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Abstract 

Breast cancer is the second leading cause of cancer related death 

amongst women and has a major impact on the lives of those affected by it. 

Previous research has uncovered that miRNAs, a type non-coding RNA, play 

a key role in the onset and development of breast tumors. Genomics, 

transcriptomics and proteomics studies have shed light on the intricate 

involvement of miRNA in mediating breast cancer progression. These small 

molecules are involved in many biological processes and we have yet to 

understand all the levels of complexity. Studying miRNA can lead to more 

efficient methods of screening and treatment for breast tumors while providing 

us with other key information from the molecular level. As confirmed by 

previous studies, miRNAs are good candidates for diagnostic as well as 

prognostic markers.  

 

This project takes a panoptic approach to studying miRNA in breast 

cancer genomics and proteomics and will strive to accomplish the following 

goals: 

 Visualize miRNA expression data through heatmaps and identify 

sub-types.  

- We hypothesize that we will see a difference in expression of 

miRNAs across subtypes. 

 Use heatmaps to examine miRNA expression across race.  
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- We hypothesize that miRNA expression will vary across race. 

 Perform PCA to deduce potential miRNA biomarkers for each 

subtype of breast cancer. 

- We hypothesize that we will find at least one unique biomarker for 

each subtype of breast cancer. 

 Find the top 20 miRNA pairs with statistically significant 

correlation in expression. 

- We hypothesize that these pairs will have miRNAs from the same 

family. 

 Study networks and pathways. 

- We hypothesize that we will find networks within subtypes of breast 

cancer. We also feel that miRNAs will be involved in more than one 

disease pathway. 

 

Data from The Cancer Genome Atlas (TCGA) data portal, which is an 

open source data portal open to the public, was utilized for the purposes of 

this project. The data is generated through miRNA-sequencing techniques 

with the aid of an Illumina Genome Analyzer. We used a combination of self-

generated scripts in Perl and R and web based databases to filter, sort and 

analyze our data [1, 2].  
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On visual interpretation of our heatmaps we found different patterns of 

miRNA expression in the various sub-types of breast cancer. Patterns across 

race were not as significantly different upon visual interpretation but this may 

be attributed to data from a small cohort. Our PCA revealed potential 

biomarkers for each subtype of breast cancer. We suggest hsa-mir-127 and 

hsa-mir-379 as potential biomarkers of the basal subtype, hsa-mir-19a, hsa-

mir126, hsa-mir-20a and hsa-mir-30a as potential biomarkers of the HER2 

subtype, hsa-mir-222 as a potential biomarker of the Luminal A subtype and 

hsa-mir-152, hsa-mir-26b and hsa-mir-200c as potential biomarkers of the 

Luminal B subtype. By graphing these potential biomarkers across all 

subtypes we have visually confirmed our findings. We found 20 pairs of 

miRNAs with statistically significant correlation in expression and of those 6 

were pairs that with miRNAs that are not related. We found miRNA-gene 

networks within two subtypes of breast cancer and generated a schematic to 

show the first layer of interaction. We used an online tool to generate another 

schematic that illuminates miRNA involvement in various pathways.  

 

We feel that our study has led to some interesting findings. We 

encourage future studies to further validate our proposed biomarkers as well 

as improve our methods. Our study lacked data from normal tissue samples; 

the inclusion of which we feel would have yielded more thorough results. In 

conclusion, we believe that computational methods of data analysis in 
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studying miRNA expression data are truly powerful and the results of these 

methods will only get more accurate as more data is made available.  
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Chapter I 

 

INTRODUCTION 

 

I. INTRODUCTION 

1.1 Breast Cancer Statistics 

An estimated 232,340 women and 2,240 men will be diagnosed with 

breast cancer in the year 2013 [3]. The Cancer Genome Atlas reports that 

there are 1.3 million cases and 450,000 breast cancer deaths worldwide [4]. It 

is one of the most common types of cancers diagnosed in women in the 

United States and it is the second leading cause of cancer related death in 

American women [5-8]. Although rare, breast cancer has also been 

diagnosed in males. While this disease is life altering for the patient it also 

has a major impact on the affected individual’s family members. A study 

found that a significant number of family caregivers of patient’s with breast 

cancer are clinically depressed [9]. To fully understand the gravity of a 

disease like breast cancer it is important to first understand the disease then 

examine its impact.  

 

1.2 Understanding Breast Cancer 

Cancer occurs when the cells in our body start to function in an abnormal 

manner. In cancer, the normal cell cycle is disrupted due to the malfunction of 
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signaling mechanisms that monitor and control cell growth, division and 

apoptosis. The result is a rapid uncontrolled growth and division of cells. For a 

cell to qualify as a malignant cancer cell it must have both uncontrolled 

growth and the ability to invade other cells [5]. Tumors that do not have the 

ability to invade other cells are known as benign and are in most cases not as 

harmful as malignant tumors. Genetic mutations inherited from parents may 

significantly increase the probability of developing cancer. Hereditary breast 

cancer results from mutations in the BRCA1 and BRCA2 genes that are 

passed on in an autosomal dominant manner [10]. Generally, most breast 

cancers are caused by somatic mutations that occur in breast cancer cells 

and are not inherited [11].  

 

1.3 Breast Cancer Pathology 

Breast cancer, as the name suggests, is a cancer that occurs in breast 

tissue. It usually originates in the nodules or ducts that aid in milk production 

and transport, respectively, but can also occur in stromal tissues [3, 12]. 

There are two major types of breast cancers: non-invasive (also known as 

in-situ) breast cancer does not spread beyond the epithelial cells of the 

nodules or ducts while invasive breast cancer is known to spread to other 

tissues and has a poorer prognosis [7, 13]. Non-invasive breast cancer has 

the potential to become invasive and therefore more harmful over a period of 

time [3, 7, 13]. Ductal Carcinoma In-situ (DCIS) and Lobular Carcinoma In-
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situ (LICIS) are non-invasive breast cancers that occur in the ducts and 

lobules, respectively. DCIS is more common and is further classified into sub-

types based on the presence or absence of certain hormone receptors [6, 14-

16].  

 

1.4 Molecular Sub-types 

Table 1 lists the four main distinguishable subtypes of breast cancer and 

the hormone receptors that appear in each. Luminal A sub-type has the best 

prognosis of the four sub-types and is positive for the estrogen receptor (ER), 

positive or negative for the progesterone receptor (PR) and negative for 

Human Epidermal Growth Factor Receptor 2 (HER2). Luminal B is positive 

for ER, positive or negative for PR and positive also for HER2. Basal like or 

triple negative sub-type tumors are negative for all three receptors and are 

especially common in African American women [17]. HER2 type is relatively 

uncommon and is positive for HER2 and negative for both ER and PR [14, 16, 

18, 19]. Hormone therapy can be used to block estrogen from binding to the 

ER positive cancer cells in order to restrict their growth and survival. The 

prognosis for tumors that are negative for hormone receptors is poorer when 

compared to tumors positive for the ER [15, 19].  
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Table 1 – Molecular Sub-Types of Breast Tumors 

Subtype ER PR HER2 

Luminal A + + or - - 

Luminal B + + or - + 

Basal (Triple Negative) - - - 

HER2 - - + 

 

Table 1: Molecular sub-types of tumors and their specific characteristics. 

Luminal tumors are positive for estrogen receptors and negative for HER2 – 

these tumors also have the best prognosis of all the sub-types. Triple negative 

tumors (basal like tumors) are negative for all receptors and generally have the 

worst prognosis. 

 

1.5 Risk Factors 

Many factors, environmental and genetic contribute to the development 

and growth of breast cancers. Research validated risk factors are age, 

geographical location, obesity, alcohol consumption, cigarette smoking, 

sedentary lifestyle and family history [20]. Younger age at menarche and 
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older age at the birth of the first child and/or menopause can also put women 

at a greater risk for developing breast cancer [21]. The probability of 

developing breast cancer is further increased in women who have a mutation 

present in one of the breast cancer related genes in addition to being at risk 

for non-hereditary reasons. A full list of the risk factors involved in breast 

cancer is listed in table 2. 
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Table 2 – Risk Factors of Breast Cancer 

 

Table 2. A list of compiled major risk factors for breast cancer. 

Risk Factors 
Age 

Environment 

Family History 

Genetics 

Gender 

Race and Ethnicity 

Breast Tissue Density 

Age at first menstrual period 

Age at menopause 

Age at first pregnancy 

Diet  

Alcohol Consumption 

Body Weight 

Socioeconomic Status 

 

 

1.6 Diagnosis and Treatment 

The diagnosis of breast cancer is generally made either by mammography 

screening or the discovery of signs and symptoms associated with the 
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disease. The detection of breast cancer through mammography screening 

has a more favorable prognosis because tumors found through screening are 

detected at an early stage, are smaller in size and are also treated early [15, 

22, 23]. High mammographic density is correlated with an increased risk of 

breast cancer [24, 25]. Mammographic density has been found to decrease 

with age and this decrease contributes to a lower overall risk of breast cancer 

[26]. The American Cancer Society suggests certain guidelines to screen for 

breast cancer in the general population of women (Table 3). An annual 

mammogram and clinical breast examination is recommended for women 

over the age of 40. 
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Table 3 – Screening and early detection guidelines by the American 

Cancer Society 

 

Table 3. The American Cancer Society suggests that women under the age of 

40 years and over 20 years opt for a clinical breast examination every 3 years 

while women over 40 years of age should get an annual mammogram in 

addition to an annual clinical breast examination. A self-breast examination is 

optional for both age groups [8].  

 

 

 

In addition to screening and symptoms, other diagnostic tests and 

biopsies are performed to confirm a diagnosis and evaluate the tumor [5]. 

