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ABSTRACT OF THE DISSERTATION

Two-Stage Portfolio Optimization with

Higher-Order Conditional Measures of Risk

by Sıtkı Gülten

Dissertation Director: Dr. Andrzej Ruszczyński

In this study, an application of novel risk modeling and optimization techniques

to daily portfolio management will be described.

In the first part, I develop and compare specialized methods for scenario genera-

tion and scenario tree construction. The quality of multi-stage stochastic optimization

models depends heavily on the quality of the underlying scenario model. First, multi-

variate GO-GARCH model is used to generate adequate number of scenarios. Then,

five different methods, a multi-facility location based backward scenario tree gener-

ation method, and forward and backward modified K-Means and Two-Step Cluster

methods are used to generate scenario trees. Next, these five methods are tested

on two-stage portfolio problems with different number of scenario sets. Finally, a

Monge-Kantorovich transportation model is developed to compare the probability

distribution of the GARCH-generated scenarios with the probability distribution in

the constructed scenario trees.
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In the second part, I construct a two-stage stochastic programming problem with

conditional measures of risk, which is used to re-balance the portfolio on a rolling hori-

zon basis, with transaction costs included in the model. A conditional risk mapping

approach will be used in the model so that information from the previous investment

period can be used in the decision for the next investment period.

Artzner et al. introduced coherent risk measures that reflect the interests of risk-

averse investors. I will use coherent risk measures, such as semideviation risk function

of order two or higher in this study. Next, the risk-averse multicut method, which

is an extension of Bender’s decomposition and proposed originally for first-order risk

measure by Miller and Ruszczyński, will be generalized to higher order risk measures

in order to solve two-stage mean-risk portfolio problem. Performance of this method

with the stated risk functions are evaluated on the scenario tree which is constructed

in the first part.

In the third part, I present an extensive simulation study on daily returns of Dow

Jones companies by using several versions of the methodology. We show that two-

stage models outperform single-stage models in terms of long-term performance. We

also show that using high-order risk measures are superior to first-order measures.
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Chapter 1

Introduction

1.1 Motivation

The importance of portfolio optimization and risk management in both theoretical

and practical finance have been increasing significantly. Markowitz developed the

first important approach to the portfolio problem. In that study, he argued that

portfolio performance can be measured by using the mean of the portfolio return

and the variation of the return which is known as risk. In this mean-risk approach

there are two type of objectives: minimizing the risk while having a fixed value of

mean or maximizing the mean value while having a fixed value of risk. This model

provided the basis for portfolio optimization research. However, standard deviation,

which is used as a risk function in Markowitz theory, is not an appropriate choice

since it penalizes overperformance return and it does not reflect the fat tails in loss

distribution.

The main objective of this dissertation is to evaluate the usefulness of several risk

modeling and optimization techniques for daily stock portfolio optimization.

The question of which risk function to use is examined extensively in the litera-

ture. In this study, risk functions with second-order stochastic dominance consistency

relation or coherent risk functions, such as higher-order semi-deviation and weighted

deviation from quantile, will be taken into consideration while formulating the port-

folio problem.

Even though the portfolio optimization problem over multiple periods is studied in
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the literature, the problem with an option to rebalance is not considered significantly.

In the literature, the portfolio optimization problem with rebalancing is modeled by

using a tree structure. However, the recent experiments showed that this structure

is not efficient in larger instances, especially when there are many possible outcomes

while rebalancing.

Scenario trees are developed to describe the uncertainty in processes such as asset

returns in the portfolio problem. The quality of scenario trees is a very important

factor in multi-stage stochastic optimization problems. Scenario trees with better

quality usually bring multi-stage stochastic optimization models with better quality.

Hence, this study will focus on constructing a better scenario tree based on Monge-

Kantorovich metric for two-stage portfolio optimization problem so that portfolio

optimization problem with rebalancing can be solved in a more time-efficient way

when coherent risk measures are used.

Another important issue is how to solve a large-scale two-stage stochastic pro-

gramming problem since the number of variables and constraints increase due to

a large scenario tree structure. The problem becomes a large-scale nonlinear op-

timization problem when higher-order risk measures are used. In order to handle

computational complexity and nonlinear optimization problem issues, a Risk-Averse

Multicut method will be used.

1.2 The Portfolio Problem

In the portfolio optimization problem in its simplest form, the return rates of n assets

are represented by an n-dimensional random vector R, with Rj denoting the return

rate of asset j = 1, . . . , n. The n-dimensional vector z represents the distribution of

the capital among assets: zj is equal to the fraction of the capital invested in asset j.
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The total return rate of the portfolio at the end of the investment period is

R⊤z =
n∑

j=1

Rjzj.

The portfolio problem is to find an “optimal” way to distribute the initial capital

among the n assets, under the condition that z ∈ Z, where Z ⊂ ℜn is a convex

and compact set of feasible asset allocations. As the return rates of the assets are

random, the portfolio return rate is a random variable, and thus the meaning of

“optimal” depends of the modeling approach.

Risk is defined as the chance of loss connected with a given action in Brachinger

and Weber [9]. Investments with higher potential returns are usually associated with

higher risks. Therefore, investors need to make tough decisions to maximize their

returns while limiting the amount of risk. This brings the risk and return trade-off

problem. In the next section, we will provide a brief history of risk measures in the

following part. In order to give a basic history on risk measures, we will divide the

timeline of risk measures into three stages:

1. Markowitz Portfolio Theory based risk measures

2. Value at Risk and related risk measures

3. Coherent Risk Measures

1.2.1 Markowitz Portfolio Theory based risk measures

In a pioneering study, Markowitz [29] argued that portfolio performance can be mea-

sured by using two scalar characteristics: the mean of the portfolio return, E
[
R⊤z

]
,

and the variance of the return, Var
[
R⊤z

]
, which characterizes its riskiness. We can

then minimize the variance for a fixed value of the mean, or maximize the mean,

while keeping the variance bounded. Since then, numerous theoretical and practical
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studies evaluated the usefulness of the mean–variance approach in portfolio optimiza-

tion. Markowitz used standard deviation as the risk function in mean-risk portfolio

problem. By using the standard deviation, the mean-risk portfolio problem can be

formulated as parametric quadratic programming problem so that standard solution

techniques can be used. The most important criticism to standard deviation as a

risk function is that it penalizes the overperformance equally to underperformance.

Also, it does not account for fat tails in loss distribution. Fat-tailed distributions

usually have large skewness and kurtosis compared to normal distribution. When the

distribution of returns are fat-tailed, the probability to have larger losses and gains is

higher than a normal distribution. That’s why a fat-tailed distribution is important

to consider the up and down movements in financial markets. In order to eliminate

the penalty on overperformance, downside risk measures were developed.

1.2.2 Value at Risk and related risk measures

It is well known that financial crises are usually followed by regulatory responses. In

the early 1970s, risk in financial institutions, such as investment banks, increased due

to derivative markets and floating exchange rates. Therefore, the SEC refined capital

requirements with a new rule called Uniform Net Capital Rule (UNCR). This rule

divided the financial assets that financial institutions held into twelve classes based

on risk level. UNCR required each new class to have different capital requirements

ranging from 0% in short term treasuries to 30% in equities.

The first step to create Value at Risk (VaR) came with the regulatory measures

proposed in 1980. In this regulatory measure, the SEC brought a requirement that

the capital requirements of financial firms must be linked to the losses that would

incur over a thirty day interval in different security classes with a confidence interval

of 95%. Financial institutions used the historical returns to compute these poten-

tial losses calculations. Since the portfolios of financial institutions started to become
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more volatile during 1980s, a sophisticated risk measure is required to solve this prob-

lem. Actually, most of the financial institutions developed basic measures of Value

at Risk by the early 1990s to compute the maximum loss they could get from their

investments. However, there was not any unified risk measure amongs all institutions.

After the collapse of Barings, the oldest British investment bank, as a result of disas-

trous loss associated with derivatives and leverage, firms accelerated the search for a

more comprehensive risk measure. J. P. Morgan initiated the first step to develop a

risk measure in this direction. In 1995, J.P. Morgan provided data on the variances

and co-variances across different security and asset classes that it used to manage

the risk in their internal operations. It named this service as “RiskMetrics” and used

the term Value at Risk to describe the risk measure used. Many commercial and

investment banks welcomed this new risk measure. Then, the Basel Committee on

Banking Supervision [52], which is responsible for international banking regulations,

developed a market risk capital requirement based on VaR in 1995. Nowadays, VaR

has being widely used by financial and non-financial firms.

Value at Risk measures the potential loss in value of an asset over a given time

horizon with a given confidence interval. Let random variable X represent the loss;

for a given probability level α ∈ (0, 1), VaRα measures the minimum loss incurred in

the α percent worst cases of a portfolio.

We will start with a basic example of VaR. If we have a portfolio with a VaR of

$1,000 for one day with a confidence level of 95%. This means that there is a 5%

probability that the portfolio’s loss will be more than $1,000 in one day. In other

words, we can say that there will be a loss of $1,000 or more in one of the next 20

days.

Acerbi and Tasche [1] defined VaRα at probability level α as follows:

VaRα(X) = −xα (1.1)
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where the upper quantile xα

xα = sup{x : P [X ≤ x] ≤ α}. (1.2)

VaR satisfies the Law Invariance property. Cheng et al. [10] defined that VaR

satisfies this property as follows:

If P [X ≤ t] = P [Y ≤ t] ∀t ∈ R, then ρ[X] = ρ[Y ]; (1.3)

The financial interpretation of law invariance property is if two random variables

are identically distributed, law invariant risk measures allocate the same riskiness to

financial positions.

There are mainly four different approaches to compute Value at Risk: VaR His-

torical Simulation, VaR Parametric Approach, VaR Monte Carlo Simulation, and

VaR Variance-Covariance Method. Details of Value at Risk and the approaches to

compute VaR can be found in [14], [33].

