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The dissertation comprises three essays that investigate market performance and seller be-

havior in the supermarket retail industry. The first essay empirically examines welfare

effects of the informative price advertising in the supermarket retail industry, using struc-

tural estimation approaches and individual scanner data. The simulation results numerically

show that the private promotion intensities are socially excessive. The welfare implications

of price advertising are determined by the two opposite effects of price advertising: (1)

the informing and therefore welfare-improving effect, and (2) the welfare-harming effect of

higher transportation costs incurred by consumers when promotions are used as a means of

business stealing.

In the second essay, I provide an analytical model for the rationale behind supermarket

pricing patterns characterized by long-term high prices and temporary price reductions.

The models features oligopoly retailers selling a homogeneous storable good that can be

consumed for multiple periods, with consumer heterogeneity with respect to search cost,

inventory cost, and store loyalty. In the symmetric Markov-perfect equilibrium (MPE)

found, retailers randomize prices, and consumer purchase decisions are characterized by a

critical price. The Markov transition of states is non-absorbing: the probability of holding
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a sale is low at high inventory levels, while at zero inventory retailers compete the hardest.

The model is able to generate endogenous temporary price reductions and cyclical inventory

variations.

In the third essay, I consider forward-looking purchase and pricing behavior. Consumers

maximize the expected discounted future utility flows by balancing inventory cost and

potential future savings, and a monopolistic retailer maximizes the present expected profit

flows by making a pricing decision that accounts for consumer stockpiling behavior. I

estimate the model with data from the laundry detergent market using a simulated minimum

distance (SMD) estimator. The simulated market evolution implies that, when consumer

inventory level is high and therefore the incentive of purchase is small, the retailer smooths

its profit flow by lowering prices to induce purchase; when consumer inventory is low, the

retailer expects a high demand driven by urgent consumption needs but tends to keep price

high in order to preserve future demand.
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Chapter 1

Introduction

This dissertation has focused on pricing strategy and consumer demand in the supermarket

retail industry. The motivation is to understand consumer shopping behavior, the rigorous

competition among retailers as they deploy an arsenal of marketing instruments, and how

these instruments affect market performance. My research includes theoretical modeling,

empirical estimations, and simulations. I have emphasized the use of structural estimation

and other modern econometric approaches, and complex computational techniques. In this

dissertation, I investigate three interesting questions of the supermarket retail market: (1)

how does price advertising of competing supermarket retailers affect grocery shoppers’ store

choice and product choices and market efficiency; (2) when goods are storable, why super-

market retailers occasionally offer products at discounted prices, and how and why such

price dispersion can exist as an equilibrium phenomenon; (3) how are consumer purchase

and retailer pricing decisions strategically made for storable goods.

1. The Welfare Effects of Price Advertising with Basket Shopping: Structural

Estimates from Supermarket Promotions

This essay empirically examines welfare effects of the informative price advertising in the

supermarket retail industry, using structural estimation approaches and individual scanner

data.

Competing supermarkets use promotions (advertised temporary price cuts) to announce

sales, informing potential customers about price offers via a variety of media forms. Such

advertising affects consumer demand because it makes consumers aware of attractive price

offers at a specific store location. During 2007-2010, the U.S. supermarkets spent about $800

million on price advertising per year. Given the magnitude of dollars spent on promotions,
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it is interesting to examine whether these promotions are socially efficient.

Theories of informative price advertising do not provide unambiguous predictions of

welfare effects. Two effects of price advertising, the demand-creating effect and the business-

stealing effect, have been recognized since Marshall (1919). On the one hand, because the

firm cannot appropriate the social benefit created, the demand-creating effect suggests that

equilibrium advertising is socially inadequate. On the other hand, the business-stealing

externality among competing firms suggests that advertising may be socially excessive:

the firm is motivated by the profit margin ”stolen” from rivals, while social welfare is

not impacted by the simple re-distribution of margins from one firm to another. Market

efficiency with price advertising therefore depends on which of the two effects dominates.

In the supermarket retail industry, however, these two effects are complicated by shop-

ping transportation cost. Since transportation erodes consumer surplus that would have

been gained from purchase bundles, it dampens the demand-creating effect. Moreover,

stealing one customer from a rival store means a longer shopping trip, if the shopper lives

close to the rival store. In a competition-intensified market where shoppers are more likely

to travel long distances, transportation costs would cause a worse surplus erosion. In this

sense, the effect of price advertising (promotion) is two-fold: it improves market efficiency

by reducing price uncertainties and expands quantity (the welfare-improving effect); but it

creates inefficiency due to the higher transportation cost (the welfare-harming effect). If the

latter effect is sufficiently large, the loss due to longer shopping distances would outweigh

the surplus gain from quantity expansion, and price advertising may no longer be socially

excessive.

I examine market performance of a supermarket oligopoly by comparing social welfare

in the current equilibrium with its counterparts following small deviations in promotion

intensity. If an extra unit of promotion improves (harms) social well-being, then the private

promotion intensity is socially inadequate (excessive). To investigate this, I construct a

model that accounts for both consumer shopping behavior and retail merchandising behav-

ior, and structurally estimate demand and promotion cost parameters. In a Bayesian-Nash

equilibrium, shoppers choose one optimal store to buy a bundle of products from; the com-

peting retailers maximize store-level profits by making promotion and pricing decisions for
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all products, facing the tradeoff between attracting extra store visits and paying additional

promotion costs.

Using scanner data of consumer shopping and store merchandising information, I es-

timate consumer preference following the discrete choice literature; the retailers’ marginal

costs of promotion are structurally estimated using the moment inequality approach (Pakes

et al. 2011; Pakes 2010). These structural estimates will allow me to simulate equilibrium

and counterfactual outcomes. In particular, the moment inequality approach allows me to

circumvent dimensionality issue caused by the large number of products (identified by SKU,

stock keeping unit) of a multi-product retailer. The estimation procedure is based on the

necessary condition of profit maximization - the retailer chooses strategies that according

to his expectations lead to profits at least as high as feasible alternatives. By estimat-

ing demand, I am able to predict how sales, and therefore profits, would have changed

if the retailer had made alternative decisions. The difference between the actual and the

counterfactual profits provides the bounds for promotion costs.

The simulation results numerically show that, in the current equilibrium (the baseline

case), the private promotion intensities are socially excessive; about 20 percent of consumer

surplus that would have been gained from purchase bundles has been eroded by transporta-

tion. To further examine the effects of price advertising and transportation cost on welfare,

I do counterfactual experiments where the promotion costs slightly deviate from their es-

timates. I find that the welfare implications of price advertising deviates from the usual

conclusion that competition and information always improve welfare. The reason closely

relates to the welfare-harming effect of price advertising. When promotion costs slightly

decrease, for example, stores promote more and price lower. As a result of intensified compe-

tition, consumers shop at further-away stores with higher probabilities. However, since the

transportation cost increases more than the gain in social surplus due to quantity expansion

as numerically showed, social welfare is harmed even competition has been intensified. The

reverse is found when promotion costs slightly increases.

Recognizing that transportation cost creates so large inefficiency that offsets the effi-

ciency gain from price advertising, I simulate market outcome where this cost is artificially
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removed. This experiment actually simulates the online shopping regime, in which, by as-

sumption, store choice does not depend on home-store distance and shipping of the grocery

bundle is free. The simulation shows that the new regime can improve social welfare by 31

percent. In theory, it is clear that the new regime avoids erosion and therefore improves

consumer surplus; it is also straightforward that competition among stores will be intensi-

fied due to the removal of stores’ local market power. In contrast, the effect on social welfare

is theoretically vague: the stores could compete more aggressively by spending greater in

price advertising. However, my numerical results show that on-line shopping regime only

slightly increases advertising while considerably improves consumer surplus: in the new

equilibrium stores promote more, price lower, making slightly small profits; compared to

the base case, the increase in consumer surplus due to zero transportation costs more than

offsets the decrease in producer surplus.

Chapter 2. Dynamic Price Dispersion of Durable Goods

In the second essay, I provide an analytical model that seeks to explain the rationale

behind supermarket pricing patterns characterized by long-term high prices and temporary

price reductions.

Despite the ubiquitous nature of price promotions, there is little common ground among

economists as to why supermarket retailers occasionally offer products at discounted prices,

or even how and why such price dispersion can exist as an equilibrium phenomenon. A

vast literature aims to generate price distributions, which characterize equilibrium, that are

similar to empirically observations. Two classes of models have been constructed. Both

examine the pricing decision of single product retailers, and show how consumer hetero-

geneity can lead to retail price variation over time. The first class assumes consumers differ

in their knowledge. Since sellers face a tradeoff between selling to only non-searchers at high

price and selling to both searcher and non-searchers at the lowest price among all sellers,

the symmetric mixed-strategy equilibrium features a continuous distribution of price. The

second class views sales as means of price discrimination. Consumers differ in their reser-

vation prices, willingness to wait for sales, and/or inventory costs (analytically equivalent

to willingness to wait).
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To better understand retailers’ strategic pricing behavior given consumer heterogeneities

in store loyalty, willingness to wait or inventory cost, and knowledge in prices, I construct

a model of an oligopoly retailers selling a homogeneous storable good, based on the un-

derstanding that temporary price reductions serve the role of price discrimination between

consumers with different search costs, store loyalty, and willingness to wait (or equivalently,

consumer inventory cost).

In this paper a symmetric Markov-perfect equilibrium is found. As in the classic search

models, the competing stores face a trade-off between selling only to its own loyals at the

regular price and to both loyals and shoppers at some sale price. Retailers randomize

prices, and the cdf of the equilibrium price distributions have a mass point at the regular

price. The equilibrium price distribution is a function of the shoppers’ inventory. The

mixed strategy equilibrium is characterized by a critical price depend upon which purchase

decision is made in each period. The realized price evolution consists of several consecutive

regular-price periods, where no sales are offered, and occasionally one-time price reductions.

The endogenous price evolution exhibits non-absorbing Markov transition of states: when

shoppers hold high inventory, the probability of holding a sale is low, which means inventory

will more likely to drop down.

Chapter 3. An Empirical Analysis on Dynamic Supply and Demand of Storable

Goods

In this essay, I consider forward-looking purchase and pricing behavior. When goods

are storable, consumers take future prices into consideration while making current purchase

decision, and suppliers take into account future profit when making current pricing decision.

A consumer has an incentive to make an unplanned purchase if she observes a price cut and

believes that the price will return to the regular price in the near future. Since consumers

would stock up, the unconsumed goods will be stored at an cost. Thus, consumers face a

trade-off between storage costs and the attractive low price. One the other hand, the seller’s

pricing decision also faces a dynamic trade-off: if she offers a sale price, selling more today

reduces demand tomorrow. Moreover, If adjusting prices incurs menu costs, it is optimal to

cut prices only if the costs can be covered by the increase in total expected profit brought by
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expanded sales. Similarly, changing prices from sales prices back to regular levels is optimal

only if this menu cost can be covered by the gain in profits attributes to preserved future

demand.

To investigate the rationale of such behavior, I propose a model to investigate the con-

sumer stockpiling behavior and the dynamic pricing behavior of a monopolistic retail store.

Consumers maximize the expected discounted future utility flows by balancing inventory

cost and potential future savings, and the monopolistic retailer maximizes the present ex-

pected profit flows by making a pricing decision that accounts for consumer stockpiling

behavior.

I estimate the model with data from the laundry detergent market using a simulated

minimum distance estimator. In particular, the structural parameters that shape the dy-

namic behavior of agents, consumer inventory cost and price relabeling cost, are estimated.

These structural estimates will allow me to simulate market evolution in order to draw pat-

terns of the dynamic pricing and purchase behavior. I find that, when consumer inventory

level is high and therefore the incentive of purchase is small, the retailer smooths its profit

flow by lowering prices to induce purchase; when consumer inventory is low, the retailer

expects a high demand driven by urgent consumption needs but tends to keep price high

in order to preserve future demand.



7

Chapter 2

The Welfare Effects of Price Advertising with Basket

Shopping: Structural Estimates from Supermarket

Promotions

2.1 Introduction

This paper empirically examines the effect of costly information on market outcome in the

supermarket retail industry. Competing supermarkets use promotions (advertised tempo-

rary price cuts) to announce sales, informing potential customers about price offers via a

variety of media forms. Such advertising affects consumer demand because it makes con-

sumers aware of attractive price offers at a specific store location. During 2007-2010, the

U.S. supermarkets spent about $800 million on price advertising per year.1 Given the mag-

nitude of dollars spent on promotions, it is interesting to examine whether these promotions

are socially efficient.

Theories of informative price advertising do not provide unambiguous predictions of wel-

fare effects.2 Two effects of price advertising, the demand-creating effect and the business-

stealing effect, have been recognized since Marshall (1919). On the one hand, because the

firm cannot appropriate the social benefit created, the demand-creating effect suggests that

equilibrium advertising is socially inadequate. On the other hand, the business-stealing

externality among competing firms suggests that advertising may be socially excessive: the

firm is motivated by the profit margin ”stolen” from rivals, while social welfare is not im-

pacted by the simple re-distribution of margins from one firm to another. Market efficiency

1Data scource: Kantar Media and http://online.wsj.com. See also Bolton et al. (2010) and Levy et al.
(1997).

2For example, Butters (1977) and Roy (2000) predict that equilibrium advertising is socially optimal; in
models by Stegeman (1991) and Stahl and Dale (1994) private advertising is socially inadequate; Grossman
and Shapiro (1984) argue that it could be either socially inadequate or excessive.
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with price advertising therefore depends on which of the two effects dominates.

In the supermarket retail industry, however, these two effects are complicated by shop-

ping transportation cost. Since transportation erodes consumer surplus that would have

been gained from purchase bundles, it dampens the demand-creating effect. Moreover,

stealing one customer from a rival store means a longer shopping trip, if the shopper lives

close to the rival store. In a competition-intensified market where shoppers are more likely

to travel long distances, transportation costs would cause a worse surplus erosion. In this

sense, the effect of price advertising (promotion) is two-fold: it improves market efficiency

by reducing price uncertainties and expands quantity (the welfare-improving effect); but it

creates inefficiency due to the higher transportation cost (the welfare-harming effect). If the

latter effect is sufficiently large, the loss due to longer shopping distances would outweigh

the surplus gain from quantity expansion, and price advertising may no longer be socially

excessive.

I examine market performance of a supermarket oligopoly by comparing social welfare

in the current equilibrium with its counterparts following small deviations in promotion

intensity. If an extra unit of promotion improves (harms) social well-being, then the private

promotion intensity is socially inadequate (excessive). To investigate this, I construct a

model that accounts for both consumer shopping behavior and retail merchandising behav-

ior, and structurally estimate demand and promotion cost parameters. In a Bayesian-Nash

equilibrium, shoppers choose one optimal store to buy a bundle of products from; the com-

peting retailers maximize store-level profits by making promotion and pricing decisions for

all products,3 facing the tradeoff between attracting extra store visits and paying additional

promotion costs.

Using scanner data of consumer shopping and store merchandising information, I es-

timate consumer preference following the discrete choice literature; the retailers’ marginal

costs of promotion are structurally estimated using the moment inequality approach (Pakes

et al. 2011; Pakes 2010). These structural estimates will allow me to simulate equilibrium

and counterfactual outcomes. In particular, the moment inequality approach allows me to

3The assumption of store-level profit maximization follows models developed by Gauri et al. (2008b) and
Hosken and Reiffen (2007), as opposed to category profit maximizing models, such as Bonnet et al. (2010),
Bolton and Shankar (2003), and Bolton et al. (2010), Nevo (2001), and Villas-Boas (2007).
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circumvent dimensionality issue caused by the large number of products (identified by SKU,

stock keeping unit) of a multi-product retailer. The estimation procedure is based on the

necessary condition of profit maximization - the retailer chooses strategies that according

to his expectations lead to profits at least as high as feasible alternatives. By estimat-

ing demand, I am able to predict how sales, and therefore profits, would have changed

if the retailer had made alternative decisions. The difference between the actual and the

counterfactual profits provides the bounds for promotion costs.

My estimation and simulation encounter three difficulties: (1) the wholesale prices that

will be used to recover counterfactual profits are not observed; (2) the search for the optimal

price vector in a large dimensional space using regular methods is extremely inefficient; and

(3) the search for the optimal promotion decision in a large dimensional discrete space is

practically impossible. I estimate wholesale prices using the firm’s first-order condition at

the observed pricing decisions. The second problem is solved using techniques of principal

component analysis and factor analysis. The third difficulty is alleviated using a new

algorithm that largely reduces computational complexity.

The simulation results numerically show that, in the current equilibrium (the baseline

case), the private promotion intensities are socially excessive; about 20 percent of consumer

surplus that would have been gained from purchase bundles has been eroded by transporta-

tion. To further examine the effects of price advertising and transportation cost on welfare,

I do counterfactual experiments where the promotion costs slightly deviate from their es-

timates. I find that the welfare implications of price advertising deviates from the usual

conclusion that competition and information always improve welfare. The reason closely

relates to the welfare-harming effect of price advertising. When promotion costs slightly

decrease, for example, stores promote more and price lower. As a result of intensified compe-

tition, consumers shop at further-away stores with higher probabilities. However, since the

transportation cost increases more than the gain in social surplus due to quantity expansion

as numerically showed, social welfare is harmed even competition has been intensified. The

reverse is found when promotion costs slightly increases.

Recognizing that transportation cost creates so large inefficiency that offsets the effi-

ciency gain from price advertising, I simulate market outcome where this cost is artificially
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removed. This experiment actually simulates the online shopping regime, in which, by as-

sumption, store choice does not depend on home-store distance and shipping of the grocery

bundle is free. The simulation shows that the new regime can improve social welfare by 31

percent. In theory, it is clear that the new regime avoids erosion and therefore improves

consumer surplus; it is also straightforward that competition among stores will be intensi-

fied due to the removal of stores’ local market power. In contrast, the effect on social welfare

is theoretically vague: the stores could compete more aggressively by spending greater in

price advertising. However, my numerical results show that online shopping regime only

slightly increases advertising while considerably improves consumer surplus: in the new

equilibrium stores promote more, price lower, making slightly small profits; compared to

the base case, the increase in consumer surplus due to zero transportation costs more than

offsets the decrease in producer surplus.

2.2 The Supermarket Retail Industry

The grocery retailer is located at the end of the food marketing chain, purchasing goods in

bulk from manufacturers or wholesalers and directly servicing the final consumer. A grocery

store is classified as a supermarket if its annual sales exceed $2 million; it emphasizes

self-service and features dairy, meat, produce, and dry grocery departments. Through

advertising and point-of-purchase material, retailers furnish information to customers about

the prices of goods.

Grocery retailing is the largest retail sector in the U.S. economy and the most expensive

segment of the grocery retailing system (Kohls and Uhl 2001). The total supermarket sales

exceed $602 billion in 2012 and consumer food expenditures accounts for 5.7% of disposable

income in 2011. This industry has experienced considerable expansion over the years.

Between 1997 to 2012, the average annual sales per store rose from $2.5 million to $16.3

million; the number of items stocked increased from 18,000 to more than 42,000 4. The

rise of chainstores, the development of supermarkets, the introduction of food discounters,

and the continual growth in the variety of products have affected the organization and

4Food Marketing Institute. http://www.fmi.org/research-resources/supermarket-facts
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competitive behavior of grocery retailing.

Competition among supermarket retailers is fierce – the net profit margin (after tax) in

2012 is only 1.5%. Competing on the razor-thin profit margins, retailers use an arsenal of

marketing instruments and sophisticated pricing strategies to attract customers and avoid

being squeezed out of the market. Grocery retailers price each food product as a compo-

nent of a total mix of products offered by the store, often referred to as ”basket pricing”.

Another strategy is temporary advertised price cuts, or variable price merchandising, used

to differentiate their stores and attract consumers. This strategy relies on the consumers’

tendency towards one-stop shopping; thus low profits or losses on the featured items can

be made up by purchases of the higher-profit items. For shoppers, prices are not the only

determinant of where to shop: factors such as product assortment, geographical location of

store, shopping experience and customer service, are also crucial.

The traditional brick-and-mortar supermarkets are being encroached by online grocery

shopping. In contrast to the conventional wisdom that Internet grocery shopping only fills a

small niche for high-income consumers who place a high value on their time and a low value

on store experience, recent trends show that this new shopping channel is pervasive. It is

reported that 54% of consumers shop for at least some categories in this emerging grocery

channel.5 Traditional grocers react to the threat by building their own online shopping

sites, sometimes coordinating with e-grocers such as Peapods, and offering full-assortment

products, downloadable price and promotion information, and home delivery services. It is

believed that in the foreseeable future grocery retailers will have to respond, whether by

bolstering in-store experience to defend their business or by building multichannel retailing

capability that integrates in-store, online, and digital mobile offerings to meet shoppers’

differing needs.

2.3 Model

To investigate the pricing strategy and market efficiency in the supermarket retail industry,

I set out a model of consumer and firm behavior. The model assumes that in a Bayesian

5Four Forces Shaping Competition in Grocery Retailing, industry report, Booz & Company.
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equilibrium shoppers choose the store that offers the greatest utility of shopping given store

characteristics and their price knowledge; stores maximize store-level profits by making

pricing and promotion decisions. They can inform shoppers about price promotions (which

items are promoted how much they are priced) in order to compete over sales. The use of

an estimated shopping utility function and an pricing condition will allow for counterfactual

experiments in which shoppers reallocate themselves across stores and new promotional and

pricing equilibria are computed.

2.3.1 Shopping Behavior

The model assumes that prior to a shopping trip, a shopper h receives promotion information

from zero, one or more stores. Based on available price information, the shopper constructs

an expected merchandising utility of each store. Along with that, the shopper also takes into

account store valuation and transportation cost of the shopping trip, and chooses a single

store to shop.6 Once in the store when all prices are realized, for each product category the

shopper chooses the optimal product that maximizes category utility. The model therefore

follows the discrete-choice literature and incorporates the store choice models developed by

Bell et al. (1998) and Bell and Lattin (1998) that account for both store pricing decisions

and geographical factor. I first specify the in-store shopping behavior where shoppers make

product choice within each category conditional on store choice, then describe store choice

decision making.

Within-category Product Choice

Let Jc denote the set of product alternatives of category c. Once in the store and observe

prices and all merchandising activities, for each category a shopper h chooses a product to

maximize category utility. The product choices are independently made across categories.