• Clinical breast examination every 
3 years

• Optional breast self-examination

Age 20-
39

• Annual mammogram
• Annual clinical breast 

examination
• Optional breast self-examination

Age 40+
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Once a diagnosis is made the tumor is thoroughly assessed before 

proceeding with treatment options. Treatments for breast cancer include 

surgery, chemotherapy, hormonal therapy, biological therapy and radiation 

[20].  

 

1.7 Statement of Problem 

 Breast cancer affects a significant number of lives each year, leaving a 

lasting psychological and sometimes physical impact. For many years 

scientists have studied the genomics of breast tumors to gain a better 

understanding of the pathology and to unravel a potential cure for the disease. 

Along the way, the discovery of key biological pathways has provided a 

probable solution for early detection and treatment [27]. The importance of 

early detection in a disease like breast cancer has been discussed for years 

but there is still a lack of an effective tool or biomarker that can replace older 

methods of screening. There is also an imminent need to uncover details of 

breast tumor progression at the molecular level via a new panoptic approach. 

A deeper understanding of pathways and networks can bring to light novel 

and more effectual treatment options.  

 

1.8 Breast Cancer Genomics, Transcriptomics and Proteomics 

 Genomic data provides us with the sequence of our genetic 

information – allowing us to study the changes in this information that can 
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lead to disease states. Specific changes in the gene sequence can be used to 

identify different types and sub-types of breast cancer. A fairly recent high-

throughput technique of sequencing data, called next-generation sequencing, 

has cut the time and cost of sequencing genetic information. Next generation 

sequencing’s greatest advantage over the old method of using DNA 

microarrays is that it is fast. It also allows us to profile the nucleotide in DNA 

and RNA to further expound the regulation and expression of genes [28]. The 

steps to perform DNA and RNA-sequencing are almost identical. To perform 

next-gen RNA-sequencing (RNAseq), the RNA molecules must first be 

purified by 2-D Polyacrylamide Gel Electrophoresis (PAGE) and fragmented. 

After applying a primer to each end, a cDNA library is created using reverse 

transcriptase and PCR. A genome sequencer like the Iluumina Genome 

Analyzer is used to perform the rest of the experiment [28]. The results are 

short reads that may be aligned to a reference genome depending on the 

needs of the experiment. Sequencing of the genome and transcriptome (all 

RNA molecules) can provide us with crucial information like RNA expression 

levels in a cell at a certain time. This expression analysis of the transcriptome 

is a snapshot of information that among other things tells us which genes are 

active and which are inactive.  

 Although genomic and transcriptomic data is invaluable, it is 

incomplete without proteomics data. The proteome represents the full protein 

complement of a cell at any given time and accounts for posttranslational 
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modifications and other molecular changes [29]. Proteomics studies are 

important in profiling proteins and discovering protein-protein interactions [30]. 

The process of studying proteins begins with purifying the proteins. The 

purified proteins are then fragmented into peptides and in turn these peptides 

are identified via mass spectrometry. All mass spectrometers have an ionizer, 

mass analyzer and detector but different methods may be used [29, 31]. 

Mass spectrometers record the mass to charge ratio of peptides as well as 

the intensity – this data is represented on a graph [32]. The results from mass 

spectrometry experiments are then used to identify proteins. Tandem mass 

spectrometry is a type of mass spectrometry used for sequencing and 

identifying unknown proteins. A disadvantage to mass spectrometry is that it 

requires a sequence database for analysis but this is outweighed by its high-

throughput capability [31].  

Emerging methods in genomics and proteomics have changed the way 

we study genes and proteins. We owe our widespread understanding of 

cellular processes and pathways to potent tools like RNA-sequencing and 

mass spectrometry. Further advancements in these technologies will be 

beneficial to the medical community as they have the potential to structure 

and support applications of personalized medicine and drug discovery [28].  
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1.9 miRNA and Breast Cancer 

microRNA (miRNA) are small non-coding RNA molecules that have the 

potential to be prospective biomarkers as well as targets for therapy in cancer 

[33-36]. Other non-coding RNAs have also been associated to cancer and 

table 4 is a list of these RNAs including miRNAs and their functions.  

 

Table 4 – Non-coding RNAs and their functions 

 

Table 4 – This table has been adapted from Rossi et al and lists a few different 

types of non-coding miRNA and their functions [36]. The main function of 

miRNAs is either post-transcriptional repression and activation of genes. 

 

Non-coding miRNA 
Name 

Function 

microRNA (miRNA) Post-transcriptional repression/activation 

Long Non-coding RNA 
(lncRNA) 

Regulate gene expression  

Small Interfering RNA 
(siRNA) 

Silence gene expression 

Small Modulatory RNA 
(smRNA) 

Transcriptional activation of neuronal 
differentiation  

 

 

miRNA are approximately 22 nucleotides in length and were first 

discovered in 1993. Primary-miRNA (pri-miRNA) are transcribed by RNA 
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polymerase II and exist as self-folding stem-loop structures. The Drosha-

DGCR8 complex recognizes the loop structures and cleaves them out to form 

a pre-miRNA in the nucleus. The pre-miRNAs are then transported to the 

cytoplasm with help from the exportin-5 protein. In the cytoplasm, Dicer cuts 

the loop of the pre-miRNA to form 2 strands of miRNA of which one will bind 

to a RNA-induced Silencing Complex (RISC) and Argonaute protein to 

become the final mature miRNA (Figure 1) [27, 37, 38]. This cluster can then 

bind to mRNA sites for translational repression and degradation of the mRNA.   

 

Figure 1 – Biogenesis of miRNA 

 
 
 

 

 

 

 

 
 

 

 

 

 

Drosha-DGCR8 
complex 

nucleus cytoplasm 

Cleavage by Dicer 
 
Unwinding of miRNA 
duplex 
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Figure 1. The biogenesis of miRNA begins in the nucleus where RNA-

polymerase II transcribes primary miRNAs that are cleaved by the Drosha-

DGCR8 complex to make pre-miRNA. These pre-miRNA are exported out to the 

cytoplasm by exportin 5 and are further processed by Dicer before becoming a 

part of the RNA-induced Silencing Complex (RISC) [39]. 

 

Deregulated expression or mutations of miRNA have been found to 

lead to the pathogenesis of diseases like breast cancer [35, 40]. They are 

also known to play an essential role in post-transcriptional modification and 

regulation of breast cancer related genes by binding to complementary 

sequences on the 3’ un-translated region (UTR) of multiple target mRNA [38, 

41, 42]. Figure 2 is an illustration that highlights the interaction of miRNA with 

mature RNA molecules.  
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Figure 2 – Biological Interactions 

 

Figure 2. Protein and miRNA molecules bind to mRNA for post-translational 

modifications and regulation of genes. miRNA that binds to mRNA can cause 

it’s degradation and indirectly stop translation and expression of target genes. 

 

It is likely that most miRNAs are tumor suppressors based on 

observations that show an overall decrease in miRNA expression in cancers 

[43]. The actual mechanism of regulation by miRNAs is more complicated 

than our current understanding. A single miRNA can have multiple target 

mRNAs – many of these targets are yet unknown. In addition miRNAs have 
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shown that they sometimes operate in networks [27]. miRNAs are named 

sequentially and sometimes have an alphabet suffix denoting different forms 

of the same miRNA. The first 3 letters of a precursor miRNA designate the 

species (ex. hsa-miR-100) and are left out when writing the name of a mature 

miRNA (ex. miR-100) [44]. Until now, only a few of these miRNA networks 

have been discovered in certain diseases. Next-generation sequencing 

techniques like miRNA-seq are used to study miRNA expression and detect 

novel miRNAs. Several hundred miRNAs have been identified in the past and 

more will be discovered through de-novo sequencing methods [45].  

 

1.10 The Cancer Genome Atlas 

 The Cancer Genome Atlas (TCGA) is a data portal that was initially set 

up by investment from the National Cancer Institute (NCI) and National 

Human Genome Research Institute (NHGRI). The National Institute of Health 

(NIH) supports the efforts of TCGA by providing major resources. The TCGA 

network generates open source data for researchers who can download and 

analyze the data sets. As of the date of our download, TCGA has data for 957 

total cases of breast invasive carcinoma out of which miRNA data is available 

for 894 cases, clinical data for 905 cases and methylation data for 931 cases. 

The participants donate a tumor tissue sample as well as a normal tissue 

sample, both of which are collected at the Tissue Source Sites (TSS) and 

sent to Biospecimen Core Resources (BCRs) for further processing. Although 
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currently, data on normal tissue in breast cancer is unavailable. The mission 

of TCGA is to coordinate an effort to accelerate our understanding of cancer 

at the molecular level using genome analysis technologies [46].  

 

1.11 Goals and Objectives 

 The goal of this project is to utilize the recently aggregated TCGA data 

on breast tumors to comprehensively study the expression and other unique 

aspects of miRNAs in breast cancer. Available TCGA data makes the 

following objectives of the study possible:  

1. Using TCGA data, study miRNA expression in breast tumors to 

understand whether miRNA profiling can be used to identify 

subtypes. 

- Using the clinical data available for 905 cases of patients with 

breast cancer this project aims to identify the miRNAs that have the 

most variable expression profiles in the various sub-types of breast 

cancer. Previous studies have shown that miRNA profiling can be 

used to predict breast cancer sub-types – we hope to confirm this 

theory using new data from TCGA. The goal is to evaluate whether 

the difference in miRNA expression levels between sub-types is 

significant enough to use as a diagnostic tool. We plan to create a 

variety of heatmaps using R to visually see the difference in miRNA 

expression between sub-types [1]. The hypothesis is that miRNA 
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expression levels will be a good diagnostic indicator of breast 

cancer sub-types.  

