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Abstract

Applications of Weak attraction theory in Out(FN)

By Pritam Ghosh

Dissertation Director: Professor Dr. Lee Mosher

Given a finite rank free group FN of rank ≥ 3 and two exponentially

growing outer automorphisms ψ and φ with dual lamination pairs Λ±ψ

and Λ±φ associated to them, which satisfy a notion of independence

described in this paper, we will use the pingpong techniques developed

by Handel and Mosher [14] to show that there exists an integer M > 0,

such that for every m,n ≥ M , the group GM = 〈ψm, φn〉 will be a

free group of rank two and every element of this free group which is

not conjugate to a power of the generators will be fully irreducible

and hyperbolic. We will also look at a different proof of the theorem

of Kapovich and Lustig in [18] which shows that the Cannon-Thurston

map for a fully-irreducible hyperbolic automorphism exists and is finite-

to-one.
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1 Introduction

Let FN denote a finite rank free group of rank N ≥ 3. The Outer automor-

phism group of FN (denoted by Out(FN)) is the quotient group

Aut(FN)/Inn(FN). Long ago, Nielsen gave us a finite generating set for Out(FN)

and Whitehead modified this generating set and used them to produce an al-

gorithm to test when an element of FN can be part of some basis of the free

group. However the study of Out(FN) grew slowly for the next few decades

until Culler and Vogtmann constructed Outer space in [7]. Since then, over

the last two decades this group has been studied with great interest by Ge-

ometric group theorists. Some of the very interesting results proven during

the early phase were the Scott Conjecture[19] and the Tit’s Alternative for

Out(FN)[22], [3]. In the process of these developments the theory of Train

Track maps evolved. Inspired by Thurston’s idea of train tracks and John

Stallings’ elegant paper about folding maps [26], train track maps have be-

come a key tool for studying outer automorphisms of free groups. Roughly

speaking, train track maps are a special type of homotopy equivalence maps

on a graph G whose fundamental group is the given Free group. Not all au-

tomorphisms admit a train track map, however, “fully-irreducibles” do. For

the more complex types of automorphisms we use the notion of a Relative

Train track map, where the graph G has to be broken down into a filtration of

invariant subgraphs and each filtration element is studied individually. Fortu-

nately, the number of levels of filtrations are finite. The theory of train track

maps saw further developments in a series of other papers [21], [12], [14] and

it became the key tool in understanding the dynamics of elements of Out(FN).
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My first goal as a graduate student was to have a detailed understanding of

this theory and all the results that were proved using this technology.

Ignoring the base points, conjugacy classes in Fn are represented by closed

loops in G. The group Out(FN) acts on the set of all conjugacy classes of Fn

and this action is studied via the induced train track map. Conjugacy classes

are either fixed or their growth is bounded by some polynomial function or they

grow exponentially under iterations by a nontrivial element φ ∈ Out(FN). Ac-

cordingly, if φ (nontrivial) makes some conjugacy class grow exponentially, we

call it an exponentially growing outer automorphism, otherwise if the growth

rate of every conjugacy class is bounded by some polynomial function we call

it polynomially growing. It is to be noted that, as n grows, there exist outer

automorphisms of arbitrarily high polynomial growth. A very special class

of exponentially growing outer automorphisms are the fully irreducibles, no

power of which has any invariant free factors. These elements closely resemble

the pseudo Anosov homeomorphisms of surfaces. There exist two types of

fully irreducible elements: geometric, which are induced by homeomorphisms

of surfaces of appropriate topological type and nongeometric, which are not in-

duced by any such surface homeomorphism. In [24] Rivin shows that the most

generic type of outer automorphisms (in the sense of random walks) are fully

irreducibles. but [10] shows that geometric fully irreducibles are rare, leaving

us with nongeometric fully irreducibles as the generic elements of Out(FN). It

was shown by Bestvina, Feighn[2] and Brinkmann [4] that an automorphism

was hyperbolic if and only if it did not have any periodic conjugacy classes.

Thus in case of fully irreducibles, nongeometric and hyperbolic are equivalent.
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The question that grabbed my interest was: exactly how generic are they from

a dynamical viewpoint ?

Farb and Mosher proved the following in [1]:

Given two independent pseudo-Anosov mapping classes f , g of a closed and

oriented surface, sufficiently high powers of f and g will generate a free group

of rank 2 and every element of this group will be pseudo-Anosov.

The primary goal of my thesis now became to prove something similar in

the case of Out(FN) and also investigate how easily can one actually produce

the nongeometric fully irreducibles (most generic type) from ones that might

not be fully irreducible themselves. Along with that, the aim was to prove it

in a way that somehow explains the cause of this abundance. I also wanted to

see what are all possible types of outer automorphisms which when composed

after passing to sufficiently high powers give the generic elements of Out(FN)

and why it so happens. This broadly explains the problem of my thesis and

also my deep interest in it.

The first result of my thesis is the following:

Theorem Let (φ,Λ±φ ), (ψ,Λ±ψ ) be two exponentially growing, pairwise inde-

pendent elements of Out(FN). Then there exists an M ≥ 0, such that for all

p, q ≥ M the group 〈ψp, φq〉 will be free of rank two and every element of this

free group, not conjugate to some power of the generators, will be hyperbolic

and fully-irreducible.

Kapovich and Lustig had already proved an analogous version of the aforemen-
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tioned result of Farb-Mosher for Out(FN) [17], in which they used the theory

of Currents in Fn [15], [16].

Our problems however, were different. To explain, let us look at an attracting

lamination Λ+
φ as a special collection of lines, which is closed in the weak

topology and it has a certain collection of dense leaves called generic leaves.

Under iterations of φ every conjugacy class either does or does not limit to

some generic leaf (called attracted or nonattracted) in Λ+
φ . Kapovich and

Lustig start with fully irreducible, nongeometric elements for which the notion

of “independence” was already defined in [22], but the right definition for

non fully-irreducibles was not known when I started. One big obstacle was

that for hyperbolic fully irreducibles every conjugacy class gets attracted to

Λ+
φ , for non fully-irreducibles the situation is much worse. Understanding the

details proofs of [1] and [22] revealed the correct definition. What we define as

independent pairs roughly means that the laminations Λ±φ and Λ±ψ fill the

free group, they are pairwise disjoint and every conjugacy class is attracted to

one of the laminations under iteration by the appropriate automorphism and

the laminations themselves are attracted to each other under iterations by the

appropriate automorphism.

Designing the proof in a way that enabled us to see exactly why hyperbolic

fully irreducibles are abundant was a challenge. The tool of choice for me was

to use train track maps. There is a rich theory of the study of laminations for

exponentially growing elements of Out(FN). By design, the theory of lamina-

tions captured astonishing amount of the dynamical character of φ. Bestvina,

Feighn and Handel were the first to develop this theory in [22]. Later on, it
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was studied in more details in [21], [12]. Finally in [13], [14] we get an al-

most complete understanding of this Weak Attraction theory. One technical

improvement we introduce is to modify some of the results of [14] so that they

can be applied to elements of Out(FN) that are not rotationless

Once this was established, the rest of the proof is divided into two parts. First

is to do a pingpong argument on the leaves of the laminations and generate the

attracting and repelling lamination pairs for elements of the group 〈ψp, φq〉,

and it was here that the reason for abundance of hyperbolic fully irreducibles

become apparent. Two laminations which are “sufficiently distinct” from one

another mix up very quickly under iterations of φ and ψ due to pingpong and

possibly fill the entire group to produce a new lamination. This also shows why

the elements of the free group will be nongeometric, since all conjugacy classes

are weakly attracted to the attracting lamination produced by pingpong. The

second part of the proof uses Stallings graph to support a contradiction argu-

ment to show that the laminations produced by pingpong indeed fill Fn. This

completes the proof.

It gave rise to very interesting applications, one of which is the main theo-

rem by Kapovich, Lustig in [17] (mentioned above) which follows as a corollary

by taking φ, ψ to be hyperbolic fully irreducibles. The other corollaries give

a complete picture of what happens when we work with arbitrary fully irre-

ducible elements. It turns out that except in the particular case, when both

φ and ψ are induced by pseudo-Anosov homeomorphisms of the same surface

S (with one boundary component), we almost always end up with hyperbolic

fully irreducibles. In the only exceptional case we can can prove that we will
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end up with a free group of rank two all whose elements are induced by pseudo-

Anosov homeomorphisms of the S. Very similar to what Farb, Mosher proved

in [1] except that they had closed surface.

2 Preliminaries

2.1 Free group, Free basis and Free factors:

Let F be a group and S ⊂ F be a subset. Define S−1 to be the set {s−1|s ∈

S}. A word over the set S ∪ S−1 is a finite sequence s1, s2, ..., sp where each

si ∈ S ∪ S−1. This is often abused with the evaluation of a word, which is

the product of the word using the group operation in F and written as as a

concatenation s1s2.....sp. It is possible that there might be cancellations in

this product whenever we have consecutive letter pairs of the form ss−1 or

s−1s. If no such cancellations are possible, the word is called a reduced word.

A reduced word is said to be cyclically reduced if it is stable under conjugation

by elements of F.

We say that a set S ⊂ F is a free basis if every word in F can be written as

a unique reduced word over S ∪ S−1. A group is said to be a free group if it

has a free basis. The group operation in this case becomes concatenation of

reduced words followed by subsequent cancellations to form a reduced word.

Given a free group, any of it’s free basis always has the same cardinality,

usually denoted by rank(F). This number is the dimension of the vector space

ab(F) ⊗Z R. If rank(F) is finite we call F to be a finite rank free group. For

the purpose of this work, we only deal with finite rank free groups such that
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rank(F) ≥ 3.

Notation: For convenience, we will denote a−1 ∈ FN by A.

The group operation described above can be realized geometrically. For this,

let R be the standard rose with n-petals (a simplicial complex with one vertex

and n oriented-edges attached to it.), where n = rank(F). The fundamental

group of R, with the unique vertex as a basepoint, is F. There is a bijective

correspondence between the edges in R and the elements of the free basis of

F. Label each edge by a unique element of the free basis. Every reduced word

in F can be now realized as a loop based at the vertex of R. Cancellation in

F corresponds to ignoring edges in R over which there is backtracking. This

process is called tightening a loop(or a path in general). The theory of funda-

mental groups tells us that there is bijective correspondence between reduced

words in F and loops based at the basepoint (homotopy rel basepoint). If we

forget the basepoint, this bijection induces a bijection between the conjugacy

classes of reduced words in F and the set of free homotopy classes of circuits

in R, where a circuit is a continuous, locally injective map S1 → R. This

bijection is of fundamental importance to us.

It is a well known result that a subgroup of a free group is free and has

both algebraic proofs and topological proofs which use covering space theory.

However, subgroup of a finitely generated free group F may have higher rank

than F, and can be infinite. There are, however, a special class of subgroups

of F called free factors which are of more interest to us. A subgroup H ≤ F

is called a free factor if F = H ∗ B, where B can be the trivial group. In this

case H has rank less than F. Moreover, the free basis of H can be extended
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to form a free basis of F. Similarly, we define a free factor system to be

a collection of conjugacy classes of free factors F = {[H1], [H2], ........., [Hp]}

such that F = H1 ∗H2 ∗ .......... ∗Hp ∗ B, for some B, possibly trivial. (Here

[H] denotes the conjugacy class of the subgroup H).

More generally, one can define a subgroup system to be a finite collection of

conjugacy classes of finitely generated subgroups of FN . Every free factor

system is a subgroup system.

We say that a conjugacy class [c] is carried by a free factor system (or a

subgroup system) F = {[H1], [H2], ........., [Hp]} if there exists some i such that

c ∈ Hi. It is possible that there does not exist any proper free factor of FN

which contains c, in which case we say that the conjugacy class c fills the free

group FN .

Example 2.1. Let FN = 〈a, b, c〉. Then the subgroups H1 = 〈ab, a〉 and

H2 = 〈c〉 are both free factors of FN and FN = H1 ∗H2.

Note that H1 is same as the subgroup 〈a, b〉 with just a different choice of

basis.

