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ABSTRACT 

 

This dissertation includes two main areas of research. The first focuses on 

the design and development of a genetic study data management and 

analysis system that aims to ease the burden of dealing with the very large 

amounts of genetic linkage and association study data from high throughput 

genotyping platforms and to facilitate the integration of data from multiple 

sources. The Genetic Study Database (GSD) system is designed to provide 

security in data transmission and user management, flexibility in study data 

management and simplicity in user interface operations. 

The second area of research focuses on the imputation of inherited 

genetic polymorphisms or rare variants. Since 2001, with the advent of high 

throughput sequencing technologies, the cost of sequencing an entire human 

genome has dropped from 100 million dollars to less than five thousand 

dollars per genome. Nevertheless, it is still too costly to obtain whole genome 

sequencing data for every individual in a research study involving thousands 

of subjects. Genotype imputation, also called in-silico genotyping, is a cost-

effective and efficient way to maximize genome coverage in an association 

study for little or no additional cost. Depending on the type of genetic study, 

there are two approaches for doing genotype imputation: population-based 

and family-based. Both are covered in the research reported here. 
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The population-based approach takes advantage of publicly available 

genotype reference panels in predicting genotypes of unobserved variants 

among unrelated individuals. Here, the focus will be on optimizing the post-

imputation filtering strategy to find the appropriate balance in the tradeoff 

between accuracy and the yield of the imputation process (i.e., maximize the 

number of genotypes imputed). The family-based approach leverages the rich 

information available in a pedigree to increase power for imputing genotypes 

of unobserved variants among biological relatives. When performing family-

based imputation, it is important to decide how many family members and 

which family members to select for high density variant genotyping. Their data 

will be used to predict genotypes of other family members. Therefore, one 

aim of this part of the research will be to evaluate different family-based 

imputation designs to identify cost-effective strategies. 

This dissertation includes three chapters: 1) designing and building a 

sophisticated web-based genetic study data management system, 2) 

identifying an optimized set of genotype/SNP filters for population-based 

imputation, and 3) discovering the most efficient family-based imputation 

strategies for various pedigree structures. 
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CHAPTER 1: STUDY OVERVIEW 

 

1.1 Challenges to genetic study management in the Post-Genome era 

Despite successes in mapping disease causing genes in rare 

Mendelian disorders like Cystic fibrosis 1 and Huntington disease 2, in 

recent years profound understanding of human genome and advent in 

new genotyping/sequencing technology have made it possible to identify 

millions of informative single nucleotide polymorphisms (SNPs) capturing 

much of the human genome common variation across different 

populations and can be used to carry out genome-wide association 

studies (GWASs) 3,4 in dissecting common diseases. The GWAS 

approach has been successful in identifying SNPs that increase 

susceptibility to common disorders such as diabetes 5-7 and Crohn’s 

disease 8,9. Nevertheless, the GWAS design is based on so-called 

common disease/common variant hypothesis 10. Based on this hypothesis, 

common genetic variant with small genetic effect is likely to be responsible 

for the genesis of common disorders which show heritability in the 

population. Moreover, since each genetic variant has small effect for 

common disorders, to account for all the genetic heritability there must be 

multiple common variations influencing disease susceptibility. To that 

extent, the traditional family-based genetic studies which typically have 

hundreds of samples and genetic markers for testing are not likely to be 
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successful for common disorders/traits. Therefore a shift toward 

population-based studies, GWAS for example, has been seen in recent 

years. Unlike the small sample size found in single gene or candidate 

genes approach used in mapping rare diseases, it is estimated at least 

2000 samples are needed in order to gain 80% power in studying disease 

with relative risk of 1.5 through GWAS approach 11,12. Under this 

circumstance, it is not feasible to rely on text editor or spreadsheet 

program for integrating and managing study data. Thus a daunting 

challenge in studying complex diseases through GWAS approach is 

designing a genetic study management system for efficiently managing 

and analyzing data. 

In addition to the genotypic data, a genetic study management system 

should also manage study subject data including, population, family 

information and individual annotation information, genetic marker data 

including, mapping chromosomal position, gene loci ID, and other 

annotation information, pedigree information if available, disease or trait 

definitions, genetic models used in testing, phenotypic data as well as risk 

factor data. The genetic study management system should be able to 

efficiently integrate these data coming from different study sites and 

provide easy means to manage them for downstream statistical analyses. 

In the Post-Genome era, owing to the need for large sample size in 

GWAS it’s becoming more common to have studies including researchers 



 3 

around the globe. The study subject recruitment could happen in multiple 

sites and the genotyping processes could be done in not only one 

laboratory but also many laboratories and same goes to the phenotype 

and demographic data collection. Therefore, the need of a genetic study 

management system which suits for collaborative studies is more urgent 

than before. The ideal system should also allow multiple logon sessions 

and secure encrypted data transferring method among sites with ability to 

record audit trail information. In addition, it is important to handle the 

dynamic changes happened during the study life cycle. Each genetic 

study is evolving according to the development in the fields and 

laboratories. At different study developing stages, for example raw data, 

data cleaning, and final data stages, there might be important stage 

specific data existing. An ideal genetic study data management system 

should be able to manage and preserve the dynamic changes happened 

during the study life cycle. 

Among different studies, there might be difference in terms of study 

subject and genetic marker annotation data. The annotation data is the 

kind of data can be used to describe the characteristics of the study 

subject and genetic marker like subject population or genetic marker type. 

In most cases, substantial annotation data types are shared among 

different studies. But in some cases, study specific annotation data types 

exist in certain study only. For example, the birth order of the study subject 
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and the gene locus which a genetic marker is mapped onto may be 

interested to one study but not for the other study. In this case, it does not 

make sense to dictate every study in the system having the same list of 

annotation data types. The ideal system should have efficient design in 

handling this kind of heterogeneity in study subject and genetic marker 

annotation data between studies and yet provide flexibility in creating any 

number of annotation data types according to the needs of a study. 

Similarly, in terms of genetic marker type, the ideal system should not be 

restricted to handle only certain kind of genetic marker type, for example 

SNP which is a bi-allele marker, and not able to handle other type of 

genetic marker, for example Short Tandem Repeat (STR) marker which is 

a multiple-allele marker. Before SNP getting popular, most of the legacy 

Genome Scan Linkage studies were done through genotyping STR 

markers. Therefore, the ideal genetic data management system should be 

able to handle this kind of genetic marker type heterogeneity within or 

between studies. Another important functionality in managing genetic 

study data is to be able to freely subgroup study subjects and genetic 

markers according to data analysis plans. The ideal system should 

provide easy means to select and subgroup study subjects and genetic 

marker for further data management. For example, a study may perform 

different statistical analysis method according to different ethnic 

background. Therefore the ideal system should allow user easily select 
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subjects from same ethnic group through pre-defined subject cluster 

based on ethnic background instead of going over through all subjects for 

selecting subjects. Similarly, the user should be able to easily select 

genetic markers which, for example, are mapped onto the same gene for 

further data management instead of going over many thousands of 

genetic marker to identify the markers in interest. One of advantage of 

family study is the rich information provided by the family pedigree 

structure. Often, showing a pedigree drawing is more straightforward and 

informative to the researcher than tabulated data. Therefore it’s essential 

for a genetic study management system to provide a comprehensive 

means in drawing pedigree along with genotypic, phenotypic, 

demographic, and risk factor data to help researchers obtain 

understanding of the study families. For example, through reviewing the 

affection status of each family member in the pedigree, researchers may 

be able to infer the genetic model of the disease interested and implement 

the model in the statistical analyses. Owing to the heterogeneity in 

disease classification, the ideal genetic data management system should 

also allow multiple affection status definitions existing in the study. It 

should provide flexibility in defining the affection status, which may be 

based on the value of certain phenotype/trait or a value combination of a 

number of phenotypes and/or traits. Therefore, the affection status of each 

study subject is decided at the run time based on the current phenotype 
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values instead of fixed and pre-defined affection status value. One of 

merits of employing a genetic study data management system is being 

able to integrate massive amount of genotype data and phenotype data 

including possible risk factors which are modeled as the covariates in the 

statistical analyses. The ideal system should allow various type of 

phenotypic variable, for example numeric type, string type or categorical 

type, and have no restriction over the number of phenotypic variables can 

be created in a study. Finally, the ultimate goal of genetic study is to 

perform association analyses and/or linkage analyses on the integrated 

data. Therefore the ideal system should provide data analysis functionality 

and data export functionality to facilitate downstream statistical analyses. 

Its data export formats must support common and popular software 

packages in the field, for example MERLIN 13 and PLINK 14. 

Although there are several software tools existing that assist 

researchers in managing genome-wide association studies and/or legacy 

genome-scan linkage studies, they tend to only cover some but not all 

aspects mentioned previously. Therefore an urgent need of a data 

management tool in the post-Genome era is a single genetic study 

management tool with utilities that integrate massive amount of genotype 

and phenotype data as well as genetic variant annotation data and 

perform multiple statistical analyses for dissecting disease causing genetic 

variants for large, collaborative genetic studies. In order to address this 
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need, I have developed a robust, easy-to-use data management system 

named Genetic Study Database (GSD) system. 

 

1.2 Gaining more study power through genotype imputation 

To infer the information of larger set of unobserved genetic variants 

among related individuals through genotyping a modest set of informative 

genetic variants has been the central theory of genetic linkage studies and 

of haplotype mapping approaches 15-22. The same idea has been 

extended to genotype imputation which uses the stretches of shared 

haplotype identified among unrelated individuals to estimate the effect of 

many variants that are not directly genotyped. Ever since the HapMap 

Consortium database 23,24 was released to the public, it has been widely 

used in studies for GWAS microarray design and genotype imputation for 

samples that have ancestry close to HapMap panel populations. After the 

1000 Genomes Project Phase I 25 database was released to the public, 

the interest of genotype imputation has grown significantly. It has become 

a standard practice to perform genotype imputation in a GWAS. 

The identification of underlying genes for a complex disease is 

achieved by studying the association between the human diseases or 

traits and genetic variants, mainly genotypes. In human genetics, one of 

the central objectives is to dissect the identity and characteristics of 

genetic variants underlying human traits, including disease susceptibility 
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and variability in all kinds of biological measures. Ultimately this will be 

achieved by examining the possible association between trait and genetic 

variants discovered by thoroughly surveying the entire genome of study 

samples. However, given the cost of whole human genome sequencing at 

this time, it is still not feasible to sequence thousands of individuals. 

Instead, geneticists have long recognized the theory of using observed 

genetic variants to predict or impute the genotypes of unobserved genetic 

variants. 

Genotype imputation refers to the use of a reference panel of 

haplotypes from a dense set of SNPs to impute the dense SNP genotypes 

of individuals whom have been genotyped at a subset of the SNPs 26-30. 

The typical number of genetic markers used in a genetic linkage study to 

survey the entire human genome is less than 10,000 and more often the 

type of marker being used is short tandem repeats (STR) or 

microsatellites which are more informative than bi-allelic SNP markers. 

Due to the advances in microarray technology, genome-wide association 

studies have been widely conducted in the past decade. Rather than 

genotyping less than 10,000 markers, in order to achieve decent genome 

coverage, genome-wide association studies typically genotype hundreds 

of thousands to millions of SNP markers on each of study individual. With 

a reference panel of high density SNPs from multiple populations, 

researchers can then perform genotype imputation across the whole 
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genome for GWAS or over a more targeted genomic region as part of a 

fine-mapping study. The imputed genotypes can then be used to boost the 

number of genotyped variants to be examined for association with the trait 

in question which increases the power of GWAS or fine-mapping study. 

Compared with testing only genotyped SNPs in a GWAS, it’s been 

shown that the use of imputation can lead to a boost in power of up to 

10% 11. Moreover, simulation study has reported that the genotype 

imputation has greatest benefit over inferring genotypes for rare SNPS 

which are harder to tag 31. On the other hand, in fine-mapping studies the 

number of recombination events occurring in the region and the amount of 

linkage disequilibrium (LD) in the region are the limiting factor that 

determines mapping precision. Therefore, one can increase the chance of 

finding a true casual variant through increasing study sample size or 

increasing the mapping density in regions with lower levels of LD. 

Genotype imputation can impute missing genotypes and genotypes of 

unobserved SNPs in a possibly associated region. Thus increase the 

chance to directly identify the casual variant in the region. In meta-

analysis, it is unlikely all the cohorts used the same type of microarray. 

Genotype imputation can be used to increase the number of common 

SNPs among studies which then be combined to boost power in meta-

analysis. In addition to imputing SNP genotypes, the genotype imputation 

can be extended to other types of genetic variants such as STR, copy 
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number variant and insertion/deletion variant. Finally, another use of 

imputation is to infer the genotype at a sporadically missing site that can 

happen essentially on any genotyping platforms. 

In population genetics, the coalescent theory implies that all individuals 

have common ancestry in the distant past. When given two haplotypes 

share the same alleles inherited from a common ancestor, they are 

identical by descent (IBD). Genotype imputation is one of many 

applications for the IBD segments resulting from common ancestry. When 

detecting IBD segments, one of key considerations is the haplotype 

frequency. If the haplotype is found to be shared among individuals with 

very small frequency, the haplotype is most likely inherited from a near 

common ancestor. In other words, this haplotype is not likely to be seen 

among independently sampled individuals. Therefore, when inferring the 

presence of an IBD segment, one must not only consider the population 

genetics model but also the length of sharing, and the frequency of shared 

haplotype to infer probability of IBD. 

Due to the smaller number of recombination happened, geneticists 

expect to find long stretches of shared chromosome among family 

members in traditional linkage and founder haplotype mapping studies. As 

illustrated in the family at left of Figure 1, between the two half-sib sisters, 

there is significant portion of chromosome 1 was inherited from a relatively 

recent common ancestor, the common mother in this case. On the other 
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hand, as illustrated by the right pedigree of Figure 1, after many meiosis 

and recombination happened, 2 distantly related individuals are acting like 

unrelated individuals who only share a very small portion of chromosome 

1 from the most recent common ancestor. And it is the relatively short 

stretches of shared chromosome expected in GWASs among apparently 

unrelated individuals.   

Figure 1: Closely related individuals have more and long IBD 
segments as compared to distantly related individuals 

 

 

The principal of genotype imputation is to leverage the information 

carried by stretches of IBD segments to estimate the effects of variants 

that are not directly genotyped with great precision. The haplotype 1 in 
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Figure 2 is estimated from genotyping a dense genetic marker set, for 

example sequencing, whereas the haplotype 2 is genotyped at a limited 

number of selected SNPs with dashes representing unobserved alleles. 

Between haplotypes 1 and 2, there is an inferred IBD segment across the 

region highlighted by the yellow box. Since the IBD segment is thought to 

be identical in sequence, the unobserved alleles (dashes) of haplotype 2 

can then be inferred by copying the same allele as haplotype 1 throughout 

the IBD segment (imputed haplotype 2). In order to predict the genotypes 

of unobserved variants, a reference panel with genotypes of dense 

variants including variants to be imputed must be available. The sample 

size of the reference panel could range from only a handful of family 

relatives owing to the high proportion of long continuous IBD or up to 

thousands of unrelated individuals due to low proportion of IBD which 

tends to be short, depending by the nature of the study design. 

Figure 2: The principal behinds the genotype imputation is by 
leveraging the information carried by the IBD segment between 
Haplotype 1 and 2 (region in yellow box) for imputing unobserved 
alleles (dashes) of Haplotype2 
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The idea that related individuals share long stretches of haplotype that 

are IBD is the foundation of nearly all methods of linkage analysis. In 

2006, Burdick and colleagues 32 first extended this idea to family-based 

missing genotype imputation. As shown in the Figure 1, family samples 

possess the most intuitive setting for genotype imputation. As mentioned 

earlier, an initial set of genetic markers (framework markers) are used to 

identify long stretches of haplotype shared among family relatives. A 

smaller number of family members are then selected for genotyping on a 

much denser set of markers (dense markers) which are used to 

characterize the shared IBD segment in detail. Genotypes of denser set of 

markers are then be inferred to family members who are typed at only the 

initial set of markers. This is the basis of family based genotype 

imputation. This method has a very high potential to increase the power of 

many previously conducted linkage studies by leveraging information of 

linkage mapping markers as the framework marker for IBD mapping and 

genotyping a much denser marker set, GWAS array for example, on a 

small number of family members. This substantially reduces the assay 

cost for transforming a linkage study into GWA scale family-based 

association study.  

On the other hand, the same exact IBD sharing idea can be used for 

missing genotype imputation among unrelated individuals. The major 

difference is among unrelated individuals the shared haplotype stretches 
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are much shorter due to more distant common ancestors and are, 

therefore, harder to identify with confidence. Current tools used for 

genotype imputation can be classified into two categories: (i) 

computationally intensive tools like IMPUTE 33 and MACH 34 that consider 

all observed genotypes when imputing each missing genotype and (ii) 

computationally more efficient tools such as PLINK 14 and BEAGLE 35 that 

only consider genotypes from a small number of nearby markers when 

imputing each missing genotype. Although first category tools typically 

require substantially more intensive computation than the tools from 

second category, they actually do better at predicting missing genotype, 

especially for rare polymorphisms. 

Although these genotype imputation tools have substantial power in 

imputing missing genotypes, due to the uncertainty in inferring the 

possibility of predicted genotype studies must have post-imputation 

filtering measures in place to prevent poorly imputed SNPs or genotypes 

from being included in downstream statistical analyses. It has been 

suggested to use the software reported imputation quality metrics as the 

post-imputation filtering measure in the community. However it’s still not 

clear about the merit of doing post-imputation filtering solely based on this 

measure when different types of high density genotyping data are being 

used as the input for imputation, for example GWAS or Exome array. The 

second part of this study aims to exam the merit of using quality metric for 
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post-imputation filtering and identify alternative filtering measures, in the 

case when quality metric filtering is not adequate, through comparing the 

genotypes of SNP that is designed on one type of microarray but not on 

the other type of microarray and, yet, can be imputed by the other 

microarray type. 