1.2.3 Coherent Risk Measures

Further improvement was made by considering more general mean–risk models, with

different measures of variability [24]. By considering consistency with stochastic dom-

inance, the papers [34, 35, 36], introduced a family of mean–semideviation models,

which are particularly useful for portfolio models (see, e.g., [28, 48]).

Generally, semi-moments can be expressed as follows:

E[max(c−X, 0)p] (1.4)

The parameter c is the target for below which outcomes are penalized. The

parameter p is the relative impact of the deviations. When c = E[X] and p = 1, it is
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known as semi-deviation and when c = E[X] and p = 2, it is known as semi-variance.

Most recently, axiomatic models of risk have been studied extensively. Two impor-

tant axiomatic models are second-order stochastic dominance theory and coherence

axioms.

Whitmore [55] used stochastic dominance based on an axiomatic model of risk-

averse preferences. Hanoch and Levy [18], and Rothschild and Stiglitz [42] extended

stochastic dominance to general distributions. In the second-order stochastic dom-

inance approach, risk-averse preference models with larger outcomes are consistent

with the second-order stochastic dominance relation. And, a risk-averse investor’s

preferences are described as concave nondecreasing utility function.

Definition 1.1. X dominates Y in the second order, X ≥SSD Y , if

E[u(X)] ≥ E[u(Y )]

for every concave non-decreasing function u(·).

In this case, any risk-averse investor would prefer position X over Y . The consis-

tency relation between mean-risk models and second-order stochastic dominance is

analyzed in [34], [35], and [36]. A mean-risk model is SSD consistent with a constant

γ, for all X and Y if the following relation holds,

X ≥SSD Y ⇒ E[X]− γ · r(X) ≥ E[Y ]− γ · r(Y ) (1.5)

Mean-risk model with absolute semideviation risk function is found to be SSD

consistent when γ = 1 in [34].

In the last decade, axiomatic models of risk have been studied extensively, in par-

ticular, coherent risk measures, introduced by Artzner et al. [4]. A coherent measure

of risk satisfies the following four properties: Convexity, Monotonicity, Translation
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Property, and Positive Homogeneity. In this chapter, while formulating a general two-

stage stochastic programming maximization model, uncertain outcomes will represent

profits.

Definition 1.2. Let X be the space of all uncertain outcomes, 1 denotes the sure

gain of 1 and X = (RT z). A coherent measure of risk is a functional ρ : X → ℜ

which satisfies the following axioms.

Convexity : ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ), ∀X, Y ∈ X , α ∈ [′,∞];

Monotonicity : If X, Y ∈ X ,and X ≤ Y , then ρ(X) ≥ ρ(Y );

Translation Invariance Property : If a ∈ ℜ andX ∈ X , then ρ(X+a1) = ρ(X)−a;

Positive Homogeneity : If β ≥ 0 and X ∈ X , then ρ(βX) = βρ(X).

While formulating risk-averse two-stage portfolio problem in Chapter 4, uncertain

outcomes will represent cost. In the following definition, the uncertain outcomes X

and Y represent losses, and 1 denotes the sure loss of 1. We can rewrite the axioms

as follows:

Definition 1.3. Let X = −R⊤z. Coherent risk measures are functionals ρ : X → ℜ

defined on a suitable vector space X of random outcomes, which satisfy the following

axioms:

Convexity : ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ), ∀X, Y ∈ X , α ∈ [′,∞];

Monotonicity : If X, Y ∈ X , and X ≤ Y , then ρ(X) ≤ ρ(Y );

Translation Invariance Property : If a ∈ ℜ and X ∈ X , then ρ(X+a1) = ρ(X)+a;

Positive Homogeneity : If β ≥ 0 and X ∈ X , then ρ(βX) = βρ(X).

The inequality in the monotonicity axiom is understood in the almost sure sense.

We will explain each axiom briefly in intuitional terms applied to finance. Convex-

ity is the most important axiom because it makes sure that a coherent risk measures

takes into account portfolio diversification. The axiom says that investing both port-

folio X and Y will have an overall lower risk than the sum of the risks in investing
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portfolio X and portfolio Y separately. The monotonicity axiom means higher risks

are associated with higher losses. The translation invariance property means that a

riskless bond that is added to a portfolio X will have no loss with a probability of 1.

Therefore, the initial amount invested will be always received. The reason is initial

investment amount is added because risk measures measure loss as a positive amount.

The positive homogeneity axiom states that risk cannot be increased or decreased by

investing different amounts in the same stock. In other words, risk does not depend

on the quantity purchased.

Mean-risk models with the variance and standard deviation risk functions are

found to be not coherent in Acerbi and Tasche [1] because they fail to satisfy the

monotonicity axiom. In the same study, they also found that Value-at-Risk is not

coherent because it does not satisfy convexity axiom of coherent risk measures. This

means higher risk can result from diversification.

Important examples of coherent risk measures are models of the form

ρ(x) = E[X] + γr[X], (1.6)

where the risk measure ρ[·] represents cost, r(·) is the upper semideviation of order

p ≥ 1, given in equation (1.7), or a weighted mean-deviation from quantile in equation

(1.8):

r(X) = E[(X − E[X])p+]
1/p, (1.7)

rα(X) = min
η

E

[
max

(
1− α

α
(X − η), η −X

)]
, α ∈ (0, 1). (1.8)

For these both cases, when γ ∈ [0, 1], the mean-risk model is coherent [47]. If we have a

maximization problem where ρ[·] represents profit, we will use the lower semideviation

of order p ≥ 1, given in equation (1.9) or a weighted mean-deviation from quantile in

equation (1.10).
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r(X) = E[(E[X]−X)p+]
1/p, (1.9)

rα(X) = min
η

E

[
max

(
1− α

α
(η −X), X − η

)]
, α ∈ (0, 1). (1.10)

Since VaR is not coherent, a few coherent equivalent VaR risk measures are pro-

posed. These are TVaR (tail value at risk) by Artzner et al. [6], WCE (worst

conditional expectation) by Inoue [23], and CVaR (conditional value at risk). CVaR

became a very popular risk measure since it is very similar to VaR. A very basic

intuitive explanation of CVaR is that it can find how bad things can get if the VaR

loss is exceeded. CVaR will let an investor to compute the expected loss given that

VaR loss is exceeded. Rockafellar and Uryasev [40], [41] defined CVaR as:

CVaRα[X] =
1

α

∫ α

0

VaRβ[X]; dβ

Next, we will show an intuitive representation of CVaRα. First, we will define the

generalized inverse function of F (x) as follows:

F−1
X (β) = inf{x : F (x) ≥ β}

Rockafellar and Uryasev [40], [41] showed that CVaRα can be written as follows:

CVaRα[X] =
1

α

∫ 1

1−α

F−1
X (β) dβ

Then, it can be expressed that CVaR (see, [40, 41]) is related to the deviation

from quantile (1.8) by the formula (cf. [49, sec. 6.2.4])

E[X] + rα[X] = CVaRα[X] =
1

α

∫ 1

1−α

F−1
X (β) dβ = min

η

{
η +

1

α
E
[
(X − η)+

]}
.
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Here F−1
X (·) is the quantile function of X.

In CVaR, portfolio weights can easily optimized by linear programming formula-

tions (see, [40]) to minimize CVaR.

Another research direction in risk measures is copula functions. The importance of

dependencies between stocks made the copula functions popular in risk management.

Copula functions map a set of marginal distributions into a multivariate distribution

and vice versa. There are a few popular copulas such as Gaussian copula by Frey

et al. [17] and Clayton copula by Cuvelier et al. [13]. However, copulas to find the

dependency between stocks are not extensively studied in the literature.

1.3 One-Stage and Two-Stage Portfolio Problems

We can formulate the general one-stage portfolio problem with a risk measure ρ(·) as

an objective function as follows:

min
z∈Z

ρ[−R⊤z]. (1.11)

where

ρ(−RT z) = −E[RT · z] + γ · r[−RT · z] (1.12)

In this study, we adapt the convention that the argument of the risk measure

ρ[·] represents cost (losses) and that is why we use the minus sign in front of the

return rate, and vector z represents the distribution of the capital among assets. The

mean-risk approach is first introduced by Markowitz [29]. The term E[RT · z] is

the expectation of the portfolio return, and the term r[−RT · z] is a measure of the

uncertainty of the portfolio return. A fundamental modeling issue is to choose the risk

function r(·) used in this model. For the measures of risk (1.7) with p = 1 and (1.8),



12

the resulting optimization problem (1.11) is a linear programming problem, which

can be efficiently solved by specialized techniques [28]. The parameter γ in (1.12)

represents the risk aversion constant. If γ is equal to 0, the investor is a risk-taker

and chooses his or her portfolio based on only performance of asset returns without

considering the risk associated with assets. If γ is equal to 1, the objective function

is from a most risk-averse investor’s perspective. A risk-averse investor chooses his or

her portfolio with a more emphasis on the risk associated with assets, such as assets

with lower returns and lower risks. Parametric methods of [48] allow for generating

a family of solutions, corresponding to a range of values of the parameter γ in (1.6).

In most recent and related study, Miller [32] formulated two-stage portfolio op-

timization problem with coherent risk measures as a linear programming problem

solved using Bender’s decomposition technique for only p = 1 in (1.7).

So far, we discussed the one-period portfolio problems with risk measures. How-

ever, if a portfolio optimization model is used in a rolling horizon fashion, as in [30],

with re-balancing in regular time intervals, it makes sense to include the re-balancing

action and associated transaction costs into the model. In this study, we will exam-

ine the portfolio optimization problem when there is an option to rebalance. And, in

this type of portfolio problem, some information may only become available at some

interim time period.

Ruszczynski and Shapiro [46], [49] found that such information may change an

investor’s perception of risk from the previous investment period, and develop condi-

tional risk mappings to model this change in perception. Additionally, Artzner et al

[4] and Riedel [38] have developed similar axioms for one-period coherence axioms.