At the time of purchase, the indirect utility that shopper h obtains from product jc of

6The model does not take into account the ”cherry-picker” behavior that a shopper choose multiple stores
in a shopping trip to assembly the bundle. Evidence shows that cherry pickers consist only a small fraction
of consumers and that their negative contribution to store profitability is small. See Fox and Hoch (2005),
Gauri et al. (2008a), Smith and Thomassen (2012), and Talukdar et al. (2008).
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category c in time t at store s takes the form

whst,jc = χc + αcpst,jc + βc,1mst,jc + βc,2nst,jc + γcyjc + εhst,jc , (2.1)

where pst,jc is the price; mst,jc is the promotion dummy; nst,jc is the dummy of in-store

display;7 yjc contains dummies of brand and package size; χc is the intrinsic utility of

category c invariant over products within the category; χc, αc, βc,1, βc,2 , and γc are

parameters to be estimated; εhst,jc is an idiosyncratic shock assumed to follow type I extreme

value distribution, i.i.d. across products, categories, stores, shoppers, and periods. Finally,

the deterministic utility of the outside option, no purchase, is normalized to zero, thus

whst,0c = εhst,0c . The probability of choosing a particular product, ρst,jc , is the probability

that jc ∈ arg max whst,jc , jc ∈ Jc. Following McFadden (1974), it is given by

ρst,jc =
exp(χc + αcpst,jc + βc,1mst,jc + βc,2nst,jc + γcyjc)

1 +
∑

kc∈Jc exp(χc + αcpst,kc + βc,1mst,kc + βc,2nst,kc + γcykc)
. (2.2)

Once the optimal product is chosen, the expected maximum utility of the category (hereafter

abbreviated to category utility) is

vsct = log
(
1 +

∑
jc∈Jc

exp(χc + αcpst,jc + βc,1mst,jc + βc,2nst,jc + γcyjc)
)
. (2.3)

There are three reasons to include brand and size dummies, yjc. First, it improves

model fit. Second, the inclusion of brand and size dummies (their combination is sufficient

to distinguish products from the same category) will not increase the number of coefficients

as many as the number of choice alternatives. Thus it does not defeat the main motivation

of the use of discrete-choice models. Third, the brand-size combination captures unob-

served product characteristics (e.g, quality). Therefore, the correlation between price and

unobserved characteristics are accounted for and does not need instruments. I also tried

including SKU dummies, for the purpose of fully accounting for unobserved characteristics

of each product, but regression results suggest that model fits are bad due to dimensionality.

Another potential correlation between price and unobserved characteristics may result from

7In-store display, as a kind of merchandising activity, is included in estimating consumer preferences,
while is not treated as a choice variable in firm’s problem. The merchandising activities though out this
paper refer to pricing and promotions only.
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demand shocks, if the industry observes the shocks and account for them in pricing. In this

model I assume out these time-specific shocks, as in Ho et al. (1998) and Bell et al. (1998).

Let xst denote merchandising decision that consists of pricing and promotion decisions

for all products, xst = (p′st,m
′
st)
′, where pst and mst are vectors of price and promotion

variables, respectively. The store merchandising utility is defined as the total category

utility summing across all categories, given by

ust(xst) =
∑
c∈C

vsct, (2.4)

where C denotes the set of product categories. The simple additive format of ust makes the

inclusion of category intrinsic utility clear: χc accounts for different ”weights” of categories

in store choice decision making. A promoted price of an item from a category with higher

intrinsic utility is more powerful in attracting customer.

Store Choice

Prior to a shopping trip, a shopper evaluates the expected merchandising utility by form-

ing an expected optimal purchase bundle at s, comprised of the optimal product of each

category. The expected merchandising utility and the optimal bundle depends on the shop-

per’s price knowledge. It is assumed that a shopper passively receives promotion ads from

stores, and that the probability of receiving an ad from a specific store is independent across

stores. Let φs denote the time-invariant probability of receiving promotion ads from store

s ∈ {1, ..., S}. Let a dummy vector adht = (adh1t, ..., adhst, ..., adhSt)
′ denote the status of

ad exposure of shopper h in t, prob(adhst = 1) = φs. The shopper has some prior distribu-

tion of merchandising decision, Fs(xs). If she didn’t receive promotion information prior to

shopping from store s (uninformed, adhst = 0), she maintains the prior price information

and forms expectation on product choices according to Fs(xs). If she received promo-

tion information from s (informed, adhst = 1), then she updates price knowledge about

promoted products and perceives that the prices of the un-promoted items follow a distri-

bution conditional on promotion information, Fst(xst|xpromst ), where the superscript prom

denotes promoted items. The expected merchandising utilities at s, ūst(adhst), perceived
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by uninformed and informed shoppers, respectively, are given by

ūhst(adhst = 0) =

∫
us(xs)dFs(xs) ≡ ūs,

ūhst(adhst = 1) =

∫
ust(xst)dFst(xst|xpromst ).

(2.5)

For an uninformed shopper, as xs is integrated out, the expected merchandising utility is

time-invariant; while for an informed shopper, the expected merchandising utility depends

on information about promoted items because uncertainties about un-promoted items are

integrated out.

Based on available price information, a shopper chooses a store to maximize shopping

utility. Conditional on store characteristics, the indirect utility function of shopper h at

store s in time t takes the form:

Uhst(adhst) = λs + ιūhst(adhst) + κdisths + ζhst, (2.6)

where λs is the average store valuation that accounts for factors such as services and shop-

ping environment; Euhst is the expected merchandising attractiveness at s that depends on

ad exposure adsht; disths is the home-store distance of shopper h that allows the model to

include geographic information specific to individual-store combination; ζhst is an idiosyn-

cratic shock assumed type I extreme value distributed, i.i.d. across individuals, stores, and

time; ι and κ are parameters associated with expected store merchandising attractiveness

and shopping distance, respectively. The deterministic utility of the outside option, no

shopping, is normalized to zero. Following the discrete choice literature, shopper h will

visit store s with probability

ηhst(xst,x−st, adht, disths) =
exp
(
λs + ιūhst(adhst) + κdisths

)
1 +

∑
q∈{1,...,S} exp

(
λq + ιūhqt(adhqt) + κdisthq

) . (2.7)

Let ρst be the vector of product choice probabilities, and mcst be the vector of wholesale

prices, stacked across all products. If the cdf of ad exposure is Ω(adht) and home-store

distance follows a distribution D(disths), the market share of s is

η̄st(xst,x−st) =

∫ ∫
ηhst(xst,x−st, adht, disths)dΩ(adht)dD(disths). (2.8)

Let MS be the market size. The sales revenue, that is, the revenue with wholesale costs
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subtracted but excluding promotion costs and fixed cost, is the following:

Rst(xst,x−st) = MS × η̄st(xst,x−st)× ρst(xst)′(pst −mcst). (2.9)

2.3.2 Store Behavior

Retail stores simultaneously make pricing and promotion decisions for all products carried

to maximize the expected store-level profit given their expectations on rivals’ decisions.

The information set at the time of decision is denoted Hs, where Hs ∈ Hs. The strategy

played by s is a mapping xs = σs : Hs → Xs where Xs is the action set of s. The

information set of the store agent include the time-varying wholesale prices and available

products on shelf (items may be out of stock). As noted above, the action of s can be

partitioned into a pricing decision and a promotion decision, xs = (p′s,m
′
s)
′. Since this

paper is focused on promotion activity, for practical reasons the decisions made by store

agent include pricing and promotion only. My dataset also contains in-store display, another

kind of merchandising decision made by store manager. Realizing that this activity will have

an impact on demand, I assume that it is taken as given by the store agent. Thus the in-store

display decision is also in the information set Hs.

I impose a restriction on promoted price for the coordination of pricing and promotion

decisions, in the sense that only discounted prices are promoted. Suppose that for each item

jc there is an interval from which its price will be chosen, [p
s,jc
, ps,jc ], and an interval from

which a promoted price will be chosen, [p
s,jc
, p̂s,jc ]. The coordination of pricing and promo-

tion implies p̂s,jc < ps,jc . This restriction is grounded on the consistent belief about prices

given by the real shopping experience that promoted prices are expected to be discounted.

For the ease of notation I drop the subscript for time t. Let πs(xs,x−s) be the profit

of s. The firm’s problem is to maximize the expected profit E[πs(xs,x−s)|Hs], by making

pricing and promotion decisions subject to the coordination between them, given its belief
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on rivals’ actions. Formally,

xs ∈ arg maxE [πs(xs,x−s)|Hs]

subject to

ms,jc = 0 or 1,

p
s,jc
≤ ps,jc ≤ ps,jc , if ms,jc = 0,

p
s,jc
≤ ps,jc ≤ p̂s,jc , if ms,jc = 1, ∀jc ∈ Jc, c ∈ C.

(2.10)

I assume a unit promotional cost θs will incur for each promoted product. The expected

profit is the expected revenue minus the total wholesale costs, promotion costs, and fixed

cost:

E [πs(xs,x−s)|Hs] = E [Rs(xs,x−s)|Hs]− θs · (1
′
ms)− FCs, (2.11)

where E [Rs(xs,x−s)|Hs] is the expected revenue with wholesale costs subtracted; Rs(xs,x−s)

is given by (2.9); 1
′
ms represents the total number of promotions; and FCs is fixed cost.

There can be prediction error due to randomness in observed profits that is not known

at the time decisions are made. For example, store s’s expectation on x−s would differ

from the outcome. The expectation error is denoted by errs = Rs−E[Rs|Hs], and is mean

zero conditional on the information set by construction, i.e., E[errs|Hs] = 0. Since agent’s

strategy xs = σs(Hs) is a function of Hs but errs 6∈ Hs, es is mean independent of xs. This

means that agents are generally right about their decisions.

The firm’s problem can be decomposed into a problem of discrete promotion decision,

and a sub-problem of pricing conditional on promotion decision. In the sub-problem, assume

the existence of an interior solution, p∗s(ms). From (2.9) and (2.11), the first-order condition

with respect to ps is

∂

∂ps
E[πs(ps,ms,x−s)|Hs] =

∂

∂ps
E[Rs(ps,ms,x−s)|Hs]

= 0

=E

[
∂η̄s
∂ps
· ρ′s(ps −mcs) + η̄s ·

[
∂ρs
∂ps

]
(ps −mcs) + η̄s · ρs

∣∣∣∣∣Hs

]∣∣∣∣∣
ps=p∗s(ms)

.

(2.12)

Thus the original problem becomes a promotion decision making problem with an implicit

price variable satisfying (2.12). A necessary equilibrium condition is that the strategy played
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by the agent is at least as good as any alternative. That is, the optimal choice of ms satisfies

(omitting the implicit price variable)

E [πs(ms,x−s)|Hs] ≥ E
[
πs(m

′
s,x−s)|Hs

]
, (2.13)

where m
′
s 6= ms. From equation (2.9), this implies the following condition:

E
[
∆Rs(ms,m

′
s,x−s)|Hs

]
≡ E [Rs(ms,x−s)|Hs]− E

[
Rs(m

′
s,x−s)|Hs

]
≥ θs · 1

′
(ms −m

′
s).

(2.14)

The unit promotion cost, θs, can be estimated by computing the difference between the

current expected revenue and counterfactual expected revenues generated by alternative

promotion decisions. To recover counterfactual expected revenue E
[
Rs(m

′
s, ·)|Hs

]
, a price

vector associated with the alternative promotion decision will be re-optimized according to

the first-order condition.

2.4 Data

To carry out the empirical investigation, I use a dataset of individual scanner panel data

across 24 product categories originally obtained from IRi (a market research company). The

data was drawn from the metro area of a large U.S. city, and covers a 104-week period from

June 1991 to June 1993. The market has 548 households of total population 1267, and five

retail stores. The dataset contains two components, household level data and store level

data. The household level data includes records of a total of 81,105 unique shopping trips

over the period. For each household in a given week, it provides information of whether

the household shops, which store is visited if shop, which items are purchased, and how

much is paid. The store-level component contains a history of merchandising activities,

including prices, promotions, and in-store displays. The dataset contains proxy measures

for the distance to each store for each of the 548 households, using the households’ and

stores’ five-digit zip codes. Since it is difficult to isolate the market of the five competing

stores in the extent of geographical area or customer identity, I approximate market size,

MS, by comparing the total quantities sold by the stores to the quantities purchased by the

tracked households. For each category, the average consumption rate implied by the tracked
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purchase histories in the two-year period is computed. Then the ratio between tracked

households’ consumption rate and stores’ sell rate, averaging over categories, derives the

market size. The market size is estimated to be 54,535 households.

Two of the five stores in this market explicitly advertise as operating an ”every-day-low-

price”(EDLP) format. The third store uses a ”high-price-low-price” (HiLo) strategy with

frequent price adjustments. The remaining two stores are high tier(HT) retailers from the

same chain. The five stores are denoted EDLP1, EDLP2, HiLo, HT1, and HT2, respectively.

Figure 2.1 shows the geographical location of stores that was first published in Bell et al.

(1998). The summary statistics of pricing and promotions of the stores, including average

price levels, the average frequency of promotions, price cuts, and deep price cuts, are shown

in Table 2.1. Market share refers to the proportion of store visits at a specific store, as

opposed to the ”usual” market share that is computed using quantities sold. The average

price level is indicated by average price index, computed as the ratio between period-t price

of a product and its regular price, weighted by market share. A deep price refers to a price

reduction at least 15% lower than regular price. The statistics are consistent with stores’

price positioning: EDLP stores have lower prices and HiLo store offers more (deep) price

cuts and promotions, whereas HT stores provide less frequent promotions and higher price

levels.

In this model, since each SKU is treated as a separate product and the total number

of products is very large (6364), the firm’s profit maximizing problem becomes extremely

complex. For this reason, a special effort was made to select categories and products.

First, I select categories that are frequently bought given information on quantity sold

while keeping some variety. 18 categories out of 24 were processed for the purpose of this

study: Bacon, Butter, Breakfast Cereal, Toothpaste, Ground Coffee, Crackers, Laundry

Detergent, Eggs, Hot Dogs, Ice Cream, Peanuts, Frozen Pizza, Potato Chip, Soap, Tissue

Paper, Paper Towel, and Yogurt. Second, for each selected category, I eliminate items with

tiny market share 8 and items that are not carried by all five stores. These restrictions

reduce the number of items within each category from a range of 47 to 729 to a smaller

8Depending on category, I set the threshold of ”tiny” market share from 0.5 to 2 percent, balancing
between the efficiency of logit regression and product variety.
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range of 16 to 38, and the total number of product from 6364 to 474.

Statistics related to shopping trips are shown in the bottom half of Table 2.1. On

average, shoppers visit grocery stores 1.56 time a week, spending 37 dollars per visit. The

standard deviation of basket spending is big, indicating that the basket spending is skewed

largely to the right. The mean home-store distance is 2.7 miles, while the mean of the actual

travel distance is only 1.47 miles, implying the tendency to choose a closer store. Realizing

that households may visit multiple stores in a given week, I keep the observation with the

greatest amount of transaction in that week and removes others, in order to be compatible

with logit model. Smaller transactions are treated as unplanned or urgent purchases.

2.5 Estimation

The goal of estimation is to find the promotion cost parameter, θs, s ∈ {1, ..., S}. This re-

quires parameter estimates of product preference, store preference, and the wholesale prices

that will be used to recover counterfactual profits. My Estimation of the behavioral model

will implement three major methodologies. First, the demand system will be estimated

using standard logit regressions and simulation method.9 Second, the wholesale costs are

estimated based on the firm’s first-order condition with observed merchandising decisions.

Third, the promotional cost parameters are estimated using moment inequality method.

2.5.1 Demand

In stage one, I estimate parameters related to product choice within each category (Θ1 =

{χc, αc, β1,c, β2,c, γc, all c ∈ C}) conditional on observed within-category purchase behavior

using logit regressions, category by category. αc, β1,c, β2,c, γc can be identified from market

shares. The parameter of category-intrinsic utility, χc, is identified from purchase incidence,

as a bigger χc implies a higher probability of choosing any product from the category.

Therefore, the outside choice here refers to the behavior that a shopper arrives at a store

but makes no purchase from that category.

9Bell et al. (1998) and I use the same data set to estimate store choice. The primary difference is that
their model does not account for price advertising thus consumers know no more than a prior distribution
of prices.
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In stage two, parameters related to store choices (Θ2 = (κ, ι, λ)) and ad exposure (φ) are

jointly estimated by maximizing the likelihood of the observed store choices given stage one

estimates, Θ̂1. The cdf of prior knowledge, F̂s(ps,ms), is approximated by the empirical

distribution; the updated price knowledge, F̂st(xst|xpromst ), is similar except xpromst are equal

to the promoted prices in that period. The distribution of ad exposure status Ω(ad) remains

to be empirically specified. Let AD denote the set of all possible exposure statuses. There

are 2S mutually different statuses in the set. Assuming shoppers are independently exposed

to ads sent by different stores, the probability of being in status ad = (ad1, ..., adS)′ is

prob(ad) =
∏
s

ads · φs + (1− ads)(1− φs). (2.15)

The log-likelihood function of store choice is

l(φ,Θ1,Θ2) =
∑
t

∑
h

∑
ad∈AD

prob(ad) · log

(∑
s

ηhst(xt, ad, disths; Θ1,Θ2) · storehst

)
,

(2.16)

where storehst equals 1 if store s is visited by h in t, and 0 otherwise. Given the para-

meter estimates of within-category choice preference, Θ̂1, the identified φ and Θ2 are the

parameters that jointly maximize the store-choice likelihood:

(φ,Θ2) ∈ arg max l(φ, Θ̂1,Θ2). (2.17)

The store choice likelihood needs to be constructed by integrating over Fs, as store choice

probability depends on price knowledge (see equations (2.5) and (2.7)). Practically, I com-

pute this likelihood function using simulation by randomly drawing prices from F̂s(xs) or

F̂st(xst|xpromst ).

Besides jointly estimating φ and Θ2 = (λ, ι, κ), I estimate Θ2 under the following two

alternative assumptions to see how store choice estimates may be biased when restrictions

are imposed to shoppers’ price knowledge: (1) shoppers have perfect knowledge about

promotion and price information (φs = 1, all s); (2) shoppers have no better knowledge

than the prior distribution (φs = 0, all s). Under (1), the regressors are a constant, disths,

and ust that is constructed with observed merchandising decisions and Θ̂1. Under (2), since

there is no time variation in store utility, the regressors include a constant, disths, and

expected merchandising utility ūs constructed by simulation.
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2.5.2 Supply

Wholesale Costs

To recover the counterfactual profits under alternative promotion decisions, the wholesale

cost vector (mcs) must be known. However, I do not observe wholesale prices or other

data that can be used to approximate this variable. Following the empirical I.O. literature

(Porter 1983; Bresnahan 1987; Nevo 2001), I estimate mcs using the first-order condition

in the firm’s problem conditional on the observed merchandising decisions. Suppose the

wholesale cost vector takes the form:

mcst = mcs + τst, (2.18)

where mcs is the vector of mean wholesale cost vector to be estimated, and τst is a vector of

unobservable (to the econometrician) disturbances but is accounted for by the store, satisfy-

ing E[τst] = 0.10 Sources of this cost disturbance may include variations in manufacturer’s

price, delivery cost, and packing cost. The first-order condition in equation (2.12) implies

mcs = pst + E

[ [
∂η̄st
∂pst

· ρst + η̄st ·
[
∂ρst
∂pst

]]−1

(η̄st · ρst)

∣∣∣∣∣Hst

]
− τst. (2.19)

The mean wholesale cost vector mcs is estimated by taking the average of (2.19) using the

observed prices and product choice probabilities, and demand estimates. The numerical

procedure includes integrating over the distributions of adst, disths, and F−s(p−s,m−s).

Market Share

Using the discrete distribution of ad exposure status, the market share in (2.8) becomes

η̄st(xst,x−st, φ) =

∫ ∑
ad∈AD

prob(ad)ηsht(xst,x−st, ad, disths)dD(disths). (2.20)

Promotion Decisions

The goal in this section is to estimate the unit cost of promotion, θm, using equilibrium

revenue and counterfactual revenue generated by alternative promotion decision m′st. I

10Ishii (2011) uses this form to estimate the mean marginal cost.
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use moment inequality method that allows me to circumvent the dimensionality issue and

preserve the discrete nature of the variable. My estimation methods draws intensively

from Pakes (2010) and Pakes et al. (2011) and are similar to applications including Ho

(2009), Ishii (2011), and Katz (2007). Identification of the parameters is based on the

necessary condition for a Bayes-Nash equilibrium that a store’s expected profits from its

observed choice are greater than its expected profits from alternative choices. Since in the

counterfactual the manager makes different decisions, the counterfactual profits contains

different promotional costs. A necessary condition for profit maximization is that each

store’s expected profit from choosing actual ps and ms is at least as good as its expected

profit from alternative choices. The difference between the actual and the counterfactual

profits provides the boundaries of promotional costs. The large size of the product space

makes it possible to construct a sufficient number of alternative promotion decisions. Thus,

I am able to estimate the cost for each store without much efficiency loss.

Following the literature of moment inequality approach, the cost function for promotion

cost takes the form:

θst = θs + θ̃st, (2.21)

where θs is the mean promotion cost of store s to be estimated; θ̃st captures cost variations

known to the store but not to the econometrician, and
∑
θ̃st = 0. The promotion cost may

vary due to variations in labor cost of the marketing team, advertising contracting between

store and media, etc. The inequality condition in (2.14) implies that

E
[
∆Rst(mst,m

′
st,x−st)|Hst

]
≥ (θs + θ̃st) · (1

′
(mst −m

′
st)). (2.22)

I consider small deviations from the observed promotions as alternatives, that is, to alter

the promotion decision of only one item, so that 1′(mst −m
′
st) = ±1. This implies two

classes of counterfactuals: to drop a promotion of a promoted item, and to add a promotion

to an unpromoted item, keeping promotion decisions of all other items unchanged. Note

that in the counterfactual, the deviated item will be repriced subject to the discount price

constraint. I discuss the two classes of counterfactuals as follows.