Strategies used for identifying the genetic basis of human disease 

have evolved considerably over the past few decades, mainly shift from 

family-based Linkage studies to Genome Wide Association studies 

(GWASs). Nevertheless, family pedigrees have been central to the 

discovery of genes relevant to simple Mendelian disorders, leading to the 

identification of nearly 4,500 such genes by the end of 2011 36. Despite 

GWASs have identified many candidate genes for common diseases, it 

appears now that most of common variants GWAS discovered have 

relative risks on the order of 1.1 to 1.2 which explains only a small fraction 

of heritability. Studies have suggested that most common complex 

diseases are likely be explained by rare variants 37-41. Since the rare allele 

which is responsible for disease risk tends to aggregate and pass through 

family, this hypothesis once again sheds light on the use of large pedigree 

in a genetic study. To that extent, it also raises up a strong interest in 

rescuing and transforming many legacy genome-scan linkage studies into 

association studies. However, we are facing a number of hurdles including 

the expensive cost of producing dense genotypes of many subjects and 
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the availability of DNA sample of all family members. Family-based 

genotype imputation has the potential to address these hurdles. It uses 

the correlation of genotypes among relatives derived from sharing of 

genomic segments IBD within pedigrees to infer the genotypes of 

unobserved relatives. Although there are a number of Pedigree-based 

imputation methods existing in the public domain, most of them either 

don’t handle large extended pedigree or require high-quality dense 

genotype data on subjects for whom we want to impute data, and do not 

account for recombination events. Recently a published method seems 

promising in performing Family-based genotype imputation on large 

pedigree. However, it is not clear about the merit of this method when 

applying on a real dataset. Most importantly, it is not clear about what is 

the best practical strategy in selecting limited number of family members 

for dense genotyping and maximizing the power of imputation. The main 

focus of the third part of this study is to come up with a suggestion in 

selecting key family members for dense genotyping through evaluating 

various Family-based imputation settings on a real dataset.  
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CHAPTER 2: GENETIC STUDY DATABASE (GSD) SYSTEM - A 

WEB BASED DATA MANAGEMENT SYSTEM FOR LARGE-

SCALE GENETIC STUDIES 

 

Abstract 

The mapping of underlying genes for a complex disease is usually 

requiring a substantial number of samples and genetic markers. With 

current advance genotyping technology a family linkage or genome-wide 

association study can easily accumulate millions of genotypes. In addition, 

as the study data is changing dynamically from the beginning to the end of 

a study, the flexibility of updating and manipulating genetic data with 

traceability is desired. Here we describe a secure web-based genetic 

study database (GSD) system for high throughput population and family 

based genetic study. GSD is a platform independent web-based DBMS 

system with supporting of HTTP protocol over an encrypted Secure 

Sockets Layer (SSL) or Transport Layer Security (TLS) transport 

mechanism. Together with the comprehensive user account management 

and study data access control GSD is designed to accommodate the 

requirements of IRB proved large-scale and/or multi-sites collaborating 

genetic linkage or association studies. The underlying database of GSD is 

an Oracle relational database which offers excellent management of lager 
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data set, exceptional flexibility in complex data table and query designs, 

and effective data quality controls. The relational database primary key 

and foreign key relationship assures the GSD study data integrity and the 

table indexes and stored procedures provide efficient access to data with 

complex structures. The front end user interface is powered by an Apache 

web server with SSL/TLS encryption. Any modern web browser with 

encryption capability can be a client. This architecture allows efficient 

management and manipulation of large dataset via a user-friendly 

graphical interface. GSD can handle unlimited number of study existing in 

the system. Furthermore, each study can include unlimited number of 

study subject, family, marker, variable, phenotype and genotype. The data 

import can be readily done through copy/paste or uploading the data file 

through the interface. Finally, its data export functionality supports various 

formats for downstream analyses (e.g, LINKAGE, GENEHUNTER, 

MERLIN and PLINK). 
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2.1 Introduction 

In recent years, the focus of human genetic study has shifted from 

Linkage analysis and/or candidate gene analysis to Genome Wide 

Association analysis 3,4,42. The advent of high throughput array genotyping 

system has moved the study management from spreadsheet into more 

sophisticated relational database and user interface design. Due to the 

massive amount of data generated by the genotyping system, it’s become 

unbearable to work with a spreadsheet for genetic study management 

when a study is going through different phases. The same burden can be 

seen when sharing massive amount of data between collaborators. In 

addition, the difficulty in handling complex and massive genetic data also 

jeopardizes the ability of keeping up with the data audit trail. 

In contrast to single-gene disease (Mendelian trait such as 

Huntington's disease and Haemophilia A and B), the identification of 

underlying genes for a complex disease (such as hypertension, diabetes, 

and cancer) usually requires a substantial number of samples and genetic 

markers 43,44. In addition, there are some other factors that can reduce the 

power of detecting the disease-causing genes including genetic 

heterogeneity, gene-gene interaction, gene-environment interaction, 

partial penetrance, phenocopies and late-onset disease. Therefore in 

order to obtain sufficient power in detecting underlying genes for a 

complex trait in a genome scan, high throughput genotyping must be done 
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on a larger DNA sample collection against thousands or millions of genetic 

markers. 

One of popular applications for detecting the linkage and association 

between the disease and genetic marker is to use single nucleotide 

polymorphisms (SNPs). Unlike simple tandem repeat (STR) marker, SNP 

has a lower number of alleles, 2 alleles for most of time, to transmit 

through generations. Nevertheless, the detecting power can be 

maintained by increasing the number of fine-mapping SNPs in genotype 

process. With the advent of fast and cost-effective genotyping technology 

one can easily generate millions of genotypes from a microarray system, 

for example Affymetrix GWAS array and Illumina HumanOmni2.5 array. 

Therefore it has become a major challenge to handle the high-throughput 

laboratory genotyping data and integrate with larger volumes of clinical 

data for downstream genetic analyses. 

Another aspect is that the genetic study data are dynamically changing 

over the study life cycle. For example, previous unavailable DNA samples 

may become available after the study began or the clinical and 

demographic data may change after lengthy follow-up. Moreover, a follow-

up marker set may be added into the study after preliminary data are 

available from analyzing the initial marker set. Finally any raw genotype is 

subject to be invalidated after discovering a Mendelian discrepancy within 

family according to pedigree information or laboratory genotyping error. 
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Therefore it is essential to have a genetic data management system 

(GDMS) offering great flexibility in manipulating data changes and yet 

maintaining audit trail information. To complicate the situation more, 

considers the scale of current complex trait study it often involves multiple 

institutes across the globe. As a requirement of regulations imposed on 

any research study involving human subjects, every institute participating 

in the study must be approved by its Institute Review Board (IRB) prior the 

beginning of the study. An ideal GDMS would provide cross-platform 

access with sophisticated data encryption and comprehensive study 

access control to protect sensitive data from leaking in order to compliant 

with IRB regulations. In addition, simple data import mechanism and the 

capability of exporting complied data into various formats for downstream 

statistical analysis software are also crucial in facilitating study progress. 

Owing to the complexity of disease etiology (for example, genetic 

heterogeneity, incomplete penetrance, phenocopies, age of disease 

onset, environmental factors, gene-environment interaction, and gene-

gene interaction) the mapping of underlying genes for a complex disease 

is requires dissecting a substantial number of study samples and genetic 

markers. With current advance genotyping technology, a family linkage or 

genome-wide association (GWA) study can easily accumulate millions of 

genotypes from examining thousands samples against hundreds of 

thousands of genetic marker, mostly SNPs. The significant amounts of 
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data generated during these genome surveys pose great data 

management challenges in manipulating, querying, comparing, integrating 

and visualizing study data. These challenges come from not only the size 

of data generated but also the integration of data coming from different 

genotyping platforms, the integration between genotype and phenotype 

data, the integration with statistical analysis pipeline, study subject and 

genetic marker annotation, and family, if any, structure visualization. In 

addition, as the study data is changing dynamically from the beginning to 

the end of a study, the flexibility of updating and manipulating genetic data 

with traceability is desired. 

Although a number of software tools have been developed and made 

available to assist researchers in conducting genetic association studies, 

they tend to focus on some specific aspects only. For example, GenoDB 

45, GeneLink 46, T.I.M.S 47, SNPLims 48, SNPP 49 and OpenADAM 50 are 

data management systems designed to facilitate the storage and 

management of large volumes of genotype data generated by candidate 

gene study or GWAS approaches. They all lack the pedigree drawing 

functionality and some of them have no phenotype integration functionality 

or only handling limited number of phenotypes. Some of them only 

manage bi-allele genetic marker, mainly SNP, and cannot handle multiple-

allele genetic markers. Some of them only accept association study data 

and do not handle linkage study data. Some of them do not handle subject 
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or genetic marker annotation data or only handle specific type of 

annotation data. On the other hand, systems such as PhD 51 and the 

Mouse Phenome Database 52 have been developed for managing large 

amount of phenotypic data but they lack the functionality to integrate with 

genotypic data. Therefore, the needs that are not all addressed by the 

existing tools include functionalities that facilitate multiple sites 

collaboration, simplify the data integration among various genotype 

platforms, integrate phenotype and genotype, annotate study subject and 

marker, visualize extended pedigree structure and audit data changes 

made through the study life cycle. 

Here I propose a robust internet-based genetic study data 

management system, GSD, which is designed for handling multiple 

simultaneous studies with features mentioned above. GSD aims to 

address the special requirements of multiple on-going families or case-

control based studies as well as the issues of multiple users. It facilitates 

the data management process in the post-genotyping phase of a study. 

In terms of data security and user data access control, in addition to 

password protection this internet-based application also employs a 128-bit 

encrypted communication protocol between client and server. GSD 

imposes two types of access control mechanisms, data management 

control and study access control. Under the first control mechanism, a 

user is allowed to perform data manipulation work only with appropriate 
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privilege granted. Currently 4 types of privilege levels are available to 

assign to a user, Admin, Laboratory Manager, Laboratory User and 

Demonstration User. With study access control, a user must be authorized 

before they have access to a study.  

GSD uses the concept of attribute to accommodate the database 

design problem arising from handling the heterogeneity among data entry. 

Within a study, a data entry, for example study subject, marker or 

phenotype, is treated as an object with unlimited number of attributes 

which are describing the object specific characters, for example the 

genetic mapping position of a marker. It does not require that all the 

objects in the same object type must have the same number of attributes. 

During the study life cycle same type of data entry may be grouped for 

data review, exporting for analysis or data updating, etc. In the case of 

complex trait study, it is a tedious and time-consuming process of 

selecting certain data entries from thousands, if not millions, of data 

entries. GSD allows creation of a data entry cluster with an unlimited 

number of data entries and a study can have as many data entry clusters 

as needed. GSD offers 4 types of data management in performing data 

update: New, Update, Inactivate, and Reactivate. All can be done through 

a user-friendly interface in batch or interactive mode with data integrity 

checking. 
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Another measure in maintaining data integrity, GSD provides audit trail 

functionality which records any data update history along with comments 

given by the user. In terms of data exporting, GSD currently is supporting 

5 export formats for a variety of analysis programs, including LINKAGE 53, 

SUPERLINK (post-Makeped) 54, MERLIN 13, RELPAIR 55, and PLINK 14. 

Export is done in a chromosome-by-chromosome fashion and, depending 

on selected format, various numbers of data files is generated for each 

chromosome. In addition to the individual data files, GSD export interface 

is also providing a compressed zip file containing all data files for easy-

download. 

When dealing with extended pedigree, a well-illustrated pedigree 

drawing can facilitate the process of reviewing pedigree structure along 

with phenotype and genotype data. GSD is using a publicly available 

pedigree drawing program, CraneFoot 56, that provides extremely flexible 

pedigree drawing capability. It allows pedigree drawing with, technically, 

unlimited number of pedigree members along with unlimited number of 

genotypes and phenotypes. 

Finally, in terms of association, GSD is providing basic population 

basis and family adjusted association tests. With the disease model, 

genetic markers and study subjects selected, one can easily run the family 

adjusted Cochran–Armitage test, Chi-Square test or Fisher-Exact test by 

one click without tedious and complicated format transformation. 
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2.2 System design 

The current software architecture design of GSD is built on top of three 

servers: a web server, a relational database server for genetic data 

management, and another relational database for user authentication 

(Figure 3). The basic software requirements for machine hosting the web 

server include CGI script support with Perl version 5.6.1 or greater and 

SSL/TLS 128-bit encryption. In terms of Perl modules, GSD requires CGI, 

Carp, DBI, DBD::Oracle and DBD::MYSQL as well as some other in-

house modules. Currently an Apache web server is installed on a Linux 

RedHat 9.0 machine for our in-house system, although GSD is not tied to 

a specific type of operating system. Because of the enormous amount of 

data coming from a high throughput genotyping process in a complex trait 

study, a modern relational database is chosen to take the advantages of 

data storage and complex data querying capability. GSD is built on an 

Oracle 11g relational database as the underlying main database with 

sophisticated database design and optimization for managing genetic 

studies. In addition, a second relational database system, MySQL 3.23.54, 

is used to reinforce data security measures including user authentication, 

data manipulation function control, and study access control. Regarding 

pedigree drawing, GSD is employing a publicly available program, 

CraneFoot v3.beta 56, as the underlying drawing engine. Another public 
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program, MakePed 53, is required for outputting pedigree data in post-

MakePed format during the data exporting process. 

Figure 3: GSD system architecture design 

 

 

2.3 Database design 

 

2.3.1 Overall database design and audit trail 

Currently there are 26 tables in GSD database schema design (Figure 

4) and all of them, except Update_Record and 4 session-specific 

temporary tables, have a foreign key relationship constraint to 

Update_Record table, which holds the key to audit trail information. This 
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relationship allows the audit trail information (including who, when, 

why/what, before-change and after-change data) to be tracked in the 

database. Each record of Update_Record table is pointing to two data 

records, representing before-change and after-change record. Therefore, 

one can traverse through all the changes that happened in the past from 

the currently active data record to the creation point of the data record and 

vice versa. A two-arrow line between two tables represents this data 

tracking functionality. And a single-arrow line is indicating a foreign key 

relationship from the start table to the arrow-pointed table. 

Figure 4: GSD database schema design 
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In order to insure the data integrity and speed up data records access 

across database tables by query joining, all the tables have primary key(s) 

defined and indexed. Beside the primary key(s), the vast majority of tables 

have foreign key(s) defined to hold the relationship between related 

tables. For example, the SBJCLUSTERLINK table has UPTID_FK, 

SBJCLUSTER_FK, SUBJECT_FK defined as its foreign keys (Table 1) 

which are used to maintain the relationship with UPDATE_RECORD, 

SBJCLUSTER, and SUBJECT tables respectively, avoid having 

redundant data, and insure the data integrity among these tables. 

Table 1: GSD database table description and primary key and foreign 
key information 
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The overall view of GSD database design is illustrated by Figure 5. 

The GSD database design starts with a root entity, StudyPhase, which 

can be associated with as many child entities, Study, as possible by 

foreign key constraint. Therefore, each Study must be associated with one 

StudyPhase only. A Study under GSD conceptually includes five data 

entity groups; Subject, Study Marker, Study Variable, Phenotype and 

Genotype. Each entity group is composed of a number of tables which will 

be covered in detail later. Although StudyPhase is suggested to be used 

for managing a study in different data phases, for example raw data, clean 

data, imputed data and final data set, it is not the only way of 

implementing StudyPhase and Study design. 

Figure 5: Over view of GSD database design 

 

 

2.3.2 Subject group 

The Subject Group (Figure 6) includes 6 tables with constraints among 

them. A Study can have as many Populations associated with it as 

variable 
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necessary. A Population is composed of a number of Subjects. Under a 

Population, Subjects can be grouped into a Family (family-based subject) 

or no Family (case-control subject). The arrowed dotted line between the 

Subject table and the Family table represents that there is a “soft” foreign 

key relationship between two tables allowing a Subject to be associated 

with no Family designed for case-control subject. In addition, any Subjects 

can be grouped into a SubjectCluster as a sub-group and a Subject is 

allowed to participate in multiple SubjectClusters. 

Figure 6: Subject group database schema 
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For example, a female subject with European ancestry can be defined 

in both Caucasian cluster and Female cluster. The SubjectClusterLink 

table is the key table in establishing this Subject-SubjectCluster 

relationship. Each record in Subject table has links pointing to the father 

and mother records in the table. Also each Subject can have as many 

attributes as possible in the SbjAttr table. As mentioned early each 

attribute can be used for describing an entity specific character and is 

composed by attribute name (value1) and attribute value (value2). 

 

2.3.3 Phenotype group 

The Phenotype group covers 7 tables (Figure 7) and is designed to 

handle data including subject demographic data, binary and quantitative 

phenotypes as well as disease affection status model. A study variable 

defines a study interest of Subject, which could be a physical exam 

measurement or disease diagnosis, and there is no limitation on the 

number of study variables under a Study. Like Subject, Study variables 

can be grouped together as a study variable cluster and a study variable 

can be a member of multiple study variable clusters. By design, a code-

type variable can have many code values to represent different meaning 

through the StudyVariableCode table. The SbjPhenotype table holds the 

phenotype data for a Subject by keeping a foreign key relationship to the 

Subject and the StudyVariable tables respectively. In dealing with subject 
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affection status definition, GSD uses Phenotypemodel and 

Phenotypemodelsvlink tables to handle multiple disease definitions. Some 

diseases, especially those based on complex traits, may have multiple 

disease definitions, for example mild form and severe form, due to the 

complex interaction among underlying disease genes. Therefore it is 

crucial to be able to efficiently export data with different affection status for 

exploratory data analyses especially in exploring phase. Each record in 

Phenotypemodel table is referencing a record in Studyvariable table and 

each record of Studyvariablecode has a corresponding record in 

Phenotypemodelsvlink table. 

Figure 7: Phenotype group database schema 
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For instance, a study code-type variable may have possible 4 values, 

Severe, Mild, Healthy and Missing, indicating the subject disease 

classification. A subject with Mild form disease may be classified as 

Affected in a broad disease model and, on the other hand, classified as 

Unknown in a stringent disease model. 

 

2.3.4 Genotype group 

This group (Figure 8) covers data regarding Marker, Marker attribute, 

Marker cluster and Marker genotype. By design, a Study can include as 

many study markers as possible in the StudyMarker table. Study markers 

can be grouped together as a study marker cluster and a study marker is 

allowed to be a member of multiple study marker clusters. Records in 

StudyMarkerClusterLink table establish this relationship. In addition a 

marker can have multiple attributes, name alias or map positions for 

example, associated with it by having records in StudyMarkerAttr table. 

The allele frequency data of a marker calculated from a SubjectCluster is 

stored in the MarkerAlleleFreq table. Therefore, the MarkerAlleleFreq 

table has foreign key relationship between it and SbjCluster and 

StudyMarker tables. The Subject genotype data are kept in SbjGenotype 

table. Although a Subject-Marker pair can have as many genotype records 

as possible in SbjGenotype table, only Subject-Marker with one genotype 

record may be exported during genotype export. 