 

2. In order to define potential biomarkers for the subtypes of breast 

cancer we hope to identify miRNAs that are most differentially 

expressed in each subtype using Principal Components Analysis 

(PCA). 

- We will perform PCA on miRNA expression data to decipher which 

miRNA or miRNAs account for the greatest variability in each 

subtype. We hope to find a different miRNA biomarker for each 

subtype of breast cancer. In order to ensure that the potential 

biomarkers are unique we will do a PCA on all samples to eliminate 

any miRNAs that are up or down regulated in the disease and are 

not subtype specific.  

 

3. Compare miRNA expression across different races  

- Previous studies have shown that some miRNAs are expressed 

differently in individuals of varying races [47-49]. These differences 

in expression may be related to polymorphisms that are 

characteristic to a particular race [50]. The plan is to generate 

heatmaps with supervised clustering by race and to look for 

patterns that suggest variable expression across race. The 
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prediction is that miRNA expression will vary across race. This 

should be visible in the clusters/annotations of the heatmaps we 

generate. 

 

4. Search for miRNA-gene networks in breast cancer subtypes 

- To elucidate miRNA networks in breast cancer subtypes this study 

will use web tools like miRBase and miRWalk to first find gene 

targets of miRNAs that are potential biomarkers of each subtype 

according to our PCA analysis [44, 51]. Next we will elucidate which 

miRNAs from each subtype have common gene targets. Previous 

studies have worked on miRNA networks in breast cancer and 

uncovered some intriguing interactions but our approach is different 

and much simpler [52, 53]. The hypothesis is that more than one 

miRNA will have the same gene target.  

 

5. Find the 20 most highly correlating miRNA pairs and verify 

whether the paired miRNAs are related.  

- miRNAs that are from the same family or related will have similar 

expression profiles as they usually belong to a pre-cursor that is 

located nearby on the same chromosome. To verify whether this is 

true for the TCGA dataset we will use a function in R to identify 20 

pairs of miRNAs that have a statistically significant correlation 
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between their expression profiles in breast tumors. We will use a 

miRNA database to confirm that the pairs of miRNAs are related.  

 

The following 3 objectives will require new data to be generated: 

6. Study the expression of miRNAs in breast tumors over a period of 

time 

- miRNAseq data from samples of different stages over time will be 

required for this analysis. This data is currently unavailable via the 

TCGA website. This type of study would be essential to miRNA 

analysis as it can reveal a lot about the role of miRNAs in tumor 

growth and development. We hypothesize that the expression 

profiles of miRNAs will vary at the different stages of the breast 

tumor and will also give us an idea of which miRNAs are good 

prognostic markers for the disease.  

 

7. Examine drug induced changes in the expression of miRNA 

- Data required for this goal is likely to be generated in the near future. 

To the best of our knowledge, currently no data is available on miRNA 

expression with drug use. If made available we would like to use that 

data to evaluate if and how drugs influence the expression of miRNAs 

in breast cancer. Studying any drug induced changes in miRNA 

expression will aid our understanding of miRNA interactions with 
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exogenous molecules and help us evaluate possible targets of therapy. 

The hypothesis is that drug use will alter the expression of miRNAs in 

breast tumors.  

 

8. Compare the miRNA expression profiles between normal and 

breast tissue samples from the same patient. 

- Currently the TCGA data portal only has miRNA sequencing data 

for breast tumor tissue samples. It would be interesting to compare 

this data to the miRNA expression profiles in normal tissue from the 

same individuals. We would expect that certain miRNAs will be up 

or down regulated in the breast tissue versus the normal tissue. 
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Chapter II  

 

LITERATURE REVIEW 

 

II. LITERATURE REVIEW 

2.1 Current Breast Cancer Research 

 In reviewing the literature on breast cancer it was found that research 

in this field is multi-faceted and multi-dimensional. Studies that try to 

understand all aspects of breast cancer can achieve a comprehensive 

understanding of the disease. A retrospective study that collected discharge 

data on women with breast cancer from 2002-2009 found that there were 

racial and ethnic disparities in stage, co-morbidities, surgical treatment 

allocations and outcomes among the cohort [54]. While investigating the 

mortality risk between white and black women diagnosed with invasive breast 

cancer, a group of researchers discovered that the difference showed mainly 

in older women diagnosed with luminal A/p53- breast cancer [55]. An April 

2013 study conducted at Stanford University School of Medicine identified 

novel gene fusions in breast cancer (CLTC/VMP1) as well as other cancers 

[56]. Studies like the ones mentioned above are contributing greatly to the 

way we currently understand and treat cancer. The future of breast cancer 

research will greatly benefit from the foundation of data that these studies 

have created. 
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2.2 miRNA in Other Cancers 

The notion that miRNAs are involved in the molecular development of 

cancer has attracted attention from many researchers, especially those in the 

proteomics and bioinformatics sector. Furthermore, there has been a surge in 

the studies discussing miRNAs and bioinformatics over the last two years [36]. 

 

The role of miRNAs in ovarian cancer is similar to their role in breast 

cancer. Studying the dysregulation of miRNAs in ovarian cancer has led 

scientists to the discovery of new pathways in ovarian tumorigenesis thus 

paving the way for potential tools to battle the disease [57]. A study found that 

tumorigenesis in bladder cancer was linked with low levels of miR-34a in 

bladder tissue [58]. Another study closely investigated the differential 

expression of miRNAs in lung cancer versus normal lung tissue and found 

that has-miR-339-5p was especially suitable as a biomarker [59]. In order to 

validate a non-invasive early detection screening method for pancreatic 

cancer, a group of researchers examined the expression of 3 miRNAs (miR-

21, miR-155 and miR-200) in blood and pancreatic tissue samples and found 

that they were highly expressed in the presence of pancreatic cancer – 

making them good candidates for biomarkers [60]. In a similar study miR-

193a-3p, miR-23a and miR-338-5p were named as potential blood based 
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biomarkers for early detection of colorectal cancer [61]. Another study found 

that some miRNAs had a statistically significant difference in expression in 

cervical cancer [62]. An additional study confirmed that the same was true for 

prostate tumors which means that miRNAs may be used as prognostic and 

diagnostic evaluators in prostate cancer as well [63]. All of these studies have 

one thing in common – they highlight the importance of studying miRNAs in 

cancers. It is also true that by studying miRNAs, researchers are racing with 

time to develop new and effective ways to treat individuals affected by cancer. 

In the next few years we may witness the clinical use of multi targeted miRNA 

based anti-cancer therapies [64]. 

 

2.3 Personalized medicine and miRNA 

Numerous studies have been published in the recent past on the 

subject of miRNAs and their function in breast cancer. In our review of the 

literature, We found that studies canvassing the function of miRNAs in breast 

cancer are recent. A large-scale study that was published in nature profiles 

miRNA expressions of 1,302 breast tumors to establish a framework of 

information for future studies [65]. In another study, researchers examined the 

expression of miRNAs in a rare type of breast cancer known as Pure 

Mucinous Breast Carcinoma (PMBC) and found that miR-143 and miR-224-

5p were down regulated [66]. A research team led by Jincai Wang found that 

increased expression of miR-9 and miR-200c were predictors for lymph node 
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metastasis thus paving the way for those miRNAs to be potential diagnostic 

markers [67]. Results from pioneering studies like these contribute directly to 

personalized clinical medicine, which is promptly going to replace the one-

size fits all approach in practice today. The benefit to taking a personalized 

approach to medicine is that it accounts for genetic variations that are 

substantially responsible for disease characteristics and response to 

therapeutics in each individual patient. Advances in the proteomics field have 

made it easier for scientists to study these variations in our genetic makeup, 

thus making it possible for medical tools and treatments to be designed for 

individuals and not groups [36]. New sequencing techniques have given us an 

unbelievable depth in studying RNA and peptide molecules in a particular cell 

at a specific time. Table 5 is a list of databases and software used in the 

study and analysis of miRNAs. There are other miRNA related software tools 

and databases that also aid in the research process [37]. 
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Table 5 – Databases and softwares used in miRNA analysis 

 

Table 5. A list of online databases and software tools available to researchers 

for the purpose of studying and analyzing miRNAs.  

 

miRNA 
Database/Too

ls 
URL Description 

miRBase http://www.mirbase.org/ 
Provides detailed information 
and target search for miRNAs. 

miRPath 
http://diana.imis.athena-

innovation.gr/DianaTools/i
ndex.php?r=mirpath/index 

Pathway analysis tool for 
miRNAs that can also be used 
to study miRNA interactions 

that have been validated 
experimentally. 

TargetScan http://www.targetscan.org/ 
A tool to find predicted and 

validated targets of miRNAs. 

miRCancer http://mircancer.ecu.edu/ 
A database that provides 

information on miRNA cancer 
association. 

miRTrail 
http://mirtrail.bioinf.uni-

sb.de/mirtrail.php 
Analyze relationship between 

miRNAs and mRNAs. 

 

2.4 Expression profiling miRNA in breast cancer 

A study confirmed that the difference in expression of certain miRNAs 

in breast cancer tissue versus normal tissue is significant. The most 

deregulated miRNAs were miR-125b, miR-145, miR-21 and miR-155 [33]. 

