection looks like in our trading tests, and 

the implication of the statistics related to the perfect portfolio, I may be able to shed some further 

light on the model driven portfolios, the market portfolio and the efficiency of the CMBS sector, 

overall.  I am limited to a set of bonds associated with the CMBX Series 1 in the Crisis and CMBX 

Series 6 in the Recovery.  I define the ‘perfect’ portfolio as the portfolio which, in hindsight, would 

have delivered the maximum/(minimum) return over the horizon for the long/(short) positions.  

Obviously the ‘perfect’ portfolio dwarfs all the other models (Figure 89) and I thus report it on a 

log scale44 as I consider it in the initial statistical analyses and the intertemporal CAPM efficiency 

tests in the discussion below. 

3.6. Trade strategy results composite:  To be sure the compounding of returns, the timing 

of gains and losses, and their magnitude all interact to create the return of the strategy.  So, while 

it is true that the reduced form Model 4 outperforms in both the Crisis and the Recovery, it is also 

true that the automated strategy in the Crisis gave up significant gains for Model 4.  To get a sense 

for why this might be so, I reviewed the profile of the returns for the trading strategy portfolios and 

the long­only portfolio.  I computed first the frequency of ‘correct’ calls, where a correct call is 

defined as a strategy where the return over the horizon resulted in a positive return (>0).  

                                                            
44 However, during the Crisis, the Model 4 Theta’s corresponded with the ‘perfect’ approach for both long and short selections 
20% of the time.  Model 3 13% of the time.  Model 1 and Model 2 corresponded 0% of the time under monthly selections. 
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Immediately after I wanted to get a sense for the magnitude of the right calls and so I calculated 

also the average correct call return and the maximum correct call return.  

Figure 90 provides a summary of the information discussed and it does provide some 

interesting information.  In panel A I present the frequency of the gain strategies.  Not surprisingly, 

Model 2 underperforms all the other models and the long­only portfolio for both daily and monthly 

investment horizons in both the Crisis (panel A) and the Recovery (panel B).  What is interesting, 

of course is that the other active trading strategies driven by Theta all outperform the long­only 

portfolio with gains >50% of the time in the crisis, and generally so in the Recovery.  Focusing 

further, it is also quite interesting that Model 4, the given its cumulative portfolio performance 

described in the plots, actually did not pick gains as frequently as either Model 1 or Model 3 in the 

Crisis.  Model 4 only picked gains 63.33% of the time while Model 1 picked gains 70% of time and 

Model 3 66.67% of the time on a monthly basis during the crisis.  On a daily basis during the crisis, 

the good trading strategies perform better than 50% of the time, but still Model 4 lags Model 1.   

During the Recovery (panel B) Model 4 outperforms all others strategies on a daily basis 

with correct calls 57.04% of the time.  However, over a monthly horizon, actually Merton’s Model 

1 significantly outperforms with correct calls 84.62% of the time which is consistent with Model  
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1’s outperformance during the crisis as well (70%).  This profile begs the question then “How did 

Model 4 dramatically outperform during the Crisis?”   

The answer is cleared up somewhat in panel C.  There we see that during the Crisis the 

profile of the correct calls made by Model 4 was quite good on for both daily and monthly trading 

horizons, but not categorically the largest.  In the case of the Recovery (panel D) we see that Model 

4 lags in terms of the frequency of correct calls and their magnitude.   In panel E I show the joint 

occurrence frequency and correct call.  There we see the product of the frequency of correct calls 

(as a percentage) and the average gain return.  With the joint product as a ranking we see that 

Model 4 performed best across the Crisis and so far in the Recovery on both a daily and monthly 

basis with respect to gains which is consistent with what is shown in the plots.   

One takeaway from this (and the plots) is that there is no perfect model approach.  

Additionally, if we consider the efficiency of the CMBS sector as questionable, for the reasons stated, 

during bad times the reduced form technology should significantly outperform the other models.  

Is it always right?  No.  Only 20% of the time does it correspond with the perfect portfolio strategy; 

but this is better than the other technologies, and the implementation in a long/short paradigm, 

informed by Theta, significantly outperforms the long­only portfolio in the Crisis and the Recovery.  

At the same time, given the fact that there was a deterioration from the peak performance at the 
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height of the crisis when uncertainty was at its apogee, we must always allow for human judgment 

to work with the model technologies to optimize portfolio performance.  

3.7. Initial statistical tests:  Since we are considering the efficiency the CMBS market, and 

we have Theta driven long/short strategies we can compare the portfolio returns across strategies 

and the perfect portfolio to i.) the long­only portfolio of the CMBX composite index (all ratings) 

and ii.) the Fama French market portfolio45.  For the paired t­test the null hypothesis is that the 

mean returns on the portfolio strategy and benchmark (first the CMBX long portfolio and second 

the Fama French Market portfolio) are the same such that the difference equals zero.   There are 

no surprises in the results, but they are not as compelling.  We are concerned with the direction of 

the differences and so I consider both the statistical difference for the null hypothesis as well as the 

alternative hypothesis that the mean of the difference is <0.  In Figure 91 I start with the perfect 

portfolio and we may reject the null in favor of the alternative that any observed mean difference 

shall be less than the mean difference in our sample with probability 1 across both the t­test and 

Wilcoxon sign test panels A thru D.  Unfortunately none of the other tests are significant at the 

95% level, though the signs and direction are intuitive.  Models 1, 3 and 4 all point towards positive 

differences from the mean and median respectively for the t­test and one­sided Wilcoxon sign tests, 

                                                            
45 The market portfolio consists of all NYSE, AMEX and NASDAQ firms. It is obtained from Ken French’s site: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french 
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in contrast to Model 2 which points to negative differences from the mean and median.  Even 

though these results are strongly supportive of the argument of CMBS inefficiency, they are not 

conclusive for Theta driven strategies, though they are supportive of the perfect strategy.  Given the 

extreme outperformance during the Crisis but absence of conclusive results, I don’t consider these 

pairwise tests for the Recovery period.  I turn to the possibility of omitted risk premia are governing 

outperformance. 

3.7.1. Intertemporal CAPM test for omitted risk premia:  In order for the Model 1­4 

strategies to challenge the efficiency of CMBS the abnormal returns implemented in the long/short 

trading strategies informed by the given Model’s Theta must not be readily explained away by 

factors exogenous to the Model construction.  Given the complexity of the modeling exercises for 

all four models and in light of the significance of exogenous variables in the initial statistical tests46.  

I test for the possibility of omitted risk premia using a standard intertemporal CAPM (ICAPM).  

The expected return on each of the portfolios is a multi­beta model: 
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46 Following Jarrow, etal 2008; and Merton, 1990 
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where ܴ௧
௣ is the ݌ portfolio’s return over ሾݐ, ݐ ൅ 1ሿ, ܴ௧௜  is the return over ሾݐ, ݐ ൅ 1ሿ on a portfolio 

perfectly correlated to the ݅ െ  to ݌ ௣௜ is the beta of portfolioߚ  systematic risk component, and ݄ݐ

the ݅ െ  possible risk factors.  Using the relation ܯ risk component portfolio. There are ݄ݐ
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where ߳௧
௝have zero means and are independent across ݐ and ݆, I can rewrite the multi­beta model 

as  
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where ߝ௧ ൌ ∑ ௣௜߳௧ߚ
௜ெ

௜ୀଵ  have zero means and are independent across ݐ.  To construct the regression 

model for omitted risk premia it is reasonable to assume that one of the systematic risk factors is a 

CMBS portfolio of equal credit risk as the model driven portfolio under consideration.  Letting the 

return on the index portfolio be denoted by ݅ ൌ 1 I can write this last expression as: 
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And, it is reasonable to also assume that the beta of the model portfolio with respect to the index is 

unity, that is, ߚ௣ଵ ൌ 1, yielding our final regression model to test for omitted risk premia as: 
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where, in this specification, the constant ߙ captures abnormal returns.  I estimate four different 

ICAPM regressions (Regression 1 thru Regression 4) to capture various risk premia across all four 

Theta driven portfolios (Model 1 thru Model 4) and the ‘Perfect’ portfolio as described above.   Some 

of the assets considered in Regressions 1 thru 4 were tested in the earlier statistical analysis to map 

to pricing, but are specifically considered here in the context of their horizon returns compared with 

the returns of each of the Models 1 thru 4 and the ‘perfect’ portfolio.   I perform the Regressions 1 

– 4 for Crisis and for the Recovery evaluating efficiency for Daily investment horizons. 

3.7.2. Regressions:  In Regression 1 I use the following assets to capture various risk premia: 

(i.) the REIT stock price index to capture property value risk premium, (ii.) the return on the 

CaseShiller housing price index47 (iii.) the 1­year, 2­year, 5­year, 7­year and 10­year zero­coupon 

bond prices to capture interest rate risk premium and (iv.) a stock market index, the SMB index 

(small minus big), and the HML index (high minus low) to capture equity market risk premium.  

In Regression 2 I consider only the Fama­French 3 factor model of  (i.) the stock market index, (ii.) 

the SMB index (small minus big), and (iii.) the HML index (high minus low) to capture equity 

                                                            
47 For the daily analysis, we don’t have CaseShiller and so we use the ETF REZ to capture residential exposures. 
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market risk premium.  In Regression 3 I consider what a sparser ‘credit’ regression model drawing 

from both Regression 1 and Regression 3. The factors are credit composite factor returns that were 

tested earlier in a different form: (i.) the REIT stock price index to capture property value risk 

premium, (ii.) the return on the housing price index, (iii.) FF model of a stock market index, and 

(iv.) 10­year zero­coupon bond prices.  In Regression 4 I consider only (i.) the FF model of a stock 

market index. 

3.7.3. Results and discussion:  Figure 92 Panel A summarizes the results of Regression 1.  

While the regressions across all but Model 2 are significant by the F­test, we also see that of the 

variables considered in the significant regressions (Models 1, 2, and 4) is the Market portfolio. While 

it is true that returns associated with 10 year zero coupon bond are significant for Model 2, the 

regression for Model 2 is insignificant overall.  Additionally, if all variables were set equal to zero, 

the perfect portfolio would deliver a 2.9% positive daily return on average and it would be 

significant.  This is perfectly reasonable given that the perfect portfolio has 20/20 hindsight by 

construction.  Models 1, 3, and 4 would also deliver positive daily returns of about 0.01%, whereas 

Model 2 would deliver negative returns on average.  The number of factors in this regression is 

quite large and I perform a few diagnostic tests to see if I can pare it down.  It is possible that some 

of the terms are interacting with one another and drowning out the significance of each other.   
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In Figure 93 we observe some significant correlation amongst the Independent Variables. 

Not surprisingly we see REIT and house price indices highly correlated with the market portfolio.  

Across the zero coupon bond returns five, seven and ten year zeroes are virtually identical in terms 

of performance and home prices and REIT performance are also highly correlated.  This suggests a 

possible need to omit some of the variables that are correlated with one another.  From the RAMSEY 

Reset test, it would appear, that some key variables are either omitted or possibly being drowned 

out by overfitting as the test statistics is less than the critical value ݀݁ݐݐ݅ܨ	ܨ ൌ 0.47 ൏ ௖௥௜௧ሺଷ,଺ଶ଼ሻܨ ൌ

2.60., (Figure 94).  Additionally, the Variance Inflation Factor Test indicates that many of the 

variables exhibit high degrees of multicollinearity with ܸܨܫሺߚ௜ሻ ൐ 10 not shockingly based on the 

correlation assessment for all of the treasuries as well as the REIT index (Figure 95).  To address 

concerns of dependency among the variables I use the condition index (Figure 96).  Instances where 

the variable exhibits a condition index n>30 and p>0.50 indicates some competing dependency 

between variables.  In this I don’t see any instances of condition index>30, however I do see many 

p­values >0.50, specifically amongst the zero coupon bonds.  As such, I should be able to express 

the set of zero coupon bonds in term of the remaining variates.  Finally, the White and 

BreuschPagan Tests (Figure 97) does indicate that non­constant variance heteroskedasticity may be 

present.  However, the Durbin Watson Test for autocorrelation (Figure 98) between the error terms 
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(the residuals) is inconclusive because at 11 degrees of freedom and 642 observations, the statistic 

of 1.53 is between the lower (1.38) and upper (1.72) bounds.   

Based upon the discussion above I take a somewhat extreme view of eliminating all variables 

specifically related to fixed income and real estate and consider Regression 2, the Fama French three 

factor regression, referring to Figure 92 Panel B.  In this regression, I capture only the model of a 

stock market index, the SMB index (small minus big), and the HML index (high minus low) to 

capture equity market risk premia.  Interestingly, in this sparser regression, the same general story 

repeats.  The regressions are significant for Models 1, 3, and 4 with only the market portfolio 

exhibiting significance across these models and the perfect model.  The signs are consistent with 

Regression for the mean returns assuming the independent variable values equaled zero.  In 

Regression 4 I consider only (i.) the FF model of a stock market index.  The results summarized in 

Figure 92 Panel D mimic the result pattern of statistical significance of the market portfolio for 

Models 1, 3, and 4 and the perfect portfolio with significance amongst the regression as indicated 

by the F­test. 

Since the choices of variables in Regression 2 and 4 specifically ignore issues that we know 

to be significant from the fair value x price matching in the Crisis analysis, I try to find a middle 

ground between Regression 2 and the earlier analysis of missing independent variables related to 
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real estate credit and fixed income to test for exogenous significance to the model.  In Regression 3 

I include (i.) the REIT stock price index to capture property value risk premium, (ii.) the return on 

the housing price index, (iii.) Fama French model of a stock market index, and (iv.) 10­year zero­

coupon bond prices.  The issues of borderline codependency seen in Regression 1 amongst the 

variables with the condition indices all much lower than 10 (Figure 99).  I check to see that in the 

sparser model I have no omitted variables and the Ramsey RESET test confirms this (Figure 100).  

I also do a check for the presence heteroskedasticity with the White and Breusch Pagan Tests (Figure 

101) which has been eliminated with chi­square of 14df test stat of 17.86 < the critical value 23.68 

indicating non­constant variance is not present in the sparser Regression 3 model.  Finally, the 

Durbin Watson Test for autocorrelation (Figure 102) between the error terms (the residuals) does 

seem to exhibit autocorrelation with 5 degrees of freedom and 642 observations.  The statistic of 

1.53 is below the lower boundary of 1.72 and thus the null of no autocorrelation is rejected in favor 

of positive autocorrelation and the BreuschGodfrey LM test statistics (Figure 103) reject no 

autocorrelation in favor of AR(1) and AR(2) processes which is noted. 