To address this issue in the simplest possible way, a two-stage model can be

formulated. In this model, an option to re-balance the portfolio at the end of the first

period is available. Let us denote by Rt
j the return rate of asset j = 1, . . . , n in stage

t ∈ {1, 2}. Asset allocations are denoted by n-dimensional vectors z and y, where
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zj represents the amount of capital invested in asset j at the first stage, and yj the

amount invested at the second stage. The vector y may depend on the observations

gathered in the first stage. The end portfolio value in the first stage is given by (ξ1)⊤z

and the end value at the second stage is (ξ2)⊤y, where

ξt = 1+Rt,

with 1 denoting the sure outcome of 1. The random vectors ξ1 and ξ2 are, in general,

dependent. If they have finite numbers of realizations, the most transparent way is

to represent them in a form of a scenario tree. An example of such a tree is depicted

in Figure 1.1.

Figure 1.1: Scenario Tree

The nodes at stages one and two represent realizations of ξ1 and ξ2, respectively.

The node at stage zero is known as the root node and represents the beginning of

the process. Each node at stage one represents a different realization of ξ1. It is

connected to a set of children nodes at stage two, which represent possible outcomes

of ξ2, following the first stage outcome. With each arc of the tree, a probability is

associated. Probabilities of arcs leading to nodes at stage one are the probabilities of

realizations of ξ1. The probabilities of arcs leading to nodes at stage 2, are conditional

probabilities of realizations of ξ2.
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The two-stage portfolio problem allows us to model the re-allocation option within

an optimization problem. In the first stage, asset allocations z are to be determined.

Then a realization of ξ1 is observed, and the allocations can be changed to y. In

the scenario tree setting, there can be a different value of y for each node at level 1.

Finally, the realization of ξ2 is observed. As a result, the final portfolio value can be

calculated. Such an approach, with the use of dynamic measures of risk, has been

first developed in [32, 31]. We formally define the two-stage model in Chapter 3.

1.4 The Risk-Averse Portfolio Problem

In this section, first, a general linear programming model will be explained for the

one-period portfolio problem. Then, the model will be extended to two investment

periods. Finally, conditional risk measures used in both models will be explained.

We can formulate general nonlinear programming model for one period problem

as:

max E[R(z)]− γ · r[R(z)]

s.t.
∑
j

zj = C

zj ≥ 0, ∀j

(1.13)

where C is the capital and r is the mean lower semideviation or mean weighted

deviation from quantile. Next, we will explain the parameters and variables before

the formulation the risk-averse portfolio problem.
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r̂ij : return of asset j in the scenario i

pi : probability of scenario i

zj : the amount in dollars invested in asset j

[R(z)]i =
∑
j

zj r̂ij

E[R(z)] =
∑
i

∑
j

pizj r̂ij

E[R(z)] is the expected return for the given all assets and [R(z)]i is the return in

scenario i with probability pi, and γ is defined as risk aversion constant. We can use

any coherent risk measure to formulate the risk-averse portfolio problem. The risk

averse portfolio problem based on mean-risk model with the upper semideviation risk

measure r of a random variable X = −RT z, when the risk measure ρ(X) represents

cost is defined as

ρ(X) = E[X] + γ · r[X], (1.14)

where

r[X] = E[(X − E[X])p+]
1/p (1.15)

Since it was shown in [47] that ρ(X) is consistent with second order stochastic dom-

inance [34] and coherent when γ ∈ [0, 1], the portfolio problem can be written as,

min−
⟨
p,RT z

⟩
+ γ

∑
i

pimax(⟨r̂i, z⟩ −
⟨
p,RT z

⟩
, 0)

where pi is the probability of the ith outcome of random variable X, and r̂i is the
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vector of asset returns of outcome i. Then, we can convert this problem into a linear

programming problem and apply linear programming methods to solve the problem.

In the two-stage portfolio problem, we are interested in case where there is a

possibility to rebalance the portfolio in between the two time period.

In the two-stage portfolio problem, there are n assets, and the return of the assets

in each stage is an n-dimensional random variable. Rt
j represents the return of the

asset j in stage t, where t ∈ {1, 2}. The asset allocation for the first and second stages

are denoted by n-dimensional vectors z and y, respectively, where zj represents the

amount of capital invested in asset j during the first-stage, and yj represents the

amount of capital invested in the second-stage. The capital at the end of the first

stage is (ξ1)T · z where ξ1 = 1+R1.

In the decision process of the two-stage portfolio problem with rebalancing, first

we will decide z and observe the realization of ξ1 for the first stage, and then we will

do the same for the second stage.

Let p1 be the probability vector, where p1i is the probability of outcome i in the

first stage, and p2i be the probability vector in the second stage for each node i in the

first stage where p2il is the probability of moving to node l in the second-stage from

node i.

The two-stage stochastic programming problem can be formulated as

min cT z + ρ1[Q(z)]

s.t. Az = b

z ≥ 0

(1.16)

where Qi(z) is the optimal value of the ith second stage problem, ρ1, is a coherent risk
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measure, and Q(z) is the random variable taking the value Qi(z) with probability p1i

Qi(z) = min cT2i · yi + ρ2i(−ξ2i · yi)

where we can use conditional semideviation,

ρ2i(−Z) = −Ep2i
[Z] + γi · Ep2i

max((Z − Ep2i
[Z]), 0), γi ∈ [0, 1] (1.17)

where Z = ξ2i · yi.

Moreover, by using the Lagrangian duality, the obtained stochastic program can

be formulated as a Lagrangian dual model. Benders’ Decomposition technique can be

used to solve the Lagrangian dual. We will explain Benders’ decomposition in more

detail in Chapter 3.

In Chapter 2, several scenario tree generation methods are described. First, a

multivariate GARCH model is used to generate an adequate number of scenarios

to model the random returns. Then, three different tree construction algorithms

are developed: K-Means and Two-Step cluster algorithms in forward and backward

forms, and a backward multi–facility location algorithm. In order to evaluate the

quality of the scenario trees, Monge–Kantorovich transportation model is formulated

to compare the probability distributions of the “original” probability distribution

(empirical distribution supported on the scenarios generated) with the probability

distributions supported on the constructed scenario trees.

In Chapter 3, a two-stage portfolio problem with an option to re-balance is mod-

eled by using higher-order conditional risk measures. A risk-averse multicut method

is proposed to solve this model.

In Chapter 4, computational results will be presented to compare the scenario
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generation techniques based on Monge-Kantorovich metric. Then, a simulation anal-

ysis will be presented to compare the performance of various portfolios with the Dow

Jones index.

Finally, at the conclusion of this study, an overall summary of our contribution

and a list of some possible future research directions will be presented.
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Chapter 2

Scenario Tree Generation Problem

2.1 Literature Review

A substantial body of literature exists about generating scenario trees for stochastic

optimization models. Heitsch and Römisch [19] proposed a theory-based heuristics for

generating scenario trees from an initial set of scenarios, and applied these heuristics

in electric power management. Their proposed heuristics have a recursive scenario re-

duction algorithm and also bundling steps based on forward or backward scenario tree

generation methods. They used the stability result in multi-stage stochastic programs

from the study in Heitsch, Römisch and Strugarek [20] to compare the closeness of the

original probability distribution to its scenario tree approximation. The conditions

on the initial approximation in applications is constructed from a discrete probability

distribution by using a sampling method or from a general probability distribution

by using discretization schemes. However, the algorithm can be used as a heuristics

for scenario tree generation in other applications.

Hochreiter and Pflug [21] showed that the problem of obtaining accurate and

valuable scenario tree approximations can be viewed as the problem of optimally

approximating a given distribution by using a distance function. In that paper, it is

found that the best approach is to use the Wasserstein distance in tree approximation.

The resulting optimization problem can be formulated as a multi-dimensional facility

location problem, and then well-known heuristic algorithms for multi-facility location

problems can be applied. They also showed that a scenario tree is constructed as a
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nested facility location problem to use in multi-stage stochastic programs. A multi-

stage stochastic mean-risk financial programming problem is used to test the model.

They concluded that if the objective of the approximation is to achieve a controlled

matching of certain moments and a controllable coverage of heavy tails, scenario tree

generation based on multidimensional facility location will be the best fit.

Our approach builds on these contributions, with the intention to be able to handle

huge trees arising in financial applications.

2.2 Scenario Generation

Financial data are insufficient for construction optimization models based on empirical

distributions alone. It is imperative to generate scenarios that were not observed in

practice, but are possible according to statistics. Since investors hold many risky

assets in their portfolios, they have to assess the possibility of severe losses. Therefore,

we need a fat-tailed distribution for financial asset returns that will consider both

larger losses and gains. For this purpose, we need a model for scenario generation,

and our model should take fat tails into account.

The first step in scenario generation is to obtain asset returns data to construct

scenarios. We want to obtain data that will include both up and down movements in

the market. In order to incorporate this idea into our model, daily stock price data of

the 30 companies included in the Dow Jones index are obtained for a period of three

years, from September 2, 2008, to November 30, 2011. This period includes both the

financial crisis in 2008 and recovery period after the crisis. After the data is obtained,

we will use two consecutive daily returns of a stock vector to create one scenario.

Next, in order to model the probabilistic information in the data, an adequate

number of scenarios must be generated. As we are interested in an adequate model-

ing of the tail behavior and co-movements of returns, multivariate GARCH models
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appear to be particularly useful. Multivariate GARCH models parametrize the co-

variance matrix by using large number of parameters at a minimum loss of generality.

However, since these parameters are hard to estimate, it brings convergence issues for

the estimation algorithms. The selection of the multivariate GARCH model usually

depends on practical needs such as easy estimation of the model and easy interpreta-

tion of the model parameters. Multivariate GARCH models also should be flexible to

represent dynamics of both conditional variances and covariances. Silvennoinen and

Terasvirta [51] divided multivariate GARCH models in four categories based on para-

metric formulations: Models of the conditional covariance matrix such as VEC and

BEKK models, factor models such as O-GARCH and GO-GARCH models, models

of conditional variances and correlations such as Bollerslev’s CCC model, and non-

parametric and semiparametric models.

