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ABSTRACT OF THE DISSERTATION

Essays on the Interface of Supply Chain and Project

Management

by Xin Xu

Dissertation Director: Yao Zhao

This thesis focuses on the interface of project and supply Chain Management. Sup-

ply chain decisions (e.g., material planning, network design, supply management) and

project management decisions (e.g., resource planning, expediting, and project schedul-

ing) are intertwined in many firms. The objective of this thesis is to construct and an-

alyze new models and methods that can help firms integrate supply chain and project

management. Specifically, we addressed the following issues: (1) Joint optimization

of inventory and project planning decisions for recurrent projects subject to random

material delays (Chapter 2), often found in construction industries. (2) Designing and

managing the development chain for one-of-a-kind R&D projects with an extensive

workload outsourced (Chapters 3-4), representing the recent trend in the aerospace

and defense industries.

In Chapter 2, we study a new class of problems – recurrent projects with random
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material delays, at the interface between project and supply chain management. Re-

current projects are those similar in schedule and material requirements. We present

the model of project-driven supply chain (PDSC) to jointly optimize the safety-stock

decisions in material supply chains and the crashing decisions in projects. We prove

certain convexity properties which allow us to characterize the optimal crashing policy.

We study the interaction between supply chain inventory decisions and project crashing

decisions, and demonstrate the impact of the PDSC model using examples based on

real-world practice.

In Chapter 3, we study incentive and coordination issues in development chains.

Collaboration and partnership are the way of life for large complex projects in many

industries. While they offer irresistible benefits in market expansion, technological

innovation, and cost reduction, they also present a significant challenge in incentives

and coordination of the project supply chains. In this chapter, we study strategic

behaviors of firms under the popular loss-sharing partnership in joint projects by a novel

model that applies the economic theory of teamwork to project management specifics.

We provide insights into the impact of collaboration on the project performance. For

a general project network with both parallel and sequential tasks where each firm

faces a time-cost trade-off, we find an inherent conflict of interests between individual

firms and the project. Depending on the cost and network structure, we made a few

surprising discoveries, such as, the Prisoners’ Dilemma, the Supplier’s Dilemma, and

the Coauthors’ Dilemma; these dilemmas reveal scenarios in which individual firms are

motivated to take actions against the best interests of the project and exactly how

collaboration can hurt. As remedy, we enhance collaboration by a set of new provisions

into a “fair sharing” partnership and prove its effectiveness in aligning individual firms’
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interests with that of the project.

In Chapter 4, we extend the model in Chapter 3 in two directions. First, we extend

the discrete-time model to a continuous-time model and show that the Coauthor’s

Dilemma still holds and thus the project will never be finished earlier under the loss-

sharing partnership than the centralized control system. Second, we consider stochastic

task durations and find that the uncertainty increases the probability of project delay.
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Chapter 1

Introduction

Over the last three to four decades, advances in technology and the networked economy

have led to the evolution of the business models in many project driven industries, from

the one-company-does-all approach to a more collaborative and decentralized one on a

global basis. While this has brought tremendous benefits in the areas of market expan-

sion, technological innovations and cost reduction, it also led to significant challenges in

the coordination and management of the project (driven) supply chains. Indeed, with

the outsourced work accounting for 50% or more of the revenue for projects in these

industries, supply chain management has never been so important.

The problems studied in this thesis share a common feature: project management

and supply chain management decisions are intertwined. In practice, they are typically

managed as projects without taking the supply chain perspective into account. In the

literature, the connections and interactions between the projects and their supply chains

are yet fully recognized and understood. We studied these problems by an interdisci-

plinary approach, which combines mathematical modeling with real-life examples and

if possible data. Our objective is to develop new insights and solutions beyond conven-

tional wisdom, and reconcile the discovery with practice to demonstrate its economic

or social impact.

This thesis covers two research areas:
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1. Recurrent projects subject to random material delays (found in the construction

industry)

2. One-of-a-kind development projects with an extensive workload outsourced (found

in the aerospace and defense industry).

1.1 Recurrent Projects With Random Material Delivery

Our research on recurrent projects was motivated by recent issues in the construction

resource management. Today, construction projects frequently spend a significant por-

tion of their budgets (more than 50 percent) on materials sourced from an extended

supply network. However, projects and their material supply chains are often managed

in separation despite the fact that they are tightly coupled, for instance, lean supply

practice often leads to long and variable material lead-times which may ruin the project

schedule and result in expediting cost and/or delay penalties.

We have been working alongside Intercontinental Construction Management (ICM)

Inc; a middle sized construction management firm which specializes in military build-

ings. Structural steel is the most expensive material used in all ICM projects, which is

subject to a long and unpredictable lead time. When the supplies are delayed behind

the schedule, ICM has to struggle to expedite the rest of the project activities because

of its project management practice, which involves treating each project as a separate

and unique entity. However, material supply is not an issue specific to a project but

an ongoing concern, as it is required by all the projects. To resolve issues of this kind,

we identified a new class of problem - recurrent projects with random material delays.

We constructed a modeling framework to plan for supply chain and project operations
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jointly so that we could achieve an overall efficiency. The key idea is to plan mate-

rial supplies not only for confirmed projects (project-based management) but also for

potential projects yet confirmed (supply-based management).

Specifically, Chapter 2 provides a modeling framework, namely, the project-driven

supply chain (PDSC) model, to jointly optimize supply chain safety-stock and project

crashing decisions for recurrent projects with random material delays. In a nutshell,

PDSC model is a multi-stage mathematical model where one makes supply chain in-

ventory decisions in the first stage, and then makes crashing decisions dynamically as

material delays are realized in subsequent stages. The objective is to minimize the total

safety-stock and project cost per unit of time. We prove certain convexity properties of

the cost function and characterize the optimal crashing policy for each project. We also

study the interaction between supply chain inventory decisions and project crashing

decisions.

Applying the model back to ICM, we show that a certain amount of planned inven-

tory, if placed in the right locations within the supply chain, could reduce and stabilize

the schedule of the projects and greatly improve the company’s overall performance.

Finally, we conduct an extensive numerical study to generate insights on when PDSC

model may provide significant savings.

1.2 One-of-a-kind Projects: Incentives and Coordination

Collaboration is the way of life in today’s new product development projects in the

aerospace and defense industries. For instance, product development programs (e.g.,

Boeing 787, Airbus 380, and China 919) outsourced a significant amount of workload

in design and/or fabrication to a global network of suppliers. While outsourcing offers
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irresistible benefits in market expansion, utilization of the best-in-class technologies, and

cost/cycle-time reduction, it poses a significant challenge in managing project supply

chains, which are increasingly more complex, more risky and involve more organizations

with diverse strategic motivations.

As witnessed by the repetitive delays of the Dreamliner and other programs in com-

mercial aviation, supply chain management becomes a center of gravity for managing

large development programs of this kind. Inspired by these events, the objective of this

research stream is to understand how to manage the development chain, more specif-

ically, how to coordinate multiple companies’ efforts in a joint development project.

These companies may develop different subsystems in parallel or develop subsystem

and integrate systems sequentially depending on the project network structure.

In Chapter 3, we applied the economic theory of teamwork to project operations

to study strategic behaviors of firms under various partnerships (incentive schemes)

for joint development projects where tasks are performed by different companies and

each company’s objective is to maximize its own benefit but not that of the project.

We provide insights into the impact of these partnerships on project performance. In

particular, we found that collaboration can hurt! Depending the project network and

cost structure, we discovered many innovative results on exactly how collaboration hurts

and the remedies, such as the Prisoners’ Dilemma in a Project Management setting, the

Supplier’s Dilemma, and the Coauthors’ Dilemma. The study opens up a new stream of

research at the interface of project and supply chain management and produces many

interesting and novel results on how to design and manage partnerships in projects

jointly developed by multiple companies.

In this Chapter 4, we extend the discrete time deterministic model of Chapter 3
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to a continuous-time model and to include stochastic task durations, where we show

the Coauthor’s Dilemma holds in the continuous-time model, and uncertainty in task

durations increases the probability of project delay.

Both supply chain management and project management have an extensive liter-

ature. However, they rarely interact. This thesis build new models to capture the

interaction between the supply chain and project operations, and develop methods

for their joint optimization. On one hand, it integrates recent advances in stochastic

multi-echelon inventory theory with project management (for the recurrent projects in

construction industries). On the other hand, it extends the project management liter-

ature to include supply chain planning and incentive alignment (for the one-of-a-kind

projects in aerospace and defense industries).
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Chapter 2

Project-Driven Supply Chains: Integrating Safety-Stock

and Crashing Decisions for Recurrent Projects

2.1 Introduction

Today, complex projects frequently spend a significant portion of their budgets on ma-

terial supplies sourced from an extensive supply network. The success of these projects

depends critically on both the project and the supply chain operations. Examples can be

found in construction and airspace/defense industries in particular, and in engineering-

procurement-construct (EPC) industries in general.

While some of these projects are unique and one of a kind, many of them are

routine and recurrent, i.e., they share similar schedule and material supplies. Indeed,

as companies standardize their processes and components to streamline their operations,

recurrent projects are becoming increasingly popular in practice. In these cases, the

project and supply chain operations are intertwined because the demand for the supply

chain is driven by projects’ material requirement and project progresses are constrained

by random material delays. Despite the extensive literature of project and supply chain

management, project operations and supply chain operations are rarely studied jointly

in academia, and they are almost always managed separately in industry. This chapter

explores ways to improve the efficiency of recurrent projects by integrating project and

supply chain operations.
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Specifically, we study a new class of problems - recurrent projects with random

material delays where the future projects’ occurrence and material requirement cannot

be fully predicted in advance. The project and supply chain decisions are naturally

coupled because under-stocked supply chains lead to excessive material delays which

may increase project crashing (i.e., expediting) and delay costs. To track down these

problems, we develop a modeling framework to integrate project crashing and supply

chain safety-stock decisions. Our objective is to validate a new approach - carrying

safety stock for materials used in recurrent projects, in performance improvement for

projects and their material supply chains.

One motivating example is the Intercontinental Construction Management (ICM)

Inc., a construction management firm specialized in military buildings (the name is

disguised to protect proprietary information). Although each construction project has

a unique goal, they are recurrent - similar in schedule and material requirement. Struc-

tural steel is the most expensive material used in all projects, which is subject to a long

and random lead time. Because projects are awarded through a bidding process, ICM

cannot fully anticipate the occurrence of future projects and their material requirement,

and thus cannot order materials before projects are awarded. Consequently, structural

steel may be delayed behind schedule, in which case, ICM has to crash (i.e., expedite)

the remaining tasks as needed to meet the due date.

ICM has never looked at the safety-stock of structural steel as a part of the solution

because it assigns each project to a project manager who manages the project as a

separate and unique entity. ICM’s practice does not stand alone - project and supply

chain are rarely managed jointly in practice because of the distinct approaches to man-

age them. Projects are often managed on a one-for-one basis while supply chains are
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often managed continuously across demand from multiple projects. Such a one-for-one

(or project-based) approach fails to take advantage of the similarity across recurrent

projects.

Recurrent projects are widely seen in many industries, e.g., construction and build-

to-order manufacturing, where standard components are combined in different ways to

build complex and customized products (e.g., houses, ships, aircrafts). In addition to

ICM, other examples of recurrent projects can be found in Walsh et al. (2004), Brown

et al. (2004) and Elfving et al. (2010). Specifically, Walsh et al. (2004) presents a case

study of a food company that is frequently engaged in projects of expanding an exist-

ing or adding a new facility. The key concern is on the critical material of stainless

steel components that are used in all projects and are subject to the longest and most

variable lead time. Brown et al. (2004) presents the case study of Quadrant Homes

Inc. which follows a standard schedule in construction of residential houses. Elfving

et al. (2010) conducts an empirical study on 180 projects by one Finnish construction

company in five years and shows that many projects share make-to-stock standard-

ized materials. Finally, Schmitt and Faaland (2004) shows that in addition to houses,

projects of constructing airplanes and ships can be recurrent.

The industry reports of Kerwin (2005) and Xu and Zhao (2010) further confirm the

popularity of recurrent projects in the construction industry. Kerwin (2005) shows that

home-builders like Pulte Homes Inc. offer only the most popular floor plans to boost

efficiency in fulfilling tens of thousand of new home orders in a year. Xu and Zhao

(2010) surveys an important trend in construction industry – prefabricated housing,

where houses have limited variety and are assembled by prefabricated materials. All

these cases are characterized by repeating projects with limited variety and their supply
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Figure 2.1: Recurrent projects with standardized material requirements.

chains of standardized materials (see Figure 2.1 for an illustration).

One key issue of the recurrent projects is the coordination of material delivery and

project progress which is critical for on-time and on-budget completion of the projects.

This is especially true when materials account for a significant portion of the budget

(e.g., 65% for residential houses – Somerville (1999)), and when material availability

and delivery lead times are random, as illustrated by the examples of ICM and Walsh

et al. (2004), and confirmed by an investigation of time waste in construction (Yeo and

Ning 2002) which reveals that the site work-force spends a considerable amount of time

waiting for approval or for materials to arrive on site.

One way to improve the efficiency of recurrent projects is to explore the similarity

among these projects and plan for them on a continuing basis rather than for each

project separately. Specifically, the supply-based options, such as inventory manage-

ment and strategic alliance, have been considered to improve material supply manage-

ment for recurrent projects. We refer the reader to Walsh et al. (2004), Brown et al.
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(2004), and Elfving et al. (2010) for case studies, and Tommelein et al. (2003), Tom-

melein et al. (2009) for conceptual frameworks. These studies focus only on material

supplies rather than the integration between project-based and supply-based decisions.

However, the supply chain decisions are coupled with the project decisions: if materials

are in shortage and the project due date cannot accommodate the delays, project tasks

will have to be expedited which can be very costly, and the project is subject to delay.

On the other hand, holding inventory to guarantee immediate availability of all mate-

rials may not be wise. While one can minimize the project crashing and delay costs,

the supply chain inventory cost can be unaffordably high.

In this chapter, we develop an integrated approach to optimize supply chain and

project decisions simultaneously. Specifically, we provide a modeling framework, namely,

the project-driven supply chain (PDSC) model, to jointly optimize supply chain safety-

stock and project crashing decisions for recurrent projects with random material delays.

In a nutshell, the PDSC model is a multi-stage mathematical model where we make

supply chain inventory decisions in the first stage, and then make crashing decisions

dynamically as material delays are realized in subsequent stages. The objective is to

minimize the total safety-stock and project cost per unit of time. We prove certain con-

vexity properties of the cost functions and characterize the optimal crashing policy for

each project. We study the interaction between supply chain inventory decisions and

project crashing decisions. We also apply the PDSC model to a real-world example and

demonstrate its potential by comparing to the current practice. Finally, we conduct an

extensive numerical study to generate insights on when the PDSC model may provide

significant savings.

The chapter is organized as follows: after reviewing the related literature in §2.2,
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we present the modeling framework in §2.3. Then, we provide an analysis for the opti-

mal crashing policy in §2.4, and study the interaction between inventory and crashing

decisions in §2.5. In §2.6, we apply the model to ICM and quantify its impact. In §2.7,

we conduct a numerical study to generate managerial insights. Finally, we conclude the

chapter in §2.8.

2.2 Literature Review

The project-driven supply chain (PDSC) model in particular and the integration of

supply chain and project management in general are related to the literature of project

management, supply chain management, and their interfaces such as project scheduling

and material ordering (PSMO) and construction supply chain management. We shall

review related literature in each area.

Project Management Literature. The project management literature focuses pri-

marily on the planning and execution of a single project, which includes the classic

results of critical path method (CPM), time-costing analysis (TCA), project evaluation

and review techniques (PERT) and resource constrained project scheduling (RCPS).

We refer to Ozdamar and Ulusoy (1995), Pinedo (2005) and Józefowska and Weglarz

(2006) for recent surveys. The time-cost analysis (TCA) or crashing analysis is a well

developed technique in the project management literature to balance the duration and

budget of a project. Most work on RCPS focuses on non-consumable and reusable

resources such as machine and labor. For consumable resources (e.g., materials), the

standard approach is to assume fixed lead times and then model material procurement

processes as tasks.
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Supply Chain Management Literature. There is a vast literature of supply chain

inventory management mainly grown out of applications in the manufacturing industry.

We refer to Zipkin (2000), Porteus (2002) and Axsater (2007) for comprehensive reviews.

For inventory placement/positioning models in general structure supply chains, we refer

to Axsater (2007), Graves and Willems (2003) and Simchi-Levi and Zhao (2011) for

recent reviews. Graves and Willems (2005) presents a general model to optimize stock

decisions and supply chain configurations simultaneously for new product introductions.

All of these works focus on material supply chains without considering the project

decisions and their interactions.

Our work is related to three models of stochastic inventory systems. The first

model, see Hadley and Whitin (1963), assumes full backorder and that the system

fulfills demand as soon as on-hand inventory becomes available. The second model, see

Hariharan and Zipkin (1995), assumes also full backorder but that the system fulfills

demand only on or after it is due. Clearly, it is possible to hold inventory and demand

(not due) simultaneously in the second model. The third model, see Graves and Willems

(2000), assumes guaranteed service-time (unsatisfied demand is filled by extraordinary

measures other than on-hand inventory) and that the system fulfills demand only on

or after it is due. Graves and Willems (2003) calls the first two models “stochastic

service-time” models, and the third one the “guaranteed service-time” model.

In this chapter, we cannot assume the guaranteed service-time model because the

random material delay (due to stock-out and/or random processing times) is a necessary

part of the problem. We shall use the stochastic service-time models – both the first

and the second models for different stages of the material supply chain.

Interface – Project Scheduling and Material Ordering (PSMO). One approach
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to incorporate consumable resources in project management is the PSMO model which

jointly plans for project schedule and material order quantities. This approach is based

on the observation that a project may repetitively require the same material over time.

Given the project schedule, the timing and size of material requirement are known,

which serve as input to optimize material order quantities so as to balance the fixed

ordering cost and inventory holding cost. Clearly, the project scheduling and material

ordering decisions are coupled, and the question is how to jointly optimize both sets of

decisions for a project. Aquilano and Smith (1980) initiates this approach by consid-

ering joint CPM and MRP planning with constant task durations. Smith-Daniels and

Aquilano (1984) and Smith-Daniels and Smith-Daniels (1987) present various exten-

sions. More recently, Dodin and Elimam (2001) considers varying task duration, early

reward/late penalty and quantity discount.

The PDSC model complements the PSMO model by taking uncertainty and the

safety-stock issue into account. While the PSMO model focuses on the cycle stock

issues for a single project facing economies of scale in ordering, the PDSC model focuses

on the safety-stock issues for recurrent projects subject to random material delays.

While the PSMOmodel jointly optimizes project schedule and material order quantities,

the PDSC model jointly optimizes project crashing decisions and material safety-stock

levels.

Interface – Construction Supply Chain Management. The literature of construc-

tion management has traditionally focused on the management of individual projects

(Tommelein et al. 2003). Since middle 1990s, the supply chain management concepts

and methodologies have been introduced into this field and gained substantial atten-

tion. However, supply chain management is still relatively new in the construction
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industry (OBrien et al. 2002, Tommelein et al. 2003), and most published results focus

on qualitative and conceptual frameworks (Vrijhoef and Koskela 2000, Vaidyanathan

and Howell 2007) or on case studies (Walsh et al. 2004, Brown et al. 2004). There

is a lack of rigorous mathematical modeling that integrates the issues of projects and

material supply chains, and resolves them jointly. We refer to OBrien et al. (2002) for

a survey on construction supply chain management.

In this literature, Walsh et al. (2004), Brown et al. (2004) and Elfving et al. (2010)

are mostly related to our work. In particular, Walsh et al. (2004) use simulation to

determine the proper positions of safety-stock in the supply chain of stainless steel

components, independently of any specific project, to reduce and stabilize the random

lead time. These papers focus on supply chain operations only without considering the

project scheduling issues.

2.3 The Modeling Framework

In this section, we present the model of Project-Driven Supply Chain.

2.3.1 Preliminaries

We consider recurrent projects that share the same schedule and the same type of

materials which may be subject to random lead times. The starting times of the projects

and the amount of each material required are random. The model is depicted in Figure

2.2 where each project consists of a set of tasks that are conducted sequentially. Each

task (except the first one) requires a material which is provided by a supply chain.

Specifically, there are n + 1 tasks and task i (i > 0) requires a material which is

supplied by supply chain i. Task i can start only after the required material becomes
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Figure 2.2: The model of project driven supply chain.

available and task i − 1 completes. Orders for all materials are placed as soon as the

project starts. All projects share a standard schedule. We point out that the model

remains mathematically identical if task i is replaced by a group of tasks.

Assumption 2.1 We make the following assumptions on the project and supply chain

operations, as well as their interface:

• Project operations: (1) each task has a known duration and a known crashing

cost function. (2) The project delay penalty function is known. (3) There is

no reward for completing the project earlier than the due date. (4) No task can

start prior to the planned starting time by the standard schedule. (5) The standard

schedule assumes no crashing for each task and no time buffer between consecutive

tasks.

• Supply chain operations: (1) every stage in the supply chains operates under

a periodic-review base-stock policy. (2) Processing times at all stages of the supply
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chain are sequential. (3) Unsatisfied demand is fully backordered at each stage.

(4) Orders are fulfilled on a first-come-first-serve basis (FCFS) at each stage. (5)

For any supply chain, delivery is made as soon as inventory becomes available

in all stages except the last one where no early delivery can be made to projects

on-site. (6) The delivery lead time from the last stage of a supply chain to projects

on-site is negligible.

• Interface: (1) the occurrences of projects are independent, and the amount of

each type of material required are independent across projects. (2) All needed

materials for one task of a project must be delivered in one set. (3) Material

delivery status cannot be updated along with time. (4) Supply chains for materials

required at different tasks operate independently. (5) Material inventory cannot

be held at projects on-site.

While most assumptions are common sense, a few require more explanation. Project

assumption (4) is standard in construction industry as equipment and personnel are

typically not available prior to the planned schedule. Project assumption (5) is based

on the fact that tasks i (0 < i ≤ n) are critical, and the observed practice that no

time buffer is planned for material delays. Supply chain assumption (5) and Interface

assumption (5) are true when the project sites have limited space – often applicable in

construction. Interface assumption (2) is true when there are significant economies of

scale in transportation. We make Supply chain assumption (6) and Interface assumption

(3) for simplicity. Relaxations are discussed at the end of this section.

Given the standard schedule, the project-driven supply chain (see Figure 2.2) oper-

ates as follows: task 0 is always on schedule because it is not subject to random material
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delays. Once task 0 is completed and material 1 is delivered, task 1 starts immediately.

If material 1 is ready before the completion time of task 0, we hold it in inventory and

pay a holding cost before delivering it at task 0’s completion. Otherwise, material i is

delivered immediately once it is ready. Depending on the material delay beyond the

standard schedule, task 1 may be expedited (but not earlier than the completion time

planned by the standard schedule) and incurs a crashing cost. Similar events take place

for subsequent tasks and supply chains. Finally, if task n is delayed beyond the planned

due date, a penalty is charged.

2.3.2 The Mathematical Model

To construct the model, we define the following notation:

• zi: the duration crashed for task i = 1, 2, ..., n.

• Zi: an upper bound on zi.