Counterfactual 1. Drop the promotion of item jc if it is currently promoted, i.e,

m
′
st = mst − est,jc with mst,jc = 1, where est,jc is a vector of zeros of the same
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length as m except the jthc element equals one. Dropping off the promotion saves the

promotional cost but results in a smaller expected revenue as it reduces the store’s

attractiveness. The equilibrium condition requires that the cost saved must not exceed

the decrease in expected revenue:

E
[
∆Rst(mst,m

′
st,m−st)|Hst

]
≥ θs + θ̃st. (2.23)

Counterfactual 2. Add a promotion to a non-promoted item, so m
′′
st = mst + est,jc

with mst,jc = 0. In equilibrium the additional cost will not cover the increment in

expected revenue resulting from the extra promotion:

E
[
∆Rst(mst,m

′′
st,m−st)|Hst

]
≥ −(θs + θ̃st). (2.24)

Suppose in observation t, the number of products on promotion is Jst,1 and the number

of products not promoted is Jst,2. The sample analogue of inequalities (2.23) and (2.24) are

θs ≤
1

T

T∑
t=1

1

Jst,1

∑
m′s

∆Rst(mst,m
′
st,m−st) ≡ UBs,

θs ≥ −
1

T

T∑
t=1

1

Jst,2

∑
m′′s

∆Rst(mst,m
′′
st,m−st) ≡ LBs.

(2.25)

The cost disturbance θ̃st on the right hand side of (2.23) and (2.24) are averaged out: for

example, the right hand side of (2.23) becomes

1

T

T∑
t=1

1

Jst,1

∑
m′s

(θs + θ̃st)

=
1

T

T∑
t=1

1

Jst,1
Jst,1 × (θs + θ̃st)

=
1

T

T∑
t=1

(θs + θ̃st)

=θs +
1

T

T∑
t=1

θ̃s

=θs.
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Thus LBs and UBs are consistent estimates of the bounds. Confidence intervals of (1− α)

level are constructed as the way in Pakes et al. (2011). The interval is the set of parameters

that satisfy the sample moment restrictions with probability (1− α).

Computational Issues

To recover counterfactual expected revenues and predict market outcome under alternative

behaviors, I need to solve for the optimal promotion and pricing decisions. Unfortunately,

realizing that the number of items supermarket carries is of thousands, the dimensionality

issue as well as the discrete nature of promotion decision make it practically impossible to

jointly solve for p and m using standard algorithms: 11 first, searching for the optimal p in

the subproblem of firm is itself time-exhausting and inefficient; second, searching for m is of

complexity #J2 if the number of product items is #J . I use principal component technique

and factor analysis to deal with the first issue, and an ”ordered” promotion decision rule

for the second problem.

The number of product is greatly reduced using the method discussed in section 2.4.

However, jointly solving for 474 prices in the continuous space is a big challenge. I use prin-

cipal component technique compresses the large dimensional variable into a vector of much

smaller space, solve the profit optimization problem in the reduced space, and transform

the reduced variable back into the space of prices using factor analysis techniques. The

principal component analysis on price variations shows that the first 12 components are

able to account for 80 percent of the overall price variations in the data. I project the price

vector into the reduced space using linear transformation consists of the first 12 singular

vectors (the loading coefficients), so that the search of optimal price is in the space of 12

dimensions instead of 474. Once the shorter optimal price vector is found, by solving a

simple restricted linear programming problem, the real price vector is recovered using the

second linear transformation (obtained using factor analysis) into the original space with

474 dimensions.

Next, I reduce the number of products in the choice set of promotion. Data shows that

11Heuristic algorithms such as genetic algorithm are available in solving the mixed-integer optimization
problem, but they tend to be time-consuming when the number of integer variables to solve is large.
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among the 474 products considered, a considerable amount of them are rarely promoted.

Unfortunately, after removing these products from the choice set, the number of alternatives

is still large. I compress the choice set by selecting items that are relatively frequently pro-

moted (at least two times standard variance higher than the mean frequency of promotion).

There are 52 products in this set.

For promotion decision making, I use an algorithm for searching for the optimal m,

aiming to effectively reduce time consumption. Suppose the number of items considered

for promotion is #J . Given the observed actions of rivals, choose the optimal one item for

promotion such that the greatest profit is generated. Then, conditional on the first promoted

item, choose the next optimal item for promotion, and record the increase (decrease) in

profit. Iterate this procedure until the increase in profit difference between the nth and the

(n + 1)th promotion is less than the unit promotion cost (assuming discrete convexity of

profit function). The optimization of price vector, using the method described above, is

nested in each iteration. The computational complexity is #J in the first iteration, #J − 1

in the second iteration, and so on. Therefore, the algorithm largely reduces computational

complexity from 2#J , if search over all alternatives in the choice set, to at most #J(#J +

1)/2.

Practically, I set the bounds in the firm’s problem using empirically observed measures.

For un-promoted products, the bounds p
s,jc

and ps,jc are respectively set to be the observed

minimum price, and the most frequently observed price (the regular price). The upper

bound of a promoted price, p̂s,jc , is set to be 90 percent of regular price.

2.5.3 A Summary of Estimation Procedures

To better summarize my empirical implementation, I provide a roadmap to what needs to

be accomplished in this section:

1. For each product category, estimate the parameters associated with within-category

product choice given observed purchases, Θ1 = {χc, αc, β1,c, β2,c, γc, all c ∈ C}. This

is stage one demand estimation;

2. Using step-one estimates Θ̂1, jointly estimate parameters associated with store choice
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Θ2 = {κ, ι, λ} and ads exposure φ. This is stage two demand estimation;

3. Using Θ̂1, Θ̂2 and φ̂, estimate wholesale cost vector mcs;

4. Construct actual revenue R(m, ·) and counterfactual revenue R(m′, ·) at the observed

firm choices;

5. Estimate promotion cost θs by finding the difference between R(m, ·) and R(m′, ·).

2.6 Results

2.6.1 Within-category Choice

I estimate demand in order to predict sales and profits generated by alternative pricing

decisions. Table 2.2 displays the results of stage-1 demand estimation by regressing prod-

uct choice probabilities on observable marketing activities and product characteristics. The

regression in column i includes prices, display and feature dummies only. Column ii also

includes brand and size dummies. All price coefficients are of negative sign, and feature and

display dummies affect utility positively. The estimate variances are shown in parenthesis.

All estimates are significant at the 5% level. In column ii, once brands and package sizes

are controlled, the price coefficients increase in absolute value (except Butter and Eggs),

indicating that the unobserved characteristics correlate with price and that failure to ac-

count for the correlation results in biased estimates of price parameters. This parallels the

demand estimation results in Nevo (2001) and Hendel and Nevo (2006) where the inclusion

of brand dummies, which fully accounts for the mean unobserved characteristics, leads to

more negative coefficients of price. As for Butter and Eggs, the reason that price coefficients

do not turn more negative when brand and size dummies are included might be attributed

to the nature of the two categories: products are much less differentiated and the differences

in unobserved characteristics are small.

I use intercept χc to measure the intrinsic category utility. They also serve as ”weights”,

in forming store attractiveness - frequently bought categories weigh more in store choice

consideration. They cannot be identified from observed purchases only, as it’s common for

all products of the same category. They are identified using both observed purchases and
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outside-choice observations - shoppers who enter the store but didn’t purchase the category.

The estimates of χc varies largely across categories. A small value of χc implies the purchase

incidence of the category is low.

To see the effect of price promotion in driving sales, I compute the percentage change

in choice probability to simultaneous promotion and a price cut, averaging across prod-

ucts. The price cut takes the value of 15 percent of its regular price (deep price cut).The

percentage change of choice probability is computed as follows:

∆ρjc
ρjc

=
1

ρjc
(
∂ρjc
∂pjc

× 0.15 +
∆ρjc
∆mjc

) = (−αc × 0.15 + βc,1)(1− ρjc).

Table 2.3 provides the maximum, the mean, and the standard deviation of the percentage

change in market share to promoted price cuts for each category at the five stores. The

results show that promoted price cuts are quite effective in driving sales: on average they

cause 1 to 8 percent increase in market shares of the promoted item; for Detergents, Hot

Dogs, Tissue Papers, and Yogurt, they can cause increase by one fourth to one third.

Promotion with deep price cuts are considerably effective in these categories, partly because

of the large number of items considered: since the percentage change is greater when market

share is smaller, promoted price cut is more effective in categories with larger variety (Hot

Dogs, Yogurt), while in categories with much fewer number of products and less product

differentiations, like in Butter and Sugar, this effect is smaller. Another factor is the value

of preference estimates that determine price and promotion sensitivities. Categories with

higher αc and/or βc,a (Detergent and Tissue Paper) may also have remarkable quantity

effect.

2.6.2 Store Choice

Parameters of ad exposure probabilities and coefficients associated with store preferences

(φ, λ, κ, ι) are jointly estimated by maximizing the likelihood of observed store choices

using simulation and numerical search. The simulation here is to compute the store choice

likelihood as discussed in section 2.5.1, and numerical search is conducted to find the para-

meter value that maximizes the simulated log-likelihood. The process requires the expected

marketing attractiveness constructed using the estimates obtained from stage-1 estimation,
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(αc, β1,c, β2,c, χc). The results are displayed in the first column of Table 2.4. Their variances

are obtained by bootstrapping and are shown in parentheses. The estimated ad exposure

probabilities φ are all significant at the 5% level, ranging from 0.03 to 0.19. As for the sub-

stitution pattern between merchandising attractiveness and travel distance, my estimates

imply that a shopper would be indifferent between enjoying an additional promotion with

a 15 percent price cut and travelling another 0.008 to 0.023 miles.

Besides jointly estimating φ and other store choice parameters, I estimate (λ, ι, κ) with

restrictions φ = 0 and φ = 1, respectively. The results are displayed in the second and

the third columns of Table 2.4. When restrictions on φ are imposed, I still obtain negative

distance coefficients, and the marketing attractiveness enters store attractiveness positively.

As expected, the parameter associated with sensitivity to us, ι, is underestimated (overes-

timated) when restriction of φ = 1 (φ = 0) is imposed. However, how estimate of distance

sensitivity is biased is more complicated. If a distant store offers frequent promotions which

result in a large variation in us, restriction of φ = 0 would underestimate κ, as the store

visits actually attracted by promotion information is explained by a smaller travel sensitiv-

ity. If frequent promotions are offered by relatively nearby stores, κ would be overestimated

when imposing φ = 0. The biased estimates under restriction of φ = 0 would imply a

greater sensitivity to travel distance. The results indicate that the first scenario fits the

subjects invested: realizing the disadvantage of its location, the distant store decides to

offer a great number of promotions to avoid being squeezed out of the market. As the

bottom row of Table 2.4 shows, these two hypotheses are rejected by likelihood ratio tests.

The last column of the table contains the estimates with alternative hypothesis that for all

s, φs = φ, to test whether shoppers have the same exposure probability to all stores. The

likelihood ratio test rejects the alternative hypothesis, which may imply that the ”reach”

of promotion advertising differs across stores, and/or shoppers have preference over stores’

ads.

To measure how effective a price promotion is in driving store visits, and, in stealing

rivals’ business, I simulate the percentage changes in store choice probabilities, when one

of the five stores offers a promoted 15 percent price cut. The percentage changes in store
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choice probabilities are computed using simulation as

∆ηs
ηs

=
1

ηs
(
∂ηs
∂pjc

× 0.15 +
∆ηs

∆mjc

) =

∫ ∫ ∫
ι× ρjc(−αc × 0.15 + βc,1)(1− ηs)× dFdΩdD,

∆ηq
ηq

= − 1

ηs
(
∂ηs
∂pjc

× 0.15 +
∆ηs

∆mjc

) =

∫ ∫ ∫
−ι× ρjc(−αc × 0.15 + βc,1)× ηs × dFdΩdD,

where ∆ηs
ηs

is the percentage change in self market share;
∆ηq
ηq

is the percentage change

in rival’s market share when the promotion is offered by s. The changes are averaged

across products. I first compute the current market share implied by the estimates, then

simulate the percentage changes using the estimated store choice parameters. The results

are displayed in Table 2.5. They show that price promotion is able to drive 0.12 to 0.47

percent increase in self store visit probability, and cause 0.02 to 0.52 percent decrease in

rivals’ market share. These numbers imply 7 to 42 extra store visits generated by a promoted

price cut, with 2 to 13 customers stole from each rival store, computed using the estimated

market size.

The parameter of ad exposure φ plays a crucial role in stores competition: a store is

able to attract a large amount of additional customers, either switched from rivals stores

or non-shopping, if a good portion of them is able to respond to promotion information.

As the results show, the magnitude of store choice semi-elasticities are closely related to

the value of ad exposure probability. The self store choice probability is the most elastic

at EDLP2 for which ad exposure is the greatest, and least at HT1 for which ad coverage is

the smallest. According to standard logit analysis where the probability of being informed

is assumed one, the elasticity of the choice alternative with the lowest choice probability

(ηs) is the highest. However, the semi elasticity in here depends not only on its market

share but also the proportion of informed consumers (φs), as store choice probabilities of

the uninformed consumers won’t change.

2.6.3 Promotion Costs

The promotional costs are estimated by comparing the actual profits generated by the actual

merchandising decisions, and the alternative profits led by small deviations in m. For the

store-side observations that spans over 104 weeks, the number of feature promotions varies
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quite a bit across stores and weeks (from 15 to 136), as does the total number of items

on the shelf (1,399 to 2,356). The number of deviations is computed based on these two

numbers at each store in each week.

Table 2.6 displays the estimates of promotion cost (per promotion per week) at each of

the five stores. The bound estimates of this cost ranges from about ten to twenty dollars

or higher, varying largely across stores. To check if the estimates are reasonable in size,

I compute stores’ average total weekly and yearly expenditure on promotion, given the

observed frequency of promotions (Table 2.1), and compare them with reported data. The

lower bound estimates imply that for the store investigated in this study, promotions would

at least cost $307 to $722 per week, or $15,596 to $37,540 per year; the upper bound for that

spending is $837 to $1,634 per week, or $23,940 to $85,005 per year (in 1993 dollars). The

national average yearly ad spending per supermarket in 1993 is estimated to be $13,324.12

Thus my estimates are plausible in magnitude though higher than the national average.

On the one hand, there are reasons to believe that the promotion cost in the metropolitan

area where the data is collected from is higher than the national average. On the other

hand, as equation (2.9) shows, the magnitudes of bound estimates are closely related to

the approximated market size, which serves as a scalar in the process of estimation. Since

market size is approximated by the average consumption rate of observed product categories

of the tracked households, the bound estimates of promotion cost could be improved if better

knowledge about this parameter is provided. For example, a larger household sample size

and a broader range of categories.

The magnitude of estimated bounds imply a substantial dispersion of promotional cost

across stores. The cost is around ten dollars at EDLP1 with the smallest lower bound, while

it could be as high as twenty dollars or higher at EDLP2 and HiLo. The 95% confidence

intervals (bound estimates obtained when 95% of the inequalities are satisfied) imply wider

ranges of this cost. The wide dispersion in promotion costs may suggest the dispersion in

the efficiency of the marketing division at different stores.

12This spending is obtained using the total U.S. supermarket ad spending in 2012 (about $800 million)
divided by the number of supermarkets (37,053) and deflated back to 1993.
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2.7 Welfare

2.7.1 Market Efficiency of the Current Equilibrium

Although theories do not provide unambiguous predictions on welfare, two effects of addi-

tional price advertising in the neighbourhood of private optimum on social gain are well

understood; The first is the demand-creating effect, as price advertising reduces price uncer-

tainty and would therefore motivates purchase. But since the firm that provides additional

advertising is unable to appropriate all of the resulting social surplus (if the ad motivates

purchase), the private advertising level tends to be socially inadequate. The second is the

business-stealing effect. The firm is motivated by the profit margin that it would enjoy on

a ”stolen” consumer, while social welfare is not impacted by the redistribution of margins

from one firm to another, which suggests that advertising may be excessive (Tirole 1988).

Therefore, whether the private advertising level, or promotion intensity in the supermarket

retail industry, is too much or too little depends on which of the two effects dominates.

Advertising efficiency in the supermarket industry is complicated by a number of facts.

First, additional advertising is likely to create new demand if consumers are not aware of

availability of products and ads announces both product availability and price as in models

by , Bagwell (2007), Butters (1977), Grossman and Shapiro (1984), and Stegeman (1991). In

the supermarket industry, however, product availabilities are typically well known, which

limits the demand-creating effect. New demand could be created if (1) the additional

advertising reaches a consumer who wouldn’t have done any shopping otherwise, but now

decides to visit tht store, or (2) it reaches a remote consumer who would have shopped at

a rival store and who now purchase a bigger bundle. Second, social surplus created will be

eroded by increased transportation cost, in either case above: in (1), it’s the transportation

cost of the whole shopping trip for the new shopper; in (2), it’s the cost of the extra travel

distance for the remote consumer. Third, the business-stealing externality among competing

supermarkets is greater than its counterpart in the single-product scenario. Due to basket

shopping behavior, the firm undertaking the advertising is motivated by the profit margin

of a product bundle, not the margin of the promoted product only.

In sum, market efficiency in this industry is complex. It is determined by the magnitudes
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of the two opposite effects that are complicated by transportation cost of shopping and

basket shopping behavior. I examine this problem by simulating counterfactual outcomes

and computing surpluses following small deviations to private promotion levels. If providing

an additional promotion improves social welfare, then the private level is socially inadequate,

otherwise it is excessive.

Welfare Measures

Social welfare for the retail market is measured as the sum of total producer surplus and

total consumer surplus, induced by store decisions x = (x1, ...,xs, ...,xS):

W (x) =
∑
s

PSs(x) +
∑
h

CSh(x) = PS(x) + CS(x), (2.26)

where individual producer surplus PSs is the expected profit excluding fixed cost, and

individual consumer surplus CSh is the expected net gain of a shopping trip, both measured

in dollars. All surpluses are computed using the observed choices averaging across time.

The individual producer surplus PSst is measured as the expected payoff (excluding

fixed cost) of s in period t induced by strategy portfolio xt = (x1t, ...,xst, ...,xSt). PSst is

computed using parameter estimates and optimal pricing and promotion decisions, as the

following:

PSst(x) =
MS

H
×
∑
h

∑
adht∈AD

p̂rob(adht) · η̂hst(xt, adht, disths) · ρ̂′st(pst − m̂cs)− θ̂s · (1′mst).

(2.27)

Consumer surplus is the expected gain from a shopping trip. The utility from a shopping

trip must be rescaled in a way such that the gain is measured in dollars. First I compute

the surplus generated from purchase,

CSpurchasest =
∑
c∈C

1

|α̂c|
v̂sct,

where the inverse of α̂c is used to transform utility to purchase surplus measured in dollars.

Then I use a scaler, ᾱ, to linearly transform the expected utility gain from a shopping trip

to a dollar-measured surplus. ᾱ is the ratio between expected merchandising utility and



34

surplus from purchase, averaging across time and stores:

|ᾱ| = 1

S

1

T

∑
s

∑
t

̂̄ust
CSpurchasest

.

Finally, consumer surplus is given by

CSht(xt) =
1

|ᾱ|
1

|ι̂|
log

(
1 +

∑
s

exp
(
λ̂s + ι̂̂̄uhst(adhst) + κ̂disths

))
. (2.28)

Simulation Results of Surpluses

For the numerical simulation, first of all, I compute surpluses of the current equilibrium as

the base case using observed store behavior and demand estimates. The results are displayed

in Table 2.7. Other market outcome variables are the probability of non-shopping, and

variables that describe each store’s behavior and profit: the total number of promotions,

the average price index, store choice probability, and profit. The average price index is

computed as the average ratio between the optimal (profit-maximizing) price and its regular

price, weighted by within-category market share of each product.

To distinguish the two effects of price advertising, I compute surpluses including and

excluding transportation cost. A surplus excluding transportation cost represents the sur-

plus created by quantity, while a surplus including this cost represents the surplus after

transportation erosion. The results in Table 2.7 show that in the current equilibrium,

transportation erosion takes a considerable portion of consumer surplus that would have

been gained from purchase bundles. Consumer surplus is $898.58k excluding transporta-

tion cost and $722.19kincluding the cost. This implies about that 20 percent of consumer

surplus that would have been gained from purchase bas been spent on travelling.

Next, I simulate the change in surpluses (∆CS and ∆Ws), the change in expected rev-

enue of the deviating store ∆Rs, and the total change in rival stores’ revenue
∑

q∈−s ∆Rq,

when each of the five stores makes a hypothetical deviation by offering one more or less

promotion holding actions of other stores constant. The subscript s denotes the deviating

store. The prices under the deviation will be re-optimized and profits are calculated ac-

cordingly. Results are reported in Table 2.8, in which the top and bottom sections are for

one extra and one less promotion, respectively. In the top half of the table the diagonal
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numbers are positive and the non-diagonal numbers are negative, indicating that when the

deviating store offers one more promotion, it increases its own expected revenue and re-

duces the expected revenues of rival stores; and we see the reverse when the deviating store

withdraws the last promotion, as shown in the bottom half of the table. The intervals of

change in social surplus ∆W following the deviation in promotion are computed based on

the bounds of θs in Table 2.6. I find that ∆W < 0 (¿ 0) when one more (less) promotion is

offered by any of the stores.13 This means that the private promotion levels are inefficient

and are socially excessive: an additional promotion won’t expand quantity sufficiently to

offset the extra promotion cost, while withdrawing one will save the society more than the

loss from declined sales.

To see the result, let W ∗ denote the equilibrium welfare induced by the equilibrium

decisions x∗, and let W
′
s(x

′
) denote the welfare induced by a deviation, where s denotes the

deviating store. Now consider the case where the deviating store offers one more promotion.

Store s chooses promotion variable m
′
s = m∗s + ejc . The newly promoted product is now

priced at the sale price, and prices are re-optimized at the deviated promotion decision.

This deviation will result in presumably an increase in E[Rs], a unit cost of promotion θm,

a decrease in rivals’ expected revenues
∑

q∈−sE[Rq], and some change in consumer surplus.

Notice that the extra promotion will affect the behavior of three kinds of consumers. (1)

the staying consumers, who still shop at s but enjoy a greater surplus provided by the extra

promotion; (2) the new consumers who were non-shoppers in equilibrium but now decides

to visit s; 14 and (3) the switched consumers who shopped at rival stores. To illustrate the

point I decompose ∆Rs into three terms: the change in the deviating store’s revenue from

the staying shoppers ∆E[Rs]
stay, the revenue from new shoppers Rnews , and the revenue from

switched shoppers E[Rs]
switch. Similarly, ∆CS is decomposed into the change in consumer

surplus of the staying shoppers ∆CSstay, and surplus of the new shoppers CSnew, and the

13The lower bound of ∆W is negative (but close to zero) when EDLP1 or HiLo drops one promotion.
14Besides those who didn’t shop, the new consumers may also include those who switched from unobserved

stores (treated as outside choice) to s. However, this won’t cause any computation bias because given that
the shopping utility of outside choice has been normalized to zero, ∆CSnew measures the absolute change in
consumer surplus for either new shoppers or shoppers switched from unobserved stores. I thank Tom Prusa
for pointing this out.
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change in surplus of the switched shoppers ∆CSswitch.