In this study, we will use GO-GARCH model which is one of the factor models.

Economic theories are the most underlying principle behind factor models. Engle et

al. [16] introduced the first factor GARCH model by assuming that the observations

are generated by factors which are conditionally heteroskedastic. Then, Alexander

and Chibumba [2] introduced the O-GARCH model which is mainly used to model

conditional covariances of the financial data. Since O-GARCH model can remain

feasible for large covariance matrices, it has been a popular choice in the financial

world. In the O-GARCH model, observed data can be linearly transformed into a

set of uncorrelated components by using an orthogonal matrix. However, O-GARCH

model can have issues to identify an orthogonal matrix when the data has weak

correlation.

GO-GARCH model is a generalization of the O-GARCH model. In the GO-

GARCH model, observed data can be linearly transformed into a set of uncorrelated

components by using a matrix that is constant over time and invertible. However,

this matrix does not have to be an orthogonal matrix. It is not possible to have
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fewer factors than number of assets in the GO-GARCH model. GO-GARCH model

can parametrize large covariance matrices with a large degree of freedom and avoid

convergence difficulties of estimation algorithms.

In this study, we will use multivariate GO-GARCH(1,1) [53] model to generate

scenarios. Its structure can be summarized as follows.

We assume that the observed vector-valued time series {xt} (of dimension m =

30) is a linear combination of unobserved m-dimensional normal vectors {yt} having

uncorrelated components, that is,

xt = Zyt, t = 0, 1, 2, . . .

The square matrix Z is assumed to be constant over time and invertible.

Unobserved components have a diagonal covariance matrix Ht = diag{hi,t, i =

1, . . . ,m}, and thus the covariance matrix of xt is V = E
[
xtx

T
t

]
= ZHtZ

T . The

crucial component of the model is the evolution of the diagonal elements hi,t of the

covariance matrix Ht:

hi,t+1 = (1− αi − βi) + αiy
2
i,t + βihi,t, i = 1, ...,m, t = 0, 1, 2, . . . ,

where the initial matrix H0 = I.

The historical data are used to calculate the least-squares estimates of the matrix

Z and the coefficients (αi, βi), i = 1, . . . ,m.

Once the model is constructed, it can be used to generate an arbitrary number of

scenarios. Assuming that the data were collected for the period t = 0, 1, . . . , T , we

generate scenarios for times T +1, T +2, . . . . In our case, we use only two next steps,

that is, T + 1 and T + 2, to prepare scenarios for ξ1 and ξ2.
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2.3 Scenario Tree Generation Problem

In stochastic programming, values of some parameters are not known, and these

values are replaced by some probability distributions. Therefore, to solve stochastic

programming models, we need to know the description of the stochasticity. Stochastic

programs can only handle discrete samples of limited size. However, the number of

scenarios for a problem can be very large. In order to solve this problem, approximated

distributions need to be used, and to approximate, scenario trees will be used. In this

way, it is easier to deal with large sized scenario models.

Raw scenarios are not suitable for two-stage optimization models, because after

the first-stage, while deciding about allocations y for the second-stage, we would know

not only the past return realizations ξ1, but also the future realizations ξ2 (see the

left part of Figure 2.1). Constructing a scenario tree eliminates this problem as it can

be seen in the right part of Figure 2.1.

Definition 2.1. Basic Definitions:

A scenario is a path from root node to a leaf node.

A stage is a moment when the decisions are taken.

A period is a time interval between two stages.

There are two different ways to design scenario tree generation methods, forward

methods and backward methods. In a forward tree construction, starting at the first

stage, one merges selected nodes into clusters and moves forward until the last stage.

Forward tree construction is explained in Figures 2.1 and 2.2. In a backward tree

construction, one starts at the last stage, merges selected nodes into clusters and this

will join all their predecessors as well. In this way, we move backward until the first

stage. Backward tree construction is explained in Figures 2.3 and 2.4.

In scenario tree generation, it is important to maintain probability information

while reducing the number of scenarios, that is, to assign to a scenario representing
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Figure 2.1: First-Stage Clustering in a Forward Tree Construction

Figure 2.2: Second-Stage Clustering in a Forward Tree Construction

a group of scenarios the sum of their probabilities.

Since, the quality of multi-stage stochastic optimization models depends heavily

on the quality of the underlying scenario model, this study will focus on constructing

a scenario tree for two-stage portfolio optimization problem so that portfolio opti-

mization problem with rebalance can be solved in a more time-efficient way when

coherent risk measures are used.

Figure 2.3: Second-Stage Clustering in a Backward Tree Construction

Five different scenario generation methods are used in this study. K-means and
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Figure 2.4: First-Stage Clustering in a Backward Tree Construction

two-step clustering methods in forward and backward versions, and a backward sce-

nario generation method based on the idea of a multi–facility location problem. Then,

these five models will be compared by using a mass-transportation problem.

2.3.1 Multi–Facility-Location-Based Scenario Tree Genera-

tion Method

The multi–facility location problem is defined as a way to locate a number of facilities

to serve a given number of customers optimally when their locations are given. Each

customer is assigned to only one facility. The idea is to determine the locations of

the facilities so that the sum of the weighted distances from the facilities to assigned

customers is minimized.

The clustering problem is to group a given set of objects with k attributes into

clusters so that objects in the same cluster are more similar than other clusters and

objects in different clusters are dissimilar. The objects are represented as points in

the k-dimensional Euclidean space.

If we define the set of customers served by the same facility as a cluster, the multi–

facility location problem can be formulated as a specialized clustering algorithm.

However, the issue of locating the facilities optimally within their clusters in the

multi–facility location problem does not exist in the clustering problem. Also, the

multi–facility location problem is usually a two-dimensional problem. On the other

hand, the clustering problems are k-dimensional where k is the number of attributes.



26

We will use a hybrid method which is composed of two different algorithms within

a backward scenario tree generation method. In the first part, a nearest centroid based

heuristic is used to form a given number of clusters in the second stage.

Choosing initial centroids is very important in a clustering algorithm since bad

initialization can lead to poor results. On the other hand, a better initialization

method can lead to an optimal solution in a shorter period of time. The fastest and

easiest way to choose initial centroids is pure random. However, it will very likely

lead to poor results since it can choose these initial centroids close to each other. In

the initialization part of our algorithm, we want to choose the initial centroids that

are spread out from each other. We will use a very similar initialization approach

as in [3]. During the iteration part, we will compute the centroid (cluster mean) as

centers by using Weiszfeld method [54]. This method is a parallel heuristic method

similar to Cooper’s method [12]. Since it is possible that Weiszfeld method can fail

to converge when calculated centroid falls on one of the data points given, we will

handle this issue by choosing that data point as centroid. In this method, cluster

centroids can be computed in parallel subroutines. Therefore, this method requires

less CPU time. Nearest centroid based heuristic is explained in Algorithm 1.

Algorithm 1 Nearest Centroid Heuristic

Initialization:
The first cluster mean is chosen randomly from the data points.
Next cluster mean is chosen from the remaining data points with a probability given
to each point based on squared distance from its closest existing cluster mean.
Iteration:
Find the center for each cluster.
For each node, calculate the distance to the each center constructed before. If there
is a closer center for that node, reassign the selected node to its closest center.
Continue until no new reassignments.
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The distance measure used in this algorithm is as follows:

dij =

√√√√ 30∑
n=1

[(r1(i, n)− r1(j, n))2 + (r2(i, n)− r2(j, n))2], (2.1)

where r1 represents the return rate at the first stage, r2 represents the return rate at

the second stage, i and j represent the scenarios, and n represents the security.

In the second part of this hybrid method, in order to aggregate first-stage nodes,

a multi–facility location problem is formulated.

Notation

We will set the network topology used in this facility-location problem as follows:

We denote by J the total number of scenarios (after the aggregation by Algorithm

1 and by I < J the desired number of first-stage nodes. For i, j = 1, . . . , J we use dij

to denote the distance calculated according to formula (2.1).

Decision Variables

xij :=

 1, if node i is assigned to scenario j

0, otherwise

∀i, j ∈ J, i ̸= j

vi :=

 1, if scenario i is used as a first-stage node

0, otherwise

∀j ∈ I
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The multi-facility location problem can be formulated as follows:

min
J∑

i=1

J∑
j=1

dijxij

s.t.
J∑

i=1

xij = 1, ∀j = 1, . . . , J, (2.2)

J∑
i=1

vi = I, (2.3)

xij ≤ vi, ∀i, j = 1, . . . , J, (2.4)

all x and v variables are binary. (2.5)

Constraint (2.2) ensures that each node in the second-stage is connected to one of

the node in first-stage.

Constraint (2.3) ensures that only I number of nodes are selected in the first-stage.

Constraint (2.4) ensures that if a node i in the second stage is connected to a node j

in the first-stage, then node j must be selected in the first-stage.

It is a large-scale problem, and we solve it by a greedy method using the linear

programming relaxation, in which the binary variables x and v are allowed to take

any values in [0,1]. After a relaxed problem is solved, all vi = 1 are permanently

fixed; if none is equal to 1, we choose the one that is closest to 1, and fix it at 1.

After that, a reduced problem with a smaller number of variables is solved, etc. Our

experience indicates that this procedure does not lead to significant errors and allows

for processing large data sets.

2.3.2 K-Means Scenario Tree Generation Method

K-means is a clustering method in which a set of n observations S = {x1, x2, ..., xn}

are partitioned into k clusters (k ≤ n). Each scenario is a d-dimensional vector, where

d = 30 in this study (the number of Dow Jones stocks). Let S = S1 ∪ S2 ∪ · · · ∪ Sk
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be the partition of the set; the objective of the K-means method is to minimize the

sum of squares within clusters:

min
S1,...,Sk

k∑
i=1

∑
xj∈Si

∥xj −mi(Si)∥2

subject to S1 ∪ S2 ∪ · · · ∪ Sk = S,

Si ∩ Sj = ∅ if i ̸= j.