 35 

Figure 8: Genotype group database schema 

 

 

2.4 User interface design 

Upon successful user login, the GSD interface (Figure 9) is composed 

of three interface panels, including Status Panel, Tools Panel, and Main 

Working Panel, with main option menu showed at bottom left panel. Below 

sessions discuss in much detail about the design behind each panel. 
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Figure 9: GSD user interface overview 

 

 

2.4.1 Main working panel 

This panel is the main working panel in GSD. Through this panel GSD 

displays the action response or message according to user inputs. For 

example, the figure # shows that GSD is prompting user for selecting 

Study Phase through drop-down list in order to proceed for Study 

selection. 
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2.4.2 Status panel 

This panel at top provides the options for user logout and shopping 

cart review as well as links to the center web site, online user manual, and 

sending message to GSD administrator. As one of security measures, 

GSD will invalidate the login session after the user is idle for a pre-defined 

amount of time; nevertheless, it is still a wise practice to logout unwanted 

access session through the logout button. The shopping cart button right 

next to the logout button gives the access to a list of current selected 

study subjects, markers and variables (Figure 10). 

Figure 10: Selected objects in cart view 
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One can review the details of selected objects in the current login 

session or drop any undesired objects from the cart before proceeding. In 

addition, it also allows user to create a data record export for selected 

objects, which then can be used for data mining or importing the same set 

of objects into another study in GSD. 

 

2.4.3 Tools panel 

The panel at left provides the main option menu of all functionalities 

during genetic data management in nine categories, study phase/study 

selection, affection model selection, variable selection, subject selection, 

marker selection, genotype and phenotype result display, data export, 

system operation, and statistical analysis. 

Prior to performing any data management steps in GSD a study must 

be selected first. Study selection is a two-step process, selecting the study 

phase first and then selecting the desired study under the selected study 

phase. Without setting desired study in the first place, GSD will not allow 

any functionality to be available to the user since it is not clear which study 

to retrieve data from. Therefore the very first step in GSD is selecting a 

study after a study phase is selected before performing any data 

management. Once a study is set, GSD will confirm and acknowledge the 

selected study phase and study in the working panel (Figure 11). 
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Figure 11: Study selected confirmed view 

 

 

The second category, affection model selection (Aff Model), provides 

the option of selecting the disease affection status model. The option “All” 

means all the active affection status models will be listed in the working 

panel and only one model to be picked. Once click the “All” option under 

Aff Model a list of affection status models is shown alone with information 

including corresponding referenced study variable and the mapping 

between affection status values (Affected, Unaffected, Unknown) and 

code values of the study variable. The third category, variable selection 

(Variable), supports two options, "All" and "Cluster", of selecting study 
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variables. By clicking the “All” option, the main working panel is lists all 

currently active study variables from the selected study for user to select. 

The other way of selecting study variables is through study variable 

cluster. After clicking “Cluster”, a list of active study variable clusters is 

available to the user. User then selects the interested cluster to show all 

the currently active study variables under the cluster for reviewing study 

variable data or selecting study variables. Similar with variable selection 

the marker selection category (Marker) is also supporting “All” and 

“Cluster” options for selecting markers. In addition, it provides 

“Chromosome” option allowing selecting markers by chromosome 

number. The subject selection category (Subject) is also supporting “All” 

and “Cluster” options for selecting subjects as well as “Family” option for 

selecting subjects by family name. GSD is employing a public available 

program, Cranefoot v3.beta 56, as the underline pedigree-drawing engine. 

The option, “Draw Pedigree”, is available for drawing pedigree structure of 

selected family. Once click the option a list of currently active families is 

available to user for selecting a family to draw. After a family is selected 

the pedigree structure will be displayed in the working panel along with 

additional information including selected disease affection status model, 

study variables, phenotypes, study markers, and genotypes in PDF format 

(Figure 12). 
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Figure 12: Pedigree drawing view 

 

 

If study subjects were selected and either or both study markers and 

variables were selected, user can then select the options, “Genotype” or 

“Phenotype”, under the result selection category (Result) to display the 

genotype or phenotype result for review. GSD allows a subject to have 

different genotypes for the same marker, or to be classified as having 

different phenotypes for a given variable. However, in this case GSD will 

highlight the cell in the result table by an orange color warning the user of 
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the existence of these inconsistent results. It also provides a link to review 

the detail of all results and allow inactivation of unwanted results. 

Figure 13: Genetic marker map selection for data export view 

 

 

During the data export process GSD only exports single 

genotype/phenotype result and missing data will be used if multiple results 

found. One of key functions of genetic data management system is the 

capability of formatting data in supporting downstream linkage or 

association analyses. The data export category (Export) provides one 

option, “Ped & GT”, available for data export. After clicking the “Ped & GT” 
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option, GSD prompts for the source of marker genetic/physical map input 

and the type of genetic map to export, gender-specific map or average 

map (Figure 13). 

Currently two kinds of marker map, physical and genetic, are required 

in GSD data export. Genetic map is mainly requested by the data analysis 

software and physical map is used to solve the problem of ordering 

markers with same genetic map position. There are two ways of setting 

the marker map information, manual entry through interface or retrieving 

from a marker attribute. In addition to marker map, the disease allele 

frequency, non-disease allele frequency, and penetrance of each of 3 

genotypes at the disease locus are required for export. Currently GSD 

supports five data export formats for programs like Relpair, Merlin, 

LINKAGE, SUPERLINK, and PLINK. User has the choice of doing allele 

translation on the run-time or not. If allele translation is chosen an allele 

translation file will be included at the end of export process. Once the 

export process is finished all the data are exported by chromosome in the 

map order and data files are available for user to download individually 

through interface as well as a compressed file including all export files 

(Figure 14). 
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Figure 14: Exported data in QTDT format download view 

 

 

2.4.4 System administration 

The system operation (System) provides two key functions for 

administrating GSD user accounts and managing genetic data updates. 

The “Admin” option is only accessible to user who has Admin privilege. 

This option allows admin user to create new user account and assign 

privilege level and study access rule. Admin user also can update user 

information, including user info, privilege level and study access rule, or 

delete user account. Currently there are 4 user types, Admin, Laboratory 

Manager, Laboratory User and Demonstration User. Each user type has 
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different GSD functionality access privileges assigned. In the case of 

lacking access privilege, the corresponding functionality in the Tools panel 

will not be available to the user. In addition to functionality access control, 

each user account can be assigned data access privileges to only certain 

study phases and/or studies. The “Data Update” option is the key option in 

updating study data.  Currently 4 types of data update are supported, 

including creating new records, updating existing records, inactivating and 

re-activating records. User have two ways of performing these data 

updates, either through interface to select data, subject, marker or 

genotype for example, for update or through uploading a comma-separate 

batch file with appropriate format. The “Data Update” option provides 

interfaces for updating various GSD data types, including study phase, 

study, subject population, subject, subject cluster, marker, marker cluster, 

genotype, variable, variable cluster, phenotype and disease affection 

status model. In GSD, every update generates audit trail data which 

include old record, type of update, reasons for update, user, and 

timestamp. A data record can never be updated without reason given and 

no data can be deleted from the system through interface. Any undesired 

data can be removed from user access through inactivate update and vice 

versa. 
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2.4.5 Statistical analysis functionalities 

Finally, in terms of statistical analysis GSD offers three analysis 

options, Association test, Linear Regression, and Logistic Regression. The 

Association test option provides 2 test options, Chi-Squared test and 

Fisher’s Exact test, for a selected binary trait. These tests are commonly 

employed in a typical case-control association study. Under the null 

hypothesis, for a given genetic variant there is supposed to be no 

significant genotype or allele frequency difference between case and 

control groups. These two tests examine the allele or genotype frequency 

deviation among case subjects as compared with control subject group. 

Fisher’s Exact test is recommended for any cell with count below 5 in the 

contingency table. However, when there is suspected confounding risk 

factors other than genetic risk factor, for example age, gender or smoking, 

involved in the etiology of the disease studied, GSD provides regression 

analysis modeling the relationship between the dependent variable and 

one or more explanatory variables or covariates. For a dichotomous trait, 

disease status for an example, GSD offers logistic regression analysis. 

For a quantitative dependent variable, biomarker measurement for an 

example, GSD offers linear regression analysis to model the genetic effect 

and other possible confounding effects over the dependent variable. In 

addition to the test statistics and p value to be shown in the analysis result 
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table, user can add any meaningful marker attributes, mapping position or 

minor allele frequency for example, to the result table. 

 

2.5 Results and discussion 

Due to the uncertainty of underlying genes involved and gene-gene 

interactions in complex trait disease, genome-wide scan method is often 

the first option in surveying the linkage or association between the disease 

and markers. As a result of massive genotyping in genome-scan the 

management of large quantities of genotype data has created a bottleneck 

for high-throughput genotyping studies 57,58. In the case of genome-wide 

SNP association study, one may easily generate close to one billion 

genotypes 43. Therefore the development of a robust and reliable genetic 

study data management system helps to ease the bottleneck and thus 

speeds up both genotyping process and downstream data analyses. In 

order to deliver the capability of efficiently manipulating enormous amount 

of data coming from high-throughput genotyping systems and the flexibility 

in formatting data for various downstream analyses we have developed a 

genetic study data management system, GSD. 

The focus of GSD design is really to facilitate the method of integrating 

data coming from modern high-throughput genotyping systems with 

subject demographic and phenotype data. The goal is to establish a 

platform-independent and web-accessible genetic data management 
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system allowing multi users to securely and efficiently manage their 

genetic data with features including, multiple co-existing studies, easy 

data import, capability of freely grouping study data into clusters, 

comprehensive data sorting, ability of defining multiple disease affection 

status, sophisticated pedigree drawing for illustrating family structure, 

capability of handling very large amount of data from high-throughput 

genotyping systems, capability of exporting data into various formats for 

downstream analyses, being able to individually characterize study 

variables, subject and marker by attribute, robust and IRB-proven user 

account management design and, finally, being able to preserve audit trail 

information. Although some data management systems have been 

developed and published 45,46,59-62, none of them satisfies our 

requirements. Some systems may lack the capability of handling 

enormous amounts of data coming from modern high-throughput 

genotyping systems. And some may have no capability in pedigree 

drawing, preserving audit trail information or supporting IRB-proven data 

management. Also some systems seem tied to the genotyping process 

and are limited to only one kind of genetic marker, STR, which prevents 

the system from incorporating SNP genotypes into studies. GSD enables 

the possibility of heterogeneous marker types co-existing in a study. This 

advantage also allows GSD to handle meta-analysis data collection from 

different genetic markers generated by various genotyping platforms. 
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GSD has several strengths in many perspectives, including networking 

security, user account management, data management, data annotation 

and data importation/exportation. First, let’s discuss about networking 

security. GSD is a client-server application implemented over Internet 

using HTTP protocol. Through Internet, users across the globe can have 

access to the system without worrying about installing client software 

since GSD is a browser-based system. However, due to the sensitivity of 

the genetic study data exchanged between client and server, an encrypted 

communication protocol, HTTPS, has been implemented in GSD. With 

128-bit encryption, password protection and automatic time-out 

functionality, GSD maintains a high degree of security in data exchange 

between client and server over Internet. Second, the user account 

management in GSD is done mainly in two categories, operation 

functionality and study accessibility. Before performing any data 

management operation a GSD user must be assigned with either one of 4 

user types, Administrator, Laboratory Manager, Laboratory User and 

Demonstration User. Each user type is associated with different privilege 

levels. In a nutshell, the Administrator user has all the privileges in user 

account and study data management, including data creating, updating, 

inactivating, re-activating and exporting. A Laboratory Manager has all the 

privileges in study data management except user administration. A 

Laboratory User has no privilege involving data update and has basically 
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only study data querying and exporting privileges. Finally, Demonstration 

User has very limited data querying privilege. In study accessibility, GSD 

requires permission to be granted to the user for a study prior to accessing 

data records. Therefore, GSD has advantages in compliant IRB 

requirements of securing human subject data. 

Third, from the data management prospective, GSD is capable of 

handling multiple concurrent users and studies in the system. It chooses 

Oracle relational database as the backend database server to take 

advantage of Oracle’s ability in handling huge amount of genotype as well 

as other features. GSD is not only designed to handle both case-control 

and family-based studies, but also allows both case-control and family-

based subjects to co-exist under the same study by assigning subjects 

with different population. Generally 4 types of data object, disease 

definition model, study variable, study subject and study marker, define a 

study under GSD. Under each object type GSD supports a panel of 

options for reviewing and searching data objects. One of advantages is 

through implementing the cluster option which enables sub-grouping study 

subjects, markers and variables. This turns out to be very convenient in 

selecting data records and data exporting for various kinds of downstream 

exploratory analyses, for example exporting and analyzing study dataset 

respectively in different ethnic group. Also the shopping cart option gives 

another advantage in reviewing and managing selected subjects, markers 



 51 

and variables, with table header sorting function facilitating the process of 

reviewing and dropping undesired object from the shopping cart. Moreover 

the design of defining disease affection status by referencing a study 

variable can be very handy especially in exploring data analyses between 

various disease forms of a complex trait. 

During study life cycle the study data are dynamically changing. Some 

subjects whose DNA were not collected may become available for 

genotyping or errors were found during clean-up processes. For example, 

in family-based study, the clean-up processes may be using a set of high 

quality markers to validate reported pedigree structures. As a result of 

failing validation, some subjects may be dropped from the study. Once 

pedigree structures are confirmed, they then can be used to detect 

Mendelian discrepancies in genotypes among family members. Genotype 

discrepancy can come from genotyping error, bad DNA quality, low DNA 

quantity, bad assay or even by chance. In the case of finding 

discrepancies, the suspected genotypes should be dropped from the 

study. To accommodate the needs from handling the dynamic changes, 

GSD is providing 4 types of data update methods, New, Update, Inactivate 

and Re-activate. After deciding the type of data to update, changes can be 

made to the system through either interface-user interaction or importing a 

batch file. Batch update is very convenient especially in the situation of 

updating study with millions of genotypes since it is not feasible to make 
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hundreds, if not thousands, of changes to the system through interface-

user interaction. Finally in order to maintain the data integrity, GSD 

maintains audit trail information for every update made through the 

system. Instead of deleting the old record from the system, GSD actually 

is creating a new record with links to the old record, which was inactivated 

after update, and audit trail record. Therefore it is achievable to review the 

record from the activated one to the originally created one with updates 

happening in between or vice versa. 

In data annotation prospective, GSD is using attribute to address the 

issue of heterogeneity in data object annotation. It is not realistic to design 

a, for example, subject table with endless number of table columns to 

handle all kinds of possible characters which may not be seen in all 

subjects. Also it will be inefficient and a waste of table space to design a 

table with only a small portion of records having data for most of 

annotation columns. By implementing attribute concept GSD can add as 

many attributes as possible to annotate a data object at any point of a 

study and also make them available to object selection and data exporting 

processes. One of strengths in data annotation is pedigree-drawing 

capability. Extended pedigree is commonly seen in the complex trait study 

therefore the pedigree structure illustration is playing a key step in 

pedigree analysis. For example during the pedigree validation it sure helps 

to see the pedigree structure drawing with subject marked by affection 



 53 

status alone with genotypes and phenotypes. Using Cranefoot as the 

drawing engine, GSD is not only drawing pedigree with affection status 

and genotypes it also shows the disease status, proband status, family 

member counts and marker legends. In addition, desired phenotypes can 

also be included in the drawing. 

As one of the goals of genetic study management system is to facilitate 

the downstream data analysis process, the capability of easily and 

accurately importing and exporting data in GSD is another selling point. 

Mentioning previously, updates can be done in GSD through two methods, 

user-interface interaction or batch file importation. While reviewing the 

selected data objects in the shopping cart, the view export option is 

available for selected subjects, markers, study variables, genotype results 

and phenotype results. The exported data are following the batch file 

format; therefore this option is extremely useful in copying data objects 

within same study or between studies. Finally GSD currently supports 5 

types of data export format including Relpair, LINKAGE, MERLIN, 

SUPERLINK, and PLINK format. By design GSD’s exporting capabilities 

also provide several additional advantages. First GSD is capable of 

exporting only a subset of families and markers. This is a critical step in 

dealing with disease gene heterogeneity. For example some complex trait 

may have higher disease frequency in certain ethnic group. Therefore, it 

may not be detected in analyzing data exported with mixed ethnic groups. 
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Secondly, multiple versions of marker maps can be stored in GSD and it is 

supporting two kinds of genetic map, average genetic map or sex specific 

genetic map, in data export. Thirdly, GSD is doing the allele translation at 

run time and every export comes with an allele translation file listing 

mapping information between database allele and file allele. Finally, data 

are exported by chromosome respectively, and depending on the format 

chosen, the number of data files for each chromosome is varied. User can 

either review and save each data file individually by clicking links on the 

export result page or download a zip file which includes all data files 

exported to the local machine. 

 

2.6 Conclusions 

As the next generation of high throughput genotyping technology is 

rapidly coming to market and an enormous amount genotype data have 

been generated in complex trait linkage or association studies, the 

capability of managing genetic study data has become a bottleneck. The 

design of GSD is aimed to provide a better solution to ease the bottleneck. 

It has many advantages over secure data communication, comprehensive 

database design, easy-to-manage user interface and user-friendly 

import/export functions that make it a powerful and unique tool in dealing 

multiple-center and large-scale genome-wide association or family-base 
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linkage studies which have become more popular in the post human 

genome era.  
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CHAPTER 3: POPULATION-BASED GENOTYPE IMPUTATION 

OPTIMIZATION 

 

Abstract 

Population-based genotype imputation has been used to boost the 

power of Genome-Wide Association Studies (GWASs). Due to the existing 

uncertainty in predicting genotypes of unmeasured genetic variants, it is a 

standard practice to apply filtering measures after genotype imputation 

has completed to remove poorly imputed variants or genotypes that might 

introduce noise to the downstream association tests. Most of genotype 

imputation programs assign an imputation quality metric value to each of 

the imputed SNPs indicating the possible level of correlation between 

imputed data and perfectly observed data. Although it’s often 

recommended to perform post-imputation filtering based the quality metric 

alone, here we would like to evaluate the merit of using the quality metric 

as the only filter in removing poorly imputed SNPs and genotypes. 