∆Ws =W (x
′
s)−W (x∗)

=∆PSs +
∑
q∈−s

∆PSq + ∆CSs

=∆E[Rs]− θm,s +
∑
q∈−s

∆E[Rq] + ∆CSs

=(∆E[Rs]
stay +Rnews + E[Rs]

switch)− θm,s +
∑
q∈−s

∆E[Rq]

+ (∆CSstays + CSnew + ∆CSswitchs ).

(2.29)

The simulation results in Table 2.8 show that social welfare is harmed by the extra

promotion (∆W < 0). To explain this, first notice that in the neighbourhood of optimum,

the change in the deviating store’s revenue (∆E[Rs]
stay+Rnews +E[Rs]

switch) should be very

close to θs. The remaining components are the increase in consumer surplus ∆CSs, and

the decrease in rivals’ profit,
∑

q∈−s ∆E[Rq], which measures the business-stealing effect.

Thus, the change in W followed by the deviation depends on the absolute value of the

two components. Table 2.8 suggests that the new consumer surplus created by the extra

promotion is not sufficient to offset the decrease in rivals’ profit.

Why the extra consumer surplus is small while the business-stealing effect is large? To

explain this, let’s examine the three components of ∆CS more closely. ∆CSstays , presumably

positive, results from the increase of purchase incidence and product switching within the

category of the newly promoted product (the staying shoppers’ purchase behavior in other

categories will stay the same). CSnew is the consumer surplus of those who would have

not shopped but now shop at the deviating store. ∆CSswitchs results from the difference

of surpluses between shopping at the deviating store s and a rival stores that would have

otherwise been visited.

The first reason for small extra consumer surplus is due to the limited demand-creating

effect in the supermarket setting where product existence is typically well known. The

extra promotion conveys price information only and does not announce product availabil-

ity. Therefore, the quantity expansion is small. In contrast, the demand-creating effect

studied in the literature would be much larger because price advertisings are assumed to

announce product existence. The second reason has to do with transportation cost. The
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extra consumer surplus generated by the extra promotion (and lower price) is eroded by

the increased transportation cost. Since a transportation cost must be paid for shopping,

a consumer won’t shop unless the transportation cost can be at least offset by the surplus

generated from the purchase bundle. This erosion applies to the new shoppers and the

switched shoppers. For a new shopper, the surplus generated from the purchase bundle

at s will be eroded by the transportation cost that must be paid for travelling to s; for a

switched shopper, if she obtains extra surplus from the bundle purchased at s compared

to the bundle that would have been purchased at a rival store, the extra surplus is eroded

by the increased transportation cost. These two factors, the limited demand-creating effect

and transportation cost erosion, together result in the small extra consumer surplus. On

the contrary, the incentive of business stealing is big. By offering on extra promotion, the

deviating store is able to appropriate not only the profit marginal of the promoted prod-

ucts but also the margins of other high-priced items in the same purchase bundle. This

business-stealing conduct implies a re-distribution of margins from one firm to another and

contributes nothing positive to social surplus.

In sum, the demand-creating effect of promotions are too small to offset the business-

stealing effect; thus private promotion intensities are socially excessive. Thought extra

demand is created by promotion, the surplus gain from quantity expansion has been eroded

by transportation cost, implying a significant welfare-harming effect of price advertising.

2.7.2 Counterfactual Experiments

Changes in Promotion Costs

To better understand the role transportation cost plays in market efficiency, I simulate mar-

ket outcome in two counterfactual experiments, with a small overall increase and decrease

in promotion costs, respectively. Due to the discrete nature of promotion decision, I allow

for a 5 percent deviation in promotion cost to induce some changes in store decisions and,

in turn, market outcome. For each experiment, I solve for each store’s optimal price and

promotion vectors given the new promotion cost, then compute surpluses, market shares,

price levels, promotion intensities and profits induced by stores’ optimal decisions.
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As shown in the last section, the inefficiency due to shopping transportation cost damp-

ens the demand-creating effect, because it erodes consumer surplus that would have been

gained from purchase bundles. Furthermore, stealing one customer from a rival store means

a longer shopping trip if the shopper is attracted by a distant store. In a competition-

intensified market where shoppers are more likely to travel long distances, transportation

cost would cause a worse surplus erosion. In this sense, the effect of price advertising

(promotion) is two-fold: it improves market efficiency by reducing price uncertainties and

expands quantity; in the meantime, it creates inefficiency due to the higher transportation

cost. If the latter effect is sufficiently large, the loss from longer shopping distance would

outweigh the surplus gain from quantity expansion, and price advertising may no longer be

welfare improving.

Table 2.9 reports the market outcome variables of the two experiments. When price

advertising increase by 5%, in the new optimum retailers choose to promote less but price

higher. Producer surplus is slightly lower than its counterpart in the baseline case, because

the promotion cost saved is not sufficient to offset the decline in revenue. The higher

price levels and less price information negatively affect shopping probabilities and purchase

incidences. As a result, consumer bundle surplus (consumers’ gain from what they buy, or

CS excluding transportation cost) has decreased from $898.58k to $878.53k. Shoppers are

less likely to travel to distant stores and therefore the cost spent on travelling has decreased

from $176.39k to $152.87k, since stores now compete less intensively and promote less,

compared to the baseline case. The reduction in transportation cost ($23.52k) is so large

that it offsets the decrease in bundle surplus ($20.06k). Despite of less promotions and

higher prices, consumers are better off, since now the transportation cost that can be saved

is bigger than the decreased in bundle surplus.

When promotion costs decreases by 5%, we see the reverse. Competition among stores

has been intensified; stores promote more and price lower, and shoppers visit distant stores

with higher probabilities compared to the base case. This outcome is in line with the finding

in (Bester and Petrakis 1995) that inefficiency would occur because of higher transportation

costs paid to commute to a distant retailer that offers advertised low price. However,

shoppers are worse off even if they now enjoy lower prices and more promotions. The
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reason is that, similar to the first experiment, the increase in transportation cost ($17.22k)

outweighs the increase in bundle surplus ($8.85k).

The comparison between experimental social welfare in Table 2.9 and its baseline coun-

terpart suggests that, instead of the usual conclusion that social surplus can always be

improved by information and intensified competition, we see the opposite: social welfare

has been improved ($1,403.62k ¿ $ 1,401.17k) with higher prices and less price information,

and worsened ($1,398.32k ¡ $1,401.17k) when competition among stores is intensified with

lower prices and more price information. This is a striking finding but can be explained

by the two-fold effect of price advertising in this market. First notice that social welfare

excluding transportation cost measures the pure effect of price advertising (and pricing)

on quantity. This variable has decreased by $21.07k (from $1,577.56k to $1,556.49k) when

promotions become expensive, and increased by $14.35k to $1591.91k when promotions are

cheap, paralleling with quantity reduction and expansion in the two experiments, respec-

tively. However, these changes are respectively dominated by the change in transportation

cost. As a result, the welfare implication departs from the usual pattern; the welfare-

harming effect of price advertising plays a crucial role here.

Online Grocery Shopping

The counterfactual experiment in this section aims to simulate the emerging shopping regime

where a growing proportion of consumers choose online ordering and home delivery for gro-

cery shopping. Since product bundles are delivered by the store, shopping travel distance

no longer affects store choice.15 Another feature of home-delivered grocery shopping, com-

pared to traditional shopping, is that the search cost for prices is much lower: information

on weekly specials are available online and browsing them is easy.

To simplify online shopping behavior, I make three assumptions. First, shipping is free

and thus home-store distance does not affect store choice. Second, all shoppers read pro-

motion circulars posted by all stores and evaluate the expected shopping utilities before

making store choice; once the store choice is made, the bundle of product choices is subop-

timal conditional on store choice. Third, unobserved store characteristics that affect online

15In reality the shipping fee is related to home-store distance. I assume shipping is free for simplicity.
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grocery shopping regime, e.g., shipping cost and service, are of the same quality as those

in the traditional shopping regime. This means that the coefficient associated with trans-

portation cost κ is set to zero, all shoppers are informed by promotions (φs = 1), and store

dummies λs stay constant. By setting κ to zero, the stores’ local market power due to the

spatial factor is eliminated.

How would the market perform under this shopping regime? Firstly, it is clear that

the new regime avoids erosion and therefore improves consumer surplus. Secondly, spatial

models of store competition predict that geographical locations are anticompetitive, be-

cause each firm naturally possesses some market power over customers who live close. For

example, Hotelling’s location model suggest that when the two firms’ locations are fixed but

are able to set price, the locations give firms market power. Therefore, we expect that com-

petition among stores will be intensified due to the removal of stores’ local market power.

However, the effect on social welfare is vague: the stores could compete more aggressively by

spending greater in price advertising. The welfare implication depends on the magnitudes

of the increase in consumer surplus due to the avoidance of transportation, the social gain

due to quantity expansion, and the increase in the total promotion cost.

As for computation, the counterfactual outcome is simulated by finding a new equilib-

rium, in which allocation of consumers no longer depends on shopping distance and stores’

decisions are adjusted accordingly. One technical difficulty of finding the new equilibrium is

that in the new equilibrium agents’ consistent belief about stores’ actions will differ from the

price distribution in the current equilibrium. This means that the price distribution in the

base case, or the approximated distribution using observations, cannot be used for simulat-

ing the new outcome. Instead, a new price distribution as an approximation for consistent

belief must be found. Starting from the base-case equilibrium, I numerically compute the

counterfactual equilibrium by iterating market evolution until it converges. The criteria for

convergence is that the expectation of merchandising utility, us, is sufficiently close to the

value in the last iteration.

The simulation result is contained in Table 2.10. The top section lists consumer sur-

plus, producer surplus, social welfare, and the probability of non-shopping. As expected,

comparing to the base case, the new shopping regime intensifies competition. Price indices
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have been driven down by 5 to 12 percent, and promotion intensity has increased by 9 to 24

percent. Stores’ total profit has fell slightly from $678.98k to $665.46k. The difference in

the changes of stores’ market share and profits could be due to the alternative setting that

the probability of ad exposure, φs, equals one for all stores, whereas in the base case these

probabilities differ widely across stores. Intensified competition results in higher probabil-

ity of shopping incidences and purchase incidences: the pure effect of quantity expansion

on consumer surplus (CS excluding transportation costs) has increased from the baseline

$898.58k to $1171.22k. If include, consumer surplus has increased by $449.03k or 62 per-

cent. Finally, the numerical results show that the new shopping regime is welfare improving:

the increase in consumer surplus outweighs the decline in producer surplus; social welfare

has been improved by 31 percent.16

2.8 Conclusion

Theories of informative price advertising do not provide unambiguous predictions on its

welfare implication. Moreover, a few facts about the supermarket industry deviate from

the common assumptions made in standard theories. These assumptions include single-

product oligopoly firms and single-product shopping behavior,17 consumers’ unawareness

of product availability unless informed by price advertising18, and firms’ optimization by

choosing the market ”reach” of advertising. In reality, however, the supermarket industry

is characterized by consumer basket shopping behavior and multi-product firms; product

availabilities are usually well known to shoppers; and retailers make advertising decisions

by selecting the set of promoted products. These facts determine the way and magnitude

in which welfare is affected by price advertising.19

16My computation does not take delivery costs into account. But the welfare improving feature of online
shopping would not be significantly affected even if delivery is strictly positive. By economies of scale the
delivery cost of a grocery bundle can be small, if orders are delivered using efficient logistic system, such as
van trucks

17One exception is the Hotelling model of two-product duopoly constructed by Lal and Matutes (1994).
18See, for example, Bagwell (2007), Butters (1977), Grossman and Shapiro (1984), and Stegeman (1991).
19This paper focuses on the effect of informative advertising which conveys price information only and

distinguishes with the literature that examines welfare implication of ’persuasive’ advertising Dixit and
Norman (1978); Stigler and Becker (1977); Nichols (1985), where advertisements shift consumer preference.
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In this study, the demand-creating effect and the business-stealing effect of price ad-

vertising are complicated by shopping transportation cost. The effect of price advertising

(promotion) is two-fold: it improves market efficiency by reducing price uncertainties and

expands quantity consumed; but it creates inefficiency due to the higher transportation

costs as consumers are attracted by promotions at distant stores. If the latter effect is

sufficiently large, the loss from longer shopping distance would outweigh the surplus gain

from quantity expansion, and price advertising may no longer be welfare improving.

I empirically examine the efficiency of such markets, using simulation methods, by study-

ing changes in equilibrium social surplus following small deviations in promotion intensity.

To do this, a spatial model that accounts for consumer shopping and retailer pricing be-

havior is built. Using scanner data of consumer shopping and store merchandising informa-

tion, consumer preference is estimated following the discrete choice literature; the retailers’

marginal costs of promotion are structurally estimated using the moment inequality ap-

proach. These structural estimates allow me to simulate equilibrium and counterfactual

outcomes.

The simulation results numerically show that the equilibrium promotion levels are so-

cially excessive, because the demand-creating effect of advertised price cuts, after trans-

portation erosion, is too small to outweigh the business-stealing effect. Motivated by the

welfare implications of shopping transportation costs, I artificially remove this cost and

simulate the counterfactual market outcome, as an experiment of online grocery shopping.

I found this new shopping regime is welfare improving, for two reasons. First, obviously,

social surplus is not eroded by transportation. Second, the removal of transportation cost

implies that the firms no longer possess local market power, and therefore intensifies compe-

tition (lower prices and more promotions). Thus, despite the higher probability of shopping

at distant stores, no higher transportation cost will be paid. In sum, if intensified competi-

tion leads to worse surplus erosion by transportation, the welfare effects of price advertising

may deviate from the usual conclusion that information and competition always improve

social well-being. But this erosion can be avoided by, for example, online shopping regime.
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Figure 2.1: Locations of Stores

This
figure is from Bell et al. (1998). The store codes in the legend, E1, E2, H1, HH1, HH2, correspond to the
codes used in this paper EDLP1, DELP2, HiLo, HT1, HT2, respectively.
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Table 2.1: Summary Statistics

Store Pricing and Promotions
Weekly Frequency

Store Market Share1 Average Price Index2 Promotions Price Cuts Deep Price Cuts3

EDLP1 0.2147 0.8334 41.53 54.03 24.71
EDLP2 0.2678 0.8327 46.46 59.64 26.34
HILO 0.3254 0.8602 58.38 73.37 48.66
HT1 0.0904 0.9124 32.06 44.91 17.97
HT2 0.1013 0.9253 39.37 34.15 18.02

Households
Mean Std.

Family Size 2.31 1.37
Basket Spending ($) 37.04 32.34
Trips per Week 1.56 1.05
Home-Store Distance(miles) 2.70 2.47
Shopping Trip Distance 1.47 2.38

1Market share refers to the proportion of store visits at a specific store.
2The average price index is computed as the ratio between period-t price of a product and its regular price, weighted by
market share.
3Deep price cut is a price cut with at least 15% reduction.
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Table 2.2: Product Preference

Category i ii

αc β1,c β2,c χc αc β1,c β2,c χc

Bacon -0.5551 1.1236 0.9911 1.6394 -0.8038 1.0573 0.6185 0.4638
(0.0235) (0.0540) (0.0390) (0.0480) (0.0424) (0.0588) (0.0469) (0.0346)

Butter -0.5240 1.1684 1.2192 0.0893 -0.4879 1.1435 1.1582 1.1447
(0.0223) (0.0298) (0.0284) (0.0147) (0.0285) (0.0301) (0.0291) (0.0098)

Cereal -0.0769 1.3594 0.9480 2.3350 -0.2272 1.3092 0.8724 0.2462
(0.0174) (0.0556) (0.0688) (0.0320) (0.0227) (0.0465) (0.0586) (0.0277)

Toothpaste -0.4913 0.9557 0.8493 2.1228 -0.9273 0.9013 0.7265 0.2291
(0.0334) (0.0514) (0.0805) (0.0223) (0.0678) (0.0551) (0.0227) (0.0201)

Coffee -0.0478 1.5691 1.4485 1.6968 -0.0730 1.3580 0.9752 2.7209
(0.0088) (0.0091) (0.0397) (0.0017) (0.0142) (0.0152) (0.0416) (0.0128)

Crackers -0.2953 1.6941 0.8704 1.8944 -0.8026 1.5336 0.7612 0.0902
(0.0277) (0.0388) (0.0493) (0.0359) (0.0432) (0.0329) (0.0691) (0.0280)

Detergent -0.1384 1.6808 1.0894 1.8578 -0.3069 1.4024 0.8965 0.6072
(0.0053) (0.0348) (0.0434) (0.0117) (0.0149) (0.0364) (0.8965) (0.0627)

Eggs -1.0955 2.0032 1.5630 0.9806 -1.0732 1.8571 1.5075 1.3176
(0.0412) (0.1689) (0.0585) (0.0206) (0.0738) (0.1678) (0.0613) (0.0326)

Hot Dogs -0.3778 1.1609 0.8919 0.4280 -0.6395 0.9984 0.6394 0.0949
(0.0112) (0.0399) (0.0286) (0.0117) (0.0215) (0.0411) (0.0306) (0.0217)

Ice Cream -0.6180 0.9821 0.6960 1.7651 -0.9029 0.9349 0.3529 1.9362
(0.0210) (0.0643) (0.0424) (0.0101) (0.0264) (0.0647) (0.0453) (0.0195)

Peanuts -0.3537 1.4422 0.9202 0.0796 -1.0187 1.2167 0.7213 2.0246
(0.0234) (0.0741) (0.8818) (0.0380) (0.0297) (0.0793) (0.9312) (0.0289)

Frozen Pizza -0.1347 1.0583 1.0286 0.6923 -0.6724 0.7734 0.7552 0.3428
(0.0119) (0.0401) (0.0359) (0.0260) (0.0368) (0.0407) (0.0428) (0.0688)

Potato Chips -0.2372 1.4522 1.1792 0.1154 -0.5471 1.6276 1.3291 1.1007
(0.0255) (0.0458) (0.0512) (0.0145) (0.0311) (0.0416) (0.0313) (0.0079)

Soap -0.2783 1.1905 0.9849 0.2428 -0.6982 1.1275 0.8904 0.6679
(0.0173) (0.0503) (0.0725) (0.0208) (0.0199) (0.0524) (0.0471) (0.0527)

Sugar -0.1537 1.3432 1.9931 2.0586 -0.9092 0.7830 0.6784 1.6425
(0.0174) (0.0552) (0.0545) (0.0134) (0.0909) (0.0622) (0.0663) (0.0390)

Tissue paper -0.5665 0.8383 1.2240 1.7371 -0.8071 1.3745 1.0506 0.6147
(0.0131) (0.0253) (0.0257) (0.0105) (0.0376) (0.0268) (0.0284) (0.0200)

Paper Towel -0.2751 1.1172 1.1819 0.7927 -0.9016 1.2179 1.0552 1.5670
(0.0148) (0.0272) (0.0287) (0.0284) (0.0241) (0.0285) (0.0320) (0.0297)

Yogurt -0.1100 0.8034 1.1706 2.3756 -0.2283 0.7361 1.2024 1.3485
(0.0193) (0.0564) (0.0378) (0.0656) (0.0197) (0.0572) (0.0426) (0.0234)

Regressors of column i results include price, promotion and display dummies as explanatory variables, while
in column ii they also includes brand and package size dummies.
All estimates are significant at the 5% level.
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Table 2.3: Effects of Promoted Price Cuts – Percentage Increase* in Product Choice
Prob.(ρ)

Category max mean std. dev.

Bacon 10.3913 2.9082 1.8645
Butter 5.2082 1.6199 0.7912
Cereal 12.2025 3.8505 1.7071
Toothpaste 17.1323 2.0892 1.9320
Coffee 18.6311 5.2345 2.7412
Crackers 16.3184 2.8645 1.6128
Detergent 35.0113 8.2882 6.0732
Eggs 19.5092 3.6860 3.1485
Hot Dogs 24.0420 3.6996 1.9806
Ice Cream 19.3625 4.9626 3.8713
Peanuts 12.3572 3.1889 1.7739
Frozen Pizza 12.6547 1.9869 1.3792
Potato Chips 11.6735 2.1346 1.7916
Soap 11.0077 3.2694 1.9840
Sugar 4.1252 1.6681 1.1158
Tissue Paper 30.2039 2.1968 4.0207
Paper Towel 19.8574 2.5594 3.3111
Yogurt 25.0165 2.3285 4.1306

*The percentage increase is

∆ρjc
ρjc

=
1

ρjc
(
∂ρjc
∂pjc

×0.15+
∆ρjc
∆mjc

) = (−αc×0.15+βc,1)(1−ρjc).
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Table 2.4: Store Preference

H1

joint φ = 0 φ = 1 φs = φ

κ(distance) -0.4659 -0.3789 -0.8977 -0.4328
(0.1072) (0.0833) (0.0892) (0.1377)

ι(merchandising utility) 0.0397 0.0986 0.0008 0.0432
(0.0029) (0.0021) (0.0001) (0.0238)

λs(store dummy) 0.5583 3.7267 0.4791 2.7982
(0.0477) (1.4742) (0.0835) (1.1721)
0.2593 3.9117 0.6344 4.8903

(0.0769) (1.2008) (0.1742) (1.1905)
0.1148 3.6297 0.6730 4.2877

(0.0496) (0.9073) (0.2746) (2.0033)
-0.7954 2.7240 -0.3411 3.5786
(0.1724) (1.1355) (0.7829) (0.9982)
-1.0659 2.6685 -0.4491 3.2090
(0.3233) (1.1084) (0.0672) (1.7953)

φs(prob. of ad exposure) 0.0350 0.7230
(0.0102) (0.2447)
0.1958

(0.0473)
0.1784

(0.0509)
0.0277

(0.0076)
0.0389

(0.0122)

Log-likelihood -4.3941×104 -4.4118×105 -8.0716×105 -4.2946×104

Likelihood ratio 7.9448×105* 1.5264×106* 1,990*

*significant at the 1% level.
Uhst = λs + ιūhs + κdisths + ζhst.
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Table 2.5: Effects of Promoted Price Cuts – Percentage Changes* in Store Choice Prob.(η)

EDLP1 EDLP2 HiLo HT1 HT2

market share 0.1042 0.1515 0.2165 0.1381 0.0776

promotion offered by

EDLP1 0.24 -0.05 -0.06 -0.11 -0.09
EDLP2 -0.16 0.47 -0.52 -0.02 -0.09
HiLo -0.10 -0.06 0.36 -0.02 -0.07
HT1 -0.18 -0.10 -0.06 0.12 -0.07
HT2 -0.11 -0.07 -0.05 -0.02 0.18

*The percentage changes in store choice probabilities (η) due to a pro-
moted price cut of product is

∆ηs
ηs

=
1

ηs
(
∂ηs
∂pjc

× 0.15 +
∆ηs

∆mjc

) =

∫ ∫ ∫
ι× ρjc(−αc × 0.15 + βc,1)(1− ηs)× dFdΩdD.