In the problem above, mi(Si) is the mean of the points in Si.

The first k initial means are randomly selected from the scenario set. Then,

every scenario is associated with the nearest mean. Next, the centroid of each cluster

becomes the new mean for that cluster. Finally, when no new centroids are created,

the method stops.

The K-Means algorithm [27] is used to construct scenario trees in two-stage

stochastic portfolio problem is given in Algorithm 2.

In the K-means model, Euclidean distance is used as a metric, and the number

of first-stage clusters k, and second stage clusters l, are input parameters. Therefore,

good results from this method depend on the appropriate choice of k and l. Another

important issue with K-means algorithm is that bad solutions can be found because

of its pure initialization part.

In the Figure 2.5, k = 3 clusters is given as an input parameter. First, three

random initial means selected (see the top-left part of Figure 2.5). Next, three clusters

are constructed by assigning each data point to its nearest mean (see the top-right

part of the figure). Then, centroids for each cluster are computed using the Algorithm

2 (see the bottom-left part of the figure). These last two steps are repeated until there

is no new reassignments.
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Algorithm 2 K-Means

First-Stage

Initialization: Given an initial set of k means m
(1)
1 ,m

(1)
2 , . . . ,m

(1)
k

Assignment Step: Assign each observation to the cluster with the closest mean.

S
(t)
i =

{
xj :

∥∥∥xj −m
(τ)
i

∥∥∥ ≤
∥∥∥xj −m

(τ)
i∗

∥∥∥ , ∀i∗ = 1, . . . , k
}

Update Step: Calculate the new means to be the centroid of the observations in
the cluster.

m
(τ+1)
i = 1∣∣∣S(τ)

i

∣∣∣
∑

xj∈S
(τ)
i

xj

Stop when the assignments do not change.
Second-Stage
Let ei be the number of child nodes for each cluster in the first-stage, i = 1, . . . , k
for i = 1 to k do
Initialization: From ei observations select an initial set of li means
m

(1)
1 ,m

(1)
2 , . . . ,m

(1)
li
.

Assignment Step: Assign each observation to the cluster with the closest mean.

S
(τ)
i =

{
xj :

∥∥∥xj −m
(τ)
i

∥∥∥ ≤
∥∥∥xj −m

(τ)
i∗

∥∥∥ , ∀i∗ = 1, . . . , li

}
Update Step: Calculate the new means to be the centroid of the observations
in the cluster.

m
(τ+1)
i = 1∣∣∣S(τ)

i

∣∣∣
∑

xj∈S
(τ)
i

xj

Calculate the probabilities and conditional of each first-stage and second-stage
scenarios, respectively.
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Figure 2.5: K-Means Algorithm

2.3.3 Two-Step Clustering Scenario Tree Generation Method

IBM’s [22] two-step clustering scenario tree generation method is designed for very

large data sets. The method requires only one pass of the data, and has two major

steps. In the first step, scenarios are grouped into many small preclusters. In the

second step, these preclusters are clustered into a desired number of clusters by us-

ing agglomerative hierarchical clustering. First, we will give a brief explanation of

agglomerative hierarchical clustering.

Hierarchical clustering only requires a measure of similarity (i.e. distance) between

groups of data points. However, k-means requires a number of clusters, an initial

assignment of given data to clusters, and a distance measure.

In agglomerative hierarchical clustering, the idea is to put each data point into

its own group in the beginning. Then, merge the two closest groups iteratively until

all the data are merged into optimal number of clusters within distance limit or

desired number of clusters. Agglomerative hierarchical clustering is explained with

the following figures in 2.6 and 2.7.

Suppose we are given data as follows in 2.6 and we want to use agglomerative
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hierarchical clustering with Euclidean distance on the given data.

Figure 2.6: Agglomerative Hiearchical Clustering - Data

In the given data above, we have seven data points. First, two closest data points

are merged into a cluster according to the Euclidean distance. Based on the distance

matrix, suppose we merged data points 1 and 2, 3 and 4, and 6 and 7. We have

clusters {1, 2}, {3, 4}, {5}, and {6, 7} after the first merge. Next, we will merge

these further based on the constructed distance matrix between clusters. The new

clusters will be {1, 2}, {3, 4, 5}, and {6, 7}. This process will continue until we reach

to the number of clusters we desire.

The two-step clustering method, which is based on agglomerative hierarchical

clustering, is explained in Algorithm 3.

As in the K-means model, Euclidean distance is used as a metric, and the number

of clusters at the first stage k, and at the second stage l, are input parameters.
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Figure 2.7: Agglomerative Hiearchical Clustering - Dendrogram

2.4 Quality of Scenario Tree Generation Methods

No universally good scenario tree generation method exists. Therefore, we need a

measure to evaluate the quality of the trees generated. One possibility is use error

values of methods or convergence of the objective function values can be used. Pflug

defined an approximation error in [37] as follows. Let the original problem be

min
x∈X

F (x; ξ̃),

and the tree-based problem be

min
x∈X

F (x; η̃),

with the solution x∗. Then, the approximation error can be calculated as follows:

ef (η̃, ξ̃) = F (x∗; ξ̃)−min
x

F (x; ξ̃) ≥ 0.
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Algorithm 3 Two-Step Clustering Algorithm

First-Stage
Step 1: Formation of Preclusters
Form preclusters by making each scenario a cluster in itself.
For each scenario, find if it should be merged with a previously formed precluster or
there should be a new precluster based on a selected distance measure considering
the weights (agglomerative hierarchical clustering).
When preclustering is complete, all scenarios in one precluster become a single
entity.
Step 2: Clustering of Preclusters
Take the preclusters obtained in Step 1 as an input, and group them into desired
number of clusters by using agglomerative hierarchical clustering considering the
weights.
Second-Stage
Let ei be the number of children nodes for each cluster in the first-stage, i = 1, . . . , k
for i = 1 to k do
Apply Step 1 & 2 explained above to each cluster i with ei observations.

Calculate the probabilities and conditional probabilities of the first-stage and
second-stage scenarios.

However, to calculate this error function is not easy because we need to find the

true objective value for a given solution x, and the true optimal solution, which is

practically impossible. Therefore, in this study a mass transportation model will be

formulated to compare the original distribution with the distribution in the scenario

tree. The model evaluates the Monge–Kantorovich metric.

In the model below, we use the following data:

pi - the probability of path i in the original distribution

qj - the probability of path j in the tree

dij - euclidean distance between path i in the original distribution and path j

in the tree based on Formula (2.1)

We look for the cheapest way to move the probability mass from the “original” dis-

tribution (the empirical distribution supported on the generated scenarios) and the

distribution on the tree. The variables fij represent the probability mass to be moved
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from path i in the original distribution to path j in the tree:

min
∑
i

∑
j

dijfij

subject to
∑
j

fij = pi, ∀ i,

∑
i

fij = qj, ∀ j,

fij ≥ 0, ∀i, j.

(2.6)

The optimal value of this problem will be used as a measure of the quality of the

tree. We will compare the scenario tree generation methods based on their optimal

values in the Monge-Kantorovich problem above and choose the method which has

the lowest optimal value.

The first constraint in problem (2.6) makes sure that total probability mass moved

from each path in the original distribution to all paths in the tree is same with the

probability of that path in the original distribution. The same idea applies to the

second constraint. Total probability mass moved from each path in the tree to all

paths in the original distribution should be same with the probability of that path in

the tree.
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Chapter 3

Two-Stage Portfolio Optimization Problem

3.1 Literature Review

The general one-stage problem, when the risk function is a semideviation of order 1,

or weighted mean-deviation from quantile, can be formulated and solved as a linear

programming problem (see [28, 48] and also [31] for additional insights). We shall

focus on the two-stage version. In what follows, we assume that the sequence of

returns (R1, R2) has a distribution supported on a scenario tree.

In this chapter, first a general linear two-stage stochastic programming model

will be introduced. Next, a two-stage portfolio optimization problem will be formu-

lated based on general linear two-stage stochastic program. Here, mean-semideviation

higher-order risk functions will be used. Then, the risk-averse multicut method, which

is a decomposition method to solve two-stage portfolio problem, will be introduced.

Finally, the mean-semideviation model will be solved with the risk-averse multicut

method, and results will be analyzed.

Miller and Ruszczyński stated general linear two-stage stochastic programming

model as follows in [31]:

Let ω = {1, ..., N2} be a finite probability space with a σ-algebra F of all possible

subsets of ω with probabilities P [j] > 0, j = 1, ..., N2, and F1 ⊂ F by a σ-algebra

given by events ωs, s = 1, ..., N1, and ps = P [ωs] > 0, s = 1, ..., N1. then, for each

event j ∈ ωs, the conditional probability psj = P [j|ωs] = P [j]/P [ωs].
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Let A be a deterministic matrix of size mx × nx, b ∈ ℜmx a deterministic vector,

c ∈ ℜnx , q ∈ ℜny , and h ∈ ℜmy be random vectors, T be a matrix of size my × nx,

W be a matrix of size my × ny. While q is only F -measurable, c, h, T , and W are

F1-measurable.

In portfolio problem, return of the portfolio X = −RT z, risk measure ρ(X), and

X = Lp(ω, F, P ), p ∈ [1,+∞), and we can define the domain

dom(ρ) := {X ∈ X : ρ(X) < +∞}

The function ρ is convex and real-valued. Therefore, it is continuous [47]. The

conjugate of a risk function ρ : X → ℜ is defined in [39] as ρ∗ : X ∗ → ℜ

ρ∗(µ) := sup
X∈X

{⟨µ,X⟩ − ρ(X)}

In [39], it is proved that ρ∗ is proper. So,

ρ(X) = sup
µ∈A

{⟨µ,X⟩ − ρ∗(µ)}

where A = dom(ρ∗).