According to our testing results, filtering based on the quality metric alone 

is found to be not effective in getting rid of badly imputed SNPs. To that 

extent, In addition to the quality metric, more effective measures need to 

be included in post-imputation filtering, for example imputed genotype 

probability and SNP call rate. After searching for the filters which balance 
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between yield and accuracy of population-based genotype imputation, a 

combination of three measures is recommended; a quality metric cutoff 

value 0.4, imputed genotype probability cutoff value 0.98, and imputed 

SNP call rate cutoff value 0.7. This filter combination has been tested and 

validated in imputation runs on input datasets with different level of 

genome coverage and proved to be a general, robust, and effective 

filtering measure for obtaining high accuracy and reasonable yield in 

genotype imputation filtering.  
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3.1 Introduction 

Genome-Wide Association Studies (GWASs) and meta-analyses have 

been successful in identifying common variants influencing many complex 

traits, finding candidate susceptibility variants to guide fine-mapping, and 

facilitate meta-analyses that combine studies genotyped on different sets 

of variants 18-20,33,63-69. When compared to using only genotyped markers, 

genotype imputation has extended the study power through inferences of 

unobserved markers in a study sample by using the linkage disequilibrium 

among markers present in a reference panel, such as those from the 

HapMap project 23,24. 

Although most imputations have used HapMap 2 data as the reference 

panel, the recently available Phase I 1000 Genomes (1KG) Project data 

have provided higher resolution human genome sequence variation 25,70. 

The advantage of using 1KG data as the reference panel for imputation in 

GWASs is the ability to impute much larger number of SNPs than using 

HapMap data. The 1KG Project reference panel includes 1092 individuals 

across 14 populations which are classified further into 4 super-populations 

according to the ethnic background. A study evaluating the performance of 

genotype imputation using data from 1KG Project 71, showed that 11.4 

million SNPs are found among 1KG-EUR panel as compared to 2.5 million 

SNPs in HapMap 2 CEU panel. The report concluded that 1) 1KG 

reference panel provided much higher imputation yield than the HapMap 2 
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panel, 2) 1KG reference panel provided high imputation accuracy which is 

almost identical to the accuracy from using HapMap 2 panel, 3) imputation 

accuracy of rare and low frequency SNPs from using 1KG reference panel 

is very high and almost identical to accuracy of common SNPs, and 4) 

1KG-based imputation can increase the opportunity to discover significant 

associations for SNPs across the allele frequency spectrum. 

Nevertheless, one practical problem of handling results from genotype 

imputation using 1KG panel is the large number of imputed SNPs. In our 

experience, before any filter applied we found more than 38 million SNPs 

could be imputed by a GWAS array when all 14 1KG populations are 

included in the reference panel. Although most modern imputation 

programs provide an imputation quality metric indicating the correlation 

between the true genotype and predicted genotype, for example the r-

square from MaCH 34,72 or the information metric from IMPUTE2 73,74 but 

they have not been shown to be mathematically equivalent to the r-square 

statistic for LD between a tag-SNP and a disease SNP which influences 

the sample-size inflation factor 75. In practice, post-imputation filtering is 

still recommended to remove poorly imputed variants or genotypes that 

may bring in noise into downstream association tests.  

Another factor which may have impact on the merit of imputation is the 

content of microarrays. For example the GWAS array has better genome 

coverage compared to the Exome array. The GWAS array tends to 
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include more common SNPs and is designed to have fairly good genome 

coverage, mainly covering as many LD blocks across the human genome 

as possible. On the other hand, Exome array is designed to focus mainly 

on functional variants in coding regions or close to gene regions and most 

of them are rare variants. Therefore it is predictable that imputation using 

GWAS array genotypes may have better result in terms of number of SNP 

imputed, SNP call rate, and genotype accuracy. 

This study is designed to investigate the difference between GWAS 

and Exome arrays in terms of imputation metric distribution, imputation 

yield, and genotype accuracy. Most importantly, it will try to identify an 

optimized set of post-imputation filters which balances between genotype 

imputation yield and accuracy. Ninety-six individuals mostly of European 

origin were recruited and genotyped on both Affymetrix World GWAS 

(LAT) array and Exome array. Following the vender recommended 

genotype SNPolisher QC procedures, the array genotypes were then 

collected and used for genotype imputation. Although there are many 

popular genotype imputation programs, for example MaCH 34,72, IMPUTE2 

73,74, fastPHASE 76, PLINK 14 and BEAGLE 35, studies have found that 

IMPUTE2 is optimized when run with all 1KG reference panels and shows 

superior results among different imputation methods 18,77,78. Therefore, 

IMPUTE2 was chosen for whole genome genotype imputation in this 

study. 
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Due to the uncertainty in predicting unobserved genotypes, poorly 

imputed SNPs must be filtered from any downstream association test. All 

the genotype imputation programs provide a similar imputed SNP quality 

metric which indicates the level of the correlation of imputed SNP data 

with perfectly observed genotypes, for example the R-Square from the 

famous BEAGLE and MaCH programs and the INFO value from IMPUTE2 

program. For each SNP, IMPUTE2 reports an information metric (INFO), 

which has values that range between 0 and 1. The INFO values near 1 

indicate that a SNP has been imputed with high certainty. As 

recommended by the IMPUTE2 developer group that although no 

universal INFO cutoff value has been established for post-imputation SNP 

filtering, various groups have used cutoffs of 0.3 and 0.5, for example. 

However they also caution the right cutoff threshold for post-imputation 

filtering may differ between studies. Nevertheless, it’s not clear to what 

extent the selection of quality metric cutoff should be different between 

studies and if filtering on the metric alone is effective in getting rid of badly 

imputed SNPs and genotypes. For example, when applying an INFO 

cutoff of 0.4, any SNPs imputed with INFO value below or equal to 0.4 will 

are excluded from downstream analyses. The more stringent the INFO 

cutoff is used for filtering, the less number of imputed SNPs left after 

filtering. In addition to the SNP INFO metric, there is a posterior probability 

reported with each imputed genotype which could be used for filtering out 
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uncertain genotypes. Other statistics can be investigated for SNP filtering 

including, imputed SNP call rate (number of imputed study individuals / 

total number of study individual for impute) and allele frequency. To 

evaluate the performance of using quality metric as the only filter and 

identify the optimized set of filters, the concordance of SNPs not on the 

Exome array but imputed by it and present on the GWAS array are 

evaluated. Similarly, SNPs not on the GWAS array but imputed by it and 

assayed on the Exome array are evaluated, after applying different 

parameters to filter out potentially unreliable genotypes. 

 

3.2 Materials and methods 

 

3.2.1 Study population 

Saliva samples of ninety-six individuals of European origin, a subset of 

subjects recruited in a Fluorosis study held in Newcastle and Manchester, 

UK 79, were obtained using Oragene self-collection kit (DNAgenoTek, 

http://www.dnagenotek.com/US/products/dnacollectionkits.html). DNA 

molecules were extracted from saliva after following manufacturer manual. 

All samples were selected for GWAS array and Exome array genotyping 

on Affymetrix Axiom platform. The study protocol was approved by the 

Institutional Review Board of University of Medicine and Dentistry of New 
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Jersey, and written informed consent was obtained from each subject prior 

to taking part in the study. 

 

3.2.2 Genotyping 

Genotyping was carried out by Affymetrix GeneTitan Multi-Channel 

Instrument using Affymetrix Axiom solution for GWAS array (818,154 

probe sets) and Exome arrays (319,283 probe sets). Following 

manufacturer standard operation procedure, 20 ng of DNA molecules from 

each study individual were used. The Affymetrix Genotyping Console 

(GTC) Software and SNPolisher QC procedures were used for calling 

genotypes and insuring calling quality. 

 

3.2.3 Genotype imputation and data analyses 

Microarray genotypes were subject to manufacturer QC measures, 

including SNPolisher QC procedures, Core SNP call rate filtering and SNP 

metric filtering by Affymetrix GTC software. Additional QC measures were 

applied to SNP calls, including HWE P > 10-4 and no positive control 

discrepancy. A commercial software package, Golden Helix SNP & 

Variation Suite (Golden Helix, 

http://www.goldenhelix.com/SNP_Variation/index.html), was used for 

genotype data management. Population-based genotype imputation was 
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carried by first using SHAPEIT2 80-83 for haplotype estimation (pre-

phasing). Pre-phasing involves speeding up this process by first 

estimating haplotypes from GWA study samples, and then imputing alleles 

into these haplotypes from a reference haplotype panel. The phasing of 

the GWA studies samples needs only be done once so that when a new 

haplotype reference panel becomes available the imputation step is very 

quick. Following the pre-phasing process, the IMPUTE2 program was run 

with 1000 Genomes Project Phase I genotypes as the reference panel for 

genotype imputation. In general, the imputation procedure was following 

the guideline, Minimac: 1000 Genomes Imputation Cookbook 

(http://genome.sph.umich.edu/wiki/Minimac:_1000_Genomes_Imputation_

Cookbook). 

Figure 15: The process flow of population-based genotype 
imputation 

 

 

Genotype imputation procedures were run on a High Performance 

Computing Linux 62 8-cores nodes cluster. All nodes have a minimum of 

12 G bytes RAM (the majority have 16 Gbytes) and 1 terabyte of on board 
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scratch space. Project storage is maintained by a 30 Terabyte Gluster file 

system with each node supplying one terabyte of storage to the ensemble. 

In this analysis, whole genome genotype imputation was done on 

chromosome segments of average length 1 million bases (Figure 15). 

Raw imputed genotypes were imported into SVS and subject to 

various filtering measures. To reduce the complexity, insertion/deletion 

(INDEL) variants were excluded from analysis. Array SNPs which are not 

designed but imputed by the other array are identified by having the same 

mapping position (Human Genome Assembly Build 37) and therefore 

evaluated for genotype imputation accuracy test. Array genotypes and 

imputed genotypes are both mapped on to the forward strand of genome 

assembly. Statistics to be evaluated for genotype and SNP filtering include 

IMPUTE2 imputed posterior genotype probability, SNP INFO value, and 

SNP call rate. The SNP genotype concordance between array for the 

assayed genotypes and the genotypes imputed by the other array are 

calculated after applying statistical filters. 

First, I compared the distribution of the Impute2 imputed SNP quality 

metrics INFO values between two imputation datasets, one by Exome 

array and the other one by GWAS array. To evaluate the effectiveness of 

INFO value filter, I followed the recommendation of Impute2 developer 

and applied an INFO cutoff value of 0.4 on both array imputation datasets 

and evaluated the concordance between before and after applying the 
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filter. To evaluate the effect of imputed genotype call rate over the 

genotype concordance, I inspected the concordance distribution at 

different call rate thresholds on both array imputation datasets. Finally, I 

used Impute2 Info value, imputed genotype probability and call rate for 

post-imputation filtering. Info has 3 proposed cutoff values including 0.1, 

0.4, and 0.6. The imputed genotype probability has 4 proposed cutoff 

values, 0.5, 0.7, 0.9, and 0.98. In terms of call rate cutoff value, 3 values, 

0.5, 0.7, and 0.9, are proposed. To find out the best combination of the 

cutoff values of these 3 filters which balance between genotype accuracy 

and yield, the concordance and yield analyses were done on all possible 

combination of the proposed cutoff values proposed. 

 

3.3 Results 

 

3.3.1 Quality metric distribution of imputed array SNPs 

The genotype imputation was done by IMPUTE2 using all 1,092 1KG 

Phase I samples from 14 populations as the reference panel. Due to the 

computation limitation, the whole genome genotype imputation is still not 

available. Therefore the imputation was done after splitting genome into 

thousands of around 1 million bases segments. After applying pre-

imputation QC measures, 652,190 LAT (GWAS) array SNPs and 59,545 
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Exome SNPs were used for genotype imputation. Without applying any 

filters, 38,711,309 SNPs are found with genotypes imputed by the GWAS 

array and 31,146,888 SNPs are imputed by Exome array. Figure 16 

shows the distribution of IMPUTE2 INFO metric of imputation done by 

GWAS and Exome array respectively. As expected, GWAS array has 

better genotype imputation yield when compared to Exome array. Most 

importantly, their INFO metric distribution looks different which very likely 

is due to the difference in array content. 

Figure 16: The IMPUTE2 INFO metric distribution of imputation runs 
based on GWAS (right) and Exome (left) array 

 

 

The Exome array imputation has higher frequency in lower Info value 

SNPs and GWAS seems to have higher frequency at the higher Info end. 

This is most likely due to the genome coverage difference between these 
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2 types of array. GWAS array is designed with good genome coverage for 

maximizing the genotype imputation power. On the other hand, Exome 

array is designed with a focus on genome coding sequences and some 

rare variants found in NHLBI GO Exome Sequencing Project 

(https://esp.gs.washington.edu/drupal/). Therefore with better genome 

coverage, the GWAS array tends to impute more high INFO value SNP 

than Exome array. The INFO metric distribution looks even more different 

after excluding array SNPs which could not be imputed by the array 

content of the other array type. 

Figure 17: The IMPUTE2 INFO metric distribution of imputation 
among array (Left - GWAS array SNPs imputed by Exome array; 
Right - Exome array SNPs imputed by GWAS array) 
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Among SNPs imputed by GWAS, 39,854 SNPs are designed on 

Exome array. Among SNPs imputed by Exome, 426,260 GWAS array 

SNPs are found. Figure 17 shows the distribution of IMPUTE2 INFO 

metric among GWAS array SNPs which got imputed by Exome array (left) 

and Exome array SNPs which got imputed by GWAS array (right). 

Comparing these 2 INFO distributions, it’s obvious that applying INFO 

metric filter alone is not sufficient for post-imputation filtering. More 

statistics and/or combinations of statistics need to be examined to come 

up with a better filter set. 

 

3.3.2 Inadequate power of quality metric filtering 

To further show that INFO value filtering alone is not sufficient for 

filtering out poorly imputed SNPs and genotypes, genotype concordance 

was also compared before and after applying the INFO cutoff value 0.4 in 

both array imputation datasets. In order to assign predicted genotype 

based on predicted genotype probability, a probability cutoff value must be 

applied. Therefore a loose genotype probability, 0.5, is chosen which 

means one of 3 possible genotypes (minor allele homozygous, 

heterozygous, and major allele homozygous) is assigned to a subject only 

when its predicted probability is greater than 0.5 for a given imputed SNP. 

Figure 18 shows the concordance distribution of GWAS designed array 
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SNPs which were imputed by Exome array before (left) and after (right) 

applying INFO filtering. It seems that although more than 50% of imputed 

SNPs are filtered by applying INFO cutoff value 0.4 as recommended by 

the IMPUTE2 developer, the genotype concordance actually has not been 

improved by the filtering. 

Figure 18: The effect of INFO filtering over Exome array imputation 
(Left - No Info filtering (N=541,936); Right - Info value > 0.4 Filtering 
(N=218,242)) 

 

 

Similar phenomenon is seen over applying the INFO cutoff value 0.4 

on the Exome array designed SNPs which were imputed by GWAS array 

(Figure 19). As expected due to the higher confidence in imputation, same 

INFO filtering measure actually filters out less percentage of SNPs 

imputed by GWAS array. Nevertheless, the genotype concordance 
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actually has not been improved by the filtering. These results further 

confirm the doubt of treating the quality metrics as the analogous to the r-

square statistic for LD between a tag-SNP and a disease SNP used in the 

estimation of sample-size inflation factor (Huang et al., 2009) and 

demonstrate the lack of power of using INFO metric as the only post-

genotype imputation filter. 

Figure 19: The effect of INFO filtering over GWAS array imputation 
(Left - No Info filtering (N=41,868); Right - Info value > 0.4 Filtering 
(N=35,261)) 

 

 

3.3.3 Other candidate measures for post-imputation filtering 

In searching for the other measure which can be effectively used in 

post-genotype imputation filtering, the imputed SNP call rate is a potential 

candidate. First, the call rate distribution of GWAS array SNPs which got 



 72 

imputed by Exome array and Exome array SNPs which got imputed by 

GWAS array is investigated. To assign predicted genotype and insure the 

call rate is based on imputed genotypes with high confidence, a predicted 

genotype probability 0.98 is applied prior to call rate calculation. 

Figure 20: The genotype call rate distribution of array imputations 
(Left – GWAS array SNPs imputed by Exome array (426,260); Right – 
Exome array SNPs imputed by GWAS array (39,854)) 

 

 

Figure 20 shows very different call rate distributions between these 2 

datasets. GWAS array imputation (Right) has more SNPs with high call 

rate than Exome array imputation (Left). More than 90% of Exome array 

SNPs imputed by GWAS array has genotype call rate greater than 90%. 

On the other hand, less than 15% of GWAS array SNPs imputed by 
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Exome array is found with genotype call rate greater than 90%. Again, this 

is most likely due to the genome coverage difference between GWAS and 

Exome arrays. 

Figure 21: The effect of genotype call rate over genotype 
concordance distribution (Left – GWAS array SNPs imputed by 
Exome array; Right – Exome array SNPs imputed by GWAS array 

 

 

Next, to further check the effect of genotype call rate versus the 

genotype concordance under different INFO value groups, the genotype 

concordance analysis is done between different call rate and INFO value 

group combinations. The left hand side plot of the Figure 21 shows the 

concordance of GWAS array SNPs which are imputed by Exome at 

different combinations of call rates, including 0.1, 0.2, 0.3, and so on, and 

Info values, including 0.2, 0.4, 0.6 & 0.8. The Y axis is the genotype 

concordance and X axis is the 4 INFO value groups. Within each INFO 
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value group, genotype concordance is calculated for each call rate bin. As 

shown in the Figure 21, the concordance seems correlated with the call 

rate and this is also true across all 4 INFO groups. Similar phenomenon is 

seen among the Exome array SNPs which are imputed by GWAS. This 

analysis demonstrates clearly that call rate can serve as a good candidate 

for post-imputation filtering. 

Therefore, three measures, INFO value, imputed genotype probability, 

and genotype call rate, are chosen for post-imputation filtering 

optimization. Three cutoff values of INFO, including 0.1, 0.4, and 0.6, and 

4 cutoff values of imputed genotype probability, including 0.5, 0.7, 0.9, and 

0.98, and 3 call rate cutoff values, including 0.5, 0.7, and 0.9, are 

proposed. To find out the best combination of the cutoff values of these 3 

filters, the concordance and yield analyses were done on all possible 

combination of these proposed cutoff values. For each genotype 

probability group, genotypes are filtered by the predicted genotype 

probability cutoff followed by applying 3 INFO cutoff filters, 0.1, 0.4, and 

0.6, respectively which excludes imputed SNP with IMPUTE2 INFO value 

below the cutoff. Finally the genotype call rate cutoff, 0.5, 0.7, and 0.9, are 

applied to each INFO cutoff group and the genotype concordance is 

calculated for the GWAS array SNPs imputed by Exome array as well as 

the Exome array SNPs imputed by GWAS array. In addition, the yield after 
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applying each combination of genotype probability, INFO value, and 

genotype call rate is also calculated. 