∆ηq
ηq

= − 1

ηs
(
∂ηs
∂pjc

× 0.15 +
∆ηs

∆mjc

) =

∫ ∫ ∫
−ι× ρjc(−αc × 0.15 + βc,1)× ηs × dFdΩdD, where q 6= s.

Table 2.6: Estimated Bounds of Promotion Cost (θ)

θs 95% Confidence Interval

LB UB

EDLP1 [7.40, 11.09] [6.33, 10.12] [10.36, 12.68]
EDLP2 [7.88, 22.60] [5.64, 12.48] [19.00, 27.09]
HiLo [12.36, 28.00] [9.81, 14.63] [26.41, 31.68]
HT1 [10.99, 14.35] [5.79, 12.20] [9.04, 15.86]
HT2 [8.75, 21.28] [6.46, 10.69] [16.96, 22.30]
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Table 2.7: Current Equilibrium (Base Case)

transportation costs
included excluded

CS (×103) 722.19 898.58
PS (×103) 678.98
W (×103) 1,401.17 1,577.56

transportation cost(×103) 176.39
non-shopping prob 0.3121

# of Promo. Ave. Price Ind. Store Choice Prob. π (×103)

EDLP1 24.23 0.8450 0.1042 102.09
EDLP2 27.44 0.8943 0.1515 148.02
HiLo 30.46 0.8474 0.2165 212.92
HT1 20.43 0.9396 0.1381 135.38
HT2 22.75 0.9142 0.0766 76.26

Table 2.8: Market Efficiency

one more promotion
∆E[R] ∆CS ∆W

EDLP1 EDLP2 HiLo HT1 HT2

EDLP1 9.45 -2.88 -6.36 -2.48 -2.38 8.95 [-6.81, -3.35]
EDLP2 -11.04 38.11 -12.04 -10.74 -10.74 8.36 [-20.70, -5.59]
HiLo -7.56 -12.34 23.38 -3.48 -4.17 11.63 [-20.54, -4.90]
HT1 -2.88 -3.08 -3.78 10.15 -3.58 7.74 [-9.78, -6.43]
HT2 -3.48 -3.68 -9.05 -1.39 9.55 7.94 [-21.39, -8.86]

one less promotion
∆E[R] ∆CS ∆W

EDLP1 EDLP2 HiLo HT1 HT2

EDLP1 -12.63 2.98 5.87 2.98 2.68 -9.35 [-0.05, 3.63]
EDLP2 11.24 -19.85 12.53 10.94 11.24 -11.18 [22.82, 37.53]
HiLo 6.76 12.83 -26.32 3.08 4.67 -13.63 [-0.22, 15.41]
HT1 3.18 3.38 4.67 -10.52 2.78 -8.47 [6.03, 9.38]
HT2 2.88 3.78 9.25 1.69 -12.42 -9.14 [4.80, 17.33]

∆W = ∆Rs +
∑

q∈−s ∆Rq + ∆CS = (∆Rs ± θs) +
∑

q∈−s ∆Rq + ∆CS.
The ranges of ∆W are computed based on the bounds of θs.
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Table 2.9: Counterfactual – Overall Changes in Promotion Costs θ

an overall 5% increase
transportation costs

included excluded

CS (×103) 725.65 878.52
PS (×103) 677.97
W (×103) 1,403.62 1,556.49

transportation cost(×103) 152.87
non-shopping prob 0.3533

# of Promo. Ave. Price Ind. Store Choice Prob. π (×103)

EDLP1 21.34 0.8838 0.0957 102.09
EDLP2 26.25 0.9042 0.1345 148.02
HiLo 27.07 0.8902 0.2083 212.92
HT1 18.72 0.9608 0.1333 135.38
HT2 20.47 0.9425 0.0749 76.26

an overall 5% decrease
transportation costs

included excluded

CS (×103) 713.82 907.43
PS (×103) 684.50
W (×103) 1,398.32 1,591.91

transportation cost(×103) 193.61
non-shopping prob 0.2513

# of Promo. Ave. Price Ind. Store Choice Prob. π (×103)

EDLP1 26.05 0.8260 0.1229 101.19
EDLP2 28.14 0.8503 0.1526 141.13
HiLo 33.03 0.8127 0.1903 224.13
HT1 22.81 0.9210 0.1214 138.96
HT2 23.75 0.9052 0.0782 79.09
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Table 2.10: Counterfactual – Online Grocery Shopping

CS (×103) 1,171.22
PS (×103) 665.46
W (×103) 1,836.69

transportation cost(×103) 0
non-shopping prob 0.1114

# of Promo. Ave. Price Ind. Store Choice Prob. π (×103)

EDLP1 27.62 0.7728 0.1641 97.96
EDLP2 34.02 0.7937 0.2038 137.15
HiLo 33.20 0.8067 0.2542 213.57
HT1 23.15 0.8344 0.1621 136.46
HT2 24.82 0.8221 0.1045 76.87
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Chapter 3

Dynamic Dispersion of Storable Good Prices

3.1 Introduction

Supermarket retailers adjust retail prices on a weekly basis, and change the set of promoted

products time to time. In each product category, a shopper can almost always find some

products on promotion, marked with eye-grabbing price labels or piled at the entrance of

aisles. Supermarket managers clearly find it more profitable to put different items on sales

time to time, in spite of the high menu cost and administrative cost (Levy et al. 1997), than

keeping prices constant at some high level over time (like what convenience stores usually

do). Nowadays, not only can consumers download on-line next week’s promotion brochures

of local super markets, but also smart phone applications designed by specific supermarket

chains to advertise their in-store sales items are available.

When goods are storable (such as ground beef, laundry detergent, potato chips, etc),

consumers purchase more than they will consume in that period and store the rest as in-

ventory. Consumer heterogeneity with respect to ”willingness to wait” is well acknowledged

by store managers. While the regular price is offered to impatient consumers, the manager

would reduce the price in order to ”clear out” the demand of those who have been patiently

waiting for the next sale to occur. Price promotion serves as a means of intertemporal price

discrimination. On the other hand, because the current sales induce stockpiling, future

demand would be jeopardised. Therefore, store managers tend to offer medium-size price

reductions in order to preserve future sales. Temporary price reductions also serve the role

of price discrimination between informed and uninformed consumers. Informed consumers

with small search costs purchase at the low price occasionally offered, while uninformed

consumers with high search cost purchase at the regular price, unless they encounter the

low price by chance.
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Empirical studies show that several price variation patterns are widely observed. Using

retail price data over 20 categories for 5 years from 30 US Metropolitan areas, Hosken

and Reiffen (2004) find that most items carried can be characterized as having a high

regular price, and most deviations from that price are below that level. Price variations

mostly results from store promotion, with insignificant impact from wholesale price changes.

Therefore, price reductions are likely to be temporary, and will go back to the regular level

soon.

Despite the ubiquitous nature of price promotions, there is little common ground among

economists as to why supermarket retailers occasionally offer products at discounted prices,

or even how and why such price dispersion can exist as an equilibrium phenomenon. To

better understand retailers’ strategic pricing behavior given consumer heterogeneities in

store loyalty, willingness to wait or inventory cost, and knowledge in prices, I construct a

model of an oligopoly retailers selling a homogeneous storable good. The good in the model

are assumed to be consumed for multiple periods, and therefore does not need purchased

frequently. Stores can sell the good at a regular price, or hold sales, selling the good at

lower prices. Under the infinite horizon setting, the High type consumers are assumed to be

loyal to a specific store, have infinite inventory cost and therefore never stockpile, and do

not search for price reductions; they purchase only when the good is ran out, at the store

they are loyal to. The Low type consumers search for price at zero search cost, purchase if

the lowest price offered is below some critical price, and store it at some inventory cost.

In this paper a symmetric Markov-perfect equilibrium (MPE) is found. As in the classic

search models, the competing stores face a trade-off between selling only to its own loyals

at the regular price and to both loyals and shoppers at some sale price. Retailers randomize

prices, and the cdf of the equilibrium price distributions have a mass point at the regular

price pR. Moreover, the equilibrium price distribution is a function of the shoppers’ inven-

tory. The mixed strategy equilibrium is characterized by a critical price depend upon which

purchase decision is made in each period. The realized price evolution consists of several

consecutive regular-price periods, where no sales are offered, and occasionally one-time price

reductions. The endogenous price evolution exhibits non-absorbing Markov transition of

states: when shoppers hold high inventory, the probability of holding a sale is low, which
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means inventory will more likely to drop down.

3.2 Literature

Models in the literature aim to explain the strategic pricing interactions among competing

retailers and consumer purchase behaviors. Specifically, models are developed to generate

price distributions, which characterize equilibrium, that have similar patterns to empirical

observations. Two classes of models have been constructed. Both examine the pricing de-

cision of single product retailers, and show how consumer heterogeneity can lead to retail

price variation over time. Their basic setups in consumer heterogeneity consider the follow-

ing factors: whether the two types (High and Low) differ in reservation price, willingness

to wait, inventory cost, store loyalty, and search cost. The market structure considered is

typically an oligopoly. The equilibria of the models are characterized by a price distribution,

continuous or not, implying price is drawn from that distribution and therefore varies every

period.

The first class assumes consumers differ in their knowledge. Since sellers face a trade-

off between selling to only non-searchers at high price and selling to both searcher and

non-searchers at the lowest price among all sellers, the symmetric mixed-strategy equi-

librium features a continuous distribution of price. Varian (1980) model is the seminal

contribution of this class. It describes a monopolistically competitive equilibrium in which

sales are the outcome of mixed strategy equilibrium among retailers who compete over co-

horts of informed and uninformed consumers. Narasimhan and Wilcox (1998) characterize

competitive promotional strategies by their depth and frequency within a mixed strategy

equilibrium similar to Varian (1980).

The second class views sales as means of price discrimination. Conlisk et al. (1984); Sobel

(1984); Pesendorfer (2002a) fall into this type. Consumers differ in their reservation prices,

willingness to wait for sales, and/or inventory costs (analytically equivalent to willingness to

wait). Since the high types with high reservation price are not willing to wait for sales, while

the low types only purchase at low prices, the equilibrium is characterized by purchases of

high types in all periods, and periodically reduced price that is to ”clear out” the low types.
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Hong et al. (2002) is a combination of the two classes. In this model, not only do

consumers differ in store loyalty and searching costs, but also only the low-type consumer

store for inventory. Under this setup, oligopoly stores have an incentive to reduce price,

both to sell to searchers and to consumer inventory. Observing consumer inventory, each

store draw his own prices from a common distribution, and the low type consumers make

purchase decision given the lowest price offered, taking into account the next-period state

and payoffs predicted by her action and the transition rule. Because of the existence of

store loyals, the Markov equilibrium price distribution has a mass point. Moreover, the

equilibrium price distribution varies over time.

Though Varian’s model can explain price variations of both perishable and nonperish-

able goods, it fails to predict the fact that most goods have a regular price as the price

distribution has no mass point. The random price behavior that emerges from a mixed

strategy equilibrium is fundamentally inconsistent with observed prices that tend to stay

fixed for a long period of time and then fall temporarily, returning to the previous level

after one period or two. This static model also fails to provide intuition of purchase at

sales for inventory. The price discrimination type models (Conlisk et al. 1984; Sobel 1984;

Pesendorfer 2002a) succeed in predicting a mass point in price distribution, yet they o not

assume price searching behavior. Moreover, although these models are of infinite horizon,

many have restrictions on the number of packages purchased, consumption amount in each

period, or the maximum capacity of storage. For example, to fit into a Logit estimation,

Hendel and Nevo (2006) assume that a consumer can purchase at most one package of laun-

dry detergent. Hong et al. (2002) assumes that a consumer can store at most one package,

and must consume one package every period.

Besides consumer heterogeneities, another dynamic explanation for incentive of price

promotion is provided by Yang et al. (2005) in which price reductions are necessary to restore

brand loyalty given its tendency to degrade over time. However, this loyalty restoring could

be more likely actions of manufactures rather than retailers. If retail markets do have the

incentive to restore loyalty of some brands, then it means that elasticities must vary across

brands, and that the promoted brand probably has great impact on store revenue.

Finally, many authors argue that price promotions on a limited set of products may
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serve as a tool of ”luring” consumers come into store and shop other products within store

at regular prices (Nevo and Wolfram 2002; Chintagunta et al. 2002; McAfee 1995). Since

supermarkets virtually offer a diversity of products (20,000+ items), consumers with a

purchase bundle face a trade-off between being loyal to one store and switching to another

one for promotions at a transportation cost. Effective price promotions must increase

store traffic. Furthermore, price promotion of one product is likely to cannibalize sales

from other products within store or attracts customers from a rival retailer, if the degree

of heterogeneity among store is low, but heterogeneity among products is high (Richards

2007).

3.3 Model

There are N identical retailers selling a homogeneous good in each time period t = 0, 1, 2, ...

in an isolated city of population 1. The good is assumed to be storable, and the package

size is L. In each period, each consumer must consume 1 unit of the good, thus one package

will last for L periods. A proportion γ of the population have zero search cost and will be

referred to as shoppers, who will buy from the lowest price retailer, if they buy at all. A

proportion 1 − γ do not search, and each of them is loyal to a fixed and specific retailer.

They will be referred to as loyals. I assume that the retailers have equal share of the non-

searchers, and that the number of loyal customers who buy a package lasting L periods is

the same in every period. In each period, a consumer, shopper or loyal, can purchase at

most one package of the good. Shoppers can store the new package as inventory at a unit

cost c. Loyals never purchase if they still hold inventory, and only purchase when they run

out. Both shoppers and loyals value the per period consumption of the good at v. All

agents share a common discount factor δ. The good has a regular price pR that satisfies

pR =
∑L−1

t=0 δ
tv −

∑L−1
t=0 δ

t(L − t)c, which is the total consumption utility net off the total

inventory costs. Define any price strictly lower than pR as a sales price. A retailer holds a

sale in period t if she offers a sales price. Therefore, in each period, each retailer can sell

to at least (1− γ)/NL consumers at any price no greater than pR. A loyal’s surplus is zero

if she buys at pR, and positive if she buys at a sale.

I make three assumptions on shoppers’ purchase behavior.
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Assumption 1. The inventories of all shoppers are the same at the starting point.

Assumption 2. If a shopper runs out of stock, she must purchase at any price no greater

than pR.

Assumption 3. A shopper does not purchase if her inventory is greater than a positive inte-

ger K, where K < L. It implies that a shopper stores no more than one package of the good.

In each period, retailers simultaneously make pricing decisions pit, and the set of prices

offered in period t is denoted by Pt = {pit|i = 1, ..., N}. The marginal cost for retailers

(wholesale price) is assumed zero for simplicity. Observing Pt, a shopper j maximizes the

total expected discounted utility by making purchase decision, taking into account future

states and prices. Denote the purchase decision of shopper j by djt = (dijt)
′ satisfying

dijt ∈ {0, 1} and
∑

i d
i
jt ≤ 1, and her inventory in period t by Ijt. If the shopper makes

a purchase at retailer i, then dijt = 1. The good not consumed in the current period will

be stored at a unit cost c. Denote the state variable of this infinite-horizon problem by ιt,

and in equilibrium it equals the synchronized shopper inventory, because as shown below

the purchase decisions of all shoppers will be synchronized in equilibrium, dt = dijt, ∀j. It

follows that the state transition rule is ιt+1 = ιt − 1 + dtL.

The shopper’s problem is represented by

max
{{dijt}∞t=0}

E

[ ∞∑
t=0

δtujt(Pt, Ijt, d
i
jt)|ι1

]

subject to dijt ∈ {0, 1}, ∀i,

Ijt ≥ 0,∑
i

dijt = 1 if Iit = 0,

∑
i

dijt = 0 if Iit > K,

Ij,t+1 = Ijt − 1 +
∑
i

dijtL.

(3.1)

The expectation is taken with respect to future states. The flow utility ujt is given by

ujt(Pt, Ij,t+1, ιt, djt) = −cIj,t+1 − djtpt,min + v, (3.2)

where pt,min = minPt, the lowest price offered in period t; Ij,t+1 = Ij,t − 1 +
∑

i d
i
jtL is the
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low of motion. Define the value function V (·) that represents a shopper’s maximized payoff

under her action rule:

V (Pt, Ijt, ιt) = max
{djt}

{
E
∞∑
t=0

δtujt(Pt, Ij,t+1, djt, ιt)|djt, d−jt

}
. (3.3)

Define shopper j’s choice-specific value function Ṽ (·) as

Ṽ (Pt, Ijt, ιt, djt) = ujt(Pt, Ij,t+1, ιt, djt) + δE [V (Pt+1, Ij,t+1, ιt+1)|djt, d−jt] . (3.4)

Retailers simultaneously make pricing decisions {{pit}∞t=0} to maximize the expected

total payoff:

max
{{pit}∞t=0}

∞∑
t=0

δtπit, (3.5)

where πit is the per-period profit and δ is the discount factor. In period t, a retailer i can

always sell to its royals who ran out of stock at any price no greater than pR. And it sells to

shoppers if it offers the lowest price and if the shoppers buy at all. Retailer i’s per-period

payoff is given by

πit = pit

(
1− γ
NL

+ γdit(pit, p−it, ιt)

)
, (3.6)

where pit is the price; 1−γ
NL is the quantity sold to its loyals; dit(pit, p−it, ιt) is the synchronized

purchase decision of all shoppers, as a function of its price pit, rivals’ prices p−it, and

consumer inventory ιt; and γdit is the quantity demanded of retailer i (assuming all shoppers’

inventories are the same at the starting point, their equilibrium purchase decisions will

synchronize as shown later). It is straightforward that dit = 1 only if pit = pt,min, given that

shoppers buy at all.

I seek for a subgame-perfect MPE that satisfies several conditions. First, I assume that

the current inventory levels, shoppers’ and loyals’, are sufficient for the decision making of

all agents. Second, the current decision making does not depend on states or actions taken

in previous periods. Said differently, retailers’ behavior is predicted by the current shopper

inventory only.

Bounding the state space. Since the number of states in a MPE must be finite, we

would like to have an upper bound of the inventory level upon which stockpiling behavior

is endogenously irrational (Assumption 3 ). For simplicity, such upper bound is assumed to
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be less than the size of one package, K < L. Thus, the highest possible inventory level is

K − 1 + L, and the number of states is K + L.1

Critical prices. The MPE is characterized by a series of critical prices, {pk}Kk=0, where

pk ≤ pR. By Assumption 2, the critical price at k = 0 is simply pR. In each state k > 0,

shoppers will purchase, if the lowest price offered is no greater than pk, and not purchase

otherwise, i.e,
∑

i d
i
t(Pt, ιt = k) = 1 if pt ≤ pk.

3.3.1 Pricing Strategy

The retailers in the model will randomize prices, because it always pays to break ties,

provided shoppers will purchase. Denote the distribution of prices in state k by Fk. Since

the pricing strategy is state-dependent, for ease of notation I drop the subscript t. First

notice that retailers will not choose any price greater than pR because such prices produces

zero sales. In the event that shoppers will purchase, it would be profitable to slightly

undercut other retailers; such undercutting will not result in Bertrand consequence because

it it more profitable to charge simply pR.

Next, consider retailer i’s pricing strategy at state k. If pi is greater than the critical

price, then retailer i sells to its loyal consumers only in that period; the next period state

depends on other retailer’s prices: if there exists at least one retailer that offers a price no

greater than pk, which occurs with probability 1− (1−Fk(pk))N−1, then the state transfers

to k−1+L; if no retailers offer such price, then the state transfers to k−1 with probability

(1− Fk(pk))N−1. If pi is no greater than pk and happens to be the lowest price among all

retailers with probability (1 − Fk(pi))N−1, then it sells to both loyals and shoppers, and

next period state transfers to k − 1 + L with certainty. If pi is not the lowest price though

lower than pk, then it profits from loyals only.

From the retail’s problem in equation (3.5), the value function of a retailer i is given by

W k ≡ max
{{pit}∞t=0}

∞∑
t=0

δtπi(pit, P−it, ιt = k). (3.7)

Retailer i’s choice-specific value function in state k 6= 0 can be written as

1The upper bound could also be, for example, L < K < 2L, but it implicitly allows purchase with storage,
which complicates the transition paths of states and the calculation of continuation value.
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Wi(p, p−i, ι = k) =



p (1−γ)
NL + δW k−1+L × (1− (1− Fk(pk))N−1)

+δW k−1 × (1− Fk(pk))N−1, if p > pk,

p (1−γ)
NL + pγ × (1− Fk(p))N−1

+δW k−1+L, if p ≤ pk.

(3.8)

The mixed-strategy equilibrium requires that a retailer makes equal profits at any price

drawn from Fk. This means that, when shoppers hold inventory, no retailer would charge

a price in the interval of (pk, p
R): a price slightly less than pR will induce no greater sales,

therefore there will be no loss from raising price to pR. In other words,the probability of

drawing pR at state k > 0 is strictly positive.

The pricing strategy in state k = 0 is slightly different. The reason is that, according

to Assumption 2, when inventory drops to zero all shoppers must purchase at any price no

greater than pR, and the subsequent state will be L−1 with certainty. The price distribution

from which retailers randomize their prices will be continuous, since any price lower than

pR would attract shoppers with positive probability. The choice-specific value function of

retailer i is

Wi(p, p−i, ι = 0) = p
(1− γ)

NL
+ pγ(1− F0(p))N−1 + δWL−1. (3.9)

Lemma 1

For all k ≥ 0,

W k =
pR

1− δ
(1− γ)

NL
. (3.10)

Proof.