In [32], it is found that if ρ is a coherent risk measure, and is proper and lower

semi-continuous, then the representation in (3.1) holds. Also, by using positive ho-

mogeneity, A = ∂ρ(0). Therefore, representation of coherent risk measures can be

followed by the theory of convex functions.

ρ(X) = sup
µ∈A

⟨µ,X⟩ (3.1)
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Then, by using the representation theorem, we can rewrite the equation (3.1) as

follows:

ρ(−RT z) = − inf
µ∈A

⟨
µ,RT z

⟩
(3.2)

Therefore, mean-risk models with semideviation risk functions satisfy (3.2), and

we can write the portfolio optimization problem as

−max
z∈Z

inf
µ∈A

⟨
µ,RT z

⟩
If ρ is continuous then A is bounded. We also can change “inf” to “min” because

A is convex, closed and compact. Since Z is compact, “min” and “max” can be

interchanged [47]. The dual problem can be formulated as

min
µ∈A

max
z∈Z

⟨
µ,RT z

⟩
(3.3)

We will use the formulation (3.3) while developing the risk-averse multicut method

in the portfolio problem later.

In the two-stage stochastic program, there are two decision vectors. The first-

stage decision vector z ∈ ℜnz will be selected before any random data are observed.

The second-stage decision vector y ∈ ℜny is selected after an event in F1 is observed.

A risk-neutral linear two-stage stochastic program can be formulated as follows:



39

min
x,Y

N1∑
s=1

ps[c
T
s z +

∑
j∈ωs

psjq
T
sjys]

s.t. Az = b

Tsz +Wsys = hs, s = 1, ..., N1

ys ≥ 0, s = 1, ..., N1

z ≥ 0

(3.4)

The risk-neutral problem (3.4) can be written in a nested form by using inter-

changeability and conditioning (see, [39] and Chapter 2 in [15]).

min
x

N1∑
s=1

ĉT z +

N1∑
s=1

psVs(z)

s.t. Az = b

z ≥ 0

(3.5)

where ĉ =
N1∑
s=1

pscs, V (z) is the random variable taking the value Vs(z) with probability

ps. Here, Vs(z) is the optimal value of the second-stage problem which is defined as

min
y

∑
q̂s

Ty

s.t. Tsz +Wsys = hs, s = 1, ..., N1

ys ≥ 0, s = 1, ..., N1

(3.6)

where q̂s =
∑
j∈ωs

psjqsj and the optimal value of (3.6) is denoted by Vs(z).

Since all data in the second-stage problem is F1 measurable, it can be solved

separately for each s. Next, risk-averse two-stage portfolio optimization problem will
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be derived from the risk-neutral linear two-stage stochastic program mentioned above.

min ĉT z + ρ1(V (z))

s.t. Az = b

z ≥ 0

(3.7)

where ĉ =
N1∑
s=1

pscs, V (z) is the random variable taking the value Vs(z) with probability

ps. The second-stage problem is as follows:

min ρ2s(q̂s
Ty)

s.t. Tsz +Wsys = hs, s = 1, ..., N1

ys ≥ 0, s = 1, ..., N1

(3.8)

where q̂s =
∑
j∈ωs

psjqsj.

3.2 Time Consistency

An investor makes portfolio decisions dynamically at discrete times such as once a

day. Therefore, an investor has to consider his or her risk level both at intermediate

stages and during the entire time horizon for his or her portfolio allocation decisions.

That is why time-consistency of a model is important for an investor who makes

decisions over time.

Time-consistency has been studied in various contexts in the past in [25], [26], [5].

In another approach, Boda and Filar [8] define time-consistency by using the

“principle of optimality” of dynamic programming. According to their definition, a

risk measure is time consistent if a decision-maker uses a risk measure to minimize

a multistage policy for the n-stage problem, then a part of that policy at tth-stage

(for any t = 1, .., n) should also be a risk measure that minimizes the multi-stage
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policy for the remaining (n− t+1)-stages. This property makes sure that an investor

relies on the future to make decisions rather than the past. The relation between

time-consistency and the structure of dynamic measures of risk was investigated in

[45].

In this study, we adapt the time-consistency approach which is similar to Cheridito

et al. [11].

Definition 3.1. Let YT and VT be random variables observed at T th-stage. A dy-

namic convex risk measure (ρt)0≤s≤t≤T is time-consistent if any of the following con-

ditions holds:

1. ∀s, t such that 0 ≤ s < t ≤ T

ρsT (YT ) = ρsT (ρtT (YT ))

2. ∀s, t such that 0 ≤ s < t ≤ T

ρtT (YT ) ≤ ρtT (VT ) ⇒ ρsT (YT ) ≤ ρsT (VT )

Miller and Ruszczyński [31] stated that the two-stage portfolio optimization prob-

lem with the mean-semideviation risk measure is time-consistent. Every node in the

first stage is associated with a coherent risk measure applied to the children nodes

in the second stage. This means if an investor is at node i after the first stage, the

information available at node i tells future risk by reducing the outcome space of end

portfolio returns.
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3.3 The Mean-Semideviation Model

In this section, risk averse two-stage portfolio problem will be formulated with the

mean-semideviation risk function of order r.

Definition 3.2. Indices:

i := First-stage scenarios, i = 1, ..., I

j := Securities, j = 1, ..., n

l := Second-stage scenarios for each first-stage scenario, l = 1, ..., L(i)

Definition 3.3. Parameters:

pi := probability of a first-stage scenario i

pil := conditional probability of second-stage scenario l after the first-stage scenario i

Rji := return rate of security j in first-stage scenario i

Rjil := return rate of security j in second-stage scenario l

ϵj := relative transaction cost of security j

γ := risk aversion constant

Definition 3.4. Decision Variables:

First-Stage Problem

zj := amount invested in security j in the first-stage

ξ := auxiliary variables representing shortfalls at the first-stage

u := expectation at the first-stage
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Second-Stage Problem

yji := new position of security j in scenario i after the first-stage

bji := amount spent to buy security j in scenario i after the first-stage

sji := value of security j sold in scenario i after the first-stage

σ := auxiliary variables representing shortfalls at the second-stage

m := conditional expectation at the second-stage

We assume that the initial capital is 1, and thus (in the simplest version)

z ∈ Z =
{
z ∈ Rn :

n∑
j=1

zj = 1, zj ≥ 0, j = 1, . . . , n
}
;

more complex restrictions on the initial investments are possible as well, as long as

they define a polyhedral set Z. In order to estimate the (relative) transaction costs,

the following bid-ask spread formula is used:

ϵj =
(AskPricej − BidPricej)/2

AskPricej
, j = 1, . . . , n.

This formula assumes that a “fair price” is half-way between the bid and the ask

prices, and ignores transaction costs due to the price impact of large trades. We

calculate transaction cost for each security by averaging on the data set.

The link between the first-stage variables z and the second-stage variables y is

provided by the cash balance equation:

yji = (1 +Rji)zj + (1− ϵj)bji − (1 + ϵj) · sji, (3.9)

in which we symmetrically assign transaction costs to the sales and purchases.
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This equation ensures that we included the rebalancing action in the two-stage stochas-

tic program. However, since we will not have the option to buy and sell in the one-

stage stochastic program (static model), we will make variables bji and sji equal to

0.

The first-stage problem with mean-semideviation risk functions of order r ≥ 1 can

be now formulated as follows:

min
z∈Z

I∑
i=1

piVi(z) + γ
( I∑

i=1

pi
(
max(Vi(z)− p⊤V (z), 0)

)r)1/r

,

where Vi(z) is the optimal value of ith second stage minimization problem of function

(1.17). The first-stage problem can be rewritten as follows:

min u+ γ
( I∑

i=1

piξ
r
i

)1/r

s.t. u =
I∑

i=1

piVi(z),

u ≤ Vi(z) + ξi, i = 1, . . . , I,

ξ ≥ 0,

z ∈ Z.

(3.10)

The second-stage problem with mean-semideviation risk function of order r ≥ 1

is formulated in scenario i given in model (3.11).
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min −mi + γ
( L(i)∑

l=1

pilσ
r
il

)1/r

s.t. yji = (1 +Rji)zj + (1− ϵj)bji − (1 + ϵ)sji, j = 1, . . . , n,

n∑
j=1

(
bji − dji

)
= 0,

Wil =
n∑

j=1

(1 +Rjil)yji, l = 1, . . . , L(i),

mi =

L(i)∑
l=1

pilWil,

mi ≤ Wil + σil, l = 1, . . . , L(i),

b ≥ 0, d ≥ 0, σ ≥ 0.

(3.11)

The optimal value of this problem is denoted by Vi(z). In a more general formulation,

we may use different risk-aversion parameters γ in the first-stage problem (3.10) and in

the second stage problems (3.11), making them dependent on the scenario i. We can

also add to problem (3.11) additional restrictions on the allocations yji, j = 1, . . . , n,

as long as they define a nonempty polyhedral set. In particular, keeping the first-

stage investments unchanged, that is, setting yji = (1 + Rji)zj, j = 1, . . . , n, should

be feasible for problem (3.11).

3.4 Solution Method

3.4.1 Benders’ Decomposition

An important issue in large-scale optimization problems is the increasing need for

computer memory and computational effort. When the number of variables and

constraints increase, it is not possible to solve a large-scale optimization problem

exactly to find the decisions. Benders’ decomposition [7] is an exact solution algorithm
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to mitigate this computational difficulty. The logic behind the Benders’ algorithm is

to solve a series of smaller problems rather than a large problem so that computational

resources are efficiently used.