F1 = {[H1]}, F2 = {[〈a〉], [〈b〉]} and {[H1], [H2]} are examples of free factor

systems. The conjugacy class [abaaba] is carried by both F1 and F3 but not

by F2. [abc] is an example of a conjugacy class that is not carried by any of

the above free factor systems, but it is not a filling conjugacy class.

Example 2.2. With the FN as above one can see that 〈a2b2, ab〉 is not a

free factor of FN since a2b2 cannot be extended to a basis of FN . Thus A =

{[〈a2b2, ab〉], [H1]} is a subgroup system of FN but not a free factor system.
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2.2 Aut(FN) and it’s elements:

By Aut(FN) we denote the automorphism group of FN . When one tries

to study Aut(FN), there are some purely algebraic techniques, but we shall

employ more geometric methods. The geometric tools that has been developed

to study Free groups, it’s automorphisms and their dynamics arises from a very

important geometric property of finitely generated free groups. A free group

FN , is a 0-hyperbolic group (in the sense of Gromov) and hence, has a well

defined Gromov boundary, which we denote by ∂FN . The Cayley graph of FN

is a tree and the boundary of this tree is homeomorphic to the boundary of

FN , which is a Cantor set.

The group Aut(FN) acts on ∂FN . Let Φ̂ : ∂FN → ∂FN denote the action

of Φ ∈ Aut(FN) and let Fix(Φ̂) denote the fix point set of this action. Let

Fix(Φ) denote the fixed subgroup of Φ, considered as an automorphism of

FN . The solution of Scott conjecture by Bestvina-Handel in [19] tells us

that rank(Fix(Φ)) ≤ rank(FN ). Let ∂Fix(Φ) ⊂ ∂FN denote it’s boundary.

∂Fix(Φ) is trivial when Fix(Φ) is trivial, has two points when Fix(Φ) has

rank 1 or a Cantor set when Fix(Φ) has rank ≥ 2. We call an element P of

Fix(Φ̂) attracting fixed point if there exists an open neighborhood U ⊂ ∂FN

of P such that we have Φ̂(U) ⊂ U and for every point Q ∈ U the sequence

Φ̂n(Q) converges to P . Let Fix+(Φ̂) denote the set of attracting fixed points of

Fix(Φ̂). Similarly let Fix−(Φ̂) denote the attracting fixed points of Fix(Φ̂−1).

The following lemma from [9] gives the relation between these sets.

Lemma 2.3. For each Φ ∈ Aut(FN) the set Fix(Φ̂) is a union of the sets

Fix(Φ), Fix−(Φ̂), Fix+(Φ̂). This union is a disjoint union except for the case
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when Fix(Φ) has rank 1 and Fix(Φ̂) = ∂Fix(Φ) ={ξ−, ξ+} where ξ− = Fix−(Φ̂)

and ξ+ = Fix(Φ̂).

Let FixN(Φ̂) = Fix(Φ̂) − Fix−(Φ̂) = ∂Fix(Φ) ∪ Fix+(Φ̂) denote the set of

non-repelling fixed points. This set carries some vital information about the

dynamics of the outer automorphism class of Φ, as we will later see.

2.3 Out(FN) and it’s elements:

Let XC denote the set of all conjugacy classes of reduced words in FN , and XF

denote the set of all conjugacy classes of free factors in FN . Out(FN) admits

an action on the set XC and the set XF .

An outer automorphism of FN is said to to be fully-irreducible if it does not

have any periodic orbits in XF . If the action of an outer automorphism fixes

a point in XF , it is said to be reducible. The other remaining case when it

has a periodic orbit of period greater than 1, it is called irreducible. Any such

irreducible automorphism can be made reducible by passing onto some some

power, called rotationless power, which we shall explain later in this chapter.

It is to be noted that detecting whether an automorphism is fully irreducible

is a difficult problem. One tool that helps us in this process is the subject

of Chapter 2, train track maps, which are some well controlled homotopy

equivalences on graphs that helps us study finer properties of individual outer

automorphisms.

An automorphism φ ∈ Out(FN) to be hyperbolic if there exists some M > 0
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and λ > 1 such that

λ|g| ≤ max{|φM(g)|, |φ−M(g)|} ∀g ∈ FN

Brinkmann [4] showed that this is equivalent to requiring that φ has no periodic

conjugacy classes.

Fully-irreducible outer automorphisms are of two types: Geometric or Nonge-

ometric.

Consider a compact, connected surface S with one boundary component. Any

such surface can be homotoped to it’s spine, which is a finite, connected graph,

whose fundamental group is a finite rank free group, say FN . A pseudo-Anosov

homeomorphism of S induces an automorphism of FN . The outer automor-

phism class of such an automorphism is called geometric fully-irreducible outer

automorphism. Note that the homeomorphism fixes the boundary curve and

hence the induced outer automorphism will fix the conjugacy class represent-

ing the boundary curve. Thus every geometric fully-irreducible outer auto-

morphism fixes a (necessarily unique) conjugacy class. The following result

from [19, Theorem 4.1]

Proposition 2.4. Let φ ∈ Out(FN) be a fully-irreducible element. If there

exists some conjugacy class C such that φ(C) = C or C̄, then φ is a geometric

fully-irreducible outer automorphism, i.e. it is induced by a pseudo-Anosov

homeomorphism of some surface S with one boundary component. The conju-

gacy class of the boundary curve in FN is C.

This result tells us that nongeometric fully-irreducible elements of Out(FN)
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are all hyperbolic.

Example 2.5. Nongeometric fully irreducible example: FN = 〈a, b, c〉. Con-

sider the map:

a 7→ ab, b 7→ ac, c 7→ a

reducible example: FN = 〈a, b, c〉. Consider the map:

a 7→ a, b 7→ Abaca, c 7→ bacaB

2.4 Bringing graphs to the picture:

For our purposes, graphs are finite 1-dimensional CW-complexes.

A path in a finite graph Γ is a locally injective, continuous map γ : J → Γ from

a closed, connected, nonempty subset J ⊂ R to Γ such that if we take any lift

γ̃ : J → Γ̃ of this path to the universal covering tree Γ̃ of Γ , then this lift is

proper (inverse image of a compact set is compact). A circuit is a continuous,

locally injective map of a oriented circle into Γ. A path is said to be trivial if

J is a point. Two paths are equivalent if they are equal up to an orientation

preserving homeomorphism between their domains. Every nontrivial path is

expressed as a concatenation of edges and partial edges, concatenated at the

vertices, in the following sense:

• a finite path is a finite concatenation E0E1....En for n ≥ 0 where only

E0, En are the possible partial edges.

• a positive ray is an infinite concatenation E0E1...., where E0 is the only

possible partial edge.
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• a negative ray is an infinite concatenation ....E−2E−1E0, where E0 is the

only possible partial edge.

• a line is a bi-infinite concatenation ...E−1E0E1...., where none of the Ei’s

are partial.

These expressions are unique upto a translation of indices. By the locally in-

jective property we must have Ei 6= Ei+1, where Ej denotes the inverse of Ej.

Notation: Let B̂(Γ) denote the set of all paths, circuits and lines in Γ. The

weak topology on B̂(Γ) is defined by the basis elements N̂(Γ, α), where α is

a finite path in Γ and N̂(Γ, α) is the collection of all paths, circuits and lines

that contain α as a subpath. Denote by B(Γ)(⊂ B̂(Γ)) the compact subspace

consisting of all lines in Γ with basis elements N(Γ, α) = N̂(Γ, α) ∩ B(Γ).

Consider the continuous function γ : J → Γ, where J is closed, connected and

nonempty. If J is noncompact , each lift of γ̃ is proper and induces an injection

from the ends of J to the ends of Γ. If J is a compact interval then either γ

is homotopic rel endpoints to a unique nontrivial path denoted by [γ] in Γ, or

γ is homotopic to a constant path in which case [γ] denotes the trivial path.

[γ] is called the tightening of γ. If J is noncompact, then γ is homotopic to

a unique path [γ] in Γ and this homotopy is proper, meaning that its lifts to

the universal cover Γ̃ are all proper; equivalently, γ and the path [γ] have lifts

to Γ̃ which have the same finite endpoints and the same infinite end.

For n ≥ 2 let R be the graph which is the wedge of n circles with directed

edges labeled E1, E2, ...., En. Then π1(R) of this graph is FN , the free group

of rank n with E1, E2, ....En as the free basis. A graph R with such labeling is
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called base rose. Notation: We shall always denote the base rose of rank n

by R.

A rank n core graph G is a finite, connected graph with Euler characteristic

X (G) = 1− n. By definition, it does not have any valence 1 vertex.

A marked graph is a rank n core graph G with a homotopy equivalence from the

base rose ρ : R→ G. The homotopy equivalence ρ is called a marking. One can

assign lengths to each edge and give the graph a path metric structure. Such a

graph is called a marked metric graph. Recall that every graph is a Eilenberg-

Mclane space and thus, a map f : G → H is a homotopy equivalence if and

only if the induced map f∗ : π1(G)→ π1(H) is an isomorphism. Hence, we say

that a homotopy equivalence f : G→ G represents an outer automorphism φ

if the outer automorphism class of the induced automorphism f∗ is φ.

A topological representative for an outer automorphism φ is a marked graph G

(with marking ρ) equipped with a homotopy equivalence f : G→ G such that

f takes vertices to vertices and edges to edge paths in G and the homotopy

equivalence ρ̄ ◦ f ◦ ρ : R→ R represents φ.

Example 2.6.

d

e

bc a

This is a graph G with the marking from the standard rose given by a 7→

a, b 7→ AEbd, c 7→ Ece. Under this marking, consider the map f : G → G on
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the graph given by:

a 7→ a, b 7→ bdaEc, c 7→ bdaEceaDB, d 7→ ea, e 7→ ea

This marked graph together with the map f represents the outer automor-

phism given by:

a 7→ a, b 7→ Abaca, c 7→ bacaB

We will later use this example again to understand several concepts related to

train-track theory.

Let R̃ be the tree which is the universal cover of R. Then it’s set of ends is a

Cantor set. If ∂FN is the Gromov boundary of FN , then ∂FN can be identified

with this Cantor set of ends. Under this identification, let

B̃ = (∂FN × ∂FN −∆)/Z2

where ∆ is the diagonal set of the product ∂FN × ∂FN and Z2 acts by inter-

changing factors. Equip B̃ with the weak topology induced by the standard

cantor topology on ∂FN . The group FN acts on B̃ with compact but non-

Hausdorff quotient space B = B̃/FN . The elements of B are called lines. The

induced quotient topology will also be called the weak topology. A lift of a line

l ∈ B is an element l̃ ∈ B̃ whose quotient is l and the two elements of l̃ are

called it’s endpoints.

Given any marked graph G, one can naturally identify the two spaces B(G) and
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B by considering a homeomorphism between the two Cantor sets ∂FN and set

of ends of G. Out(FN) y B. The actions comes from the action of Aut(FN)on

∂FN , described earlier. Given any two marked graphs G,G′ and a homotopy

equivalence f : G→ G′ between them, the induced map f# : B̂(G)→ B̂(G′) is

continuous and the restriction f# : B(G)→ B(G′) is a homeomorphism. With

respect to the identification B(G) ≈ B ≈ B(G′), if f preserves the marking

then f# : B(G)→ B(G′) is equal to the identity map on B. When G = G′, f#

agree with their homeomorphism B → B induced by the outer automorphism

associated to f . A critical lemma while dealing with homotopy equivalences

between graphs is the Bounded Cancellation lemma due to Cooper [6]:

Lemma 2.7. For any homotopy equivalence between marked graphs f : G →

G′ there exists a constant BCC(f) such that for any lift f̃ : G̃ → G̃′ to uni-

versal covers and any path γ̃ in G̃, the path f#(γ) is contained in the BCC(f)

neighborhood of the image f(γ).

Proof. see [20] Lemma 2.3.1 .