 

3.3.4 Exome array imputation result optimization 

First, 542,210 GWAS array SNPs imputed by Exome array dataset is 

analyzed. Figure 22 shows the concordance (top) and yield (bottom) 

analysis results after applying the genotype probability cutoff 0.5. It clearly 

shows within each call rate cutoff group, the concordance increased when 

the more stringent INFO cutoff was applied. For example, after applying 

probability cutoff 0.5, call rate cutoff 0.5 and Info cutoff 0.1, the 

concordance is 0.77 which increases to 0.90 after applying probability 

cutoff 0.5, call rate cutoff 0.5 and Info cutoff 0.6. Similarly, within each 

INFO cutoff group the concordance increases after applying a more 

stringent call rate filter. For example, within the INFO cutoff 0.1 group the 

concordance increases from 0.77 to 0.84 after call rate cutoff changing 

from 0.5 to 0.9. 

On the other hand, as expected applying more stringent filtering 

measures reduces the yield of imputed SNPs. Nevertheless, after passing 

through these filtering measures these SNPs presumably are imputed with 

better accuracy. 
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Figure 22: Genotype concordance and yield after applying genotype 
probability 0.5 filter 

 

 

As shown in the bottom yield plot of Figure 22, in the call rate 0.5 

group although the concordance increases from 0.77 to 0.90 the yield 

dramatically reduces from 0.84 to 0.21 after changing the INFO cutoff from 

0.1 to 0.6. When compared within INFO cutoff 0.1 group, concordance 

increases from 0.77 to 0.84 after call rate cutoff changing from 0.5 to 0.9, 

the yield drops from 0.84 to 0.67. 

The concordance gets improved further after more stringent genotype 

probability cutoffs are applied. Figure 23 shows the concordance and yield 

plots after applying 0.7 (left) and 0.9 (right) as the genotype probability 
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cutoff. Similarly the concordance increases after more stringent INFO 

value or genotype call rate cutoff applied for filtering. 

Figure 23: Genotype concordance and yield after applying genotype 
probability 0.7 & 0.9 filter 

 

 

For example, under genotype probability cutoff 0.7 and call rate cutoff 

0.5 filters, the concordance increases from 0.87 to 0.91 after INFO value 

cutoff changes from 0.1 to 0.6 and, as expected, the yield changes from 

0.65 to 0.21. Instead of applying a more stringent INFO cutoff, if more 

stringent call rate cutoff is applied, 0.9 for example, the concordance 

increases from 0.87 to 0.94 and the yield changes from 0.65 to 0.34. 

Apparently in this setting, applying higher call rate cutoff filter gives better 

concordance and yield as compared to applying higher INFO cutoff filter. 

Another example, when more stringent genotype probability cutoff is 

applied, 0.9 for example, with call rate cutoff 0.5 and INFO value cutoff 

0.6, it gives a concordance of 0.953 and yield of 0.18 which is probably 
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slightly better than applying genotype probability cutoff 0.7, call rate cutoff 

0.9 and INFO value cutoff 0.6 which gives a concordance of 0.959 and 

yield of 0.14. As expected, there is always a tradeoff between impute 

accuracy and between these two filter sets giving close concordance level 

and higher call yield one would probably choose the former one for post-

imputation filtering. 

Figure 24: Genotype concordance and yield after applying genotype 
probability 0.98 filter 

 

 

To further investigate the impact of more stringent genotype probability 

filter over the concordance and yield of post-imputation filtering, the 
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genotype probability cutoff 0.98 is applied and the concordance and yield 

plots are shown in the Figure 24. Under the same setting of call rate cutoff 

0.5 and INFO cutoff 0.1 after applying genotype probability cutoff 0.98 the 

concordance increases to 0.97 and yield drops to 0.28. Again, applying 

more stringent cutoff of call rate and/or INFO further improves the 

concordance and reduces the yield. 

It’s been reported in studies that even 2% genotype imputation error 

can have profound influence over the association analyses 75,84,85. 

Therefore it would be better to optimize the post-imputation filtering to 

have concordance equal to or over 0.98 and, yet, balance the yield. After 

excluding filter combinations which generate concordance below 0.98, 

Table 2 presents filter combinations with concordance greater than 0.98. 

Among these filter combinations, the one (shadow) combining genotype 

probability cutoff 0.98, INFO cutoff 0.4, and genotype call rate cutoff 0.7 

generates genotype concordance 0.98 and the best yield, 0.13, among the 

other combinations. The yield 0.13 is translated as 13% of 542,210 GWAS 

array SNPs imputed by 59,545 Exome array with mean concordance 0.98. 

This means doing genotype imputation with Exome array SNPs and 

applying post-imputation filters (genotype probability > 0.98, INFO > 0.4, 

and genotype call rate > 0.7) can predict genotypes of 70,533 GWAS 

array SNPs with mean concordance 0.98 which is 118% of the input SNPs 

for imputation. 
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Table 2: Exome array imputation candidate filter combinations with 
corresponding concordance and yield 

 

 

3.3.5 GWAS array imputation result optimization 

Next, 41,909 Exome array SNPs imputed by GWAS array dataset is 

analyzed by the same filter combinations. Similarly, among Exome array 

SNPs imputed by GWAS array the trend of up raising concordance and 

diminishing yield is seen after more stringent genotype probability cutoff, 

INFO value cutoff, and genotype call rate cutoff are applied to the dataset. 

Figure 25 presents the concordance and yield plots after applying 

genotype probability cutoff 0.5 (left) and 0.7 (right). When applied 

genotype probability cutoff 0.5, INFO value cutoff 0.4, and genotype call 

rate cutoff 0.5 the concordance is 0.982 and yield is 0.841. After applying 

more stringent genotype probability cutoff 0.7, the genotype concordance 

increases to 0.985 and the yield stays at 0.841. Compared with GWAS 
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array SNPs imputed by Exome array dataset, these Exome array SNPs 

imputed by GWAS array have better concordance and yield to start with 

and even after applying same filter sets. 

Figure 25: Genotype concordance and yield after applying genotype 
probability 0.5 & 0.7 filter 

 

 

Similarly like the trend seen in the other dataset, when more stringent 

genotype probability cutoff 0.9 and 0.98 are applied to the filtering the 

concordance gets improved and, as expected, the yield gets smaller. 

Figure 26 presents the concordance and yield plots after applying 

genotype probability cutoffs of 0.9 (left) and 0.98 (right). When applied 

genotype probability cutoff 0.9, INFO value cutoff 0.4, and genotype call 

rate cutoff 0.5 the concordance is 0.989 and yield is 0.839. After applying 

more stringent genotype probability cutoff of 0.98, the genotype 

concordance increases to 0.991 and the yield stays at 0.834. 
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Figure 26: Genotype concordance and yield after applying genotype 
probability 0.9 & 0.98 filter 

 

 

As pointed out earlier, SNPs imputed by GWAS array seem to have 

better concordance above 0.98 when applying the less stringent filter set 

(genotype probability cutoff 0.5, INFO value cutoff 0.1, and genotype call 

rate cutoff 0.5), it would be inappropriate to assume this lower level of 

filtering is adequate. Since Exome array aims to cover coding and rare 

variants instead of maximizing genome coverage as GWAS array design. 

With that and the phenomena seen in Exome array imputation result 

filtering, to be on the safe side, more stringent filter is recommended. Also 

considering the recommendation of IMPUTE2 developer and the impact of 

low genotype prediction probability and the low call rate implication in 

potential genotyping error and losing test power, any filter set including 

lower INFO value (0.1), lower low genotype probability (0.5 and 0.7), or 

lower call rate (0.5) should not be considered for optimized post-

imputation filtering. Table 3 presents filter combinations and results after 
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excluding filter set with any of lower cutoff. Among them the one in 

shadow which includes genotype probability cutoff 0.98, INFO cutoff 0.4, 

and genotype call rate cutoff 0.7 generates the better concordance and 

yield combination, which translates into 34,345 imputed SNPs passing 

through the filtering. 

Table 3: GWAS array imputation candidate filter combinations with 
corresponding concordance and yield 

 

 

3.4 Discussion 

The results in Figure 16 and 17 clearly show that the distribution of 

INFO metric is very different between GWAS imputation and Exome 

imputation datasets. As shown in Figure 16, Exome array imputation has 

higher frequency in lower INFO value SNPs and GWAS seems have 

higher frequency at the higher INFO end. In addition, the difference is 
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even more dramatic when only comparing results from array SNPs which 

are imputed by the other array (Figure 17). By comparing the genotypes of 

GWAS array laboratory assay and genotypes of GWAS array imputed by 

Exome array and the genotypes of Exome array laboratory assay and 

genotypes of Exome array imputed by GWAS array, one can identify other 

potential candidates for post-imputation filtering and come up with an 

optimized post-imputation filtering strategy. This concordance evaluation 

between laboratory genotype and computer genotype serves as a 

powerful tool for optimizing post-imputation filtering. After applying an 

INFO cutoff value of 0.4 and comparing the genotypes between laboratory 

assay and imputation, the results of Figure 18 and 19 demonstrate the 

inadequate power of applying INFO cutoff as the only post-imputation filter 

as recommended by the IMPUTE2 developer in removing poorly imputed 

SNPs and genotypes. 

Other than the INFO quality metric, IMPUTE2 reports the imputed 

genotype probability of each of 3 possible genotypes, DD, Dd, and dd 

(D=Minor allele, d=Major allele). Therefore, it’s an appropriate candidate 

to be included in post-imputation filtering. Another candidate is the in 

silico-genotyping call rate of imputed SNPs. It’s common in laboratory 

genotyping process that a low call rate of genetic marker is indicating 

possible genotyping error. To that extent, the in silico-genotyping call rate 

may serve as a good candidate in post-imputation filtering as well. Figure 
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20 presents the call rate distribution difference between using GWAS 

array and Exome array for genotype imputation. This difference is most 

likely due to the genome coverage difference between these 2 types of 

array. The results in Figure 21 further demonstrate that applying a more 

stringent call rate filter improves the genotype concordance. This 

improvement is also seen among different INFO filtering groups. Therefore 

along with INFO and imputed genotype probability, the imputed SNP call 

rate is chosen as the measures for optimizing the post-imputation filtering. 

Different cutoff values of each of 3 measures are tested for the mean 

genotype concordance and imputation yield. Three cutoff values of INFO 

(0.1, 0.4, 0.6), and 4 cutoff values of imputed genotype probability (0.5, 

0.7, 0.9, 0.98), and 3 call rate cutoff values (0.5, 0.7, 0.9) are tested in 36 

combinations of INFO, genotype probability, and call rate. After applying 

each filter combination, the mean genotype concordance and imputation 

yield are calculated and the one balancing between genotype 

concordance and yield is identified. The results from Exome array 

imputation and GWAS array imputation datasets, shown in Figure 22-24 

and Figure 25-26 respectively, demonstrate the effectiveness of INFO, 

genotype probability, and call rate filtering. The mean genotype 

concordance is improved when more stringent cutoffs are applied. On the 

other hand, the yield of imputation drops when more poorly imputed SNPs 

and genotypes are filtered out. 
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Without question, the genotyping error plays a significant role over the 

Type I and Type II error rate in the downstream statistical analysis. It’s 

been reported 75,84,85 that even as low as 2% genotyping error can have 

profound effect over the association analyses. To that extent, it is better to 

find the optimized post-imputation filtering with concordance greater or 

equal to 0.98 and a good yield. Among the GWAS array SNPs imputed by 

Exome and Exome array SNPs imputed by GWAS, the filter combination 

with INFO cutoff 0.4, genotype probability cutoff 0.98, and call rate cutoff 

0.7 seems generating a balanced set of genotype concordance and SNP 

yield, 0.984 and 0.13, 0.992 and 0.82 respectively (Table 2 and Table 3). 

The difference over yield between these 2 datasets is actually a reflection 

of the content difference between these 2 array types which has been 

reported in INFO distribution (Figure 16 and Figure 17), imputed genotype 

concordance (Figure 18 and Figure 19), and the call rate (Figure 20). 

Although the GWAS imputation has better averaged genome coverage 

and generates higher concordance and yield among imputed Exome array 

SNPs, the number of Exome array SNPs that got imputed (41,909) is 

actually much less than the other dataset, GWAS array SNPs imputed by 

Exome (542,210). Again, this is due to the fundamental difference 

between these 2 types of array. GWAS array is designed to survey the 

human genome with good genome coverage. On the other hand, Exome 

array is designed with a main focus on the coding sequences which is just 
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about 3% of the genome. In that sense, GWAS array has much more 

SNPs (~ 900K) designed as compared to Exome array (~ 320K), and 

therefore, disregarding the quality of imputed SNPs, Exome array 

imputation has more target SNPs to be imputed as compared to GWAS 

array imputation. 

Indeed, the results shown here have indicated that SNPs imputed by 

Exome array have poorer quality in many aspects, INFO metric, genotype 

concordance, as well as call rate, when compared to SNPs imputed by 

GWAS array. The Exome SNPs imputed by GWAS array tend to have 

better quality due to the genome coverage of GWAS array and, probably, 

the dense coverage over the coding sequence of Exome array which, to a 

certain extent, may indicate some level of linkage disequilibrium among 

gene coding SNPs. Nevertheless it will be wrong to extend this genotype 

concordance level to the SNPs mapped on to the other 97% of genome. 

Although Exome array does not have the same power, in terms of genome 

coverage, as GWAS array in whole genome SNP imputation, it can 

actually serve as the “worst case” scenario for post-imputation filtering 

optimization. After all, not every whole genome SNP imputation study has 

funding for a validation SNP set to be used for filter optimization. Results 

here propose the use of filter combination with INFO cutoff 0.4, genotype 

probability cutoff 0.98, and call rate cutoff 0.7 for post-imputation filtering. 

This filter set increases the concordance of GWAS SNPs imputed by 



 88 

Exome array from 0.775 (after applying the less stringent filter) to 0.984 

and drops the yield from 0.84 to 0.13. However, the same filter set actually 

only increases the concordance of Exome SNPs imputed by GWAS array 

from 0.981 (after applying the less stringent filter) to 0.992 and drops the 

yield from 0.89 to 0.82. Therefore it is recommended to err on the safe 

side of having a more stringent filter set in place for various imputation 

designs. 

Finally to summarize the conclusions in this analysis, it’s shown that 

depending on the input content for whole genome SNP imputation, the 

quality of output imputed SNPs could be very different. Secondly, doing 

post-imputation filtering based on the SNP quality metric cutoff alone, 

INFO in this case, risks of leaving poorly imputed SNPs or genotypes for 

downstream statistical analyses. Finally, the combination of INFO cutoff 

0.4, genotype probability cutoff 0.98, and call rate cutoff 0.7 is the 

optimized filter set for post-imputation filtering. 
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CHAPTER 4: COST EFFECTIVE DESIGN OF FAMILY-BASED 

IMPUTATION 

 

Abstract 

The idea of family-based genotyped imputation leveraging the rich 

information possessed in a large pedigree and shared genome segments 

among relatives has been proven feasible through recently published GIGI 

method. Rare variant alleles tend to aggregate and pass in families; 

therefore, the use of extended and complex pedigrees in searching the 

rare disease-causing variants is an effective study design. Owing to the 

power of family-based imputation, a cost-effective family study using high 

density SNP microarray or whole exome or genome sequencing now can 

be achieved. Given the high cost in high throughput sequencing and 

limited study budget, it is very important to identify a cost-effective 

approach and maximizes the study power through careful prioritization of 

the family members to be sequenced or genotyped. Another prospect is to 

evaluate an economically feasible way to transform legacy genome scan 

linkage studies into family genome-wide association studies through 

family-based imputation. This study is aimed to optimize the selection of 

family members to be included for high density genotyping whose 

genotypes can then be used for predicting un-assayed genotypes of other 
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family members. After evaluating various family-based imputation designs, 

at least 3 family members are required for high density genotyping in order 

to gain more power in inferring genotypes of unobserved members. The 

results also indicate 2 parents and one offspring for high density 

genotyping design has the greatest power over genotype imputation when 

compared with other designs like one parent and 2 offspring or 3 offspring 

only designs for example. In addition, the common genome-scan linkage 

marker, Short Tandem Repeat (STR), is found to have compatible 

imputation power like the SNP in predicting genotypes of other family 

members. 
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4.1 Introduction 

Although pedigrees have been central to the discovery of genes 

underlying Mendelian traits, in recent years it’s the GWA studies of large 

population-based samples that have been used to search for variants of 

complex traits based on the common disease common variant hypothesis. 

However, even though GWA studies have identified many candidate loci 

63,69, common variants now seem to only explain a small percentage of 

heritability 86. The missing heritability is suggested to be found among the 

rare but high disease risk variants 87, the hypothesis of common disease 

rare variant. This hypothesis has brought the use of large pedigrees back 

to focus once again, owing to the power of combining the high density 

genotyping and the extended pedigree information in identifying rare 

variants passing through generations. Compared with population-based 

GWA study, family studies with extended pedigrees have potential to 

identify longer IBD segments by examining a small subset of relatives. 

Therefore the family-based genotype imputation, undoubtedly, can further 

boost the power of family study in identifying rare variants. 

Another aspect of family-based genotype imputation is to bring legacy 

genome scan linkage studies back to life. By leveraging the information 

carried by the genome scan markers, family-based genotype imputation 

can provide a new life to many legacy linkage studies through offering a 

cost effective study design of genotyping a subset of family members. 
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Instead of high density genotyping every family member, family-based 

imputation can impute the genotypes of unobserved family members by 

analyzing the genome scan genotypes from most family members and 

combining the high density marker genotypes from selected family 

members. This strategy is taking advantage of the power of previous 

genome scan studies and the power of family-based imputation. Unlike 

the population-based imputation, family imputation only needs a small 

number of high density genotyped family individuals and has more power 

and accuracy in predicting rare variant genotypes 88,89. Therefore it is 

obvious that providing guidance in selecting which subjects to genotype 

for dense markers in a cost effective study design holds the key to the 

success in finding rare disease-causing variants. 