Benders’ decomposition algorithm divides the decision-making process into stages

in a large-scale optimization problem. In the first stage, a master problem is formu-

lated and solved with a subset of variables and then the values of the variables in

the first-stage problem are used while solving second-stage problems to compute the

values of the remaining variables. If the second stage problem finds that the values of

first stage decisions are not feasible, then more constraints are added to the master

problem. This process continues until the values of the first stage problem are feasible

and optimal solution is obtained. Decomposition methods are explained in detail in

[50] (see Chapter 3).

In this study, we will use Risk-Averse Multicut Method for Higher-Order Con-

ditional Measures of Risk which is a decomposition algorithm based on Benders’

decomposition.

3.4.2 Risk–Averse Multicut Method for Higher-Order Con-

ditional Measures of Risk

If r = 1, the problems (3.10) and (3.11) (for i = 1, . . . , I) can be put together into

a large-scale linear programming problem, with Vi, i = 1, . . . , I, treated as variables

(given by the formula in the first row of (3.11)). The dimension of this problem,

however, is of order I×(L+n) variables and constraints, which becomes unmanageable

for realistic sizes of scenario trees. If r > 1, an additional complication arises from the

fact that we have to deal with a large-scale nonlinear optimization problem. In this

study, we will develop a general risk-averse multicut method that can solve large-scale

nonlinear portfolio problems when higher-order risk measures are used.
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We shall, therefore, develop a decomposition method for solving problem (3.10)–

(3.11), based on Benders decomposition. In order to describe this method, we have

to recall the dual representation of measures of risk. For a coherent measure of risk

ρ : X → ℜ, where X is the vector space of random variables on a finite probability

space having I elementary events, a closed convex set A of probability measures on

this space exists, such that

ρ(V ) = max
µ∈A

I∑
i=1

µiVi, V ∈ X . (3.12)

This representation, first proved in [4], is valid in a much more general setting as well

(see, [47, 49] and the references therein). The set A is the subdifferential of ρ(·) at

zero. Analytical expressions for the sets A for popular measures of risk (including

the mean–semideviation measure) are available (see [49]).

Owing to (3.12), the first-stage problem (1.16) becomes

min
z∈Z

max
µ∈A

I∑
i=1

µiVi(z), (3.13)

Two main issues arise from this formulation. First, solving the “max” problem above

is hard by using all of the elements in A, especially, when r > 1. Second, there is no

easy expression for Vi(z), i = 1, . . . , I, which are optimal values of problems (3.11).

In order to handle the first issue, rather than using A, its approximation from

within, conv
(
{µ0, µ1, ...., µk−1}

)
will be used. Here conv(C) denotes the convex hull

of a set C, and µ1, ...., µk−1 are elements of A collected in iterations 1, . . . , k − 1 of

the method. For µ0 we substitute the nominal probability distribution p, which is

an element of A for all practically relevant measures of risk, including the mean–

semideviation measure.
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We construct an approximation of problem (3.13) as

min
z∈Z

max
κ=0,1,..,k−1

I∑
i=1

µκ
i Vi(z).

It is an approximation from below, because the maximum is evaluated over a subset

of A rather than over A. Equivalently, the problem above can be written as linear

programming problem:

min α

s.t. α ≥
I∑

i=1

µκ
i Vi(z), κ = 0, 1, ..., k − 1.

To deal with the second issue, the unknown functions Vi(z) will be replaced with

piecewise linear convex functions constructed from cuts, derived from the solutions

of subproblems (3.11) at earlier iterations. This is a standard way of dealing with

parameter-dependent subproblems, similar to expected-value two-stage problems (see,

[43] and the references therein). In general, each cut is an inequality

Vi(z) ≥ v̂κi +
(
gκi
)⊤

(z − zκ),

where v̂κi is an optimal value of problem (3.11) for scenario i in iteration κ of the

method, with z = zκ. These cuts are also called objective cuts since they will help to

improve the lower bound while solving the master problem. The subgradient giκ can

be calculated from the Lagrange multipliers πκ
i associated with the constraints (3.9)

of problem (3.11) involving the parameters z:

gκij = (1 +Rji)π
κ
ji. (3.14)

We can always find a feasible solution to the two-stage portfolio problem. Therefore,
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we will not need any feasibility cuts in the risk-averse multicut method.

The reader may consult [31] for details of the cut construction in two-stage risk-

averse linear programming, which is identical to our case.

The algorithm for risk-averse multicut method is explained as follows:

Step 0: Set k = 1, i = 1, . . . , I.

Step 1: Solve the master problem,

min
z,v,α

α

s.t. α ≥
I∑

i=1

µκ
i vi, κ = 0, 1, ..., k − 1,

vi ≥ v̄iκ + g⊤κ (z − zκ), κ = 1, ..., k − 1, i = 1, ..., I,

z ∈ Z, v ≥ vmin.

Denote the solution by zk, αk, vk.

Step 2: For each i = 1, . . . , I.

Solve the second-stage problem (3.11) and let v̂ki be its optimal value and πk
ji

the Lagrange multiplier associated with the rebalance constraint for security j

in constraint (3.9). Then, calculate gκ by using the equation (3.14).

Step 3: Calculate ρk1 = ρ1
[
v̂k
]
and µk ∈ ∂ρ1

[
v̂k
]
.

Step 4: If ρk1 = αk, then stop; otherwise, continue.

Step 5: Increase k by 1 and go to Step 1.

In the risk-averse multicut method we assume that the set Z is compact, and that

we know lower bounds v̂min for the optimal values of each second stage problem.

From general convergence results in [44], convergence of this method is finite with

the mean-semideviation risk function of order 1. If r ≥ 2, convergence still can be
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proved, by the general properties of cutting plane methods for convex programming

(see, e.g., [44, Thm 7.7]).

Updating µ function depends on the chosen conditional risk measure. In this

study, two different higher-order conditional risk measures will be used: Mean–

semideviation and dual risk measures. In the next section, calculations how to derive

µ function will be shown for both cases.

Risk-averse multicut method has two main differences compared to Benders’ de-

composition. First, separate objective cuts are generated for each first-stage scenario

rather than generating an aggregate objective cut. Second, the method memorizes all

measures µκ from the previous iterations to construct a more accurate lower bound

for ρ1. This reduces the number of iterations needed to find the optimal solution.

3.4.3 Calculation of µ

The calculation of µ in Step 3 depends on the risk measure applied. In this section,

we will show how to calculate µ for mean-semideviation risk function of any order r

and also dual higher-order risk measures.

We will first start with mean-semi deviation model. Let r be the order of the

mean-semideviation model, the following process describes how to update µ function.

ρr1(v) =
∑
i

pivi + γ

[
·
∑
i

pi · (max(0, v̂ki −
I∑

m=1

pmv̂
k
i ))

r

]1/r

We calculate the shortfall values as follows:

σi = max
(
0, v̂ki −

I∑
m=1

pmv̂
k
i

)
, i = 1, . . . , I,
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Then, we can rewrite the semideviation risk function of order r as follows:

φ =
( I∑

i=1

pi(σi)
r
)1/r

.

Since µ ∈ A ⇔ µ ∈ ∂ρ(0) holds, we can derive two consequences as a result of

this relation:

1. A = ∂ρ(0)

2. ρ is positively homogeneous.

∂ρ(v̂) ⊆ ∂ρ(0). For this method, a typical situation is to observe v̂ ̸= 0. In this

case, ρ(.) is actually differentiable at v̂ ̸= 0

Then, the derivative of φ with respect to σk will be

∂φ

∂σk

=
1 · r · (σ+

k )
r−1 · pk

r · (
∑
i

pi · (σ+
i )

r)1−(1/r)

By taking the derivative of ρ with respect to v̂i

∂ρ

∂v̂i
= pi + γ ·

∑
k

∂φ

∂σk

· ∂σk

∂v̂i

= pi + γ · ∂φ
∂σi

· ∂σi

∂v̂i
+ γ ·

∑
k ̸=i

∂φ

∂σk

· ∂σk

∂v̂i

= pi + γ · (σi)
r−1 · pi

(φ)r−1
· (1− pi) + γ ·

∑
k ̸=i

(σ+
k )

r−1 · pk
φ

· (−pi)

Finally, we will obtain the general formula to update µ as follows:



52

µk
i = pi −

γ · pi
(φ)r−1

·
I∑

m=1

(σ+
m)

r−1 · pm + γ · (σ
+
i )

r−1 · pi
(φ)r−1

= pi ·

[
1 +

γ

(φ)r−1
· ((σ+

i )
r−1 −

k∑
m=1

(σ+
m)

r−1 · pm)

]
(3.15)

In Step 3 of the risk-averse multicut method, µ will be updated based on formula

(3.15). Next, we need to check two following properties for µ.

∑
i

µi = 1

µi ≥ 0

We will start with first required condition.

∑
i

µi =
∑
i

pi +
γ

(φ)r−1
·

[∑
s

(σ+
s )

r−1 · pi −
∑
i

∑
k

(σ+
k )

r−1 · pk · pi

]

(Since,
∑
i

pi = 1)

∑
i

µi =
∑
i

pi +
γ

(φ)r−1
·

[∑
i

pi · (σ+
i )

r−1 −
∑
k

pk · (σ+
k )

r−1

]

(Since,
∑
i

pi · σ+
i −

∑
k

pk · σ+
k = 0)

∑
i

µi =
∑
i

pi = 1

Therefore, the condition
∑
i

µi = 1 is satisfied. Second,
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γ

(φ)r−1
· ((σ+

i )
r−1 −

∑
k

pk · (σ+
k )

r−1)
?

≥ −1

γ · ((σ+
i )

r−1 −
∑
k

pk · (σ+
k )

r−1)
?

≥ −(
∑
k

pk · (σ+
k )

r)(r−1)/r

−γ · ((σ+
i )

r−1 −
∑
k

pk · (σ+
k )

r−1)
?

≤ (
∑
k

pk · (σ+
k )

r)(r−1)/r

∑
k

pk · (σ+
k )

r−1 −min
i
(σ+

i )
r−1

?