Other studies suggest that miR-21 and miR-155 are up regulated in breast 
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cancer and in contrast miR-106, miR-125b and miR-145 are down regulated 

[45, 68]. The interesting thing is that the expression of some up-regulated or 

down-regulated miRNAs can be correlated with the different molecular sub-

types of breast tumors [34, 38, 69, 70]. A group of researchers validated the 

role of miRNAs in disease classification by using Artificial Neural Networks 

(ANNs) to identify miRNA signatures associated with estrogen (miR-342, 

miR-299, miR-217, miR-190, miR-135b, miR-218), progesterone (miR-520g, 

miR-377, miR-527-518a, miR-520f-520c) and HER2 (miR-520d, miR-181c, 

miR-302c, miR-376b, miR-30e) receptor status [70]. Not surprisingly, miRNAs 

are also believed to be involved in the migration, invasion and metastasis of a 

tumor [71]. According to an expression analysis study conducted in 2011, 

migration and metastasis of breast tumors was attributed to increased 

expression of miR-423 [69]. MiRNAs can be either tumor suppressing (miR-

30a, miR-31, miR-34a, miR-125s, miR-200s, miR-203, miR-205, miR-206, 

miR-342) or oncogenic (miR-10b, miR-21, miR-135a, miR-155, miR-221, 

miR-222, miR-224, miR-373, miR-520c). Research studies have verified that 

miRNAs have overlapping functions – they can be involved in migration, 

invasion and metastasis simultaneously [42].  

 

2.5 miRNAs as biomarkers 

A majority of the research on breast cancer has focused on 

establishing a biomarker for the disease to help with making an early 
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diagnosis [72]. The primary reason for this is that early detection has been a 

major contributor to the decline in breast cancer death rates in the last 

decade [45]. Current screening methods (mammography and breast 

examination) are ineffective for early detection and are many times painful to 

the patients [3]. To procure a solution, miRNAs are being investigated as 

future biomarkers for breast cancer. A study published in the Journal of 

Translational Medicine, investigating miRNAs circulating in blood, concluded 

that certain miRNAs could potentially serve as blood-based biomarkers [68]. 

Unlike circulating mRNA, circulating miRNA is stable at room temperature 

and can withstand freeze-thaw cycles[73]. A different study measured the 

serum concentrations of miR-10b, miR-17, miR-34a, miR-93, miR-155 and 

miR-373 in breast cancer patients and healthy women. The researchers 

concluded that the serum concentrations of miR-34a, miR-93, miR-373 were 

significantly different in healthy women versus women with breast cancer and 

these findings highlight the diagnostic value of circulating miRNA [74]. In one 

study, researchers found an insignificant difference in the serum expression 

levels of certain miRNAs, but this may be attributed to the small cohort of 

women in the study [75]. There are a few challenges in using circulating 

miRNAs as biomarkers – one being the extraction of these small molecules 

from blood [73]. As biomarkers, miRNAs would have to: 1. Differentiate non-

disease from disease tissue, 2. Determine correct prognostic group for 

patients and 3. Monitor response to therapeutics [45]. There are many 
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benefits to having efficient biomarkers for breast cancer and even breast 

cancer subtypes, which is why scientists are meticulously examining miRNAs 

in order to learn everything about their interactions with breast cancer genes 

[39]. 

 

2.6 miRNAs as targets for therapy 

Exogenous analogs of tumor suppressing miRNAs injected into mouse 

models have shown positive results, thus verifying that miRNAs can be 

targets of therapy in addition to being biomarkers of disease [42, 76]. A paper 

published in nature this year found that the down regulation of miR-140 in 

normal breast epithelium leads to cancer stem cell formation and eventually 

DCIS. The same study also found that two most significantly activated stem 

cell factors SOX9 and ALDH1 are direct targets of miR-140 and that 

replenishing miR-140 in-vivo led to reduced tumor growth [77]. In a similar 

study, miR-221 was found to promote tumorigenesis in triple negative breast 

cancer; the scientists noticed inhibition of tumor growth in-vitro and in-vivo 

when miR-221 was knocked down [78]. Angiogenesis promoting microRNA, 

miR-27a, is another potential target for cancer therapy. miR-27a was found to 

increase tumor growth, metastasis and angiogenesis in an animal model [79]. 

Angiogenesis or the formation of new blood vessels provides nutrition and 

oxygen for tumor growth and promotes tumor metastasis. Increased 

angiogenesis is a signature characteristic of cancer and it is therefore 
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necessary to develop anti-angiogenesis therapies [80]. Results from the 

above mentioned studies provide hope for the clinical use of mimic miRNAs 

as therapeutic agents in human breast tumors and remind us that the 

distance between bench and bedside is constantly decreasing.  

 

2.7 miRNAs as Prognostic Markers 

 In China, researchers found that miR-206 would be a good 

candidate for a novel prognostic indicator in breast cancer patients as low 

levels of miR-206 were found unfavorable for overall survival [81]. A different 

study found that miR-125b would be a good prognostic response marker for 

cancer therapy [82]. A drug interaction study, found that miRNAs play a role 

in regulating chemoresistance which is a major hurdle in the treatment of 

cancer [83]. Advanced studies on miRNA and drug interactions will greatly 

increase the depth of our understanding of miRNA pathways. The use of 

miRNAs as prognostic markers will greatly aid clinicians in treating breast 

cancer patients.  

 

 

2.8 Networks and Interactions of miRNAs  

miRNA research specific to breast cancer has come a long way in a 

short span of time but there is still much scope to learn and explore. For 

example, more studies are needed to ascertain miRNA networks in breast 
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cancer because current research on this topic is lacking [27]. In one particular 

study, researchers have tried to use computational methods to predict 

interactions between miRNAs but this work is preliminary [41]. A recent study 

conducted in Taiwan investigated miRNA regulated Protein Interaction 

Networks (PINS) in breast cancer. The researchers paired miRNAs with 

target mRNAs using expression profiles and target prediction databases to 

elucidate interactions and functions [53]. Complex networks of miRNAs have 

already been studied in other types of cancer and further studies will be 

required to expose miRNA networks specifically found in breast cancers [52].  

 

2.9 Small Nucleotide Polymorphisms (SNPs) and the risk of breast 

cancer 

A recent study examining genetic variants or Single Nucleotide 

Polymorphisms (SNPs) of miRNAs concluded that some SNPs can be linked 

to increased or decreased survival [50]. While inspecting the effects of the 

rs6505162 SNP, A > C polymorphism of miR-423 a group of researchers 

found that this polymorphism was correlated with a lower risk of breast cancer 

[84]. In a similar study another polymorphism (rs1161494913) was evaluated 

and the researchers concluded that the CC polymorphism was linked to a 

reduced risk of breast cancer while occurrence of the T allele was significantly 

coupled to an increased risk of breast cancer [85]. A study from 2012 

suggests that a SNP in the binding site of miRNA of gene IL23R may lead to 
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a greater risk of cancer [86]. Another study evaluated common genetic 

variations in the biogenesis pathway of miRNA and found that these gene 

variants did not significantly impact the risk of breast cancer in Asian women 

[87].   
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CHAPTER III  

 

METHODS 

 

III. METHODS 

 

3.1 Tumor Samples and Data Source 

The data used in this study was downloaded from the TCGA web data 

portal. While the TCGA project is funded by the National Cancer Institute 

(NCI) and National Human Genome Research Institute (NHGRI), the data is 

available to the public for the purpose of scientific research. We downloaded 

miRNA sequencing data and gene expression data for all samples available 

at the time of download. Although the TCGA data does not outline a specific 

miRNA sequencing method used to generate their data – we have outlined a 

general procedure for miRNA sequencing. Figure 3 is a schematic depicting 

a detailed method of miRNAseq using the Illumina sequencing method.  
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Figure 3 – miRNAseq Preperation 

 

Figure 3. Step by step RNAseq procedure of the Illumina sequencing 

method.  Isolated samples of RNA are fractionated and adaptors are applied 

before sequencing is performed in an Illumina Sequencer. 

miRNA Seq 
Preperation

Fractionate RNA from 
sample 

Attach DNA adapters

PCR for amplified cDNA 
library

Sequencing using Illumina 
Genome Sequencer
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The first step of the procedure is to isolate tumor samples using a 

mirVana isolating kit. In the next step the isolated RNA from both samples is 

fractionated using denaturing PAGE before DNA adaptors are applied to both 

ends of the RNA. The purpose of the DNA adaptors is to act as primer 

binding sites during reverse transcription and PCR that are performed to 

create an amplified cDNA library of the samples [28]. The last step of the 

sequencing method is the actual sequencing which takes place in an IIlumina 

Sequencer [88]. The resulting sequence reads from the RNAseq can then be 

assembled by TopHat (a fast splice junction mapper for RNAseq reads) [89]. 

 

3.2 Data Processing 

A Perl script was used to aggregate miRNA expression data from the 

TCGA files that were downloaded [2]. A similar Perl script was used for 

collecting the gene expression data. The first set of data generated has 

miRNAs with no missing values. The second set of data selected for all 

miRNAs with less than 80% missing values. We used another Perl script to 

read through clinical files and extract information on subtype, race, and 

receptor status. We merged the clinical data with the miRNA expression data 

sets in order to sort and divide the data by the subtype of breast cancer.  
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3.3  Studying Expression Data  

R statistical programming was used to further process and study the 

expression data generated using the Perl scripts [1]. The data was 

normalized to correct for background error and account for any sample wise 

differences across our miRNA data set. We first took log2 of the data and 

then performed a miRNA wise (row-wise) z-score normalization. The z-score 

normalization sets the row mean to 0 and the standard deviation to 1. It is 

calculated by subtracting the mean of the row from each individual value then 

dividing the result by the standard deviation of the row. We did a sample-wise 

and miRNA-wise clustering of the data to group our data by similarity. The 

unsupervised clustering method we chose is Pearson correlation. We also 

scaled our data by rows (miRNAs). Next we generated a variety of heatmaps 

to analyze the expression profiles of miRNAs comprehensively. In order to 

clearly annotate the data with a color side bar we chose to use the R 

Pheatmaps package [90].  