Because a retailer randomizes prices, then undercutting other retailers must bring equal

profit as charging pR. Thus,

W (k, pR) =pR
(1− γ)

NL
+ δW k−1+L(1− (1− F k(pk))N−1)

+ δW k−1(1− F k(pk))N−1

=W (It = k, pit ≤ pk)

=p
(1− γ)

NL
+ pγ(1− Fk(p))N−1 + δW k−1+L.

(3.11)
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Denote (1− F k(pk))N−1 by probk. Then,

W 0(0, p < pR) = W0(0, pR) = pR
(1− γ)

NL
+ δW−1+L

W 1 = pR
(1− γ)

NL
+ δWL(1− prob1) + δW0prob1

...

WL−1 = pR
(1− γ)

NL
+ δW2L−2(1− probL−1) + δWL−2probL−1.

(3.12)

So,

W 0 = pR
(1− γ)

NL
+ δpR

(1− γ)

NL
+ δ(δW 2L−2(1− probL−1) + δWL−1probL−1)

= pR
(1− γ)

NL
+ δpR

(1− γ)

NL
+ δ2pR

(1− γ)

NL
+ · · ·

= pR
1

1− δ
(1− γ)

NL
.

(3.13)

Similarly, it can be sequentially shown that the total payoff of a retailer in all states is equal

to the payoff as if she charged one single price pR in all periods.

W k =pR
(1− γ)

NL
+ δW k−1+L(1− (1− F k(pk))N−1) + δW k−1(1− F k(pk))N−1

=pR
(1− γ)

NL
+ δ(pR

(1− γ)

NL
+ δW k−2+2(1− (1− F k(pk))N−1)

+ δW k−2+L(1− F k(pk))N−1)

= · · ·

=pR
1

1− δ
(1− γ)

NL
.

(3.14)

Lemma 1 permits the direct calculation of price distribution in state k:

(1− F0(p))N−1pγ =
1− γ
NL

(pR − p), for P 0 ≤ p ≤ pR, (3.15)

and 
(1− Fk(p))N−1pγ = 1−γ

NL (pR − p), for P k ≤ p ≤ pk.

Fk(p) = 1− Fk(pk), for p = pR
(3.16)

where P 0 and P k are the lower bounds of the support of price distribution, satisfying

F0(P 0) = 0 and Fk(P k) = 0, respectively. It is clear that the supports of price distribution

for different k have the same lower bound:

P = P k = pR
1− γ

1− γ +NLγ
, ∀ 0 ≤ k ≤ K. (3.17)
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While F0 is continuous on its support, Fk has a mass point on pR. When k > 0, the

probability of choosing pR is strictly positive and is given by 1 − Fk(pk). This difference

is due to the increment in sales when slightly reducing price from pR: since shoppers must

purchase at k = 0, a price slightly lower than pR results in a positive probability of sales.

In contrast, at k > 0, the is no gain in sales if the reduced price is not as low as pk.

A retailer’s equilibrium pricing strategy is that, when shoppers’ inventory is zero, p ∼ F0;

when shoppers hold inventory, 0 < k ≤ K, p ∼ Fk; when k > K, according to Assumption

3, p = pR with probability one.

3.3.2 Purchase Strategy

A rational shopper takes into account the current lowest price pt,min, her own next period

inventory Ijt+1, and future state ιt+1. Buying today at a low price means the inventory

cost will immediately occur, while postponing purchase will risk losing the good deal but

avoiding this cost.

The purchase strategy is characterized by a critical price pk at each state. Given retailers’

symmetric pricing strategy, suppose in period t at state k the lowest price available is

pt,min ≤ pk. Shoppers will purchase a new package for inventory, and the state will transit

into ιt+1 = k− 1 +L. By the assumption that K < L is the highest state where sales prices

could occur, the succeeding states will be k − 2 + L, · · · ,K, · · · , and prices will stay at pR

for k + L−K periods until ι = K where the next sale would occur.

Now consider a potential deviater who does not purchase at pt,min ≤ pk. According to

Assumption 2 and 3, she is certain about the states and price distribution in the subsequent

K + L− k periods. Because all prices will be staying at pR for at least k + L−K periods,

and the deviater will run out in k < k + L − K periods, she will have to pay pR for the

next package. Thus, she would rather postpone the next purchase as late as possible. Said

differently, if postpone purchase, then it will be postponed for k periods. After this very

late purchase, her inventory will again synchronize with the rest.

In order to prevent deviation, pt,min must be small enough such that buying today is no

worse than postponing it. Recall that V (Pt, Ij,t, ιt+1) is the value function which can denote

the continuation value of a potential deviater j, whose inventory is Ij,t at the beginning
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of period t at state ιt+1. Expressing the deviater’s tradeoff using the choice-specific value

functions, we obtain the upper bound of pt,min.

Suppose pt,min ≤ pk, then pk satisfies

Ṽ (Pt, k, k, 1) ≥ Ṽ (Pt, k, k, 0)

⇓

pt,min ≤ −cL+ δ

(
V (Pt+1, k − 1 + L, k − 1 + L)− V (Pt+1, k − 1, k − 1 + L)

)
.

(3.18)

V (Pt+1, k − 1 + L, k − 1 + L) is the expected continuation value of a non-deviater with

inventory k − 1 + L, where the expectation is taken with respect to Pt+1 in which all

pi,t+1 ∼ Fk−1+L. Her inventory will be k− 1 +L after this purchase and gradually declined

to K along with consumption. She needs not consider her purchase decision until the next

sale, which occurs after k − 1 + L −K periods. Thus, it can be written in the sum of the

total inventory costs and total consumption utilities in the next k− 1 +L−K periods, and

the expected value at state K.

V (Pt+1, k − 1 + L, k − 1 + L)

=
k−1+L−K∑

i=1

−c(k − 1 + L− i)δi−1 + v

(
k−1+L−K∑

i=1

δi−1

)

+ δk−1+L−KV (P,K,K).

(3.19)

Similarly, V (Pt+1, k− 1, k− 1 +L), the deviater’s continuation value, can be written as the

sum of cumulative inventory costs and consumption utilities in the next k− 1 periods, and

the continuation value when she runs out of stock and is forced to purchase at pR. The

latter continuation value can be decomposed into three parts, consumption utilities and

inventory costs before inventory declines to K, and the discounted continuation value at

state K with inventory K (see Appendix A for details):

V (Pt+1, k − 1, k − 1 + L)

=
k−1∑
i=1

−c(k − 1− i)δi−1 +
L−1+K∑
i=0

(−c(L− 1− i))δk−1+i

+ v

(
k−1+L−K∑

i=1

δi−1

)
+ δk−1+L−KV (P,K,K)

(3.20)
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Not surprisingly, the two terms in the parenthesis of inequality (3.18), the continuation val-

ues of a non-deviater and a deviater, contain a common component, δk−1+L−KV (P,K,K).

This is consistent with the fact that the deviater’s inventory will synchronize with the rest

after k − 1 + L − K periods. The infinite-horizon optimizing problem boils down to a

k + L−K-period problem. Plugging the above two expressions back, we obtain

pt,min ≤ −cL

(
k−1∑
i=0

δi

)
+ δkpR = −cL1− δk

1− δ
+ δkpR (3.21)

The deviater postpones her purchase till k periods later and pays pR, while the rest of

shoppers purchase now at pt,min, but have to store the new package for k periods. Therefore,

there would be no incentive to deviate, if the cumulated inventory costs of the new package

do not offset the difference between δkpR and pt,min. To rationalize shoppers’ purchase

behavior, the critical price is

pk = −cL1− δk

1− δ
+ δkpR. (3.22)

There are two things worth noticing about the critical price. First, the value of the right

hand side of the above equation is the payoff of purchasing a new package at the regular

price when the current package is ran out (k periods later), a reservation value that a

shopper can always get by postponing purchase. Second, the critical price monotonically

decreases on k; when shoppers possess higher inventory, the price that induce purchase has

to be lower.

If pt,min > pk, or pit = pR, for all i, the rational decision is ”not buy”. This is a trivial

case. The deviater cannot gain by making a purchase. First notice that there would be

sales held in the subsequent periods as long as no retailer offers a sale price in any of the

previous periods, during which the inventory of all shoppers declines by one in each period.

If she buy in t at pR, the new package will incur inventory cost, and, if there would be a

sale in the subsequent periods, she would have to miss it.

3.4 Equilibrium

First of all, an equilibrium series of critical prices {pk}Kk=0 (p0 is trivially pR) satisfies
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• Fk(pk) > 0, which is equivalent to P < pk, ∀ 1 ≤ k ≤ K.

Recall that pk monotonically decreases on k and the lower bounds of price supports are

P , the above condition will be violated when k is sufficiently big. This ides is used to

rationalize Assumption 3. If the highest possible inventory level at which the probability of

sales is strictly positive is K, the above condition implies

pR
1− γ

1− γ +NLγ
< −cL1− δk

1− δ
+ δkpR, for 0 ≤ k ≤ K,

pR
1− γ

1− γ +NLγ
> −cL1− δk

1− δ
+ δkpR, for K + 1 ≤ k.

(3.23)

Since the series of critical prices monotonically decreases on k and the starting value p0 =

pR > P and the limit of the series limk→∞ pk = cL
1−δ < P , there exists an integer K > 0 that

satisfies the above inequalities. To rationalize Assumption 3, we would like the parameters

satisfy K < L. A sufficient and necessary parameter condition is

pR
1− γ

1− γ +NLγ
> −cL1− δL

1− δ
+ δLpR, (3.24)

which can be satisfied as long as δ is sufficiently small.

In the states where k > K, the critical price is lower than P , all retailers will charge pR

with probability one at those states. A number of observations immediately follow.

1.Because pk decreases on k and each Fk is identical to F0 within the interval [P , pk],

Fk(pk) also decreases on k. This means that the probability of holding a sale is low at high

inventories. Though retailers have to offer lower prices in order to induce purchase at high

inventories, the prices are more likely to be at the regular level. The oligopoly competition

is the most rigorous at state zero, where all retailers offer sales prices.

2. Given observation 1, the transition of states is non-absorbing, in a sense that high

states are more likely to decrease than low states, and low states(≤ K) are more likely to

jump up by L− 1 than high states.

The MPE requires that the decision making depends on the current state only. One would

argue that the history affects agents’ expectation, because, for example, a shopper antici-

pates a sale occurs with high probability if there has been no sales in the past long period of
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time. This intuitive hazard rate of holding a sale is actually consistent with our equilibrium

outcome: at a low state, which implicates that no sales have occurred in the past several

periods and therefore no purchase has been made by shoppers, the probability of holding a

sale is high.

3. The realized price evolution consists of several consecutive periods where price stays

at pR followed by temporary one-time price reductions. During the periods where inventory

is low enough for retailers to offer sales, either one or more retailers simultaneously hold

sales, or none of them do so. If any one of the stores offers a sale price, the Low type con-

sumers will stock up, and this sale will be followed by another several consecutive non-sale

periods.

Suppose the system starts from a ”low” state with k < K and the lowest price pt is less

than the critical level, purchase by shoppers will occur and the state transits to k − 1 + L

where all prices will be pR. The price will stay at pR for at least k−1 +L−K periods until

the state falls back to K. The next sale will occur within K periods, at a state 0 ≤ k ≤ K.

This sale is again followed by several consecutive periods in which all prices stay at pR.

Since an equilibrium sale must induce purchase resulting in inventory levels higher than K,

the sales are one-time and temporary.

3.5 Conclusion

I construct a model of oligopoly retailers selling a homogeneous storable good. The good

in the model are assumed to be consumed for multiple periods, and therefore does not

need purchased frequently. Under the infinite horizon setup, the High type consumers are

assumed to be loyal to a specific store, never purchase for inventory cost, and do not search

for price; they purchase only when run out at the store she is loyal to. The Low type

consumers do search for price at zero cost, purchase if the best deal price offered among all

stores is below some cut-off level, and store it as inventory at some cost.

One equilibrium among the continuum of equilibria is characterized by a critical price

that decreases on inventory. At each state, retailers simultaneously draw prices from Fk,
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and shoppers purchase if the lowest price is no greater than the critical price. The critical

price and the probability of holding a sale are low at high inventories. The pattern of

state transition is non-absorbing: high states are more likely to decrease by one, and low

states(≤ K) are likely to jump up by L− 1.

This model assumes consumer heterogeneities with respect to store loyalty, search cost,

and inventory cost. The predicted patterns of price variation is consistent with empirical

observation that there is a strictly positive probability of charging the regular price. The

model also predicts that the probability of holding a sale is low when shoppers hold a high

inventory; and no shopper would store more than one packages, apart from the package

that is currently in use. The predicted price panel consists of several consecutive periods

where all prices stay at the regular level and occasional one-period price reductions.

The model relies on the assumption that the inventories and therefore purchase behaviors

of all shoppers are synchronized. Relaxing this assumption would result in a complex of

equilibria in which only some shoppers whose inventories below some cut-off level would

purchase.
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Chapter 4

An Empirical Analysis of Dynamic Supply and Demand of

Storable Goods

4.1 Introduction

When goods are storable, consumers take future prices into consideration while making

current purchase decision, and suppliers take into account future profit when making current

pricing decision. A consumer has an incentive to make an unplanned purchase if she observes

a price-cut and believes that it will return to the regular price level in the near future.

The unexpectedly purchased product goes to the storage at an inventory cost. Thus, the

consumer faces a trade-off between storage cost and attractive low price. One the other

hand, the seller’s pricing decision also faces a dynamic trade-off: selling more today reduces

demand tomorrow. Suppliers tend to keep the prices high to preserve future demand.

Moreover, If adjusting prices incurs menu costs, it is optimal to cut prices only if the costs

can be covered by the increase in total expected profit brought by expanded sales. Similarly,

changing prices from sales prices back to regular levels is optimal only if this menu cost can

be covered by the gain in profits attributes to preserved future demand.

Dynamic markets that are frequently modelled are of durable goods. Similar to product

replacement in a durable-good market that is driven by innovation and obsolescence, re-

peated purchases in a storable-good market are forced by continuous consumption. Despite

the importance of dynamic demand and pricing decision in differentiated goods market,

the equilibrium implications of stores’ and consumers’ strategies remain unclear. I there-

fore construct a model in the framework of Markov-perfect equilibrium (MPE) of dynamic

demand and supply of storable goods with endogenous optimal strategies and consistent

beliefs .

In this model, products are differentiated, and are sold by a store. Consumers maximize
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the expected discounted future utility flows, accounting for the store’s strategies lead to

future prices. In each period a consumer decides whether to buy, how much to buy, which

product to buy, and how much to consume. Quantities not consumed are stored at a cost,

and can be consumed in the future. Observing prices, consumers balance inventory cost

and potential future savings. Store maximizes the present expected future profit flows by

choosing prices of all products it carries while taking into account the dynamic stockpiling

behavior of consumers. In each period, a menu cost incurs if the store chooses a price

different from the last period. A store balances the current menu cost, current profit, and

future demand. Since each consumer’s demand depends on how much inventory she holds,

the distribution of currently owned products affects aggregate demand in each period.

I estimate the model with data of laundry detergent market. This industry is well-

suited for the analysis as there are only five typical package sizes that largely decrease

the computational burden. Despite of this, several adjustments need to be made: first,

neither inventory of a specific consumer nor the inventory distribution, the state variables of

consumers and store, is observed. To address this problem, I generate an initial distribution,

and updated it by the optimal endogenous purchase and consumption policies. To reduce

the dimensionality (there are 29 brands and 5 package sizes, though not all brands have all 5

sizes), I assume that the product characteristics enter consumer’s value function only in the

current period and will not affect future utility, and that the consumption decision is not

product specific. Thus, product differentiation is irrelevant to the dynamic tradeoffs, and

all related parameters can be estimated using a static model. The structural parameters

related to consumption and inventory cost are estimated in a much smaller space by solving

the consumer’s dynamic problem, considering only the quantity decisions.

The dimensionality problem is potentially remarkable for the supply side. With contin-

uous bounded action sets of prices of a large number of products, finding the optimal prices

would be extremely computational burdensome. The price series of each product from the

data tells me the pattern of pricing decision: each product has a finite discrete set of price,

and the price flow is jumping over the several candidate prices period to period. I therefore

assume that the price sets are exogenous, in a sense that the number of candidates and

values in each set are not determined by the dynamic optimizing problem.
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The structural parameters of the model are estimated with SMD estimator. The optimal

estimates are found by minimizing the distance between a set of moments of the data and

their counterparts simulated by the model. I choose the price elasticities of non-purchase

duration and quantity sold, average consumption rate, average market shares and prices,

and average price adjustment intervals as matching moments. Each simulation consists of

104 periods, the same length as the observed data. In each period, the optimal strategies

of store and consumers are solved numerically at given states, and the state variables are

updated under the optimal policies.

The structural estimates allow me to simulate the market evolution to examine optimal

behavior and belief. Store decides to hold big sales by cutting prices of a large number of

products when the average inventory of consumers is high. After the big sales, store keeps

prices at regular levels, along with the gradual decline in average inventory level that is

primarily due to consumption and small purchases. Store dose not hold the next big sale

until the average inventory recovers to high level. Store dose not cut prices when the average

inventory level is low, because a rise in demand will be driven by consumption needs instead

of low prices. At extremely low average inventory, a purchase spike occurs, even the prices

are mostly at regular levels. Inventory level recovers to high level after the purchase spike.

Furthermore, the agents’ beliefs on inventory distribution are consistent with evolution of

inventory distribution that is governed by the optimal strategies under those beliefs.

4.2 Literature Review

The empirical framework of Markov-perfect dynamic industry (Maskin and Tirole 1988) was

first developed by Ericson and Pakes (1995) for oligopoly evolution. Pakes and McGuire

(1992) propose an algorithm for computing the MPE. At each tempted parameter vector,

MPE needs to be solved by analytically solving value functions using polynomial approx-

imation. Bajari et al. (2007) describe a two-step algorithm for estimating dynamic games

under the assumption that observed actions are consistent with MPE. The advantage is

that in the first step of this method, the agents’ policy functions can be fully recovered

nonparametrically from observed actions and states, as well as the Markov transition kernel
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that determine the evolution of relevant state variables. This essentially involves regress-

ing observed actions to observed state variables. The second step is to find the structural

parameters that rationalize the observed actions as a set of optimal response. Aguirre-

gabiria and Mira (2007) point out that because the two-step method requires consistent

nonparametric estimators of players’ choice probabilities in the first step, it is sometimes

unavailable, biased in small samples, and asymptotically inefficient. They therefore pro-

pose nested pseudo likelihood estimator for unavailable nonparametric estimation of choice

probabilities and unobserved heterogeneity.

The empirical framework of Ericson and Pakes (1995) has been applied to a variety

of industries with entry/exit and/or R&D. Pakes et al. (2007) use the two-step method to

estimate industry dynamics with entry and exit. The study of learning-by-doing of Benkard

(2004) allows the market size for airplanes to change stochastically based on current sales to

mimic the dynamic implications of forward-looking consumers. Another application of the

empirical framework lies in durable goods market, where forward-looking consumers decide

when to update a product and firms choose optimal innovation investments and prices.

Carranza (2010) estimates product innovation and adoption of digital cameras, using a

reduced-form solution of dynamic demand that dramatically facilitates estimation. In their

empirical study on PC microprocessor industry, Goettler and Gordon (2008) propose a

model of dynamic oligopoly with durable goods taking into account the dynamic behavior

of consumers who rationally anticipate future product improvements and price declines.

Consumer dynamic behaviors in durable and storable goods markets are very similar: a

consumer make purchase decision in each period taking into account the prices and product

attributes (qualities, improvements, etc.) of available products in the market, predictions on

future prices and attributes, and the current product owned by her. For durable goods mar-

ket the purchase decision depend on the attributes of product she owns, while for storable

goods market this decision is determined by the amount of products in storage. Hendel

and Nevo (2006) examine consumer stockpiling behavior that results from contemporary

price reduction of storable goods. They show that demand estimation based on temporary

prices are mismeasured when long-run response to prices are ignored. Nair (2007) stud-

ied inter-temporal price discrimination with forward-looking consumers in the market of
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console video-games. His model simulation reveals that ignoring the dynamic behavior of

consumers results in large profit losses.

This paper nests the dynamic demand model developed by Hendel and Nevo (2006). For

computation algorithm, the popular two-step method famous for its simplicity cannot be

used here because the state variables and some of the optimal responses are unobserved by

the econometrician. The state variables, individual inventory of the storable good and inven-

tory distribution are not recorded. Consumption, one of the actions chosen by consumers,

is also unobservable. Therefore, I propose a hybrid algorithm that combines ’traditional’

equilibrium solving and SMD estimator for parameter search.

4.3 Model

Time is discrete with an infinite horizon, indexed by t. A monopolistic store sells products

jx, where j ∈ {1, ..., J} denotes brand, x ∈ {0, x1..., xX} denotes the index of the package

size (0 for non-purchase). In each period, the store make price decision pt = (..., pjxt, ...)
′.

Price is a dynamic control, since lowering price in period t increases current profits but

reduces future demand. Moreover, adjusting the price of a specific product will incur a

menu cost. Observing the prices, consumers decide in each period whether to buy or to

continue using the product stored, and how much to consume. Goods that is not consumed

will be stored at a cost. Because consumer purchase decisions depend on the inventory hold

by each consumer, the aggregate demand is determined by the distribution of inventory.

Denote the distribution of consumer inventory by Dt. The store and consumers are forward-

looking and take into account the optimal dynamic behavior of other agents when making

their respective decisions. I assume that the distribution of inventory is observable for all

agents.