• Di: the amount of material i required at task i for a project. Define D̄ =

{D1, D2, ..., Dn}. Let di (d̄) be the realization of Di (D̄, respectively).

• s̄i: the base stock levels in the supply chain i, a vector.

• ∆i: the time when material i is ready subtracts the planned starting time of task

i. Let δi be its realization. If δi > 0, it refers to the material delay of supply chain

i beyond the planned starting time of task i; otherwise, it indicates how much

earlier material i is ready than the planned schedule. Note that ∆i depends on

s̄i and Di.

• ∆′
i ≥ 0: the delay of task i− 1’s completion beyond the planned starting time of

task i, i = 1, 2, . . . , n. Let δ′i be the realization of ∆′
i.
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• Wi((∆
′
i−∆i)

+): the inventory holding cost of material i at the last stage of supply

chain i if this material is ready before the completion time of task i− 1.

• Hi(s̄i): the annual inventory holding cost in supply chain i excluding Wi(·).

• Ci(zi): crashing cost function of task i.

• ∆′: project delay. Let δ′ be its realization.

• Π(∆′): penalty cost if a project is delayed by ∆′.

• λ: the average number of projects completed in one year.

We construct a multi-stage mathematical model to determine the optimal base-stock

levels for all supply chains and the crashing decisions for all tasks of projects. In the

first stage, we set the base-stock levels for the supply chains. In subsequent stages,

we consider each project and determine the optimal crashing policy for each task as

material delays are realized over the current and subsequent tasks. Our objective is to

minimize the annual supply chain and project cost.

Specifically, we utilize the flow-unit method (see Axsater 1990, Zipkin 1991, Zhao

and Simchi-Levi 2006) by keeping track of a specific project and its material require-

ment. To identify the optimal crashing policy given a set of inventory decisions, we

use a dynamic programming model where we let Gi(δ
′
i; s̄i, s̄i+1, ..., s̄n, di, di+1, . . . , dn)

be the minimum expected cost incurred from task i on to the end of the project, in-

cluding both supply chain and project costs, given that the delay from task i− 1 is δ′i,

the base-stock levels in supply chains i, i + 1, ..., n are s̄i, s̄i+1, ..., s̄n, and the amount

of materials required from stages i to stage n are di, di+1, ..., dn.
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Consider i = n, because the probability distribution of ∆n depends on s̄n and dn,

Gn(δ
′
n; s̄n, dn) = E∆n [Wn((δ

′
n −∆n(s̄n, dn))

+)] + E∆n [ min
0≤zn≤Zn

{Cn(zn) +

Π((max{δ′n,∆n(s̄n, dn)} − zn)
+)}], (2.1)

where the notation E∆n indicates that the expectation is taken with respect to ∆n.

Similarly, for any i = 2, 3, ..., n− 1, we have,

Gi(δ
′
i; s̄i, s̄i+1, ..., s̄n, di, di+1, . . . , dn)

= E∆i [Wi((δ
′
i −∆i(s̄i, di))

+)] + E∆i [ min
0≤zi≤Zi

{Ci(zi) +

Gi+1((max{δ′i,∆i(s̄i, di)} − zi)
+; s̄i+1, ..., s̄n, di+1, ..., dn)}], (2.2)

and the transition function ∆′
i+1 = (max{δ′i,∆i} − zi)

+.

For i = 1, because task 0 is not subject to any random material delay, ∆′
1 = 0

and we drop ∆′
1 from the notation. Following a similar logic as Eqs. (2.1)-(2.2),

G1(s̄1, s̄2, ..., s̄n, d̄) can be written as,

G1(s̄1, s̄2, ..., s̄n, d̄)

= E∆1 [W1((−∆1(s̄1, d1))
+)] + E∆1 [ min

0≤z1≤Z1

{C1(z1) +

G2((max{0,∆1(s̄1, d1)} − z1)
+; s̄2, ..., s̄n, d2, ..., dn)}]. (2.3)

Consider all projects conducted per unit of time, our first-stage optimization prob-

lem is,

min
s̄1,s̄2,...,s̄n

∑n
i=1Hi(s̄i) + λED̄[G1(s̄1, s̄2, ..., s̄n, D̄)] (2.4)

s.t. s̄i ≥ 0, ∀i = 1, 2, ..., n.

In this model, we first determine the optimal crashing decisions upon each scenario of

material delays, then we optimize the inventory decisions accordingly.
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2.4 Convexity and The Optimal Crashing Policy

In this section, we characterize the optimal crashing policy when given the inventory

decisions.

Assumption 2.2 We make the following assumptions:

1. Ci(·) and Π(·) are convex and increasing.

2. Wi(·) is convex and increasing.

The convexity of the crashing cost, Ci(·), of a single task is justified by Nahmias (2004)

Chapter 9. The crashing cost of a set of tasks is convex in the time crashed because

one would first crash the cheapest tasks. The assumption on the delay penalty Π(·) and

inventory holding cost Wi(·) includes the commonly seen practice of linear functions as

a special case.

The following observations are straightforward, we omit the proof.

Observation 2.1 f(x, y) = (max{x, x0} − y)+ is jointly convex in (x, y) ∈ R2; if g(z)

is convex and increasing in z and f(x, y) is jointly convex in (x, y), then g(f(x, y)) is

also jointly convex in (x, y).

By Observation 2.1, (max{δ′i, δi}− zi)
+ is jointly convex in (δ′i, zi). By Assumption

2.2 and Observation 2.1, Π((max{δ′n, δn} − zn)
+) is jointly convex in (δ′n, zn). These

results are summarized in the following observation.

Observation 2.2 (max{δ′i, δi} − zi)
+ is jointly convex in (δ′i, zi) for 1 ≤ i ≤ n.

Π((max{δ′n, δn} − zn)
+) is jointly convex in (δ′n, zn).

Proposition 2.1 Gi(δ
′
i; s̄i, ..., s̄n, di, ..., dn) is convex and increasing in δ′i for i > 1.
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Proof. We use induction by first considering i = n. By Assumption 2.2, Cn(zn) is

convex in zn. By Zipkin (2000) Proposition A.3.10 and Observation 2.2,

min
0≤zn≤Zn

{Cn(zn) + Π((max{δ′n, δn} − zn)
+)}

is convex in δ′n. By Eq. (2.1),

Gn(δ
′
n; s̄n, dn) = E∆n [Wn((δ

′
n −∆n(s̄n, dn))

+)] +

E∆n [ min
0≤zn≤Zn

{Cn(zn) + Π((max{δ′n,∆n(s̄n, dn)} − zn)
+)}].

To show Gn(δ
′
n; s̄n, dn) is convex in δ′n, we only need Wn((δ

′
n − δn)

+) to be convex in

δ′n, which is true by Assumption 2.2. Gn(δ
′
n; s̄n, dn) is also increasing in δ′n because

Wn((δ
′
n − δn)

+) is increasing in δ′n (Assumption 2.2), and Π((max{δ′n, δn} − zn)
+) is

increasing in δ′n.

Now we consider 1 < i < n. By the induction assumption, Gi+1 is convex and

increasing in δ′i+1. By Eq. (2.2),

Gi(δ
′
i; s̄i, . . . , s̄n, di, ..., dn)

= E∆i [Wi((δ
′
i −∆i(s̄i, di))

+)] +

E∆i [ min
0≤zi≤Zi

{Ci(zi) +Gi+1((max{δ′i,∆i(s̄i, di)} − zi)
+; s̄i+1, . . . , s̄n, di+1, . . . , dn)}].

By Observations 2.1-2.2 and the induction assumption,

Gi+1((max{δ′i, δi} − zi)
+; s̄i+1, ..., s̄n, di+1, ..., dn)

is increasing in δ′i and jointly convex in δ′i and zi. Following the same logic as for i = n,

we can show that Gi(δ
′
i; s̄i, . . . , s̄n, di, ..., dn) is increasing and convex in δ′i. The proof

is completed. �
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Theorem 2.1 There exists a threshold level, z∗i (depending on δ′i and δi), for task i

(0 < i ≤ n), such that the optimal crashing policy for task i, is to crash its duration by

z∗i if feasible, otherwise not crash if z∗i < 0 or crash Zi if z
∗
i > Zi.

Proof. We first consider i = 1. By Eq. (2.3),

G1(s̄1, s̄2, ..., s̄n, d̄) = E∆1 [W1((−∆1(s̄1, d1))
+)] + E∆1 [ min

0≤z1≤Z1

{C1(z1) +

G2((max{0,∆1(s̄1, d1)} − z1)
+; s̄2, ..., s̄n, d2, . . . , dn)}].

By Assumption 2.2, Proposition 2.1 and Observation 2.1, C1(z1) + G2((max{0, δ1} −

z1)
+; s̄2, ..., s̄n, d2, ..., dn) is convex in z1. Let its global minimum be achieved at z∗1 ,

thus it is optimal to crash task 1 by z∗1 if 0 ≤ z∗1 ≤ Z1, otherwise not crash if z∗1 < 0 or

crash Z1 if z∗1 > Z1.

For 1 < i < n, it follows by Eq. (2.2) and the above logic that there exists a z∗i

(depending on δ′i, δi) achieving the global minimum for Ci(zi) + Gi+1((max{δ′i, δi} −

zi)
+; s̄i+1, ..., s̄n, di+1, ..., dn), and the optimal policy is to crash task i by z∗i if feasible,

otherwise not crash if z∗i < 0 or crash Zi if z
∗
i > Zi. The same logic applies to i = n. �

We now discuss some relaxations of Assumption 2.1. Project assumption (5) can be

relaxed by allowing time buffers between consecutive critical tasks. To accommodate

this generality, we must introduce additional notation on the starting times of the

standard and crashed schedule rather than relying only on their difference. Supply

chain assumption (6) can be relaxed without changing the model and results by properly

adding a constant to ∆n. We can relax Interface assumption (3) by assuming that

material delivery status can be updated as project processes. While Proposition 2.1

and Theorem 2.1 remain true, the optimal crashing policy of a task shall depend on

the material delivery status for all subsequent tasks.
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Finally, we should point out that the cost function

n∑
i=1

Hi(s̄i) + λED̄[G1(s̄1, s̄2, ..., s̄n, D̄)]

is generally not convex in the base-stock levels. An example is given in §2.6.

2.5 Interaction of Supply Chain and Project Decisions

In this section, we study the interaction between supply chain inventory decisions and

project crashing and delay decisions. Our key result is that if we reduce the inventory

levels for material k which feeds task k and thus increase the delay of this material, ∆k,

with probability one (w.p.1), then the cumulative time crashed for all tasks preceding

task k will decrease w.p.1 to match the delayed material k; while for each task succeeding

task k, the time crashed will increase w.p.1 to catch up with the delayed schedule. The

project delay will also increase w.p.1. More specifically, we derive the following results:

• By increasing the delay of material k (feeding task k) w.p.1, we show that the

cumulative time crashed for all tasks prior to task k decreases w.p.1. (Proposition

2.2). We prove it by first showing that the right derivatives of the optimal cost

functions for all tasks prior to k + 1 decrease for each cumulative delay (Lemma

2.1), and then we show that the cumulative delays for all tasks prior to k increase

w.p.1 (Lemma 2.2).

• By increasing the delay of material k (feeding task k) w.p.1, we also show that the

time crashed for task k and all the subsequent tasks increases w.p.1 (Proposition

2.3). We prove it by first showing that the time crashed at task k increases w.p.1

(Lemma 2.3), and then we show that the cumulative delays for task k and all

subsequent tasks as well as the project delay increase w.p.1 (Lemma 2.4).
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As we decrease the inventory levels, s̄k, for material k, we assume that the delay of

this material, ∆k, increases w.p.1. This assumption holds for many inventory systems,

such as single-echelon, multi-echelon serial and distribution systems, under quite gen-

eral conditions (see Simchi-Levi and Zhao (2011) for a review). Given this monotonic

relationship between ∆k and s̄k, studying the impact of s̄k on the project decisions

is equivalent to studying the impact of ∆k on these decisions. Thus, for the ease of

exposition, we drop the notation of demand and stock levels in the subsequent analysis.

We consider the right derivatives in the following proofs.

Impact On Tasks Preceding Task k

We first study the impact of a stochastically greater material k delay, ∆k, on the optimal

cost functions.

Lemma 2.1 For any j ≤ k, G′
j(δ

′
j) decreases for each δ′j as ∆k increases w.p.1.

Proof. When j = k, Gk(δ
′
k) = E∆k

[Wk((δ
′
k −∆k)

+) + min0≤zk≤Zk
[Ck(zk) +

Gk+1((max(δ′k,∆k) − zk)
+)]]. Because it is not optimal to set zk > max(δ′k,∆k), we

remove ()+ from Gk+1 for simplicity in the rest of this section. The results still hold

without this simplification.

Suppose ∆k increases to ∆k + E, where E is a non-negative random variable and

its realization is ϵ, let G̃k(δ
′
k) = E∆k+E [Wk((δ

′
k − ∆k − E)+) + min0≤zk≤Zk

[Ck(zk) +

Gk+1(max (δ′k,∆k +E)− zk)]]. Consider a sample path of ∆k = δk and E = ϵ, we have

three cases:

1. δ′k < δk. g̃k(δ
′
k) = min0≤zk≤Zk

[Ck(zk) +Gk+1(δk + ϵ− zk)] and

gk(δ
′
k) = min0≤zk≤Zk

[Ck(zk)+Gk+1(δk − zk)]. Since neither of them is a function

of δ′k, g̃
′
k(δ

′
k) = g′k(δ

′
k) = 0.
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2. δk ≤ δ′k < δk + ϵ. g̃k(δ
′
k) = min0≤zk≤Zk

[Ck(zk) +Gk+1(δk + ϵ− zk)] and gk(δ
′
k) =

Wk(δ
′
k−δk)+min0≤zk≤Zk

[Ck(zk)+Gk+1(δ
′
k−zk)]. Here g̃′k(δ

′
k) = 0 and g′k(δ

′
k) ≥ 0

(gk(δ
′
k) is convex increasing in δ′k by Proposition 2.1), so g̃k

′(δ′k) ≤ g′k(δ
′
k).

3. δ′k ≥ δk + ϵ. g̃k(δ
′
k) = Wk(δ

′
k − δk − ϵ) + min0≤zk≤Zk

[Ck(zk) + Gk+1(δ
′
k − zk)].

Because W ′
k(δ

′
k − δk − ϵ) ≤ W ′

k(δ
′
k − δk) for each δ′k (Wk(·) is convex increasing

by Assumption 2.2) and the second terms of g̃k(δ
′
k) and gk(δ

′
k) are the same, so

g̃′k(δ
′
k) ≤ g′k(δ

′
k).

By Assumption 2.2, it is easy to see that for any δ′k, the right derivatives, g′k(δ
′
k)

and g̃′k(δ
′
k), exist for all sample paths; furthermore, the right derivatives, g′k(δ

′
k) and

g̃′k(δ
′
k), are bounded from above. By Rubinstein and Shapiro (1993), Lemma A2, p. 70,

the sample path derivatives are unbiased. Thus, G′
k(δ

′
k) decreases for each δ′k when ∆k

increases w.p.1.

To prove the same result for task j < k, we use induction by making the following

induction assumption: for a given j (j < k), G′
j(δ

′
j) decreases for each δ′j when ∆k

increases w.p.1. Then, we consider G′
j−1(δ

′
j−1), where

Gj−1(δ
′
j−1) = E∆j−1 [Wj−1((δ

′
j−1 −∆j−1)

+) + min
0≤zj−1≤Zj−1

[Cj−1(zj−1)+

Gj(max (δ′j−1,∆j−1)− zj−1)]]

(2.5)

Consider a sample path of ∆j−1 = δj−1, we first note that Wj−1((δ
′
j−1 − δj−1)

+)

does not depend on ∆k, so we omit it in the following analysis. For the second part

of Gj−1, we replace zj−1 by max(δ′j−1, δj−1) − δ′j and ignore the boundary of zj−1

for the ease of exposition (the same result holds with the boundaries), we arrive at
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minδ′j [Cj−1(max (δ′j−1, δj−1) − δ′j) + Gj(δ
′
j)]. Let δ

′∗
j be the δ′j that minimizes this ex-

pression, δ
′∗
j should satisfy the first order condition (FOC):

C ′
j−1(max (δ′j−1, δj−1)− δ

′∗
j ) = G′

j(δ
′∗
j ).

Note that Cj−1(·) and Gj(·) are both increasing convex functions (by Assumption 2.2

and Proposition 2.1) and G′
j(δ

′
j) decreases for each δ′j when ∆k increases w.p.1 by the

induction assumption, we conclude that the optimal δ
′∗
j increases when ∆k increases

w.p.1.

We now take the derivative of Cj−1(max (δ′j−1, δj−1)− δ
′∗
j )+Gj(δ

′∗
j ) with respect to

δ′j−1 and use the FOC for δ
′∗
j to arrive at,

d(Cj−1(max (δ′j−1, δj−1)−δ
′∗
j )+Gj(δ

′∗
j ))/dδ′j−1 =


0, if δ′j−1 < δj−1

C ′
j−1(δ

′
j−1 − δ

′∗
j ), otherwise .

Because the optimal δ
′∗
j increases when ∆k increases w.p.1, C ′

j−1(δ
′
j−1 − δ

′∗
j ) decreases

for each δ′j−1 when ∆k increases w.p.1. Consequently, g′j−1(δ
′
j−1) decreases for each

δ′j−1 when ∆k increases w.p.1. Using a similar analysis and by Rubinstein and Shapiro

(1993), Lemma A2, p. 70, we can show that the sample path derivatives are unbiased.

Thus, we conclude that G′
j−1(δ

′
j−1) decreases for each δ′j−1 when ∆k increases w.p.1.

By induction, we have proven that G′
j(δ

′
j) decreases for each δ′j for all j ≤ k when ∆k

increases w.p.1. �

We then study the impact of a stochastically greater ∆k on the cumulative delays

for the tasks preceding task k. For the ease of exposition, we ignore the boundaries on

zk in the following analysis. The results stay the same if we include these boundaries.

Lemma 2.2 ∆
′∗
j increases w.p.1 for any j ≤ k if ∆k increases w.p.1.

Proof. For task 1, we consider a sample path of ∆1 = δ1.
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We must have minδ′2 [C1(max (δ′1, δ1) − δ′2) + G2(δ
′
2)]. By definition, δ′1 = 0. By

Lemma 2.1, G′
2(δ

′
2) decreases for each δ′2 as ∆k increases w.p.1, thus it follows from

the first order condition (FOC) that the optimal δ
′∗
2 increases (hence, ∆

′∗
2 increases

w.p.1) as ∆k increases w.p.1 because C1(max (δ′1, δ1) − δ′2) is convex decreasing in δ′2

and G2(δ
′
2) is convex increasing in δ′2.

To prove the same result for tasks 1 < j ≤ k, we use induction and make the

following induction assumption: ∆
′∗
j (j < k) increases w.p.1 as ∆k increases w.p.1.

Consider task j and a sample path of ∆
′∗
j = δ

′∗
j and ∆j = δj , we must have:

min
δ′j+1

[Cj(max (δ
′∗
j , δj)− δ′j+1) +Gj+1(δ

′
j+1)]

By Lemma 2.1, G′
j+1(δ

′
j+1) decreases for each δ′j+1 as ∆k increases w.p.1. Meanwhile,

C ′
j(max(δ

′∗
j , δj) − δ′j+1) decreases in δ′j+1. By the induction assumption, max(δ

′∗
j , δj)

increases as ∆k increases w.p.1, and so C ′
j(max(δ

′∗
j , δj) − δ′j+1) increases for each δ′j+1

as ∆k increases w.p.1. It follows from the FOC that the optimal solution δ
′∗
j+1 also

increases as ∆kincreases w.p.1. This concludes the induction and yields the desired

result. �

We are now ready to study the impact of a stochastically greater ∆k on project

crashing decisions.

Proposition 2.2 z∗1 + z∗2 + · · ·+ z∗k−1 decreases w.p.1 if ∆k increases w.p.1.

Proof. We consider a sample path of ∆i = δi for all i ≤ k. By definition, we have

δ1 − z∗1 + (δ2 − δ
′∗
2 )+ − z∗2 + (δ3 − δ

′∗
3 )+ − · · · − z∗k−1 + (δk − δ

′∗
k )+ = max (δ′k, δk).
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Rewrite the equation,

z∗1 + · · ·+ z∗k−1 = δ1 + (δ2 − δ
′∗
2 )+ + · · ·+ (δk − δ

′∗
k )+ −max(δ

′∗
k , δk)

= δ1 + (δ2 − δ
′∗
2 )+ + · · ·+ (δk−1 − δ

′∗
k−1)

+ − δ
′∗
k .

Because δ
′∗
2 , . . . , δ

′∗
k increase as ∆k increases w.p.1, we conclude, from above equation,

z∗1 + z∗2 + · · · + z∗k−1 decreases for any sample path, and thus decreases w.p.1 as ∆k

increases w.p.1. �

Impact On Task k and Succeeding Tasks

We first focus on the time crashed at task k.

Lemma 2.3 z∗k increases w.p.1 if ∆k increases w.p.1.

Proof. We consider a sample path of ∆i = δi for all i ≤ k. At task k, the optimization

problem is minzk [Ck(zk) +Gk+1(max(δ
′∗
k , δk)− zk)], and the FOC is,

C ′
k(zk) = G′

k+1(max (δ
′∗
k , δk)− zk).

Because Ck(zk) is a convex increasing function on zk, C
′
k(zk) is positive and increas-

ing on zk. We also note that because Gk+1(·) is a convex increasing function, then

G′
k+1(max (δ

′∗
k , δk)− zk) is positive and decreasing on zk. By Lemma 2.2, it follows by

the assumption that δk increases, max (δ
′∗
k , δk) shall increase as ∆k increases w.p.1. As

a result, G′
k+1(max (δ

′∗
k , δk)− zk) increases for each zk as ∆k increases w.p.1, and thus

the optimal z∗k increases for any sample path as ∆k increases w.p.1. �

We then study the cumulative delays of task k and all subsequent tasks as well as

the project delay.

Lemma 2.4 ∆
′∗
j (for any j > k) and the project delay ∆

′∗ increase w.p.1 if ∆k in-

creases w.p.1.
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Proof. For task k, we consider a sample path of ∆i = δi for all i ≤ k. The op-

timization problem is minδ′k+1
[Ck(max(δ

′∗
k , δk) − δ′k+1) + Gk+1(δ

′
k+1)]. We note that

Ck(max(δ
′∗
k , δk) − δ′k+1) is a convex decreasing function in δ′k+1 and Gk+1(δ

′
k+1) is a

convex increasing function in δ′k+1. By Lemma 2.2, max(δ
′∗
k , δk) increases as δk in-

creases, consequently, the optimal δ
′∗
k+1 increases when δk increases.

For task j > k, we use induction and assume that, for j > k+1, ∆
′∗
j increases if ∆k

increases. Using a sample path of ∆i = δi for all i ≤ j, we consider the optimization

problem at task j, minδ′j+1
[Cj(max (δ

′∗
j , δj) − δ′j+1) + Gj+1(δ

′
j+1)]. We first note that

Cj(max (δ
′∗
j , δj)−δ′j+1) is a convex decreasing function in δ′j+1 and Gj+1(δ

′
j+1) is a con-

vex increasing function in δ′j+1. By the induction assumption, max(δ
′∗
j , δj) increases as

δk increases, consequently, the optimal δ
′∗
j+1 increases when δk increases. This concludes

the induction for tasks j > k.