As in Regressions 1 and 2, the pattern of significance of the market portfolio repeats with 

correct signs for the constant coefficients and overall significance for the Model 1, 3 and 4 and the 

perfect portfolio regressions with no significance for the Model 2 regression. Based upon this 
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analysis I do not  see evidence of omitted risk premia in any of the models considered as none of 

the risk premia considered are significant other than the market overall.  The statistics show low 

explanatory power between the returns on the market portfolio (significant) and excess returns over 

the CMBX benchmark long index as articulated in the long/short strategies governed by bond level 

Thetas.  Therefore, based on the analyses, we can be comfortable that the models are well specified 

and do not omit risk premia.  Since there are significant problems with Regression 1 in the Crisis 

and since Regression 2 ignores considerations fundamental to fixed income and credit, I do not 

compute them.  In Figure 104 Panel C I repeat sparse credit Regression 3 and the even sparser 

Regression 4 in Figure 104 Panel D for the Recovery period.  None of Model 1 (Merton), Model 4 

(reduced form) or the perfect portfolio are significant in either approach.  In the case of the 

Regression 3 (Panel C) there Model 2 and Model 3 regressions are significant and suggest omitted 

risk premia of REITs.  Interestingly, the signs of the significant REIT return variable are opposite 

for Model 2 and Model 3.    
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Conclusion 

It was my intention to consider the reduced form technology versus other competing 

approaches robustly with application to CMBS and to contemplate the efficiency profile of CMBS 

in both the Crisis and the Recovery.  This dissertation analyzes the four approaches rigorously and 

provides an important generalization to the calibrated approach.  The power of Merton, 1974 was 

a bit surprising given the limitation of information considered in the structural form and particularly 

given the historical periods considered.  There is considerable evidence presented in both the Crisis 

and the Recovery of the ability to earn extraordinary profits with model driven trading strategies 

thereby supporting claims of CMBS market inefficiency.  Clearly, seriously implementation for any 

model must consider the heterogeneity of loan characteristics and accurately incorporating correct 

cashflows and ruthless default behavior of borrowers.  This care builds the realism of the loan 

collateral and priced bond objects being investigated.  By extension as we have seen, efforts to be 

thorough in the implementation of the loans and bonds and their interaction with the simulated 

economy, increases precision still further.  The reduced form approach yields better results than any 

of the other approaches considered because of the more realistic and thorough approach through 

the modified Cox Process.  As such, from this study it appears to provide the best approach to 

accurately anticipate and price default risk for CMBS supported by the ability to earn extraordinary 
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profits in two important periods in finance history and compelling statistical results.  While I cannot 

unambiguously reject the market efficiency of the CMBS sector, there is strong support for 

inefficiency in the statistical analysis of excess returns over two important periods in market history.  

The insights provided by the reduced form technology, in particular in both the Crisis and the 

Recovery support the increased use of such technology in areas of investment management and risk 

evaluation.  

There are additional areas worth exploring related to this investigation.  One thing to do 

would be to expand the technology to perform the many risk calculations used in the industry and 

evaluated in the academic literature. Capturing Basel values for all models as well as option adjusted 

spread, weighted average lives, duration and convexity all hold interest for analyses of spread 

decomposition and portfolio management risk optimization.  In the area of spread decomposition, 

some preliminary work was begun and given the analyses that query efficiency of the sector, spread 

decomposition analyses might be able to provide further evidence supporting the integrity of the 

model specification.  Additionally, to delve deeper into the area of price formation in the area of 

market microstructure, some interesting testing of computation of fair value with Model 4 might 

be able to be performed with frequency of minutes (seconds, milliseconds…) vs. days. Efforts to 

compare such computations to market pricing of the bonds would however not be possible given it 
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is still largely a negotiated OTC market without electronic trading.  Nevertheless, markets change 

and the adoption of advanced derivative pricing technology in CMBS may be prompted, ultimately, 

by competitive needs.  Regardless of the state of real time frequency of market prices, real time 

computation of fair value using Model 4 reduced form technology may also hold interest for 

managers and academic studies.  Given the development of my technology for this work, analyzing 

the efficiency of the CMBS market is limited only by time and data. 
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Appendix A – A Short Review of CMBS 

CREL’s are quite heterogeneous and when they are utilized as collateral for securities they 

can make valuation of such securities challenging.  CRELs are typically quite large with an average 

loan size >$8mm and when found within securitizations typically number about 20048.  As such, 

unlike residential mortgages which are more homogenous, smaller in size, and greater in number 

within securitizations, CREL valuations do not benefit from statistical techniques sometimes used 

in the residential mortgage sector associated with the law of large numbers49.  As such, to make any 

reasonable statements about the risks associated with CRELs or securities collateralized by such 

CRELs, and valuations thereto, one must be prepared to implement methods of evaluation that 

adequately identify and treat the many idiosyncratic risks of CRELs briefly discussed here. 

Income Producing Property:  CRE is defined as income producing property, where such 

income is generated from rents charged by property owners to tenants.  This key feature of income 

distinguishes CRE from single family residential property which is underwritten assuming no 

income is produced on the residential property from rents and where the property is typically the 

                                                            
48 CRELs >= $20mm represent 85% of the market (ref. Trepp Database 12/2011). 
 
49 See Hayre, 2000 
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borrower’s primary residence50.  In this sense while both CRELs and residential mortgages are 

amortizing debt the fundamental use of the collateral securing such debt are quite different.  CREL’s 

are backed by a business enterprise, residential mortgages are backed by someone’s home.  

Property Types:  There are 5 primary property types that make up the CRE sector:  Office, 

Retail, Multifamily, Industrial and Lodging.  Within each of these property types there are 

subdivisions.  For example within Lodging there are divisions associated with extended stay hotels, 

motels, and deluxe hotels.  Similarly within retail, there are divisions associated with anchored retail 

malls and strip malls.  Sometimes there are hybrid structures, or so­called mixed use properties in 

which a portion of the revenue on the property is generated from office tenants and a portion is 

generated from retail tenants. Despite these sub­divisions, from a macroeconomic perspective, the 

incentives facing the leasing occupants are consistent within the primary groups.  Distinctions 

between properties within the same category will be evidenced in the observed leverage and coupon 

compensating the lender for different risks.   

Location:  Each of the CRE properties can be found in a specific location.  In the context 

of conducting a study, depending on the data each of these locations for types of properties been 

                                                            
50 This may change in the case of distressed bulk purchases of foreclosed or distressed homes that may be sold with a rental 
strategy.  See L. Goodman and M. Meyers Bloomberg News 11/30/2011. 
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categorized at from as micro as zip code, and then ascending in order to central business district, 

county, city, state, region, and finally nation.     

Leverage:  As with residential real estate, the leverage on a CRE is captured by the loan to 

value ratio (LTV) which reflects the ratio of the mortgage amount, ܯ, at origination over the value 

of the property at origination ܸ so,   

 
M

LTV
V

   (88) 

 Borrowers purchasing CRE properties typically invest a portion of their own capital and 

borrow the remainder.  In this sense, the CRE property can be considered to be single purpose 

corporate entity with a single plant (the CRE property site) and a single product (the space for lease 

to tenants).  As with any corporation (see Brealey, Meyers), the value of the CRE property, ܸ, is: 

  V D E    (89) 

At origination, the value of the equity position, ܧ, of the borrower is reflected by the amount the 

borrower has invested in the purchase of the property, with the remaining value of the property 

associated with the value of the debt, ܦ.  As the value of the property may change through time, so 

too will the implied value of the debt and the implied value of the equity or, 
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  t t tV D E    (90) 

NOI:  When CRE is underwritten, the income of the property less expenses to operate the 

property (or net operating income, NOI, ܱ) is of central importance to lenders because mortgage 

payments to the lender are made from NOI.  The debt service coverage ratio (DSCR) is the ratio 

of the NOI (annual) to the mortgage debt service (annual), ܵ, so, 

 
O

DSCR
S

   (91) 

DSCR represents a quick measure of the ability of the borrower to pay the debt obligations 

associated with the mortgage.  DSCR > 1.0 reflects adequate revenue produced by the property to 

service the debt.  A DSCR < 1.0 reflects inadequate revenue generated by the property to service 

the debt.   

Standard Industry Value Metric:  The industry standard method (see Brueggeman/Fisher) 

for estimation of value of a CRE property is provided as the ratio of the net operating income, ܱ, 

to the capitalization rate ܭ: 

 
O

V
K

   (92) 
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This becomes interesting as now we have two equations for the same property allowing us to say:  

 
O

D E
K

    (93) 

As CRE may change through time, I will visit these conditions again, indexed to time, so  

  t
t t

t

O
D E

K
    (94) 

ProForma:  While it might seem implausible that mortgages secured by CRE property could 

be underwritten based on NOI in place at DSCR<1.0x, in point of fact in the realm of CRE, 

especially in the case of mortgages secured by larger properties, mortgages are frequently 

underwritten with NOI in place at DSCR<1.0x.  These loans, are underwritten on a so­called pro­

forma or stabilized basis.  In such instances, a loan is underwritten based upon expectations of the 

future growth trajectory of rents on the securing property.  While NOI in place at the point of 

origination may be insufficient to service the debt, the anticipated future income generated by the 

property is expected by lenders to be more than adequate to meet debt obligations.   

To offset the inadequacy at origination of the income generated by the property, the lender 

and borrower will agree to establish a cash reserve account.  In the interim period between the loan 

origination date and the anticipated date of stabilization of the property, the reserve account ensures 
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that the debt service due to the lender over this period is paid in full should income generated by 

the property income be insufficient in any given month.  If the cash reserve becomes depleted 

following the date of origination and the property does not ‘stabilize’, the income generated by the 

property will be insufficient to service the debt and the borrower will have an incentive to default51.   

Loan Structures, Coupon, and Default/Refi Risk:  Typically the CREL will have balloon 

amortization structure.  In a balloon structure, the monthly debt service for a period of time (eg 119 

months) will reflect mortgage payments of principal and interest52 for a longer term (eg 360 

months).  At the maturity date of the loan, say month 120, the borrower must pay off the 

outstanding principal balance of the mortgage.  Typically, the borrower will pay off the outstanding 

principal with a new loan.  This assumes, of course, that the lending criteria will be favorable to the 

borrower at such time and that availability of capital will be in place by lenders.  As I have discussed 

previously seen in this financial crisis since 2008, and expected going forward into 2012, not only 

have lending criteria tightened (lower LTV), but they have declined in parallel with declining 

                                                            
51 It is worth mentioning, that at times, the cash reserve fund is established by the lender directly, (lender­financed) or a 
consortium of co­investors in the property in exchange for preferred returns.  As such, the reader should not assume that the 
borrower has a 100% ‘hard­equity’ position in the property as evidenced by the presence of a cash­reserve.  The borrower may 
have invested a portion of the proceeds in the reserve fund, but often times <100%. 
 
52 Sometimes only interest payments (so­called IO loans) or sometimes a blend (interest only for an initial period of say 20 
months, stepping up 360 amortization principal and interest for 99 months.).  These features vary but overall are mechanisms that 
were implemented by industry professionals to encourage CRE activity.  
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property values.  This is important as it represents two linked criteria for credit availability both of 

which make it more difficult for borrowers at the point of balloon to secure a new mortgage, thereby 

increasing the likelihood of default in the current economic crisis53.   

Cross­Collateralization and Subordinate­Leverage:  Not all CREL’s are standard first lien 

debt on the property underwritten by lenders secured by income generated from a single property.  

Sometimes, CRELs are secured by portfolios of properties.  Such CREL’s are referred to as cross­

collateralized, where the loan debt service obligations are secured by all properties in the portfolio.  

This provides additional flexibility and comfort to lenders using portfolio diversification arguments 

where if one property falls on difficult times, excess NOI from the other properties can make up 

such shortfalls.  

Additional leverage, subordinate in terms of payment priority to the senior first lien, are 

also underwritten with interest in single properties or portfolios of properties.  In the most basic 

example, second liens, junior/subordinate loans can represent additional leverage (junior, or B­

Notes) on the CRE much in the way that a home equity loan may represent additional leverage on 

a residential property.  More complex encumbrances on the property can be accompanied with 

                                                            
53 This is borne out per the S&P comments and several other data sources. 
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sophisticated voting rights in the case of Mezzanine Financing.  Mezzanine capital can take the 

form of debt or preferred equity.  Because of the highly situational profile of Mezzanine capital, and 

its relatively small amount (<1% of all loans) only the encumbrance aspect as a junior lien are 

considered in this study.   

Prepayment Lockout and Defeasance Features:  Unlike residential mortgages which may be 

prepaid without restriction, CREL’s are typically restricted from prepayment for several years prior 

to the balloon maturity.  Typically CRE debt has one or more type of prepayment restriction 

according to some schedule.  The simplest of these restrictions is the hard lockout in which the loan 

covenant states that no prepayment may undertaken by the borrower for a certain period of time.   

Alternatives to the hard lockout restriction include, yield maintenance in which a ‘make­

whole’ provision is written in which the borrower repays the lender the present value of the future 

interest payments under the loan covenant discounted at the current risk free rate associated with 

the remaining maturity on the loan.  Sometimes an additional percentage fee or sequence of fees 

(3% for prepay in first 12 months, 2% for month 12 – 60, 1% thereafter) may accompany yield 

maintenance or stand alone (in older loans).  Finally, a more recent feature was the inclusion of a 

defeasance option in which the borrower would swap out risk debt payment obligations to the 
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lender and replace them with treasury strips that mimicked identically the cashflow originally 

intended to be paid to the lender54.   

All lock outs are intended to compensate the lender from the foregone interest payments 

and to increase the certainty of a return.  Such features have changed over time.  Thus, from a 

prepayment incentive modeling perspective one must pit i.) the cash­out refinancing incentive as 

well as ii.) the pure interest rate savings incentive, against the ‘cost’ of the prepayment restriction.   

Mock Securitization Profile of Origination:  Having considered the certain loan 

characteristics it is worth noting a few key aspects to the business of origination under mock 

securitization.  More than 50% CRELs are originated in securitization warehouses or conduit 

pipelines.  What this means is that investment banks utilize their capital to lend to borrowers 

interested in purchasing CRE or refinancing existing CRELs.  Regardless of the purpose, the CRELs 

are held on balance sheet until an aggregate amount of loans is built up to satisfy market demand 

for the CRELs as collateral within a securitized transaction.  At the point of securitization, the 

investment banks sell the loans off their balance sheet into a special purpose vehicle, or trust.  The 

trust’s sole operational function is to issue bonds.  At closing of the transaction, optimally, all the 

                                                            
54 This particular type of lockout has the effect of credit enhancement to the lender as the cashflows, once defeased, are no longer 
generated by the commercial real estate borrower and CRE property but are now cashflows generated by the US Treasury.   
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bonds issued by the trust are sold to institutional investors and the originating banks collect the 

present value of the cashflows associated with the bonds collateralized by the underlying CRELs at 

the clearing price on the closing date.  If the investment bank was accurate in their estimate of 

demand and in their estimate of the rating agency treatment of the originated loans, and if they 

were hedging both interest rate and credit risk correctly, then at the closing date the investment 

bank should realize a gain on sale of the loan collateral issued in bond form.  From a capital 

allocation perspective, their balance sheet is freed up from originated loans and the bank can now 

engage in lending more capital for new loans in keeping with regulatory leverage restrictions.  After 

closing date of securitization, typically originating trading desks of investment banks that originated 

the loans will make markets for institutional investors in over the counter transactions trading ‘their 

deals’ for the customers as well as others.   