4.3.1 Consumer Purchase Behavior

Each consumer h ∈ {1, ...,H} in every period t decides whether to buy, which brand and

which package size to buy, and how much to consume. The good that is not consumed in
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period t is stored as inventory at a cost, and can be consumed in the future. Denote a con-

sumer’s decision σt = {j, x, c} ∈ {1, ..., J}×{0, ..., xX}×R+, where c denotes consumption,

x = 0 stands for no purchase. Consumer h obtains per-period utility consists of the utility

from consumption, the disutility from inventory, and a one-time payoff from purchasing the

product:

Uht = uC(cht; ΘC)− uI(ih,t+1; ΘI) +
∑
j,x

dhjxtuhjxt (4.1)

where

uhjxt = αphjxt + ξhjx + εhjxt (4.2)

ih,t+1 = iht + xht − cht (4.3)

where dhjxt is the purchase indicator, satisfying

dhjxt ∈ {0, 1}

∑
j,x

djxt = 1

ξhjx is the time-invariant idiosyncratic taste that could be a function of characteristics of

product jx, and εhjxt is a individual and product-specific random shock to consumer choice.

The subscript h is omitted hereafter.

Each consumer maximizes her expected discounted utility, which can be formulated

using Bellman’s equation:

V (Dt, it, εt) = max
ct,dt

Ut + δ
∑

Dt+1|Dt

∫
ε
V (Dt+1, it+1, εt+1)dεt+1 g(Dt+1|Dt, εt, ct, dt)


subject to ct ≤ it + xt,∑

j,x

djxt = 1,

(4.4)

where g(Dt+1|Dt, εt, ct, dt) is the distribution of inventory of the next period conditional

on current state variables and choices. Following Rust (1987) and assuming εjxt is i.i.d.

extreme value type-1 across all consumers and over time, the computational burden can be

significantly reduced. The standard multinomial logit formula for the demand side can be

obtained by integrating over all future εjxs, s > t. in particular, the product-specific value
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function is

V̂jx(Dt, it) = max
ct

uC(ct; ΘC)− uI(it+1; ΘI) + αpjxt + ξjx

+ δ
∑

Dt+1|Dt

log

(∑
j′,x′

(exp(V (Dt+1, it+1))) g(Dt+1|Dt, εt)

) (4.5)

The conditional choice probabilities for a consumer with inventory it are therefore

sjxt|it =
exp(V̂jx(Dt, it))∑
k,y exp(V̂ky(Dt, it))

(4.6)

The market share of product jx is

sjt =

∫
sjt|itdDt(it) (4.7)

Once a consumer purchases a product of size x, the brand or any characteristic of the product

no longer matters. The consumer receives a one-time utility payoff of ξjx from purchasing

product jx. This payoff dose not occur in future periods because the consumption and

purchase decisions depend only on inventory. With products of different brands serving as

perfect substitutes in her inventory, neither ct nor it is product specific. That is, prices,

merchandising activities, and product characteristics affect purchase decision at store, while

none of them affect consumption decision conditional on a purchased size. Relaxing this

assumption would require Dt to be product specific, which substantially increase the state

space. Hendel and Nevo (2006) show that the parameters related to product differentiation

are independent from the dynamic quantity choice, and the probability of choosing a brand

conditional on quantity dose not depend on dynamic considerations. Therefore, α, ξjx can

be estimated using a static logit model.

Each consumer is small relative to the size of the market so that individual actions

do not affect the evolution of inventory distribution. In other words, when a consumer is

making her own decision, she dose not consider the trade-off between shifts in Dt+1|Dt and

her quantity choice.

4.3.2 Store Pricing Behavior

Each period the store makes pricing and promotion decisions. The store can keep the price

of each product unchanged as in the last period, or raise/cut price at a menu cost. The
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flow profit function can be written as:

πt(pt, pt−1, Dt) =M
∑
j,x

sjxt(pt, Dt)(pjxt −mcjx)

− γ
∑
j,x

I(pjxt 6= pjx,t−1),

(4.8)

where M is the market size, sjxt is market share as a function of pricing and promotion

decisions and current inventory distribution, mcjx is the input price, and γ
∑

j,x I(pjxt 6=

pjxt−1) represents the total menu cost, in which I(·) is an indicator function. A unit menu

cost of γ incurs if a price is adjusted from the last period. The store maximizes the expected

discounted profits, which can be expressed by Bellman equation

W (Dt, pt−1) = max
pt

πt(pt, pt−1, Dt) + δ
∑

Dt+1|Dt,pt

W (Dt+1, pt)f(Dt+1|Dt, pt)

 (4.9)

The market shares determined by consumer optimization translate into the law of motion

for the distribution of inventory. The share of consumers with inventory i at the beginning

of period t+ 1 is

Dt+1(i)|Dt, pt, pt−1 = s0t ·Dt(i) +
∑
j,x6=0

sjxt(pt, pt−1) ·Dt(i = it + x− ct) (4.10)

The first part of Dt+1(i) accounts for the probability of non-purchase of a consumer with

inventory i. If a consumer with inventory it in the current period purchase product jx

at probability sjxt, updating her next-period inventory to be i, then Dt+1 shifts. The

continuation inventory distribution is a deterministic function of prices and merchandising

activities.

4.3.3 Store’s Dynamic Tradeoffs

Although the action sets of price and merchandising activities are not continuous, differenti-

ating value function can gives a feeling about store’s dynamic trade-offs. Given a last-period

price pt−1 and inventory distribution Dt, consider the optimal price of product ky, at which
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∂W (·)
∂pkyt

= 0:

∂W (·)
∂pkyt

=
∂πt(pt, pt−1, Dt)

∂pkyt
+ δ

∑
Dt+1|Dt,pt

W (Dt+1)
∂f(Dt+1|Dt, pt)

∂pkyt

=M ·
∑
jx6=ky

∂sjxt
∂pkyt

(pjxt −mcjx) +Mskyt − γ
∂I(·)
∂pkyt

+ δ
∑

Dt+1|Dt,pt

W (Dt+1)
∂f(Dt+1, |Dt, pt)

∂pjxt

=0

(4.11)

Similarly, a small decrease in price will bring a small current profit increase of this

product, decrease in the sum of all other products, a menu cost(if different from the last

period), and a small decrease in future total profit through a shift in next-period inventory

distribution. Suppose the current change from a small deviation in pkyt causes a lose in

current profit:

M ·
∑
jx6=ky

∂sjxt
∂pkyt

(pjxt −mcjx) +Mskyt − γ
∂I(·)
∂pkyt

< 0

then

δ
∑

Dt+1|Dt,pt

W (Dt+1)
∂f(Dt+1, |Dt, pt)

∂pjxt

is the gain in future profits. By contrast, a myopic seller who ignores the shift in future

inventory distribution will choose a lower price that satisfies

∂πt(pt, pt−1, Dt)

∂pkyt
= 0

for all ky. In sum, the dynamic trade-off of the seller means a higher price is chosen so that

more consumer will likely to purchase in the next period. Because the action set of store is

finite, there exists at least one p∗t ∈ Πj,xPjx as a solution for store’s problem (may not be

unique).

4.3.4 Equilibrium

I consider a mixed-strategy MPE of this dynamic game, based on the framework developed

by Ericson and Pakes (1995). The inventory distribution is observable for both consumers

and store. They also have consistent beliefs about how future distribution changes. The

equilibrium is of rational expectation, in a sense that the evolution of the state variable
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(Dt+1|Dt in this application) governed by the optimal actions of all agents is consistent

with their beliefs on future states. Both store and consumers choose their optimal policies

based on expectations that accurately reflect the policies. Specifically,

1. The strategies of all agents, {pt, dt, ct}∞t=0, depend only on state variables;

2. Consumers possess rational expectations about store’s policy functions and the evolution

of inventory distribution;

3. Store possesses rational expectation about the evolution of inventory distribution.

Formally, I define an equilibrium for this dynamic game as the set

{W (D), p∗, {V (D, i), c∗, d∗}h=H
h=1 , g(·|·), f(·|·)}

which contains the value functions of the store and consumers, their optimal policies, and

beliefs about future inventory distributions. Given their beliefs and at any (Dt, it, εt) ∈

D× I× E, the policy functions maximize all agents’ payoffs:

(p∗|Dt, pt−1) =argmax
(p)

{πt + δE[W (Dt+1|Dt, pt)]}

(c∗, d∗|it, Dt) =argmax
(c,d)

{Ut + δE[V (Dt+1|Dt, εt)]}
(4.12)

The expectations are rational in that the expected distributions match the distribution

from which realizations are drawn when consumers and store behave according to their

policy functions. That is,

Dt+1|Dt, p
∗
t = s0t ·Dt(i) +

∑
j,x6=0

sjxt ·Dt(i = it + x∗ − c∗t )

=

∫
g(Dt+1|Dt, εt, c

∗
t , d
∗
t )Prob(c

∗
t , d
∗
t |εt, Dt)dFε

= f(Dt+1|Dt, p
∗
t )Prob(p

∗
t |Dt) (4.13)

I use the following assumption for the existence of MPE:

1. Each consider is small so that it is ignorable for Dt;

2. There exists an initial inventory distribution, D0, that is observed by all agents; all

consumers know her own initial inventory, iht;
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3. Consumers are identical;

4. pjxt and iht are positive and bounded: 0 ≤ iht ≤ i, for all h, t, and 0 ≤ pjxt ≤ p

for all j, x. Thus, Dt has an positive and bounded support. ct is also bounded since

ct ≤ it + xt.

Note that for any set of strategies σ, in equilibrium or not, the value functions V (·) and

W (·) and inventory distribution depend on players’ strategies only through the choice prob-

abilities P associated with σ. Let σ∗ = (σ∗c , σ
∗
s) be equilibrium strategies of consumers and

store, and P ∗ be the associated probabilities, then

P ∗h (ct, dt|it, Dt) =

∫
I({ct, dt} = σ∗c (it, Dt, εt))dFε

P ∗s (pt|Dt, pt−1) = I({pt} = σ∗s(Dt, pt−1))

(4.14)

where I is the indicator. Following the definition of MPE in the game,

P ∗h (ct, dt|it, Dt) =

∫
I({ct, dt} = argmax

(c,d)
{Ut

+ δ
∑

Dt+1|Dt,pt

V (it+1, Dt+1))I(Dt+1|Dt, pt)P
∗(pt|Dt, pt−1)}dFε

P ∗s (pt|Dt, pt−1) =I(pt = argmax
(p)

{πt

+ δ
∑

Dt+1|Dt,pt

W (it+1, Dt+1))I(Dt+1|Dt, {cht, dht}Hh=1)

H∏
h=1

P ∗h (ct, dt|it, Dt)}

(4.15)

where P ∗h (ct, dt|it, Dt) is the marginal probability at it, and P ∗(pt|Dt, pt−1)can be written

by
∫

P∗h(ct, dt|it, Dt)dD(·). We finally have

P ∗({cht, dht}Hh=1, pt) = Λ(P ∗({cht, dht}Hh=1, pt)) (4.16)

Therefore, the equilibrium probabilities are a fixed point. Given the assumptions on the

distribution of ε, best response probability function Λ is well-defined and continuous on the

compact sets of players’ choice probabilities. By Brower’s Theorem, there exist at least one

mixed-strategy MPE. In the next few sections, I assume there exist a pure-strategy MPE.

Model simulation and parameter estimation are fulfilled for a pure-strategy MPE.
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4.4 Computation

4.4.1 Approximation of Inventory Distribution

The challenge due to the inventory distribution as a state variable is that Dt is a high

dimensional simplex. I approximate this continuous state variable with a finite set {Dm}Mm=1

that restrict Dt. Let D̂t+1 be the unapproximated transition implied by equation(4.13) ,

and let ρm denote the distance between D̂t+1 and Dm. Among the several candidates of

distance metrics, the mean is the most relevant moment for logit-based demand systems

(Goettler and Gordon 2008). Since the mean inventory is the main factor that drives

purchase, consumption, and pricing behaviour. Thus, the distance metrics is written as

ρm =|
∑
i

iD̂(i)t+1 −
∑
i

iDm(i) | (4.17)

where the summation is over the discrete grids from 0 to i. With multiple dimensions, the

probabilities of transforming to Dm from Dt can be defined as some function negatively

related to ρm. To further simplify computation, I choose the two closest Dm, denoted by

subscript m and m+ 1, to approximate D̂t+1:

Prob(Dt+1 = Dm) =
ρm+1

ρm + ρm+1

Prob(Dt+1 = Dm+1) =
ρm

ρm + ρm+1

(4.18)

I generate {Dm}Mm=1 from a single family of distribution (log-normal) parameterized by a

scalar. The interval of this scalar is chosen so that the mean of Dm are evenly spreading

over (0,i). This approximation suggests the key feature of dynamic tradeoffs: selling more

today means a high-mean inventory distribution for tomorrow, which lowers future sales.

The effect of this approximation in computing equilibrium depends on the coarseness of the

discretization and the choose of i.

4.4.2 Solving the model

Discretizing the action sets of prices can significantly mitigate the computational burden,

considering the large number of products. By contrast, looking for optimal price vector

would be almost impossible if action sets are continuous or even unbounded. The price of
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each product has to be chosen from a price set Pjx = {pjx,1, ..., pjx,njx} with njx elements.

Restricting prices to be chosen from several fixed values is inspired by typical price series

given by the data, in which price seems to be jumping around a few numbers. It is unclear

why stores usually price at numbers like $ 5.99 and $ 9.99, but it’s almost certain that

these are not the global optimal prices, if the action sets of prices are continuous. I assume

the numbers of candidate prices of each product, as well as their values, are exogenous.

Relaxing this assumption, one has to look for the optimal action sets of prices, which would

be even more burdensome and meaningless than just stick with continuous actions sets.

A challenge of pricing policy searching is that the number of products is large. Though

each has a discrete set of price candidates, there is still an astronomical number of price

combinations:
∏
j,x njx. I search the optimal price vector as follows:

1. Randomly choose a price vector from the set
∏
Pjx.

2. Starting from the first element of the two vectors, update each element by choosing

the optimal pjx ∈ Pjxthat gives the highest W (·) while keeping all other elements

unchanged. Record the new vector and W1 when this process reaches the last element.

3. Repeat step 2 and record Wk at the end of each kth, until |Wk −Wk−1 |< φ.

It is a bit concerned that the return of this approach is probably the local maximizer (if

W (·) converges), not the global one. To look for the true maximizer, one has to either

increase computer speed when using a Jocobian-based software command, or try different

starting vectors that returns different local maximizers.

The equilibrium is computed as follows: starting at iteration k = 0, initialize the value

functions V 0 and W 0 to zero, pricing and merchandise policy functions randomly chosen

from
∏
Pjx, consumption policy to be half of each consumer’s inventory, and purchase policy

of each consumer to be a randomly-chosen element from {0, ..., X}. Next, for iterations

k = 1, 2, ..., follow the steps

1. For each Dm, update the consumer’s value function V k given the store’s pricing and

merchandise activity policies {P k−1} by looking for the optimal consumption and

purchase decision {ck, dk}. Calculate the market share {skjx}.
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2. Update inventory distribution and approximate it with {Dk
m, ρ

k
m}Mm=1. Calculate be-

liefs about future distribution (
ρm+1

ρm + ρm+1
,

ρm
ρm + ρm+1

)k. For each Dm, update {P k}

given the market share {skjx} obtained in step 1. Evaluate the store’s value function

W k with {Dk
m, ρ

k
m}Mm=1.

3. Repeat step 1 and 2 until converge.

To simulate a history of the dynamic game, I first generate an initial distribution of inven-

tory, then for each period t = 0, ..., T , update the next-period distribution and transition

using the low of motion as described in equation (4.13). For the details of the Matlab

program, see Appendix B.

4.5 Empirical Application

4.5.1 Data

I use the same scanner dataset of laundry detergent as in Hendel and Nevo (2006). The

dataset records the detergent purchase history of 376 households in supermarkets and prices

of each week in a time period of 104 weeks. Briefly, the dataset contains two components,

store-level and household-level data. The store-level data is collected from nine supermar-

kets using scanning devices, from which the price of each product at each week is known.

The household-level data contains the purchase history of each tracked consumer. It tells

me when the consumer purchases a detergent product, how much she paid, and prices and

merchandising activities of all other products on-shelf observed but not purchased by the

consumer.

There are in total 29 brands and 5 typical package sizes (32, 64, 96, 128, 256 oz.) of

laundry detergent. Some brands produce 256 oz. packages, but these purchases are omitted

in this analysis to reduce computational dimensions, since the total market share of this

size is merely 3 percent. Note that not all brands have all sizes, and usually not all products

are available at each store.

The dataset also contains demographics of tracked households. Hendel and Nevo (2006)

divide the households into six groups by demographics to explain different price sensitivities
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and inventory costs. This extension is worth pursuing in future study, while all consumers

are assumed to be identical in this analysis.

4.5.2 Preliminary Analysis

Table 4.1 displays summary statistics of household purchase and consumption behaviors,

as well as price adjustments of store. Households make a purchase of laundry detergent

about every 13 weeks on average, and consume 3.5144 oz. every week. The stores adjust

prices every two weeks, and are able to sell 2 packages per week on average to the observed

population. The most popular package size is 64 oz. with a market share of 51 percent.

Among the 29 brands recorded, 21 of them provide 64-oz. packages, comparing to 8, 11, and

17 brands that provide 32, 96, 128-oz. packages, respectively. Besides their size advantage,

64-oz products are mostly preferred because it is the most available package on shelf.

Duration Analysis of Non-purchase

The inventory model developed by Boizot et al. (2001) asserts that the expectation of non-

purchase interval is a decreasing function of price of the last period, and an increasing

function of current price. A duration analysis helps to get a feeling of data. Since house-

holds do not observe prices of goods every period, price of the last period would have no

explanatory power. I Thus regress durations between two adjacent purchases on average

price of the purchased good, current price, and dummies of package size:

λ(durit|pit, p) = αφαitdur
α−1
it νi

φit = exp(θ1pit + θ2p+
∑

θ3xDx)

(4.19)

where subscript t denotes time, i denotes observation i, λ is the probability of duration, pit

is the current price of the purchased product, p is the average price over all observed period

of the product, νi represents random effect of each purchase that captures all unobserved

characteristics of that purchase, Dx are dummies for package sizes. One can also consider

include dummies for all brand-size combinations to capture brand-specific preferences, but

since in the long run purchase durations depend on consumption rates, brand dummies

would have very small explanatory power. Note that the parameters do not depend on
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t. This hazard function belongs to the Weibull family. It can be written as lndurit =

−lnφt + lnut, in which ut follows a type I extreme value distribution.

Since p does not vary over time, the above regression is equivalent to regressing durations

on a constant, the difference between current price and average price, and size dummies.

The coefficient θ2 can be interpreted as the price elasticity of duration. I expect θ2 < 0

because of a positive correlation between current price and purchase duration. If include

four dummies for the four packages sizes, the regression has no constant term. The final

form of the regression is:

log(durht|djxht = 1) = β1pjxt +
∑
x

β1xDx + εjxht (4.20)

The result is reported in Table 4.1. The coefficient associate with price elasticity is 0.0215,

implying at the mean duration (12.58 weeks), a price increase of 1 dollar will postpone

purchase by 0.27 week.

If the households were truly homogeneous and consumption rate is constant over time,

the coefficients associate with size dummies should decrease on size. however, the regression

shows that those coefficients have no explicit relationship with package size. One possible

reason is that household heterogeneity is ignored in the regression. If, for instance, family

size is included, then the coefficients would be helpful explain package effects.

Quantities sold

The store expects larger quantities sold during price-cuts, so the quantity of items sold is

supposed to be negatively correlated with its promotion price. Following the empirical work

by Boizot et al. (2001), I regress the quantity sold of each product during one week on its

current price, average price, and size dummies:

Qjxt = β2pjxt +
∑
x

β2xDx + εjxt (4.21)

where Qit denotes total quantity sold of a specific product in week t. Given the large

variances of the estimated coefficients, the null hypothesis of zeros price elasticity cannot

be rejected. The sign of β2 is expected to be negative. I don’t use the log(Q) because

the observed quantity sold in each week contains a lot of ones. The regression has no
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intersection, as full dummies are included. The estimate of β2 = −0.1480 implies that a

price-cut of 1 dollar will result in a 13% increase in quantity.

4.5.3 Estimation

The parameters of the model are estimated by minimizing the distance between a set of

moments of the data and their counterparts simulated by the model. This type of estimator,

falls in the class of GMM estimator, is referred as simulated minimum distance (SMD)

estimator by Hall and Rust (2003) because it minimizes the (weighted) distance between

simulated and actual moments. By searching over the space of structural parameters, the

SMD estimator finds a model with a stationary distribution that yields moments matching

the actual ones. The efficient weight matrix is the inverse of the covariance matrix of the

actual moments.

Because in general the equilibrium is not unique (Aguirregabiria and Mira, 2007),

maximum-likelihood estimators cannot be used as the sum of probabilities of all possible

outcomes is greater than 1. If the stochastic process smoothly jumps from one equilibrium

to another, the probabilities conditional on previous evolution cannot be obtained and MLE

becomes meaningless. We have to believe that the parameters are identified if the moments

suggested by the simulation are similar to those actually observed. The idea is that at

a given state, if the simulated policies and outcomes under the estimated parameters are

identical to the observed actions and outcomes, then the estimates are true parameters.

For example, the average prices in the actual and simulated data ought to be similar; at a

simulated inventory distribution with a mean similar to the real one, the price elasticities

should be similar to their counterparts implied by the data.

Formally, the Markov process is written by

f(Dt+1, st+1, pt+1, {ch,t+1, dh,t+1}Hh=1|Dt, st, pt, {ch,t, dh,t}Hh=1, εt; Θ)

=f(Dt+1|DDt , st, pt, {ch,t, dh,t}Hh=1; Θ)

× Prob(pt+1 = σ∗(Dt); Θ)

×
∏
h

Prob(ch,t+1, dh,t+1|Dt, iht, εjxht; Θ)

× I(st+1|DDt , pt, {ch,t, dh,t}Hh=1, εt; Θ)

(4.22)
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where Θ denotes the structural parameter vector needs to be estimated. In a pure-strategy

MPE, the two probabilities in the above equation are simply one, the market share and

policies are deterministic functions of the current state, Dt and εt. For each candidate Θ

encountered, starting at the initial state D0, I solve for equilibrium policies and outcomes

and simulate the model for T periods, assuming the process is governed by a pure-strategy

equilibrium with all policies deterministic. By simulating the model N times, I can obtain

a N ×T panel, {{Dt, st, pt, at, {ch,t, dh,t}Hh=1, εt;D0,Θ}Tt=1}Nn=1, in which each observation is

a model simulation of equilibrium evolution. Notice that the model distribution is of i.i.d

and the randomness stems from the demand shocks, t.