Although a number of pedigree-based genotype imputation methods 

exist 32,90-92. They tend to have limitation in either handling large pedigrees 

with many markers because of computational constraints or require high 

quality dense genotype data on subjects for whom we want to impute data 

and do not account for recombination events. Therefore, a computationally 

efficient method implemented in the Genotype Imputation Given 

Inheritance program (GIGI) for imputing dense genotypes in large 

pedigrees 93 is chosen for performing family-based genotype imputation. 

This Markov Chain Monte Carlo (MCMC)-based approach uses a sparse 

set of markers (Framework Markers) typed on most subjects plus dense 
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markers (Dense Markers) typed on a few subjects to impute genotypes of 

dense markers for unobserved family members. Although it’s been 

reported that compared with other publically available software, GIGI 

seems to have better imputed genotype accuracy and performs very well 

when imputing genotypes for especially rare SNPs 93, it’s not clear to what 

extent this excellent performance is affected by the number of members 

missing dense marker genotypes. For example, given an extended 

pedigree of 3 generations which is commonly seen is typical family study, 

among many family members, who must have framework marker 

genotypes and who must be dense marker genotyped in order to obtain 

the greatest power of the family-based imputation with smallest cost? Do 

all the members possess equal power in predicting genotypes of other 

members? A guideline for selecting effective family members for dense 

marker genotyping for imputation is critical to researchers in designing a 

cost effective family study with genotype imputation. With limited budget, it 

is not feasible to include all study subjects with DNA available for high 

density microarray genotyping or whole exome or genome sequencing. 

The main advantage of doing genotype imputation is precisely about cost 

saving. Unlike the population-based imputation, family-based imputation 

which leverages the pedigree information, does not need all study 

subjects to be genotyped in order to predict genotype of unobserved 

genetic markers. However, among family members, who is the most 
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effective member to be genotyped for imputation? In addition, many 

genome-scan linkage studies have used microsatellite markers or Short 

Tandem Repeats (STR) for dissecting the linkage between genomic 

regions and diseases. In terms of testing the association with the diseases 

or traits, STR is not the appropriate genetic marker for that purpose. 

However, it is a huge waste to discard the rich data collected in those 

genome-scan linkage studies. Therefore, if STR markers can be used as 

the framework markers in doing family-based imputation, many legacy 

genome-scan linkage studies can then be transformed into association 

study by a highly cost-effective method. 

 

4.2 Materials and methods 

In this study an African American family with extended pedigree 

structure (Figure 27) from an Early Onset Periodontitis (EOP) linkage 

study (Diehl et al., 1999) was selected for analyses. This family had been 

genotyped in 3 different sets of genetic markers including genome scan 

microsatellite markers, linkage mapping SNP set, and Illumina 2.5M SNP 

array. Thirteen family members were genotyped for genome scan markers 

and 16 family members were genotyped for linkage mapping SNP 

markers, and 8 family members were genotyped for Illumina 

HumanOmni2.5 SNP array. 
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Figure 27: A three generation African American EOP study family 
(shaded indicating case member) 

 

 

The baseline benchmark of family-based imputation result came from 

imputation with all data available including dense marker genotypes of two 

1st generation members (parents) and 6 members among 2nd generation 

siblings and framework marker genotypes of 16 members. Various 

genotyping scenarios are evaluated by the imputed genotype call rate and 

imputed genotype accuracy. Genotype accuracy is measured by 

comparing the imputed genotypes with array genotypes of members who 

was masked as either no dense marker genotype or no DNA available. 

 

4.2.1 Study population 

EOP linkage study population included 2,151 subjects from 300 

families recruited in Virginia.  DNA samples are available from 1,149 

individuals, including 349 Caucasian (183 female, 166 male) and 800 
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African American (456 female, 344 male). DNA was extracted from whole 

blood using a standard protocol. Subjects were categorized according to 

the criteria described in the paper 94. Among African American families, 

the family 289 (Figure 27) was selected for this family imputation analysis. 

As shown by the figure 27, 16 family members were assayed for the 

framework marker genotyping on Life Technologies SNPLEX platform 95, 

including founder parents 19 and 20, offspring 33, 47, 48, 38, 41, 43, and 

45, grandchildren 58, 53, 61, 57, 65, and 64, and one of daughter-in-laws 

32. In terms of dense marker genotyping, 8 members were selected for 

Illumina HumanOmni2.5 array genotyping, including founder parents 19 

and 20, and their offspring 33, 47, 48, 38, 41, and 45. In addition, 

genotypes of 24 STR markers from the legacy EOP linkage study are also 

available for 12 family members (19, 20, 33, 38, 48, 45, 41, 47, 43, 37, 49, 

and 53) and used to evaluate the power of family-based imputation 

between different framework marker types. The study protocol was 

approved by the Institutional Review Board of University of Medicine and 

Dentistry of New Jersey, and written informed consent was obtained from 

each subject prior to taking part in the study. 

 

4.2.2 Genotyping 

Framework marker genotyping was carried out by genotyping Life 

Technologies SNP-based Linkage Mapping Set panel with approximately 



 97 

3,500 SNPs by Life Technologies SNPLEX multiplex genotyping system 95 

using capillary electrophoresis. Among the family members of Family 289, 

16 members were selected for framework marker genotyping as shown in 

Figure 27. Following manufacturer standard operation procedure, 20 ng of 

DNA molecules from each study subject was used for framework marker 

genotyping. Dense marker genotyping was outsourced to Beckman 

Coulter and done on Illumina HumanOmni2.5 GWAS array platform. 

Among 16 members whom were genotyped for framework markers, 8 

members were chosen for dense marker genotyping (Figure 27). 

  

4.2.3 Genotype imputation and data analyses 

Assuming no significant difference among chromosomes and to reduce 

the complexity of analysis, chromosome 1 genetic markers were selected 

for analysis. Various QC measures were applied to framework marker 

genotypes including Mendelian discrepancy. LD SNPs pruning was done 

on software package Golden Helix SVS (Golden Helix, 

http://www.goldenhelix.com/SNP_Variation/index.html) with R-square 

threshold of 0.8. Similarly dense marker genotype with Mendelian 

discrepancy was filtered out by SVS. Only dense markers with call rate 

equal to or greater than 95% are included for imputation. Following the 

user manual instruction of the family-based genotype imputation program, 

GIGI, framework marker genotypes were formatted into MORGAN 

http://www.goldenhelix.com/SNP_Variation/index.html
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(http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.sht

ml) acceptable format. The program gl_auto from MORGAN package was 

run on framework marker genotypes to compute the inheritance vectors. 

The GIGI program then took in the dense marker genotypes of observed 

family members to impute dense marker genotypes for unobserved 

members based on the inheritance vectors calculated by gl_auto. 

Genotype imputation procedures were run on a High Performance 

Computing 4 core Linux SMP machine provisioned with 128 G bytes of 

memory and 20 terabytes of user storage. Post-imputation genotype QC 

measures were applied to imputed genotypes. Various genotype 

imputation runs were conducted with different settings of family members 

with framework marker genotypes and/or dense marker genotypes. 

Genotype accuracy is measured by comparing the imputed genotypes 

with array genotypes of members who were masked as either no dense 

marker genotype or no DNA available. 

 

4.3 Results 

To reduce the design complexity, only chromosome 1 markers are 

selected in the family-based imputation, including 299 framework (linkage 

mapping) markers and 161,991 dense (array) markers. Figure 28 shows 

the dense marker call rate before and after running family-based 

imputation. 
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4.3.1 The power of family-based imputation 

This plot on Figure 28 shows the call rate of each family member for 

chr1 dense SNPs. The blue bar represents the run with no genotype 

imputation and the red bar represents the run with genotype imputation 

implemented using entire data set 16 family members genotyped for 

framework SNPs and 8 members genotyped for dense SNPs. The Y axis 

is the call rate which indicates the proportion of dense SNPs got called. 

The X axis indicates each family member. 

Figure 28: Imputed genotype call rate comparison 
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The first rectangle box includes the parents. The 2nd rectangle box 

includes offspring and among them 6 has both SNP sets genotyped and 

one (289-43) has only framework SNP set genotyped and 4 has no 

genotype. The 3rd rectangle box includes the 3rd generation 

grandchildren and first 6 has framework SNP set genotyped and one has 

no genotype. The 4th rectangle box includes married-in members and one 

(289-32) has framework SNP set genotyped. The results show that with 

the framework genotypes available, the Member 289-43 who has only 

framework marker genotypes actually has about 99% of dense markers 

imputed by the imputation. When considering the siblings who have no 

DNA available for genotyping, the call rate is around 0.63 after imputation 

which is still a significant gain in number of genotypes available for further 

analysis. 

 

4.3.2 Number of offspring needed for imputation 

Next, to test the performance of genotype imputation when only 

parents’ dense SNP genotypes are available, the dense marker genotypes 

from 6 offspring are excluded from genotype imputation. All the framework 

SNP genotypes from 16 family members are included for imputation. This 

imputation design is aiming to answer the question of imputation merit 

when only both parents are chosen for dense marker genotyping. 

Following the parents dense marker genotypes only imputation, 3 
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additional imputation runs with different numbers of family members with 

dense marker genotypes included are implemented. The first one, 

“Parents+Sbj 33 dense markers”, is conducted with dense marker 

genotypes from both parents and one of the offspring, the Subject 33. 

Then another offspring, Subject 38, with dense marker genotypes is 

added for the second imputation run, “Parents+Sbj 33 &38 dense 

markers”. Finally the third imputation is conducted after adding dense 

marker genotypes from Subject 48 for imputation. The Figure 29 shows 

the imputed genotype call rate of dense marker for each family member. 

Figure 29: Imputed genotype call rate at different numbers of dense 
marker genotyped members included 

 

 

Shown in the Figure 29, the blue bar represents the imputation result 

of including dense marker genotypes of all 8 genotyped members. The 
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Subject 43 is the offspring who has only framework marker genotypes and 

99% of dense markers got genotype imputed. Subject 56 is the only 3rd 

generation member who has no genotype for imputation and Subject 32 is 

the only married in parent who has the framework marker genotypes for 

imputation. The red bar represents the imputation result of including only 

dense marker genotypes of both parents for imputation. The call rate 

change is so dramatic that even with all framework marker genotypes 

included for imputation when only 2 parents are genotyped for dense 

markers, the imputed genotype call rate drops from 0.99 to 0.62 and 0.63 

to 0.62 for no DNA subjects among 2nd generation members. Among 3rd 

generation members, the call rate drops from 0.66 to 0.57 for framework 

genotyped subjects and 0.57 to 0.49 for no DNA subjects. No call rate 

change is seen among married-in parents irrespective of the availability of 

framework marker genotype. However, this reduction can actually be 

rescued by adding dense marker genotypes of one 2nd generation 

members, in this example Subject 33. The green bar represents the 

imputation result of including dense marker genotypes of Subject 33 in 

addition to genotypes of both parents for imputation. Surprisingly, by 

adding the dense marker genotypes of just one offspring, the call rate is 

increased from 0.62 to 0.95, 0.95, 0.96, 0.95, 0.97, and 0.96 for 2nd 

generation framework genotyped subject 38, 48, 45, 41, 47, and 43 

respectively. The call rate of 2nd generation no DNA members stays the 
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same at 0.62. Among 3rd generation members, the call rate drops from 

0.57 to an average of 0.64 for framework genotyped subjects and 0.49 to 

0.56 for no DNA subjects. Again, no call rate change is seen among 

married-in parents irrespective of the availability of framework marker 

genotype. The call rate improves after more 2nd generation members with 

dense marker genotypes are added for imputation although in a much 

smaller scale (purple bar: “Parents+Sbj 33 & 38 dense markers” & cyan 

bar: “Parents+Sbj 33, 38 & 48 dense markers”). 

 

4.3.3 Imputed genotype concordance 

Other than subject call rate of imputed dense markers, another 

measure to be used for validating the family-based imputation is the 

concordance of imputed SNPs with genotype calls based on lab assays. 

In this series of dense marker genotypes masked analysis, the 

concordance of imputed SNPs can be obtained by comparing the imputed 

genotype with lab assayed genotype which is masked out for imputation. 

Figure 30 displays the concordance between imputed and lab assayed 

genotypes of 2nd generation members whose dense marker genotypes 

are masked out during the imputation runs of “Parents dense markers 

only”, “Parents+Sbj 33 dense markers”, ”Parents+Sbj 33 & 38 dense 

markers”, and “Parents+Sbj 33, 38 & 48 dense markers” (red, green, 

purple, and cyan respectively). In “Parents dense markers only” 
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imputation, since only both parent dense marker genotypes are included 

all six masked out 2nd generation members have genotypes imputed. In 

“Parents+Sbj 33 dense markers” imputation, since only both parent and 

Subject 33 dense marker genotypes are included which leaves 5 masked 

out, 2nd generation members have imputed genotypes for concordance 

estimation. Therefore the ”Parents+Sbj 33 & 38 dense markers” 

imputation has 4 masked-out 2nd generation members, and the 

“Parents+Sbj 33, 38 & 48 dense markers” imputation has 3 masked out 

2nd generation members who have imputed genotypes available to 

evaluate concordance. 

Figure 30: Imputed genotype concordance at different numbers of 
dense marker genotyped members included 

 

 



 105 

Although when only parents’ dense marker genotypes are available for 

imputation, the imputed genotype call rate of framework-marker-

genotyped-only subjects is only about 0.62 (Figure 29), the quality of 

imputed genotypes actually is very impressive with genotype concordance 

above 0.99. Even after adding more subjects with dense marker 

genotypes to the imputation which increases the imputed genotype call 

rate to above 0.95, the genotype concordance stays at the same level (> 

0.99). Considering Figures 2, 3 & 4 results, it is clear that family-based 

imputation is a very powerful and cost-effective genotype imputation 

method which gives high yield and, yet, high accuracy. 

 

4.3.4 Missing parent(s) in imputation 

Next, to evaluate the importance of parents’ genotypes in family-based 

genotype imputation, an imputation is conducted with all the genotypes of 

both parents excluded from imputation. In other words, it is mimicking the 

situation when parents are not available for genetic test which is 

commonly seen in late-onset diseases. In this run, framework marker 

genotypes of 14 members, including 7 2nd generation members, 1 

married-in 2nd generation member, and 6 3rd generation members, and 

dense marker genotypes of 6 2nd generation members are used for 

genotype imputation. In addition, another imputation run mimicking the 

situation where only one parent, Subject 20 in this case, is available for 



 106 

genotyping is conducted. Finally another imputation run is implemented 

with one parent available for genotyping and framework marker genotypes 

of 14 members, as mentioned before, but dense marker genotypes of only 

4 2nd generation members. 

Figure 31: Imputed genotype call rate when parents are not available 

 

 

Figure 31 presents the results from these 3 imputation runs. The green 

bar group represents the results of runs with both parents not available for 

genotyping. The blue bar group represents the results of runs with only 

one parent available for genotyping, Subject 20 in this case. The red bar 

group represents the results of runs with one parent not available for 

genotyping, meaning no framework and dense marker genotypes, and 2 

more offspring missing dense marker genotypes. Only 1st and 2nd 

generation parent-offspring members, including no DNA members, are 
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shown with results in this figure. The results indicate that even when 

parents are not available for genetic marker testing, imputation power can 

still be obtained by the rich genetic information provided by the other 

siblings. This is demonstrated by the imputed dense marker call rate, 0.98, 

of Subject 43 who has framework marker genotypes but no dense marker 

genotypes. Nevertheless, in this setting there seems to be no power in 

predicting genotypes of parents. The imputed genotype call rate of both 

parents is 0.64 which is close to the call rate of no DNA siblings (0.63). 

However, when one of parents is available for dense marker genotyping 

(blue bar group) the imputed genotype call rate of the no DNA parent is 

increased from 0.64 to 0.99. And the imputed genotype call rate of Subject 

43 increased from 0.98 to 0.99. When 2 siblings (Subjects 33 and 38) are 

dropped for dense marker genotyping, the imputed genotype call rate of 

the no DNA parent drops to 0.95 and 0.96, 0.94, 0.95 for Subjects 43, 33, 

and 38 respectively. In all 3 runs, there is no call rate change among 2nd 

generation members who have no DNA for genotyping (average call rate: 

0.63). 

In these 3 runs, the genotype concordance can be estimated for 

members masked as no dense marker genotypes are available for 

imputation. Figure 32 presents the genotype concordance report of these 

3 runs. 
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Figure 32: Imputed genotype concordance when parents are not 
available 

 

 

When both parents are not available for genotyping, “Both Parents No-

DNA” run (green), with framework marker genotypes from 7 offspring and 

dense marker genotypes from 6 offspring, 64% of dense markers are 

imputed with concordance of 0.99 for both parents. When only one parent 

is not available for genotyping, “Parent19 No-DNA” run (blue), with 

framework and dense marker genotypes from one parent and the 

framework marker genotypes from 7 offspring and dense marker 

genotypes from 6 offspring the missing genotype parent actually has 99% 

of dense markers imputed with concordance of 0.99. Finally, when one 

parent is not available for genotyping and 2 offspring are missing dense 

marker genotypes, “Parent19 No-DNA & Sib33-38 No-Dense” run (red), 

about 95% of dense markers can be imputed with concordance of 0.99. 
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4.3.5 Members needed for dense marker genotyping 

So far the results seem to indicate that when implementing a family-

based imputation, at least one offspring and one parent for dense marker 

genotyping are sufficient for better yield in imputing parent and offspring 

genotypes. However, in this experimental setting, there are 16 framework 

marker genotyped family members and 8 dense marker genotyped 

members. Although results show that adding one densely genotyped 

offspring along with both parents dense genotypes can achieve great 

power in imputing genotypes for other offspring, it’s under the condition 

that all the framework marker genotypes are included. When testing the 

missing-parent design, similarly, all the framework genotypes are included 

and at least 5 densely genotyped members are included. Actually the 

results show that the imputation yield starts diminishing when less number 

of densely genotyped offspring are available for imputation. Also the 

framework marker genotype availability status among grandchildren and 

married-in parents seems to have no significant effect over the imputation 

yield and accuracy. In the real world situation, most study families do not 

have similar amount of data for imputation. Therefore, more imputation 

analyses focusing on smaller realistic family designs are carried out. Table 

4 presents the summary results of 13 imputation designs (A ~ M). 
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Table 4: Imputed genotype call rate and concordance of various 
smaller family designs 

 

 

Design A is a 2 generation family including 2 parents, 2 offspring who 

are both framework and dense marker genotyped and one no-DNA 

offspring. Since the dense marker genotyped subject count is 4 in this 5 

member family, only the no-DNA offspring is imputed with call rate 0.63 

which is similar with previous analysis result. Design B is a 5 member 

family which includes both parents and one offspring genotyped for 

framework and dense marker, one offspring genotyped for framework 

marker only, and one no-DNA offspring. In this design, the framework 

marker genotyped only offspring has imputation call rate 0.96 and 

concordance 1. The no-DNA offspring has call rate 0.62. Design C 

represents a 6 member family with both parents and 3 offspring genotyped 

for framework markers and one no-DNA offspring. Only the father and 2 of 

framework genotyped offspring are genotyped for dense markers. 