There is no rule for aggregation set in stone, but typical CMBS transactions, for example, 

range from just under $1B to as much as $6B.  What this means is that the aggregate principal 

amount of the CMBS trust at any time t, C(t), is equal to the sum of the principal balance 

outstanding on each of i loans L(t), so:   

 
1

( ) ( )
n

i
i

C t L t


    (95) 
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From this trust, which can be made up of collateral from multiple originators, a corresponding set 

of bonds is determined through an iterative process such that the principal paying bonds B(t) 

correspond in value to C(t), so: 

   
1 1

( ) ( )
n n

ii
i i

B t C t L t
 

     (96) 

In a typical senior­subordinated structure, originators estimate the rating agencies future evaluation 

of the credit risk of the collateral which is distilled into a vector of subordination levels for the pool 

that correspond to different ratings.  The interpretation is that the subordination level required by 

the rating agencies is sufficient to adequately protect investors from loss of principal.  Recall from 

Jarrow, etal 2008 that in a typical senior­subordinate structure, payments of principal received are 

paid in order of seniority until the class is paid off in full (so AAA, then AA,…then UR).  If losses 

are incurred through default on any of the i loans, those losses of principal reduce the amount of 

the classes in reverse order (so, UR, then B, then…then AAA)  
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Ratings agencies have a variety methods for determining the probability of default (PD), 

loss given default (LGD), for any loan i55.  Once the expected loss (E[Loss]) is determined at the 

loan level  

    ( ) * ( ) * ( )i i ii
E Loss PD t LGD t EAD t   (97) 

then for any trust C(t): 

       0
1

n

C t i
i

E Loss E Loss




    (98) 

The E[Loss] for C(t=0) determines the sizes of the Unrated thru single­B tranches of the transaction.  

Once the sizes of the Unrated and single­B tranches are determined, further linear multiples are 

calculated for the remaining tranches in reverse seniority.  So,  

 
1

( ) ( , , , )
n

i
i

B t AAA AA B U R


    (99) 

It is important to keep in mind that many loan level parameters used by the rating agencies 

for loans that exist are considered in the origination process prior to the loan being made. In this 

sense, originators are aware of the approximate judgment ratings agencies will make on a loan in a 

                                                            
55 Exposure at Default, ܦܣܧ௜ሺݐሻ, is simply the outstanding principal balance at the time of the default, ܤ௜ሺݐሻ. 
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trust before the loan is actually originated.  By providing guidance on the model parameters of 

interest (so called drivers of their models) originators frequently reverse engineer the sizing of the 

loans into their tranches using origination grids.  A typical E[Loss] grid will be a n x m matrix with 

LTV x DSCR for a given property type.  As DSCR increases the E[Loss] declines and as LTV 

declines E[Loss] decreases.   

Tranche/class sizes can simply be expressed as a percentage of the total outstanding 

principal balance of the transaction.  For Subordination levels, the percentage expressed is 

cumulative and descending with respect to the outstanding principal balance of h classes over the 

entire trust so, 
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Appendix B – Other Alternatives/Literature 

B.1. Eom, Helwege & Huang, 2004:  Eom, Helwage & Huang (EHH) published a survey of 

5 corporate structural form corporate bond pricing models.  One is an extension to Merton in which 

they provide simulation.  In, Model 2, I adopt EHH’s extension of Merton which adjusts for coupon, 

term structure and an American style Default Barrier and further their work by making adjustment 

for CRE.  Let ,  ,  and t t tV K r represent the time t values of the firm’s assets, total liabilities, and the 

risk­free interest rate, respectively. Assume that  

 
1( )t t t tV tdV r V dt V dZ       (102) 

where for CRE properties, the payout ratio , 0  , V is the volatility of the CRE property, and 

1tdZ  is a one dimensional standard Brownian motion under the risk neutral measure,  .  For 

simplicity, consider now a simplified CREL with maturity T and unit face value that with fixed debt 

service (coupons) at an annual rate of ܿ.  Let ,  1,2...,nT n T  be the n­th coupon date.  In EHH, 

the extended Merton model, [0, ]tK K t T   and default is triggered if the asset value is below 

the default barrier, K , on  coupon dates.  In the EHH extension of Merton, the price of a loan is 

equal to a portfolio of zero coupon bonds and can be written as: 
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where (0, )iD T denotes the time 0 value of a default free zero coupon bond maturing at 
{ },  iT I 

is 

the indicator function, [ ]E   is the expectation at time 0under the  measure, and ݓ is the 

recovery rate following a default.   

From EHH, it is known that: 

  { } 2[ ] ( ( , ))
tV KE I N d K t 

  (104) 

and 
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where [0, ],  ( )K N   represents the cumulative standard function, and  
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Given any term structure (0, )D  , with the equations above, I can calculate the price of a defaultable 

CREL with fixed coupons under Merton’s assumptions.  The assumption that do remain are that 

that the loan is a balloon, such that all principal is repaid at time T.  If one wanted to convert this 

to monthly cashflows one could do so.  

B.2. Kau, Keenan and Yildirim (2008):  In 2008, Kau, Keenan and Yildirim (KKY) 

approached the implementation of Merton specifically to CRELs.  In that paper, the key insight 

comes from construction of first passage time model with an implied ‘current LTV’.  The purpose 

of the study is to determine implicit default probabilities in commercial real estate loans.   

Specifically they cast the first time to default,  , as the first time the underlying process, 

LTV, crosses the default barrier b; that is 

  inf{ 0: },tt LTV b      (107) 

where 0b  and where LTV follows a geometric Brownian motion of the form, 

 
t

l l t
t

dLTV
dt dW

LTV
     (108) 
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where  and l l  are the drift and volatility parameters for implied current LTV and W is a standard 

Brownian motion process defined on the probability space ( , , )F P and initialized at 0LTV b.

 KKY recognize the complicated decision making process of default in their suggested 

approach and thus make the simplified assumptions of the loan as perpetual and non­amortizing 

(so, IO) with continual constant payments, and where such loan is in an environment of constant 

interest rates.  The borrower retains the right to default and the loan is non­recourse to the lender.  

They then resolve to simulate the value of the property tVwhere,  

 
2( 0.5 )

0
tt W

tV V e       (109) 

subject to the default barrier b, such that  

  ( )t
t

t

dV
s dt dW

V
      (110) 

for service flow, s , such that the current implied LTV ratio,  and the value of the mortgage  

  t
t

L
LTV

V
   (111) 

And follows the geometric Brownian motion as they claim. 
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 They continue and discuss optimal strike prices as extensions of Black and Cox (1976), and 

then further construct  the implied LTV, tILTV as distinct from tLTV  56, the reason presumably 

that the volatility of the property value is insufficiently linked to REIT values.  In KKY they calculate 

the implied LTV as: 

 
_

_
t

t
t

current balance
ILTV

implied value
   (112) 

where,  

  1_ (1 )* _t t timplied value reit implied value     (113) 

and where, reit is the property type REIT index and  

  0
0

_
L

implied value
LTV

   (114) 

They acknowledge that in the literature (and in industry) that there are several ways to infer current 

LTV and this is simply one approach.   

                                                            
56 They claim that the current LTV is not observable, and of course that is true.   
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Finally, given the default barrier, b, the express the default probability on the loan as 
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To find this default probability, the drift and volatility parameters, and l l  need to be calculated 

which is straightforward because, the log return of the process is an independently drawn random 

variable from the Normal, or 
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where sample moments of 
1

ln t

t

LTV

LTV 

 
 
 

were calculated from the property x region REIT indices to 

find l and l .  KKY go on to test their results and make the claim that no feasible reduced form 

model based on actual data is likely to assign much probability to a particular loan in a particular 

period.  I find such claim to be erroneous from the study above.   
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Appendix C – NCREIF as Proxy for Property Values (ex­NOI)57 

In practice and the literature there is a school of thought that posits that property values 

may only reasonably be estimated directly from property net operating income cashflows using the 

familiar cap­rate calculation discussed previously.  In this section I formulate the regression model 

on the data described using a multivariate ordinary least squares (OLS) with a modification to 

accommodate for the optimized lead time of some of the explanatory variables to estimate 

  ˆ( ) ( )k k k
k

y t b a x t t      (117) 

where ˆ ( )y t is the synthetic estimate of the NCREIF Total Return value determined from the OLS 

Regression on the 
kx parameters (Unemployment, Case­Shiller, etc.) at time t , and where b is a 

constant, 
ka is the correlation coefficient of the k th  parameter, and ( )k kx t t is the value of each 

such k th  parameter at time t , minus the optimized delay for thek th  parameter, 
kt , where 

such delay was determined by maximizing the correlation between each 
kx  and NCREIF as 

previously discussed.  Several of the k parameters that contribute to a best prediction of ˆ ( )y t can 

be considered leading indicators for NCREIF Total Returns.  For example, the optimal value for the 

Case­Shiller total return index as a contributing parameter to ˆ ( )y t is determined to be 4 periods, so 

for any time t , where k= CaseShiller, 4kt t  .  None of the parameters used to estimate NCREIF 

                                                            
57 From Jarrow, etal 2008. 
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Total Returns are lagging indicators and thus the maximum value for ( )kt t for all kparameters 

used is 0 and the minimum value is ­4.  The initial results for the rolling return for NCREIF are 

somewhat promising with an R­sq of 0.89 (Figure 105).  However as we can see from the Durbin­

Watson d­statistic, this OLS has within it some autocorrelation issues. 

 Before examining closely the regression above in its final form, it is worth taking a moment 

to consider each of the explanatory variables on a solo basis, taking the remaining x variables to =0.  

The purpose of this check is to get a further statistical profile on solo value each of the explanatory 

variables I have chosen (cum lags) over the 22 year history.  Figure 106  summarizes the key findings 

for the individual x variables and 4 autocorrelation tests (discussed below) with Y NCREIF Actual 

as the dependent variable and each of X1 thru X7 as the sole explanatory independent variable.   

 With the exception of X4, the FHLMC Residential Mortgage Rate, each of the x­variables 

have t­stats of magnitude such that the null hypothesis H0: x is insignificantly different from zero 

must be rejected.  As expected then, the validity of the regression overall provided by the F­Test, 

also show validation, with the exception of X4, evidenced by reasonable to high RSQs.  Finally, I 

look at the signs of the coefficients for each of the explanatory variables to see if intuition in the 

simple model bears out.  We see that X1, Unemployment and property values in synthetic NCREIF 

have a negative relationship as expected (high/low unemployment correspond with low/high CRE 

property values).  Continuing, we see a positive sign for X2, CaseShiller implying that (high/low 
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residential property values correspond with high/low CRE property values).  For X3 we see as 

expected, steepening credit (more perceived risk)/narrowing credit (less perceived risk) 

corresponding with lower/higher CRE property values.  In X5, Risk Free Slope we see steepening 

risk free credit (high long term borrowing)/narrowing risk free credit (lower long term borrowing) 

corresponding with lower/higher CRE property values which also follows intuition.  For X6, the 

CREChgOffRate (or the percentage of CRE holdings that banks writeoff to a value of $0), also 

corresponds in sign with higher/lower charge offs corresponding with lower/higher CRE property 

values.  Finally, the sign of X7, Private CRE Construction follows the industry knowledge of 

countercyclicality with higher/lower levels of construction occurring in an environment of 

lower/higher property values.  Finally, though I cannot reject the null that X4, the FHLMC 

Residential Mortgage is statistically indistinguishable from zero with a p­value of 0.231, I still look 

at the sign of the coefficient and note that, as with the other six 6 explanatory variables that are 

significant on a solo basis, the sign of the coefficient of X4 corresponds with intuition indicating 

higher/lower prevailing mortgage rates correspond with lower/higher CRE property values. 

Regardless of the fact that I have already lagged the data, checking for autocorrelation in the 

residual at this stage is appropriate.  We do the check here for each of these sub values for 
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autocorrelation.  The four autocorrelation tests are i.) Durbin­Watson58 which provides the d­

statistic to test for first order serial correlation in the disturbance when all the regressors are strictly 

exogenous; ii.) Durbin’s Alternative Test for serial correlation in the disturbance.  This test does 

not require that all the regressors be strictly exogenous.  Here we are provided with the chi­sq test 

value for the df (in this case df=1) with ܪ଴:  If the chi­sq test value > chi­sq  .݊݋݅ݐ݈ܽ݁ݎݎ݋ܿ	݈ܽ݅ݎ݁ݏ	݋݊

critical value for df=1, then we reject the null and accept that there is serial correlation; iii.) Breusch­

Godfrey LM test for autocorrelation used to determine higher­order serial correlation in the 

disturbance.  This test does not require that all the regressors be strictly exogenous.  Again, as with 

durbinalt. we are provided with the chi­sq test value for the df (in this case df=1) with 

:଴ܪ  If the chi­sq test value > chi­sq critical value for df=1, then we reject the  .݊݋݅ݐ݈ܽ݁ݎݎ݋ܿ	݈ܽ݅ݎ݁ݏ	݋݊

null and accept that there is serial correlation; and Engle’s ARCH LM test for autoregressive 

conditional heteroskedacity which tests for time­dependent volatility.   In particular, performs 

Engle's Lagrange multiplier test for the presence of autoregressive conditional heteroskedasticity in 

the residuals   Here we are provided with the chi­sq test value for the df (in this case df=1) with 

:଴ܪ  If the chi­sq test value > chi­sq critical value for df=1, then we reject the null  .ݏݐ݂݂ܿ݁݁	ܪܥܴܣ	݋݊

and accept that there is serial correlation. 

                                                            
58 i.) estat dwatson; ii.) estat durbinalt; iii.) estat bgodfrey; and iv.) estat archlm,  respectively 
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A set of analyses is summarized in Figure 107 for X7 PrivateCREConstruction.  For the standard 

Durbin­Watson d­statistic we see serial correlation for all x­variables.  Additionally for each of 

durbinalt, bdgodfrey, and archlm the chi­sq value exceeds the chi­square critical value for each x­

variable and so in all tests we reject the null that there is no serial correlation and accept that there 

is some serial correlation present in the residual in all variables.  

Serial autocorrelation has the impact of understating the variance in the OLS and in so doing 

mutes the standard error for positive autocorrelation (generally the case).  As such, reliance upon 

coefficients from OLS with associated standard error may increase t­stats and, as such, may increase 

the number type I errors where the null of the OLS (ܪ଴:ܤ௜	ܿݐ݂݂݊݁݅ܿ݅݁݋	ݏ݅	݋ݎ݁ݖ) is rejected 

erroneously.  The standard adjustment technique for serial autocorrelation is the Prais­Winsten 

Regression in which we estimate a linear regression for the dependent variable from a set of 

independent variables that is corrected for serially correlated residuals using the Prais–Winsten, 

1954 estimator. This estimator improves on the Cochrane–Orcutt, 1949 method in that the first 

observation is preserved in the estimation routine.  In particular we seek the rho that minimizes 

SSE (ref, Cameron, Trivedi).  In Figure 108, I provide a summary for all seven explanatory variables 

run solo Prais­Winsten Regressions vs. OLS.  I show the updated coefficient, R­sq, t­stat, p­value, 

and importantly the original Durbin Watson statistic and the adjusted Durbin­Watson Statistic 
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determined post­adjustment.  So, as anticipated there is improvement in the Durbin­Watson statistic 

in all cases, however, only in the case of X1 Unemployment is the improvement sufficient (>1) to 

indicate no serial autocorrelation in the error term.  However, when we consider all variables 

together we see a different effect in the Prais­Winsten regression (Figure 109), consistent with, yet 

improved over, the initial OLS. 