A line(path) γ is said to be weakly attracted to a line(path) β under the action

of φ ∈ Out(FN), if the φk(γ) converges to β in the weak topology. This is same

as saying, for any given finite subpath of β, φk(γ) contains that subpath for

some value of k; similarly if we have a homotopy equivalence f : G → G, a

line(path) γ is said to be weakly attracted to a line(path) β under the action

of f# if the fk#(γ) converges to β in the weak topology. The accumulation set

of a ray γ in G is the set of lines l ∈ B(G) which are elements of the weak

closure of γ; which is same as saying every finite subpath of l occurs infinitely
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many times as a subpath γ.

A line l ∈ B(G) is birecurrent if l is in the closure of some(any) positive subray

of l and l is in the closure of some(any) negative subray of l. This is equivalent

to saying that every finite subpath of l occurs infinitely many times in l in

both directions.

2.5 Attracting Laminations:

For any marked graph G, the natural identification B ≈ B(G) induces a bijec-

tion between the closed subsets of B and the closed subsets of B(G). A closed

subset in any of these two cases is called a lamination, denoted by Λ. Given

a lamination Λ ⊂ B we look at the corresponding lamination in B(G) as the

realization of Λ in G. An element λ ∈ Λ is called a leaf of the lamination.

A lamination Λ is called an attracting lamination for φ is it is the weak closure

of a line l (called the generic leaf of Λ) satisfying the following conditions:

• l is birecurrent leaf of Λ.

• l has an attracting neighborhood V , in the weak topology, with the prop-

erty that every line in V is weakly attracted to l.

• no lift l̃ ∈ B of l is the axis of a generator of a rank 1 free factor of Fr .

We know from [20] that with each φ ∈ Out(FN) we have a finite set of lami-

nations L(φ), called the set of attracting laminations of φ, and the set L(φ)

is invariant under the action of φ. When L(φ) has multiple elements, φ can

permute the elements of L(φ). This makes it slightly tricky to study the dy-
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namics of elements that are not fully-irreducible. This motivates the notion of

forward rotationless outer automorphisms.

2.6 Principal automorphisms and rotationless outer au-

tomorphisms:

Given an outer automorphism φ ∈ Out(FN) , we can consider a lift Φ in

Aut(FN). We say that Φ ∈ Aut(FN) in the outer automorphism class of φ

is a principal automorphism if FixN(Φ̂) has at least 3 points or FixN(Φ̂) has

exactly two points which are neither the endpoints of an axis of a covering

translation, nor the endpoints of a of a generic leaf of the attracting lami-

nation Λ+
φ . The set of all principal automorphisms of φ is denoted by P (φ).

Roughly speaking, what such lifts guarantees is the existence of certain lines

which are not a part of the attracting lamination but it still fills the free group

Fr. Such lines (called singular lines) will be a key tool in describing the set of

lines which are not attracted to the attracting lamination of φ.

We then have the following lemma from [9] and [12]:

Lemma 2.8. If φ ∈ Out(FN) is fully irreducible and Φ is a principal auto-

morphism representing φ, then:

1. If Fix(Φ) is trivial then FixN(Φ̂) is a finite set of attractors.

2. If Fix(Φ) = 〈γ〉 is infinite cyclic, then FixN(Φ̂) is the union of the end-

points of the axis of the covering translation t±γ with a finite set of tγ-

orbits of attractors.
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3. If P ∈FixN(Φ̂) is an attractor then it is not the end points of an axis of

any covering translation tγ.

Let Per(Φ̂) = ∪k≥1Fix(Φ̂k), Per+(Φ̂) = ∪k≥1Fix+(Φ̂k) and similarly define

Per−(Φ̂) and PerN(Φ̂).

We say that φ ∈ Out(FN) is rotationless if FixN(Φ̂) = PerN(Φ̂) for all Φ ∈

P (φ), and if for each k ≥ 1 the map Φ→ Φk induces a bijection between P (φ)

and P (φk).

The following two important facts about rotationless automorphisms are taken

from [21]. Whenever we write “pass to a rotationless power ”we intend to use

this uniform constant K given by the fact.

Lemma 2.9. [21, Lemma 4.43] There exists a K depending only upon the

rank of the free group Fr such that for every φ ∈ Out(FN) , φK is rotationless.

Lemma 2.10. [21] If φ ∈ Out(FN) is rotationless then:

• Every periodic conjugacy class of φ is a fixed conjugacy class.

• Every free factor system which is periodic under φ is fixed.

• The set L(φ) is fixed pointwise.
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3 Train track maps

3.1 Topological representatives and Train track maps

Recall that for any φ ∈ Out(FN) a topological representative is a homotopy

equivalence f : G → G such that ρ : R → G is a marked graph, f takes

vertices to vertices and edges to paths and ρ ◦ f ◦ ρ : R → R represents φ.

A nontrivial path γ in G is a periodic Nielsen path if there exists a k such

that fk#(γ) = γ; the minimal such k is called the period and if k = 1, we call

such a path Nielsen path. A periodic Nielsen path is indivisible if it cannot be

written as a concatenation of two or more nontrivial periodic Nielsen paths.

Notation: Given a subgraph H ⊂ G let G \H denote the union of edges in

G that are not in H.

Filtrations, stratas and train track maps: A strictly increasing sequence

of subgraphs G0 ⊂ G1 ⊂ · · · ⊂ Gk = G, each with no isolated vertices, is

called a filtration of G. The subgraph Hi = Gi \ Gi−1 is called a stratum. Hi

will be called a stratum of height i. The stratum Hk is called the top stratum.

Any path, circuit, ray or line is said to be of height s, if the highest strata it

crosses is Hs. A topological representative is said to preserve the filtration if

f(Gi) ⊂ Gi for all i. Given some increasing sequence F = F1 @ F2 · · · @ FN

of free factor systems, we say that f realizes C if there exists a sequence of

filtration elements Gij (1 ≤ j ≤ N) such that Fj = [Gij ]

Let f : G → G be a topological representative of φ and G0 ⊂ G1 ⊂ · · · ⊂

Gk = G be a filtration preserved by f . Let Hr be a stratum with edges

{E1, E2, ...., Es}, define the transition matrix of Hr to be the square matrix



21

whose ijth entry is equal to the number of times that the edge Ej crosses the

path f(Ei), both orientations counted. The transition matrix is irreducible if

- for each pair i, j there exists some p > 0 such that the ijth entry of p−th

power of the transition matrix is nonzero. If the transition matrix of a stratum

Hi is irreducible, then we say that the stratum Hi is irreducible. It is known

that if a some strata is not irreducible then the filtration can be may be refined

so that every strata of the filtration is irreducible. Hence, for the rest of this

work, whenever we mention a strata we assume that it is a irreducible strata.

Example 3.1.

d

e

bc a

Going back to example 2.6 let’s call the vertex of the circuit a to be ∗. The

map f : G→ G was given by:

a 7→ a, b 7→ bdaEc, c 7→ bdaEceaDB, d 7→ ea, e 7→ ea

We can see that the graphG has a filtration given byG0 = {∗}, G1 = {a}, G2 =

{a, e}, G3 = {a, e, d}, G4 = {a, e, d, c, b}. The corresponding stratum are H1 =

{a}, H2 = {e}, H3 = {d}, H4 = {c, b}.

EG and NEG strata : Given some irreducible stratum Hr and a transition

matrix Tr corresponding to that strata, the Perron Frobenius theorem [25] tells
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us that Tr has a unique eigenvalue (called the Perron-Frobenius eigenvalue)

λ ≥ 1 such that Tr has a positive eigenvector, which is also unique upto scalar

multiplication, associated to eigenvalue λ. If λ > 1 we say that the stratum Hr

is exponentially growing strata or EG strata. In this case we can write down the

finitely many Perron-Frobenius eigenvalues in an increasing sequence and we

call this sequence Γ. Note that we can order Γ lexicographically. If λ = 1, then

we say that Hr is an nonexponentially growing strata or NEG strata. Given

some NEG stratum Hr we can enumerate and orient its edges as E1, E2, ...., EN

so that f#(Ei) = Ei.ui−1 where ui−1 is a circuit in Gi−1. This is a consequence

of assuming that the strata is Hr is irreducible, which in turn implies that

the transition matrix is the permutation matrix of a permutation with single

cycles in its cyclic decomposition. The NEG edge Ei is said to be linear if

ui−1 is a nontrivial periodic Nielsen path. If each edge of a NEG stratum Hr

is linear, then we say that Hr is a linear stratum. If N = 1, then Hr is a fixed

stratum and E is a fixed edge. If each ui is a trivial path, then we say that Hr

is a periodic stratum and each edge E in Hr is a periodic edge. If the transition

matrix is the zero matrix we say that Hr is a zero stratum.

A direction at some point x ∈ G is the germ of finte paths with initial vertex

x. If x is not a vertex of G, then number of directions at x is 2. A turn in

a marked graph G is a pair of oriented edges of G originating at a common

vertex. A turn is said to be nondegenerate if the nonoriented edges defining

it are distinct; degenerate otherwise. A turn is contained in the filtration

(stratum) element Gr (Hr) if both edges defining the turn are in Gr (Hr). If

E ′1E2......Ek−1E
′
k is the edge path associated to a α then we say that α contains
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the turn or crosses the turn (Ei, Ei+1).

Given a marked graph G and a homotopy equivalence f : G → G that takes

edges to paths, one can define a new map Tf by setting Tf(E) to be the

first edge in the edge path associated to f(E); similarly let Tf(Ei, Ej) =

(Tf(Ei), T f(Ej)). So Tf is a map that takes turns to turns. We say that

a nondegenerate turn is illegal if for some iterate of Tf the turn becomes

degenerate; otherwise the turn is legal. A path is said to be legal if it contains

only legal turns and it is r-legal if it is of height r and all its illegal turns are

in Gr−1.

Example 3.2.

d

e

bc a

From example 3.1 we can see that H1 is a fixed strata, H2 is a linear-NEG

strata and H4 is an EG strata with expansion factor approximately 2.414.

Relative train track map. Given φ ∈ Out(FN) and a topological represen-

tative f : G→ G with a filtration G0 ⊂ G1 ⊂ · · · ⊂ Gk which is preserved by

f , we say that f is a train relative train track map if the following conditions

are satisfied:

1. f maps r-legal paths to r-legal paths.

2. If γ is a path in G with its endpoints in Hr then f#(γ) has its end points
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in Hr.

3. If E is an edge in Hr then Tf(E) is an edge in Hr

Example 3.3. Example 3.1 is an example of a relative train-track map.

The following result relates the notion of attracting laminations to that of

exponentially growing stratas. Note that, an outer automorphism has an at-

tracting lamination if and only if it has an exponentially growing strata.

Lemma 3.4. If φ ∈ Out(FN) preserves each element of L(φ) then for any

relative train track map f : G → G representing φ there is a bijective corre-

spondence between L(φ) and the set of EG strata Hr ⊂ G, where Λr ∈ L(φ)

corresponds to Hr if and only if the realization of each generic leaf of Λr has

height r.

For any topological representative f : G → G and exponentially growing

stratum Hr, let N(f, r) be the number of indivisible Nielsen paths ρ ⊂ G

that intersect the interior of Hr. Let N(f) = ΣrN(f, r). Let Nmin be the

minimum value of N(f) that occurs among the topological representatives

with Γ = Γmin. We call a relative train track map stable if Γ = Γmin and

N(f) = Nmin. The following result is Theorem 5.12 in [19] which assures the

existence of a stable relative train track map.

Lemma 3.5. Every φ ∈ Out(FN) has a stable relative train track representa-

tive.

Example 3.6. Example 3.1 is an example of a stable relative train track map.
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If φ ∈ Out(FN) is fully irreducible then the above fact implies that there exists

a stable train track representative for φ.

The reason why stable relative train track maps are important is due to the

following fact

Lemma 3.7. (Theorem 5.15, [19]) If f : G→ G is a stable relative train track

representative of φ ∈ Out(FN), and Hr is an exponentially growing stratum,

then there exists at most one indivisible Nielsen path ρ of height r. If such a

ρ exists, then the illegal turn of ρ is the only illegal turn in Hr and ρ crosses

every edge of Hr.