≤ (
∑
k

pk · (σ+
k )

r)(r−1)/r

is sufficient to say∑
k

pk · (σ+
k )

r−1
?

≤ (
∑
k

pk · (σ+
k )

r)(r−1)/r

From Hölder inequality

E(σ+)r−1 ≤ E((σ+)r)(r−1)/r

Therefore, the condition µi ≥ 0 is satisfied.

Next, we will show how to update µ function for dual higher-order risk measures.

Even though, the formulation of the two-stage portfolio problem with dual higher-

order risk measure is not given in this study, the risk-averse multicut method can be

used to solve the two-stage portfolio problem with dual higher-order risk measures.

Here, we will show how to update the µ function in Step 3 of the risk-averse mul-

ticut method when second order dual risk function is used. As a future work, we

want to compare the results of two-stage portfolio problem with higher-order mean-

semideviation risk function with dual order risk functions.

ρ2(z) = min
η

{
c(

n∑
i=1

pi(zj − η)2+)
1/2 + η

}
where c ≥ 1

The function ρ2(z) satisfies the convexity and monotonicity properties of coherent

risk measures in [49], [15]. We need to check positive homogeneity and translation
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equivariance properties of coherent risk measures.

ρ2(z) = min
η

{
c ∥(Z − η)+∥p + η

}
ρ2(αz) = min

η

{
c ∥(αZ − η)+∥p + η

}
α > 0 and, let ατ = η ⇒ τ = (η/α) ∈ ℜ

= min
τ

{
c ∥(αZ − αη)+∥p + ατ

}
= αmin

τ

{
c ∥(Z − τ)+∥p + τ

}
= αρ2(z)

Therefore, ρ2(z) satisfies the positive homogeneity property.

ρ2(z + a) = min
η

{
c ∥(Z + a− η)+∥p + η

}
Let η − a = τ

= min
τ

{
c ∥(Z − τ)+∥p + τ + a

}
= a+ ρ2(z)

Therefore, ρ2(z) satisfies translation equivariance property. Since ρ2 satisfies all

of the conditions, ρ2 is a coherent risk measure. In this case, ρ2(z) is actually differ-

entiable.

Let

σi = zi − η, and

φ = (
∑
i

pi · (σ+
i )

2)1/2
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Then, derivative of φ with respect to σk will be,

∂φ

∂σk

=
1 · 2 · σ+

k · pk
2 · (

∑
i

pi · (σ+
i )

2)1/2
=

σ+
k · pk
φ

By taking the derivative of ρ with respect to zi

∂ρ

∂zi
= c ·

∑
k

∂φ

∂σk

· ∂σk

∂zi

= c · ∂φ
∂σi

· ∂σi

∂zi
+ c ·

∑
k ̸=i

∂φ

∂σk

· ∂σk

∂zi

= c · σ
+
i · pi
φ

+ c ·
∑
k ̸=i

σ+
k · pk
φ

· (0)

Finally,

µi = c · σ
+
i · pi
φ

(3.16)

Since ρ2(·) is coherent, these two following properties are satisfied.

∑
i

µi = 1

µi ≥ 0

Therefore, we will only show the basics how these two properties are satisfied. We

will start with the first requirement.
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∑
i

µi = c ·

∑
i

pi · (σ+
i )

φ

(Since c ≥ 1 and φ ≥
∑
i

pi · (σ+
i )∑

i

µi = 1

Therefore, the condition
∑
i

µi = 1 is satisfied.

Second,

(Since c ≥ 1 and φ ≥
∑
i

pi · (σ+
i )∑

i

µi ≥ 0

Therefore, the condition µi ≥ 0 is satisfied.
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Chapter 4

Computational Results

First, daily returns of Dow Jones companies’ from September 2, 2008 to November

30, 2011 were used to calibrate a multivariate GO-GARCH(1,1) model of the returns.

The model was used to generate a large number of scenarios for the next two days.

Returns generated for the first day are used in the first-stage and generated second

day values in the second-stage. The generated scenarios were used to construct two-

stage scenario trees by employing all five scenario tree generation methods discussed

in Chapter 2. These methods were compared in terms of their time and solution

quality. The results in Table 4.1 show that two-step clustering methods are slightly

faster in terms of CPU times compared to other methods.

Next, we want to find which scenario tree generation method is better in terms of

Monge-Kantorovich metric. After scenario trees of the same size are constructed by

using the each method in Chapter 2, we will solve the Monge-Kantorovich problem on

each tree so that we can compare it with the original probability distribution. Because

of the computational complexity of solving large-scale Monge-Kantorovich problems

exactly, we will compare five scenario tree generation methods in small size data sets.

In the following results, number of the original scenarios are restricted to 10,000 and

20,000 scenarios. Table 4.2 contains the comparison of the quality of scenario trees

obtained by different methods: The optimal value of the Monge–Kantorovich metric

given by (2.6). Here, a scenario tree generation method is called more accurate if it

has lower optimal value in Monge-Kantorovich problem. The results show that tree

quality is stable for each scenario tree generation technique because the difference
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of optimal values for different scenario tree size is small. However, the multi-facility

location clustering method is the most accurate with scenario trees constructed from

both 10,000 and 20,000 scenarios. Therefore, in the next part of the study, we used

the multi-facility clustering method to generate scenario trees in a rolling horizon

fashion.

In the next part of the study, a simulation analysis was carried out. Each day, the

preceding 619 days of data were used to calibrate a multivariate GO-GARCH(1,1)

model. The model was then used to generate 80,000 scenarios for the following two

days in R. Since we found that multi-facility location clustering method is the most

accurate method in our previous computations, we will only use the multi-facility

location clustering method to construct a scenario tree for the next two days during

the simulation. Therefore, we do not need to solve Monge-Kantorovich problem

during the simulation (step 4 in Figure 4.1). However, there is not any scenario tree

generation method superior to other ones, we would need to solve Monge-Kantorovich

problem to find which tree is the most accurate in each simulation day. Then the tree

model with conditional measures of risk was solved, the investments were re-balanced,

and the method continued. On the next day, new return data were available, new

scenario trees were generated, new models solved, etc. The steps of the simulation

study are depicted in Figure 4.1.
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Figure 4.1: Simulation Analysis

The simulation study had two objectives. First, we compared the two-stage port-

folio model with the static model where bji = dji = 0. Based on the cumulative

wealth graphs in Figures 4.2 and 4.3, we can say that two-stage portfolio model per-

forms better than the static model for both mean–semideviation risk functions of

order 1 and 2. This was partly due to the reduced volume of trades, which resulted

in significantly lower transaction costs, but also to a better portfolio composition.

Secondly, we compared two-stage portfolio models with the mean–semideviation

risk measures of order 1 and 2 with static minimum variance model based on Markowitz’s

mean-variance portfolio theory where bji = dji = 0. In each case we used fixed γ = 0.9

and bid-ask spread transaction costs. The two-stage portfolio optimization problem

was solved with the risk-averse multi-cut method, implemented in MATLAB with the
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CPLEX solver. As we can see from Figures 4.3 and 4.4, using the second order meth-

ods leads to significant improvements in cumulative wealth trajectories compared to

first order and Markowitz’s minimum variance models. This is consistent with the

findings of [30], where other higher order risk measures were employed (with a static

model and no transaction costs).

Finally, we can compare the performance of the portfolios with mean–semideviation

of order 1 and 2 with the Dow Jones Index. Based on the following graph, the sim-

ulation analysis shows that portfolio with mean–semideviation of order 2 performs

better than other portfolios.

Next, we compare β values of the portfolios with mean–semideviation of order 2

when risk aversion constant is either γ = 0.9 or γ = 0.5. β is a measure of volatility of

a portfolio compared to the market. It is calculated by using the regression analysis.

If β is greater than 1, portfolio is more volatile than the market and if it is less than

1, portfolio is less volatile than the market. We computed the β values for both

risk aversion constant using the linear regression. β value of portfolio (0.92) with

γ = 0.5 is slightly more than β value of portfolio (0.85) with γ = 0.9. This means

both portfolios generally move in the same direction as the benchmark (Dow Jones).

However, movement of the mean-semideviation portfolio of order 2 with γ = 0.9 is

generally less than the movement of the mean–semideviation portfolio of order 2 with

γ = 0.5.
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Chapter 5

Conclusion

In this study, two-stage portfolio models with higher-order conditional risk measures

are studied. First, a multi-variate GARCHmodel is used to generate adequate number

of scenarios to model the probabilistic information on random data. Next, scenario

trees are constructed by different methods, and the best one is chosen based on Monge-

Kantorovich metric between the probability distribution on the scenario tree and the

empirical distribution on the raw scenarios. It is found that the two-step forward

clustering method is most efficient in terms of the CPU time, because it passes over

the data just once. However, that multi-facility location clustering method is the most

accurate, in terms of the Monge-Kantorovich metric. Therefore, we used multi-facility

location clustering method to generate scenario trees.

Next, conditional mean-semideviation risk functions of order 1 and order 2 are

used to formulate the risk-averse two-stage portfolio problem on the trees generated

from the multi-facility location clustering method. The problems are solved by a

generic risk averse multicut algorithm for any higher-order risk function. The results

show that the portfolio allocations for mean-semideviation models of order 1 and order

2 are similar. However, portfolio with the mean-semideviation of order 2 performs

better compared to mean-semideviation of order 1, minimum-variance model, and the

Dow Jones index. Both two-stage models outperform the static model.

For future research, it would be interesting to examine the question of making

two portfolio allocation decisions; one after the stock market opens in the morning

and one before stock market closes in the afternoon. In this case, we can consider the
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moves in other stock markets after U.S. stock market closes.

Another future research topic can be to use of dual higher-order risk measures to

compare with higher-order mean-semideviation risk measures in the two-stage port-

folio problem. We explained how we can solve the two-stage portfolio problem with

dual higher-order risk measures in Chapter 4.
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