As hoped, the autocorrelation has been removed in the multivariate Prais­Winston with the 

d­stat increasing from .776107 to 1.350785.  All of the signs of the coefficients now map to intuition 

in concert and each of X1 Unemployment and X2 CaseShiller (Residential Housing), X3 Credit 

Slope and X6 CRE ChargeOff Rates have t­stats supporting rejecting the null.  With respect to the 

X4 Mortgage Rate and the X5 Risk Free Slope I would expect to see contemporaneous correlation 

between these two regressors in a Hausman Test.  With respect to X7 the CRE Private Construction, 

some additional testing might also further light on this.  Additional testing can always be done.  For 

example, while Prais­Winsten is a GLS estimator59, the decline in the RSQ to .6459 from .8857 

suggests a further GLS analysis might also provide additional insight into estimating the unknown 

parameters in a linear regression model. Nevertheless, based on this analysis of 22 years, the notion 

                                                            
59 The GLS is applied when the variances of the observations are unequal (heteroscedasticity), or when there is a certain degree of correlation 
between the observations. In these cases ordinary least squares can be statistically inefficient, or even give misleading inferences. 
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that macroeconomic variables cannot be used to estimate property value returns, separately and 

independently from property specific Net Operating Income and cap rates is reasonably challenged.  
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Appendix D – The Delinquency and Default Intensity Process60 

In this dissertation I am only concerned with delinquency and default for fixed­rate CRELs.  

There are no floating­rate loans and no CTLs in our sample.  The estimates used in the computation 

in this dissertation are taken directly from Jarrow, etal 2008.  Care to calculate the default and 

prepayment intensities separately was conducted in that study in which we had access to the loan 

history database—including defaults, prepayments and loan characteristics—was provided by 

Trepp61. This database contains information on over 100,000 commercial loans. The data provides 

monthly observations of the relevant variables over the time period June 1998 to May 2005.  In this 

database, the loans are classified as current, 30­59 days delinquent, 60­89 days delinquent, 90 plus 

days delinquent and defaulted. Loans exhibiting REO or Foreclosure status are considered to be in 

default. Defaults are distinct from delinquencies. Because our model has only three classifications 

(current, delinquent or default), not five, I needed to determine a coarser partitioning of the 

classification. A statistical analysis was done to see if 30­59 days delinquent should be classified as 

delinquent or current and if 90 plus days delinquent should be classified as delinquent or default.   

                                                            
60 From Jarrow, etal 2008. 
 
61 See Reilly and Golub, 2000; and Trepp and Savitsky, 2000. 
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In Jarrow, etal 2008, we conducted a 6­year study of delinquency transitions of more than 

2.3million loan life observations.   Recall Figure 66 which shows the transitions over all loans from 

healthy to worse or conversely over the period June 1998 to June 2004.   A healthy state is defined 

as current (0 days delinquent). A worse state is defined as the next higher delinquency status.  So, 

for example, a loan that is current in month 1 is characterized as having transitioned to a worse 

state in month 2 if its delinquency status in month 2 is 30­59 days delinquent. Similarly, if a loan 

in month 1 is 90 plus days delinquent, it is said to have transitioned to a healthy state if it becomes 

0 days delinquent in month 2. Loans that persist in non­transition for multiple months either due 

to aberrations in the data (found in loans exhibiting 30­59 or 60­89 loan delinquency status for 

multiple months in a row) or due to categorization (90 plus days delinquent is, by definition, a 

multiple month state) are not transitioned until they migrate to either healthy (0 days delinquent) 

or a worse delinquency or defaulted (REO, Foreclosure) state. 

Historically, more loans that were 30­59 days delinquent went to current then on to a further 

delinquent status, hence they were so classified as current. In contrast, more loans that were 

observed in 60­89 days delinquent migrated to a worse state and were therefore classified as 

delinquent.  Finally, the majority of 90 days plus delinquent loans did not default. Hence, they too 

were classified as delinquent. In summary, in our model current loans are defined as actually current 
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and 30­59 days delinquent, while delinquencies are classified as 60­89 days delinquent and 90 days 

plus delinquent. Defaulted loans are those loans that are classified as either REO or in foreclosure.  

For the intensity process estimation, the loan­specific characteristics included are: (1) age of 

the loan (as a percent of the life of the loan), (2) the delinquency status of the loan (dlqstatus), (3) 

an American Council of Life Insurers (ACLI) foreclosure survivor bias variable (fore index)62, (4) 

the NOI at origination divided by the loan balance at origination (noi), (5) the prepayment 

restriction (normalized, monthly) (pen), (6) the logarithm of the original loan balance (origloanbal), 

(7) the debt service coverage ratio at origination (dscr), (8) the loan­to­value ratio at origination 

(ltv), (9) the weighted average coupon at origination (wac), (10) the loan spread at securitization 

(only for fixed­rate loans) (coupon spread), (11) a dummy variable for property type (IN, LO, NF, 

OF, OT) and (12) a dummy variable for geographical location (R1­R8). The choice of many of the 

variables were dictated by data availability.  Our database contained reliable data on loan 

characteristics at origination, but not afterwards.63 

                                                            
62 This is the average foreclosure rate over the past 14 years for each property× region, constructed from the ACLI foreclosure 
database (see Figure 110). 
 
63 For example, some but not all of the loans had data on NOI after origination. The sparsity of the updated NOI observations made this 
variable inappropriate to use. In addition, the updated NOI information is self­reported and not reliable. Whereas, at the origination date, the 
information is audited by the originator and a third party appraiser. 
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The hazard rate estimation was done separately for fixed­rate and floating­rate loans. Recall 

that Figure 67 contains a summary of the loans contained in the estimation.  For non­CTLs, the 

focus of this dissertation, there are 94,011 fixed­rate loans. The number of defaults for the fixed­rate 

loans is 2,153.  Recall that the parameter estimates for a competing risk current versus delinquent 

point process and for the default point process are shown in Figure 68.  The parameter estimates 

are based on the equation: 

   coefficient variable

1
intensity

1 i iie





   (118) 

The first column contains the variables: ( ) thih t i property × region stock price index at time ݐ; 

P1 = industrial property dummy variable; P2 = lodging property dummy variable; P3 = multifamily 

property dummy variable; P4 = office property dummy variable; P5 = other property dummy 

variable; P6 = retail property dummy variable (omitted); R1 = East–North–Central region dummy 

variable; R­SQ = Mideast region dummy variable; R3 = Mountain region dummy variable; R4 = 

Northeast region dummy variable; R5 = Pacific region dummy variable; R6 = Southeast region 

dummy variable; R7 = Southwest region dummy variable; R8 = West–North–Central dummy 

variable; R9 = other region dummy variable (omitted); age = (1 − remaining term/original term); 

dlqStatus = delinquency status; fore index = ACLI foreclosure index; noi = net operating income at 
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origination divided by the original loan balance; pen = penalties divided by outstanding balance at 

time ݐ; origloanbal = logarithm of the original loan balance; ( ) thiH t i  property stock price index 

at time ݐ; dscr = debt service coverage ratio at origination; ltv = loan to value ratio at origination; 

( )r t   spot rate of interest at time ݐ; ( )H t  Reit stock price index at time ݐ;  ( ,10) ( ) 10f t r t   

year forward rate minus the spot rate at time ݐ; wac = weighted average coupon at origination; 

coupon_spread = coupon minus treasury rate spread at loan origination;   The remaining columns 

give the coefficients and standard errors. 

For the current and delinquent intensity process note that the coefficients are equal and 

opposite in sign for current and delinquency.  I concentrate on explaining the intensity of going 

from current to delinquent. For fixed­rate loans: (i) as the age of the loan increases, the likelihood 

of delinquency increases, (ii) as historical foreclosures increase (fore index), the likelihood of 

delinquency declines, (iii) the NOI (noi) is insignificantly different from zero64, (iv) the higher the 

prepayment penalties (pen), the higher the likelihood of delinquency, (v) the larger the original 

loan balance, the higher the likelihood of delinquency, (vi) the higher the debt service coverage ratio 

(dscr), the higher the likelihood of delinquency, (vii) the higher the loan­to­value ratio at 

                                                            
64 This is probably due to the endogeneity of the origination process. The terms of the loan contract are set to reflect the NOI of the given 
property, making its explanatory power zero. 
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securitization (ltv), the lower the likelihood of delinquency65, and (viii) the higher the weighted 

average coupon (wac) and coupon spread, the lower the likelihood of delinquency. As the property 

indices increase ( ( ) ,  ( t ) ,  a n d  ( )i ih t H H t ), the likelihood of delinquency declines. As either the spot 

rate ( ( )r t ) or the slope of the forward rate curve ( ( ,10) ( ) 10f t r t  ) increases, the likelihood of 

delinquency increases.  All of these comparative statics are as expected.  

For the default intensity, the signs of these coefficients are mostly as expected. For fixed­

rate loans: (i) the larger the age of the loan, the more likely to default, (ii) if the loan is delinquent, 

then probability of default increases, (iii) as historical foreclosures increase (fore index), the 

likelihood of default decreases, (iv) net operating income (noi) appears to have no impact on 

likelihood of default, (v) the higher the prepayment penalties (pen), the higher the likelihood of 

default  (vi) the larger the original loan balance, the more likely it is to default, (vii) the higher the 

debt service coverage ratio, the less likely to default, (viii) the higher the loan­to­value ratio at 

securitization (ltv), the higher the likelihood of default, (ix) the higher the weighted average coupon 

(wac), the higher the probability of default and the higher the coupon spread at origination, the 

lower the probability of default.  As the spot rate ( ( )r t  ) increases or the term structure (

( ,10) ( ) 10f t r t  ) becomes more steep default is more likely. Lastly, as the property × region 

                                                            
65 Again, this is probably due to the origination process. Those loans that have high initial loan­to­value ratios are probably viewed as having 
less default risk at origination. Otherwise, the originators would have reduced the loan­to­value ratio of the borrowing entity. 
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index ( ( )iH t  ) increases, default is unchanged. As the property index ( ( )ih t ) increases, the 

likelihood of default declines. Finally, as the REIT index increases ( ( )H t  ) default declines.   

A standard method for measuring out­of­sample performance is the area under the receiver 

operating characteristic (ROC) curve.  For comparison across models, a value of 0.5 for the ROC 

measure indicates a random model with no predictive ability, while a value of 1.0 indicates perfect 

forecasting. The ROCaccuracy ratios for the different intensity processes estimated for Fixed Rate 

Loans are all quite high with ROC ratios for Default=0.830, Current=0.886, and Delinquent = 0.886. 

These numbers are comparable to those obtained in the estimation of corporate bankruptcies (see 

Chava and Jarrow, 2004).  
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Appendix E –Merton, BSM Proofs, and Brownian Motion 
E.1. Merton, 1974: Suppose for simplicity that a firm has one zero coupon bond outstanding 

and that the bond matures at time T.  Merton defines for us the following: 

0V :  Value of the company’s assets today 

TV :  Value of the company’s assets at time T 

0E :  Value of the company’s equity today 

TE :  Value of the company’ equity at time T 

TD :  Amount of debt interest & principal due at time T 

V :  Volatility of assets 

E :  Volatility of equity 
r :  Constant spot risk free rate of interest 

 
In theory, if TV D  it is rational for the company to default on its debt, D, at time T.  If 

TV D  then the company should make the payment at time T and the value of the equity, E, at 

this time is TV D .  In this sense, the equity holder has both a junior and contingent claim on the 

residual value of assets in the future (time T), which by Merton can be constructed as the maximum 

of assets minus debt or zero (0),  

   max  –  ,  0T TE V D      (119) 

This shows that the equity holder is effectively a call option holder with the strike price on 

the call option equal to the value of the repayment of the debt (D) at time T.  Thus the equity 
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holder is exposed to changes in value with respect to time.  If at time T, the value of D is greater 

than or equal to the total value of the company ( TV ), the equity (modeled thus as a call option) will 

expire as worthless (0).  Such expiration will evidenced by a default on the debt at time T.  If the 

value of the debt is less than the total value of the company ( TV ) at time T, then the option will 

expire and the equity value TE  will be positive resulting in a repayment of the debt at time T.   

Thus, the risk of default and reward of equity value are transferred to the equity holder at the time 

of the expiration of the debt.  For our purposes in determining the probability of default under 

Merton, such expiration will be evidenced by a default on the debt (D) at time T as the company is 

‘underwater’.  Equity (E_T) only begins to exhibit values greater than zero when the value of the 

company V_T exceeds the amount of the debt (D). Thus, I can consider the value of the debt at 

expiry as a barrier.  If the company value falls below it, it will have an incentive to default.  Since 

the value of the Equity can be said to be contemplated as a European Call option on a non­dividend 

paying stock, then I simply build upon the familiar notation from BS and make a few minor 

adjustments to the notation for Merton.  Specifically,  0 1 2( )rTc S N d Ke N d  can be altered 

for the Merton notation by noting that 0c = E  so I can say, under Merton 

   0 0 1 2( )rTc E V N d De N d     (120) 
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where, 0V , the value of the company today is substituted for 0S the price of the Stock today; and 

where D , the amount of Debt due at maturity is substituted for K , the Strike Price on the call at 

expiration.  Finally, I substitute V , the volatility of the company for  , the volatility of the stock 

price and I then adjust for the notation for each of ( 1)N d  and ( 2)N d to get,  

 
2

0
1

ln( ) ( / 2)V

V

V D r T
d

T



 

   (121) 

and 

  2 1 Vd d T    (122) 

Given Merton’s framework and assumptions, I now have the implied value of the debt based on the 

parameters and framework, as 

  0 0 0D V E    (123) 

What’s missing of course is that that observing the true value of a company, 0V , or the volatility of 

a company, V , is not typically observable.  However, if the company is publicly traded, we can 

observe 0E  (the LHS) directly and can estimate E , the equity volatility from historical data.  Since 

we know, 0E , to solve for 0V  and V , we simply need one more equation that is also constrained 
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by the same two unknowns.  Importantly, by Ito’s Lemma , ߲  represents a draw on the Normal ܸ߲/ܧ

distribution for the term in Merton, ݀1, so ߲ܧ/߲ܸ		ൎNሺ݀1ሻ.  And so I write: 

   0 1 0E VE N d V    (124) 

Now I have two simultaneous equations in two unknowns that can be solved for the implied 

company value and implied company volatility, 0V  and V  respectively, where, 

 
0 0 0 1 2M erton/BSM  condition:  ( , ) ( , ) ( ) ( )rT

VF x y F V E V N d De N d       (125) 

and 

  1 0
0 0 1 0 0

( )
Ito Condition:  ( , ) ( , ) ( ) V

V E V
E

N d V
G x y G V E N d V E

  


       (126) 

so,  ( , ) ( , ) iffG x y F x y  

  1 0
0 1 2

( )
( ) ( )rT V

E

N d V
V N d De N d




    (127) 

The perspective brought by solving ( , ) 0  and ( , ) 0F x y G x y  by finding the x and y 

values that minimize    2 2( , ) ( , )F x y G x y  allows us to contemplate the payoff or default of the 

company with respect to its debt obligation in terms of the Normal probability distribution.   
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E.2. Put/call parity proof for Black Scholes Merton:  The Black­Scholes price at time ݐ of a 

European put option with strike ܭand maturity ܶ is ܨሺݐ, ܵ௧ሻ where 

       2 1, Φ ΦrF t x Ke d x d       (128) 

The value at time ݐ of a European option whose payoff at maturity is ்ܥ ൌ ݂ሺ்ܵሻ is ௧ܸ ൌ ,ݐሺܨ ܵ௧ሻ 

where 

     
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    (129) 