We generated heatmaps for 3 sets of data. Our first set of data included 

miRNAs with no missing data, the second set included miRNAs with less than 

80% missing values and the third data set included only selected miRNAs 

that were verified via miRCancer (a miRNA cancer association database) to 

play a role in breast cancer [91]. For each data set we generated eight 

heatmaps. The first heatmap included all of the data, the next five were by 

subtype (basal, HER2, luminal A, Luminal B) and the final two were by 
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Coefficient of Variance (CV) cut-offs ( CV>60, CV>100). We used the R 

package impute to deal with missing data – this package imputes missing 

expression data by nearest neighbor averaging [92]. It is necessary to impute 

the missing values in order to cluster all the heatmaps by pearson correlation. 

The heatmaps are annotated by subtype, race and receptor status where 

possible.  

 

Figure 4 – Heatmaps Generated in R  

 

Figure 4. A list of the heatmaps that were created for each data set. 

 

3.4  Principle Components Analysis 

Before performing Principal Components Analysis (PCA) we filtered and 

prepared our data. The miRNA cohort for this analysis included only those 
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miRNAs that play a role in breast cancer. In addition, we chose only those 

samples for which we have gene expression data, as this would enable us to 

do an analysis of gene expression in the future. A list of miRNAs that are 

associated to breast cancer was downloaded from the miRCancer association 

database. An R script was used to select for miRNAs from our data that were 

on the downloaded list. We further filtered our miRNA cohort to exclude all 

miRNAs with missing values to reduce the amount of error and improve the 

accuracy of the results. The data was z-score normalized in R prior to 

performing PCA. To investigate potential biomarkers for each subtype of 

breast cancer we performed PCA on the selected cohort as well as the cohort 

divided by subtype [93]. Microsoft Excel was used to graph the results of the 

PCA. The miRNAs that only occurred in a particular subtype’s PCA analysis 

uniquely were chosen as potential biomarkers of that subtype. In order to 

visually verify the potential biomarkers, we used excel to generate simple 

graphs that displayed the expression of potential biomarkers from each 

subtype, across all subtypes.  

 

3.5  miRNA Correlations 

To find the top 20 most highly correlated pairs of miRNAs we used an R 

function that would give us the pairs of highly correlated miRNAs along with 

the linear correlation coefficient [94]. To be statistically significant the 

correlation coefficient must be above 0.05. The data used for the correlation 
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analysis had no missing values and did not select for specific miRNAs. We 

then used an online miRNA database to verify whether the 20 paired miRNAs 

belong to the same family.  

 

 
3.6  Networks, Pathways and Targets 

To uncover interactions of the potential miRNA biomarkers for each 

subtype found via PCA analysis we studied the relationship between these 

specific miRNAs and their common verified targets. The online miRNA 

database miRWalk was used to find the verified targets of the selected 

miRNAs [51]. Only the common targets amongst the miRNAs were used. If a 

subtype did not have more than one potential biomarker we did not explore 

potential networks. For subtypes with miRNA networks we used web based 

databases to establish whether or not the miRNAs involved are related.  

We used the same cohort of miRNAs that were used in the PCA analysis 

to generate a heatmap that indicates what other pathways our cohort of 

miRNAs are involved in. The web application we used for this analysis is part 

of the Diana Tools software and is called miR-Path [95]. We chose to include 

the 5’ and 3’ versions of our miRNA cohort for this analysis.  
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Chapter IV  

 

RESULTS 

 

IV. RESULTS 

 

4.1 Data Summary and Statistics 

 Table 1 lists the major subtypes of breast cancer and describes the 

characteristics of each. The Luminal subtypes of breast cancer are positive 

for the ER and PR receptor while the Basal and HER2 subtypes are negative 

for both. Figure 2 is a schematic showcasing the simplified interaction of 

miRNA, proteins and mRNA. miRNA and protein bind to mRNA causing post 

translational modification and regulation of genes.  

 Table 5 summarizes the TCGA data statistics. The unfiltered TCGA 

cohort comprises of expression data for 1046 miRNA from 931 tissue 

samples. When filtered for miRNA with <80% missing values the cohort has 

expression data for 537 miRNAs and 931 tissue samples. Further filtering the 

data to remove all missing values gives expression data for 183 miRNAs and 

931 tissue samples. We filtered the data with <80% missing values and no 

missing values by selecting for miRNAs associated with breast cancer. There 

are 55 miRNAs associated with breast cancer that had <80% missing values 

for 931 tissue samples whereas there are 41 miRNAs associated with breast 
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cancer without any missing values for 931 tissue samples. For the data with 

41 breast cancer associated miRNAs that exclude missing data we also 

filtered for only those samples with available gene expression data – this 

sample wise filtering gave us 512 tissue samples. We found that of the 

unfiltered 931 tissue samples 137 are basal, 45 are HER2, 529 are Luminal A, 

132 are Luminal B and 88 are uncategorized.   
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Table 6 – TCGA Data Summary Statistics 

 

Table 6. This is a table with summary statistics from the TCGA data that we 

downloaded and filtered for our purposes. 

Data Type # of 
miRNA 

# of 
Samples 

Raw  1046 931 

<80% missing values 537 931 

No missing values 183 931 

Breast cancer associated miRNA  

(<80% missing values) 

55 931 

Breast cancer associated miRNA 

(no missing values) 

41 931 

Breast cancer associated miRNA and 

samples with gene expression data 

(no missing values) 

41 512 

 

4.2 Heatmaps – All Samples 

 Figure 5 is a heatmap generated by miRNA expression data that is 

filtered to exclude all missing values. One can visually see patterns in the 

expression of miRNAs. The upper right quadrant shows some miRNAs closer 

to the top as highly expressed (red) and the ones below as having low 
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expression (green). There is a large cluster on figure 5 composed mostly by 

the Basal subtype where we note that the majority of the miRNAs are greatly 

expressed. In the large cluster of mostly Luminal A subtype samples we note 

that the miRNAs are not as highly expressed. The unsupervised clustering 

does not cleanly separate the samples by subtype or ER status – although 

some patterns can be seen.  

  

 

 

 

 

 

 

 

 



44 

 

Figure 5 – miRNA Expression (No Missing Values) 

 

Figure 5. A heatmap of miRNA expression in breast cancer tissue samples that excludes all missing values.  The 

heatmap is annotated by race, subtype, ER status, PR status and HER2 status.  
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Figure 6 is a heatmap of miRNA expression that includes miRNAs with 

<80% missing values. We noted a small cluster of the basal subtype near the 

center of the heatmap where miRNAs are greatly expressed. This is also a 

patch of miRNAs to the right of the heatmap that are highly expressed. In 

addition the lower left quadrant of the heatmap shows a group of highly 

expressed miRNAs. This pattern falls primarily under the Luminal A subtype 

of samples. The dark regions on this heatmap correspond to miRNAs that are 

neither greatly expressed nor lowly expressed. The clustering of the samples 

by Pearson correlation does not clearly separate the samples into known 

subtypes but we do however see multiple smaller clusters of the same 

subtype.  
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Figure 6 – miRNA Expression (<80% Missing Values) 

 

Figure 6. This figure is a heatmap of miRNA expression in breast cancer tissue samples. The data includes all 

miRNA with <80% missing values. Clustering is done by Pearson correlation and the data has been scaled by row. 
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Figure 7 is a heatmap of miRNA expression that filters for miRNAs 

that are associated with breast cancer and have <80% missing values. The 

notably expressed miRNAs form a group in the center of the heatmap. A 

remarkably low expression of miRNAs is seen towards the top right of the 

heatmap – this pattern falls primarily under samples that belong to the 

Luminal A subtype. There are 2 major and a few smaller clusters of the Basal 

or Triple Negative subtype that can be seen in the annotation.  
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Figure 7 – miRNA Expression (Select miRNAs and <80% Missing Values) 

 

Figure 7. Heatmap of miRNA expression for miRNAs that are associated with breast cancer. The data allows 

miRNAs with <80% missing values. 
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4.3 Heatmaps of the Basal Subtype 

 The following 3 figures will show heatmaps with expression data only 

for the basal samples. Figure 8, for example excludes all miRNAs with 

missing values and selects for samples from the Basal subtype of breast 

cancer. In the basal subtype, the ER, PR and HER2 receptor status are all 

negative. The clustering is done by Pearson correlation and the samples are 

annotated by race. The notable thing about figure 8 is the large cluster of red 

to the left that corresponds to miRNAs that are highly expressed. In the center 

is a slightly smaller group of miRNAs that are under-expressed and 

represented by a patch of green.  
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Figure 8 –   miRNA Expression in Basal Tumors (No Missing Values) 

 

Figure 8. This heatmap shows miRNA expression in the basal subtype and 

excludes all missing data. There is a large cluster of red to the left of the 

heatmap that represents highly expressed miRNAs in that region. 
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 In figure 9 below the heatmap data includes miRNAs with <80% 

missing values but the samples all belong to the basal subtype. The patterns 

in this heatmap are similar to those found in figure 8 but not as remarkable. 