Example 3.8. Let’s go back to example 3.2 to understand this concept. As

we already know that the strata H4 = {b, c} we will do some iteration to get

a feel for the attraction to lamination.

a 7→ a, b 7→ bdaEc, c 7→ bdaEceaDB, d 7→ ea, e 7→ ea

f 5
#(c) = bdaEceaEbdaEceaDBeaEbdaEceaEbdaEceaDBeaECeADBeaE

bdaEceaEbdaEceaDBeaEbdaEceaEbdaEceaDBeaECeADBeaEbdAECeADB

eAECeADBeaEbdaEceAEbdAECeADBeAECeADBeAEbd

AECeADBeAECeADB

One can notice a pattern (highlighted out in blue) that begins to appear in

both directions of the line repeatedly. These are actually segments of the im-

age of c under f . As one keep iterating this EG edge for higher and higher

iterates, one actually ends up converging to a generic leaf. The blue segment

grows exponentially under iteration and gives more blue segments in it’s im-
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ages. Now consider the circuit Ebd and lets look at some of it’s iterates.

f 4
#(Ebd) = AAAAEbdaEceaEbdaEceaDBeaEbdaEceaEbdaEceaDBe

aECeADBeaEbdaEceaEbdaEceaDBeaEbdaEceaEbdaEceaDBeaECeA

DBeaEbdAECeADBeAECeADBeaaaa

If one looks closely, one will notice the same patterns emerging in the iteration

of the circuit. Eventually, as we keep iterating this circuit gets attracted

to the lamination associated to the EG strata H4. Intuitively, this happens

because as we iterate the blue segment, it grows exponentially and there is

enough cushion to prevent the edges in the EG strata H4 from canceling out,

which forces it to spit out more blue segments under iteration. This idea will

charaterize circuits that get attracted to the lamination associated to H4. We

will make it precise once we have defined CT’s, which is our next topic.

Splittings, complete splittings and CT’s. Given relative train track map

f : G → G, splitting of a line, path or a circuit γ is a decomposition of

γ into subpaths ....γ0γ1.....γk.... such that for all i ≥ 1 the path f i#(γ) =

..f i#(γ0)f i#(γ1)...f i#(γk)... The terms γi are called the terms of the splitting of

γ.

Given two linear edges E1, E2 and a root-free closed Nielsen path ρ such that

f#(Ei) = Ei.ρ
pi then we say that E1, E2 are said to be in the same linear family

and any path of the form E1ρ
mE2 for some integer m is called an exceptional

path.

Complete splittings: A splitting of a path or circuit γ = γ1 · γ2...... · γk is

called complete splitting if each term γi falls into one of the following cate-
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gories:

• γi is an edge in some irreducible stratum.

• γi is an indivisible Nielsen path.

• γi is an exceptional path.

• γi is a maximal subpath of γ in a zero stratum Hr and γi is taken.

Completely split improved relative train track maps. A CT or a com-

pletely split improved relative train track maps are topological representatives

with particularly nice properties. But CTs do not exist for all outer auto-

morphisms. Only the rotationless outer automorphisms are guranteed to have

a CT representative as has been shown in the following Theorem from [21,

Theorem 4.28].

Lemma 3.9. For each rotationless φ ∈ Out(FN) and each increasing sequence

F of φ-invariant free factor systems, there exists a CT f : G → G that is a

topological representative for φ and f realizes F .

The following properties are used to define a CT in [21]. There are actually

nine properties. But we will state only the ones we need. The rest are not

directly used here but they are all part of the proof of various propositions

and lemmas we will be needing and which we have stated here as facts.

1. (Rotationless) Each principal vertex is fixed by f and each periodic

direction at a principal vertex is fixed by Tf .

2. (Completely Split) For each edge E in each irreducibe stratum, the

path f(E) is completely split.
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3. (vertices) The endpoints of all indivisible Nielsen paths are vertices.

The terminal endpoint of each nonfixed NEG edge is principal.

4. (Periodic edges) Each periodic edge is fixed.

CTs have very nice properties. The reader can look them up [21] for a detailed

exposition or [12] for a quick reference. We list below only a few of them that

is needed for us.

Lemma 3.10. [21, Lemma 4.11] A completely split path or circuit has a unique

complete splitting.

Lemma 3.11. [21] If σ is a finite path or a circuit with endpoint in vertices,

then fk#(σ) is completely split for all sufficiently large k ≥ 1.

Lemma 3.12. [21] Every periodic Nielsen path is fixed. Also, for each EG

stratum Hr there exists at most one indivisible Nielsen path of height r, upto

reversal of orientation.

3.2 Attracting Laminations and their properties under

CTs

Our main results in this paper use the properties of generic leaves and their

behavior under CTs. This has been first studied in [21] and then again in

[[14]] extensively. We will only state some important results in this topic, for

a more detailed exposition with proofs the reader is suggested to look into

those papers. The following lemma is a collection of results from [20]. Item 2

is used to define the nonattracting subgroup system in the next section. Item

3 is proved in [[14]]
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Lemma 3.13. With the same notations as used in Lemma 3.4, for each EG

stratum Hr ⊂ G we have:

• The leaves of Λr are characterized as the set of lines to which some (any)

edge of Hr is weakly attracted under iterates of f

• A path or circuit σ ⊂ G is weakly attracted to Λr under iterates of f if

and only if there exists k ≥ 0 and a splitting fk#(σ) so that some term in

the splitting is an edge in Hr.

• No conjugacy class in Fr is weakly attracted to Λr under iterates of φ−1.

Lemma 3.14. With the notational setup of Lemma 3.4, for any EG stratum

Hr ⊂ G corresponding to an attracting lamination Λr, the following conditions

are equivalent for being a generic leaf λ of Λr

1. λ is birecurrent and has height r

2. Both ends of λ have height r.

The following facts are important since it is the first step to understanding

the properties of lines which are not attracted to an attracting lamination Λr

under the action of a relative train track map. It follows from corollary 4.2.4

and Lemma 4.2.2 of [20].

Lemma 3.15. [14] Suppose f : G → G is a relative train track map and

Λ ∈ L(φ) is an attracting lamination for φ. Then being attracted to Λ under

iteration by f# is an open condition on paths in B(G).
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Lemma 3.16. Let f : G→ G be a CT representing a rotationless φ ∈ Out(FN)

and σ be a circuit in G. Let Λ+
φ be an attracting lamination for φ which

corresponds to the exponentially growing strata Hr in G. Then σ is attracted

to Λ+
φ if and only if some term in the complete splitting of σ is an edge in Hr.

This lemma implies that if we consider any circuit in the filtration Gr−1 then

it will never get attracted to the lamination Λ+
φ . Might be circuits which does

not intersect Hr but intersects some higher strata. In that case it may as well

happen that under iteration the circuit crosses Hr and gets attracted to the

lamination.

Dual lamination pairs. We have already seen that the set of lines carried

by a free factor system is a closed set and so, together with the fact that the

weak closure of a generic leaf λ of an attracting lamination Λ is the whole

lamination Λ tells us that Asupp(λ) = Asupp(Λ). In particular the free factor

support of an attracting lamination Λ is a single free factor. Let φ ∈ Out(FN)

be an outer automorphism and Λ+
φ be an attracting lamination of φ and Λ−φ

be an attracting lamination of φ−1. We say that this lamination pair is a

dual lamination pair if Asupp(Λ+
φ ) = Asupp(Λ−φ ). By Lemma 3.2.4 of [20] there

is bijection between L(φ) and L(φ−1) induced by this duality relation. The

following fact is Lemma 2.35 in [[14]]; it establishes an important property of

lamination pairs in terms of inclusion. We will use it in proving duality for

the attracting and repelling laminations we produce in Proposition 5.4.

Lemma 3.17. If Λ±i ,Λ
±
j are two dual lamination pairs for φ ∈ Out(FN) then

Λ+
i ⊂ Λ+

j if and only if Λ−i ⊂ Λ−j .
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Lemma 3.18. [14] Let φ ∈ Out(FN) be rotationless and σ be any conjugacy

class. Let Λ±φ be a dual lamination pair for φ. Then σ is attracted to Λ+
φ under

iterates of φ if and only if it is attracted to Λ−φ under iterates of φ−1.

Together with the observation in 3.16, we can conclude that if a circuit is

supported in the lower filtration element Γr−1, then it is neither attracted to

Λ+
φ nor to Λ−φ . In fact, such a circuit is carried by the nonattracting subgroup

system, which is our next topic of discussion. However, a circuit may cross

the Hr strata but eventually when we take iterates, all the edges in Hr cancel

out. This may happen(although not always) for example, when the circuit has

height > r. This is why we need the complete splitting in the hypothesis of

lemma 3.16

3.3 Nonattracting subgroup system:

In this section we will define the subgroup system AnaΛ+
φ which contains the

data about the conjugacy classes which are not attracted to Λ+
φ under iterates

of φ (hence the name). The definition and facts given here are from section 5

of [[14]].

Definition 3.19. Suppose φ ∈ Out(FN) is rotationless and f : G → G is a

CT representing φ such that Λ+
φ is an invariant attracting lamination which

corresponds to the EG stratum Hs ∈ G. The nonattracting subgraph Z of G

is defined as a union of irreducible stratas Hi of G such that no edge in Hi is

weakly attracted to Λ+
φ . This is equivalent to saying that a strata Hr ⊂ G \Z

if and only if there exists k ≥ 0 some term in the complete splitting of fk#(Er)
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is an edge in Hs. Define the path ρ̂s to be trivial path at any chosen vertex

if there does not exist any indivisible Nielsen path of height s, otherwise ρ̂s is

the unique closed indivisible path of height s (from definition of stable train

track maps).

The groupoid 〈Z, ρ̂s〉 - Let 〈Z, ρ̂s〉 be the set of lines, rays, circuits and

finite paths in G which can be written as a concatenation of subpaths, each

of which is an edge in Z, the path ρ̂s or its inverse. Under the operation of

tightened concatenation of paths in G, this set forms a groupoid (Lemma 5.6,

[[14]]).

Define the graph K by setting K = Z if ρ̂s is trivial and let h : K → G be

the inclusion map. Otherwise define an edge Eρ representing the domain of

the Nielsen path ρs : Eρ → Gs, and let K be the disjoint union of Z and Eρ

with the following identification. Given an endpoint x ∈ Eρ, if ρs(x) ∈ Z then

identify x ∼ ρs(x).Given distinct endpoints x, y ∈ Eρ, if ρs(x) = ρs(y) /∈ Z

then identify x ∼ y. In this case define h : K → G to be the inclusion map

on K and the map ρs on Eρ. It is not difficult to see that the map h is an

immersion. Hence restricting h to each component of K, we get an injection at

the level of fundamental groups. The nonattracting subgroup system Ana(Λ+
φ )

is defined to be the subgroup system defined by this immersion.

Example 3.20. The lamination associated to the EG strata H4 in Example

3.2 has a nontrivial non-attracting subgroup system.
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d

e

bc a

a 7→ a, b 7→ bdaEc, c 7→ bdaEceaDB, d 7→ ea, e 7→ ea

One can see that the conjugacy class determined by the circuit a is clearly

nonattracted to the lamination and is carried by the nonattracting subgroup

system of the attracting lamination. In this particularly nice case the nonat-

tracting subgraph Z is just G3. Thus Ana(Λ+) = {[〈a〉]}

Some important properties of AnaΛ+
φ which we need are stated below. For a

more detailed exposition, please refer to section 5 of [[14]].

Lemma 3.21. ([[14]]- Lemma 5.6, 5.7)

1. 〈Z, ρ̂s〉 is f# invariant.

2. The set of lines carried by 〈Z, ρ̂s〉 is same as the set of lines carried by

Ana(Λ+
φ )

3. The set of circuits carried by 〈Z, ρ̂s〉 is same as the set of circuits carried

by Ana(Λ+
φ )

4. The set of lines carried by 〈Z, ρ̂s〉 is closed in the weak topology.

5. A conjugacy class [c] is not attracted to Λ+
φ if and only if it is carried by

Ana(Λ+
φ ).
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6. Ana(Λ+
φ ) does not depend on the choice of the CT representing φ.