The project delay ∆′ = ∆′
n+1 if we extend the definition of ∆′

j to n + 1. Because

the penalty function is also a convex increasing function in ∆′, by a similar proof, we

can show that the optimal project delay increases w.p.1 when ∆k increases w.p.1. �

Finally, we study the impact of a stochastically greater ∆k on the crashing decisions.

Proposition 2.3 z∗j increases w.p.1 for all j > k if ∆k increases w.p.1.

Proof. For task j (j > k), we consider a sample path of ∆i = δi for all i ≤ j and the

optimization problem

min
zj

[Cj(zj) +Gj+1(max(δ
′∗
j , δj)− zj)].

We note that Cj(zj) is convex increasing in zj and Gj+1(max(δ
′∗
j , δj) − zj) is con-

vex decreasing in zj . By Lemma 2.4, max(δ
′∗
j , δj) increases when δk increases, and

G′
j+1(max(δ

′∗
j , δj)− zj) increases for each zj as max(δ

′∗
j , δj) increases. As a result, the
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optimal z∗j increases if δk increases. Thus, z∗j increases w.p.1 for all j ≥ k if ∆k increases

w.p.1. �

2.6 An Illustrating Example

In this section, we apply the PDSC model and analysis to a real-world example, ICM,

to demonstrate its potential.

2.6.1 ICM Overview

ICM is a U.S. based construction management firm that keeps internally only design,

engineering, bidding, project planning and management functions. The company fol-

lows a standard bidding process for each project, and the outcome of which is not

predictable. Once a project is awarded, ICM assigns it to a project manager who puts

the plan into action by securing subcontractors (for labor) and ordering materials from

suppliers. The project manager oversees the entire project execution and is not con-

nected in any formal way to other project managers. We refer the reader to Shah and

Zhao (2009) for a detailed case study.

Project operations. All construction projects follow a standard schedule (see Figure

2.3) where the tasks in darker color are on the critical path. The total duration of a

project is 25 weeks.

The structural steel is needed for Task 5 (Framing) at the beginning of the 7th

week. One project only requires one set of structural steel at this point in time. If this

material is delayed, the tasks that can be crashed (expedited) to bring the schedule

back on track are 5 (Framing), 6 (Roofing), 16 (Painting), and 18 (Bathroom, Kitchen

and Cabinets). Crashing a task reduces its duration but must maintain the total labor
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Figure 2.3: Standard project schedule at ICM.

hours. Crashing cost comes from the over-time wage which is 50% higher than the

regular wage. The delay penalty per week for a project is 1% of the project revenue

(less materials).

Structural steel supply chain. Structural steel is the most expensive material and is

used in all projects. The structural steel supply chain consists of three stages: producer,

service center and fabricator. The producer manufactures standardized shapes. The

service center serves as a warehouse before fabricator. The fabricator customizes the

structural steel according to engineering drawings. We refer to Figure 2.4 for a detailed

description. These companies are the only government authorized suppliers in proximity

and thus cannot be switched. Currently, the entire structural steel supply chain makes
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Figure 2.4: The structural steel supply chain.

to order and the total lead time ranges from 5 to 8 weeks.

Because projects may start at different times and require different amount of struc-

tural steel, ICM’s weekly material requirement is highly sporadic and possibly zero if

no projects require framing at a certain week.

2.6.2 PDSC Model for ICM

Assumption 2.1 holds for ICM. In addition, we need,

Assumption 2.3 For ICM’s projects and its structural steel supply chain, we assume

• Project operations: (1) There is at most one project requiring structural steel

at any given period. (2) Project delay penalty is a linear function of the period

delayed.

• Supply chain operations: (1) Safety-stock can only be held at the service center in

the form of standardized shapes; (2) All stages in the structural steel supply chain

share an identical review period – one week.
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The assumption on projects is justified by the real-world data and the fact that ICM

receives about 20 projects a year. Safety-stock cannot be held at the fabricator because

customized steel is project-specific and thus very risky to hold before the project is

awarded.

For the structural steel supply chain, we assume the standard sequence of events

at each stage (see, e.g., Hadley and Whitin (1963)): At the beginning of a period, the

stage receives replenishment, then reviews inventory and places orders if appropriate.

At the end of the period, all demand is realized, deliveries are made, and all costs are

calculated for the period.

The PDSC model of §2.3 can be applied to ICM as follows: we group all tasks prior

to Task 5 (where the structural steel is required) as task 0. We also group Task 5 and

all subsequent tasks as task 1. The structural steel supply chain is denoted as supply

chain 1. We define the following additional notation for the structural steel supply

chain:

• Dt
1, d

t
1: the demand for structural steel at the tth week, and its realization. Note

that each project only requires one set of structural steel at one point in time

and thus this demand process is formed by material requirement of consecutive

projects. By the same nature of lead time demand, we define D1[t, t + k] =∑k
i=0D

t+i
1 for k ≥ 0. If k < 0, then D1[t, t + k] = 0. We also define D1(l) be

demand during l periods of time.

• L: the total lead time of the service center that includes the processing times at

the producer and the service center.

• S: the base-stock level at the service center.
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• X: the service time provided by the service center.

• Y : the processing time at the fabricator.

• hs, hf : The annual inventory holding cost per unit at the service center and

fabricator respectively.

• T : the due date – the time when structural steel is needed for a project since the

beginning of the project.

By definition,

∆1 = X + Y − T. (2.6)

By Eq. (2.3), G1(·) for ICM is

G1(S, d1) = E∆1 [W1((−∆1(S, d1))
+)] +

E∆1 [ min
0≤z1≤Z1

{C1(z1) + π(max{0,∆1(S, d1)} − z1)
+)}], (2.7)

where the first term is the inventory holding cost at the Fabricator for materials that

are ready before they are needed at a project.

For ICM, the first-stage optimization problem is,

min
S

H1(S) + λED1 [G1(S,D1)] (2.8)

s.t. S ≥ 0,

where H1(S) is the annual inventory holding cost at the service center.

We now characterize how the base-stock level, S, determines the distribution of the

service time (X) at the service center, the random material delay (∆1) to projects,

and the cost of the supply chain. Define Rk(d
t
1) to be the probability that demand

dt1 (> 0) is satisfied within the period t + k at the service center. For a constant lead
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time L, Rk(d
t
1) = Pr{S − D1[t − L + k, t] ≥ 0|dt1 > 0} for k ≤ L (Hausman et al.

1998). For stochastic and sequential lead time L (see Zipkin 2000, chap. 7), we let the

probability of L = Li be Pr{L = Li}, then Rk(d
t
1) =

∑
i Pr{S − D1[t − Li + k, t] ≥

0|dt1 > 0}Pr{L = Li} for 0 ≤ k ≤ maxi{Li}. Let X(dt1) be the service time of dt1 (> 0),

then R0(d
t
1) = Pr{X(dt1) = 0} and Rk(d

t
1) = Pr{X(dt1) ≤ k} for k > 0. Consequently,

Pr{X(dt1) = 0} = R0(d
t
1) and Pr{X(dt1) = k} = Rk(d

t
1)−Rk−1(d

t
1) for k > 0.

With the distribution of X(dt1) (for d
t
1 > 0), we can calculate the distribution of ∆1

by Eq. (2.6). The expected inventory holding cost at the fabricator for a project that

requires d units of structural steel can be calculated by,

E∆1 [W1((−∆1(d))
+)] = E∆1 [W1((T −X−Y )+)] = hf ×d×E[(T −X(d)−Y )+]. (2.9)

The net inventory at the end of period t at the service center is N(t) = S−D1[t−L, t],

and the on-hand inventory at the service center is Is(t) = N(t)+. In steady state, the

annual inventory holding cost at the service center is

H1(S) = hsE[Is] = hsE[(S −D1(L+ 1))+]. (2.10)

2.6.3 Impact of the PDSC Model

Using historical data, we construct an empirical distribution for the weekly demand of

structural steel, Dt
1, as shown in Table 2.1. Here we use the approximation of discrete

demand by rounding up, for instance, all values in [41, 50] to 50.

With S = 0 at the service center, the structural steel supply chain can deliver an

order to project on-site at the beginning of 7th, 8th, 9th, and 10th week due to the

review period and the sequence of events of the structural steel supply chain. Thus it

may cause a delay of 1, 2, or 3 weeks because it is needed at the beginning of 7th week.
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Value Frequency Probability Value Frequency Probability

0 32 0.604 60 4 0.075

10 0 0 70 1 0.019

20 0 0 80 2 0.038

30 1 0.019 90 0 0

40 7 0.132 100 2 0.038

50 4 0.075 110 0 0

Table 2.1: The empirical distribution of Dt
1.

We assume that the processing time at the producer has an equal chance to be 3, 4,

and 5 weeks, and the processing time at the fabricator has an equal chance to be 1

and 2 weeks. The monthly inventory holding cost is $16.6 per ton, and thus the annual

inventory holding cost hs = hf = $199.2 per ton per year.

For ICM, the average number of construction projects conducted annually, λ, is 20.

T = 6 weeks. The crashing cost function is piece-wise linear where,

C1(z1)− C1(z1 − 1) =



$4, 500 z1 = 1,

$6, 500 z1 = 2, 3, 4, 5,

$8, 000 z1 = 6, 7.

(2.11)

The project delay penalty per week, π = $13, 700. Clearly the delay penalty is much

more expensive than the crashing costs and thus should be avoided.

We now compare the PDSC model to the current practice of ICM which holds zero

inventory (S = 0) in the structural steel supply chain. Figure 2.5 summarizes the

numerical result, where the vertical axis stands for the annual operating costs while

the horizontal axis presents the base-stock level at the service center, S. We make the

following observations:

• The total cost function is not convex in S. It first increases slightly (due to the

bulky material requirement of projects, a small amount of inventory does not

reduce lead time but adds to cost) and then decreases as S increases before it
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Figure 2.5: The annual operating costs.

reaches the global minimum at S = 140. Then it slowly increases as S further

increases.

• The components of the total cost behave as we expected in §3.1: as we increase

the base-stock level from S = 0, the inventory cost increases slowly but the

project crashing cost decreases sharply, and thus the total cost decreases sharply.

Beyond S = 140, the project crashing cost almost reaches zero but the inventory

cost becomes significant, and so further increasing the base-stock level becomes

un-economical. Comparing to the current practice with S = 0 (ignoring material

supply in project decisions), the PDSC model (integrated supply chain and project

decisions) brings the cost down from $161,667 to $24,164, with a 85.1% saving.

• The delay of structural steel, ∆1, at the optimal base-stock level, S = 140, is much

smaller (stochastically) than ∆1 at S = 0, see Table 2.2. Thus the safety-stock at

the service center reduces the random material delays and stabilizes the schedule

of the projects, such benefits far outweigh the holding cost of the safety-stock.
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P{∆1 = 0 week} 1 2 3 E[∆1]

S = 0 0.167 0.333 0.333 0.167 1.5

S = 140 0.954 0.037 0.008 0 0.054

Table 2.2: Delays of structural steel.

2.7 Numerical Study

In this section, we conduct an extensive numerical study to gauge the potential sav-

ings of the PDSC model by solving various environments that companies may face in

practice. We use ICM as a base case and conduct a sensitivity analysis with respect to

its parameters, such as demand variability, inventory holding cost, lead time and due

date.

Demand Variability and Project Arrival Rate λ. We first study the impact of

demand variability on the savings. We define D̃ to be the nominal weekly demand which

follows a normal distribution. Since demand cannot be negative, we set the weekly

demand distribution to be discrete truncated normal where P{D1(1) = 0} = P{D̃ ≤ 0},

and P{D1(1) = k} = P{D̃ ≤ k} − P{D̃ ≤ k − 10} for k = 10, 20, .... In the numerical

study, we set E[D̃] = 30 tons and change the standard deviation of D̃ from 3 tons to

48 tons while keeping everything else the same as in §2.6.

Consistent to intuition, our numerical results (not reported here) shows that when

the demand variability increases, more inventory is needed to buffer against demand

uncertainty and to reduce material delays down to the same level. Thus, the optimal

base stock level and the total cost increase. Given the cost of the benchmark, S = 0,

remains unchanged, the percentage saving decreases as demand variability increases.

We also studied the impact of project arrival rate, λ, on the percentage savings.

Here we set E[D̃] = 30 tons and the standard deviation of D̃ to be 15 tons but vary
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Inventory Optimal % Cost increment at S = 150
cost factor base-stock level over the optimal cost

1.4 140 2.99%

1.3 140 2.39%

1.2 140 1.7%

1.1 140 0.91%

1 150 0

0.9 150 0

0.8 150 0

0.7 150 0

0.6 160 1.34%

Table 2.3: Robustness of the optimal base-stock level.

λ from 10 to 50. Our numerical study (not reported here) shows that the percentage

savings increase as λ increases. Intuitively, it is more beneficial to integrate inventory

and project decisions if projects occur more frequently.

Inventory Cost. Second, we study the impact of inventory holding cost on the savings

from the PDSC model. We set the coefficient of variation of the nominal demand to

be 0.8 and change the inventory holding cost per ton per week (at the service center

and fabricator) according to $3.82 × an inventory cost factor which varies from 0.6

to 1.4. The result (not reported here) shows that when holding inventory becomes

more expensive, the percentage savings decrease. The result is intuitive because more

expensive inventory cost means less valuable the option of holding inventory, and so

the smaller the percentage saving from integrating safety-stock and crashing decisions.

We also study the sensitivity of the optimal base-stock level with respect to the

inventory holding cost. To test the robustness of the solution, we compare the cost

of a benchmark base-stock level, S = 150, to the optimal cost at various inventory

holding costs for which this benchmark base-stock level is not optimal. Table 2.3 shows

that when the holding cost increases, the optimal base-stock level tends to decrease
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Lead Time Range (3,5) (4,6) (5,7) (6,8) (7,9)

% Cost Savings 85.6% 89.1% 93.2% 94.9% 93.7%

Table 2.4: Impact of the lead time.

but not by much. Even if the optimal base-stock level differs from the benchmark, the

cost of benchmark solution is only slightly higher than the optimal cost. In summary,

these studies show that inventory holding cost may have a significant impact on the

percentage savings of the PDSC model but much less an impact on the optimal base-

stock level.

Lead Time. To study the impact of lead time on the effectiveness of the PDSC model,

we assume that the lead time for the service center follows a uniform distribution

with different ranges, see Table 2.4. We set the coefficient of variance of the nominal

demand to be 0.8, inventory holding cost per ton per week to be $3.82, and everything

else remains unchanged.

The impact of lead time is more complex than that of demand variability and

inventory holding cost because the latter only affects the supply chain inventory cost

but the former affects both the project crashing and supply chain inventory costs.

Table 2.4 shows that as the lead time increases, the % saving tends to increase but

not always. This is true because as lead time increases, the project crashing cost may

increase significantly in all solutions, and thus lead to smaller percentage savings.

Due Date. Finally, we study the impact of the project due date, T , on the effectiveness

of the PDSC model. For this purpose, we set the lead time for the service center to

be uniformly distributed from 3 to 8 weeks, the coefficient of variance of the nominal

demand to be 0.8, and inventory holding cost per ton per week to be $3.82. We choose

a wider ranged lead time than previous studies because it allows us to study a wider



41

Figure 2.6: The impact of project due date.

range of the due date.

In the standard schedule of ICM, task 0 (task 1, see definition in §2.6.2) has a

duration of 6 (19) weeks. So the project duration is 25 weeks. Because task 0 cannot

be expedited and task 1 can be expedited by seven weeks at most, the shortest duration

of the project is 18 weeks without considering material delays. Considering the worst

case of material delay and no expediting of any task, the longest duration of the project

is 30 weeks.

Figure 2.6 illustrates the following insight,

• When the project due date is very tight (approaching the shortest duration), the

saving of the PDSC model diminishes because the high penalty cost and the tight

due date force us to crash all tasks to their minimum in all solution approaches.

In this case, safety-stock only helps to balance the project delay penalty and

inventory holding cost.

• When the project due date is very loose (approaching the longest duration), the
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saving again diminishes. This is true because there is plenty of time to accom-

modate material delays, and thus it is not necessary to consider material supply

while planning for projects.

• When the due date is in between the shortest and longest durations, the savings

can be quite significant because one has the flexibility to coordinate safety-stock

and crashing decisions so as to balance the inventory and project costs. Specifi-

cally, the percentage saving reaches its peak value at 23 weeks. We note that if

the due date is less than 23 weeks, the percentage saving is low because the total

cost is high due to project delay penalty paid in some events. If the due date

is greater than 23 weeks, we can manage not to pay delay penalty in any event,

which reduces the total cost and increases the percentage savings.

In summary, the saving of integrating safety-stock and crashing decisions reaches its

peak value when the due date is moderate, which is most likely the case in practice.

2.8 Conclusion

In this chapter, we study a new class of problems – recurrent projects with random

material delays, at the interface between supply chain and project management. We

present the model of project-driven supply chains to jointly optimize safety-stock and

project crashing decisions. We prove certain convexity properties for the model which

facilitate fast computation of the optimal crashing decisions. We also study the depen-

dence of the project crashing decisions on the supply chain inventory decisions. We

demonstrate the impact of the model by a real-world example and study its sensitivity

with respect to several system parameters. The model, although ignoring the economies
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of scale in production as well as material/project customization, captures the trade-off

between supply chain operations and project operations for recurrent projects under

uncertainty. It demonstrates that a certain amount of material inventory, if placed at

the right location(s) of the supply chain, can help stabilizing the schedule of projects

and reducing system-wide cost substantially.

One variation of the problem not considered in this chapter is recurrent projects

with different schedules. For instance, the same material may be required by different

types of projects at different tasks. While the general trade-off and idea of the PDSC

model still apply, we must modify the model to account for different project types. In

this chapter, we only test the effectiveness of the model in examples with one critical

material. It would be interesting to see the impact of the PDSC model in practice with

multiple materials. Finally, the structure of the projects considered in this chapter is

simplified into a sequence of critical tasks. In reality, projects can be more complex

with parallel non-critical paths. The development and application of the PDSC model

in these areas remain as our future research directions.
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Chapter 3

Incentives and Coordination in Project-Driven Supply

Chains

3.1 Introduction

Over the last three to four decades, advances in technology and the networked economy

have led to the evolution of the business models in many project driven industries,

from the “one-firm-does-all” approach to a more collaborative one on a global basis.

Examples can be found in book publishing, commercial aerospace, and engineering-

procurement-construction (EPC) industries. While projects in these industries vary

significantly in content and scale, they share the following commonalities: First, they

require diverse knowledge and expertise; Second, they demand a significant investment

of time and/or capital up front. The significant up front investment mandates market

expansion a necessity for success.

The book publishing industry is popularized by books with many coauthors. Using

textbooks on operations management as an example, a simple search of the key-word

“operations management” on Amazon.com in September 2013 returns 48 textbooks

which are the most relevant (definition: (1) production & operations section (2) hard-

cover (3) four stars & up). Among them, 17 (35.42%) are single authored, 19 (39.58%)
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have two authors, and the rest have three or more authors. Thus, coauthored books ac-

count for a majority (about 65%) of the most relevant textbooks on operations manage-

ment. Replicating the search on “supply chain management” and “marketing science”

returns similar results.

In the commercial aerospace industry, suppliers are playing an increasingly im-

portant role in the development of new aircrafts. Recent examples are Boeing 787

Dreamliner, Airbus 380, China Comac C919 and Airbus 350. In particular, the Boeing

787 Dreamliner outsourced 65% of the development work to more than 100 suppliers

from 12 countries (see Horng and Bozdogan (2007) and Exostar (2007)). Tier 1 suppli-

ers design and fabricate 11 major subassemblies, Boeing integrates and assembles the

airplane. To manage the relationship with the suppliers, Boeing made the suppliers

stakeholders of the program by establishing a collaborative partnership (similar to the

coauthorship) where the suppliers are responsible for the non-recurring development

cost of their tasks and must wait until the completion of the project to get paid (see

Xu and Zhao 2011).

In the EPC industries, the $150 billion international space station (ISS) is a repre-

sentative example where the design and construction of ISS are spread out to fifteen

countries around the world. The elements of ISS are not assembled on the ground but

launched from different countries and mated together on orbit. Each country invests

a huge amount of money into its elements and takes the responsibility of their main-

tenance. Five countries are the principals (partners) of ISS due to their significant

contributions.

As we can see, collaboration and partnership are everywhere, especially in large

complex projects. By definition (Macmillan Dictionary), collaboration is “the action



46

of working with someone to produce or create something”. In the project management

context, we define collaboration the basic form precisely as follows: the workload of a

project, for instance, different tasks, is spread out to multiple players (firms) where each

player is fully responsible for the financial needs of its own tasks until the completion

of the project and share the revenue (or the credit or the utility) when the project is

completed. This definition is consistent to the coauthorship in book publishing, the

collaborative partnership of the Boeing 787 Dreamliner program, and the agreement

among multiple countries for the International Space Station. For the ease of exposi-

tion, we call the financial arrangement of this kind of collaboration, the “loss-sharing

partnership”, as the loss due to a project delay is shared among all players. We also

call the supply chain created by spreading the workload of a project among multiple

firms “a project-driven supply chain”.

Collaboration and partnership offer significant benefits to projects: First, they al-

lows the project to utilize the best in-class expertise and knowledge. For instance,

authors with different expertise can combine their domain knowledge in a single book.

Second, a collaborative partnership allows multiple players to share the up front in-

vestment and thus make a costly project that is infeasible for any individual player

feasible, as in the ISS project. Thirdly, collaboration and partnership are essential to

market expansion. As witnessed in the Boeing 787 Dreamliner program, the suppliers

are the stakeholders of the program and thus are motivated to sell the plane in their own

countries and keep the customers waiting despite the significant delay of the program.

Collaboration (and partnership) is one way to outsource the workload of a project,

subcontracting is another. Collaboration (and the “loss-sharing ” partnership) differs
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from subcontracting because in the latter, suppliers get paid when their tasks are com-

pleted and certified. Thus in subcontracting, a supplier’s interests are tied only to its

tasks, whereas in collaboration, its interests are tied to the project. This difference is

important because collaboration provides a much stronger incentive than subcontract-

ing to the players to expand the market (so everyone gets more) and keep customers

waiting until the final completion of the project (so everyone loses less).

Although the benefits are irresistible, collaboration (and partnership) poses a sig-

nificant challenge in the incentive and coordination of joint projects (or project-driven

supply chains); in the economics terms, collaboration may suffer the externalities. To

see this intuitively, let’s consider a simple example (see Figure 3.1) where a project has

five tasks and four participating companies. It is easily seen that firm B can only start

its task after firm A completes its tasks, and has to watch out for firm D’s completion

time to determine its own task duration. Thus each company’s cost and schedule de-

pend not only on its own effort but also on the efforts of other companies working on

other parts of the same project. In this way, collaboration introduces gaming issues to

project management where the ultimate goal of each firm is to optimize its own benefit

even if doing so harms the interests of the project.