The miRNAs with high expression are more towards the left of the heatmap.  
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Figure 9 – miRNA Expression in Basal Tumors (<80% Missing Values) 

 

Figure 9. miRNA expression in basal tumors with miRNAs that have <80% 

missing values. 
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 The third heatmap for the basal subtype (Figure 10) shows the 

expression of select miRNAs in basal tumors. There is an interesting pattern 

of expression just off center where the miRNAs on top are all greatly 

expressed while the miRNAs below them are under-expressed. There are 

four main sample wise clusters of the samples.  
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Figure 10 – miRNA Expression in Basal Tumors (select miRNAs) 

 

Figure 10. This heatmap of miRNA expression in basal tumors includes only miRNAs that are associated to 

breast cancer.  
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4.4 Heatmaps – HER2 Tumors 

 The next few heatmaps showcase the expression of miRNAs in the 

HER2 tumor samples. Figure 11 is a heatmap of expression that excludes all 

missing data. The most notable patterns of expression on this heatmap are 

near the top left and bottom right. The miRNAs in these regions of the 

heatmap are highly expressed. There is a small patch in the right central 

region of the heatmap where the expression of miRNAs is very low. 
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Figure 11 – Expression of miRNA in Her2 Tumors (No Missing Values) 

 

Figure 11. This heatmap of miRNA expression in the Her2 subtype excludes 

miRNAs with missing values. 
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 Figure 12 shows the expression of miRNAs in HER2 tumors while 

including miRNA data with <80% of the values missing. The top center of this 

heatmap is dominated by red which means that the expression of miRNAs in 

that region of the heatmap is high. 
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Figure 12 – miRNA Expression in HER2 Tumors (<80% Missing Values) 

 

Figure 12. miRNA expression in HER2 tumors that includes miRNAs with <80% 

missing data. 
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 In the next heatmap (Figure 13), the data has been filtered to include 

only select miRNAs that are associated with breast cancer and have <80% 

missing values. This heatmap shows 2 major clusters of miRNAs and 4 major 

clusters of tissue samples. The expression of miRNAs is varied throughout 

the heatmap but visibly it looks like the majority of miRNAs are highly 

expressed.  
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Figure 13 – miRNA Expression in HER2 Tumors (Select miRNAs) 

 

Figure 13. miRNA expression in HER2 tumors – the data excludes miRNAs that 

are not associated with breast cancer and includes miRNAs with <80% missing 

data. 
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4.5 Heatmaps – Luminal A Tumors 

 The majority of samples in our data (529 samples to be specific) 

belong to the Luminal A subtype. The following 3 heatmaps highlight the 

expression of miRNAs in Luminal A tumors. The first figure of these 3, Figure 

14, is a heatmap of expression that excludes miRNAs with missing values. 

The more highly expressed miRNAs are towards the left part of the heatmap 

and the under-expressed miRNAs are towards the right side. In the 

annotation of race we note some clusters from the NA category.  
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Figure 14 – miRNA Expression in Luminal A Tumors (No Missing Values) 

 

Figure 14. This is a heatmap of miRNA expression in Luminal A tumors. The data has no missing values. The 

clustering method is Pearson correlation. 
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 The next heatmap in the luminal A category is Figure 15. It includes 

miRNAs with <80% missing values. The heatmap itself is not as remarkable 

as the one with no missing data. miRNAs that are highly expressed are 

interspersed throughout the heatmap but tend to be notable mostly near the 

bottom middle and bottom right side. 
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Figure 15 – miRNA Expression in Luminal A Tumors (<80% Missing 

Values) 

 

Figure 15. miRNA expression in Luminal A tumors. The data includes <80% 

missing values.  
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 In Figure 16 we see expression data for Luminal A samples that 

excludes miRNAs that are not associated with breast cancer and includes 

miRNAs with <80% missing values. This heatmap shows some interesting 

patterns of expression. Just off center to the left we see a bright patch of 

green above a dark patch of red. In that area the miRNAs are really under-

expressed.   
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Figure 16 – miRNA Expression in Luminal A Tumors (Select miRNAs and <80% Missing Values) 

 

Figure 16. Heatmap of miRNA expression in Luminal A tumors with miRNAs associated with breast cancer and 

<80% missing values. 
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4.6 Heatmaps – Luminal B Tumors 

 The following 3 heatmaps all represent the expression of miRNAs in 

the luminal B subtype. Figure 17 is the first heatmap and excludes miRNA 

with missing values. The top left corner of the heatmap is dominated by red 

whereas the bottom right corner is mostly green. In addition the bottom center 

of the heatmap has a notable red region where the miRNAs are highly 

expressed. 
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Figure 17 – miRNA Expression in Luminal B Tumors (No Missing Data) 

 

Figure 17. miRNA expression in Luminal B tumors with no missing data. The 

heatmap is annotated by race. 
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 Figure 18 is a heatmap of miRNA expression in the Luminal B 

samples that includes miRNAs with <80% missing values. There are only a 

few visible patterns of expression. One region that is interesting is on the top 

right side of the heatmap where there is a bright region of red. miRNAs in that 

specific region are highly expressed.  
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Figure 18 – miRNA Expression in Luminal B Tumors (<80% Missing 

Values) 

 

Figure 18. A heatmap of miRNA expression in Luminal B tumors. Includes 

miRNAs with <80% missing values. 
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 The final heatmap of expression in Luminal B tumors is Figure 19. 

This heatmap filters to exclude all miRNAs that are not associated with breast 

cancer and includes <80% missing values. There is an interesting region on 

the left side of the heatmap where there is a bright green patch right above a 

bright red patch. The majority of the samples in this region belong to the 

White race. Finally there are 6 major clusters of samples and 2 major clusters 

of miRNAs.  
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Figure 19 – miRNA Expression in Luminal B Tumors (Select miRNAs and <80% Missing Values). 

 

Figure 19. Expression of miRNAs in Luminal B tumors. The heatmap is annotated by race and is clustered by 

Pearson correlation.  
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4.7 Heatmaps – Coefficient of Variance > 60% 

 The next series of heatmaps select for miRNAs that have a coefficient 

of variance above 60%. Figure 20 is the first in this series and does not 

include any miRNAs that have missing data. There are some noteworthy 

patterns in this heatmap – especially in the upper regions. The miRNAs are 

highly expressed in the upper left region whereas they are under-expressed 

in the upper right region. Similar patterns can be seen in the lower half of the 

heatmap. 
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Figure 20 – miRNA Expression for CV>60% (No Missing Data) 

 

Figure 20. This heatmap selects for miRNAs that have a coefficient of variance greater than 60% and excludes all 

missing data.  
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 In Figure 21 the data for the heatmap includes miRNAs with <80% 

missing values. There is a cluster of the basal subtype close to the center of 

the heatmap. The miRNAs that fall under this cluster of basal samples are 

highly expressed.  
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Figure 21 – miRNA Expression for CV>60% (<80% Missing Values) 

 

Figure 21. This heatmap selects for miRNAs that have a coefficient of variance greater than 60% and includes 

miRNAs with <80% missing values. 
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 The last in the series of heatmaps with coefficient of variance >60% is 

Figure 22. This heatmap features only those miRNAs that are associated 

with breast cancer and also includes miRNAs with <80% missing values. As 

in figure 21 there is a cluster of the basal subtype but it is located towards the 

right of the heatmap. Below the cluster of basal samples the miRNA 

expression is high. There is an eye-catching bright green area in the bottom 

left part of the heatmap that represents the under expression of miRNA in that 

region.  
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Figure 22 – miRNA Expression for CV>60% (select miRNA with <80% Missing Data) 

 

 

Figure 22. This heatmap selects for miRNAs that have a coefficient of variance greater than 60%, excludes all 

miRNAs not associated with breast cancer and includes miRNAs with <80% missing values. 
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4.8 Heatmaps – Coefficient of Variance >100%  

In this last set of heatmaps we present expression of miRNAs that 

have a coefficient of variance that is >100%. Figure 23 has miRNA with no 

missing values. There are 2 large clusters of the basal subtype that can be 

seen in the annotation region. The bottom left part of the heatmap falls under 

the basal samples and is predominantly red in color.  
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Figure 23 – miRNA Expression for CV>100% (No Missing Data) 

 

Figure 23. Expression of miRNAs with CV>100%. This heatmap excludes all missing data.  
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 The next heatmap of expression for miRNAs with CV>100% (Figure 

24) has included miRNAs with >80% missing values. The majority of the red 

regions lie to the left of the heatmap. miRNAs are expressed highly below a 

cluster of basal tissue samples.  
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Figure 24 – miRNA Expression for CV>100 (<80% Missing Data) 

 

Figure 24. Expression of miRNAs with CV>100%. This heatmap includes miRNAs with <80% missing data. 

 



 83  

 Figure 25 is the last heatmap for CV>100% and filters for miRNAs 

associated with breast cancer and includes <80% missing values. The right 

half of the heatmap has red regions on the top half and green on the bottom 

while the left half of the heatmap has red regions predominantly in the bottom 

and green regions on top. There are 2 major clusters of miRNAs. 
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Figure 25 – miRNA Expression for CV>100 (Select miRNA and <80% Missing Values) 

 

Figure 25. Expression of miRNAs with CV>100%. This heatmap excludes miRNAs that are not associated with 

breast cancer and includes miRNAs with <80% missing values. 
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4.9 Results of Principle Components Analysis 

 The Principal Components Analysis (PCA) was performed on miRNA 

expression data for all samples and then by subtype. The data included only 

those miRNAs that are associated to breast cancer and excluded all miRNAs 

with missing values. The samples were filtered to include only those for which 

we had gene expression data. The PCA for all the samples shows that the 

first component explains 99.98% of the variance in the data. Figure 28 is a 

graph of the scores for the first principle component that results from a PCA 

on data with all samples. The 7 most variable miRNAs in order are hsa-mir-21, 

hsa-mir-374a, hsa-mir-23a, hsa-mir-203, hsa-mir-19a, hsa-mir-205 and hsa-

let-7g. 

 

Figure 26 – PCA for All Samples 
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Figure 26. A graph of the scores for the first principle component in the PCA 

for all samples shows us the sign and magnitude of each miRNA.  