The following fact is corollary 5.10 in [[14]] which tells us the important fact

that dual lamination pairs have same nonattracting subgroup systems. Hence-

forth, for dual lamination pairs we will use the notation AnaΛ±φ

Lemma 3.22. [12] Given φ, φ−1 ∈ Out(FN) both rotationless elements and a

dual lamination pair Λ±φ we have Ana(Λ+
φ ) = Ana(Λ−φ )

Lemma 3.23. ([[14]] -Proposition 5.5) Given a rotationless φ and a CT f :

G → G representing φ such that the attracting lamination Λ+
φ corresponds to

the EG stratum Hr, then the subgroup system Ana(Λ+
φ ) satisfies the following:

1. Ana(Λ+
φ ) is a free factor system if and only if the stratum Hr is not

geometric.

2. Ana(Λ+
φ ) is malnormal.

Corollary 3.24. Let φ ∈ Out(FN) be a fully irreducible geometric element

which is induced by a pseudo-Anosov homeomorphism of the surface S with

one boundary component. Let [c] be a conjugacy class representing ∂S. Then

Ana(Λ+
φ ) = [〈c〉].

Proof. The surface homeomorphism leaves ∂S invariant implies that [c] is φ

periodic. By passing to a rotationless power we may assume that [c] is fixed

by φ. φ being fully irreducible implies Ana(Λ+
φ ) = [〈c〉].
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4 Singular lines, Extended boundary and Weak

attraction theorem

In this section we will look at some results from [14] which analyze and identify

the set of lines which are not weakly attracted to an attracting lamination Λ±φ ,

given some exponentially growing element in Out(FN). Most of the results

stated here are in terms of rotationless elements as in the original work. How-

ever, we note that being weakly attracted to a lamination Λφ is not dependent

on whether the element is rotationless. The first time a special case of this

theorem appeared was in the Tit’s alternative paper [20]. All facts stated here

about rotationless elements also hold for non rotationless elements also, unless

otherwise mentioned. This has been pointed out in Remark 5.1 in [14] The

main reason for using rotationless elements is to make use of the train track

structure from the CT theory. We will use some of the facts to prove lemmas

about non rotationless elements which we will need later on.

Denote the set of lines not attracted to Λ+
φ by Bna(Λ+

φ ). The non-attracting

subgroup system carries partial information about such lines as we can see

in Lemma 3.21. Other obvious lines which are not attracted are the generic

leaves of Λ−φ . There is another class of lines, called singular lines, which we

define below, which are not weakly attracted to Λ+
φ .

Define a singular line for φ to be a line γ ∈ B if there exists a principal lift Φ of

φ and a lift γ̃ of γ such that the endpoints of γ̃ are contained in FixN(Φ) ⊂ ∂Fr.

The set of all singular lines of φ is denoted by Bsing(φ). The lemma [Lemma

2.1, [14]] below summarizes this discussion.
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Lemma 4.1. Given a rotationless φ ∈ Out(FN) and an attracting lamination

Λ+
φ , any line γ that satisfies one of the following three conditions is in Bna(Λ+

φ ).

1. γ is carried by AnaΛ±φ

2. γ is a generic leaf of some attracting lamination for φ−1

3. γ is in Bsing(φ).

But these are not all lines that constitute Bna(Λ+
φ ). An important theorem

in [Theorem 2.6, [14], stated here as Lemma 4.3, tells us that there is way to

concatenate lines from the three classes we mentioned in the above fact which

will also result in lines that are not weakly attracted to Λ+
φ . Fortunately, these

are all possible types of lines in Bna(Λ+
φ ). A simple explanation of why the

concatenation is necessary is, one can construct a line by connecting the base

points of two rays, one of which is asymptotic to a singular ray in the forward

direction of φ and the other is asymptotic to a singular ray in the backward

direction of φ. This line does not fall into any of the three categories we see in

the fact above. The concatenation process described in [14] takes care of such

lines. We will not describe the concatenation here, but the reader can look up

section 2.2 in [14].

Definition 4.2. Let A ∈ AnaΛ±φ and Φ ∈ P (φ), we say that Φ is A− related

if FixN(Φ̂) ∩ ∂A 6= ∅. Define the extended boundary of A to be

∂ext(A, φ) = ∂A ∪
(⋃

Φ

FixN(Φ̂)

)

where the union is taken over all A-related Φ ∈ P (φ).
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Let Bext(A, φ) denote the set of lines which have end points in ∂ext(A, φ); this

set is independent of the choice of A in its conjugacy class. Define

Bext(Λ+
φ ) =

⋃
A∈AnaΛ±φ

Bext(A, φ)

. We can now state the main result about non-attracted lines.

Lemma 4.3. Suppose φ, ψ = φ−1 ∈ Out(FN) be rotationless elements and Λ+
φ

is an attracting lamination for φ. Then any line γ is in Bna(Λ+
φ ) if and only

if one of the following conditions hold:

1. γ is in Bext(Λ+
φ )

2. γ is in Bsing(φ)

3. γ is a generic leaf of some attracting lamination for ψ

It is worth noting that the sets of lines mentioned in Lemma 4.3 are not

necessarily pairwise disjoint.

4.1 Weak attraction theorem

Lemma 4.4 ([14] Corollary 2.17). Let φ ∈ Out(FN) be a rotationless and

exponentially growing. Let Λ±φ be a dual lamination pair for φ. Then for any

line γ ∈ B not carried by Ana(Λ±φ ) at least one of the following hold:

1. γ is attracted to Λ+
φ under iterations of φ.

2. γ is attracted to Λ−φ under iterations of φ−1.
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Moreover, if V +
φ and V −φ are attracting neighborhoods for the laminations Λ+

φ

and Λ−φ respectively, there exists an integer l ≥ 0 such that at least one of the

following holds:

• γ ∈ V −φ .

• φl(γ) ∈ V +
φ

• γ is carried by Ana(Λ±φ ).

Corollary 4.5. Let φ ∈ Out(FN) be exponentially growing and Λ±φ be geo-

metric dual lamination pair for φ such that φ fixes Λ+
φ and φ−1 fixes Λ−φwith

attracting neighborhoods V ±φ . Then there exists some integer l such that for

any line γ in B one of the following occurs:

• γ ∈ V −φ .

• φl(γ) ∈ V +
φ .

• γ is carried by Ana(Λ±φ )

Proof. Let K be a positive integer such that φK is rotationless. Then by

definition Ana(Λ±φ ) = Ana(Λ±φK ). Also φ fixes Λ+
φ implies Λ+

φ = Λ+
φK

and the

attracting neighborhoods V +
φ and V +

φK
can also be chosen to be the same weak

neighborhoods. Then by Lemma 4.4 we know that there exists some positive

integer m such that the conclusions of the Weak attraction theorem hold for

φK . Let l := mK. This gives us the conclusions of the corollary. Before we

end we note that by definition of an attracting neighborhood φ(V +
φ ) ⊂ V +

φ

which implies that if φl(γ) ∈ V +
φ , then φt(γ) ∈ V +

φ for all t ≥ l.
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Lemma 4.6. Suppose φ, ψ ∈ Out(FN) are two exponentially growing auto-

morphisms with attracting laminations Λ+
φ and Λ+

ψ , respectively. If a generic

leaf λ ∈ Λ+
φ is in Bna(Λ+

ψ ) then the whole lamination Λ+
φ ⊂ Bna(Λ

+
ψ ).

Proof. Recall that a generic leaf is bi-recurrent. Hence, λ ∈ Bna(Λ+
ψ ) implies

that λ is either carried by Ana or it is a generic leaf of some element of L(ψ−1).

First assume that λ is carried by Ana. Then using Lemma 3.21 item 4, we can

conclude that Λ+
φ is carried by Ana(Λ+

ψ ).

Alternatively, if λ is a generic leaf of some element Λ−ψ ∈ L(ψ−1), then the

weak closure λ = Λ+
φ = Λ−φ and we know Λ−ψ does not get attracted to Λ+

ψ by

Fact 3.1. Hence, Λ+
φ ⊂ Bna(Λ

+
ψ ).
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5 Pingpong argument for exponential growth

Lemma 5.1 ([20] Section 2.3). If f : G −→ G is a train track map for

an irreducible φ ∈ Out(FN) and α is a path in some leaf λ of G such that

α = α1α2α3 is a decomposition into subpaths such that |α1|, |α3| ≥ 2C where

C is the bounded cancellation constant for the map f , then fk#(α2) ⊂ fk##(α)

for all k ≥ 0.

Proof. Let α be any path with a decomposition α = α1α2α3. Take lifts to

universal cover of G. If γ̃ is a path in G̃ that contains α̃, then decompose

γ̃ = γ̃1α̃2γ̃3 such that α̃1 is the terminal subpath of γ̃1 and α̃3 is the initial

subpath of γ̃3. Following the proof of [20] if K = 2C then γ̃ can be split at the

endpoints of α̃2. Thus, f̃k#(γ̃) = f̃k#(γ̃1)f̃k#(α̃2)f̃k#(γ̃3). The result now follows

from the definition of fk##(α).

Lemma 5.2 ([14] Lemma 1.1). Let f : G → G be a homotopy equivalence

representing φ ∈ Out(FN) such that there exists a finite path β ⊂ G having

the property that f##(β) contains three disjoint copies of β. Then φ is expo-

nentially growing and there exists a lamination Λ ∈ L(φ) and a generic leaf λ

of Λ ∈ L(φ) such that Λ is φ-invariant and φ fixes λ preserving orientation,

each generic leaf contains f i##(β) as a subpath for all i ≥ 0 and N(G, β) is an

attracting neighborhood for Λ.

We adapt the following notation for the statement of the next proposition:

Let ε ∈ {−,+} and i ∈ {0, 1}. Here i will be used to represent ψ(if i = 0)

or φ(if i = 1). Together the tuple µi := (i, ε) ∈ {0, 1} × {−,+} will represent
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ψ(if µ0 = (0,+)), ψ−1 (if µ0 = (0,−)) and so on. In this notation we write

Λε
0 := Λε

ψ and so on.

We also write notations like −ε where it means −− = + and −+ = − de-

pending on value of epsilon.

Standing assumptions for the rest of this section: φ, ψ are exponentially

growing elements of Out(FN) such that the following conditions are satisfied:

1. φ, ψ are not powers of one another.

2. There exists dual lamination pairs Λ±ψ and Λ±φ such that Λ±ψ is attracted

to Λε
φ under iterates of φε and Λ±φ is attracted to Λε

ψ under iterates of ψε.

3. ψε fixes Λε
ψ and φε fixes Λε

φ.

4. Both Λ±ψ and Λ±φ are non-geometric or every lamination pair of every

element of 〈ψ, φ〉 is geometric.

Remark 5.3. Some remarks regarding the set of hypothesis.

• hypothesis 2 and 3 are needed to play the ping-pong game.

• hypothesis 4 is needed to prove that the attracting and repelling lami-

nations produced out of ping-pong are dual. This, as we will see later in

Proposition 5.5 , is not required if φ, ψ are fully irreducible.

The lemma that has been proven by Handel and Mosher in Proposition 1.3 in

[14] is a weaker version of the following proposition. What they have shown

(with slightly weaker conditions than hypothesis 2 above) is that the lemma is

true for k = 1 and only under positive powers of ψ and φ. Strengthening that
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one part of the hypothesis enables us to extend their result to both positive and

negative exponents and also for reduced words with arbitrary k (see statement

of 5.4 for description of k). They also have the assumption that φ, ψ are both

rotationless, which they later on discovered, is not necessary; one can get away

with the hypothesis 3 above. The techniques of proof is similar.

Pingpong lemma:

Proposition 5.4. Let ψ, φ be exponentially growing elements of Out(FN),

which satisfy the hypothesis 5 mentioned above.

Then there exists some integer M > 0 and attracting neighborhoods V ±φ , V ±ψ

of Λ±φ and Λ±ψ ,respectively, such that for every pair of finite sequences ni ≥M

and mi ≥M if

ξ = ψε1m1φε
′
1n1 ........ψεkmkφε

′
knk

(k ≥ 1) is a cyclically reduced word then w will be exponentially-growing and

have a lamination pair Λ±ξ satisfying the following properties:

1. Every conjugacy class carried by Ana(Λ±ξ ) is carried by both Ana(Λ±φ )

and Ana(Λ±ψ )

2. ψmi(V ±φ ) ⊂ V +
ψ and ψ−mi(V ±φ ) ⊂ V −ψ .