Although the economics and supply chain literatures study externalities and gam-

ing issues extensively, they rarely consider project management specifics, e.g., project

networks, cost structures and time-cost trade-off. In this chapter, we combine the

game theoretical models of the economics and supply chain literatures with operational

specifics drawn from the project management literature to study strategic gaming be-

haviors of firms under loss sharing partnership in joint (i.e., collaborative) projects. Our

objective is to provide insights into the following issues: (1) What is the performance of
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Figure 3.1: Collaboration in a joint project.

the project in time and cost under loss sharing? (2) How do project network and cost

structure affect the results? (3) How to design a collaborative partnership that aligns

the interests of the firms with that of the project?

To this end, we consider a two-level project network with parallel tasks (e.g., sub-

systems) in the first level and an integration task (e.g., final assembly) in the second

level. Such a project network is quite representative in practice. Each firm faces a

time-cost trade-off and must decide its task duration. We study various cost and net-

work structures and characterize the subgame perfect equilibriums either in closed-form

or by numerical algorithms. We find that under the loss sharing partnership, there is

an inherent mismatch between individual firms’ best interests and that of the project.

Depending on the cost and network structures, we made a few surprising discoveries,

such as (1) the Prisoners’ Dilemma: even though keeping the optimal schedule benefits

the entire project, it can be in each firm’s best interests to delay; (2) the Supplier’s

Dilemma: if costs are time-dependent, the supplier may have to delay (even at a loss)

in order to raise the penalty too high for the manufacturer to delay, to avoid a greater

loss; (3) the Coauthors’ Dilemma: a firm can expedite its task but cannot expedite
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the project because if it expedites, other firms will delay. Finally, we present a new

“fair sharing” partnership which enhances collaboration the basic form (the loss shar-

ing partnership) by a set of new provisions and prove its capability to align individual

firms’ financial interests with that of the project.

The chapter is organized as follows. In §3.2, we review the related literature; which

is followed by §3.3 where we introduce our models and methodology. In §3.4, we study

firms’ strategic gaming behaviors under loss sharing. In §3.5, we present the “fair

sharing” partnership and prove its effectiveness. We conclude the chapter in §3.6 with

a brief summary of our results.

3.2 Literature

This chapter is related to the bodies of literature on project management, economics

theory of teamwork, development chain management and project/supply chain inter-

faces. We shall review related results in each area and point out the difference from

our work.

Classic project management literature. The most well known results in this lit-

erature include the critical path method (CPM), project evaluation and review tech-

niques (PERT), time-cost analysis (TCA), and resource constrained project scheduling

(RCPS). This literature focuses on the scheduling and planning of project(s) within a

single firm and thus the main issue is on optimization. We refer the reader to Nahmias

(2008) and Jozefowska and Weglarz (2006) for recent surveys. Ours draws the project

management details, e.g., cost structure, project network and time-cost trade-off, from

this literature but analyzes incentives and gaming behaviors under partnerships in a

multi-firm joint project by a game theoretic model.
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Classic economics literature of teamwork. The economics literature of teamwork

discusses incentives and contracts in general teamwork settings. This literature is vast,

we refer the reader to several seminal papers, e.g., Holmstrom (1982), Demski and

Sappington (1984), McAfee and McMillan (1986), and Holmstrom and Milgrom (1991),

for principal-agent models and moral hazard games; and Bhattacharyya and Lafontaine

(1995), Kim and Wang (1998), and Al-Najjar (1997) for the double moral hazard games.

Ours enriches and expands this literature by integrating the general economics theory

with project management specifics.

Bidding and subcontracting in project management. This body of literature

studies project management issues involving multiple firms, such as project bidding

and subcontracting. Elmaghraby (1990) studies project bidding under deterministic

and probabilistic activity durations from the contractor’s perspective, while Gutierrez

and Paul (2000) compares fixed price contracts, cost-plus contracts and menu contracts

in project bidding from the project owner’s perspective. Paul and Gutierrez (2005)

studies how to assign tasks to contractors for projects with parallel or serial tasks.

Szmerekovsky (2005) studies the impact of payment schedule on contractors’ perfor-

mance. In this model, the owner selects the payment terms in the first place, the

contractor then decides the schedule to maximize its net present value. Aydinliyim and

Vairaktarakis (2010) considers a set of manufacturers who outsource certain operations

to a single third party by booking its capacity, and the third party identifies a schedule

that minimizes the total cost for all manufacturers. Ours differs from this literature

in two ways: first, we consider collaboration and partnerships which are structurally

different from subcontracting as shown in §3.1. Second, all partners considered in this
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chapter have to contribute to the workload and share the outcome, while in the subcon-

tracting literature, the project owner does not work but only supervises the contractors’

work.

Development chain management. This stream of literature studies issues in the

development of new products within a single firm and more recently involving multiple

firms. For instance, Bhaskaran and Krishnan (2009) studies a development chain with

two firms, a focal firm and a partner firm. Their model considers the cost, time,

and quality triangle under three partnerships: revenue sharing, investment sharing

and innovation sharing. They show that simple revenue sharing does not work well

and leads to underinvestment in quality improvements. Alternatively, the investment

sharing and innovation sharing, are better than revenue sharing in collaboration. This

chapter contributes to this literature by incorporating project management specifics,

such as, project network and time-cost trade-off (concepts developed in the classic

project management literature) into the analysis.

Project management and supply chain interfaces. This literature studies the

management of projects that involve multiple firms from a supply chain perspective

and consider project management specifics. It is a fairly new research area but has

attracted quite some attentions recently from the operations management community.

For instance, Bayiz and Corbett (2005) introduces a principal-multi-agent game to

project management by considering projects either with two sequential tasks or with

two parallel tasks. They analyze the effectiveness of the fixed-price contracts versus

incentive contracts in a subcontracting arrangement. Kwon, Lippman, McCardle, and

Tang (2010) analyzes delay payment versus no delay payment in a project management
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setting where different but parallel tasks are done by different suppliers. They consider

a simultaneous game among suppliers while the manufacturer does not contribute to

the project but only selects payment regimes. By assuming exponentially distributed

task durations, they showed that the delayed payment regime is more preferred by the

manufacturer when its revenue is low. In addition, under information symmetry, the

delayed payment regime is preferred in the presence of a large number of suppliers. In

this chapter, the manufacturer contributes to the workload and so the project network

has tasks both in parallel and in sequential. This new network entails a more delicate

interaction among the suppliers and the manufacturer, and provides a rich ground for

new discoveries and insights.

3.3 The Model and Preliminaries

In this section, we introduce the fundamentals of our model. First, we present the

project management specifics such as the project cost structure and project network.

Second, we provide more details on the loss sharing and fair sharing partnerships.

Finally, we present the game theoretical model and our methodology.

Project Cost Structure. We can classify project costs into two categories: direct

cost and indirect cost. Direct cost includes all costs directly contributing to a task,

such as the cost of management, labor, material and shipping. Normally, a longer task

duration is coupled with a lower direct cost. Indirect cost includes all costs not directly

contributing to tasks but depending on the project duration, such as the overhead

(e.g., rent, utilities, benefits), interests and financial costs, delay penalty and order

cancellation loss. Normally, a longer project duration is coupled with a higher indirect

cost. We refer the reader to Nahmias (2008)) for more details.



53

Figure 3.2: Project Cost Structure.

Consistent to a majority of practical situations, we assume that direct cost is convex

and decreasing as task duration increases and indirect cost is convex and increasing as

project duration increases (Figure 3.2, Nahmias (2008)). If task i is delayed by one

period, firm i saves si in the direct cost. If the project is delayed by one period, it

suffers a penalty p in the indirect cost. Conversely, if task i is expedited by one period,

firm i incurs a cost ci for expediting. If the project is completed one period earlier, it

receives a reward r.

Project Network. We consider projects with a network structure shown in Figure

3.3. It has two levels: At level 1, there are several tasks to be completed simultaneously,

similar to the design and fabrication of subsystems in the 787 Dreamliner program, the
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Figure 3.3: Project Network.

writing of individual chapters in a coauthored book, and the development of subsystems

and components of the International Space Station (ISS). At level 2, there is only one

task that is to integrate and assemble all parts completed in level 1, similar to the system

integration task in the 787 Dreamliner program, the integration and proofreading of a

coauthored book, and the final assembly and testing task of the ISS. Clearly the task

at level 2 cannot start until all tasks at level 1 are completed.

Figure 3.3 shows the general project network, where n = 1 denotes the case with

only one task at level 1, and thus the project network reduces to two sequential tasks.

When n ≥ 2, there are multiple tasks at level 1, and the project network has an assembly

structure. We will discuss these two cases in the chapter.

The Loss Sharing Partnership. In this partnership, each firm pays for the direct

and indirect costs of its own task(s), and get paid when the project is done. We observe

that under loss sharing, if a firm delays its task, it saves on its direct cost but everyone

(including the delayed firm) suffers an increase (a penalty) in indirect cost if the firm’s

delay results in a project delay. Thus other firms on time are penalized by this firm’s

delay, and this delayed firm is not fully responsible for the consequences of its action as
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the penalty is shared among all firms. While this observation presents a “moral hazard”

issue well known in the economics literature of teamwork, it is not known exactly how

such an issue may affect the time and cost metrics in a project management setting,

which is the focus of this chapter.

The Fair Sharing Partnership. This partnership works in the same way as loss

sharing except that every firm is fully responsible for the consequence of its action.

Intuitively, if one firm causes damage to others, it has to compensate others; if it brings

benefit to others, it receives compensation from others; we refer the reader to §3.5 for

the exact mechanisms of this partnership.

Game Theoretical Framework. We assume that each task in the 2-level project

network is assigned to a different firm. For the ease of exposition, we use “supplier(s)”

to name the firm(s) responsible for the tasks at level 1 and “manufacturer” to name

the firm responsible for the task at level 2. By the structure of the project network,

a two-stage game theoretic model is appropriate for predicting the behaviors of the

supplier(s) and the manufacturer in equilibrium. The sequence of events is described

as follows (see also Figure 3.4): At the beginning of stage 1, supplier(s) start their

tasks and choose task durations. After all suppliers complete their tasks, stage 1 is

concluded. At the beginning of stage 2, the manufacturer starts its task and chooses

the task duration. When the manufacturer completes its task, stage 2 is drawn to an

end and the project is completed. In this game, the suppliers take the lead by taking

actions first (anticipating the manufacturer’s response) and the manufacturer follows by

responding accordingly. We assume information symmetry thus the direct and indirect

cost functions of all players are public knowledge. Under either partnership, each firm
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Figure 3.4: Sequence of Events.

aims to maximize its own profit by determining the duration of its own task. We shall

derive subgame perfect Nash equilibrium (SPNE) for each case considered below and

compare the resulting project performance to the global optimum. If the SPNE is not

unique, we shall compare different SPNEs and report the Pareto or strong equilibrium.

Methodology. To understand the firms’ strategic behaviors under loss sharing and

how they may deviate from the optimal decisions under the “one-firm-does-all” (cen-

tralized control) model, we assume that the project starts with an “original schedule”

and “original task durations” that are optimal under the centralized control. We first

analyze one-period models in which each firm can delay or expedite its original task du-

ration by at most one period. Then we relax this constraint to allow the firms to delay

or expedite multiple periods. To study the impact of cost structure and project network

on the firms’ behaviors, we consider both time-independent and time-dependent costs,

and both one supplier and multi-supplier cases.
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3.4 The Loss Sharing Partnership

In this section, we study firms’ strategic behaviors under the loss sharing partnership.

We start with the base model in §3.4.1 which assumes only one supplier and time-

independent cost. In this model, each firm can either “keep” the original task duration

or “delay” it by one period. In §3.4.2, we relax the time-independent cost assumption

in the base model to allow time-dependent costs, for instance, delay penalty per period

may increase as the project delay increases. In §3.4.3, we consider the base model but

allow each firm an additional option of “expediting” its task by one period. In §3.4.5,

we extend the base model to include multiple suppliers, and in the last subsection,

§3.4.6, we consider a general model and develop structural results and algorithms for

the equilibrium.

3.4.1 The Base Model – The Prisoners’ Dilemma

In this section, we consider the base model (defined by Assumption 3.1). Our objective

is to understand the impact of collaboration and the loss sharing partnership on the

project performance in both time and cost.

Assumption 3.1 At level 1 of the project network, there is only one task. Each task

cannot be expedited but can be delayed by at most one period. If the project is delayed,

it is subject to a penalty which is time independent.

In this model, the supplier and manufacturer only have two options (actions) avail-

able: “keep” (keeping the original task duration) or “delay” (delaying it by one period).

We use K for “keep” and D for “delay” for simplicity. We assume that firm i is respon-

sible for task i for i = 0, 1 where firm 1 (or 0) refers to the supplier (or manufacturer,
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respectively). The action set, [supplier’s action, manufacturer’s action], is {[K, K], [D,

D], [K, D], [D, K]}. When task i is delayed, firm i receives a saving of si in terms of

its direct cost. When the project is delayed, a penalty of p per period in terms of the

indirect cost is shared by the firms, where firm i pays pi and p0 + p1 = p.

Recall that, by assumption, the project starts with an original schedule that is

optimal under the centralized control. In other words, the action set [K, K] has a pay-

off higher than those under [D, K], [K, D] and [D, D] for the project as a whole. To

this end, we need the following necessary condition,

Condition 3.1 Global Optimum - Base Model: s1 < p, s0 < p.

We can easily verify Condition 3.1 as follows: at [K, K], there is neither a saving

nor a penalty for the project, and thus the pay-off of the project relative to the original

schedule is zero. At [D, K], task 1 is delayed by one period but task 0 is kept at its

original duration. Thus, we receive a saving of s1 from task 1 but must pay a penalty of

p because the project is delayed by one period. The pay-off of the project is s1− p and

thus s1 < p is a necessary condition for [K, K] to outperform [D, K] from the project’s

perspective. Repeating a similar logic to [K, D] and [D, D] leads to Condition 3.1.

Now we are ready to study the firms’ strategic behaviors under the loss sharing

partnership and their impact on project performance. Before introducing the general

theory, we first present an example (see Figure 3.5) to illustrate the key idea and insight.

In this example, task 1 has an original duration of 9 weeks, which can be delayed to 10

weeks with a saving of s1 = $900. Task 0 has an original duration of 5 weeks which can

be delayed to 6 weeks with a saving of s0 = $1200. The project is due in 14 weeks; each

week of delay incurs a penalty of p = $1600 for the project. Clearly, Condition 3.1 is
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satisfied in the example, and so it is in the project’s best interests to keep the original

schedule.

Figure 3.5: An example of the base Model and its pay-off matrix. (K:keep, D:delay)

Under the lost sharing partnership, we assume that upon each week of the project’s

delay, the supplier’s share of the penalty is p1 = $750 and the manufacturer’s share is

p0 = $850. To see what the supplier and the manufacturer would do in their own best

interests (i.e., the equilibrium), we consider the following four scenarios:

• Win-Lose: firm 1 (the supplier) delays but firm 0 (the manufacturer) keeps its

original task duration. In this scenario, firm 1 saves $900 but must pay $750

with a net gain of $150. However, firm 0 must pay $850 for firm 1’s delay. The

firms’ pay-offs (relative to the original schedule) are (π1, π0) = (150,−850) and

the project’s pay-off is −$700.

• Lose-Win: firm 1 keeps its original task duration but firm 0 delays. In this

scenario, firm 0 saves $1200 but must pay $850 with a net gain of $350. However,

firm 1 must pay $750 for the delay caused by firm 0. The firms’ pay-offs are

(−750, 350) and the project’s pay-off is −$400.
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• Lose-Lose: both firms delay. In this scenario, the project is delayed by two

weeks and the firms’ pay-offs are (−600,−500). This is the worst scenario for the

project as a whole with a total loss of $1100.

• Win-Win: both firms keep their original task duration. This is the best scenario

for the project where both the firms and the project lose nothing with a pay-off

of zero (relative to the original schedule).

Figure 3.5 summarizes the action sets and the corresponding pay-off matrix. We

can see that no matter what the supplier does, the manufacturer’s optimal strategy is

always to “delay”. In other words, “delay” is the dominant strategy for the manufac-

turer. Similarly, the supplier’s best strategy is also to “delay” regardless of the manu-

facturer’s response. Thus, although the “Win-Win” scenario has the best outcome for

the project, it is unstable – each firm will find every excuse to delay. The “Lose-Lose”

scenario, although having the worst outcome for the project, is the subgame perfect

Nash equilibrium (SPNE), as in a typical Prisoners’ Dilemma.

We now present the general theory for the base model. Note that in this game, the

supplier leads and the manufacturer follows (see §3.3). If the project is finished on time,

there is no penalty. For every period of the project delay, the supplier pays a penalty of

p1 and the manufacturer pays the rest which is p0. The firm whichever delays obtains

a saving from the direct cost of its own task. For example, if the supplier delays but

the manufacturer keeps the original duration of its task, the supplier saves s1 from its

direct cost which brings its pay-off to be s1 − p1, and the manufacturer bears a pure

penalty of p0. Figure 3.6 shows the extensive form of the game in the base model.
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Figure 3.6: The extensive form of the game in the base model.

We derive the following results on the dominant strategies and equilibrium (all

proofs of this chapter are presented in the last section unless otherwise mentioned).

Lemma 3.1 (Dominant Strategy): Under Condition 3.1, when si < pi, “keep” is

the dominant strategy for firm i, i = 0, 1; when si > pi, “delay” is the dominant strategy

for firm i, i = 0, 1.

For simplicity, we use “S” (“M”) to denote the supplier (the manufacturer, respec-

tively).

Theorem 3.1 (Equilibrium): For the base model, under Condition 3.1, the subgame

perfect Nash equilibrium (SPNE) is given by,

Case Condition Condition Optimal strategy M’s best

on S on M for S response

1 s1 < p1 s0 < p0 K K

2 s1 > p1 s0 < p0 D K

3 s1 < p1 s0 > p0 K D

4 s1 > p1 s0 > p0 D D
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Based on these results, we present the following key insight for the base model under

the loss sharing partnership:

The Prisoners’ Dilemma: In the base model, for a schedule to be optimal, we need

s1 < p, s0 < p (Condition 3.1). For the optimal schedule to be the SPNE under loss

sharing, a much stronger condition is required, that is, s1 < p1 and s0 < p0 where

p1 + p0 = p. Thus, if s1 > p1 and s0 > p0 but s1 < p and s0 < p, then it is in each

firm’s best interests to delay although being on time benefits the entire project.

3.4.2 The Base Model with Time-dependent Costs – The Supplier’s

Dilemma

In this section, we relax the “time-independent cost” assumption in the base model to

study the impact of time-dependent penalty costs on the results, e.g., the dominant

strategies, the Prisoners’ Dilemma. We define the model by Assumption 3.2.

Assumption 3.2 Assumption 3.1 holds here except that project delay penalties are

time dependent.

Let p1 (or p2) be the penalty for the 1st (the 2nd, respectively) period of project delay;

and let p1i and p2i ) be the corresponding penalties shared by firm i, where p11 + p10 = p1

and p21 + p20 = p2. The assumption of starting with the optimal schedule and the

assumptions of convex and increasing cost functions (see §3.3) mandate,

Condition 3.2 (1) Global Optimum - Time-Dependent: s1 < p1, s0 < p1. (2) Mono-

tonicity - Time-Dependent: p1 < p2, p11 < p21, p
1
0 < p20.
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To see the impact of time-dependent penalty costs, we slightly modify the example

in §3.4.1 (shown in Figure 3.5). In this modified example, everything remains the same

except that (1) the saving per week for task 1 is reduced to s1 = $600 from $900; (2)

the second period delay penalty of the project, p2, is increased to $2500 from $1600,

where the supplier bears p21 = $1100 and the manufacturer bears p20 = $1400. Figure

3.7 depicts the modified example. Clearly, Condition 3.2 is satisfied in this example,

and it is in the project’s best interests to keep the original schedule.

Figure 3.7: An example for the base model with time-dependent costs and its pay-off
matrix. (K:keep, D:delay)

We consider the following four scenarios under the loss sharing partnership,

• “Win”-Lose: firm 1 (the supplier) delays but firm 0 (the manufacturer) keeps

its original task duration. In this scenario, firm 1 saves $600 but must pay $750

with a net loss of $150, while firm 0 must pay $850. The firms’ pay-offs (relative

to the original schedule) are (π1, π0) = (−150,−850) and the project’s pay-off is

−$1000.

• Lose-Win: firm 1 keeps its original task duration but firm 0 delays. This scenario

is identical to the “Lose-Win” scenario of the example in §3.4.1 with the firms’

pay-offs being (−750, 350) and the project’s pay-off being −$400.
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• Lose-Lose: both firms delays. In this scenario, the project is delayed by two

weeks and the firms’ pay-offs are (−1250,−1050). This is the worst scenario for

the project as a whole with a total loss of $2300.

• Win-Win: both firms keep. The firms’ pay-offs are (0, 0).

Figure 3.7 summarizes the action set and the pay-off matrix. Clearly, if the supplier

(firm 1) keeps its original task duration, the manufacturer’s best response is to “delay”

because its saving exceeds its penalty of the 1st period project delay. However, if the

supplier delays, the manufacturer’s best response is to “keep” its original task duration

because now its penalty of the 2nd period project delay exceeds its saving. Thus the

supplier has to delay (even at a loss) to raise the penalty so high that the manufacturer

would have to keep, to avoid a greater loss. We call such a phenomenon the “Supplier’s

Dilemma”. It is easy to verify that the SPNE in this example is [D, K].

We now analyze the base model with time-dependent costs in general. We note that

the only difference between this model and the base model in §3.4.1 is that when both

firms delay, the delay penalty is p1i + p2i for firm i. Figure 3.8 shows the extensive form

of the game between the supplier and the manufacturer.

We can derive the following results on the dominant strategies and equilibrium.

Lemma 3.2 (Dominant Strategy): In the base model with time-dependent costs,

under Condition 3.2, when s0 < p10, “Keep” is the dominant strategy for the manufac-

turer; when s0 > p20, “Delay” is the dominant strategy for the manufacturer.

Theorem 3.2 (Equilibrium): For the base model with time-dependent costs, under

Condition 3.2, the subgame perfect Nash equilibrium is given by:
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Figure 3.8: The extensive form of the game in the base model with time-dependent
costs.

Case Condition Condition Optimal strategy M’s best

on S on M for S response

1 s1 < p11 s0 < p10 K K

2 s1 > p11 s0 < p10 D K

3 p10 < s0 < p20 D K

4 s1 < p21 s0 > p20 K D

5 s1 > p21 s0 > p20 D D

Theorem 3.2 is similar to Theorem 3.1 except for one new case (3rd case in Theorem

3.2): when p10 < s0 < p20 (also illustrated in the example), the manufacturer’s best

strategy depends on the supplier’s action. If the supplier keeps its original task duration,

the manufacturer will delay; otherwise, the manufacturer will keep its original task

duration. Thus, in this case, the supplier must take the manufacturer’s response into

account in making its own decision.

Based on these results, we present the following key insight for the base model with

time-dependent costs under the loss sharing partnership:
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The Supplier’s Dilemma: if p10 < s0 < p20, the supplier has to delay (even at a loss)

to raise the penalty too high for the manufacturer to delay, to avoid a greater loss.

3.4.3 The Base Model with Expediting and Reward – The Coauthors’

Dilemma

In this section, we relax the base model by allowing each firm an additional option:

expediting by one period (see Assumption 3.3). With the new action of “expediting”,

the project could be completed earlier than the original schedule. The question is, will

this happen in equilibrium under loss sharing?