Let ϕ = (st, pt, at, {ch,t, dh,t}Hh=1), of which the moments are used for distance minimiza-

tion. The moments implied by the actual data is denoted by the vector

ma = m({ϕa}Tt=1) (4.23)

and the simulated moment vector is the average over N simulations:

ms(Θ, D0, p0) =
1

N
m({{ϕs;D0,Θ}Tt=1}Nn=1) (4.24)

The SMD estimator is therefore the minimizer of the weighted quadratic form of distance

between ma and ms:

Θ̂(D0, p0) = argmin
(Θ)

(ma −ms(Θ, D0))′(Ωa)−1(ma −ms(Θ, D0)) (4.25)

where Ωa is the covariance matrix of the real moments. Suppose the parameter vector Θ

is of length K and the data implies L moments, then identification requires L > K. A

problem with the SMD estimator in this application is that neither the inventory nor its

distribution are observed by a econometrician. The estimates in the above equation is thus

a function of the initial distribution and prices.

4.5.4 Auxiliary Models

The policies of prices, promotions, consumption, purchase, and market share are deter-

ministic functions of the state variables, Dt and εt. A natural choice of variables whose

moments used for SMD would be these policy functions at a given state. However, the
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inventory distributions in this application are not observed. Even if they are, there is no

good measure of Dt available. Dt is thus excluded from the choice set of moment variables.

The data reveals the nonpurchase duration of each consumer, as well as duration since

the last promotion of each product. Boizot et al. (2001) shows that the duration since

the last purchase is positively related to the current price and negatively to the last price,

and quantity purchased increases in the last price. The empirics on ketchup conducted by

Pesendorfer (2002b) shows that the aggregate quantity sold during a promotion is positively

related to the duration since the last promotion. With these information, I choose the

following moments:

1. Coefficients from regressing nonpurchase duration durh on the current price of the

purchased product and size dummies:

log(durh|djxht = 1) = ω10pjxt +
4∑
s=1

ω1xDx + ejxht.

2. Coefficients from regressing quantity sold (number of product items) on current price

and size dummies, for all j, x, t:

Qjxt = ω20pjxt +

4∑
s=1

ω2xDx + ejxt.

3. The average consumption rate. Since consumption is not observed by the econome-

trician, the actual consumption rate is calculated using the total amount of detergent (in

oz.) that is purchased over the recorded period divided by period length, averaging over all

households. The simulated consumption rate can be obtained from the consumption policy,

{ct}Tt=1.

4. The average duration of nonpurchase. The simulated moment is calculated from the

series of purchase policy, {dt}Tt=1.

5. The average price of each product, obtained from the time series of each brand-size

specific product, {pjxt}Tt=1.

6. The average intervals of price adjustment, which is also calculated from store’s pricing

policy.

7. The average market share of the four package sizes, as an outcome under the optimal

actions chosen by consumers and store, calculated by equation (4.7).



87

4.5.5 Parameterizations

I estimate parameters α, ξ using a static logit model, and structural parameters in Θ =

(ΘC ,ΘI , γ), where ΘC and ΘI are coefficients ahead of consumption and inventory cost,

respectively:

uC =θC ∗ log(c)

xI =θI1 ∗ i+ θI2 ∗ i2
(4.26)

The function forms above, following Hendel and Nevo (2006), capture the diminishing

marginal utility of consumption and convexity of inventory cost (θI2 > 0).

For computational simplicity, I first set the number of distributions to be 2, i.e, consider

the simplest case in which there are only two states, a low inventory distribution and a

high one. The grid of inventory distributions can be set more sophisticatedly by finer

distance between adjacent distributions and/or more controlled density function family. I

use uniform distribution to generate the initial individual inventories and distributions as

state variables:

D1 ∼ U(0, 20)

D2 ∼ U(0, 60)

The grid for policy functions are set as follows: The action set of consumption contains

integers from 0 to 100 with an interval of 1; The action set for pricing of each product

contains five numbers that are randomly selected from observed price series. The discount

factor δ is set to 0.95. The market size M is normalized to 1.

One has to be cautious when choosing the starting values for parameter search. Hendel

and Nevo (2006) use maximum likelihood estimators to estimate a partial equilibrium for

consumer stockpiling behavior. I adopt their estimates for the associate parameters in my

model. For the parameters of the supply side, I choose the starting value of γ to be 0.001.

4.5.6 Estimates and Model Fit

I choose T = 104 and simulate the model N = 5 times for each parameter estimation,

and bootstrap the standard error of the estimates. For each simulated market evolution
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at a tentative Θk, where k denotes the index of simulation, three random variables are

generated: the initial distributions of inventory are generated from the same family with

parameterization; the initial prices are randomly picked from the price set of each product;

and εjxht are drawn from type I extreme value distribution with a variance of 50.

The parameters to be estimated are Θ = (θC , θI1, θI2, γ). The model is over-identified,

since the number of moments is greater than the number of parameters. I estimated the

parameters using a model using moments and the auxiliary models with a base setting: the

number of inventory distribution, one of the state variable, equals 2. In this case there

exists a low-average inventory distribution, DL, and a high-average distribution, DH . More

sophisticated estimates can be obtained by increasing the number of inventory distribu-

tions and changing distribution family from which the initial distributions are drawn. The

estimates and variances estimated from a base model are reported in Table 4.3. The sim-

ulated moments and their pseudo t-values using the estimated parameters are reported in

Table 4.4 and Table 4.5. The pseudo t-values are calculated by dividing the difference

between the simulated and actual moments by the standard error of the actual moment.

The pseudo-t for market shares are omitted, because the actual market shares of the four

package sizes are calculated using the total quantities sold during the entire observed time

period. The purchases of the tracked households in each period usually cover only a few

kinds of products.

Moments that are below 3 are generally considered to be well-matched. Average interval

of price change is two large comparing to the actual counterpart, thought pseudo-t is less

than 3. This means the estimate of menu cost is too high, inducing a low frequency of price

adjustments. An alternative explanation would be that the menu cost of price adjustments

are not included in variable cost. The estimated consumption rate of each household per

week, 7.7480 oz., is very high comparing to common sense. The actual consumption rate of

laundry detergent would largely depend on the amount of laundry. According to the model,

an increase in inventory after a purchase will result in acceleration of consumption in order

to increase the utility from consumption and to avoid a high inventory cost. However,

in reality, an unplanned purchase of detergent due to price-cut would probably not cause

consumption acceleration, as a large amount of detergent will simply be wasted if overdose.



89

Therefore, the choice of function form for consumer utility could be altered to some threshold

function, in which consumption rate is more rigidly depend on the amount of laundry, and

inventory cost dose not increase as long as the inventory is not too high. For the same reason,

the continuous function form of consumer utility induces a shorter simulated non-purchase

duration.

The simulated market shares of the four sizes are quite well-matched. The simulated

time series of purchase behavior reveals that 64 oz. is the most popular package, with

market share of 45 percent (actual 50). The smallest package has 25 percent of the market

share, comparing to actual value 4 percent. The utility function of consumer may indicate a

high sensitivity to inventory cost than actual households, thus the smallest package is more

preferred.

The coefficient associate with price elasticity of quantities sold is negative for both

actual and simulated regressions, implying a negative relationship between current price

of a specific product and its quantity sold in that period. An price-cut of 1 dollar will

induce an increase in sale by 0.272 for the given set of households. The price elasticities

of non-purchase duration are both positive for both simulated and actual regressions, as

expected. It implies that a consumers would postpone purchase if she observe a high price,

or an unplanned purchase is made if a price-cut is observed. The simulated elasticities are

less positive for all package sizes than their actual counterparts, because the model indicates

some sensitivity to inventory cost and consumers are more cautious when making purchase

decisions. At the average duration, the simulation implies a purchase would be brought

advance by 0.12 week at a price-cut of 1 dollar, while for actual consumers it’s 0.27 week.

4.6 Results

4.6.1 The Realized Series of Purchase and Pricing Decisions

To get a feeling of the histories of optimal behaviors, I first present the simulated time

series of consumer and store’s actions. Figure 4.1 depicts the time series of consumption,

inventory, and purchase behavior of a randomly selected consumer in 104 weeks. Inventory

increase immediately after a purchase, and decreases gradually if no purchases are made.



90

It’s also worth noticing that after purchase, consumption level increases, in order to avoid

the high inventory cost caused by the newly bought product.

Figure 4.2 shows a typical price fluctuation of a randomly picked product. Since the

action set of store consists of candidate prices of all products that are drawn from actual

prices, the optimal pricing series of a specific product indicates when the store decides to

hold a price-cut. The regular price of this product is $ 5.79, while it might be reduced to $

4.85 or $ 4.99 during sales.

It is expected that consumers would make unplanned purchases if they observe price-

cuts. Thus the total quantity sold during sales is supposed to be higher than regular periods.

Figure 4.3 shows the time series of total quantity sold of the four sizes and the number of

products with price-cuts. There is a positive correlation between the two variables: the

more the products are on sale, the more the total quantities are expected to be sold. One

can also study the price elasticity by regressing quantity sold of a specific product on its

current price, as shown in Table 4.4.

Figure 4.4 shows consumer policies of consumption and purchase as functions of current

inventory iht and inventory distribution, Dt . Again I consider the simplest case where

there exists two inventory distributions, low and high. At both distributions, first note

that in each period, most consumers (77 percent for low distribution and 94 percent for

high inventory) don’t buy. At high distribution state, consumers are less likely to make

purchases because a high inventory cost would incur. Moreover, the consumption policy

as a function of iht in creases almost linearly with inventory level, but with negative drops

at certain points. For example, at it = 20 and 22, ct(it = 20|Dt = DH) is higher than

ct(it = 22|Dt = DH). The negative step can be explained by the optimal consumption

chosen conditional on purchase a 64 oz. product. Thus, a high consumption is chosen to

obtain high utility from utility and avoid inventory cost.

To induce consumers to buy, the store’s pricing policy is to cut prices of a set of products.

Figure 4.5 shows the average prices over all brands of the four sizes at the two distributions.

At the state of high distribution, store sets lower average prices for 96 oz. and 128 oz.

packages. Note the behavior of price-cuts at high-distribution state would cause a lower

probability of high distribution in the next period. Thus the store’s pricing behavior can be
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interpreted as smoothing inventory distributions over periods, and thus smoothing its profit

over periods. The probability of purchase would be even lower if store didn’t cut prices,

and the probability of high distribution in the next period conditional on high distribution

would be even higher.

Consumer’s V (it, D) is generally lower at high it, as a higher inventory cost in the current

period reduce the value of V (it, D), as showed in figure 4.6. Moreover, at high-distribution

state, the average value of V (·) is lower than at low-distribution state. Figure 4.7 shows

consumer value function when the number of inventory distribution is 7.

4.6.2 The Optimal Store Pricing

Markov-perfect equilibrium requires that the evolution of the inventory distribution that

is governed by the optimal actions of all agents is consistent with their beliefs on future

states. To Study the dynamics of the evolution of the entire market, I plot the time series

of average inventory level of all consumers, total quantity of purchase, beliefs in next-period

probability of DH (ρ), and average price of all products in Figure 4.8. This helps explain

the dynamics of the overall inventory, pricing, and sales quantity.

Store’s optimal pricing behavior is revealed by the correlation between the average price

of all products(four sizes, all brands) and store’s belief in inventory distribution in the next

period. ρ stands for the probability of transiting to high inventory distribution. Although

averaging over all products is a very loose measure of average market price, it is able to reflect

the connection between store’s belief and its sales promotion strategy. In the simulated time

period of 104 weeks, eleven ’big’ sales can be observed, each marked by a drop in the average

price. First, note that the average price do not drop if store believes that the next period

inventory distribution will be low. The reason is that a forward-looking store decides to

preserve sales for future by setting current prices high. Since a low-inventory distribution in

the next period means a high probability of purchase, thus a high sales quantity, the store’s

optimal action is to set current price high so that profit in the next period will not be too

low. Therefore, comparing to a myopic store that choose optimal prices to maximize profit

of a single period, the forward-looking store’s pricing strategy is to induce a smoother series

of sales quantities over periods.
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In fact, keeping prices at regular levels guarantees a low purchase probability in the

current period and a high probability of low inventory distribution in the next period. The

store’s belief in next-period distribution is consistent with the evolution of distribution

states that is governed by its optimal pricing decision.

Second, most ’big sales’ are hold during the periods after which inventory distribution

will be high. Because a high distribution in the next period implies low sales quantities, the

store chooses to cut prices to increase quantities sold in the current period and therefore

make a high current-period profit. Similarly, it is the store’s price-cut behavior that induces

a high inventory distribution in the next period.

Figure 4.2 shows store’s value function, in which M denotes the number inventory

distributions. The total expected profit is generally decreasing on average inventory. This

implies that it’s difficult to make profits when consumers are holding large amount of

inventory in the current period. At a low inventory distribution, a forward-looking store

tends to set prices higher than at a high one, because the store knows that given the high

probability of purchase of the forward-looking consumers, it is anyway easy to make a

profit in the current period. Thus, the store would rather set high prices to preserve future

demand. A low inventory distribution is always preferred by a store than a high one. In

the extreme case of zero inventories, a store could sell at very high prices, obtaining a high

current profit, and is still able to preserve a fairly large amount of demand for tomorrow.

4.6.3 The Optimal Consumer Purchase

Figure 4.8 also shows the time series of average price of all products and the total purchase

quantity(four sizes, all brands) of all consumers. First, it is clear that the ’big sales’ in-

deed induce purchase spikes. Rational forward-looking consumers are more likely to make

purchase if observe price-cuts, because consumers’ belief about next-period high inventory

distribution is of high probability, which means high future prices. Again, consumers’ belief

about Prob(Dt+1 = DH) is consistent with the evolution of states that is induced by the

optimal action under this belief. The remarkable purchases rushes mostly occur during

regular prices periods. These purchases primarily result from extremely low inventories and

urgent consumption needs. The store knows that the big purchase spike will cause a high
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probability in DH in t+ 1, thus decides to keep prices at regular levels to maintain a high

profit in the current period.

Having established the optimal dynamic strategies of the store and consumers, I now

present cyclical features of equilibrium behavior and outcomes when there exists only two

distributions, high and low. The cyclical patterns of the optimal behavior and evolution of

states are depicted in figure 4.9.

Observation 1. Store decides to hold big sales by cutting prices of a large number of

products when the average inventory of consumers is high (Figure fraction 1, 4.9). The

expected quantity sold is high enough so that the next-period inventory level is very likely

to be high. The store’s belief is Prob(Dt+1 = DH |Dt = DH) is close to one.

Observation 2. After the big sales, Store keeps prices at regular levels, along with the

gradual decline in average inventory level that is primarily due to consumption and small

purchases. Store dose not hold the next big sale until the average inventory recovers to high

level. The consistent belief is that at some medium average inventory in the current period,

Prob(Dt+1 = DL|Dt) is greater than Prob(Dt+1 = DH |Dt). (fraction 2, Figure 4.9)

Observation 3. Store dose not cut prices when the average inventory level is low, be-

cause a rise in demand will be driven by consumption needs instead of low prices. The

consistent belief is: next-period average inventory level will be higher than current level,

and Prob(Dt+1 = DH |Dt = DL) is small.

Observation 4. At extremely low average inventory, a purchase spike occurs, even the

prices are mostly at regular levels. Inventory level recovers to high level after the purchase

spike (fraction 3, Figure 4.9), Prob(Dt+1 = DH |Dt = DL) is small.

4.7 Conclusions

This paper presents a dynamic model of storable goods with endogenous consumption,

purchase, and pricing. The model entails two methodological contributions. First, I bind
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the action set of pricing to be a set of finite candidate prices. Under this specification, the

optimal pricing behavior of store can be solved without tedious dimensionality problem.

Second, because inventory as a state variable and consumption as a control variable are

not observed, I propose an alternative approach to parametrically estimate the model,

using SMD method with moments of price elasticities of non-purchase duration and total

quantity sold.

The model is estimated using data that consists of both store- and household-level

observations. I numerically show that the optimal pricing policy of store is to lower prices

at high overall inventory with weak incentives to purchase new product, and keep prices at

regular level at low average inventory with a high demand driven by urgent consumption

needs, in order to preserve future demand and profits. purchase spike of consumers occurs

when average inventory is low, primarily driven by consumption needs. Consumers respond

to price-cuts by some medium purchase spike. Furthermore, the agents’ beliefs on inventory

distribution are consistent with evolution of inventory distribution that is governed by the

optimal strategies under that beliefs.

The estimates of the model may depend on the initial conditions, which are generated

from the same set of distributions for each estimation. I generate the initial distribution of

inventory from the family of Uniform distribution. The choice of distribution family and

parameterization will surely affect policy functions and thus model estimates.

One possible extension of the interest is to take into account heterogeneity of the house-

holds for better parameter estimates. Another possibility is to change the function form of

the utility functions to get different value function and numerical results. The threshold

functions is worth considering, because it implies a weaker aversion to inventory cost.
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Table 4.1: Preliminary Analysis

mean std

Summary Statistics of Household and Store
non-purchase duration (weeks) 12.5864 12.8844
consumption rate (oz./week) 3.6144 4.3003
interval between price changes (weeks) 2.0122 2.5552
quantity sold 2.0636 1.7158

Market Share
32 oz. 0.0450
64 oz. 0.5087
96 oz. 0.0822
128 oz. 0.3462

Preliminary Regressions
non-purchase duration
pt 0.0215 0.7347
D1 2.3768 5.4969
D2 1.9239 2.9168
D3 1.8853 5.0488
D4 2.1074 4.7756
quantity sold
pt -0.1480 1.2387
D1 1.8329 9.0676
D2 2.4796 4.9728
D3 2.0338 8.5542
D4 3.4061 8.1578
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Table 4.2: Store Value Function W (Dt)

D1 D2 D3 D4 D5 D6 D7

average inventory 10 30 50 70 90 110 130
M = 2 3.1454 2.7234
M = 5 4.0638 4.0461 4.0778 3.5389 2.7158
M = 7 4.0748 3.4387 3.0162 3.0368 3.0762 2.0973 2.0963

Table 4.3: Estimated Parameters Of The Base Model

Parameter Estimates Variance

θC 4.2125 0.4712
θI1 1.9860 0.0175
θI2 9.6702 ×10−4 1.1871 ×10−4

γ 1.1375 0.0001

Table 4.4: Simulated vs. Actual Moments I

Auxiliary Moment Simulated Actual pseudo-t

Average non-purchase duration 4.6956 12.5864 0.6124
Average consumption rate 7.6480 3.5144 1.7785
Average price change interval 9.2444 2.0122 2.8344

Market Share
32 oz. 0.2586 0.0450
64 oz. 0.4546 0.5087
96 oz. 0.0632 0.0822
128 oz. 0.2236 0.3642

Coefficients From Regression
log(durh)
pt 0.0259 0.0215 0.0023
D1 0.3930 2.3768 0.0043
D2 0.7281 1.9239 0.0343
D3 0.8316 1.8853 0.0044
D4 1.4829 2.1074 0.0280

Q
pt -0.1238 -0.1480 0.0158
D1 1.3038 1.8329 0.0158
D2 1.1421 2.4796 0.0541
D3 0.8292 2.0338 0.0165
D4 1.0448 3.4061 0.0355
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Table 4.5: Simulated vs. Actual Moments II

Brand Simulated Average Price of 32 fl. oz. Actual pseudo-t

AJAX 3.18 2.87 3.4087
ALL 3.28 3.15 1.4680
ALL FREE 3.34 3.37 0.0639
ARM & HAMMER 4.99 3.86 0.4902
BOLD 3 3.89 3.45 4.2089
CHEER 4.58 4.48 1.4143
DASH 2.98 2.84 6.2216
DREFT 5.58 5.39 1.5871
DYNAMO 5.23 3.51 5.0954
ERA PLUS 4.59 3.89 3.3661
FAB 4.57 4.29 1.1335
IVORY SNOW 4.79 4.79 0
TIDE 5.17 4.92 2.1076
PRIVATE LABEL 2.98 2.47 4.6548
PUREX 2.98 2.61 14.0468
SOLO 3.98 3.70 3.1322
SURF 4.47 4.11 1.4420
ULTRA TIDE 4.58 4.40 1.4696
WISK 4.23 3.44 2.1859
YES 3.08 2.90 3.8176
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Figure 4.1: Simulated Histories Of Purchase and Consumption

Figure 4.2: Simulated Price of a Randomly Selected Product
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Figure 4.3: Correlation Between Number Of Price-cuts and Quantity Sold

Figure 4.4: Consumption and Purchase Policies
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Figure 4.5: Store Pricing Policy

Figure 4.6: Consumer Value Function (The Number of Inventory Distributions = 2)



101

Figure 4.7: Consumer Value Function (The Number of Inventory Distributions = 7)

Figure 4.8: Simulated Market Evolution
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Figure 4.9: Patterns of Prices and Consumer Inventory



103

Appendix A

Derivation of Eq. (3.20)

Notice that V (Pt+1, k − 1, k − 1 + L), the deviater’s continuation value, can be written as

the sum of cumulative inventory costs and consumption utilities in the next k − 1 periods,

and the continuation value when she runs out of stock and forced to purchase at pR:

V (Pt+1, k − 1, k − 1 + L)

=
k−1∑
i=1

−c(k − 1− i)δi−1 + v
k−1∑
i=1

δi−1 + δk−1Ṽ (pR, 0, L, dk−1 = 1)

=
k−1∑
i=1

−c(k − 1− i)δi−1 + v
k−1∑
i=1

δi−1

+ δk−1

(
L−1−K∑
i=0

−c(L− 1− i)δi + v
L−K∑
i=0

δi + δL−KV (P,K,K)

)

=
k−1∑
i=1

−c(k − 1− i)δi−1 +
L−1+K∑
i=0

(−c(L− 1− i))δk−1+i

+ v

(
k−1+L−K∑

i=1

δi−1

)
+ δk−1+L−KV (P,K,K)

(A.1)
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Appendix B

A Brief Description of the Matlab Program

The computer program has three loops:

The outer loop is a parameter search procedure, in which the estimated parameters are

found if the weighted moments is globally minimized. This procedure is done by calling

builtin ’fminsearch’.

The middle loop is to simulate the time series of consumption and purchase of consumers,

and the price sequence of all products, at each Θ, and returns the simulated moments.

The inner loop solves consumer and store’s policy function at each period, taking the

outcome induced by the policies of the last period as the state variable of the current period.
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