 Figure 27 is a graph of the scores of the first principal component in 

the PCA analysis for the Basal subtype. The 7 most variably expressed 

miRNAs in the PCA of the Basal subtype in order are hsa-mir-21, hsa-mir-

374a, hsa-mir-203, hsa-mir-205, hsa-mir-127, hsa-mir-23a and hsa-mir-379. 

The first component explains 99.8% of the variance.  

 

Figure 27 – PCA for Basal Samples 

 

Figure 27. A graph of the scores for the first principle component in the PCA 

for Basal samples shows us the sign and magnitude of each miRNA.  

 

 The miRNAs hsa-mir-127 and hsa-mir-379 occurred uniquely in the 

PCA analysis of the Basal subtype which means they can further be explored 
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as potential Basal subtype biomarkers in breast cancer. To visually see how 

these specific miRNA express differently in the Basal subtype, we graphed 

the expression of both miRNAs across all subtypes (Figure 28).  

 

Figure 28 – Expression of Potential Basal Subtype Biomarkers 

 

Figure 28. A graph of the expression of has-mir-127 and has-mir-379 (proposed 

Basal subtype biomarkers) across all four subtypes. According to the graph, 

both miRNAs are highly expressed in the Basal subtype of breast cancer. 

 

The results of the PCA performed on the HER2 samples are displayed 

in Figure 29. The first component accounts for 99.99% of the variance in the 

data. The 7 most variably expressed miRNAs in the HER2 subtype are hsa-

mir-374a, hsa-mir-21, hsa-mir-23a, hsa-mir19a, hsa-mir-126, hsa-mir-20a and 

hsa-mir-30a respectively.  
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Figure 29 – PCA for HER2 Samples 

 

Figure 29. A graph of the scores for the first principle component in the PCA 

for HER2 samples shows us the sign and magnitude of each miRNA. 

 

 The PCA analysis of the HER2 subtype yielded four miRNAs that we 

did not find in the PCA analysis of any other subtype. Those four miRNAs are 

hsa-mir-19a, hsa-mir-126, hsa-mir-20a and hsa-mir-30a. We graphed the 

expression of these potential biomarkers for the HER2 subtype across all 

subtypes in Figure 30.  
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Figure 30 – Expression of Potential HER2 Subtype Biomarkers 

 

Figure 30. A graph of the expression of hsa-mir-19a, hsa-mir-126, hsa-mir-20a 

and hsa-mir-30a (proposed HER2 subtype biomarkers) across all four 

subtypes. According to the graph, hsa-mir-126 is down regulated while the 

other 3 miRNA are up-regulated in the HER2 subtype of breast cancer. 

 

Figure 31 is a graph of the results from a PCA of Luminal A samples. 

The first principal component explains 99.96% of the variance in the data for 

the Luminal A. The top 7 most variable miRNAs from the PCA of luminal A 

tumors in order are hsa-mir-21, hsa-mir-23a, hsa-mir-374a, hsa-mir-205, hsa-

mir-222, hsa-let-7g and hsa-mir-203. 
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Figure 31 - PCA for Luminal A Samples 

 

Figure 31. A graph of the scores for the first principle component in the PCA 

for Luminal A samples shows us the sign and magnitude of each miRNA. 

 

 Only one of the 7 miRNAs (hsa-mir-222) from the PCA analysis was 

unique to the Luminal A subtype. This expression of this potential biomarker 

for the Luminal A subtype was graphed across all subtypes in Figure 32. It 

can be noted from the graph that hsa-mir-222 is greatly up regulated in 

Luminal A subtypes. 
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Figure 32 – Expression of Potential Luminal A Subtype Biomarkers 

 

Figure 32. A graph of the expression of hsa-mir-222 (a proposed Luminal A 

subtype biomarker) across all four subtypes. According to the graph, hsa-mir-

222 is up-regulated in the Luminal A subtype of breast cancer. 

 

 The results of the PCA for the Luminal B samples are in Figure 33. 

The first component of this analysis explains 99.96% of the variance in the 

data. The most variable miRNAs from this analysis are hsa-mir-21, hsa-mir-

203, hsa-mir-205, hsa-mir-152, hsa-mir-26b, hsa-let-7g, and hsa-mir-200c. 
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Figure 33 – PCA for Luminal B Samples 

 

Figure 33. A graph of the scores for the first principle component in the PCA 

for Luminal B samples shows us the sign and magnitude of each miRNA. 

 

 There are three miRNAs from the result of the PCA analysis of the 

Luminal B subtype that do not occur in the PCA analysis of any other subtype. 

These potential biomarkers of the Luminal B subtype are hsa-mir-152, hsa-

mir-26b and hsa-mir-200c. The expression of all three potential biomarkers of 

the Luminal B subtype was graphed across all the subtypes of breast cancer. 

Figure 34 shows the resulting graph. It is interesting to note that although the 

expression of all 3 potential biomarkers is down regulated in the Luminal B 

subtype, the expression of hsa-mir-200c is up regulated in the HER2 subtype. 
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Figure 34 – Expression of Potential Luminal B Subtype Biomarkers 

 

Figure 34. A graph of the expression of hsa-mir-152, hsa-mir-26b and hsa-mir-

200c (proposed Luminal B subtype biomarkers) across all four subtypes. The 

miRNAs are down regulated in the Luminal B subtype of breast cancer. It is 

also important to note that according to this graph, hsa-mir-200c is up 

regulated in the HER2 subtype. 

 

4.10 Results of Correlation Analysis 

 Through correlation analysis we found the 20 pairs of miRNAs that are 

most highly correlated in their expression. Table 7 lists the 20 pairs of 

miRNAs along with the correlation coefficient for each. The pair of miRNA 

with the highest correlation coefficient is hsa-let-7a.1 and hsa-let-7a-2. 
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Fourteen of the 20 pairs that have correlating expression belong to the same 

family of miRNAs.  

 

Table 7 – 20 Pairs of Most Highly Correlated miRNAs 

 

Table 7. This is a table listing the 20 most highly correlated pairs of miRNAs 

and the correlation coefficients for those pairs. 

 

Pair First Variable Second Variable  Correlation Related 

1 hsa-let-7a-1     hsa-let-7a-2    0.9997511 Yes let-7 family 

2 hsa-let-7a-2    hsa-let-7a-3   0.9996304 Yes let-7 family 

3 hsa.let.7a.1     hsa-let-7a-3    0.9996081 Yes let-7 family 

4 hsa-mir-9-1      hsa-mir-9-2   0.9988614 Yes mir-9 family 

5 hsa-mir-199a-1   hsa-mir-199a-2    0.9944959 Yes mir-199 family 

6 hsa-mir-199a-2    hsa-mir-199b   0.9918414 Yes mir-199 family 

7 hsa-mir-29b-1   hsa-mir-29b-2   0.9837018 Yes mir-29 family 

8 hsa-mir-365-1    hsa-mir-365-2   0.9783261 Yes mir-365 family 

9 hsa.mir.194.1    hsa-mir-194-2    0.9765156 Yes mir-194 family 

10 hsa-mir-199a-1     hsa-mir-199b    0.9752805 Yes mir-199 family 

11 hsa-mir-128-1    hsa-mir-128-2    0.9511545 Yes mir-128 family 

12 hsa-mir-200a     hsa-mir-200b    0.9443755 Yes mir-8 family 

13 hsa-mir-17      hsa-mir-20a    0.934769 Yes mir-17 family 

14 hsa-mir-144      hsa-mir-451    0.9334398 No 

15 hsa-let-7c      hsa-mir-99a    0.9178015 No 

16 hsa-mir-125b-2      hsa-mir-99a    0.9159054 No 

17 hsa-let-7c   hsa-mir-125b-2    0.9111898 No 

18 hsa-mir-92a-1    hsa-mir-92a-2    0.9056862 Yes mir-25 family 

19 hsa-mir-182      hsa-mir-183    0.9048191 No 

20 hsa-mir-127      hsa-mir-379    0.8975715 No 
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4.11 Results of Networks, Pathways and Targets Analysis 

 In order to elucidate the involvement of miRNAs in multiple pathways 

we queried an online database with our cohort of miRNAs that are associated 

with breast cancer. Figure 35 is a heatmap displaying the results of this 

search. We note that hsa-miR-15a-5p, hsa-miR-193b-3p, hsa-miR-34a-5p, 

has-let-7g-5p, has-miR-17-5p, hsa-miR-20a-5p are involved in the most 

number of pathways according to the heatmap.  
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Figure 35 – Heatmap of miRNA Expression in Various Pathways 

 

Figure 35. This heatmap was generated using a we tool called miRPath 

which is a part of Diana Tools [95].  
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We found miRNA-gene networks in the 2 of the 4 subtypes we 

analyzed. Figure 36 displays the results of our analysis for the Basal subtype. 

There are 5 genes that are common targets of has-mir-127 and has-mir379.  

 

Figure 36 – miRNA-Gene Network in Basal Subtype 

 

 

Figure 36. hsa-mir-127 and hsa-mir-279 both have 5 common gene targets as 

shown above. 

 

 The HER2 subtype has 4 potential biomarkers for which we 

investigated common gene targets. We found that there are 8 genes that are 

common targets of hsa-mir-19a, hsa-mir-126, hsa-mir-20a and hsa-mir-30a 
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which are miRNAs that we propose as potential biomarkers of the Her2 

subtype in breast cancer. We did not find any gene-miRNA networks in the 

Luminal A and Luminal B subtypes. Figure 37 displays the results of this 

analysis.  