Assumption 3.3 Assumption 3.1 holds here except that each task can be expedited by

at most one period, and there is a reward per period if the project is expedited.

We use “E” to denote “expediting”. Let c0 (or c1) be the cost of expediting (i.e.,

the additional direct cost) for task 0 (or 1, respectively). Let r be the reward for the

project per period expedited, and r0 and r1 be rewards received by the firms where

r1 + r0 = r. When a firm expedites, the pay-off functions are different from previous

sections where firms cannot expedite. Specifically, if the supplier expedites, the action

set [E, K] yields −c1 + r1 for the supplier and r0 for the manufacturer, [E, D] yields

−c1 for the supplier and s0 for the manufacturer, and [E, E] yields −c1 + 2r1 for the

supplier and −c0+2r0 for the manufacturer. If the manufacturer expedites, the pay-off

functions could be derived in a similar way.

As in all previous sections, we assume that the project starts with an original sched-

ule that is optimal under the centralized control. To this end, Condition 3.3 (Global

Optimum) provides a necessary condition. For instance, [E, K] should yield less profit
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for the entire project than [K, K], which requires −c1 + r1 + r0 < 0, and [E, D] should

yield less profit for the project than [K, K], which requires s0 < c1. Condition 3.3

(Monotonicity) comes from the assumption of convex and increasing indirect cost and

convex and decreasing direct cost (see §3.3). Condition 3.3 (Loss Sharing) indicates

that the monotonicity condition on the project’s reward and penalty also applies to

each firm’s share of the reward and penalty.

Condition 3.3 (1) Global Optimum - Expediting: s1 < p, s0 < p; r < c1, r < c0;

s1 < c0, s0 < c1. (2) Monotonicity - Expediting: r < p; s1 < c1, s0 < c0. (3) Loss

Sharing - Expediting: r1 < p1, r0 < p0.

The extensive form of the game is shown in Figure 3.9. For instance, if the supplier

expedites while the manufacturer keeps its original task duration, the supplier gets an

award of r1 but must pay an expediting cost of c1; the manufacturer gets an award of

r0 without any cost.

We can derive the following results on the dominant strategies and equilibrium.

Lemma 3.3 (Dominant Strategy): In the base model with expediting and reward,

under Condition 3.3, when si > pi, “delay” is the dominant strategy for firm i, i = 1, 0;

when si < ri < pi < ci, “keep” is the dominant strategy for firm i, i = 1, 0.

Lemma 3.3 differs from Lemma 3.1 on the conditions for “keep” because we must

consider not only “delay” but also “expediting” in this model.

Theorem 3.3 (Equilibrium): For the base model with expediting and reward, under

Condition 3.3, the subgame perfect Nash equilibrium is given by,
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Figure 3.9: The extensive form of the game in the base model with expediting and
reward.

Case Condition Condition Optimal strategy M’s best

on S on M for S response

1 c0 < p0 D E

2 s1 < p1 s0 < p0 < c0 K K

3 s1 > p1 s0 < p0 < c0 D K

4 c1 < p1 s0 > p0 E D

5 s1 < p1 < c1 s0 > p0 K D

6 s1 > p1 s0 > p0 D D

Theorem 3.3 is similar to Theorem 3.1 except for the 1st and 4th cases that involve

expediting and have equilibriums of [D, E] and [E, D]. We shall first explain the intuition
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behind these two new cases and then discuss the other cases.

• 1st case, c0 < p0, [D, E] is the equilibrium: In this case, the manufacturer

faces a delay penalty that is greater than its expediting cost, and so it would

do anything to prevent the project from being delayed. Taking advantage of the

manufacturer’s weakness, the supplier could delay regardless of its own cost struc-

ture, and earn a net saving without any penalty. Thus, even if the manufacturer

expedites its task, the project will not be expedited because the supplier will

delay.

An example in the book publishing industry: Let’s consider a coauthor

and a lead author working sequentially on a textbook. The coauthor writes parts

of the book and must pass on the manuscripts to the lead author to integrate and

complete. The lead author is responsible for the delivery and is very concerned

about the deadline. Thus the lead author will do anything possible to finish the

book on time. Knowing this, the coauthor will delay as much as what the lead

author can catch up without a penalty.

• 4th case, c1 < p1 and p0 < s0, [E, D] is the equilibrium: In this case, “delay”

is the dominant strategy for the manufacturer (by Lemma 3.3). In addition, the

supplier faces a delay penalty that is greater than its expediting cost, and so the

supplier will have to expedite to prevent the project from being delayed.

An example in the academic thesis completion: Let’s consider a PhD

student and his/her advisor. The student shall write the PhD thesis and handle

it over to the advisor to read and approve. The student needs to graduate and

will do anything possible to complete his/her thesis on time. The advisor, on the
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other hand, is already established and much less concerned. Knowing the advisor

to be bottleneck, the student has to work extra hard in the hope of getting the

thesis done on time.

• 2nd case, s1 < p1 and s0 < p0 < c0, [K, K] is the equilibrium: In this

case, the supplier cannot be better off by delaying, so it either keeps or expedites

its task. If the supplier keeps, the manufacturer will also keep because either

delaying or expediting will make itself worse off. If the supplier expedites, the

manufacturer may delay or keep: delaying renders the supplier a pure expediting

cost while keeping provides the supplier a reward, r1, but still insufficient to cover

its expediting cost because r1 < c1 by Condition 3.3 (Global Optimum). So the

supplier would choose to keep.

• 3rd case, s1 > p1 and s0 < p0 < c0, [D, K] is the equilibrium: In this

case, “delay” is the dominant strategy for the supplier (by Lemma 3.3). The

manufacturer will choose to keep because either delaying or expediting makes

itself worse off.

• 5th case, s1 < p1 < c1 and s0 > p0, [K, D] is the equilibrium: “delay”

is the dominant strategy for the manufacturer (by Lemma 3.3). The supplier’s

saving from “delay” is less than the delay penalty, which, in turn, is less than its

expediting cost. This fact makes “keep” the best strategy for the supplier.

• 6th case, s1 > p1 and s0 > p0, [D, D] is the equilibrium: “delay” is the

dominant strategy for both firms.
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Theorem 3.3 implies that in the base model with expediting and reward, the project

will never be expedited in the equilibrium under the loss sharing partnership as com-

pared to the optimal schedule. We summarize the results in this section by the following

dilemma:

The Coauthors’ Dilemma: A firm can expedite its task but cannot expedite the

project because if it expedites, the other will delay; if it delays, the other may or may

not expedite.

3.4.4 More Discussion on The Loss Sharing Condition

The intuition behind the loss sharing condition r0 < p0 and r1 < p1 (in Condition

3.3) is that a firm’s share of the reward should be less than its share of the penalty,

consistent to the monotonicity condition of the project, which is r < p. This condition

is necessary for the Coauthor’s Dilemma.

If we relax the loss sharing condition, then the Coauthor’s Dilemma may not hold.

Here is an example: assuming r0 > p0, we find that the [E,K] could be the equilibrium

under certain conditions, and the project will be expedited and so the Coauthor’s

Dilemma no longer holds. Specifically, let’s consider the case ofp0 < s0 < r0, where

p1 > c1−r1 and p1 > (s1+c1−r1)/2 are satisfied, [E,K] turns out to be the equilibrium.

We refer the readers to the proof of Theorem 3.3 (in appendix) for technical details.

The intuition behind this case is that if the supplier expedites, the manufacturer

would keep because the saving from direct cost is less than the possible reward from

expediting and both are less than the expediting cost; if the supplier keeps, the man-

ufacturer would delay because penalty from indirect cost is less than the saving from
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direct cost; if the supplier delays, the manufacturer will delay to reduce loss. Since the

supplier’s loss from expediting is less than its delay penalty, it would expedite to avoid

more loss.

3.4.5 The Base Model with Multiple Suppliers – The Worst Supplier

Dominance

In this section, we extend the base model to include two suppliers at level 1 to study

the impact of the project network. The analysis of a N-supplier system is similar. The

model is defined in Assumption 3.4 where suppliers play a simultaneous game among

themselves anticipating the manufacturer’s response to their aggregated actions.

Assumption 3.4 Assumption 3.1 holds here except that level 1 has two tasks each

conducted by a unique supplier, and the manufacturer can only start its task after both

suppliers complete their work.

We denote supplier 1 (2)’s saving in the direct cost from delay to be s1 (s2) per

period. The project penalty shared by the supplier 1 (or 2) is p1 (or p2 respectively)

where p1 + p2 + p0 = p. A necessary condition for the original schedule to be optimal

under the centralized control is provided as follows,

Condition 3.4 Global Optimum - Two Suppliers: s1 + s2 < p, s0 < p.

Without the loss of generality, we assume that the original durations of tasks 1 and

2 are identical (otherwise, the system reduces to the base model as we can ignore the

supplier with a shorter duration). The same assumption applies to systems with more

than two suppliers which will be discussed later in the chapter.

The extensive form of the game is shown in Figure 3.10.
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Figure 3.10: The extensive form of the game in the base model with multiple suppliers.

We have the following results on the dominant strategies and equilibrium.

Lemma 3.4 (Dominant Strategy): In the base model with two suppliers, under

Condition 3.4, when s0 < p0, “keep” is the dominant strategy for the manufacturer;

when s0 > p0, “delay” is the dominant strategy for the manufacturer. When si > pi,

“delay” is the dominant strategy for supplier i.

Lemma 3.4 differs from Lemma 3.1 because of the assembly-like structure at level 1 –

there is no unilateral condition for a supplier to keep the original duration of its task

as the level 1’s on time performance depends on both suppliers’ actions.

Theorem 3.4 (Equilibrium): For the base model with two suppliers, under Condi-

tion 3.4, the subgame perfect Nash equilibrium is given by,
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Case Condition Condition Optimal strategy M’s best

on S on M for S1, S2 response

1 s1 < p1 and s2 < p2 s0 < p0 K, K K

2 s1 > p1 or s2 > p2 s0 < p0 D, D K

3 s1 < p1 and s2 < p2 s0 > p0 K, K D

4 s1 > p1 or s2 > p2 s0 > p0 D, D D

Remarks: With two suppliers, the SPNE is no longer unique due to the simultaneous

game played among the suppliers in level 1. For instance, when s0 < p0, the manufac-

turer keeps its original task duration, and the pay-off matrix for suppliers 1 and 2 is

given by:

1\2 K D

K 0, 0 −p1, s2 − p2
D s1 − p1,−p2 s1 − p1, s2 − p2

Clearly, if s1 < p1 and s2 < p2, both [K, K] and [D, D] are SPNE. We only report

[K, K] here because it is Pareto optimal but [D, D] is not.

Theorem 3.4 illustrates the impact of the project network on the equilibrium and

project performance, that is, the project is more likely to be delayed with multiple sup-

pliers. For the original schedule to be the SPNE, we require s1 < p1 and s2 < p2 (i.e.,

penalty exceeds saving for both suppliers) and s0 < p0. If the saving exceeds penalty

for any supplier, all suppliers will have to delay in equilibrium. This observation gives

rise to the following key insight:

The Worst Supplier Dominance: if one supplier delays, the other supplier(s) have

to follow.
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Extension to Multiple Suppliers with Expediting and Reward

We now extend the discussion to the scenario with expediting and reward. Based

on Assumption 3.4, we define the model in Assumption 3.5.

Assumption 3.5 Assumption 3.4 holds here except that each task can be expedited by

at most one period, and there is a reward per period if the project is expedited.

A necessary condition for the original schedule to be optimal under the centralized

control is provided as follows,

Condition 3.5 (1) Global Optimum - Two Suppliers and Expediting: s1 + s2 < p,

s0 < p; r < c0, r < c1+c2; s1+s2 < c0, s0 < c1+c2. (2) Monotonicity - Two Suppliers

and Expediting: r < p; s1 < c1, s2 < c2, s0 < c0. (3) Loss Sharing - Two Suppliers and

Expediting: r1 < p1, r2 < p2, r0 < p0.

Theorem 3.5 (Equilibrium): For the model based on Assumption 3.5 , under Con-

dition 3.5, the subgame perfect Nash equilibrium is given by,

Case Condition Condition Optimal strategy M’s best

on S on M for S response

1 c0 < p0 DD E

2 s1 < p1 and s2 < p2 s0 < p0 < c0 KK K

3 s1 > p1or s2 > p2 s0 < p0 < c0 DD K

4 c1 < p1and c2 < p2 s0 > p0 EE D

5
(s1 < p1 and s2 < p2) and

s0 > p0 KK D
(c1 > p1or c2 > p2)

6 s1 > p1or s2 > p2 s0 > p0 DD D



76

Theorem 3.5 is similar to Theorem 3.3. We shall explain the intuition behind these

cases.

• 1st case, c0 < p0, [D, D, E] is the equilibrium: This corresponds to case

1 of Theorem 3.3 for a single supplier. The manufacturer faces a delay penalty

that is greater than its expediting cost, and so it would do anything to prevent

the project from being delayed. The only difference from case 1 of Theorem 3.3

is that here, both suppliers are taking advantage of the manufacturer’s weakness.

• 2nd case, s1 < p1 and s2 < p2 and s0 < p0 < c0, [K, K, K] is the equi-

librium: In this case, the suppliers cannot be better off by delaying, so each

of them either keeps or expedites its own task. If their durations are kept, the

manufacturer will also keep because either delaying or expediting will make itself

worse off. If their durations are expedited, the manufacturer may delay or keep –

delaying renders each supplier a pure expediting cost while keeping provides each

supplier a reward, r1, but still insufficient to cover the expediting cost because

r < c1 + c2 by Condition 3.5 (Global Optimum). So the suppliers would choose

to keep.

• 3rd case, (s1 > p1 or s2 > p2) and s0 < p0 < c0, [D, D, K] is the equi-

librium: In this case, “delay” is the dominant strategy for the two suppliers,

because at least one of them has a delay penalty less than the benefit that it gets

from “delay”. The manufacturer will choose to keep because either delaying or

expediting makes itself worse off.

• 4th case, (c1 < p1 and c2 < p2 and s0 > p0, [E, E, D] is the equilibrium:

In this case, “delay” is the dominant strategy for the manufacturer as the delay
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penalty is less than the benefit that it gets from “delay”. In addition, each supplier

faces a delay penalty that is greater than its expediting cost, and so each will have

to expedite to prevent the project from being delayed.

• 5th case, (c1 < p1 and c2 < p2 and (c1 > p1 or c2 > p2) and s0 > p0,

[K, K, D] is the equilibrium: This is the most complicated case. For the

manufacturer, “delay” is the dominant strategy. For at least one supplier whose

ci > pi, the expediting cost is higher than the delay penalty, and thus this supplier

has no reason to expedite. si < pi implies that this supplier has no reason to delay

as well. For the other supplier, we know it will at least keep the duration. The

worst supplier will dominate the final decision. Thus, both suppliers will keep.

• 6th case, (s1 > p1 or s2 > p2) and s0 > p0, [D, D, D] is the equilibrium:

“delay” is the dominant strategy for all firms.

Compare 3.5 with Theorem 3.3, we observe that:

• The condition is much more demanding for [E, E, D] in multiple suppliers case

than in the single supplier case. We have similar observations between [K,K,K]

(or [K,K,D]) and [K,K] ([K,D], respectively).

• The worst case of the two suppliers dominates their actions. In the single supplier

case, the supplier only takes care of its own payoff. However, in the multiple

suppliers case, each supplier will take the other’s action into account.

3.4.6 The General Model

In previous sections, we reveal many managerial insights from the base model and its

extensions. In this section, we put all the extensions together into a general model
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where we also allow each firm to delay or expedite its task by multiple periods (see

Assumption 3.6). The question is, do the results obtained from the special cases in

previous sections (§3.4.1-3.4.5), especially the Coauthors’ Dilemma, still hold in the

general model? And how to compute the project schedule in equilibrium?

Assumption 3.6 The system has multiple suppliers and one manufacturer; each task

can be either expedited or delayed by multiple periods; the cost structure, including

penalty, reward, saving and expediting costs, are time dependent.

We first consider the system with a single supplier. For the ease of exposition,

we define the strategy pair as (x1, x0) where x1 (or x0) is an integer and its abso-

lute value represents the number of periods expedited or delayed by the supplier (the

manufacturer, respectively) relative to the original schedule. A negative integer means

expediting, a positive integer means delaying, and zero means keeping the original task

duration.

In this game, the supplier is the first mover and takes an action x1. Let’s define

the manufacturer’s best response (to the supplier’s action) to be x∗0(x1). The project

duration will therefore be changed by x1 + x∗0(x1). We use superscripts on si, ci, r and

p to index the associated periods. For example, if task i is delayed by two periods, then

the total saving should be s1i + s2i where s1i (s2i ) is the saving from the 1st (2nd) period

of delay. if task i is expedited by two periods, then c1i (c2i ) is the cost for the 1st (2nd)

period of expediting. Lastly, we define π1(x1, x0) (π0(x1, x0)) to be the pay-off function

for the supplier (the manufacturer, respectively).

For this system, Condition 3.6 (Global Optimum) is necessary for the original sched-

ule to be optimal under the centralized control; Condition 3.6 (Monotonicity) comes
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from the convex increasing indirect cost and convex decreasing direct cost; finally, Con-

dition 3.6 (Loss Sharing) indicates that the monotonicity condition on project reward

and penalty also applies to each player’s reward and penalty.

Condition 3.6 (1) Global Optimum - General:
∑n

i=0 πi(x1, · · · , xn, x0) ≤ 0 for any

xi, i = 0, 1, . . . , n; (2) Monotonicity - General: rk > rk+1, pk < pk+1, ski > sk+1
i ,

cki < ck+1
i for any positive integer k and any i = 0, 1, . . . , n, and r1 < p1, s1i < c1i for

any i = 0, 1, . . . , n; (3) Loss Sharing - General: rki > rk+1
i , pki < pk+1

i and r1i < p1i for

i = 0, 1, . . . , n.

We first characterize the pay-off function for the manufacturer for a given action of

the supplier.

Lemma 3.5 Given x1 = a, π0(a, x0) is a uni-modal function of x0.

Lemma 3.5 indicates that the manufacturer has a unique best response to each of the

supplier’s actions. The following lemma shows some monotonicity properties of the

manufacturer’s best response function.

Theorem 3.6 (Monotonicity Property): As x1 increases, x∗0(x1) is non-increasing

but x1 + x∗0(x1) is non-decreasing.

Lemma 3.6 implies that if the supplier delays more, the manufacturer will delay less,

but the project will be delayed for a longer time.

In the case that the task duration is sufficiently long and so x1 is effectively un-

bounded from below, the following theorem specifies a limit by which the supplier

would expedite its task.
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Theorem 3.7 (Expedition Limit): There exists a xL = max{x1|x1+x∗0(x1) = 0} >

−∞ such that if x1 ≤ xL, the supplier will be better off if it increases x1 to xL.

Combining Theorems 3.6-3.7, we arrive at the following key insight,

Corollary 3.1 (The General Coauthor’s Dilemma): No matter by how much each

firm expedites its task, the project will never be expedited in equilibrium under the loss

sharing partnership.

For the system with multiple suppliers, we define xs = max{x1, . . . , xn}. We can

show that Theorems 3.6-3.7 hold if we replace x1 by xs.

To numerically compute the equilibrium (the SPNE), we design an algorithm which

enumerates x1 between xL and a pre-specified maximum allowable project delay, to find

the optimal x∗1 for the supplier. Here is the key idea: we start by setting x1 = 0. First,

we search the region of x1 < 0 until x1 reaches xL (if xL < 0); second, we search the

region of x1 > 0 until we reach the maximum allowable project delay. We keep updating

the best π1 found to date and the corresponding x1 and x0, denoted by (πmax
1 , x∗1, x

∗
0),

until the enumeration is completed.

Let U be the maximum allowable project delay, the implementation details of this

algorithm are described as follows:

Algorithm

• Step 1 - initialization: set x1 ← 0. If s10 < p10, x∗0(0) ← 0 otherwise x∗0(0)

equals to i that satisfies si0 > pi0 and si+1
0 < pi+1

0 . Initialize {πmax
1 , x∗1, x

∗
0} with

{π1(0, x∗0(0)), 0, x∗0(0)}. Let k ← x∗0(0).
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• Step 2 - search the region of x1 < 0: x1 ← x1 − 1. Find x∗0(x1) by comparing

π0(x1, k) and π0(x1, k+1): if the former is greater, k remains; otherwise k ← k+1.

Compute π1(x1, k), and update {πmax
1 , x∗1, x

∗
0} with {π1(x1, k), x1, k} if πmax

1 <

π1(x1, k). If x1 + k > 0, repeat Step 2, otherwise reset x1 ← 0, k ← x∗0(x1) and

go to Step 3.

• Step 3 - search the region of x1 > 0: if x1 + k ≤ U , find x∗0(x
′
1) by comparing

π0(x
′
1, k) and π0(x

′
1, k−1): if the former is greater, k remains the same; otherwise

k ← k − 1. Compute π1(x1, k), and update {πmax
1 , x∗1, x

∗
0} with {π1(x1, k), x1, k}

if πmax
1 < π1(x1, k). If x1 + k > U , stop and output the current {πmax

1 , x∗1, x
∗
0}.

3.5 The Fair Sharing Partnership

In this section, we present some provisions to enhance collaboration the basic form (i.e.,

collaboration under the loss sharing partnership); we call the resulting new partnership

“fair sharing”. The fair sharing partnership is designed to have each partner fully

responsible for the consequence of its actions. In principle, if one firm causes damage

to other firms, it has to compensate the others. Conversely, if one firm brings benefits

to other firms, it shall receive compensations from the others. Our objective of this

section is to specify the detailed sharing scheme in the fair sharing partnership for

various project networks and cost structures so as to align each partner’s best interest

with that of the project. We shall first revisit the base model (see §3.4.1) in §3.5.1 to

illustrate the key ideas, and then present a complete solution for the general model (see

§3.4.6) in §3.5.2.
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3.5.1 The Base Model Revisited

In this section, we specify the “fair sharing” partnership for the base model (defined by

Assumption 3.1 in §3.4.1) according to the following principle: if firm i delays, it not

only suffers its own share of the project delay penalty pi, but also must reimburse firm

j (j ̸= i) her share of the penalty pj due to firm i’s delay. In this way, each firm is fully

responsible for the penalty incurred by its delay. Specifically,

The Fair Sharing Scheme (The Base Model): if both firms keep their original task

duration, no payment is transferred. If only the supplier delays its task, the supplier

not only suffers a penalty of p1, but also pays the manufacturer p0 to compensate her

loss due to the supplier’s delay. Similarly, if only the manufacturer delays its task, the

manufacturer suffers a penalty of p0 and must pay the supplier p1, that is, the supplier’s

loss due to the manufacturer’s delay. If both firms delay, each will compensate the other

for the loss caused by its delay, that is, the supplier pays p0 to the manufacturer and

the manufacturer pays back the supplier p1. In any event, if a firm delays, it will pay

the full penalty p.

The pay-off matrix is shown in Figure 3.11. It is obvious that the action set [K,

K] is the SPNE under Condition 3.1 in §3.4.1. Thus fair sharing is capable of aligning

individual firms’ interests with that of the project in the base model.