Therefore, the mother, one framework offspring, and the no-DNA offspring 
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are imputed for dense marker genotypes with call rate 0.92, 0.91, 0.63 

respectively. The imputed genotype concordance is 0.98, 0.99 for the 

mother and the framework offspring respectively. Design D is similar with 

Design C, except it has only 5 members and no framework marker 

genotyped only offspring. Therefore, only the mother and the no-DNA 

offspring have imputed genotypes. Similarly, the mother is found with call 

rate 0.92 and genotype concordance 0.98 and call rate 0.63 for the no-

DNA offspring. Between Design C and D, it seems adding framework 

marker genotypes from one more offspring does not make a difference in 

imputing dense marker genotypes for the parent. Design E basically is the 

same as Design D, except, instead of having framework marker 

genotyped only for the mother, Design E has the mother masked as no-

DNA. Nevertheless, under this design the mother is still found with call 

rate 0.91 and genotype concordance 0.98 and call rate 0.63 for the no-

DNA offspring. Between Design D and E results, it indicates that having 

mother framework marker genotypes does not gain more power in 

imputing her dense marker genotypes. Design F is a 7 member family with 

both parents having no-DNA, one no-DNA offspring, and 4 framework 

genotyped offspring and 3 of them are dense marker genotyped. 

Therefore, the parents, the no-DNA offspring, and the framework marker 

genotyped only offspring are imputed for dense marker genotypes. 

Compared with Design E, this design has same number (3) of dense 
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marker genotyped members and 2 more framework genotyped offspring 

for imputation. Nevertheless, it has no power in imputing parent 

genotypes, call rate 0.63, 0.63 and concordance 0.99, 0.97 for mother and 

father respectively although it has some power in imputing framework 

genotyped only offspring with call rate 0.85, concordance 0.98 and call 

rate 0.61 for no-DNA offspring. 

Designs from G to L are the designs which in total have only 2 dense 

marker genotyped members for imputation. Design G is a 5 member 

family with parents available for only framework marker genotypes, 2 

offspring available for both framework and dense marker genotypes, and 

one no-DNA offspring. The mother has 72% of dense markers imputed 

with concordance 0.98. The father is imputed with 61% dense markers 

and concordance 0.95. The no-DNA offspring has 59% dense markers 

imputed. Similarly, Design H is like Design G, except, in addition to the 5 

members mentioned it has one more framework marker genotyped only 

offspring for imputation. However, this addition seems to add no power in 

imputing dense marker genotyped for parents, no-DNA offspring. It 

generates the same call rate and concordance for them and call rate 0.67 

and concordance 0.96 for the framework marker genotyped only offspring. 

Both Design I and J are 5 member family design with the father and one 

offspring available for framework and dense marker genotypes, and one 

framework marker genotyped only offspring. The only difference is, in 
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Design I, the mother is available for framework marker genotypes, and in 

Design J, the mother is not available for both framework and dense 

marker genotypes. Nevertheless, the addition of the mother’s framework 

marker genotypes does not seem to add power to the imputation. Both 

designs are found with call rate 0.64 and concordance 0.93 for the mother, 

and call rate 0.70 and concordance 0.94 for the framework marker 

genotyped only offspring and call rate 0.64 for no-DNA offspring. Designs 

K and L are almost the same with Designs G and H, respectively, except 

the parents are no-DNA member in Designs K and L. When none of 

parents are available for dense marker genotypes, having no framework 

marker genotypes from both parents seems to affect the prediction of 

mother genotypes but not for the father, framework marker genotyped only 

offspring, and no-DNA offspring. In Designs K and L, the mother call rate 

and genotype concordance are 0.61 and 0.99 as compared to 0.72 and 

0.98 from Designs G and H respectively. All 4 designs have the father 

found with call rate about 0.61 and concordance 0.94 for the father and 

call rate 0.67 and concordance 0.96 for the framework marker genotyped 

only offspring, and call rate 0.59 for the no-DNA offspring. Finally, the 

Design M is the 5 member family design with only one dense marker 

genotyped member for imputation as well as framework marker genotyped 

only parents, one framework marker genotyped only offspring, and one 

no-DNA offspring. Although 4 of 5 members are available for framework 
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marker genotypes, with only one dense marker genotyped offspring, this 

design barely has any power in genotype imputation. Under this design, 

the mother has call rate 0.57 and concordance 0.93, similarly the father 

has call rate 0.57 and concordance 0.92, the framework marker 

genotyped only offspring has call rate 0.61 and concordance 0.93, and the 

no-DNA offspring has call rate 0.57. 

 

4.3.6 STRs used as framework marker for imputation 

So far, the family-based genotype imputation using SNP as the 

framework marker has proven to be a very effective and cost-saving 

method to increase family study power in both number of imputed 

genotypes and imputed genotype accuracy.  

Figure 33: Comparison between using SNP and STR as the 
framework markers for imputation 
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Before SNP was popular to be used in genetic study, mainly 

association but some linkage studies, STR Linkage Mapping set had been 

employed in many linkage studies. Ever since the focus of genetic study 

moved from linkage to association analysis, the STR genotypes of those 

legacy linkage studies had been kept in the closet. If STR markers can 

serve as the framework marker in family-based genotype imputation, one 

can bring those legacy linkage studies back to life with minimum cost. To 

that extent, a run of imputation with genotypes of 24 chromosome 1 STR 

markers from 12 family members as the framework marker genotypes was 

done. Figure 33 shows the call rate comparison between using 299 SNPs 

(blue) and using 24 STRs (red) as the framework markers for imputation. 

Subjects who have framework genotypes for imputation are marked by 

a “+” under the subject ID for each SNP and/or STR. A “+” on the SNP 

row, indicates the subject has genotypes of SNP framework markers for 

imputation.  Thus a “+” on the STR row, indicates the subject has 

genotypes of STR framework markers for imputation. As mentioned 

earlier, only 8 members are genotyped for dense markers, including 2 1st 

generation parents and 6 2nd generation offspring. Notice that the 2nd 

generation married-in members are shown in Figure 7 and the 2nd 

generation members, Subjects 37 and 49, are actually available for STR 

framework marker genotyping but not for SNP framework marker 
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genotyping. Thus these 2 siblings along with Subject 43 serve as the 

indicator of imputation power when using STR as the framework markers. 

When using 299 LMS SNPs as the framework markers for imputation, 

Subject 43 has about 99% of dense markers imputed. On the other hand, 

when 24 STR markers being used as the framework marker for 

imputation, Subject 43 has around 90% dense markers imputed and 94% 

for Subjects 37 and 49. Among the 3rd generation members, Subject 53 

has genotypes from both SNP and STR framework markers for 

imputation. Under the imputation with SNP framework markers, her 

imputed genotype call rate is 0.66. When STR framework markers are 

used, instead, the call rate changes to 0.62. Overall, as compared with 

SNP framework marker run, with 10 times less number of markers the 

STR framework markers can actually yield comparable result in genotype 

imputation. 

 

4.4 Discussion 

In recent years, genotype imputation has been routinely employed in 

Genome-Wide Association Studies (GWASs) leveraging the shared 

genome segments among individuals in the hope of boosting the power of 

assayed genetic markers at the expense of computational power. 

Nevertheless, most of the genotype imputations are performed in the 

population-based approach as compared to family-based approach. 
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Although the family-based approach has many advantages over the 

population-based approach, due to the lack of effective method in 

handling large complex extended pedigree its power had not been fully 

unearthed despite the rich pedigree information. Because of a smaller 

number of meiosis recombination events happening between family 

relatives, the IBD segments are much longer as compared with unrelated 

individuals which in return provides more power in predicting unobserved 

genotypes with excellent yield and accuracy from the long stretch of 

shared genome segments. Many GWASs of large population-based 

samples have been carried out to search for variants responsible for 

complex traits according to common-disease-common-variant hypothesis 

and reported in the NHGRI GWAS Catalog 63,69. Nevertheless most of 

common variants appear to explain only a small fraction of heritability 86,87. 

In recent years, the hypothesis of rare variants explaining the missing 

heritability starts emerging which is bringing the use of large pedigrees 

back to life. Rare variant alleles tend to aggregate and pass within families 

as compared to general population. The large pedigree next-generation 

sequencing study is a particularly efficient design for identifying rare 

variants that affect disease risk. To that extent, family-based genotype 

imputation is really an ideal method in boosting family study power and, 

yet, minimizing the cost. On the other hand, the idea of using “framework” 

markers to impute genotypes for “dense” markers has shed light on those 
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legacy genome scan linkage studies which mostly use STRs in finding the 

linkage between disease trait and genome regions. If STRs can be used 

as the framework marker and work as good as SNP markers in genotype 

imputation then it’s a big cost saving and resurgence in bringing back 

those legacy linkage studies to life with a cost-effective study design. 

The combination of MORGAN and GIGI programs shed light on the 

possibility of doing family-based imputation on large and complex 

pedigrees. These Markov Chain Monte Carlo (MCMC)-based methods 

enable feasible and accurate analyses of large pedigrees with many 

markers on large pedigrees. With family-based imputation based on just a 

number of family members to be assayed on high density array 

genotyping platforms or next-generation sequencing technologies, almost 

every member can be imputed for dense marker genotypes. This power of 

imputation has been demonstrated by the results of Figure 28. With 

genotypes of 299 LMS SNPs from 16 family members and 8 GWAS array 

chromosome 1 SNPs genotyped members, the family-based imputation 

method can actually predict genotypes of 99% of 161,991 GWAS array 

chromosome 1 SNPs. However in a real world situation, no study will have 

the luxury in genotyping so many family members by high density GWAS 

array or whole genome or exome sequencing. To that extent, a guide in 

identifying the key family members which maximize the power of 

imputation and, yet, minimize the cost of dense marker genotyping is 
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needed. Results shown in Figure 29 clearly indicate the need of dense 

marker genotypes from at least one offspring along with parents’ dense 

marker genotypes for imputation with decent power. The imputed 

genotype call rate dramatically increases from 0.62 to 0.96 after adding 

just one offspring with dense marker genotypes for imputation. Although 

the imputed genotype call rate gets improved after adding more dense 

marker genotyped offspring for imputation, the gain is trivial when 

compared to the gain from adding one dense marker genotyped offspring. 

This gain of imputation power is not only seen in the number of dense 

markers got imputed but also in the quality of imputed genotypes. As 

shown in the Figure 30, all the imputation designs have imputed genotype 

concordance above 0.99 which, indeed, proves the power of this family-

based imputation method. 

The analyses have shown that at least one dense marker genotyped 

offspring is needed with parents’ dense marker genotypes for imputation. 

However, one of common problem happened, especially in late-onset 

disease studies, is the lack of one or both of parents DNA for genotyping. 

Through different imputation designs, the results from Figure 31 seem to 

indicate the need of dense marker genotypes of one parent in maintaining 

power in imputing genotypes for the missing parent and missing dense 

marker genotypes of both of parents seems not having significant impact 

in imputing genotypes of framework marker genotyped offspring. In 
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addition, the imputed genotype concordance results from Figure 32, again, 

show the robustness of this family-based imputation method. Even when 

both parents are not available for dense marker genotyping, the imputed 

genotype concordance is about 0.99 for both parents. Nevertheless, it 

would be wrong to conclude that only one dense marker genotyped 

offspring is needed for imputation or parent dense marker genotypes are 

not needed for family-based imputation. Because the imputation power 

demonstrated so far, most likely, is due to large number of dense marker 

genotypes offspring, since the married-in parents’ and 3rd generation 

members’ framework marker genotypes seem not having significant 

impact on the imputation results. Therefore imputation designs which 

focus on smaller family setting are carried out and the results are present 

in Table 4. The results from 13 small size family imputation designs 

indicate that 3 dense marker genotyped family members are required for 

having an efficient and cost-effective family-based imputation with high 

yield and accuracy. Moreover, when both of parents having dense marker 

genotypes for imputation, it generates the best imputation results with 

imputed genotypes call rate 0.96 and concordance 1 for framework 

genotyped only offspring. If only one of parents is available with dense 

marker genotypes, the imputation power is still impressive given imputed 

genotypes call rate 0.91 and concordance 0.99 for framework genotyped 

only offspring and call rate 0.91 and concordance 0.98 for the genotype 



 121 

missing parent. However, the power starts diminishing when none of 

parents is available for dense marker genotyping. With only 2 dense 

marker genotyped offspring, the imputed genotypes call rate and 

concordance drop to 0.67 and 0.96 respectively for framework genotyped 

only offspring as well as call rate 0.61 and concordance 0.96 for genotype 

missing parents. Nevertheless, in this case with one more dense marker 

genotyped offspring the imputed genotypes call rate and concordance can 

actually be increased to 0.85 and 0.98 respectively for framework 

genotyped only offspring and 0.63 and 0.98 as imputed genotypes call 

rate and concordance respectively for genotype missing parents. In a 

short summary, when choosing family members for GWAS array 

genotyping or whole genome or exome sequencing with the consideration 

of family-based imputation in mind, it is recommended to have at least 3 

members for dense marker genotyping. It’s better to include both parents 

and one offspring for dense marker genotyping in order to obtain better 

imputation power. Otherwise, at least one parent better to be available 

along with 2 offspring for dense marker genotyping. If none of parents are 

available then adding more offspring can only improve the power in 

imputing genotypes for other offspring. This is great news for late-onset 

disease family studies. With only one parent available for laboratory 

assay, it is still possible to archive impressive imputation power through 

family-based imputation. 
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Finally, most legacy linkage studies used multi-allele informative STR 

markers as the tool in surveying the linkage between trait and genome 

regions. It will be interested to see if the STR markers can be a good 

candidate for framework marker in family-based imputation. If that is the 

case then it will a big cost-saving study design to give power to those 

legacy linkage studies in dissecting the association between the traits and 

genetic variants. The imputation result comparison between using 299 

SNPs as the framework markers and 24 STRs as the framework markers 

in Figure 33 shows that, indeed, STR marker can be a good candidate for 

the framework marker in this family-based imputation method. With 10 

times less than SNPs in number of markers, under the similar setting, 24 

multi-allele STR markers can still impute genotypes for 94% of dense 

markers for offspring with framework marker genotypes available for 

imputation. 
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CHAPTER 5: STUDY CONCLUSIONS 

 

In recent years, the field of genetics has been evolving at a speed that 

has never been seen in its history. Owing to the advent of new 

technologies that have brought about enormous changes in terms of both 

the size and the complexity of genetic research, the focus has shifted from 

rare Mendelian disorders to more complex common diseases. The type of 

studies has also been moving away from mostly single-center linkage 

studies to more collaborative multi-center association studies. Although 

the cost of the whole genome sequencing is still too high for conducting 

genetic studies of thousands of subjects, it is expected to go down 

substantially in the near future. As one can imagine, the enormous size 

and the complexity of data in the collaborative environment have also 

brought about great challenges for genetic study management. Although 

the practical benefits of employing informatics tools with database 

implementation have been long been recognized in genomic research for 

uses such as microarray genotyping data management, high throughput 

sequencing data management and gene repositories, the need for 

comprehensive tools that integrate genotype and phenotype data with 

public annotation information for genome-wide genetic studies has not 

been addressed.  
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In this dissertation, a Genetic Study Database (GSD) system is 

designed and developed to address this need and ease the data 

management burden of mapping genetic variants, especially for complex 

disorders. With sophisticated relational database design, a comprehensive 

user interface, and a wide range of data management utilities it provides a 

powerful tool for genetic linkage and/or association research. GSD 

simplifies merging genotype data from various assay systems with subject 

and genetic marker annotation information, pedigree, phenotype, and risk 

factor data. Specifically, GSD's design makes it suitable for large-scale, 

multiple-center projects that have become more common recently for 

studies of association between common and/or rare variants and complex 

disease etiology. GSD implementation significantly eases the burden of 

managing the large volumes of data generated by such studies. 

The ultimate goal in a genetic association study is to thoroughly survey 

the complete human genome to dissect association between genetic 

variants and diseases. However, before the cost of whole-genome 

sequencing falls to a range where this becomes feasible, the use of 

genotype imputation will be an essential tool for boosting study power. 

Even if sequencing cost only pennies, we would still need imputation to 

infer data for family members who do not have DNA available either 

because they were already deceased at the start of the study or were not 

available to participate. Genotype imputation has been routinely 
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performed across the whole genome in genome-wide association studies 

or in more targeted genomic regions for fine-mapping studies. In contrast 

to determining genotypes by assaying DNA in the laboratory, genotype 

imputation involves “in silico” genotyping by predicting the genotypes for 

SNPs which are not directly assayed in the study sample. The predicted 

genotypes can then be included in testing for association along with 

laboratory assayed genotypes and boost up study power by increasing the 

number of genotypes as well as the number of SNPs. This increases the 

ability to discover or fine-map causal variants and facilitates meta-analysis 

in merging data from various genotyping platforms. Nevertheless, owing to 

the uncertainty in predicting genotypes for SNPs located in regions that 

lack high enough levels of linkage disequilibrium, it’s important to filter out 

poorly imputed SNP genotypes after imputation (i.e., genotype imputation 

error). If the imputation quality is low at a SNP, it is better to remove such 

SNPs before association testing is performed. Studies have found 

genotyping error as low as 2% can reduce power of association tests, 

especially when dealing with rare genetic variants that are especially 

sensitive to such error. Most imputation software programs recommend 

that once the imputation has been carried out, in the absence of true 

genotypes to compare with imputed genotypes, it is important to assess 

the quality metrics provided by the programs for the imputed SNPs. 

However, it is not clear to what extent the quality metrics are effective in 
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filtering poorly imputed SNPs. Moreover, it is also not clear that if filtering 

based on the imputed SNP quality metrics alone is adequate and robust 

when using different types of microarrays such as those that cover 

common variants for the whole genome versus exome arrays that cover 

only the protein coding regions of the genome.  