 

Figure 37 – miRNA-Gene Network in Her2 Subtype 

 

Figure 37. hsa-mir-19a, hsa-mir-126, hsa-mir-20a and hsa-mir-30a have 8 

gene targets in common as shows by this schematic. 
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Chapter V 

 

DISCUSSION 

 

V. DISCUSSION 

 

Investigating the small and impactful miRNAs has provided us with a 

wealth of information on the biological interactions of these molecules and 

how those interactions affect the outcome of a disease like cancer. The 

deregulation or expression of miRNAs in cancer tissue can reveal a lot about 

the characteristics of the specific tumor. In our study we wanted to take a 

panoptic approach to visualizing the miRNA expression data generated by 

TCGA. Although miRNA expression has been studied before – we believe 

that we have been broad in our approach and method.  

 

We generated various heatmaps in order to comprehensively visualize 

how miRNA expression can vary by subtype, race and statistical manipulation 

of data. The results are intriguing. The heatmaps that are sorted by subtype 

show visually how different the expression patterns can be between subtypes 

of breast cancer. The clustering of our heatmaps with all samples included did 

not completely group together the known subtypes. We also did not see any 

significant grouping by race in heatmaps by subtypes. This may be attributed 
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to the method of clustering or normalization we used. We however chose 

unsupervised clustering over supervised clustering of known groups to find 

new patterns of expression. One such recurring pattern we noted on our 

heatmaps is a small grouping of the basal samples that corresponded to 

miRNAs that were highly expressed.  

 

The reason for filtering the miRNAs by a cut off for coefficient of 

variance was to highlight the expression of miRNAs with the most variable 

expression in the cohort that we had. The result was a heatmap with patches 

of bright red and green that show how variable the expression of miRNAs can 

be across samples. The inclusion of miRNAs with <80% missing values 

changed the way the heatmap clustered and also displayed new patterns of 

expression.  

 

The difference in expression of miRNAs between tumor subtypes is 

advantageous to the field of science as this non-conformity in expression 

allows us to use miRNAs as biomarkers of disease. In order to propose 

potential biomarkers we used Matlab to conduct Principal Components 

Analysis on our cohort of miRNAs for each subtype. We then graphed the 

potential biomarkers to visually confirm our results. To the best of our 

knowledge our study is the first to use PCA on miRNA expression data from 

TCGA to suggest potential biomarkers.  
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The results of our PCA are quite promising. Our results suggest that 

hsa-mir-127 and hsa-mir-379 are potential biomarkers for the Basal subtype 

of breast cancer. A previous study found that hsa-mir-127 is down regulated 

in breast cancer and regulates cell proliferation by acting on BCL6 [96]. Past 

work has also shown that hsa-mir-379 is down regulated in breast cancer [97]. 

The graph in figure 28 shows that both hsa-mir-127 and hsa-mir-379 are up 

regulated in the basal subtype of breast cancer. For the HER2 subtype our 

analysis reveals that hsa-mir-19a, hsa-mir-126, hsa-mir-20a and hsa-mir-30a 

would be good potential biomarkers. Although not much information is 

available, hsa-mir-19a and hsa-mir-126 are known to be down regulated in 

breast cancer from previous studies [98, 99]. In contrast, according to one 

study, hsa-mir-20a is up regulated in breast cancer [100]. The miRNA, hsa-

mir-30a, has been more thoroughly researched in other studies that have 

highlighted its potential as a prognostic marker and a target for therapeutic 

intervention as it is a tumor suppressing miRNA that is deregulated in breast 

cancer [101, 102]. Our findings in figure 30 show that apart from hsa-mir-126 

which is down regulated, the other 3 suggested biomarkers are all up 

regulated in the HER2 subtype of breast cancer. PCA of Luminal A samples 

provided us with one miRNA (has-mir-222) that our data supports as a good 

potential biomarker for the Luminal A subtype. A study from 2012, has also 

concluded that has-mir-222 is significantly up regulated in breast cancer and 
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would be a great biomarker for the disease [103]. This result in figure 32 

supports the previous finding – hsa-mir-222 is up regulated in the Luminal A 

subtype according to our analysis. The Luminal B samples in our study 

yielded 3 potential biomarkers after PCA and they are hsa-mir-152, hsa-mir-

26b and hsa-mir-200c. Our findings are in line with studies that were 

published fairly recently - that claim that has-mir-152 and has-mir-26b are 

down regulated in breast cancer and should be explored further as a 

therapeutic targets [104-106]. On the other hand hsa-mir-200c is up regulated 

in breast cancer [107]. When we graphed the expression of these 3 proposed 

biomarkers across all subtypes we found that all 3 were down regulated in the 

Luminal B subtype (figure 34). It is important to note however that hsa-mir-

200c is the least down regulated of the 3 and it is also looks like it is up 

regulated mostly in the HER2 subtype. The potential biomarkers for each 

subtype were chosen because they occurred only once when comparing a list 

of the top 7 most variably expressed miRNAs in each subtype. The miRNAs 

that we found as most variably expressed across the subtypes would be good 

biomarkers for breast cancer. Those miRNAs include hsa-mir-21, hsa-mir-

374a and has-mir-23a, hsa-mir-203 and hsa-mir-205. Results from other 

studies have also put forth these miRNAs as suggestions for potential 

biomarkers and or targets of therapeutic intervention after extensive research 

[108-111]. 
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We had originally hypothesized that our analysis of the highly 

correlated pairs of miRNAs would belong to the same family of miRNAs. This 

was supported by knowledge that miRNAs that belong to the same family 

may be transcribed from the same primary-miRNA or may have common 

mRNA targets. Although, our analysis mostly supports the hypothesis we 

made, we did find that 6 of the 20 pairs of miRNAs with highly correlating 

expression were unrelated. This is definitely an intriguing finding.  

 

The fact that miRNAs play a role in multiple pathways is not new but 

we felt it would be good to visualize the cross involvement of select miRNAs 

in other disease pathways. The results of the pathway analysis are in figure 

35. In our mission to uncover miRNA-gene networks in breast cancer 

subtypes we found 2 networks where the most variable miRNAs in the 

subtype have common gene targets. We created schematics to help visualize 

these interactions in figure 36 and figure 37. We believe that the up or down 

regulation of these common targets plays a major role in breast cancer. We 

chose only to explore the first level of any potential network to reveal 

immediate interactions in networks that are in all probability highly intricate. 
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Chapter VI 

 

SUMMARY AND CONCLUSIONS 

 

VI. SUMMARY AND CONCLUSIONS 

Genomics and proteomics applications have helped us solve some of 

the many mysteries of molecular interactions that were unknown to us. In 

addition these applications have been competent in the way they generate, 

manage and analyze large amounts of data – thus alleviating most of the 

burden faced by scientists. The ability to sequence genomes efficiently and in 

a short span of time has also given us the ability to examine and treat patients 

as individuals and not groups. In the long run, the practice of personalized 

medicine will optimize treatment and save lives [112]. Through this study we 

aimed to contribute to the growing depth of knowledge that can redefine our 

approach to treating cancer and potentially save lives. 

 

 Although comprehensive we feel our approach to studying miRNA 

expression could have been more in-depth if applications for the comparison 

of heatmaps were available as web based tools. A computer program would 

be better at recognizing and comparing patterns across heatmaps. Visual 

comparison relies too heavily on an individual doing the comparisons and 

therefore is prone to error. Regardless, it is interesting to note that we could 
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deduce via visual analysis only that miRNA expression varies quite a bit when 

compared between subtypes. We did not note any significant differences in 

the expression patterns of miRNA across race but there could be several 

reasons for this. One such reason could be a limited cohort with only a small 

number of samples representing the racial minorities. We also lacked data 

from normal tissue samples and therefore could not compare the expression 

of miRNA in breast tumors versus normal tissue samples. The availability of 

such data would allow us to be even more confident in our analysis and 

conclusions.  

 

 In addition to visually studying miRNA expression in breast cancer we 

used Principal Components Analysis (PCA) to support with evidence any 

potential biomarkers for breast cancer subtypes. A literature search confirms 

that this type of PCA analysis has not previously been performed on TCGA 

breast cancer data. We hope that future studies validate our computational 

results by experimental study of the miRNAs we suggest as biomarkers or 

targets of therapeutic intervention. Once again, having data on normal breast 

tissue samples would aid in further validating our results.  

 

 In table 7, we found 6 pairs of miRNAs that share highly correlated 

expression but are unrelated. Further studying this interesting finding could 

lead to the discovery of new families or new molecular interactions of miRNAs. 
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Our analysis of the pathways and networks in breast cancer was 

straightforward and simple. We feel that future studies can build on our 

findings and do a more in-depth analysis that explores important protein and 

molecular interactions apart from the gene targets that we focused on.  

 

 In conclusion we believe that our results and the results of any follow 

up studies will help greatly in accomplishing the purpose of TCGA – which is 

to aid in the comprehensive and multi-layered analysis of cancers to discover 

novel theories rapidly and efficiently. As more and more data is generated the 

results of any computational analyses will have fewer errors and more 

accuracy. The inclusion of more clinical data and data on co-morbidities and 

environmental factors would be invaluable for future studies that wish to study 

miRNAs in cancer. Environmental factors for example may play a major role 

in the expression of miRNAs and may even explain why some miRNAs are up 

or down regulated in individuals. Thus far, studies have concentrated more on 

the internal interactions of miRNAs but we feel that external factors should 

also be explored by scientists in future studies.  

 

An all-inclusive approach is vital in the study of miRNAs and 

personalized medicine – which will completely change the way we treat 

patients in the near future. We also support the use of computational methods 

in studying big data and validating experimental research. Computational 
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research offers great precision and multiple-approaches to data analysis. We 

hope that more researchers utilize these computational methods to interpret 

an ever growing amount of scientific data that is continually generated.   
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