3. φnj(V ±ψ ) ⊂ V −φ and φ−nj(V ±ψ ) ⊂ V −φ .

4. V +
ξ : = V ε1

ψ is an attracting neighborhood of Λ+
ξ

5. V −ξ : = V
−ε′k
φ is an attracting neighborhood of Λ−ξ
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6. (uniformity) Suppose U ε1
ψ is an attracting neighborhood of Λε1

ψ and λ+
ξ is

a generic leaf of Λ+
ξ . Then λ+

ξ ∈ U
ε1
ψ for sufficiently large M .

7. (uniformity) Suppose U
ε′k
φ is an attracting neighborhood of Λ

ε′k
φ and λ−ξ is

a generic leaf of Λ−ξ . Then λ−ξ ∈ U
ε′k
φ for sufficiently large M .

Proof. Let gµi : Gµi −→ Gµi be stable relative train train-trak maps and

uµiµj : Gµi −→ Gµj be the homotopy equivalence between the graphs which

preserve the markings, where i 6= j.

Let C1 > 2BCC{gµi |i ∈ {0, 1}}. Let C2 > BCC{uµiµj |i, j ∈ {0, 1}, i 6= j}. Let

C ≥ C1, C2.

Let λεi be generic leaves of laminations Λε
i .

STEP 1:

Using the fact that Λε
1 is weakly attracted to Λε′

0 , under the action if ψε
′
, choose

a finite subpath αε1 ⊂ λε1 such that

• (uµ1µ0)#(αε1)→ λε
′

0 weakly, where µ0 = (0, ε′) and µ1 = (1, ε).

• αε1 can be broken into three segments: initial segment of C edges, followed

by a subpath αε followed by a terminal segment with C edges.

STEP 2:

Now using the fact Λε
0 → Λε′

1 weakly under iterations of φε
′
, we can find posi-

tive integers pεµ1 (there are four choices here that will yield four integers) such

that αε
′

1 ⊂ (g
pεµ1
µ1 u

µ0
µ1

)#(λε0) , where µ0 = (0, ε), µ1 = (1, ε′).

Let C3 be greater than BCC{gp
ε
µ1
µ1 u

µ0
µ1
} (four maps for four integers pεµ1) .
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STEP 3:

Next, let βε0 ⊂ λε0 be a finite subpath such that (g
pεµ1
µ1 )#(βε0) contains αε

′
1 pro-

tected by C3 edges in both sides, where µ0 = (0, ε) and µ1 = (1, ε′). Also, by

increasing βε0 if necessary, we can assume that V ε
ψ = N(Gµ0 , β

ε
0) is an attracting

neighborhood of Λε
0 .

Let σ be any path containing βε0. Then (g
pεµ1
µ1 u

µ0
µ1

)#(σ) ⊃ αε0. Thus by us-

ing Lemma 5.1 we get that (g
pεµ1+t
µ1 uµ1µ0)#(σ) = (gtµ1)#((g

pεµ1
µ1 u

µ0
µ1

)#(σ)) contains

(gtµ1)#(αε) for all t ≥ 0 .

Thus we have (g
pεµ1+t
µ1 uµ0µ1)##(βε0) ⊃ (gtµ1)#(αε) for all t ≥ 0.

STEP 4:

Next step is reverse the roles of φ and ψ to obtain positive integers qε
′
µ1

and

paths γε
′

1 ⊂ λε
′
µ1

such that (g
qεµ0+t
µ0 uµ1µ0)##(γε

′
1 ) ⊃ (gtµ0)#(βε0) for all t ≥ 0 , where

µ0 = (0, ε), µ1 = (1, ε′)

STEP 5:

Finally, let k be such that (gkµ1)#(αε) contains three disjoint copies of γε1 and

that (gkµ0)#(βε0) contains three disjoint copies of βε0 for ε = 0, 1. Let p ≥ max

{pεµ1} + k and q ≥ max {qεµ0} + k.

Let mi ≥ q and ni ≥ p.

The map fξ = gm1

(0,ε1)u
(1,ε′1)

(0,ε1)g
n1

(1,ε′1)u
(0,ε2)

(1,ε′1).........g
nk
(1,ε′k)u

(0,ε1)

(1,ε′k) : G(0,ε1) → G(0,ε1) is a

topological representative of ξ. With the choices we have made, gnk(1,ε′k)u
(0,ε1)

(1,ε′k))##(βε10 )

contains three disjoint copies of γ
ε′k
1 and so (gmk(0,εk)u

(1,ε′k)

(0,εk)g
nk
(1,ε′k)u

(0,ε1)

(1,ε′k))##(βε10 ) will

contain three disjoint copies of βεk0 . Continuing in this fashion in the end we

get that (fξ)##(βε10 ) contains three disjoint copies of βε10 . Thus by Lemma 5.2

ξ is an exponentially growing element of Out(FN) with an attracting lamina-



45

tion Λ+
ξ which has V +

ξ = N(Gµ0 , β
ε1
0 ) = V ε1

ψ as an attracting neighborhood.

Similarly, if we take inverse of ξ and interchange the roles played by ψ, φ with

φ−1, ψ−1, we can produce an attracting lamination Λ−ξ for ξ−1 with an attract-

ing neighborhood V −ξ = N(G(1,−ε′k), γ
−ε′k
1 ) = V

−ε′k
φ . which proves property

(4) and (5) of the proposition. We shall later show that Λ+
ξ and Λ−ξ form a

dual-lamination pair.

Hence,every reduced word of the group 〈φn, ψm〉 will be exponentially growing

if n ≥ p,m ≥ q. Let M ≥ p, q.

Now, we prove the conclusion related to non-attracting subgroup. By corollary

4.5 there exists l so that if τ is neither an element of V
−ε′k
φ = V −ξ nor is it carried

by AnaΛ±φ then φ
ε′kt

# (τ) ∈ V ε′k
φ for all t ≥ l . Increase M if necessary so that

M > l. Under this assumption,

ξ#(τ) ∈ ψε1m1(V
ε′1
φ ) ⊂ V +

ξ . So τ is weakly attracted to Λ+
ξ . Hence we conclude

that if τ /∈ V −ξ and not attracted to Λ+
ξ , then τ is carried by AnaΛ±φ .

Similarly, if τ is not in V +
ξ and not attracted to Λ−ξ then τ is carried by AnaΛ±ψ .

Next, suppose that τ is a line that is not attracted to any of Λ+
ξ ,Λ

−
ξ . Then

τ must be disjoint from V +
ξ , V

−
ξ . So, is carried by both AnaΛ±ψ and AnaΛ±φ .

Restricting our attention to periodic line, we can say that every conjugacy

class that is carried by both AnaΛ+
ξ and AnaΛ−ξ is carried by both AnaΛ±ψ and

AnaΛ±φ . That the two non-attracting subgroup systems are mutually malnor-

mal gives us the first conclusion.

The proof in [14] that Λ−ξ and Λ+
ξ are dual lamination pairs will carry over in

this situation and so AnaΛ+
ξ = AnaΛ−ξ .
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Thus we have the proof of the first conclusion of our proposition.

The following are the main ingredients that will be used in the to show appli-

cations of the main theorem of this paper:

Proposition 5.5. If we assume that ψ, φ are fully-irreducible, then we do not

need the second and third bulleted item in the hypothesis 5 for the ping-pong

proposition.

Remark 5.6. In the case of fully-irreducible, situation is much simpler

1. Hypothesis 1 implies hypothesis 2.

2. Hypothesis 3 is obvious since the attracting and repelling lamination

pairs for fully irreducible elements are unique.

3. Hypothesis 4 is needed to prove that the laminations produced from the

ping-pong argument are dual. We will see a direct proof in the lines of

Proposition 1.3 [14] if the elements are fully irreducible, without using

hypothesis 3 needed for propostion 5.4

Proof. We will show that the laminations produced from pingpong argument

are dual. As in the proposition assume

ξ = ψε1m1φε
′
1n1 ........ψεkmkφε

′
knk

Suppose the laminations Λ+
ξ and Λ−ξ produced using the ping-pong type ar-

gument are not dual. Index all the dual lamination pairs of ξ as {Λ±i }i∈I and

assume that

Λ+
ξ = Λ+

i and Λ−ξ = Λ−j for some i 6= j
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Case 1: Λ+
i * Λ+

j . This implies that a generic leaf λ of Λ+
j is not attracted

to Λ+
i = Λ+

ξ under iteration by ξ. Also, λ is not attracted to Λ−j = Λ−ξ

under iteration by ξ−1. In particular, λ /∈ V −ξ . By the discussion at the end

of the ping-pong argument, this implies that λ is carried by AnaΛ±φ . But φ

being fully-irreducible, AnaΛ±φ is either trivial, which gives us that λ does not

exist(contradiction), or AnaΛ±φ = [c] , which implies that λ is a circuit. The

later is impossible since a generic leaf cannot be a circuit (Lemma 3.1.16, [20]).

Case 2: Λ+
i ⊂ Λ+

j . By Fact 2.18 this means Λ−i ⊂ Λ−j . This implies that

some generic leaf λ of Λ−i is not attracted to Λ−j under iteration by ξ−1 (since

proper inclusion implies there is a generic leaf of Λi whose height is less than

the height of the EG stratum corresponding to Λj). Also, λ is not attracted

to Λ+
i = Λ+

ξ under iteration by ξ. In particular, λ /∈ V +
ξ . By discussion at

the end of the ping-pong proposition, this implies that λ is carried by AnaΛ±ψ .

The same arguments as in case 1 works and we get a contradiction.

Corollary 5.7. If in proposition 5.4 if we drop bulleted items 2, 3 in the

hypothesis 5 and instead assume that ψ, φ are fully-irreducible outer automor-

phisms such that φ is geometric and ψ is hyperbolic(or vice versa), then the

resulting laminations Λ+
ξ and Λ−ξ produced by the ping-pong argument will be

dual. Moreover, AnaΛ±ξ will be trivial if ξ is not conjugate to a power of φ

Proof. The result follows from Proposition 5.5 and the conclusion 1 from

Proposition 5.4

Corollary 5.8. If in proposition 5.4 if we drop bulleted items 2, 3 in the hy-

pothesis 5 and instead assume that ψ and φ are fully-irreducible and geometric
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and fix the same conjugacy class, then the resulting laminations Λ+
ξ and Λ−ξ

produced by the ping-pong argument will be dual and Λ±ξ will be geometric and

Ana(Λ±ξ ) will be equal to Ana(Λ±φ ). If they don’t fix the same conjugacy class,

then AnaΛ±ξ is trivial when ξ is not conjugate to a power of φ or ψ

Proof. When both are geometric and fix the same conjugacy class they arise

from pseudo-Anosov homeomorphism of the same surface with connected bound-

ary and the conjugacy class corresponding to the boundary, [c] is equal to

AnaΛ±φ and AnaΛ±ψ . So, every reduced word ξ in φ and ψ will fix [c]. We

get the conclusion about duality of Λ+
ξ and Λ−ξ by using proposition 5.5 and

conclusion 1 of proposition 5.4 tells us that AnaΛ±ξ = [c].

If they are both geometric but they do not fix the same conjugacy class

Ana(Λ±φ ) and Ana(Λ±ψ ) are conjugacy classes of infinite cyclic subgroups which

have generators which are not powers of each other. Proposition 5.5 tells us

that the laminations Λ+
ξ and Λ−ξ are dual. Then using the conclusion(1) from

pingpong Lemma 5.4 we can conclude that Ana(Λ±ξ ) does not carry any con-

jugacy classes and hence is trivial when ξ is not conjugate to some power of ψ

or φ.

6 Proof of main theorem

We begin this section by introducing the concept of Stallings graph associated

to a free factor, which will contain the information about lines which are

carried by the free factor.

Stallings graph : Consider a triple (Γ, S, p) consisting of a marked graph Γ, a
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connected subgraph S with no valence one vertices and a homotopy equivalence

p : Γ→ RN , which is a homotopy inverse of the marking on Γ. p takes vertices

to vertices and edges to edge-paths and is a immersion when restricted to S.