Extension to Two Suppliers

The system with multiple suppliers complicates the fair sharing partnership. Let’s

consider the base model with two suppliers (defined by Assumption 3.4 in §3.4.5) and

modify the above sharing scheme as follows.
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Figure 3.11: Extensive form of the game in base model under fair sharing.

The Fair Sharing Scheme (The Base Model With Two Suppliers): if the

manufacturer delays, it pays p which is the delay penalty of the project. Likewise, if

one of the suppliers delays while the other keeps its original task duration, the delayed

supplier pays p. If both suppliers delay, they split the penalty according to a rationing

rule (β1 > 0, β2 > 0) where β1 + β2 = 1 and supplier 1 (2) pays β1p (β2p).

An analysis of the extensive form of the game (shown in Figure 3.12) reveals,

Theorem 3.8 Consider the base model with two suppliers. Under the fair sharing

partnership and Condition 3.4, the SPNE is to keep the original schedule (which is

optimal under the centralized control) for any (β1, β2) as long as β1 > 0, β2 > 0 and

β1 + β2 = 1.

Note that Theorem 3.8 holds regardless of the value of βi, i = 1, 0. Thus, the fair

sharing partnership leaves the firms a flexibility in negotiating the contract.
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Figure 3.12: Extensive form of the game in base model with two suppliers under fair
sharing.

3.5.2 The General Model Revisited

In this section, we present the details of the fair sharing partnership for the general

model (defined by Assumption 3.6 in §3.4.6) and prove its effectiveness. Note that fair

sharing can be seen as a way to redistribute the incremental indirect cost of the project

(either reward or penalty) due to schedule changes among the firms. We denote this

incremental indirect cost by B. Under fair sharing, B is distributed to levels 1 and

2 firms. Suppose that level 1 firms (the suppliers) get A1 and the level 2 firm (the

manufacturer) gets A2, then A1 + A2 = B. For the ease of exposition, we also define

xs = max{x1, x2, . . . , xN} where xs represents the change of level 1 completion date

as compared to the original schedule. Using this notation, we specify the fair sharing

scheme for the general model in two steps.
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The Fair Sharing Scheme (The General Model):

• Step 1: we decide the payment transferred between the two levels by allocating B

to levels 1 and 2. If level 1 completion date is expedited by k periods (xs = −k),

level 1 firms shall be compensated by the rewards (i.e., savings in the indirect cost)

for the project for the first k periods, that is, A1 = r1 + r2 + . . . + rk. If level

1 completion date is delayed by k periods (xs = k), level 1 firms shall pay the

penalty (i.e., the additional indirect cost) for the project for the first k periods,

that is, A1 = p1 + p2 + . . .+ pk. After the suppliers’ allocation A1 is determined,

the manufacturer’s allocation A2 = B −A1 accordingly.

• Step 2: we decide the payment transferred within level 1 firms by allocating A1

among the suppliers. If level 1 completion date is expedited by k periods (xs = −k),

then each supplier must have expedited its task by at least k periods. A1 is the

reward and should be shared among all the suppliers. If level 1 completion date

is delayed by k periods (xs = k), then each supplier delays its task by at most k

periods. A1 is now the penalty and should be shared on a period-by-period basis

among all delayed suppliers. For those suppliers who didn’t delay in this case,

they neither receive any reward nor share any penalty. More details are provided

below.

To see how Step 1 works, we provide an example:

• Case 1: If level 1 is expedited by 5 weeks but level 2 is delayed by 2 weeks, the

project is therefore expedited by 3 weeks. Level 1 firms should be rewarded by

r5, r4, . . . , r1, among which r3, r2, r1 come from the project’s earlier completion,

but the rewards r5 and r4 are not materialized due to the delay at level 2, and so
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must be paid by the firm (the manufacturer) at level 2.

• Case 2: If level 1 is delayed by 5 weeks but level 2 is expedited by 2 weeks,

the project is therefore delayed by 3 weeks. Level 1 firms must pay the penal-

ties p1, p2, . . . , p5. However, p4 and p5 are not materialized by the level 2 firm’s

expedition, and so must be paid to the level 2 firm.

The general pay-off function of the manufacturer (the level 2 firm) is shown in Table

3.1.

Level 1 The manufacturer Pay-off of the manufacturer

E: xs < 0

E: x0 < 0
∑|xs|+|x0|

i=|xs|+1 r
i −

∑|x0|
i=1 c

i
0

K: x0 = 0 0

D: x0 > 0
−
∑|xs|

i=|xs+x0|+1 r
i +

∑|x0|
i=1 s

i
0, if xs + x0 ≤ 0

−
∑|xs|

i=1 r
i −

∑|xs+x0|
i=1 pi +

∑|x0|
i=1 s

i
0, if xs + x0 > 0

K: xs = 0
E: x0 < 0

∑|x0|
i=1 r

i −
∑|x0|

i=1 c
i
0

K: x0 = 0 0

D: x0 > 0 −
∑|x0|

i=1 p
i +

∑|x0|
i=1 s

i
0

D: xs > 0
E: x0 < 0

∑|xs|
i=1 p

i +
∑|xs+x0|

i=1 ri −
∑|x0|

i=1 c
i
0, if xs + x0 < 0∑|xs|

i=|xs+x0|+1 p
i −

∑|x0|
i=1 c

i
0, if xs + x0 ≥ 0

K: x0 = 0 0

D: x0 > 0 −
∑|xs|+|x0|

i=|xs|+1 p
i +

∑|x0|
i=1 s

i
0

Table 3.1: The pay-off function of the manufacturer under fair sharing in the general
model.

To see how the reward or penalty is shared among the suppliers in Step 2, we show

the pay-off functions of the suppliers in Table 3.2. In principle, each supplier is only

responsible for the penalty of the periods delayed by itself, and it will not be rewarded

if its expedition is not effective – does not lead to an expedition of level 1 completion

date.

The three cases of Table 3.2 can be explained as follows:

• Case 1: xs < 0. All suppliers share the expediting rewards of |xs| periods. The
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Level 1 Supplier i Pay-off of supplier i

E: xs < 0 E: xi < 0 −
∑|xi|

j=1 c
j
i + αi

∑|xs|
j=1 r

j

K: xs = 0
E: xi < 0 −

∑|xi|
j=1 c

j
i

K: xi = 0 0

D: xs > 0
E: xi < 0 −

∑|xi|
j=1 c

j
i

K: xi = 0 0

D: xi > 0
∑|xi|

j=1 s
j
i −

∑|xs|
j=1 β

j
i p

j

Table 3.2: The pay-off function of suppliers under fair sharing in the general model.
Note: (1) αi > 0 and

∑N
i=1 αi = 1. (2) βj

i = 0 if j > xi, otherwise, βj
i > 0. (3)∑N

i=1 β
j
i = 1 for all j = 1, 2, . . . , |xs|.

pay-off for supplier i is πi = −
∑|xi|

j=1 c
j
i+αi

∑|xs|
j=1 r

j , where αi > 0 for i = 1, . . . , N

and
∑N

i=1 αi = 1. Here αi is supplier i’s ration of the reward.

• Case 2: xs = 0. If supplier i keeps its original task duration, its pay-off is πi = 0;

if supplier i expedites, its pay-off is πi = −
∑|xi|

j=1 c
j
i .

• Case 3: xs > 0. If supplier i expedites, its pay-off is πi = −
∑|xi|

j=1 c
j
i ; if it keeps,

its pay-off is πi = 0; if it delays, its pay-off is πi =
∑|xi|

j=1 s
j
i −

∑|xs|
j=1 β

j
i p

j where

βj
i is supplier i’s ration for the penalty of the jth period delayed. If j > xi (that

is, this supplier does not contribute to the jth period of delay), βj
i = 0; otherwise

βj
i > 0 and βj

i satisfies
∑N

i=1 β
j
i = 1 for all j = 1, 2, . . . , |xs|.

Under this sharing scheme, we have the following result.

Theorem 3.9 In the general under the fair sharing scheme, “keep” for all firms is the

unique SPNE.

Theorem 3.9 implies that fair sharing is capable of aligning individual firms’ interests

with that of the project in the general model.

Extension: Starting from A Suboptimal Schedule
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So far, we proved the effectiveness of the fair sharing partnership by assuming that

the project starts from an original schedule that is optimal under the centralized control.

An interesting question is, what happens if we relax this assumption and so the project

starts from a suboptimal (or any) schedule?

When starting from an arbitrary schedule, the schedule in equilibrium may differ

from the starting schedule under fair sharing. To see this, let’s consider an example

with a single supplier. Let p1 = 220, p2 = 300, p3 = 400, . . ., s1i = 250, s2i = 200, . . ., and

s10 = 280, s20 = 200, . . .. Given such costs, the original schedule is clearly not optimal. In

fact, keeping task 1’s original duration but delaying task 2’s duration by 1 week is the

optimal schedule under the centralized control. It is easily to verify that the subgame

perfect Nash equilibrium is x1 = 1 and x0 = 0 under fair sharing. Thus, when the

project starts from an arbitrary schedule, such a schedule may not be the equilibrium

schedule under fair sharing.

Interestingly, the equilibrium schedule will not worsen the project performance un-

der fair sharing relative to the starting schedule. To see this, let’s consider the suppliers

first. By Table 3.2, a supplier could always choose “keep” in order to get a zero pay-off

regardless of the actions of other suppliers and the manufacturer. This is true because

fair sharing ensures that each partner is fully responsible for consequences of its actions

and so a partner who choose to keep won’t be penalized by damages caused by others.

By a similar logic, the manufacturer can secure a zero pay-off by choosing “keep” even

in such a second mover situation (see Table 3.1) regardless of the suppliers’ actions.

Suppose in equilibrium, a partner’s optimal action is not “keep”, then this partner

must get a positive pay-off because otherwise, it can always choose “keep” to avoid a

negative pay-off.
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Proposition 3.1 In the general model under fair sharing, if the project starts from an

arbitrary schedule, all firms can not be worse off in their pay-offs in equilibrium.

3.6 Conclusions

In this chapter, we consider collaborative partnerships in a two-level project manage-

ment setting where the workload of the project is spread out to multiple firms (part-

ners). We study the strategic behaviors of the firms under the loss sharing partnership

in these joint projects by combing the economics/supply chain gaming models with

project management specifics. This chapter highlights the negative impact of collabo-

ration and the loss sharing partnership on the project performance in both time and

cost by discovering exactly why and how they can hurt. We find an inherent mismatch

between individual firms’ best interests and that of the project. Depending on the

project network and cost structure, a firm may be motivated to delay even if doing

so harms the entire project (the Prisoners’ Dilemma); a firm may have to delay (even

at a loss) just to prevent the others from delaying, to avoid a much greater loss (the

Suppliers’ Dilemma); and no matter by how much a firm expedites its task, it cannot

expedite the project because other firms will delay (the Coauthors’ Dilemma). To re-

solve the incentive issue, we enhance the loss sharing partnership by a set of provisions

with the principle of each firm being fully responsible for the consequences of its action.

We present the exact form of the fair sharing partnership and prove its effectiveness in

aligning the interests of individual firms with that of the project.

3.7 Appendix: Proofs and Technical Details

Proof of Lemma 3.1
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For the supplier with s1 < p1, if the manufacturer chooses “keep”, then 0 > s1 − p1

and so the supplier will choose “keep”; if the manufacturer chooses “delay”, then −p1 >

s1 − 2p1 so that the supplier will choose “keep” as well. Thus, the supplier has a

dominant strategy of “keep” when s1 < p1. Similarly, we can prove that when s1 > p1,

“delay” is the dominant strategy for the supplier.

For the manufacturer with s0 < p0, if the supplier chooses “keep”, then 0 > s0 − p0

and so the manufacturer will choose “keep”; if the supplier chooses “delay”, then −p0 >

s0 − 2p0 so that the manufacturer will choose “keep” as well. Thus, the manufacturer

has a dominant strategy of “keep” when s0 < p0. Similarly, we can prove that when

s0 > p0, “delay” is the dominant strategy for the manufacturer. �

Proof of Theorem 3.1

This theorem is a straightforward result of Lemma 3.1. �

Proof of Lemma 3.2

For the manufacturer with s0 < p10, if the supplier chooses “keep”, then 0 > s0 − p10

and so the manufacturer will choose “keep”; if the supplier chooses “delay”, then −p10 >

s0−p10−p20 and so the manufacturer will choose “keep” as well. Thus, the manufacturer

has a dominant strategy of “keep” when s0 < p10. Similarly, we can prove that when

s0 > p20, “delay” is the dominant strategy for the manufacturer. �

Proof of Theorem 3.2

Lemma 3.2 implies,

• when s1 > p11 and s0 < p10, the supplier has a dominant strategy of “delay” and

the manufacturer has a dominant strategy of “keep”.
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• when s1 > p21 and s0 > p20, the supplier has a dominant strategy of “delay” and

the manufacturer has a dominant strategy of “delay”.

When s1 < p11 and s0 < p10, if the supplier chooses “keep”, then the manufacturer

will choose “keep” as 0 > s0−p10; if the supplier chooses “delay”, then the manufacturer

will choose “keep” as −p10 > s0−p10−p20. The former strategy gives the supplier a higher

pay-off (0) than the latter strategy (s1 − p11) and thus the supplier will choose “keep”

and then the manufacturer will choose “keep”.

When p10 < s0 < p20, if the supplier chooses “keep”, then the manufacturer will

choose “delay” as s0 > p10; if the supplier chooses “delay”, then the manufacturer will

choose “keep” as s0 < p20. The latter strategy gives the supplier a higher pay-off (−p11)

than the former strategy (s1 − p11) and thus the supplier will choose “delay” and then

the manufacturer will choose “keep”.

When s1 < p21 and s0 > p20, the manufacturer has the dominant strategy of “delay”.

Since −p11 > s1 − p11 − p21, the supplier will choose “keep”. �

Proof of Lemma 3.3

When s0 > p0, we know that s0 > r0 and r0 < c0 from Condition 3.3. If the

supplier chooses “expediting” or “keep”, the manufacturer always gets the highest pay-

off if it delays. If the supplier chooses “delay”, because p0 < s0 < c0, “delay” yields the

highest pay-off for the manufacturer. Thus, the manufacturer has a dominant strategy

of “delay” in this scenario. Similarly, we can prove that the supplier has a dominant

strategy of “delay” when s1 > p1. By a similar analysis, we could prove that when

si < ri < pi < ci, “keep” is the dominant strategy for firm i, i = 1, 0. �

Proof of Theorem 3.3
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All potential actions are listed below:

S M M’s Pay-off Conditions M’s Best Response S’s Pay-off

E
E 2r0 − c0
K r0 if r0 > s0 K r1 − c1
D s0 if r0 < s0 D −c1

K
E r0 − c0
K 0 if p0 > s0 K 0
D s0 − p0 if p0 < s0 D −p1

D
E −c0 if p0 > s0

if p0 > c0 E s1
K −p0 if p0 < c0 K s1 − p1
D s0 − 2p0 if p0 < s0 D s1 − 2p1

• When p0 < s0, “delay” is the dominant strategy for the manufacturer by Lemma

3.3. The supplier’s pay-off is −c1 with “expediting”, −p1 with “keep”, and s1−2p1

with “delay”. We consider three cases:

– (a) When p1 > c1, the supplier’s optimal strategy is “expediting” because

c1 > s1 by Condition 3.3(2) and so −c1 is the largest payoff.

– (b) When s1 < p1 < c1, the supplier’s optimal strategy is “keep”.

– (c) When p1 > c1, the supplier’s optimal strategy is “delay”.

• When s0 < p0 < c0 and r0 > s0, “keep” is the dominant strategy for the man-

ufacturer by Lemma 3.3. The supplier’s pay-off is r1 − c1 with “expediting”, 0

with “keep”, and s1 − p1 with “delay”. We consider two cases:

– (a) When p1 > s1, the supplier’s optimal strategy is “keep” because r1 < c1

by Condition 3.3(1).

– (b) When p1 < s1, the supplier’s optimal strategy is “delay” because r1 < c1.

• When s0 < p0 < c0 and r0 < s0, there is no dominant strategy for the manufac-

turer. If the supplier chooses “expediting”, the manufacturer will choose “delay”.
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If the supplier chooses “keep” or “delay”, the manufacturer will choose “keep”.

Thus, the supplier’s pay-off is −c1 with “expediting”, 0 with “keep”, and s1 − p1

with “delay”.

– (a) When p1 > s1, the supplier’s optimal strategy is “keep”.

– (b) When p1 < s1, the supplier’s optimal strategy is “delay”.

• When p0 > c0 and r0 > s0, by c0 > s0 (Condition 3.3(2)) we obtain p0 > s0. If the

supplier chooses “expediting”, the manufacturer will choose “keep”. If the sup-

plier chooses “keep”, the manufacturer will choose “keep”. If the supplier chooses

“delay”, the manufacturer will choose “expediting”. (Note: the manufacturer will

do whatever it could to prevent project delay.) Given the manufacturer’s optimal

response, the supplier’s pay-off is r1−c1 with “expediting”, 0 with “keep”, and s1

with “delay”. Since r1 < c1 by Condition 3.3(1), the supplier’s optimal strategy

is “delay”.

• When p0 > c0 and r0 < s0, by c0 > s0 (Condition 3.3(2)) we obtain p0 > s0.

If the supplier chooses “expediting”, the manufacturer will choose “delay”. If

the supplier chooses “keep”, the manufacturer will choose “keep”. If the supplier

chooses “delay”, the manufacturer will choose “expediting”. (Note: the manu-

facturer will do whatever he could to prevent delay.) Given the manufacturer’s

optimal response, the supplier’s pay-off is −c1 with “expediting”, 0 with “keep”,

and s1 with “delay”. Clearly, the supplier’s optimal strategy is “delay”.

Summarizing all cases, we have proved the theorem. �

Proof of Lemma 3.4
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By Lemma 3.1, the first two results are immediate, that is, when s0 < p0, “keep” is

the dominant strategy for the manufacturer; when s0 > p0, “delay” is the dominant

strategy for the manufacturer.

When s1 > p1, an enumerating over all options of supplier 2 and the manufacturer

finds that supplier 1 archives the highest pay-off when it delays. �

Proof of Theorem 3.4

By Lemma 3.4, as long as one of the suppliers has a dominant strategy of “delay”,

the other has to delay as well. Otherwise, it suffers a pure penalty. Combining the

dominant strategies leads to the theorem. �

Proof of Theorem 3.5

All potential actions are listed below:

S M M’s Pay-off Conditions M’s Best Response S’s Pay-off

EE
E 2r0 − c0
K r0 if r0 > s0 K r1 − c1
D s0 if r0 < s0 D −c1

KK
E r0 − c0
K 0 if p0 > s0 K 0
D s0 − p0 if p0 < s0 D −p1

DD
E −c0 if p0 > s0

if p0 > c0 E s1
K −p0 if p0 < c0 K s1 − p1
D s0 − 2p0 if p0 < s0 D s1 − 2p1

Note that due to “worst supplier dominance”, we only consider the cases that the

two suppliers take the same action.

• When p0 < s0, also by Assumption 3.5 r0 < p0 we have r0 < s0. “delay” is the

dominant strategy for the manufacturer. In other words, the manufacturer will

choose “delay” no matter what actions the suppliers take. By knowing this, the

suppliers’ payoff matrix is:
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1\2 E K D

E −c1,−c2 −c1 − p1, − p2 −c1 − 2p1, s2 − 2p2
K −p1,−c2 − p2 −p1,−p2 −2p1, s2 − 2p2
D s1 − 2p1,−c2 − 2p2 s1 − 2p1,−2p2 s1 − 2p1, s2 − 2p2

– (a) When p1 > c1 and p2 > c2, [E,E],[K,K],[D,D] are all Nash equilibrium,

however, [E,E] is Pareto optimal Nash equilibrium while the other two are

not.

– (b) When p1 > s1 and p2 > s2 and (p1 < c1 or p2 < c2), [K,K] and [D,D] are

both Nash equilibriums. But only [K,K] is Pareto optimal Nash equilibrium.

– (c) When p1 < s1 or p2 < s2, only [D,D] is Nash equilibrium.

• When s0 < p0 < c0 and r0 > s0, “keep” is the dominant strategy for the manu-

facturer. The suppliers’ pay-off matrix is:

1\2 E K D

E r1 − c1,r2 − c2 −c1, 0 −c1 − p1, s2 − p2
K 0,−c2 0, 0 −p1, s2 − p2
D s1 − p1,−c2 − p2 s1 − p1,−p2 s1 − p1, s2 − p2

– (a) [E,E] cannot be the equilibrium because it requires r1 > c1 and r2 > c2

which violates the assumption.

– (b) When p1 > s1 and p2 > s2, [K,K] and [D,D] are both Nash equilibrium.

However, only [K,K] is Pareto optimal Nash equilibrium.

– (c) When p1 < s1 or p2 < s2, [D,D] is the only Nash equilibrium.

• When s0 < p0 < c0 and r0 < s0, there is no dominant strategy for the manufac-

turer. If the suppliers’ duration is expedited, the manufacturer will delay. If the

suppliers’ duration is kept or delayed, the manufacturer will keep. The suppliers’

pay-off matrix is:
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1\2 E K D

E −c1,−c2 −c1, 0 −c1 − p1, s2 − p2
K 0,−c2 0, 0 −p1, s2 − p2
D s1 − p1,−c2 − p2 s1 − p1,−p2 s1 − p1, s2 − p2

– (a) When p1 > s1 and p2 > s2, [K,K] and [D,D] are both Nash equilibrium.

However, [K,K] is Pareto optimal Nash equilibrium while [D,D] is not.

– (b) When p1 < s1 or p2 < s2, [D,D] is the only Nash equilibrium.

• When p0 > c0 and r0 > s0, by Condition 3.5 c0 > s0 we obtain p0 > s0. If

the suppliers’ duration is expedited, the manufacturer will choose “keep”. If the

suppliers’ duration is kept, the manufacturer will choose “keep”. If the suppliers

choose “delay”, the manufacturer will choose “expediting”. (Note: the manufac-

turer will do whatever it could to prevent project delay.) Given the manufacturer’s

optimal response, the suppliers’ pay-off matrix is:

1\2 E K D

E r1 − c1,r2 − c2 −c1, 0 −c1, s2
K 0,−c2 0, 0 0, s2
D s1,−c2 s1, 0 s1, s2

– (a) [E,E] cannot be the equilibrium because r1 > c1 and r2 > c2 will violate

Condition 3.5.

– (b) [K,K] is not the equilibrium either due to s1 > 0 and s2 > 0.

– (c) [D,D] is the only Nash equilibrium.

• When p0 > c0 and r0 < s0, by Condition 3.5 c0 > s0, we obtain p0 > s0.

If the suppliers’ duration is expedited, the manufacturer will choose “delay”.

If the suppliers’ duration is kept, the manufacturer will choose “keep”. If the

suppliers’ duration is delayed, the manufacturer will choose “expediting”. (Note:
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the manufacturer will do whatever he could to prevent delay.) By knowing this,

suppliers’ pay-off matrix is:

1\2 E K D

E −c1,−c2 −c1, 0 −c1, s2
K 0,−c2 0, 0 0, s2
D s1,−c2 s1, 0 s1, s2

It is clear that [D,D] is the only Nash equilibrium.