Let ߠ ൌ ܶ െ and let ܵ௧ ݐ ൌ  So I get  .ݔ
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Now I can write the European put with a strike price K which has value greater than zero so	ܲݐݑ ൌ

௧ܲ ൌ ܭሼݔܽ݉ െ ,ݔ 0ሽ which I could derive by integrating: 
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     (132) 

Instead of deriving the price of the put directly, however, I can use the put­call parity 

theorem.  Suppose portfolios exist, one consisting of a European call option and a riskless discount 

bond, and the other consisting of a European put option and a share of stock against which both 

options are written. The call and put both have exercise price ܭ and ݐ periods to expiration.   And 

the riskless bond pays off ܭ dollars at time ݐ.  Then these portfolio payoffs are identical since the 

payoff on the first portfolio is 

     ,0 ,Max x K K Max x K      (133) 

and the payoff on the second portfolio is  

     ,0 ,Max K x x Max x K      (134) 
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Consequently, the current value of these portfolios must also be the same; otherwise there would 

be a riskless arbitrage opportunity. Therefore, the price of a European put option ௧ܲ can be 

constructed from the call	ܥ௧ , the strike ܭ and the stock Price ݔ	66”. 
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   (135) 

As required.  Now, to prove ܥ௧ , we derive, and solve for the boundary condition of y in function 

݂ሺ∙ሻ so the price condition is: 

 
21

 2yrxe e e K
   

    (136) 

therefore,    

 

                                                            
66 See Garven, James R. 2/26/2012  
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   (137) 

which is the lower bound of integration.  Changing signs: 
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Therefore, if ݕ ൑ െ݀ଶ → ݕ ൒ ݀ଶ, and the integrand will be positive on the bounds of integration  
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And I multiply through and make the observation 
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Re­arranging 
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But I can take out ݁௥ఏ݅݊	݄݁ݐ	ݐݏݎ݂݅	݈ܽݎ݃݁ݐ݊݅	 
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Re­arranging 
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Now I complete the square for the exponent 
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For any quadratic when I complete the square I use ܽݔଶ ൅ ݔܾ ൅ ܿ ൌ 0 then solve for the roots 

ሺݔ െ ݄ሻଶ ൅ ݇ ൌ 0, where ݄ ൌ െ
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Therefore, I get: 
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But I have to multiply through by the reciprocal I initially normalized with so I get: 
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And I substitute in the exponent in the integral 
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Finally, I substitute ݑ ൌ ݕ െ – If y runs from  .ߠ√ߪ ݀2	 → ݑ	݄݊݁ݐ	∞ ൅ ߠ√ߪ ൌ  runs from ݑ then , ݕ
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which is the Black Scholes Pricing Formula for a European Call Option ܥ௧ .∎ 

E.3. Black Scholes Merton with Stochastic Calculus:  Suppose that the value of a European 

Call option can be expressed as ௧ܸ ൌ ,ݐሺܨ ܵ௧ሻ. Then  ෨ܸ௧ ൌ ݁ି௥௧ ௧ܸ,  and I may define ܨ෨   by  ෨ܸ௧ ൌ

,ݐ෨ሺܨ ሚܵ௧ሻ.  Under the risk neutral measure the discounted asset price follows ݀ ሚܵ௧ ൌ ߪ ሚܵ௧݀ܺ௧  where, 

(under probability measure)  ሼܺ௧ሽ௧ஹ଴  is a standard Brownian motion67.   To find the stochastic 

differential equation satisfied by ܨ෨ሺݐ, ሚܵ௧ሻ, I note that I have an SDE for discounted asset price that 

follows (satisfies)   ݀ ሚܵ௧ ൌ ߪ ሚܵ௧݀ܺ௧.    So, the discounted European Call that satisfies (follows):  

,ݐ෨൫ܨ ሚܵ௧൯ ൌ ሺ∙ሻ݀ݐ ൅ ሺ∙ሻ݀ܺ௧	.  I proceed by Itò, 
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So, 
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Also, since,  
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67 Discussed at the conclusion of this Appendix. 
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We can determine that 
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So I can substitute for డி෨
డ௧
 in  
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The first two terms in parentheses vanish as they are differential products with ݀ݐ and negligible.  

So,   
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Rearranging, then I get 
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which is the SDE satisfied by ܨ෨൫ݐ, ሚܵ௧൯  in the form as required, and I note  ሚܵ௧ ൌ ሚܵ଴ ൅ ߪ ׬ ሚܵ௨݀ܺ௨
௧
଴  

then, using the fact that  ௧ܸ  is a martingale under the risk­neutral measure, I find the partial 

differential equation satisfied by ܨ෨ሺݐ,   :ሻ, and show thatݔ
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2 2
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1
0

2

F F F
x rx rF

t x x
  

   
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is the Black­Scholes equation.  Since ௧ܸ  is a martingale under the risk neutral measure I write  
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       | , 0r T t Q
t t T tf S V e E V t T        (159) 

where ்ܸ  is the payoff at expiration ܶ,  ௧࣠ is the filtration generated by process ሼ ௧ܹሽ under ܳ. 

And, we know from Feynman­Kac that 

       , |r T tQ
T tF t x E e f S S x        (160) 

which can be written  
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So, the key claim to make is that conditioning on the filtration ௧࣠  and conditioning on the value ்ܸ  

are the same things provided that ்ܸ ൌ ߶൫ݔሺܶሻ൯, which it is.∎ 

E.4. The Wiener Process and Brownian Motion: One example of random processes with 

independent and stationary increments is a Wiener Process.  Schaum and Ross tell us a random 

process ሼܺሺݐሻ, ݐ ൒ 0ሽ is called a Wiener Process if: 

 ܺሺݐሻ has stationary independent increments 
 The increment ܺሺݐሻ െ ܺሺݏሻሺݐ ൐  ሻ is Normally distributedݏ

 ܧሾܺሺݐሻሿ ൌ 0 
 ܺሺ0ሻ ൌ 0 

 

In the discrete time setting a widely adopted model for stock price dynamics is 

 
   

   Δ
 Δ  ΔB
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With Δݐ  a time interval, ܵሺݐሻ  and ܵሺݐ ൅ Δݐሻ  the stock prices at current time   and future time	ݐ

ሺݐ ൅ Δݐሻ, and ΔBሺݐሻ the Brownian motion increment over Δݐ with ߤ and ߪ constants.  By Wiersema  

The change in the stock price, relative to its current value at time t grows at a non­
random rate of ߤ per unit of time and that there is also a random change which is 
proportional to the increment of the Brownian motion over Δݐ, with proportionality 
parameter ߪ.  The standard Brownian motion importantly models the rate of return 
on a stock (and thus can take on negative values).  The analogue in the continuous 
time world, the analogue is the arithmetic68 Brownian motion stochastic differential 
equation: 

       dS t dt dB t      (163) 

With ߤ and ߪ known constants, and ߪ ൐ 0.  The growth (drift) coefficient 
,ݐሾߤ ܵሺݐሻሿ ൌ ,ݐሾߪ and the diffusion (volatility) coefficient ߤ ܵሺݐሻሿ ൌ  are both ߪ
constant.  Expressing this in integral form I get: 
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which can be written as 
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And so the solution ܵሺܶሻ can take on negative values, which is required for the modeling of 

random variables as returns (which will do extensively).   

 Finally, the distribution parameters for the arithmetic Brownian Motion SDE are given by: 

                                                            
68 Contrasting with Geometric Brownian motion ݀ܵሺݐሻ ൌ ݐሻ݀ݐሺܵ	ߤ ൅  .ሻ which cannot take on negative valuesݐሺܤሻ݀ݐሺܵ	ߪ
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and 

          20  Var S T Var X T B T Var B T T                     (168) 

 

A discretized representation of generated arithmetic Brownian Motion ܹሺݐሻ is provided in 

Figure 111 as equivalently ܹሺݐ, ݈ሻ with each ݈ representing a realization, or sample path, of the 

Brownian Motion ܹሺݐሻ. 
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Appendix F:  Cashflow Verification 
Using principal and interest cashflows require careful calculation of fair value at the bond 

level.  I implement the exact allocation algorithm for Model 3 and simply adjust for pathwise risk 

free discount rates for Model 4.  Below I provide detailed examples from the R­code implementation.  

In order to allocate the cashflows to the bond structure, I needed to sum the default adjusted 

cashflows for each period for each of the loans.  This gives us an aggregate, or trust level default 

adjusted set of periodic cashflows, for each of the simulations.  I show a small example of 4 loans 

across 5 simulations.  Figure 111b shows the 1st 36 (of 120) periods for each of the 4 loans across 

each of the 5 simulations.  The organization of the cashflows is #loans*simulations , so, again, in 

this example, the first 5 columns represent the cashflows for loan 1 across the 5 simulations, the 

second 5 columns represent the cashflows for loan 2 across the 5 simulations, and so forth. I now 

must capture the loan cashflows for each of the simulations.  Figure 112 shows the aggregation 

across the 4 loans for each of the 5 simulations for the first 36 periods. 

To check for accuracy, consider Loan payment period 23.  The cashflows are highlighted in 

Figure 111b and 112.  The period cashflows are then broken out in Figure 113 summing to what is 

reported in the Trust Cashflow table.  The 0.52 cents on more than $24mm in anticipated payments 

is due to formatting and so the calculations appear to be correct.  I now turn to the bond allocation. 
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I have ensured that the trust cashflows are captured and accurate with the above and many 

other tests.  Additionally, only for those loans that default strictly ‘prior’ to origination data (only) 

I retain the default pushing it to the 2nd promised payment date.  This preserves the default in 

highly volatile periods but uses the historical rate as a proxy.  Truly this is just a computational 

convenience for very rare exceptions, but it does what is intended and ensures that 100% loss does 

not ensue by utilizing the historical loss rate for commercial real estate property types.  Additionally, 

instead of rigidly (and unrealistically) assuming that recoveries are instantaneous, I use recovery 

periods specific to property types ­ and this is flexible.   

In this summary, I am just looking at the principal cashflows including recoveries (with 

their timing) for 8 multifamily loans across 10 simulations (for display).  The bond capital structure 

used is identical to the CMBX Series 1 (of which these loans are members). The percentage of the 

original balance of the loans in this example reflect the subordination as given (Figure 114).  For 

each simulation date each of the 120 months of simulated cashflows must be allocated in full to the 

classes.  At the end of each month that is simulated on a simulation date the Trust Cash Balance 

must equal 0 reflecting total allocation of all cashflows for that period.  I consider 10 simulations 

and as before I show the trust cashflows which now reflect the sum of the simulated principal 

cashflow (with recoveries) for the 8 multifamily loans in the trust (Figure 115). I see, as before that 
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the amounts vary in the periods reflecting different default, promised payments and timing of 

recovery. 

In the senior Sub Structure, the principal is allocated first to the AAA, then to the AJ, then 

to the AM, and so forth thru the BBB­.  I show Trust next to AAA (Figure 116­a) in the aggregate 

followed by the remaining tranche and then Figure 116­b which breaks out the Trust and AAA 

across 10sims.  It is clear that only a portion gets allocated from the Trust to the AAA.  But how 

much?  If things are working, only the amount up to the cumulative remaining balance of the AAA 

in any given period. Consider simulation 10.  The Trust (left) generates cashflows which are 

completely allocated to the AAA in periods 32 and 33, however in period 34 only 673.22 is allocated 

to the AAA.    Why? Because that was the amount of the remaining balance of the AAA in that 

period under simulation.  With the balance paid down in month 34, the AAA is no longer entitled 

to any other principal and so in months 35:120 (only up to month 50 shown), I see that the AAA 

receives $0 while the trust is still generating cashflows (Figure 117 and 118).   I stay with simulation 

10 for convenience and show the cascade of the remaining balance for each of the securities and the 

trust.  It is worth highlighting that in addition to accurate cashflow allocation under simulation, 

there is of course, the possibility under such simulation that there is insufficient cash for the classes 

due to default and loss.  In this particular simulation 10 the BBB­ class never receives any payments 
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(there are no principal payments in this simulation after month 50).  Additionally, the BBB only 

gets paid off slightly.  All the other classes AAA thru A all get paid off in full.  This is reasonable 

given the loss experience in this Crisis69.   

For the Recovery portion of the study the relevant cashflow schedule information related to 

amortization and interest is from the EDGAR/prospectus supplement data in the Annex A tables.  

From this information, I was able to generate the promised cashflows from origination.  At each 

simulation date (daily) I initialize the simulation reflecting the paid down balance of all the loans 

within the trust at that time and then allocate the cashflows under default adjustment in the 

simulation across the structure.   

I know the allocation of principal70 to each of the AAA, AS, AA, A, BBB­, BB and Unrated 

tranches is correct.  Figure 119 sums to the maximum amounts of principal at the point of 

initialization of the simulation with 0.20% associated with rounding and timing mismatches only 

for the Unrated class on a $13.3B pool which is reasonable.  Figure 120 shows the output for the 

promised cashflows allocation (over three pages) to the bond structure and Figure 121 shows the 

timing over the 145 month simulation horizon (as some loans expire >120 months in this pool).  I 

                                                            
69 See US CMBS Market Trends – December 2013 Natixis & Moody’s, among others. 
 
70 Similarly, we know that the interest cashflows are being paid correctly and that the pricing reflects this correctly 
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also know that I am capturing the default adjusted cashflows correctly.  Consider Figure 122 in 

which one loan that defaults on path 8.  The recovery time is 2 months and the recovery rate is 

74.23% of remaining balance at the time of default.  This particular example is from the reduced 

form technology.     The third column is the default adjusted cashflow that correctly captures the 

promised cashflows to period 29.  A default occurs in period 30 and the recovery is realized in 

period 32.  I use a short recovery period simply to be economical with simulation processing time 

as I must simulate as many months as the longest scheduled maturity of any loan in the sample 

plus the recovery at maturity of the longest dated loan contemplating a balloon default.  The 

recovery time and rate can always be adjusted.  I next show in Figure 123 the allocation of principal 

cashflows for the promised and an average across paths contemplating default.  The sum of the 

principal balance for each of the classes (on average across all paths is provided).  It accurately 

reflects the default occurrence (cashflows sooner than expected from recoveries from defaults) and 

also accurately reflects the seasoning.  The average across paths for the default plot was computed 

as of simdate 3/7/2014 and there is also amortization that pays down the AAA over that period.  In 

Figure 124 in which the default adjusted principal is as of simdate 3/7/2014, there is no loss of 

principal to the AAA, (or for that matter all the classes through BBBmin).  Rather, the AAA was 

paid off partly based on loans that originated as early as 8/2011.  On average the BB as of this 

simdate across all simulations was showing a small loss.  This is consistent with the pricing intuition.  
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Because of shortening in duration of the cashflows, however, there will be less interest paid to them 

as they will exist over a shorter period of time.  

Finally, it is important to note that while I do not have as a resource updated ‘real’ cashflow 

data for the loans, what I do have is updated delinquency and default information on each of the 

transactions for which each of the 688 loans in this sample serve as the exhaustive collateral set.  