In this study, by comparing genotypes from laboratory assays with 

genotypes obtained from imputation for the same subjects, it’s shown that 

the imputed SNP quality metrics do not adequately filter out data with low 

accuracy. Furthermore, different types of SNP microarrays perform quite 

differently in terms of the accuracy of their imputation. Therefore, 

additional quality measures have been tested with the goal of obtaining 

higher imputation accuracy and while maximizing imputation yield. In most 

genotype imputation studies, one does not have the true genotypes of 

imputed SNPs to validate the genotypes imputed. Since the imputation 

quality and accuracy may vary depending on the contents of the 

imputation input dataset, it is better to have a stringent post-imputation 

filtering strategy in place to reduce the error for downstream statistical 

analyses. After evaluating various combinations of measures for filtering, 

this study suggests a single set of filters combining the imputed genotype 

probability (0.98), imputed SNP quality metric (0.4), and imputed SNP call 

rate (0.7) to be used for general post-imputation filtering in population-

based imputation studies. 



 127 

Although in recent years genetic studies have shifted from family-

based linkage approaches to population-based association methods, the 

more recent focus on the role of rare variants in common diseases has 

caused a resurgence of interest in using large pedigrees for detecting the 

association of rare variants with common diseases. Since rare variants 

tend to aggregate and pass through a pedigree, family-based genotype 

imputation is especially effective in predicting missing genotypes of rare 

variants for close relatives. Utilizing the pedigree information to identify 

large segments of shared genome among relatives, family-based 

genotype imputation can be a very cost-effective method compared to 

population-based approaches. Family-based imputation also has the 

unique advantage which population-based method does not possess in its 

ability to impute genotypes for individuals who have no DNA available for 

genotyping. Additionally, the family-based method has the merit in 

transforming existing legacy genome-scan linkage studies into low-cost 

high throughput sequencing association studies. Because of the high cost 

of high density genotyping, whether GWAS array or whole-genome 

sequencing, it is important to carefully choose which family subjects to 

assay by genotyping or sequencing in the laboratory. Through testing 

various family-based imputation designs based on real data, this study 

has demonstrated the need for dense genotyping of at least, 3 family 

members in order to obtain high power for imputation. When both parents 
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and at least one offspring are available for dense genotyping, genotypes 

of 96% of dense markers can be imputed with high accuracy for offspring 

who have only framework marker genotypes. In the situation where only 

one parent is available for dense genotyping and imputation, 91% of 

dense markers can be imputed with high accuracy for both other offspring 

who have only framework markers and the missing parent. Even when 

both parents are unavailable, 85% of dense markers can be imputed with 

accurate genotypes for siblings having only framework markers as well as 

63% of the dense marker genotypes for both unobserved parents. Finally, 

the results also demonstrate that STR markers from existing genome-scan 

studies can be leveraged to allow genotype imputation of dense markers 

on many individuals when these existing STR marker genotypes are 

coupled with dense markers typed on parents or siblings. This finding 

demonstrates the potential for transforming many legacy genome-scan 

linkage studies into powerful family-based association studies with high 

density sequencing or genotyping data obtained at a small fraction of the 

cost if every subject had to be assayed in the laboratory for the high 

density genetic variants.    

  



 129 

REFERENCES 

 

1. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic 
fibrosis gene: cloning and characterization of complementary DNA. 
Science 1989;245:1066-73. 

2. MacDonald ME, Novelletto A, Lin C, et al. The Huntington's disease 
candidate region exhibits many different haplotypes. Nature genetics 
1992;1:99-103. 

3. Hirschhorn JN, Daly MJ. Genome-wide association studies for 
common diseases and complex traits. Nature reviews Genetics 
2005;6:95-108. 

4. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide 
association studies: theoretical and practical concerns. Nature reviews 
Genetics 2005;6:109-18. 

5. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association 
study identifies novel risk loci for type 2 diabetes. Nature 
2007;445:881-5. 

6. Diabetes Genetics Initiative of Broad Institute of H, Mit LU, Novartis 
Institutes of BioMedical R, et al. Genome-wide association analysis 
identifies loci for type 2 diabetes and triglyceride levels. Science 
2007;316:1331-6. 

7. Hara K, Fujita H, Johnson TA, et al. Genome-wide association study 
identifies three novel loci for type 2 diabetes. Human molecular 
genetics 2014;23:239-46. 

8. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association 
scan of nonsynonymous SNPs identifies a susceptibility variant for 
Crohn disease in ATG16L1. Nature genetics 2007;39:207-11. 



 130 

9. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study 
identifies new susceptibility loci for Crohn disease and implicates 
autophagy in disease pathogenesis. Nature genetics 2007;39:596-604. 

10. Collins FS, Guyer MS, Charkravarti A. Variations on a theme: 
cataloging human DNA sequence variation. Science 1997;278:1580-1. 

11. Spencer CC, Su Z, Donnelly P, Marchini J. Designing genome-wide 
association studies: sample size, power, imputation, and the choice of 
genotyping chip. PLoS genetics 2009;5:e1000477. 

12. Ball RD. Designing a GWAS: power, sample size, and data structure. 
Methods in molecular biology 2013;1019:37-98. 

13. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin--rapid 
analysis of dense genetic maps using sparse gene flow trees. Nature 
genetics 2002;30:97-101. 

14. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-
genome association and population-based linkage analyses. American 
journal of human genetics 2007;81:559-75. 

15. de la Chapelle A. Disease gene mapping in isolated human 
populations: the example of Finland. Journal of medical genetics 
1993;30:857-65. 

16. de la Chapelle A, Wright FA. Linkage disequilibrium mapping in 
isolated populations: the example of Finland revisited. Proceedings of 
the National Academy of Sciences of the United States of America 
1998;95:12416-23. 

17. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 
1994;265:2037-48. 

18. Marchini J, Howie B. Genotype imputation for genome-wide 
association studies. Nature reviews Genetics 2010;11:499-511. 

19. Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annual 
review of genomics and human genetics 2009;10:387-406. 



 131 

20. Browning SR. Missing data imputation and haplotype phase inference 
for genome-wide association studies. Human genetics 2008;124:439-
50. 

21. Moore JH, Asselbergs FW, Williams SM. Bioinformatics challenges for 
genome-wide association studies. Bioinformatics 2010;26:445-55. 

22. Neale BM. Introduction to linkage disequilibrium, the HapMap, and 
imputation. Cold Spring Harbor protocols 2010;2010:pdb top74. 

23. International HapMap C, Frazer KA, Ballinger DG, et al. A second 
generation human haplotype map of over 3.1 million SNPs. Nature 
2007;449:851-61. 

24. International HapMap C. A haplotype map of the human genome. 
Nature 2005;437:1299-320. 

25. Genomes Project C, Abecasis GR, Auton A, et al. An integrated map 
of genetic variation from 1,092 human genomes. Nature 2012;491:56-
65. 

26. Browning SR, Browning BL. Rapid and accurate haplotype phasing 
and missing-data inference for whole-genome association studies by 
use of localized haplotype clustering. American journal of human 
genetics 2007;81:1084-97. 

27. Greenspan G, Geiger D. Model-based inference of haplotype block 
variation. Journal of computational biology : a journal of computational 
molecular cell biology 2004;11:493-504. 

28. Kimmel G, Shamir R. GERBIL: Genotype resolution and block 
identification using likelihood. Proceedings of the National Academy of 
Sciences of the United States of America 2005;102:158-62. 

29. Stephens M, Smith NJ, Donnelly P. A new statistical method for 
haplotype reconstruction from population data. American journal of 
human genetics 2001;68:978-89. 

30. Stephens M, Donnelly P. A comparison of bayesian methods for 
haplotype reconstruction from population genotype data. American 
journal of human genetics 2003;73:1162-9. 



 132 

31. Latz E, Verma A, Visintin A, et al. Ligand-induced conformational 
changes allosterically activate Toll-like receptor 9. Nature immunology 
2007;8:772-9. 

32. Burdick JT, Chen WM, Abecasis GR, Cheung VG. In silico method for 
inferring genotypes in pedigrees. Nature genetics 2006;38:1002-4. 

33. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new 
multipoint method for genome-wide association studies by imputation 
of genotypes. Nature genetics 2007;39:906-13. 

34. Li Y DJ, Abecasis GR. MACH 1.0: Rapid Haplotype Reconstruction 
and Missing Genotype Inference. American journal of human genetics 
2006;79:S 2290. 

35. Browning SR. Multilocus association mapping using variable-length 
Markov chains. American journal of human genetics 2006;78:903-13. 

36. Amberger J, Bocchini C, Hamosh A. A new face and new challenges 
for Online Mendelian Inheritance in Man (OMIM(R)). Human mutation 
2011;32:564-7. 

37. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs 
HH. Multiple rare alleles contribute to low plasma levels of HDL 
cholesterol. Science 2004;305:869-72. 

38. Bodmer W, Bonilla C. Common and rare variants in multifactorial 
susceptibility to common diseases. Nature genetics 2008;40:695-701. 

39. Gorlov IP, Gorlova OY, Frazier ML, Spitz MR, Amos CI. Evolutionary 
evidence of the effect of rare variants on disease etiology. Clinical 
genetics 2011;79:199-206. 

40. Sanna S, Li B, Mulas A, et al. Fine mapping of five loci associated with 
low-density lipoprotein cholesterol detects variants that double the 
explained heritability. PLoS genetics 2011;7:e1002198. 

41. Leigh SE, Foster AH, Whittall RA, Hubbart CS, Humphries SE. Update 
and analysis of the University College London low density lipoprotein 
receptor familial hypercholesterolemia database. Annals of human 
genetics 2008;72:485-98. 



 133 

42. McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide 
association studies for complex traits: consensus, uncertainty and 
challenges. Nature reviews Genetics 2008;9:356-69. 

43. Botstein D, Risch N. Discovering genotypes underlying human 
phenotypes: past successes for mendelian disease, future approaches 
for complex disease. Nature genetics 2003;33 Suppl:228-37. 

44. Mayeux R. Mapping the new frontier: complex genetic disorders. The 
Journal of clinical investigation 2005;115:1404-7. 

45. Li JL, Deng H, Lai DB, et al. Toward high-throughput genotyping: 
dynamic and automatic software for manipulating large-scale genotype 
data using fluorescently labeled dinucleotide markers. Genome 
research 2001;11:1304-14. 

46. Gillanders EM, Masiello A, Gildea D, et al. GeneLink: a database to 
facilitate genetic studies of complex traits. BMC genomics 2004;5:81. 

47. Monnier S, Cox DG, Albion T, Canzian F. T.I.M.S: TaqMan Information 
Management System, tools to organize data flow in a genotyping 
laboratory. BMC bioinformatics 2005;6:246. 

48. Orro A, Guffanti G, Salvi E, Macciardi F, Milanesi L. SNPLims: a data 
management system for genome wide association studies. BMC 
bioinformatics 2008;9 Suppl 2:S13. 

49. Zhao LJ, Li MX, Guo YF, Xu FH, Li JL, Deng HW. SNPP: automating 
large-scale SNP genotype data management. Bioinformatics 
2005;21:266-8. 

50. Yeung JM, Sham PC, Chan AS, Cherny SS. OpenADAM: an open 
source genome-wide association data management system for 
Affymetrix SNP arrays. BMC genomics 2008;9:636. 

51. Li JL, Li MX, Deng HY, Duffy PE, Deng HW. PhD: a web database 
application for phenotype data management. Bioinformatics 
2005;21:3443-4. 

52. Grubb SC, Maddatu TP, Bult CJ, Bogue MA. Mouse phenome 
database. Nucleic acids research 2009;37:D720-30. 



 134 

53. Ott J. Analysis of human genetic linkage. Baltimore: The Johns 
Hopkins University Press; 1991. 

54. Fishelson M, Dovgolevsky N, Geiger D. Maximum likelihood 
haplotyping for general pedigrees. Human heredity 2005;59:41-60. 

55. Epstein MP, Duren WL, Boehnke M. Improved inference of relationship 
for pairs of individuals. American journal of human genetics 
2000;67:1219-31. 

56. Makinen VP, Parkkonen M, Wessman M, Groop PH, Kanninen T, 
Kaski K. High-throughput pedigree drawing. European journal of 
human genetics : EJHG 2005;13:987-9. 

57. Perlin MW, Burks MB, Hoop RC, Hoffman EP. Toward fully automated 
genotyping: allele assignment, pedigree construction, phase 
determination, and recombination detection in Duchenne muscular 
dystrophy. American journal of human genetics 1994;55:777-87. 

58. Hall JM, LeDuc CA, Watson AR, Roter AH. An approach to high-
throughput genotyping. Genome research 1996;6:781-90. 

59. Adams P. LABMAN and LINKMAN: a data management system 
specifically designed for genome searches of complex diseases. 
Genetic epidemiology 1994;11:87-98. 

60. Cheung KH, Nadkarni P, Silverstein S, et al. PhenoDB: an integrated 
client/server database for linkage and population genetics. Computers 
and biomedical research, an international journal 1996;29:327-37. 

61. McMahon FJ, Thomas CJ, Koskela RJ, et al. Integrating clinical and 
laboratory data in genetic studies of complex phenotypes: a network-
based data management system. American journal of medical genetics 
1998;81:248-56. 

62. Seuchter SA, Skolnick MH. HGDBMS: a human genetics database 
management system. Computers and biomedical research, an 
international journal 1988;21:478-87. 

63. Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and 
functional implications of genome-wide association loci for human 



 135 

diseases and traits. Proceedings of the National Academy of Sciences 
of the United States of America 2009;106:9362-7. 

64. Guan Y, Stephens M. Practical issues in imputation-based association 
mapping. PLoS genetics 2008;4:e1000279. 

65. Servin B, Stephens M. Imputation-based analysis of association 
studies: candidate regions and quantitative traits. PLoS genetics 
2007;3:e114. 

66. Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis and imputation 
refines the association of 15q25 with smoking quantity. Nature 
genetics 2010;42:436-40. 

67. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight 
BF. Practical aspects of imputation-driven meta-analysis of genome-
wide association studies. Human molecular genetics 2008;17:R122-8. 

68. Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association 
studies. Pharmacogenomics 2009;10:191-201. 

69. Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a 
curated resource of SNP-trait associations. Nucleic acids research 
2014;42:D1001-6. 

70. Genomes Project C, Abecasis GR, Altshuler D, et al. A map of human 
genome variation from population-scale sequencing. Nature 
2010;467:1061-73. 

71. Sung YJ, Wang L, Rankinen T, Bouchard C, Rao DC. Performance of 
genotype imputations using data from the 1000 Genomes Project. 
Human heredity 2012;73:18-25. 

72. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using 
sequence and genotype data to estimate haplotypes and unobserved 
genotypes. Genetic epidemiology 2010;34:816-34. 

73. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype 
imputation method for the next generation of genome-wide association 
studies. PLoS genetics 2009;5:e1000529. 



 136 

74. Howie B, Marchini J, Stephens M. Genotype imputation with thousands 
of genomes. G3 2011;1:457-70. 

75. Huang L, Wang C, Rosenberg NA. The relationship between 
imputation error and statistical power in genetic association studies in 
diverse populations. American journal of human genetics 2009;85:692-
8. 

76. Scheet P, Stephens M. A fast and flexible statistical model for large-
scale population genotype data: applications to inferring missing 
genotypes and haplotypic phase. American journal of human genetics 
2006;78:629-44. 

77. Pei YF, Li J, Zhang L, Papasian CJ, Deng HW. Analyses and 
comparison of accuracy of different genotype imputation methods. 
PloS one 2008;3:e3551. 

78. Hancock DB, Levy JL, Gaddis NC, et al. Assessment of genotype 
imputation performance using 1000 Genomes in African American 
studies. PloS one 2012;7:e50610. 

79. McGrady MG, Ellwood RP, Maguire A, Goodwin M, Boothman N, 
Pretty IA. The association between social deprivation and the 
prevalence and severity of dental caries and fluorosis in populations 
with and without water fluoridation. BMC public health 2012;12:1122. 

80. Delaneau O, Coulonges C, Zagury JF. Shape-IT: new rapid and 
accurate algorithm for haplotype inference. BMC bioinformatics 
2008;9:540. 

81. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing 
method for thousands of genomes. Nature methods 2012;9:179-81. 

82. Delaneau O, Howie B, Cox AJ, Zagury JF, Marchini J. Haplotype 
estimation using sequencing reads. American journal of human 
genetics 2013;93:687-96. 

83. O'Connell J, Gurdasani D, Delaneau O, et al. A general approach for 
haplotype phasing across the full spectrum of relatedness. PLoS 
genetics 2014;10:e1004234. 



 137 

84. Powers S, Gopalakrishnan S, Tintle N. Assessing the impact of non-
differential genotyping errors on rare variant tests of association. 
Human heredity 2011;72:153-60. 

85. Mayer-Jochimsen M, Fast S, Tintle NL. Assessing the impact of 
differential genotyping errors on rare variant tests of association. PloS 
one 2013;8:e56626. 

86. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability 
of complex diseases. Nature 2009;461:747-53. 

87. Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies 
for finding the underlying causes of complex disease. Nature reviews 
Genetics 2010;11:446-50. 

88. Krithika S, Valladares-Salgado A, Peralta J, et al. Evaluation of the 
imputation performance of the program IMPUTE in an admixed sample 
from Mexico City using several model designs. BMC medical genomics 
2012;5:12. 

89. Li L, Li Y, Browning SR, et al. Performance of genotype imputation for 
rare variants identified in exons and flanking regions of genes. PloS 
one 2011;6:e24945. 

90. Chen WM, Abecasis GR. Estimating the power of variance component 
linkage analysis in large pedigrees. Genetic epidemiology 
2006;30:471-84. 

91. Kong A, Masson G, Frigge ML, et al. Detection of sharing by descent, 
long-range phasing and haplotype imputation. Nature genetics 
2008;40:1068-75. 

92. Daetwyler HD, Wiggans GR, Hayes BJ, Woolliams JA, Goddard ME. 
Imputation of missing genotypes from sparse to high density using 
long-range phasing. Genetics 2011;189:317-27. 

93. Cheung CY, Thompson EA, Wijsman EM. GIGI: an approach to 
effective imputation of dense genotypes on large pedigrees. American 
journal of human genetics 2013;92:504-16. 



 138 

94. Diehl SR, Wang Y, Brooks CN, et al. Linkage disequilibrium of 
interleukin-1 genetic polymorphisms with early-onset periodontitis. 
Journal of periodontology 1999;70:418-30. 

95. Tobler AR, Short S, Andersen MR, et al. The SNPlex genotyping 
system: a flexible and scalable platform for SNP genotyping. Journal of 
biomolecular techniques : JBT 2005;16:398-406. 

 