Gathering all analysis above, we prove this theorem.

�

Proof of Lemma 3.5

We first prove the lemma for a < 0. When a < 0, we consider three cases:

(1) If x0 ≤ 0, π0(a, x0) = r10 + . . .+ r
|a|+|x0|
0 − c10 − . . .− c

|x0|
0 .

(2) If 0 < x0 ≤ |a|, π0(a, x0) = r10 + . . .+ r
|a|−x0

0 + s10 + . . .+ sx0
0 .

(3) If x0 > |a|, π0(a, x0) = s10 + . . .+ sx0
0 − p10 − . . .− pa+x0

0 .

When x0 ∈ (−∞, 0), π0(a, x0) is an increasing function in x0 because r
|x0|
0 < r10 <

c10 < c
|x0|
0 by Condition 3.6. At x0 = 0, π0(a, 0) > π0(a,−1) because r10 < c10. Thus,

π0(a, x0) is a monotonically increasing function of x0 on x0 ∈ (−∞, 0]. Note that

π0(a, 0) = r10 + . . . + r
|a|
0 . It is easy to show that when x0 → +∞, π0(a, x0) → −∞.

There always exists x0 = x̂0 ∈ [0,+∞) that maximizes π0(a, x0).

We now show that π0(a, x0) is monotonically increasing in (−∞, x̂0] and monoton-

ically decreasing in [x̂0,+∞). We discuss three scenarios:

1◦, if x̂0 = 0, we have π0(a, 0) > π0(a, 1), indicating that r
|a|
0 > s10. Since both {st0}

and {rt0} are decreasing series in t, we have r
|a|−1
0 > r

|a|
0 > s10 > s20 ⇒ π0(a, 1) > π0(a, 2).

By induction, we could prove that π0(a, x0) is decreasing in [0,+∞).
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2◦, if 0 < x̂0 < |a|, we have π0(a, x̂0) > π0(a, x̂0 − 1) and π0(a, x̂0) > π0(a, x̂0 + 1),

indicating that sx̂0
0 > r

|a|−(x̂0−1)
0 and r

|a|−x̂0

0 > sx̂0+1
0 . Furthermore, as both {st0} and

{rt0} are decreasing series in t, we have sx̂0−1
0 > sx̂0

0 > r
|a|−(x̂0−1)
0 > r

|a|−(x̂0−2)
0 and

r
|a|−x̂0

0 > sx̂0+1
0 > sx̂0+2

0 , which lead to π0(a, x̂0 − 1) > π0(a, x̂0 − 2) and π0(a, x̂0 + 1) >

π0(a, x̂0 + 2). We first consider the left side of x̂0 and show π0(a, x0) is monotonically

increasing in [0, x̂0] by induction. The induction assumption is π0(a, x
′
0) > π0(a, x

′
0−1)

where x′0 ∈ (0, x̂0). We have π0(a, x
′
0) > π0(a, x

′
0 − 1) ⇒ s

x′
0

0 > r
|a|−x′

0+1
0 ⇒ s

x′
0−1

0 >

s
x′
0

0 > r
|a|−x′

0+1
0 > r

|a|−x′
0+2

0 ⇒ π0(a, x
′
0 − 1) > π0(a, x

′
0 − 2). In addition, when x′0 = 1,

we could show that π0(a, 1) > π0(a, 0). Thus, π0(a, x0) is monotonically increasing in

[0, x̂0]. Similarly, we could prove that π0(a, x0) is monotonically decreasing in [x̂0,+∞).

Recall that π0(a, x0) is a monotonically increasing function of x0 on x0 ∈ (−∞, 0],

therefore π0(a, x0) is a concave unimodal function with the peak x0 = x̂0 when 0 <

x̂0 < |a|.

3◦, if x̂0 ≥ |a|, by a similar analysis, it is easy to prove that π0(a, x0) is a concave

unimodal function with the peak x0 = x̂0.

In summary, π0(a, x0) is a unimodal function of x0 when a < 0.

Now, we discuss a ≥ 0. Similarly, we have three cases:

(1) If x0 ≤ −a, π0(a, x0) = r10 + . . .+ r−a−x0
0 − c10 − . . .− c−x0

0 .

(2) If −a < x0 ≤ 0, π0(a, x0) = −p10 − . . .− pa+x0
0 − c10 − . . .− c−x0

0 .

(3) If x0 > 0, π0(a, x0) = s10 + . . .+ sx0
0 − p10 − . . .− pa+x0

0 .

When x0 > 0, π0(a, x0) is a monotonically decreasing function of x0 because sx0
0 <

s10 < p10 < pa+x0
0 . Also π0(a, 0) = −p10− . . .−pa0. It is easy to show that when x0 → +∞,

π0(a, x0)→ −∞. There always exists x0 = x̂0 ∈ (−∞, 0] that maximizes π0(a, x0).
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We now show that π0(a, x0) is monotonically increasing in (−∞, x̂0] and monoton-

ically decreasing in [x̂0,+∞). We discuss three scenarios:

1◦, if x̂0 = 0, we have π0(a, 0) > π0(a,−1), indicating that pa0 < c10. Since both

{pt0} and {ct0} are increasing series in t, we have pa−1
0 < pa0 < c10 < c20 ⇒ π0(a,−1) >

π0(a,−2). By induction, we could prove that π0(a, x0) is decreasing in [0,+∞).

2◦, if −a < x̂0 < 0, we have π0(a, x̂0) > π0(a, x̂0 − 1) and π0(a, x̂0) > π0(a, x̂0 + 1),

indicating that pa+x̂0
0 < c−x̂0+1

0 and pa+x̂0+1
0 > c−x̂0

0 . Furthermore, as both {ct0} and

{pt0} are increasing series in t, we have c−x̂0+2
0 > c−x̂0+1

0 > pa+x̂0
0 > pa+x̂0−1

0 and

pa+x̂0+2
0 > pa+x̂0+1

0 > c−x̂0
0 > c−x̂0−1

0 , which lead to π0(a, x̂0 − 1) > π0(a, x̂0 − 2) and

π0(a, x̂0 + 1) > π0(a, x̂0 + 2). By induction, we could simply prove that π0(a, x0) is

monotonically increasing in [−a, x̂0] and monotonically decreasing in [x̂0, 0]. Recall

that π0(a, x0) is a monotonically decreasing function of x0 on x0 ∈ (0,+∞], therefore

π0(a, x0) is a concave unimodal function with the peak x0 = x̂0 when −a < x̂0 < 0.

3◦, if x̂0 ≤ −a, by a similar analysis, it is easy to prove that π0(a, x0) is a concave

unimodal function with the peak x0 = x̂0.

In summary, π0(a, x0) is a unimodal function of x0 when a ≤ 0.

In conclusion, for both cases of a < 0 and a ≥ 0, we have proved that given x1 = a,

π0(a, x0) is a uni-modal function of x0. �

Proof of Theorem 3.6

We first show that when x1 → −∞, x∗0(x1) > 0 and x1 + x∗0(x1) < 0.

• When x1 < 0, the supplier expedites; the manufacturer will never expedite be-

cause a negative x0 yields r
|x1+x0|
0 < r10 < c10. Consider the manufacturer’s re-

sponse in three scenarios: (1) x0 < |x1|, (2) x0 = |x1|, π0(x1, x0) = s10+ . . .+s
|x1|
0 .
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(3) x0 > |x1|, π0(x1, x0) = s10 + . . .+ s
|x0|
0 − p10 − . . .− px1+x0

0 .

• Scenario (1) yields the highest pay-off for the manufacturer when x1 → −∞.

Explanation: In scenario (3), when x1 → −∞, x0 → +∞ and thus sx0
0 → 0

and px1+x0
0 → +∞. It is clear that scenario (2) yields a higher pay-off than

scenario (3). Next, let x0 = |x1| − 1. π0(x1, |x1| − 1) = s10 + . . . + s
|x1|−1
0 + r10.

When x1 → −∞, s
|x1|
0 < r10 and thus π0(x1, |x1| − 1) > π0(x1, |x1|). Hence, when

x1 → −∞, x∗0(x1) < |x1|. In other words, when x1 → −∞, x∗0(x1) > 0 and

x1 + x∗0(x1) < 0.

Now we start from x1 → −∞ and increase x1 by one unit each time to see how

x∗0(x1) and x1 + x∗0(x1) will change.

When x1 → −∞, x∗0(x1) > 0, x1 + x∗0(x1) < 0, so that π0(x1, x
∗
0(x1)) = s10 +

. . .+ s
x∗
0(x1)

0 + r10 + . . .+ r
|x1+x∗

0(x1)|
0 . x∗0(x1) being the best response requires conditions

π0(x1, x
∗
0(x1)) > π0(x1, x

∗
0(x1) − 1) and π0(x1, x

∗
0(x1)) > π0(x1, x

∗
0(x1) + 1) which are

equivalent to s
x∗
0(x1)

0 > r
|x1+x∗

0(x1)−1|
0 and r

|x1+x∗
0(x1)|

0 > s
x∗
0(x1)+1

0 . Let x′1 = x1 + 1, to

find the manufacturer’s best response, we compare the following pay-offs as(assuming

x∗0(x1)− 2 ≥ 0 and |x1 + x∗0(x1) + 1| > 0):

(1) π0(x
′
1, x

∗
0(x1)− 2) = r10 + . . .+ r

|x1+1+x∗
0(x1)−2|

0 + s10 + . . .+ s
x∗
0(x1)−2

0 .

(2) π0(x
′
1, x

∗
0(x1)− 1) = r10 + . . .+ r

|x1+1+x∗
0(x1)−1|

0 + s10 + . . .+ s
x∗
0(x1)−1

0 .

(3) π0(x
′
1, x

∗
0(x1)) = r10 + . . .+ r

|x1+1+x∗
0(x1)|

0 + s10 + . . .+ s
x∗
0(x1)

0 .

(4) π0(x
′
1, x

∗
0(x1) + 1) = r10 + . . .+ r

|x1+1+x∗
0(x1)+1|

0 + s10 + . . .+ s
x∗
0(x1)+1

0 .

Because r
|x1+1+x∗

0(x1)−2|
0 < s

x∗
0(x1)

0 < s
x∗
0(x1)−1

0 and r
|x1+1+x∗

0(x1)|
0 > r

|x1+x∗
0(x1)|

0 >

s
x∗
0(x1)+1

0 , we have π0(x
′
1, x

∗
0(x1)−2) < π0(x

′
1, x

∗
0(x1)−1) and π0(x

′
1, x

∗
0(x1)) > π0(x

′
1, x

∗
0(x1)+

1). We can easily verify that when x∗0(x1) − 2 = −1 and |x1 + x∗0(x1) + 1| = 0,
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these inequalities still hold. By the unimodality property of Lemma 3.5, x∗0(x1)− 1 ≤

x∗0(x1 + 1) ≤ x∗0(x1). In other words, when x1 increases one unit, the manufacturer’s

best response is to either reduce the corresponding x∗0(x1) by one unit or keep it the

same until x1 + x∗0(x1) reaches 0.

When x1 gradually increases, we will encounter the following three scenarios: (1)

x1 < 0, x∗0(x1) ≥ 0, x1+x∗0(x1) ≥ 0; (2) x1 ≥ 0, x∗0(x1) ≥ 0, x1+x∗0(x1) ≥ 0; (3) x1 ≥ 0,

and x∗0(x1) < 0, x1 + x∗0(x1) > 0. In case (1), for x∗0(x1) to be the best response, we re-

quire conditions π0(x1, x
∗
0(x1)) > π0(x1, x

∗
0(x1)−1) and π0(x1, x

∗
0(x1)) > π0(x1, x

∗
0(x1)+

1) which are equivalent to s
x∗
0(x1)

0 < p
x1+x∗

0(x1)
0 and s

x∗
0(x1)+1

0 < p
x1+x∗

0(x1)+1
0 . Similarly,

for case (2), we have the same conditions as case (1): s
x∗
0(x1)

0 < p
x1+x∗

0(x1)
0 and s

x∗
0(x1)+1

0 <

p
x1+x∗

0(x1)+1
0 ; for case (3), we have c

−x∗
0(x1)

0 < p
x1+x∗

0(x1)+1
0 and c

−x∗
0(x1)+1

0 > p
x1+x∗

0(x1)
0 .

In each case, we compare π0(x
′
1, x

∗
0(x1) − 2), π0(x

′
1, x

∗
0(x1) − 1), π0(x

′
1, x

∗
0(x1)) and

π0(x
′
1, x

∗
0(x1)+1) in a way similar to the analysis in the previous paragraph, and reach

the following statement for all cases: when x1 increases one unit, the manufacturer’s

best response is to either reduce the corresponding x∗0(x1) by one unit or keep it the

same.

In summary, for x1 ∈ (−∞,+∞), when x1 increases by one unit, x∗0(x1) will either

decrease by one unit or remain the same and therefore x1+x∗0(x1) will not decrease. �

Proof of Theorem 3.7

In the proof of Theorem 3.6, we have shown that when x1 → −∞, x1 + x∗0(x1) < 0.

On the other hand, when x1 = 0, x∗0(0) should be greater than or equal to 0 so as to

guarantee original schedule to be the global optimum; x1 + x∗0(x1) is therefore greater

than or equal to 0. From Theorem 3.6, we know that x1 + x∗0(x1) will increase by one

unit or hold still each time when x1 increases by one unit. There must exist xL such
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that xL = max{x1|x1 + x∗0(x1) = 0, x1 ≤ 0}.

For any x1 < xL and x1 + x∗0(x1) ≤ −1, the supplier’s pay-off is π1(x1, x
∗
0(x1)) =

r11+. . .+r
|x1+1+x∗

0(x1)|
1 +r

|x1+x∗
0(x1)|

1 −c11−. . .−c
|x1+1|
1 −c|x1|

1 . When the supplier expedites

one period less, x1+1, the manufacturer’s best response is either x∗0(x1) or x
∗
0(x1)−1 by

Theorem 3.6. (1) If the manufacturer’s best response is x∗0(x1), then the supplier’s pay-

off is r11 + . . .+ r
|x1+1+x∗

0(x1)|
1 − c11− . . .− c

|x1+1|
1 . Note that r

|x1+x∗
0(x1)|

1 ≤ r11 < c11 < c
|x1|
1

by Condition 3.6(1), the supplier actually improves its pay-off by increasing x1 to

x1 + 1. (2) If the manufacturer’s best response is x∗0(x1) − 1, the supplier’s pay-off is

r11 + . . . + r
|x1+1+x∗

0(x1)−1|
1 − c11 − . . . − c

|x1+1|
1 . The supplier also improves its pay-off.

Therefore the supplier could continuously improve its pay-off by increasing x1 until

x1 + x∗0(x1) = −1.

When x1 < xL and x1+x∗0(x1) = −1, the supplier’s pay-off is r10−c11− . . .−c
|x1+1|
1 −

c
|x1|
1 . If it expedites one period less, x1 + 1, the manufacturer’s best response is either

x∗0(x1) or x
∗
0(x1)− 1. The former one yields the supplier a pay-off of −c11− . . .− c

|x1+1|
1 .

Note that r11 < c11 ≤ c
|x1|
1 . The supplier has a higher pay-off at x1 + 1 than that at

x1. The latter one is the same as the case discussed in the previous paragraph which

is shown that the supplier could improve its pay-off from x1 to x1 + 1. In other words,

at x1 + x∗0(x1) = −1, the supplier could also improve its pay-off until x1 + x∗0(x1) = 0.

When x1 < xL and x1 + x∗0(x1) = 0, the supplier’s pay-off is −c11− . . .− c
|x1|
1 . If the

supplier expedites one period less, as long as x1+x∗0(x1) is still equal to 0, the supplier

always gets its pay-off improved.

In summary, xL always exists and for any x1 < xL, we have π1(x1, x
∗
0(x1)) <

π1(xL, x
∗
0(xL)). �

Proof of Theorem 3.8
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It is obvious that the manufacturer has a dominant strategy of “keep”. Using a back-

ward induction, the pay-off matrix between supplier 1 and supplier 2 is:

1\2 K D

K 0, 0 0, s2 − p

D s1 − p, 0 s1 − β1p, s2 − β2p

By Condition 3.4, [D, K] or [K, D] cannot be the equilibrium because s1 < p and

s2 < p. [D, D] cannot be the equilibrium either because s1 − β1p and s2 − β2p cannot

be larger than 0 at the same time, otherwise s1+ s2 < p from Condition 3.4 is violated.

We could verify that [K, K] is the only equilibrium. Note that we do not have to specify

β1 and β2 completely. �

Proof of Theorem 3.9

Not every supplier would like to expedite because −
∑|xi|

j=1 c
j
i +αi

∑|xs|
j=1 r

j is not positive

for every i, otherwise we violate the assumption that the original schedule is the optimal

schedule. So xs ≥ 0 and thus no supplier would like to expedite. On the other hand,

no supplier would like to delay because those suppliers who delayed have to share the

penalty. By Condition 3.6, at least one of them is losing money. Because this fact

applies to any group of suppliers who delay, no supplier would like to delay and so

“Keep” is the dominant strategy for every supplier.

Knowing that suppliers will always keep, the manufacturer’s pay-off is: (1)
∑|x0|

i=1 r
i−∑|x0|

i=1 c
i
0 if it expedites |x0|; (2) 0 if it keeps; (3) −

∑|x0|
i=1 p

i +
∑|x0|

i=1 s
i
0 if it delays. By

Condition 3.6(1), the pay-offs in (1) and (3) are all less than 0. Thus, the best strategy

for the manufacturer is “keep”. �
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Chapter 4

Continuous Time and Stochastic Duration Models

In Chapter 3, we discussed the firms’ strategic behaviors under loss sharing and fair

sharing partnerships in a deterministic and discrete-time setting. In this chapter, we

consider its extension in two directions: (1) a continuous time model, see Section 4.1;

(2) a stochastic duration model, see Section 4.2. In Section 4.1, the key question is, will

the Coauthor’s Dilemma still hold when time is continuous and the cost functions are

continuous in time? In Section 4.2, the key question is, what is the impact of stochastic

task durations on the Prisoner’s Dilemma?

4.1 Continuous Time Model on Loss Sharing Partnership

In this section, we assume that time is continuous and the cost functions are continuous

in time. We no longer distinguish the notation between the expediting reward (the

expediting cost) and the delay penalty (delay saving) for indirect cost (direct cost,

respectively). We focus on loss sharing partnership as it is widely used in practice.

Specifically, we define the following notation.

• Ti: the duration of each task i, i = 0, 1, 2, ..., n; Ti ∈ [ai, bi] with ai and bi being

finite positive numbers.

• Ci(Ti): cost of task i, it represents the direct cost of task i, i = 0, 1, 2, ..., n.
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• T : total project duration.

• R(T ): revenue of the project, it represents the indirect cost of the project.

• αi: the share of revenue for task i (i = 0, 1, 2, ..., n).

Assumption 4.1 We make the following assumption on the cost functions:

1. The manufacturer starts its work only after all the suppliers complete their tasks.

2. Ci(Ti) is decreasing and convex in Ti, for i = 0, 1, 2, ..., n.

Assumption 4.1 is consistent to our assumptions on cost structure and project net-

work in §??. Part 2 of Assumption 4.1 is consistent with direct cost assumption com-

monly made in project management literature. Intuitively, the more we crash the task

duration, the higher the cost per unit of time crashed. The cost functions under this as-

sumption are very general, including constant and linear cost functions as special cases.

By Assumption 4.1, the total project duration, T , is equal to max{T1, T2, ..., Tn}+ T0.

Assumption 4.2 R(T ) is decreasing and concave in T ; αi ∈ (0, 1) for i = 0, 1, ..., n,

and
∑

i=0,1,...,n αi = 1.

Assumption 4.2 is consistent to the indirect cost where it is typically assumed that

the earlier the project is completed, the higher the reward or the less the penalty.

The concavity of the revenue function comes from higher penalty cost per unit time as

delay increases, as we often observe in practice. We should point out that this revenue

function is very general, including fixed-price and linear incentive contract as special

cases.
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4.1.1 Global Optimal Solution – Centralized Case

In the centralized case where all tasks are done by one firm, the total pay-off of the

project is given as follows:

π = R(T )− C0(T0)−
n∑

i=1

Ci(Ti). (4.1)

To determine the optimal durations for tasks under centralized control, we first

observe that the function T = f(T0, T1, ..., Tn) = maxi=1,2,...,n{Ti}+T0 is jointly convex

in (T0, T1, ..., Tn) (the proof is straightforward, we omit it). For simplicity, we define

vector T̄ = (T0, T1, ..., Tn); we can also rewrite R(T ) = R(f(T̄ )).

Lemma 4.1 R(f(T̄ )) is jointly concave in T̄ = (T0, T1, ..., Tn).

Proof. Consider T̄ ̸= T̄ ′ and β ∈ [0, 1]. By the joint convexity of f(T̄ ) in T̄ , we must

have

f(βT̄ + (1− β)T̄ ′) ≤ βf(T̄ ) + (1− β)f(T̄ ′).

In addition, R(T ) is decreasing in T which implies

R(f(βT̄ + (1− β)T̄ ′)) ≥ R(βf(T̄ ) + (1− β)f(T̄ ′)).

Finally, the concavity of R(T ) in T indicates

R(βf(T̄ ) + (1− β)f(T̄ ′)) ≥ βR(f(T̄ )) + (1− β)R(f(T̄ ′)).

The joint concavity of R(f(T̄ )) in T̄ follows by the last two inequalities. �

Because −C0(T0)−
∑n

i=1Ci(Ti) is jointly concave in T̄ and R(f(T̄ )) is also jointly

concave in T̄ , π is a jointly concave function in T̄ . Thus, the optimal task durations

T̄ ∗ = (T ∗
0 , T

∗
1 , · · · , T ∗

n) must exist and be finite. Assuming that the feasible region of
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Ti, [ai, bi], is sufficiently large for all i, then there must exist a solution T̄ ∗ such that

T ∗
1 = T ∗

2 = · · · = T ∗
n . This is true because if for instance T ∗

1 < T ∗
2 , then increasing

T ∗
1 to be equal to T ∗

2 would lower the cost of task 1 while keeping the everything else

unchanged.

4.1.2 Subgame Perfect Nash Equilibrium – Decentralized Case

In the decentralized case, each firm makes its decision to maximize its pay-off. α0 and

αi (i = 1, 2, ..., n) are the pre-determined sharing ratio among the manufacturer and

suppliers; α0 +
∑n

i=1 αi = 1. The manufacturer’s pay-off is given by:

π0 = α0R(T )− C0(T0).

The supplier i ’s pay-off is given by:

πi = αiR(T )− Ci(Ti).

By the structure of the project network, the suppliers move first. The manufacturer

observes the duration from stage 1, the suppliers’ stage, and decides its own action. As

noted in Chapter 3, the suppliers play a simultaneous game among themselves and a

sequential game together with the manufacturer.

Lemma 4.2 For a given T0, the suppliers play a simultaneous game. The subgame

perfect Nash equilibrium exists. And in all possible equilibriums, suppliers must have

identical task duration, i.e., T̃1 = T̃2 = · · · = T̃n = Ts.