From origination of the loan through March 1, 2014 there were 0 delinquencies and 0 defaults in 

each of the transactions represented.  As such it must be the case that the historical updated real 

cashflows for the simulation initialization period in each of the four models, must follow exactly the 

promised cashflow schedule.  Therefore, I have no information deficit in the underlying sample data 

used for the Recovery period. 
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Appendix G– Primer on Poisson and Cox Processes  
The Appendix serves as a primer on the use of Poisson and Cox Processes in this 

dissertation.  It attempts to succinctly use references that take us from the basic counting process 

to the Cox Process.   

 G.1. Poisson and the Poisson Process as a counting process:  Schaum and Ross tell us a 

Poisson Process ܺሺݐሻ is an important counting process that fulfills the following criteria: 

1. ܺሺ0ሻ ൌ 0	
2. ܺሺݐሻ has independent and stationary increments 
3. The number of events in any interval of length ݐ is Poisson distributed with mean ݐߣ such 

that for all ݏ, 	ݐ ൐ 0: 

       
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n
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  (169) 

It follows from (3.) that a Poisson Process has stationary increments and that using the moment 

generating function ߶ሺݐሻ I can determine the mean ߤ௑ ൌ ሻሿݐሾܺሺܧ ൌ  and the variance	ݐߣ

ሻሿݐሾܺሺݎܸܽ ൌ  which are the same as is required of a Poisson random variable71.  The implication ݐߣ

is that for any unit length interval (t=1), such as ሺ0,1ሻ, ሺ4,5ሻ, ሺ100, 101ሻ… etc, the expected 

number of events that take place in that interval is then just ߣ, the intensity.   

Following Shreve, I let the sequence ߬ଵ, ߬௡, … ߬௡be independent exponential random 

variables, all with the same mean ଵ
ఒ
.  I note the attribute on the memorylessness property of the 

                                                            
71 The mathematics associated with this are provided at the end of this Appendix. 
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exponential random variable and in particular emphasize “After waiting ݏ time units, the 

probability that I will have to wait an additional ݐ time units is the same as the probability of having 

to wait ݐ time units starting at time ݐ ൌ 0.  The fact I have already waited ݏ time units does not 

change the distribution of the remaining time”.  The ߬ ௞ random variables are, the interarrival times.  

The arrival times (or jump times) are then:  
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    (170) 

where ܵ௡ is the time of the ݊ െ  ሻ, which countsݐjump and the Poisson Counting Process, ܰሺ ݄ݐ

the number of jumps that occur at or before time ݐ is: 
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with jump times ܵ௡ right continuous.  Because the expected time between jumps is ଵ
ఒ
 the jumps are 

arriving at an average rate of ߣ per unit time and the Poisson Counting Process has intensity ߣ.  In 

the first panel of Figure 124 I see that for constant intensity ߣ ൌ 0.25 over the course of 15 years 

in one simulation ݈, the first jump occurs in the 97th time step, with each step ݇ ൌ ଵ

ଵଶ
  so ݏ௡ ൌ
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∑ ଵ

ଵଶ
ଽ଻
௜ୀଵ ൌ 8.083 and ܰሺݐሻ ൌ 1.  In the second panel of Figure 124 the first jump occurs at the 1st 

time step, the second occurs at the 78th time step, and the third jump occurs at the 96th time step 

so ݏ௡ ൌ ∑ ଵ

ଵଶ
ଽ଺
௜ୀଵ ൌ 8.0 and ܰሺݐሻ ൌ 3.  I describe some of mathematics required to describe the 

distribution of the Poisson Process ܰሺݐሻ at the end of this section.   

G.2. The Compound Poisson Process and Jump Diffusion:  As before I note that 

ܰሺݐ ൅ ሻݏ െ ܰሺݏሻ is independent of the filtration ࣠ሺݏሻ.  For the stationarity claim Shreve shares 

with us “When a process has the property that the distribution of the increment depend only on 

the difference between the two time points, the increments are said to be stationary.  Both Poisson 

and Brownian Motion have stationary independent increments.   

One direction we could pursue would be to simulate asset prices or the components of our 

simulated economy using Merton using Jumps where the combination of the Brownian Motion and 

the jumps is a Jump Diffusion. To get there using Shreve’s notation I restate Corollary 11.3.4, Let 

ଵݕ … ,  be positive numbers that sum	ெሻݕሺ݌…ଵሻݕሺ݌ ெbe a finite set of nonzero numbers and letݕ

to 1.  Let ଵܻ, ଶܻ, …be a sequence of iid random variables with ܲሼ ௜ܻ ൌ ௠ሽݕ ൌ ݉,௠ሻݕሺ݌ െ

1,… ܰ Let		.ܯ, ሺݐሻ be a Poisson process with parameter ߣ and ሼ ௜ܻሽ௜ஹଵbe a sequence of independent 

identically distributed random variables and define ܳሺݐሻ ൌ ∑ ௜ܻ
ேሺ௧ሻ
௜ୀଵ	  as a Compound Poisson 

Process.   
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For ݉ ൌ 1,…  ሻdenote the number of jumps in ܳ of size y୫up to andݐlet ܰ௠ሺ ܯ,

including time ݐ.   Then, ܰሺݐሻ ൌ ∑ ܰ௠ሺݐሻெ
௠ୀଵ 	ܽ݊݀	ܳሺݐሻ ൌ ∑ ሻெݐ௠ܰ௠ሺݕ

௠ୀଵ .  The processes 

ଵܰ, … , ܰெ defined this way are independent Poisson Processes and each ܰ ௠ has intensity ݌ߣሺݕ௠ሻ.  

Shreve provides us with a graph in Figure 125 of one path of a Compound Poisson Process.  The 

Compound Poisson Process is a generalization where the waiting times between jumps are 

exponential but the jump sizes can have an arbitrary distribution.  So, the key point to take away 

from this is that while a process is incrementing through time the Compound Poisson Process times 

between jumps are following an exponential distribution. Both Shreve and Tankov/Voltchkova tell 

us that the amplitude of the jump when it occurs is of random size/arbitrary.  The amplitude/size 

could be Normally Distributed/Gaussian, or could follow some other distribution or process.   

Focusing more on the question of “when” the jump occurs, I revisit the exponential 

distribution for Poisson. Recall a continuous random variable that follows an exponential 

distribution with parameter ߣሺ൐ 0ሻhas probability density function (pdf) of 

        ௑݂ሺݔሻ ൌ ൜݁ߣ
ିఒ௫, ݔ ൐ 0

ݔ												,0 ൏ 0
                   (172) 

Let’s assume that parameter ߣ ൌ 1.  This reduces to the form 

                                                   ௑݂ሺݔሻ ൌ ൜ ݁ Ȥ௫, ݔ ൐ 0
ݔ																,0 ൏ 0

                          (173) 



­183­ 
 

 
 

This means that if a process is following an exponential distribution through time, I would adjust 

the notation for time index t, or a Unit Exponential.  Using Lando’s notation: 
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If ܧଵሺݐሻ is allowed to be random I can simulate the value of ܧଵሺݐሻ using the Uniform distribution 

similar to what we would do to simulate a normally distributed random variable, where in both 

instances, the input is the Uniformly distributed random value between 0 and 1 and the output is 

the distributed value.  This is consistent with the explanation provided in the algorithm of 

Tankov/Voltchkova in which they simulate the Compound Poisson Process as described below with 

a Gaussian amplitude (see Figure 126) 

“Conditionally on ்ܰ ൌ ݊, the jump times ଵܶ, . . . , ௡ܶ of a Poisson 
process on the interval ሾ0, ܶ	ሿ are distributed as ݊ independent 
ordered uniforms on ሾ0, ܶ	ሿ.  This leads to the following algorithm: 

• Simulate ்ܰ from the Poisson distribution with parameter ܶ . 
• Simulate ்ܰ uniform random variables ሼ ௜ܷሽ௜ୀଵ

ே೅  on ሾ0, ܶሿ. 
• Simulate ்ܰ independent variables variables ሼ ௜ܻሽ௜ୀଵ

ே೅  with law ݂ 
(meaning with distribution/density of ௜ܻ). 

The process is then given by ܺ௧ ൌ ∑ ௜ܻ1௎೔ஸ௧
ே೅
௜ୀଵ	 ” 

Combining a Brownian motion with drift and a compound Poisson process, I obtain the simplest 

case of a Jump Diffusion — a process which sometimes jumps and has a continuous, but random 
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evolution, between the jump times.  Following Tankov/Voltchkova they present us with the simplest 

form of Jump Diffusion proposed which is a Levy process 
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The best known model of this type is proposed by Merton, 1976 model where stock price (modeled 

as an exponential to ensure positivity) is ܵ௧ 	ൌ 	 ܵ଴݁௑௧  with ܺ௧ as expressed above and the jumps 

ሼ ௜ܻሽ following a Gaussian distribution.  Tankov/Voltchkova provide us with a simulation and in 

the figure below show us one sample path of the jump diffusion process ܺ௧ (Brownian motion + 

compound Poisson).  As we see in Figure 127 “in between jumps, the process evolves like a 

geometric Brownian Motion, and after each jump, the value of ܵ௧  is multiplied by ݁௒೔ .”  As such, 

the model proposed by Merton can be considered a generalization of Black Scholes: 

  t
t t
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
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where “ܬ௧ is the compound Poisson Process such that the i­th jump of ܬ is equal to ݁௒೔ െ 1.  

Whenever there is a jump the value of the process before the jump is used on the left hand side of 

the formula (ܵ௧ି).”  Shreve also provides us with similar expression in his Definition 11.4.3. 

 G.3. Reduced Form Default Intensity Models:  The discussion of Jump Diffusion above has 

direct application to the modeling of asset price evolutions (stocks and bonds).  In the reduced form 
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approach of Model 4, however, I will be taking a different route.  Instead of modeling the asset price 

evolution directly with a jump process as per Merton, I will be using an adaptation of the Poisson 

Process found in the default modeling literature.   

Following Trueck/Rachev, reduced form models (in general) allow for surprise defaults.  “At 

the heart of the reduced form models lies the instantaneous rate of default, the default intensity ߣ.  

Let ௧࣠ be the information up to time ݐ, and ߬ the default time, Δݐ a marginally short time interval, 

and ߣሺݐሻ the default intensity as a function of time only.  Assuming no defaults up to time ݐ the 

basic default intensity is expressed as: 

     | tP t t t t    F   (177) 

which is approximately the proportionality factor between the default probability within a given 

time interval Δݐ and the length of this time interval.”  In other words, ߣ is the intensity of the 

process that specifies the default time ߬.  In the literature, Poisson processes are used to model the 

default times of rare and countable events.  In this context the time of default is interpreted as the 

first jump of the Poisson process.  So, revisiting the Poisson Process in Figure 124, as a default 

process, the default time in the first example would be ߬ ൌ 97 and the default time in the second 

example would be ߬ ൌ 1. 
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The reduced form (Model 4) default process I implement is more complex than this.  

Further, it is distinct amongst the other models studied in my dissertation.  In Model 1, the default 

event is relegated to maturity and based upon the option value of the equity determined under 

Merton.  In Models 2 and 3, the default event is triggered by the single factor (the inverse LTV) 

dependent on the REIT evolution corresponding to the property type.  In Model 2, the event is 

restricted to the implied property value vs the debt value at Maturity (like Model 1, though it is a 

simulated event and property type specific); in Model 3 the default event may occur anywhere on 

the interval ሾݐ, ܶሿ on any simulation path ݈.   

In contrast, Model 4 considers the event of default to be a function of the relationship 

between loan level characteristics and the entire simulated economy.  What I am going to do is 

consider use the intensities of states of the loans (current, delinquent or default) as time and path 

dependent random variables interacting with loan and economy characteristics.  The method will 

be the Cox Process as introduced by Lando and Duffie in the literature and expanded on in Jarrow, 

etal 2008.  The end result will be the simulation of the correlated economy (as discussed in the main 

text) and a default process that will perturb the cashflows with respect to the historical experience, 

statistically, using Maximum Likelihood Estimates.  Then, using the cashflow algorithms of loan to 

bond allocation, the default adjusted bond level cashflows will be produced pathwise, and ultimately 
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valued using the HJM term structure.  The linkage between the loan and the simulated economy is 

the maximum likelihood estimates.   

G.4. Use of Maximum Likelihood Estimates:  Briefly, in the context of my dissertation, the 

MLE’s were estimated using three logisitic regressions to capture the binary response of an event 

(the delinquent state, ݍ, or the default state, ݀, ) or non­event (the current state, ܿ, aka the paying 

as promised state) from a set of 100,000 loans over a seven year period 1998­2005.  The logistic 

function always takes on values between 0 and 1 with  
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  (178) 

If we view ݕ as a linear function of an explanatory variable ݔ and its associated coefficients ߚ and 

intercept I may write: 

  
0 10 1 ( )

1
| ( )

1 x
E y x F x

e       


  (179) 

which is the logistic CDF with the interpretation as the probability of success, or presence of the 

event. The intensity associated with the events is written as the multiple regression: 

 

 coefficient variable

1
intensity

1 i iie
 




  (180) 
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G.5. Duffie on State variables & Parameter Estimates in Reduced Form:  To interact the 

intensities described above with the loans, Duffie provides a succinct overview of the procedure for 

establishing a dependence of the default intensity upon State variables vis a vis parameter estimates 

(in this case MLEs).  I learn that the maximum likelihood estimation of term structures of 

conditional default probabilities require both the estimation of default intensities at each point in 

time and the estimation of the probabilistic behavior of default intensities over time. Thus the 

default estimation problem is partitioned into a two part procedure: i.) estimate the parameter vector 

,ௗሺܺ௧ߣ determining the dependence of each default intensity ߚ  ሻ on the underlying state variableߚ

vector ܺ௧; and ii.) estimate the probabilistic time series behavior of ܺ௧.  Specifically, Duffie tells us: 

We fix some probability space ሺΩ, ࣠, ܲሻ and information filtration 
ሼ ௧࣠: ݐ ൒ 0ሽ.  For a given stopping time ߬, say a default time, we wish 
to estimate the term structure ሼܲሺ߬ ൐ :ሻݐ ݐ ൐ 0ሽof survival 
probabilities.  We suppose that ߬ is doubly stochastic driven by a d­
dimensional Markov process ܺ with intensity ߣௗሺܺ௧, ߚ ሻ , whereߚ ∈
Թℓ is a vector of parameters.  We suppose for simplicity that ܺ is 
constant between integer observation times, ݐ ൌ 1, 2, … 

Therefore in the intensity expression above, the ܿݐ݂݂݊݁݅ܿ݅݁݋௜	term corresponds to Duffie’s 

parameter coefficient vector, ߚ, and the ݈ܾ݁ܽ݅ݎܽݒ௜ term corresponds with Duffie’s underlying state 

variable ܺ௧, such that each default intensity ߣௗሺܺ௧,  ሻ is dependent on the simulated parametersߚ

which are state variables ܺ௧ and the state variable coefficients ߚ (which in this dissertation are the 

MLEs).  In this dissertation, the time dependent state variable ܺ௧  include the simulation of REITs, 
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NCREIF property indices, and forward risk free rates under HJM.  There are 27 such state variables 

all of which have an explanatory relationship with the historical events of default and delinquency 

as captured in the logisitic regression72 such that the intensity using Duffie’s notation is restated as: 

 
 X

1
intensity

1 i iie
 




  (181) 

The intensity then is said to be Stochastic allowing the default intensity to change over time.  