This enforces that any path in S is mapped to a path in RN . If in addition we

have [F ] = [S], we say that the triple (Γ, S, p) is a representative of the free

factor F and S is said to be the Stallings graph for F . We get a metric on

each edge of Γ by pulling back the metric from RN via p. Under this setting,

a line l is carried by [F ] if and only if its realization lΓ in Γ is contained in S,

in which case the restriction of p to the line lΓ is an immersion whose image

in RN is l.

Lemma 6.1. Every proper free factor F has a realization (Γ, S, p).

The description of the Stallings graph and the proof of the fact mentioned

above can be found in the proof of Theorem I, section 2.4 in [14]. The proof

of existence uses the Stallings fold theorem to construct S, hence the name.

The following fact is an important tool for the proof of the main theorem. It is

used to detect fully-irreducibility when we are given an exponentially growing

element.

Lemma 6.2. Let φ ∈ Out(FN) be a rotationless and exponentially growing el-

ement. Then for each attracting lamination Λ+
φ , if the subgroup system AnaΛ+

φ

is trivial and the free factor system Asupp(Λ+
φ ) is not proper then φ is fully

irreducible.

It is worth noting that the fully irreducible element we will get from this lemma

is hyperbolic, since AnaΛ+ trivial implies that there are no periodic conjugacy
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classes and by [4] it is hyperbolic. In the next lemma we will extend this result

to include the geometric case also.

Lemma 6.3. For each exponentially growing φ ∈ Out(FN) if there exists an at-

tracting lamination Λ+
φ such that AnaΛ+

φ = [〈c〉], where Asupp[c] and Asupp(Λ+)

are not proper then φ is fully irreducible and geometric.

Proof. We follow the footsteps of the proof of the Lemma 6.2. Suppose φ is not

fully irreducible. Pass on to a rotationless power and assume φ is rotationless.

Let [F ] be the conjugacy class of the proper, non trivial free factor fixed by φ.

Choose a CT f : G→ G such that F is realized by some filtration element Gr

and [Gr] = [F ]. Since Asupp(Λ+) is not proper, the lamination Λ+
φ corresponds

to the highest strata Hs and r < s. Next recall that a strata Hi ⊂ G\Z if and

only if there exists some k ≥ 0 so that some term in the complete splitting of

fk#(Ei) (for some edge Ei ⊂ Hi)is an edge in Hs. This implies that Gs−1 ⊂ Z,

since f preserves the filtration. Hence we have Gr ⊂ Gs−1 ⊂ Z. This implies

that [F ] � [〈c〉]. So, F = 〈cp〉 for some p > 1. But the conjugacy class [c] fills

contradicts our assumption that F is a proper non trivial free factor.
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We write down the hypothesis for main theorem followed by some remarks as

to how the assumptions are used.

Hypothesis :

Let φ, ψ ∈ Out(FN) be exponentially growing outer automorphisms, which

are not conjugate to powers of each other and which do not have a common

periodic free factor. Also let φ, ψ have dual lamination pairs Λ±φ and Λ±ψ such

that the following hold:

• ψε leaves Λε
ψ invariant and φε leaves Λε

φ invariant.

• Λ±ψ is attracted to Λε
φ under iterates of φε and Λ±φ is attracted to Λε

ψ

under iterates of ψε

• {Λ±φ } ∪ {Λ
±
ψ} fills.

• Both Λ±ψ and Λ±φ are non-geometric or every lamination pair of every

element of 〈ψ, φ〉 is geometric.

• The non-attracting subgroup systems Ana(Λ±φ ) and Ana(Λ±ψ ) are mutu-

ally malnormal.

Definition 6.4. Any two pairs (φ,Λ±φ ), (ψ,Λ±ψ ) which satisfy the hypothesis

set 6 above will be called pairwise independent.

When we abuse the definition and say that φ, ψ are independent, it is under-

stood that we also have their dual lamination pairs Λ±φ and Λ±ψ which satisfy

the set of hypothesis.

Remark 6.5. Bulleted item 5 is a technical requirement to prove the first

conclusion of the Proposition 5.4. The rest are as follows:
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1. The first two bullets are required to prove the conclusion about the free

group of rank two in the statement of Theorem 6.7 and are also needed

to apply Proposition 5.4.

2. The third bullet will be used to deduce a contradiction in the proof of

showing that ξ is fully irreducible

3. The fifth bullet implies that there is no line that is carried by both the

nonattracting subgroup subgroup systems. This will be used to conclude

hyperbolicity.

The following result is same as Lemma 3.4.2 in [20].

Lemma 6.6. Let φ, ψ ∈ Out(FN) be exponentially growing elements, which

are not conjugates to powers of each other, which satisfy the first three bullets

of 6 . Then there exists some M0 ≥ 0 such that the group GM0 = 〈ψm, φn〉 is

free for every m,n ≥M0

We say that l is a periodic line if l = .....ρρρ.... is a bi-infinite iterate of some

finite path ρ. In this case we write l = ρ∞

Theorem 6.7. Let φ, ψ be two exponentially growing, independent elements

of Out(FN). Then there exists a M ≥ 0, such that for all n,m ≥M the group

〈ψm, φn〉 will be free and every element of this free group, not conjugate to

some power of the generators, will be hyperbolic and fully-irreducible.

Proof. We already know that there exists some M0 > 0, such that for all

m,n ≥M0 the group GM0 = 〈ψm, φn〉 will be free group of rank two (proposi-

tion6.6). It remains to show that , by increasing M0 if necessary, every reduced

word in this group will be fully irreducible. We shall prove it by contradiction.
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Suppose that there does not exist any such M ≥M0. This implies that for M

large, there exist m(M), n(M), such that the group 〈ψm(M), φn(M)〉 contains

at least one reduced word ξM (not conjugate to some power of the generators)

which is either reducible or fully irreducible but not hyperbolic. Using the

hypothesis of mutual malnormality of Ana(Λ±ψ ) and Ana(Λ±φ ) together with

conclusion 1 of Proposition 5.4 we know that for sufficiently large M , Ana(Λ±ξM )

must be trivial. Hence after passing to a subsequence if necessary, assume that

all ξM ’s are reducible.

We also make an assumption that this ξM begins with a nonzero power of

ψ and ends in some nonzero power of φ; if not, then we can conjugate to

achieve this. Thus as M increases, we have a sequence of reducible elements

ξM ∈ Out(FN). Pass to a subsequence to assume that the ξM ’s begin with a

positive power of ψ and end with a positive power of φ. If no such subsequence

exist, then change the generating set of GM0 by replacing generators with their

inverses.

Let ξM = ψm1φε
′
1n1 ........ψεkmkφnk where mi = mi(M), nj = nj(M) and k

depend on M .

We note that by our assumptions, the exponents get larger as M increases.

From the Ping-Pong lemma we know that there exists attracting neighbor-

hoods V ±ψ and V ±φ for the dual lamination pairs Λ±ψ and Λ±φ , respectively,

such that if i 6= 1

ψεimi(M)(V ±φ ) ⊂ V εi
ψ and ψm1(M)(V ±φ ) ⊂ V +

ψ ⊂ V +
ξM
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where each of ξM ’s are exponentially-growing and equipped with a lamination

pair Λ±ξM (with attracting neighborhoods V ±ξM ) such that AnaΛ±ξM is trivial

(using conclusion 1 of proposition 5.4 and bullet 6 in the hypothesis set 6).

Using Lemma 6.2 the automorphisms ξM ’s being reducible implies that

Asupp(Λ±ξM ) = [FξM ] is proper. Fix a marked metric graph H = RN , the stan-

dard rose. Denote the stallings graph (discussed at the beginning of this sec-

tion) associated to FξM by KM , equipped with the immersion pM : KM → H.

A natural vertex is a vertex with valence greater than two and a natural edge

is an edge between two natural vertices. We can subdivide every natural edge

of KM into edgelets, so that each edgelet is mapped to an edge in H and label

the edgelet by its image in H.

Let γ−M be a generic leaf of Λ−M and γ+
M be a generic leaf of Λ+

M . We note that

every natural edge in KM is mapped to an edge path in H, which is crossed

by both γ−M and γ+
M .

We claim that the edgelet length of every natural edge in KM is uniformly

bounded above. Once we have proved the above claim, it immediately follows

that (after passing to a subsequence if necessary) there exists homeomorphisms

hM,M ′ : KM → KM ′ which maps edgelets to edgelets and preserves labels.

Hence, we can assume that the sequence of graphs KM is eventually constant

(upto homeomorphism) and FξM = F , is independent of M .

Next, observe that, if α is any finite subpath of a generic leaf of Λ+
ψ , by enlarg-

ing α if necessary we can assume that it defines an attracting neighborhood

of Λ+
ψ . By using the uniformity of attracting neighborhoods from the ping-

pong lemma (conclusion 4,5) we know that γ+
M belongs to this neighborhood
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for sufficiently large M . This means α ⊂ γ+
M for sufficiently large M , which

implies that the realizations of λ+
ψ lift to KM . A similar argument gives the

same conclusion about λ−φ . Thus both λ+
ψ and λ−φ are carried by F , which

implies that F carries Λ+
ψ and Λ−φ which contradicts our hypothesis. Hence, F

cannot be proper and so the ξM ’s are fully irreducible for all sufficiently large

M - contradiction.

proof of claim : Suppose that the edgelet length of the natural edges of KM is

not uniformly bounded. Then there exists a sequence of natural edges {EM}

such that their edgelet lengths go to infinity as M →∞. Let l be a weak limit

of some subsequence {EM} and σ ⊂ l be any finite subpath. For sufficiently

large M , σ ⊂ EM ⊂ γ+
M . Hence l ∈ L+ = {All weak limits of all subsequences

of γ+
M}. Similarly, l ∈ L− = {All weak limits of all subsequences of γ−M}. It

remains to show that the intersection of this two sets is empty. Suppose not.

Let γ∗ be a weak limit of some subsequence of γ−M . We claim that γ∗ is not

attracted to Λ+
φ . If not, then φp(γ∗) ∈ V +

φ for some p ≥ 0. This means

that for sufficiently large M , φp(γ−M) ∈ V +
φ , implying that ξM(γ−M) ∈ V +

ξM
for

sufficiently large M , which is a contradiction to the fact that a generic leaf of

Λ−ξM is not attracted to Λ+
ξM

under action of ξM . By similar arguments we can

show that if γ∗ is a weak limit of some sequence of γ+
M , then γ∗ is not attracted

to Λ−ψ .

Let l ∈ L+ ∩ L−. Then l ∈ Bna(Λ+
φ ) ∩ Bna(Λ−ψ ) by above arguments and by

lemma 4.3. If l is not carried by Ana(Λ±ψ ), then by the weak attraction theorem

(Lemma 4.4 ) l is contained in every attracting neighborhood of the generic

leaf λ+
ψ . This implies that λ+

ψ ⊂ cl(l) ⊂ Bna(Λ+
φ ). But this contradicts our
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hypothesis that Λ+
ψ is attracted to Λ+

φ . Hence l must be carried by Ana(Λ±ψ ).

By a symmetric argument we can show that l must be carried by Ana(Λ±φ ).

But this is not possible, since by our assumption these two subgroup systems

are mutually malnormal. So L+ ∩ L− = ∅

Example 6.8. Consider example 3.20 and call the corresponding outer auto-

morphism φ.

Let us define ψ ∈ Out(FN) by:

a 7→ ba, b 7→ a, c 7→ c

c

b

a

The stable relative train track map of φ can be drawn on the rose itself. It

is exponentially growing and the EG strata is H2 = {a, b}. There is a closed

indivisible Nielsen path abAB crossing the top strata. Together with the lower

strata H1 = {c} the two define the nonattracting subgroup system [〈abAB, c〉].

Define the map ξ = φ−2ψ2.

a 7→ aaBACabaaCaba, b 7→ aBACabaaCaba, c 7→ ABAcAABAcabCabA

This map is fully irreducible and hyperbolic.
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It is however, not easy to come up with an exponent that we can verify will

always work. However, at least in this particular case the magic number 2

actually works as a lower bound. This has been checked on the train track

computing software developed by Thierry Coulbois by trying on large expo-

nents and really complicated words in φ and ψ.