Proof. Supplier i ’s pay-off function is πi = αiR(T ) − Ci(Ti). By Lemma 4.1, πi is

concave in T̄ . Because the strategy space is compact and convex, there exists at least

one subgame perfect Nash equilibrium.
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Consider a subgame perfect Nash equilibrium (T̃1, T̃2, · · · , T̃n). Suppose T̃1 > T̃2,

we can simply increase T̃2 to maxi=1,...,n{T̃i} which will increase (or at least maintain)

supplier 2’s pay-off while keeping all other suppliers’ pay-offs unchanged. Thus any

Nash equilibrium must satisfy T̃1 = T̃2 = · · · = T̃n = Ts. �

From this lemma, all suppliers have identical duration for their tasks in the equi-

librium. Let Ts = T̃1 = T̃2 = · · · = T̃n. We now consider the sequential game played

between the suppliers as a whole and the manufacturer. Due to the sequential nature,

the manufacturer decides its own duration T0 after observing the suppliers’ duration, Ts.

Anticipating the manufacturer’s response, the suppliers determine their best duration

Ts upfront.

For the suppliers as a whole, the total pay-off πs is given as follows:

πs = (1− α0)R(Ts + T0)−
n∑

i=1

Ci(Ts). (4.2)

Each supplier has its pay-off function as follows:

πi = αiR(Ts + T0)− Ci(Ti). (4.3)

According to Lemma 4.2, there should be at least one dominating supplier that

holds the longest duration at stage 1. For all the other suppliers, they have no choice

but accepting this longest duration because the worst supplier dominates the duration

of stage 1.

For the manufacturer, its pay-off function is given by:

π0 = α0R(Ts + T0)− C0(T0). (4.4)

Given Ts, we define the manufacturer’s response as,

g(Ts) = argmax
T0

{α0R(Ts + T0)− C0(T0)}. (4.5)
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The first order condition ∂π0
∂T0

= 0 results in

α0R
′
(Ts + T0)− C

′
0(T0) = 0,

and consequently g(Ts) must satisfy

α0R
′
(Ts + g(Ts))− C

′
0(g(Ts)) = 0 (4.6)

Suppose supplier i dominates other suppliers, Ts = Ti. The first order condition for

supplier i when
dπi(Ti, g(Ti))

dTi
= 0 results in

αiR
′
(Ts + g(Ts))(1 + g

′
(Ts))− C

′
i(Ts) = 0 (4.7)

For the manufacturer, its pay-off is π0(Ts, T0) = α0R(Ts + T0) − C0(T0). For a

given Ts, π0(Ts, T0) is a concave function in T0, thus there exists a unique g(Ts) which

maximizes the manufacturer’s pay-off. For the dominating supplier i, πi(Ts) = αiR(Ts+

g(Ts))− Ci(Ts). Since Ts is defined in a finite region, there must exist a finite T̃s that

maximizes supplier i’s pay-off πi(Ts). The pair, (T̃s, T̃0 = g(T̃s)), is the subgame perfect

Nash equilibrium.

The following lemma characterizes g(Ts).

Lemma 4.3 −1 < g
′
(Ts) < 0, the manufacturer’s task duration is a decreasing func-

tion of Ts.

Proof. Taking derivative of Eq. (4.6) with respect to Ts yields

α0R
′′
(Ts + g(Ts))(1 + g

′
(Ts)) = C

′′
0 (g(Ts))g

′
(Ts).

Thus,

g
′
(Ts) =

α0R
′′
(Ts + g(Ts))

−α0R
′′(Ts + g(Ts)) + C

′′
0 (g(Ts))

. (4.8)
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Because R
′′
< 0 and C

′′
0 > 0, then g

′
(Ts) < 0. Rewrite

g
′
(Ts) = −1 +

C
′′
0 (g(Ts))

−α0R
′′(Ts + g(Ts)) + C

′′
0 (g(Ts))

,

Thus g
′
(Ts) > −1. �

Note that this lemma indicates: (1) when the suppliers’ duration increases, the

manufacturer’s best duration will decrease; (2) for each unit of time that the suppliers’

duration increases, the manufacturer’s best duration will decrease less than one unit.

This result is consistent with Theorem 3.6 in Chapter 3.

We now compare the optimal project duration in the centralized case, T ∗
s +T ∗

0 , with

that in the decentralized case, T̃s + T̃0.

Theorem 4.1 (The Continuous-time Coauthor’s Dilemma) T ∗
s + T ∗

0 ≤ T̃s + T̃0,

the total duration in the decentralized case is always greater than or equal to the optimal

duration in the centralized case.

Proof. By Lemma 4.1, T ∗
s and T ∗

0 are given by the first order condition of Eq. (4.1).

Thus,

R
′
(T ∗

s + T ∗
0 ) =

n∑
i=1

C
′
i(T

∗
s ) (4.9)

R
′
(T ∗

s + T ∗
0 ) = C

′
0(T

∗
0 ) (4.10)

Under decentralized control, T̃s and T̃0 should satisfy,

αiR
′
(T̃s + T̃0)(1 + g

′
(T̃s)) = C

′
i(T̃s), (4.11)

α0R
′
(T̃s + T̃0) = C

′
0(T̃0), (4.12)

where g
′
(T̃s) =

α0R
′′
(T̃s + T̃0)

−α0R
′′
(T̃s + T̃0) + C

′′
0 (T̃0)

. By Eq. (4.11),

R
′
(T̃s + T̃0)

C
′
i(T̃s)

=
1

αi(1 + g′(T̃s))
.
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By Lemma 4.3, we know−1 < g
′
(T̃s) < 0. Thus, 1

αi(1 + g
′
(T̃s))

> 1, and
R

′
(T̃s + T̃0)

C
′
i(T̃s)

>

1. By Eq. (4.9), we know that
R

′
(T ∗

s + T ∗
0 )

n∑
i=1

C
′
i(T

∗
s )

= 1. Thus,

R
′
(T̃s + T̃0)

C
′
i(T̃s)

>
R

′
(T ∗

s + T ∗
0 )∑n

i=1C
′
i(T

∗
s )

. (4.13)

For simplicity, we define G(Ts, T0) =
R

′
(Ts + T0)

C
′
i(Ts)

. By Assumptions 4.1-4.2,

R
′
< 0, R

′′
< 0; C

′
i < 0, C

′′
i > 0 for all i = 0, 1, ..., n. (4.14)

We easily arrive at,

∂G

∂Ts
> 0 and

∂G

∂T0
> 0 (4.15)

Now, we are ready to discuss the relationship between T̃s and T ∗
s , and between T̃0

and T ∗
0 . There could be four cases:

(a). T̃s ≥ T ∗
s and T̃0 ≥ T ∗

0 .

(b). T̃s ≤ T ∗
s and T̃0 ≤ T ∗

0 .

(c). T̃s ≥ T ∗
s and T̃0 ≤ T ∗

0 .

(d). T̃s ≤ T ∗
s and T̃0 ≥ T ∗

0 .

By Eq. (4.13) and (4.15), we can see that case (b) would never happen. Consider

case (a), it is obvious that T ∗
s + T ∗

0 ≤ T̃s + T̃0.

Consider case (c), because T̃0 ≤ T ∗
0 and C

′
0(.) is increasing, we must have C

′
0(T̃0) ≤

C
′
0(T

∗
0 ). By Eq. (4.10) and (4.12), we arrive at α0R

′
(T̃s + T̃0) ≤ R

′
(T ∗

s + T ∗
0 ). Because

α0R
′
(T̃s + T̃0) ≥ R

′
(T̃s + T̃0), we obtain R

′
(T̃s + T̃0) ≤ R

′
(T ∗

s + T ∗
0 ). Because R

′
(·) is

decreasing, we must have T ∗
s + T ∗

0 ≤ T̃s + T̃0.
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The proof of case (d) follows that of case (c). Specifically, because T̃s ≤ T ∗
s and∑n

i=1C
′
i(·) is increasing, C

′
i(T̃s) <

∑n
i=1C

′
i(T̃s) ≤

∑n
i=1C

′
i(T

∗
s ). By Eq. (4.9) and

(4.11), we get (1+g
′
(T̃s))αiR

′
(T̃s+ T̃0) ≤ R

′
(T ∗

s +T ∗
0 ). Because 0 < (1+g

′
(T̃s))αi < 1,

(1 + g
′
(T̃s))αiR

′
(T̃s + T̃0) ≥ R

′
(T̃s + T̃0). Thus, R

′
(T̃s + T̃m) ≤ R

′
(T ∗

s + T ∗
0 ). Because

R
′
(·) is decreasing, we must have T ∗

s + T ∗
0 ≤ T̃s + T̃0.

Summarizing all cases, T ∗
s + T ∗

0 ≤ T̃s + T̃0 always holds. �

This theorem indicates that the decentralized case always results in a longer duration

for the project than the centralized case. This is consistent to the Coauthor’s Dilemma

in Chapter 3.

We now determine the share of revenue, α0, αi, so as to incorporate the individual

rationality constraints, which mandate that the manufacturer and the suppliers must

make a positive pay-off in order to participate in the project. For the manufacturer, we

must have

π0 = α0R(Ts + T0)− C0(T0) ≥ 0. (4.16)

For the suppliers, we consider a weak condition, which is

πs = (1− α0)R(Ts + T0)−
n∑

i=1

Ci(Ts) ≥ 0. (4.17)

Combining Eqs. (4.16)-(4.17), we have the following lower and upper bounds for α0,

α0 ≥
C0(T0)

R(Ts + T0)
, (4.18)

α0 ≤ 1−
∑n

i=1Ci(Ts)

R(Ts + T0)
. (4.19)

Or equivalently,

C0(T0)

R(Ts + T0)
≤ α0 ≤ 1−

∑n
i=1Ci(Ts)

R(Ts + T0)
. (4.20)
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Thus, α0 must satisfy the constraints in Eq. (4.20) for the game to be individually

rational.

4.1.3 Special Cases

In this section, we consider two special cases relevant to practice and develop stronger

results. We shall first consider linear revenue function and then constant assembly cost

at stage 2.

Linear Revenue Function

Linear revenue function corresponds to the cases where a linear incentive contract

is used for the entire project. Let R(T ) = −aT +K, then

g(Ts) = argmax
T0

α0R(Ts + T0)− C0(T0) = α0K − aα0Ts + argmax
T0

[−aα0T0 − C0(T0)].

Thus, g(Ts) is a constant and independent of Ts, therefore g
′
(Ts) = 0.

With linear revenue function, Eq. (4.7) can be simplified into αi(−a)−C
′
i(T̃s) = 0.

Thus −a =
C

′
i(T̃s)
αi

. This implies that if the manufacturer keeps a larger share of the

total pay-off, i.e., a larger α0, the suppliers will defer their tasks more.

We can also simplify Eq. (4.6) into α0(−a) − C
′
0(T̃0) = 0, and thus −a =

C
′
0(T̃0)
α0

.

This implies that if the manufacturer keeps a larger share of the total pay-off, i.e., a

larger α0, the manufacturer will work faster. In summary,

−a =
C

′
i(T̃s)

αi
,−a =

C
′
0(T̃0)

α0
. (4.21)

We now identify the relationship between the equilibrium (T̃s, T̃0) and the global

optimal solution (T ∗
s , T

∗
0 ). The linear revenue function allows us to obtain a stronger

result on the relationship.
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For the centralized case, we first note that

π = R(T0 + Ts)− C0(T0)−
n∑

i=1

Ci(Ts) = K − a(T0 + Ts)− C0(T0)−
n∑

i=1

Ci(Ts).

The first order conditions for Ts,T0 are −a = C
′
0(T0),−a =

∑n
i=1C

′
n(Ts). So, the global

optimal solution (T ∗
s , T

∗
0 ) satisfies,

−a = C
′
0(T

∗
0 ),−a =

n∑
i=1

C
′
n(T

∗
s ). (4.22)

Comparing Eq. (4.21) and (4.22), we can conclude,

T ∗
s ≤ T̃s, T ∗

0 ≤ T̃0.

This property is stronger than Lemma 4.1 where T ∗
s + T ∗

0 ≤ T̃s + T̃0.

Constant Assembly Cost

Suppose C0(T0) = K0. By Eq. (4.8), g
′
(Ts) = −1. Eq. (4.7) becomes

C
′
i(Ts) = 0. (4.23)

This equation indicates that the dominating supplier only needs to minimize its total

cost in the equilibrium without considering the revenue function.

4.2 Stochastic Task Durations

In this section, we consider stochastic task durations for the base model defined in

Assumption 3.1. Specifically,

Assumption 4.3 At level 1 of the project network, there is only one task. Each task

cannot be expedited but can be delayed by at most one period. The supplier and the

manufacturer will no longer decide the task duration directly. Instead, they choose to



115

exert either high effort or low effort. Depending on the effort, the task has different

probability to delay. Both the manufacturer and the supplier do not know the other’s

choice but observe the other’s task duration. If the project is delayed, it is subject to a

penalty which is time independent.

In this model, the supplier will choose its effort level between eH1 and eL1 where eH1

represents the high effort level and eL1 represents the low effort level; the manufacturer

will choose effort level between eH0 and eL0 where eH0 represents the high effort level and

eL0 represents the low effort level. If a firm i exerts high effort eHi , its task (task i) will

have a low probability qLi to get delayed. On the other hand, if the firm exerts low

effort eLi , task i will have a high probability qHi to be delayed. Note that qLi < qHi and

qLi + qHi is not necessarily equal to 1.

For the cost structure, it is natural to assume that when firm i exerts low effort,

there would be a saving si as compared to exerting high effort.

If the task is delayed, there would be an extra direct cost associated with the effort

for a longer duration. That is, a supplier exerts an effort but the task is unfortunately

delayed by one period, it has to pay the associated direct cost occurred in this period.

We define fH
i to be the extra direct cost from high effort and fL

i to be the extra direct

cost from low effort respectively. It is natural to assume that fH
i > fL

i .

Since the project starts with the an original schedule that is optimal under central-

ized control. The condition is the same as Condition 3.1. We rewrite it here.

Condition 4.1 Global Optimum: s1 < p, s0 < p.

With this condition, we study the strategic behavior of firms under the loss sharing

and fair sharing partnerships.
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4.2.1 The Loss Sharing Partnership

To analyze the subgame perfect Nash equilibrium under the loss sharing partnership,

we start from the last stage and go backward. The manufacturer will observe whether

the supplier’s task is delayed or kept.

• If the supplier’s task is delayed, the manufacturer’s expected pay-offs are E(π0(e
H
0 )) =

−p0(1− qL0 )− (2p0 + fH
0 )qL0 and E(π0(e

L
0 )) = s0 − p0(1− qH0 )− (2p0 + fL

0 )q
H
0 .

• If the supplier’s task is on time, they are E(π0(e
H
0 )) = −(p0 + fH

0 )qL0 and

E(π0(e
L
0 )) = s0 − (p0 + fL

0 )q
H
0 .

For the ease of illustration, we define δ1 = fH
1 − fL

1 and δ0 = fH
0 − fL

0 . δi represents

the difference in extra direct cost between the high effort and the low effort when the

task is delayed. The manufacturer has dominant strategies at stage 2.

Lemma 4.4 when condition s0+ δ0q
L
0 < (qH0 − qL0 )(p0+ fL

0 ) holds, e
H
0 is the dominant

strategy for the manufacturer; when condition s0+ δ0q
L
0 > (qH0 − qL0 )(p0+ fL

0 ) holds, e
L
0

is the dominant strategy for the manufacturer.

Proof. If the supplier’s task is delayed, E(π0(e
H
0 ))− E(π0(e

L
0 )) = p0(q

H
0 − qL0 )− s0 −

fH
0 qH0 . Since δ0 = fH

0 −fL
0 , the equation becomes p0(q

H
0 −qL0 )−s0−(fL

0 +δ0)q
L
0 +fL

0 q
H
0 =

(p0+fL
0 )(q

H
0 −qL0 )−s0−δ0qL0 . When s0+δ0q

L
0 < (qH0 −qL0 )(p0+fL

0 ), the manufacturer’s

best strategy is to choose eH0 , otherwise its best strategy is to choose eL0 .

If the supplier is on time, E(π0(e
H
0 ))−E(π0(e

L
0 )) = p0(q

H
0 −qL0 )−s0−fH

0 qL0 +fL
0 q

H
0 =

(p0+fL
0 )(q

H
0 −qL0 )−s0−δ0qL0 . When s0+δ0q

L
0 < (qH0 −qL0 )(p0+fL

0 ), the manufacturer’s

best strategy is to choose eH0 , otherwise its best strategy is to choose eL0 . �

Going back to stage 1, we derive the supplier’s dominant strategies as below.
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Lemma 4.5 When s1 + δ1q
L
1 < (qH1 − qL1 )(p1 + fL

1 ), e
H
1 is the dominant strategy for

the supplier; when s1 + δ1q
L
1 > (qH1 − qL1 )(p1 + fL

1 ), e
L
1 is the dominant strategy for the

supplier.

The proof is similar to Lemma 4.4 and thus omitted.

To see the meaning of the conditions in Lemmas 4.4-4.5, we consider a special case

where fH
i = fL

i = 0 for i = 0, 1 which indicates that there is no extra direct cost.

Then the left-hand-side of the conditions is the saving while the right-hand-side of the

conditions is the probability adjusted penalty because the delay is stochastic. More

specifically,

• when s0 < (qH0 − qL0 )p0, the saving by low effect is smaller than the discounted

delay penalty for the manufacturer. The manufacturer will choose eH0 .

• When s0 > (qH0 − qL0 )p0, the saving by low effect is greater than the discounted

delay penalty for the manufacturer. The manufacturer will choose eL0 .

• When s1 < (qH1 − qL1 )p1, the saving by low effect is smaller than the discounted

delay penalty for the supplier. The supplier will choose eH1 ;

• When s1 > (qH1 − qL1 )p1, the saving by low effect is greater than the discounted

delay penalty for the supplier. The supplier will choose eL1 .

The conditions here are an extension of the conditions in Lemma 3.1 from deterministic

durations to stochastic duration.

To see the impact of stochastic task durations, we now compare Lemmas 4.4-4.5 to

Lemma 3.1 of the deterministic case in Chapter 3 Section 3.4.1. Lemma 3.1 shows that

when s0 < p0, the manufacturer will choose “keep”; when s0 > p0, the manufacturer
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will choose “delay”. Similarly, when s1 < p1, the supplier will choose “keep”; when

s1 > p1, the supplier will choose “delay”.

Because 0 < qH0 − qL0 < 1 and 0 < qH1 − qL1 < 1, they can be regarded as discount

factors. In the first case, we note that s0 < (qH0 − qL0 )p0 < p0, which implies that fixing

p0, s0 has to be smaller in the stochastic case than the deterministic case to ensure

that the manufacturer chooses “keep”, or conversely, fixing s0, p0 has to be higher

in the stochastic case than the deterministic case to ensure that the manufacturer

chooses “keep”. Thus, the condition for a high effort is more difficult to satisfy for the

manufacturer in the stochastic case than the condition for “keep” in the deterministic

case. The same insight applies to the supplier.

4.2.2 The Fair Sharing Partnership

The scheme for fair sharing is introduced in Section 3.5. If a firm’s task is delayed by

one period, the firm will pay the full penalty cost for the delay including its own penalty

cost and a compensation to the other firm.

For the supplier, if it exerts a high effort, eH1 , its task will have 1− qL1 chance to be

finished on time and qL1 chance to be delayed. If the task is on time, its pay-off is zero;

if delayed, the pay-off is −p− fH
1 . Thus, the expected pay-off for a high effort supplier

is −(p+ fH
1 )qL1 . If the supplier exerts a low effort, eL1 , its task will have 1− qH1 chance

to be finished on time and qH1 chance to be delayed. If the task is on time, the pay-off

is s1; if delayed, the pay-off is s1−p−fL
1 . The expected pay-off for a low effort supplier

is s1− (p+ fL
1 )q

H
1 . We have E(π1(e

H
1 ))−E(π1(e

L
1 )) = p(qH1 − qL1 )− fH

1 qL1 − fL
1 q

H
1 − s1.

Under the fair-sharing partnership, we have the following dominate strategies for the

supplier.
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Lemma 4.6 When s1 < p(qH1 − qL1 ) − fH
1 qL1 − fL

1 q
H
1 , eH1 is the dominant strategy for

the supplier; when s1 > p(qH1 − qL1 )− fH
1 qL1 − fL

1 q
H
1 , eL1 is the dominant strategy for the

supplier.

Similarly, we have the dominant strategies for the manufacturer.

Lemma 4.7 When s0 < p(qH0 − qL0 ) − fH
0 qL0 − fL

0 q
H
0 , eH0 is the dominant strategy for

the manufacturer; when s0 > p(qH0 − qL0 )− fH
0 qL0 − fL

0 q
H
0 , eL0 is the dominant strategy

for the manufacturer.

Considering the special case of fL
1 = fH

1 = 0, we have E(π1(e
H
1 )) − E(π1(e

L
1 )) =

p(qH1 − qL1 )− s1. The choice of “high effort” not only depends on the penalty cost and

the saving in direct cost, but also on delay probabilities. A similar observation can be

made for the manufacturer, where we have E(π0(e
H
0 ))− E(π0(e

L
0 )) = p(qH0 − qL0 )− s0.

Comparing the results here to those in Section 3.5.1 in Chapter 3, the fair sharing

partnership in case of uncertain task durations requires more restrictive conditions to

ensure that both firms exert a high effort than in the case of deterministic durations.

Comparing the results here to those in Section 4.2.1, we can see that both firms are

more likely to exert a high effort in the fair-sharing partnership than in the loss sharing

partnership.

4.3 Conclusions

In this chapter, we extend Chapter 3 in two directions. First, we consider a continuous-

time model and show that the general Coauthor’s Dilemma holds. The continuous-time

model provides a more general functional form between time and cost as compared to

the discrete model in Chapter 3. Second, we relax the deterministic task durations and
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introduce uncertainties where a task can be delayed even if a high effort is exerted. Our

analysis shows that the uncertainty in task durations has a significant impact on the

firms’ optimal strategies. Specifically, under the loss sharing partnership, both firms

are less likely to exert a high effort with uncertainty than what they would do without

uncertainty; the firms’ behaviors are also changed in the fair sharing partnership which

does not guarantee a high effort exerted by both firms although it does provide stronger

motivation than the loss sharing partnership for them to do so.

Going forward beyond the scope of this chapter, research on supply chain and project

management interfaces promises to be fruitful to both practitioners and academicians

because of the high impact on practice, and the potential of exciting theoretical dis-

coveries and insights by integrating two rich bodies of literature. The potential in

coordinating the project-driven supply chains (or joint projects) has recently been rec-

ognized in both academia and industry. While there is ample work to be done, we

suggest the following future research directions:

1. Empirical Studies: The recent slips of the 787 Dreamliner and Airbus 380 have

drawn the attention of both practitioners and academicians on how to ensure

successful innovation by collaboration. While theoretical models can be built to

aid the development of the next mega project, empirical studies should also be

done to discover what really happened in these programs.

2. Uncertainties in Projects: We have done some pilot study in Section 4.2 on uncer-

tainties. There are still many other ways to introduce uncertainties to our model.

While deterministic model greatly simplifies the analysis and thus allows us to

establish clean results on incentives and gaming behaviors in joint projects, it is of
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a great interest to allow randomness in project durations, task failure rates, and

much more to potentially integrate the economics/supply chain incentive theory

with project evaluation and review technique (PERT).
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