As the method for implementation is simulation, one could express the intensity then as 

,ௗሺܺ௧,௝ߣ ߬ ሻ.  According to Duffie, I say that a stopping timeߚ  with intensity ߣௗ is doubly stochastic, 

driven by ܺ, if, conditional on the covariate path ሼܺ ൌ ܺ௧: ݐ ൒ 0ሽ, ߬ is the first event time of some 

Poisson process with time­varying intensity ሼߣ௧: ݐ ൒ 0ሽ. This Poisson property implies that  

     0

( )

| ,

t

s ds

P t X e


 


     (182) 

Applying the law of iterated expectations (over the simulations), then 

       0
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s ds

P t E P t X E e


  
          

 

   (183) 

Additionally, stopping times, ߬ଵ, … , ߬௡ that are doubly stochastic driven by state variable 

ܺwith respective intensities ߣଵ ­ܺ ௡ are said to be jointly doubly stochastic if these times areߣ…

                                                            
72 To estimate we use a numerical procedure, such as Newton Raphson, for MLE to maximize the log likelihood of the event of interest. 



­190­ 
 

 
 

conditionally independent.  An implication is that ߬ଵ, … , ߬௡ are correlated only through the joint 

dependence of their intensities on the covariate state variable process ܺ.  For example, for any time   
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Therefore for some probability space ሺΩ, ࣠, ܲሻ where Ω contains the possible state of the world, 

the set ࣠ consists of the subsets of Ω, called “events” to which a probability can be assigned, the 

probability measure ܲ:࣠ ⟶ Թ assigns a probability ܲሺܣሻ to each event ܣ.  I also fix an 

information filtration ሼ ௧࣠: ݐ ൒ 0ሽ	satisfying the conditions that specify for each time ݐ the set ௧࣠ 

of events that are observable at that time.  Then, given a stopping time ߬ for say default, I say that 

a progressively measurable process ߣ is the intensity of ߬ if a martingale ܯis defined by  

     
0

1 1
t

t st sM ds        (185) 

where for any event ܣ, the indicator 1 has an outcome of 1 on the event ܣ and 0 otherwise.  This 

means that at any time ݐ before ߬, conditional on the current information ௧࣠, the mean rate of 

arrival of default is ߣ௧, the conditional default intensity conditioned on all information up to ݐ.  For 
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example, with time measure in years, a default intensity of ߣ௧ ൌ 0.1 means that default arrives at a 

conditional mean rate of once every 10 years, given all information available at time ݐ. 

G.6. Lando on Cox Processes, State variables & Default Intensity:  While Duffie provides 

support for the use of  Lando extends the discussion further.  Specifically, a primary focus of Lando 

is to allow for dependence between default intensities and state variables.  The timing of the jump 

event (default, delinquency) is also considered a conditional Poisson Process, where the distribution 

of the “when” of the jump is conditioned on the state variable ܺ ሺݐሻ.  Where I extend the discussion 

is in the linking of the default time with the intensity process ߣ which is a function of state variables 

so, where ߣሺܺ௦ሻ is the Cox Process.  Lando tells us: 

A Cox Process is a generalization of the Poisson Process in which the intensity is 
allowed to be random but in such a way that if we condition on a particular 
realization ݈ሺ∙, ߱ሻ of the intensity, the jump process becomes an inhomogeneous 
Poisson process with intensity ݈ሺݏ, ߱ሻ…where the random intensity 
  

     , sl s X     (186) 

is an ܴ ௗ valued stochastic process and ߣ: ܴௗ → ሾ0,∞ሻis a non­negative continuous 
function.  The assumption that the intensity is a function of the current level of the 
state variables, and not the whole history, is convenient in applications, but it is not 
necessary…The state variables will include interest rates on riskless debt and may 
include time, stock prices, credit ratings, and other variable deemed relevant for 
predicting the likelihood of default. Intuitively, given that a firm has survived up to 
time ݐ, and given the history of X up to time ݐ, the probability of defaulting within 
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the next small time interval ݐ߂ is equal to ߣሺܺ௧ሻݐ߂ ൅  ଵbe a unitܧ ሻ73.  Letݐ߂ሺ݋
exponential variable which is independent of X, given also is ߣ: ܴௗ → ܴ which we 
assume non­negative and continuous.  From these two ingredients we define the 
default time, ߬ as follows: 

    1

0

inf :
t

st X ds E 
 

  
 
    (187) 

Thus, if the intensity is greater than or equal to the unit exponential variable (which is independent 

of X), a default event occurs. ܺ௦ is very rich on two levels.  First, because the conditional intensity 

is independent of the Exponential variable, the mathematics of the Poisson Process apply.  Second, 

the intensity itself is informed by ܺ ௦ which incorporates a lot of information.  In Jarrow, etal (2008) 

some of ܺ௦	is current information as Lando suggests such as parameters for time, current payment 

status of the loan, outstanding loan balance, and many other factors.  Many of these factors, are in 

turn, driven by correlated Brownian Motion ݀ ܼ௞ሺݐ, ݈ሻ which serve as dynamic inputs to a regression 

in which the amplitude for the jump is determined by a regression of the form: 

   ,t k kY Z t j      (188) 

where ߚ௞ represents the ݇­th corresponding coefficient for a time dependent variable determined 

using MLEs and ௧ܻ represents the dependent variable of default.   

To make some of the mathematics more explicit we just consider a little theory.  I assert 

that what Lando is saying is that the compound Poisson Process, call it ܥ, is a conditional Poisson 

                                                            
73 Where ݋ሺΔݐሻ represents any function of Δݐ such that in the limit ݂ሺΔݐሻ/Δݐ → 0 faster than Δݐ. 
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Process, where ℙሺܥ|ܺ௧ሻ is Poisson, conditional on the information set in ܺ௧ state variables. The 

assumption is that we ‘know’ everything in the State variable and have complete path­wise 

information.  This is consistent with the idea of generating the correlated Brownian Motions and 

linking such continuous processes which represent the economy, to the actual historical default 

experience based upon loan level and economy wide characteristics experienced by the loan under 

simulation on each path ݈ at each time ݐ, found together in the state variables ܺ௧, or actually ܺ௧,௟ .  

With this perspective, then, over the interval ሾ0,  ሿ, the integral can be divided intoݐ
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So the takeaway is that the conditional Poisson Process is fully independent from the economy 

under simulation, as it should be, but it is embedded in historical sense as the realization of the 

intensity at any time ݐ on any path ݈.  ߣሺܺ௦ሻ informs the threshold of the default time ߬.  This 

completes the main portion of the supplement to the text which discusses the implementation of 

Model 4 in detail.  The remainder of this Appendix provides some mathematics supplements 

referred to in this Appendix. 



­194­ 
 

 
 

G.7. Basic Poisson mathematics:  A discrete random variable X with parameter ߣ ൐ 0 is said 

to be a Poisson random variable if its probability mass function (pmf) given by ݌௑ሺ݇ሻ ൌ ܲሺܺ ൌ ݇ሻ ൌ

݁ିఒ
ఒೖ

௞!
  for ݇ ൌ 0,1,2, … and corresponding cumulative distribution function (cdf) given by ܨ௑ሺݔሻ ൌ

݁ିఒ ∑
ఒೖ

௞!
௡
௞ୀ଴   for  ݊ ൑ ݔ ൏ ݊ ൅ 1  with  ௑ߤ ൌ ሺܺሻܧ ൌ  ߣ and  ௑ߪ

ଶ ൌ ሺܺሻݎܸܽ ൌ  		.ߣ Proof of the 

expectation of a Poisson Random Variable is given by: 
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To get the variance, I use the mgf of a Poisson random variable with mean  : 
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So, 
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and   
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So, 
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So I conclude for a Poisson Random Variable the mean and the variance are the same.	∎ 
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G.8. Mathematics for the distribution of the Poisson Process:  Beginning with the 

convolution for the gamma density:   
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But I note from the determination of ܵ௡ as having the gamma density that  
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which matches the solution in Shreve, and for the Lemma for the distribution of the Poisson Process 

ܰሺݐሻ with intensity ߣ. (Shreve, pg 465), 
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By Parts, let ݑ ൌ ߣ ሺఒ௦ሻ
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Therefore, from the initial expression 

     1

( )
1 { } { ( ) }

!

k
t

k

t
P N t k P S t e P N t k

k
 

          (201) 

Then, with this result from Shreve for ݇ ൒ 	1, 
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and for ݇ ൌ 0, 
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                                     1 1
tP N t k P S t P t e          (203) 

which is as Shreve tells us with ݇ ൌ 0.		∎ 
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Appendix H – Implementation of Switching 

In the implementation, the payment state transition process (switching) is the result of the 

delinquency/current process  ,i t l  and the default process,  ,i t l .  Beginning with the 

process  ,i t l , I have stochastic intensities for lambda delinquent, q  and lambda current, c .  

The payment state ( , )i t l  is the payment state of the loan at the initialization of any simulation.  

In all cases, the real payment state of the loan based on historical data will be used at initialization 

time ݐ ൌ 0. For all subsequent dates, ሾݐ ൅ 1: ܶሿ, the loan state ( 1: , )i t T l will be determined by 

the payment state transition process as described in the tree.  Each period thereafter and updated 

data (monthly) behaves as a unit exponential Poisson process, with the payment state the result of 

a two stage transitioning to either the delinquent or default state indicated by 1 over the period so 

   
    ,,

1
!

q

k

q t lt l
P k e

k
       (204) 

becomes  

       ,1 , q t l

qP t l e       (205) 

which has the interpretation of the lower bound for the current state such that if a Uniform random 

draw ܼ ൑ ܲሺ ( , )i t l ൌ 1ሻ, then ( , ) 1i t l    otherwise ( , ) 0i t l  .  I simulate and capture the 

intensities, q  and c   and d and payment state ( , )i t l  resulting from the delinquency/current 

process  ,i t l  and the default process,  ,i t l  for all times ݐ and all simulations ݆.  
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I see from the cascading screen shots (Figure 125) the first 13 months of 20 of 250 

simulations for one individual loan on one simulation date. The loan delinquency status entering 

the simulation was current (delinquency status=1.)  The loan takes on a simulated delinquency 

status for each of the simulated times t=1:120 of either delinquent or current.   The instance of 

delinquency of 250 possible simulated instances for each of the 120 simtimes are shown.  11,012 

instances of delinquency status show up out of 30,000 simulated states resulting in average realized 

delinquency status =1 frequency of 0.37. 

Next I have the default process,  ,i t l  which uses the default intensity, d . I concentrate 

on the case where the payment state ( , )i t l  is delinquent such that the delinquency state variable, 

௜ܰሺݐ, ݈ሻ, is turned on to a value of 1 such that |ߠௗ ௜ܰሺݐ, ݈ሻ| ൐ 0 on a particular path ݆.  In one 

example this occurs in a case in the Crisis where this loan was also conveniently in a delinquent 

state entering the system (it doesn’t have to be, it could have transitioned to delinquent from current 

at  ,i t l ), so in this case      t 0 , t 0 , ,  i l delq l l      .  

In Figure 126 we observe the simulated default draw from an initial delinquent state for the 

first 10months of simulation across 10 of 250 simulations.  Next I show the default boundary for 

the loan as determined by d .  Next I show the result of the delinquency process which “precedes’ 
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the default process. As we see in the initial state, the loan is categorically in the delinquent state.  I 

then show the result of the default process  ,i t l which is determined by 

        ,,

!
d

k

d t lt l
P k e

k
      (206) 

which becomes, 

       ,1 , d t l
dP t l e       (207) 

and which has the interpretation of the lower bound for the default state such that if a Uniform 

random draw ܼ ൑ ܲ ቆ ( , )i t l ൌ 1ቇ  then ( , ) 1 default
i

t l   .  Though default may occur from 

the current state, it is quite rare and in this rendering it does not occur.  Additionally, simply by 

being in the delinquent state does not guarantee going into default.  For default to occur in the 

process, the draw must be less than or equal to the boundary.  I show the delinquent/current status 

of the loan for the first 10 months, the result of ԧ௜ሺݐ, ݈ሻ.  The first month in this example is always 

delinquent.  On path 9, the payment state persists through the tree as delinquent for the first 3 

months.  In the 4th month the loan transitions to default which is an absorbing state.  In the code 

I distinguish this payment status with a 2 corresponding to the industry data convention, but it is 

only a code/visual designation.  The loan has terminated at period ݐ ൌ 4 on path ݆ ൌ 9.  Why? 

Because in that month the Uniform draw ܼ ൌ 0.218 ൑ 0.2840666, the default boundary74.  

                                                            
74 Default is an absorbing state captured in the code, but for technical reasons, all default instances are generated pathwise even though only 
the ‘first’ default realization matters in the sense of perturbing the cashflow reflective of such absorbing event on the simulation path. 
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Figures 



 

 
 

Figure 1a: Ex­post analysis of Model 2 Pricing vs. Market Price (BBB­)   
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Figure 2a: Composite Theta – Crisis (daily)      Figure 2b: Theta Driven Returns – Crisis (daily) 
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Figure 3: Basic Credit Default Swap 
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Figure 4: MLE Parameter Estimates for Default  
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Figure 5: NCREIF Rolling Returns 
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Figure 6:  Actual vs. Spline fit NCREIF 
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Figure 7 – Loan Level Probability of Defaults aggregated by Property Type 
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Figure 8:  GG5 Historical Default Experience 
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Figure 9: Tranche Structure for CMBX in Crisis 

Class/Tranche Class Percent 
AAA: 0.6440 
AJ: 0.0584 
AM: 0.0984 
AA: 0.0742 
A: 0.0205 

BBB: 0.0274 
BBB­: 0.0451 
Other: 0.0320 
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Figure 10: Numerical Example of Merton Fair Value Allocation   

 
  

-216-



 

 
 

Figure 11: Fair Value Merton (All classes except AJ and AM) 
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Figure 12: Relative value comparisons using Theta for Merton 
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Figure 13:  Calibrated Values 3 Property Case (9/2006­12/2010, Daily) 
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Figure 14: REITs used in Models 

  

-220-



 

 
 

 

Figure 15: Two simulations for Apt REIT (1) 
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Figure 16:  Implementation of Simulations for Apartment REITs 
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Figure 17: Simulated Portfolio, Cumulative across 10,000 simulations 
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 Figure 18: Two simulations of Apartment REITs 
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Figure 19: Simulated Inverse LTV for Apartment Loans 
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Figure 20:  CMBX Attachment Points and Coupons 
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Figure 21: Initial Model 2 (top) compared with DVH, 2012 (bottom) 
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Figure 22:  Initial Statistical Results of OLS 
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Figure 23: Volatility vs. Indexed Price Series (AAA and BBB­) 
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Figure 24: CMBX Price Series for Crisis 
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Figure 25:  30 Plus Days Delinquency History in Crisis 
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Figure 26: Ex­Post OLS Results with 30 Plus Dlq Exogenous Variable included  
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Figure 27: BBB­ ex­post with 30Plus Dlq included 
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Figure 28:  All other CMBX Classes with 30Plus Dlq included ex­post 
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Figure 29:  Regression results for 30Plus and the Treasury Slope (AAA) 
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Figure 30:  AAA CMBX with 30Plus Dlq and Treasury Slope 
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Figure 31:  BBB­ CMBX with 30Plus and Treasury Slope Ex­post 
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Figure 32: Treasury Slope vs. 30 Day Plus Delinquency 
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Figure 33:  Case­Shiller Housing vs. Corporate Credit Slope 
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Figure 34:  OLS for AAA w/ 30Plus, Treasury Slope, Case­Shiller and Credit Slope 
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Figure 35:  OLS for BBB­ w/30Plus, Treasury Slope, Case­Shiller and Credit Slope 
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Figure 36:  Correlation Table 