7 APPLICATIONS

This section is dedicated to looking at some applications of the Theorem 6.7

. The corollary that is stated below is probably the first time that we see

some result on the dynamics of mixed type of fully irreducible automorphisms.

There are in fact three corollaries packed under the same hood. The first one

is a well known theorem from [17] but the proof in their paper is very different

from the technique we use here. The other two items are new.

Corollary 7.1. If φ, ψ are fully-irreducible elements of Out(FN) which are not

conjugate to powers of each other, then there exists an integer M ≥ 0 such

that for every m,n ≥M , GM = 〈ψm, φn〉 is a free group of rank two, all whose

elements are fully-irreducible.

Moreover, M can be chosen so that

1. If both φ, ψ are hyperbolic, then every element of G is hyperbolic.

2. If ψ is hyperbolic and φ is geometric, then every element of G not con-

jugate to a power of φ is hyperbolic.

3. If both ψ and φ are geometric but do not fix the same conjugacy class,
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then every element of G not conjugate to a power of φ or ψ is hyperbolic.

Proof. The conclusion about the free group is from Proposition 6.6. It is easy

to check that φ, ψ satisfy the hypothesis of Theorem 6.7 except bullet four in

definition6.4. But Proposition 5.5 tells us that bullet four is not required to

draw all the conclusions in pingpong for this special case. Hence we can make

the conclusion of the theorem which, along with the fact that the conjugate of

any power of a fully-irreducible outer automorphism is also fully-irreducible,

gives us that every element of G is fully-irreducible.

We now look at the proofs of the statements in moreover part:

1. follows immediately since conclusion 1 of Proposition5.4 tells us that the

AnaΛ±ξ is trivial which implies that no element of GM has any periodic

conjugacy classes. [4] tells us that they are hyperbolic.

2. follows from corollary 5.7 and Theorem 6.7

3. follows from corollary 5.8 and Theorem 6.7

The following result is another interesting application of the main theorem

and several other technical lemmas that we have developed along the way.

The proof of the result is almost same as Theorem 6.7 same but a small

modification is needed in the last part of the proof.

A version of the theorem below, when the surface S is without boundary is

an important result proved in [1] where they develop the theory of convex

cocompact subgroups of MCG(S).
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Theorem 7.2. Let S be a connected, compact surface (not necessarily ori-

ented) with one boundary component. Let f, g ∈ MCG(S) be pseudo-Anosov

homeomorphisms of the surface which are not conjugate to powers of each

other. Then there exists some integer M such that the group GM = 〈fm, gn〉

will be free for every m,n > M , and every element of this group will be a

pseudo-Anosov.

Proof. Let ψ, φ ∈ Out(FN) be the fully irreducible, geometric outer automor-

phisms induced by f, g respectively, where Fr = π1(S). We will prove the

result for ψ, φ ∈ Out(FN) which will imply the theorem.

Let [c] be the conjugacy class corresponding to ∂S. Then [c] fills Fr and

ψ([c]) = φ([c]) = [c] and AnaΛ±ψ = AnaΛ±φ = [〈c〉]. Proposition 5.4 along with

proposition 5.5 tells us that there exists an integer M such that every cyclically

reduced word ξ in the group GM will be exponentially growing with a dual

lamination pair Λ±ξ such that any conjugacy class carried by AnaΛ±ξ will be

carried by both AnaΛ±ψ and AnaΛ±φ . Hence we can conlude that AnaΛ±ξ = [〈c〉].

We check that we satisfy all the hypothesis required for the main theorem

except the last two bullets. Proposition 5.5 voids the need for bullet five. We

modify the proof of Theorem 6.7 by using Lemma 6.3 so that we do not need

the last bullet. Using Proposition 6.6 we can conclude that by increasing M

if necessary, we may assume that GM is free of rank two.

The proof of being being fully irreducible follows the exact same steps, but

in this case we use Lemma 6.3 to start the contradiction argument as in the

proof of Theorem 6.7. Namely, assume that there does not exist any M such

that every element of GM is fully irreducible and let ξM ∈ GM be a reducible
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element for each M . After passing to a subsequence if necessary assume that

ξM = ψm1φε
′
1n1 ........ψεkmkφnk where mi = mi(M) > 0, nj = nj(M) > 0

and k depend on M . From above discussion we have AnaΛ±ξM = [〈c〉], where

Asupp[c] is not proper. Using Lemma 6.3, AsuppΛ±ξM must be proper and non

trivial for all M . The rest of the argument follows through except that when

we look at the part of the proof of Theorem 6.7 separated under “proof of

claim ”, the proof breaks down. We will just focus on this part and modify

the proof to finish our theorem.

The goal of that part of the proof is to show that the edgelet length of the

natural edges of KM is uniformly bounded. Suppose the claim is false. Then

there exists a sequence of natural edges EM whose edgelet length goes to

infinity. Let l be some weak limit of this sequence. If we show l is a periodic

line l = ρ∞ then ρ ⊂ EM for all large M , which implies that free factor support

of ρ is contained in the proper free factor FξM . The contradiction is achieved

by showing that [ρ] fills Fr.

Let σ be a weak limit of some subsequence of γ−M . We claim that σ is not

attracted to Λ+
φ . If not, then φp(σ) ∈ V +

φ for some p ≥ 0. This means that for

sufficiently large M , φp(γ−M) ∈ V +
φ , implying that ξM(γ−M) ∈ V +

ξM
for sufficiently

large M , which is a contradiction to the fact that a generic leaf of Λ−ξM is not

attracted to Λ+
ξM

under action of ξM . By similar arguments we can show that

if σ′ is a weak limit of some sequence of γ+
M , then σ′ is not attracted to Λ−ψ .

Let l ∈ cl(σ) ∩ cl(σ′). Then l ∈ Bna(Λ+
φ ) ∩ Bna(Λ−ψ ) by above arguments and

by Lemma 4.3. If l is not carried by Ana(Λ±ψ ), then by the weak attraction

theorem (Lemma 4.4) l is contained in every attracting neighborhood of the
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generic leaf λ+
ψ . This implies that λ+

ψ ⊂ cl(l) ⊂ cl(σ) ⊂ Bna(Λ+
φ ). But this

contradicts our hypothesis that Λ+
ψ is attracted to Λ+

φ . Hence l must be carried

by Ana(Λ±ψ ) = [〈c〉]. Hence l = c∞ is a periodic line and [c] fills Fr and we get

our contradiction by taking c = ρ.
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8 Ending laminations, Cannon-Thurston maps

In this section we will use the weak attraction theory to give a short and

elegant proof that the Cannon-Thurston map from ∂FN to the boundary of

the mapping torus of a fully-irreducible hyperbolic outer automorphism is a

finite-to-one map. This result was already proved by Kapvich and Lustig in

[18] by using tools that are very different from the ones we have seen here. It

seems that the train track theory proof that we will see here gives a slightly

better understanding of this map. We begin with some definitions.

Let Γ be a word-hyperbolic group and H < Γ is a word-hyperbolic subgroup.

If the inclusion map i : H → Γ extends to a continuous map of the boundaries

î : ∂H → ∂Γ then î is called a Cannon-Thurston map. When it does exist, it

is an interesting question to know what its properties are. Its precise behavior

is captured by the notion of Ending laminations, denoted by Lφ. We will skip

the original definition here but instead use the one that will be more useful

for us. The original definition was given in [23] and for Free groups it was

later modified and used in [18]. The following definition is needed to state the

proposition we will be needing from [18]

Definition 8.1. Given a set R ⊂ ∂FN , define the diagonal closure of R to be

the set

Diag(R) = {(X, Y ) ∈ ∂2FN |∃Z0 = X,Z1, ......, Zk = Y, such that(Zi, Zi+1) ∈ R}

Note that taking k = 1 implies R ⊆ Diag(R).

Kapovich and Lustig showed:
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Proposition 8.2. [18, Proposition 4.5] Let φ ∈ Out(FN) be a fully-irreducible,

hyperbolic element. Then

Lφ = Diag(Λ+
φ ).

.

The Cannon-Thurston map, when it exists, identifies the endpoints of the

certain leaves of ending lamination. Our goal here is to understand the class

of leaves that get identified by this map by using the theory of laminations and

singular lines. Let Γφ denote the mapping torus for a hyperbolic φ ∈ Out(FN).

The precise statement is given by:

Proposition 8.3. [23] If φ ∈ Out(FN) is a hyperbolic outer automorphism

then the Cannon-Thurston map î : ∂FN → ∂Γφ exists. Moreover, î(X) = î(Y )

if and only if the line l ∈ B joining X to Y is in Lφ ∪ Lφ−1.

We will restrict our attention to φ ∈ Out(FN) fully irreducible hyperbolic

outer automorphism and Λ+
φ be it’s attracting lamination and S(φ) be it’s

set of singular lines. Let E+ = Λ+
φ ∪ S(φ). Similarly define E− and let

Eφ = E+ ∪ E−.
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Proposition 8.4. Diag(Λ+) = E+

Proof. First we show that Diag(Λ+) ⊆ E+. For this, let (X, Y ) ∈ Diag(Λ+).

Then there exists a finite sequence of points Z0 = X,Z1, ......, Zk = Y in ∂FN

such that the line with endpoints (Zi, Zi+1) is a leaf of Λ+. If k = 1, X, Y are

endpoints of a leaf of Λ+ and we are done.

Suppose k 6= 1. Let us denote these leaves by l1, l2, ...., lk. By our assumption

all li’s are asymptotic and hence fall in the same equivalence class of asymp-

totic leaves. By [11, Lemma 3.3] there exists a principal automorphism Φ,

representing φ that fixes all these leaves. Hence the points X, Y ∈ Fix+(Φ̂)

and they define an element of S(φ).

For the reverse inclusion Diag(Λ+) ⊇ E+, suppose l ∈ E+ with endpoints

P,Q. If l ∈ Λ+ we are done. So assume that l ∈ S(φ). This implies there

exists a principal automorphism Φ representing φ and P,Q ∈ Fix+(Φ̂). By

[11, Lemma 3.1] both P and Q are the endpoints of some leaves lP and lQ

of Λ+. But [11, Lemma 3.3] tells us that there is bijection between principal

automorphisms representing φ and the equivalence classes of asymptotic rays

in Λ+. Thus lP and lQ are asymptotic and thus P,Q ∈ Fix+(Φ̂). Hence the

line that joins P,Q is an element of S(φ).

Proposition 8.5. For a fully-irreducible hyperbolic φ ∈ Out(FN), the Cannon-

Thurston map î : ∂FN −→ ∂Gφ is a finite-to-one map.

Proof. Suppose P1, P2, P3...... be distinct points such that î(P1) = î(P2) =

î(P3)...... This implies the lines li’s are leaves of the ending lamination Eφ.

Without loss of generality assume that li’s belong to E+. Then there exists
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a principal automorphism representing φ that fixes all these lines. Therefore,

any such sequence of distinct points Pi’s will define distinct lines in S(φ). Since

the number of lines in S(φ) is finite, î−1(X) for all X ∈ ∂Gφ must be a finite

set.

Moreover, we know that the finiteness in S(φ) comes from the finiteness of

the possible number of isogrediance classes of principal automorphisms of φ.

From Remark 3.9 [21] we learn that this bound is actually uniform since the

number of Nielsen classes with principal vertices are uniformly bounded.

Future research questions:

1. Is there a uniform lower bound for the exponents of the groups con-

structed in 7.1 ? This result is true in the case of mapping class groups

of closed surfaces and was shown by Fujiwara in [8]. But the technique

he uses (acylindrical actions) is still unknown for Out(FN) .

2. Attempt to prove a similar result as 6.7 for polynomially growing outer

automorphisms. A partial answer is already known from [5]. Even more

generally one can attempt to answer the question for arbitrary outer

automorphisms.

3. Is Proposition 8.5 true for hyperbolic outer automorphisms that are not

fully irreducible ?
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