 
Figure 37:  Ramsey Reset Test 

 
  

-242-



 

 
 

Figure 38: Variance Inflation Factor 

 
Figure 39:  Variance decomposition test 
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Figure 40:  White test and IM­test 

 
 

Figure 41:  Durbin Watson Test 
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Figure 42:  AAA final comparison in Crisis   
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Figure 43:  BBB­ final comparison in Crisis 
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Figure 44:  Property Type Composition in CMBX deal GG5  
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Figure 45a:  Rhos 6 Property Type Calibration 
(MF:RT=Red, MF:OF=Blue, MF:IN=Black, MF:LO=Yellow, MF:OT=Orange).   
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Figure 45b:  Latent Property Type Values – 6 Property Type Calibration   
(MF=Magenta, RT=Red, OF=Blue, IN=Black, LO=Yellow, OT=Orange)   
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Figure 45c:  Gamma 6 Property Type Calibration 
(MF:RT=Red, MF:OF=Blue, MF:IN=Black, MF:LO=Yellow, MF:OT=Orange).   
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Figure 45d:  Beta 6 Property Type Calibration   
(MF=Magenta, RT=Red, OF=Blue, IN=Black, LO=Yellow, OT=Orange)   
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Figure 46:   Inverse LTV by property type (simulated) 
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Figure 47:  Fair Value Pricing No Cashflows, 6 Property Types. 
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Figure 48: Comparison of Special Case and Generalized Form of Calibration Hybrid Attributes 

Special Case of Generalized Form (DVH, 2012; Model 2) Generalized Form of Calibration Hybrid (Model 3) 
33 loans with undisclosed relationship to CMBX Series 1 172 loans from GG5 in CMBX Series 1 
3 of 6 property types  (MF, RT, & OF) 6 of 6 property types (MF, RT, OF, IN, LO, OT) 
Uniform Maturity Dates for all loans  Accurate Maturity/Balloon Dates for all loans 
Uniform $Balance across all loans Accurate $Balance across all loans 
10 REITs combined for 3 diffusions 35 REITs combined for 6 diffusions 
Assumed Maturity Default Accurate Maturity and Term/Ruthless Default 
Assumed Interest only Balloon Loans Accurate Amortization of Interest & Principal 
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Figures 49a and 49b: Mortgage Cashflow Composition 
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Figures 50a and 50b: Mortgage Cashflows with Balloons 
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Figures 51a and 51b:  Loan 1 in GG5 promised Profile 
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Figure 52:  All Promised Cashflows for GG5 from origination to maturity 
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Figure 53:  Allocation of CMBX Transaction for Model 3  
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Figure 54a:  Example Tranche Allocation of Principal 
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Figure 54b:  Principal Allocation from Trust to Bonds 
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Figure 55:  Interest Allocation from Trust to Bonds 
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Figure 56:  Price comparison of AAA fair value across models 
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Figure 57:  Price comparison of BBB­ fair value across models 
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Figure 58:  Probability of Default comparisons by property type 
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Figure 59:  Expected Losses under Ruthless Default Simulation 
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Figure 60:  Final Generalized (Model 3) Fair Value 
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Figure 61:  Theta Comparison of Model 3 by Tranches 
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Figure 62:  Historical Volatility REITs vs. NCREIF (7/1/2006 to 1/1/2014)  
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Figure 63:  Volatilities for Simulated Values in the Correlated Economy 
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Figure 64a:  Correlation to VarCovar (partial, 27 x 10 (of 27), 1 day snapshot) 
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Figure 64b:  VarCovar Matrix,  , based on Correlations and Standard Devs (partial, 27 x 10 (of 27), 1 day snapshot) 
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Figure 64c:  Matrix C, the Cholesky Decomposition of Matrix ,  , (partial, 27 x 10 (of 27), 1 day snapshot) 
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Figure 65:  Time Snapshots of All REITs vs. All NCREIF over 3 historical dates 

REITSALL­ BEG CRISIS – PT 301 REITSALL­HIGHEST VOL – PT. 515 REITSALL­12/31/2010, PT1092

NCREIFALL­ BEG CRISIS – PT 301

 
 

NCREIFALL­HIGHEST VOL – PT. 515

 

NCREIFALL­12/31/2010, PT1092
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Figure 66: Loan State Transitions 
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Figure 67:  Commercial loans in database from June 1998 to June 2004 (from JCY 2008) 
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Figure 68:  Intensity process parameter estimates based on monthly observations (June 1998 to May 2005, Jarrow, etal 2008) 
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Figure 69:  Reduced Form Fair Value across classes and Composite view  
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Figure 70:  Reduced Form Theta across different classes and Composite view  
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Figure 71: Merton Pdefs for REITs (6/2007 – 3/2014) 
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Figure 72: CMBX 6 Capital Structure 
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Figure 73: Model 1 Merton Plot Composite 

Composite Prices (panel A) and Composite Theta (panel b), Pure Merton JFE Series 6 Sample (1/28/2013 – 3/7/2014, daily) 
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Figure 74:  Model 1 – Merton Plots Individual Thetas v. Composite  
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Figure 75 – Model 2 Composite Theta  

Composite Prices (panel A) and Composite Theta (panel b), NO CFlow JFE Series 6 Sample (1/28/2013 – 3/7/2014, daily) 
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Figure 76 – Model 2 Tranchewise Theta  

Composite Prices (panel A) and Composite Theta (panel b), NO CFlow JFE Series 6 Sample (1/28/2013 – 3/7/2014, daily) 
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Figure 77 – Model 3 Composite Theta 

Composite Prices (panel A) and Composite Theta (panel b), W/CFlow JFE Series 6 Sample (1/28/2013 – 3/7/2014, daily) 
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Figure 78 – Model 3 Tranchewise Theta  

Composite Prices (panel A) and Composite Theta (panel b), W/CFlow JFE Series 6 Sample (1/28/2013 – 3/7/2014, daily) 
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Figure 79 – Model 4 Composite Theta 

Composite Prices (panel A) and Composite Theta (panel b), Reduced Form Series 6 Sample (1/28/2013 – 3/7/2014, daily) 
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Figure 80 Model 4 Tranchewise Theta 

Composite Prices (panel A) and Composite Theta (panel b), Reduced Form Series 6 Sample (1/28/2013 – 3/7/2014, daily) 
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Figure 81: Composite Thetas, All Models  

MODEL 1 MODEL 2

MODEL 3 MODEL 4
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Figure 82: Efficiency OLS and Quantile Regression Results ­ Crisis 

 Crisis 
 OLS Quantile 

Model R­SQ p­val R­SQ p­val 
Model 2 .68 0.000 0.38 0.000 
Model 3 .47 0.000 0.24 0.000 
Model 1 .26 0.000 0.12 0.000 
Model 4 .18 0.000 0.06 0.000 

 

Figure 83:  Efficiency OLS and Quantile Regression Results ­Recovery 

 Recovery 
 OLS Quantile 

Model R­SQ p­value R­SQ p­value 
Model 3 0.310 0.000 0.195 0.000 
Model 4 0.271 0.000 0.168 0.000 
Model 1 0.027 0.006 0.024 0.003 
Model 2 0.003 0.344 0.017 0.000 
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Figure 84: Monthly and Quarterly lognormal horizon return across models (Crisis) 
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Figure 85: Monthly and Quarterly lognormal horizon return across models (Recovery) 
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Figure 86: Cumulative monthly returns from Theta strategies vs. long only 
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Figure 87: Cumulative quarterly returns from Theta strategies vs. long only 
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Figure 88: Cumulative daily returns from Theta strategies vs. long only 
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Figure 89: Log daily returns from Theta strategies and long only (w/’Perfect’ port) 
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Figure 90: Frequency and Marginal Returns 

Panel A: Crisis (11/2007 – 6/2010) – Frequency of Gain Strategies (Return >0)
Crisis Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N

Daily 351 (54.8%) 285 (44.5%) 340 (53.1%) 350 (54.7%) 322 (50.3%) 640
Monthly 21 (70.0%) 13 (43.3%) 20 (66.7%) 19 (63.3%) 16 (53.3%) 30

Panel B: Recovery (1/2013 – 3/2014) – Frequency of Gain Strategies (Return >0)
Recovery Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N

Daily 147 (53.1%) 140 (50.4%) 143 (51.6%) 158 (57.0%) 151 (54.5%) 277
Monthly 11 (84.6%) 6 (46.2%) 6 (46.2%) 7 (53.9%) 7 (53.9%) 13

Panel C: Crisis (11/2007 – 6/2010) – Averages and Maximums for Gain Strategies (Return >0)
Daily Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N

Average 1.2% 1.7% 1.3% 1.7% 0.8% 640
Maximum 10.5% 19.3% 12.2% 11.2% 9.8% 640

Monthly Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N
Average 13.2% 8.1% 14.4% 20.5% 6.1% 30

Maximum 51.4% 14.7% 69.7% 67.7% 9.9% 30
Panel D: Recovery (1/2013 – 3/2014) ­ Averages and Maximums for Gain Strategies (Return > 0)
Daily Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N

Average 0.3% 0.4% 0.3% 0.3% 0.1% 277
Maximum 3.1% 1.6% 1.9% 1.2% 1.0% 277

Monthly Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N
Average 1.2% 2.5% 2.5% 2.3% 1.1% 13

Maximum 2.5% 4.8% 7.3% 4.8% 1.5% 13
Panel E: Product Ranking Frequency (Frequency * Average Return)
Crisis  Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N

Daily 0.68% 0.77% 0.68% 0.92% 0.39% 640
Monthly 9.20% 3.50% 9.62% 13.00% 3.26% 30

Recovery Model 1 Model 2 Model 3 Model 4 LongOnlyCMP N
Daily 0.65% 1.27% 1.29% 1.30% 0.59% 277

Monthly 1.03% 1.16% 1.15% 1.22% 0.58% 13
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Figure 91: Paired t­test and Paired Wilcoxon Sign tests 
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Figure 92: ICAPM Regressions (Crisis, daily) 
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Figure 92: ICAPM Regression (Crisis, daily ­ continued) 
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 Figure 93 ­ Correlation 

 
Figure 94:  Ramsey RESET 
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Figure 95:  VIF test of Multicollinearity among variables  

 

Figure 96:  Condition Index among variables  
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Figure 97:   White test for heteroskedasticity in the error term  

 
Figure 98: Durbin Watson 

 
  

-304-



 

 
 

Figure 99: Condition Index for the Credit Regression 

 
Figure 100: Ramsey RESET for Credit Regression 

 
Figure 101: White Test for Credit Regression 
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Figure 102: Durbin Watson test for autocorrelation 

 
Figure 103: BreuschGodfrey test of AR(1) and AR(2) 
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Figure 104:  Panel C and D: Recovery 
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Figure 105:  Initial NCREIF OLS Regression 
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Figure 106:  Summary Statistics for solo regressions each of 7 x­variables & associated autocorrelation tests for synthetic NCREIF 

x­variable Coeff StdError t­stat pval F Prb>F RSQ Dwtsn daltX2 bgX2 arch
X1 Unemployment ­4.630307 0.4048245 ­11.44 0.000 130.82 0.000 0.5978 .139699 740.454 80.537 71.063
X2 CaseShiller 0.9076193 0. 0822733 11.03 0.000 121.70 0.000 0.5804 .1400557 561.166 77.920 57.820
X3 CreditSlope ­0.1293126 0.0176354 ­7.33 0.000 53.77 0.000 0.3793 .2563417 268.912 68.000 51.575
X4 MortgageRate ­0.0072094 0.0059769 ­1.21 0.231 1.45 0.231 0.0163 .0983784 820.009 81.367 69.177
X5 RiskFreeSlope ­0.0389995 0.0050204 ­7.77 0.000 60.34 0.000 0.4068 .2090902 375.331 73.064 54.970
X6 CREChgOffRate ­0.0850968 0.0066281 ­12.84 0.000 164.83 0.000 0.6519 .2365583 301.704 69.856 60.757
X7 PrivateCREConstr ­0.3386575 0.1023531 ­3.31 0.001 10.95 0.014 0.1106 .1112442 758.625 80.741 59.401
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Figure 107:  Sample of solo regression for X7 Private CRE Construction & associated autocorrelation tests  
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Figure 108:  Solo Prais­Winston Regressions for all 7 XVariables and associated DurbinWatson Stats 

x­variable Coeff StdError t­stat pval F Prb>F RSQ dwtsn (orig) dwtsn (adj)
X1 Unemployment ­6.740923 .6688781 ­10.08 0.000 101.57 0.0000 0.5386 .139699 1.077457
X2 CaseShiller .9514761 .1280446 7.43 0.000 55.22 0.0000 0.3883 .1400557 0.772544
X3 CreditSlope ­.0374255 .0104165 ­3.59 0.001 12.91 0.0005 0.1292 .2563417 0.752473
X4 MortgageRate ­.0002898 .0071868 ­0.04 0.968 0.00 0.9679 0.0000 .0983784 0.412529
X5 RiskFreeSlope ­.0121825 .0045507 ­2.68 0.009 7.17 0.0089 0.0761 .2090902 0.573268
X6 CREChgOffRate ­.053743 .0113599 ­4.73 0.000 22.38 0.0000 0.2046 .2365583 0.756099
X7 PrivateCREConstr ­.1273278 .0896643   ­1.42 0.159 2.02 0.1592 0.0227 .1112442 0.463369

  

  

-311-



 

 
 

Figure 109:  Prais­Winsten Multivariate for all 7 X variables 
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Figure 110:  ACLI Historical Foreclosures 
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Figure 111a: W(t,l) Discretized Simulation (from Wiersema) 
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Figure 111b: 5 simulations for 4 loans  
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Figure 112:  Trust Composite across 5 simulations  
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Figure 113: Aggregation 

 

 

 

 

 

 

Figure 114: Class Percentages 
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Figure 115: Trust CFs across 10sims 
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Figure 116:  Trust and Tranche Allocations 
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Figure 117: Trust and AAA allocation 10 sims 
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Figure 118 – AAA Rembal 
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Figure 119: Cashflows promised by Tranche 
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Figure 120 – Promised Cashflow allocation to the Bond Capital Structure 
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Figure 120, cont’d. – Promised Cashflow allocation to the Bond Capital Structure 
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Figure 120, cont’d – Promised Cashflow allocation to the Bond Capital Structure  
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Figure 121: Cashflows promised by tranche 
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Figure 122:  Default adjusted cashflows  
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Figure 123: Promised cashflows versus default adjusted (3/7/2014) 
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Figure 124:  Promised vs. default adjusted (aggregated) 
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Figure 125:  Poisson Process as a counting process 
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Figure 126:  One path of a Compound Poisson Process (from Shreve) 
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Figure 127:  Simulated one path of the Compound Poisson Process (from Tankov/Voltchkova) 
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Figure 128:  Merton’s Jump Diffusion Process (from Tankov/Voltchkova) 
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Figure 129:  Lambda Current and Delinquent Switching Realizations in Simulation 
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Figure 130:  Lambda Current and Default Switching Realizations in Simulation 
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