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ABSTRACT 

Survival outcome has been one of the major endpoints for clinical trials; it gives 

information on the probability of a time-to-event of interest. There has been increasing 

interest in survival analysis tools over the recent years, especially for high dimensional 

survival data. Common statistical approaches include nonparametric, semi-parametric 

and complete parametric analysis, several of which are widely used and readily available 

from major commercial software applications. However most of these approaches have 

limitations. Typical nonparametric approaches, such as the log-rank (or Cox-Mantel) test, 

are not concerned about model assumptions, but can only deal with a limited number of 

categorical predictors. Typical semi-parametric approaches, such as Cox proportional 

hazard model, depend very much on the model assumptions, such as linearity, 

interactions and proportionality; also these approaches can only deal with survival data 

when the number of predictors is less than the total number of events. Complete 

parametric models, such as accelerate failure time models, are similar to semi-parametric 

models except that they make further assumptions about the baseline hazard function. 

In this research paper, we studied several techniques for evaluating survival data, the 

typical Cox PH models including the generalized Cox linear model and the multivariate 

Cox regression models with nonlinear transformations, the nonparametric random 

survival forest approaches, penalized Cox regression models including lasso, ridge and 

elastic-net Cox regression models, derived-input Cox regression models including 

principal component Cox regression and partial least squares Cox regression models. 

These models were implemented and evaluated with one simulation study and one real 

world case study.  

The typical Cox models including the generalized Cox linear model and the 

multivariate Cox regression models with nonlinear transformations should always 

provide unbiased estimates, and the models are flexible for handling recurrent-event 

survival response; but they are  incapable of making inferences for cases when there are 

more predictors than the actual number of events; and since they are semi-parametric 
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approaches, model assumptions such as linearity, interaction and proportionality, should 

be carefully examined before the models were implemented. In this paper, a systematic 

procedure was proposed for examining the model assumptions, which should help to 

ensure the correct model was employed for the survival data. In terms of prediction 

performance, they are among the best approaches.   

In the paper, we also introduced nonparametric random survival forest approaches, 

log-rank based and conditional inference based random survival forest models, which 

have many advantages over the typical nonparametric, semi-parametric or parametric 

approaches. There are no concerns about model assumptions, and these methods can deal 

with many more predictors than typical survival models. In terms of prediction 

performance, these models are moderate and slightly worse than the typical Cox models. 

The penalized Cox regression models, on the other hand, should always give biased 

estimates; but they work quite well for cases when the number of factors is no less than 

the number of events. Of all penalized Cox models, the elastic-net Cox model works 

extremely well for correlated high dimensional data; the prediction performance is 

extremely good. However, they do not work for multiple event type of survival data.  

The principal component Cox regression model is a very useful tool for variable 

reduction with similar prediction performance as the typical Cox models. The model also 

has similar features as the typical Cox models; it can deal with recurrent event or interval 

censored survival data. But it also has many disadvantages, in cases when the number of 

components is no less than the total number of observations, the model may not be 

estimable; more importantly, analysis results from this model may be difficult to 

interpret.  

The partial least squares Cox regression model was developed; it shares some 

resemblance with principal component Cox regression model, the only difference is the 

construction of the components, instead of the building orthogonal components 

independent from the survival outcome, the model builds the PLS components to attain 

the strongest correlation with the survival outcome, otherwise it has similar features as 

the principal component Cox regression model. Additionally, the prediction performance 

of this model is unexpectedly very disappointing.  
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Chapter 1. Introduction 

1.1 Background 

Over the past decade, a large amount of data has been collected across many 

disciplines. One of the most important components is the biomedical data, of which, the 

aggregation has undergone remarkable growth. The questions, how to extract useful 

information or evidence for better diagnosis or prediction from the existing data, how to 

discover hidden relationships or identify susceptible subpopulation from the existing 

data, and how to best utilize the existing data for future research and discovery, have led 

to the prosperity of knowledge discovery techniques such as data mining, machine 

learning and statistical learning.  

Data can be distinguished by the quantitative or qualitative (categorical) feature and it 

can be further subdivided into continuous or discrete, nominal, ordinal data or survival 

data. While in medical research, the outcome of interest can be binary, continuous, 

ordinal, counting process and survival outcomes, of which time-to-event outcome has 

been one of major endpoints for clinical trials; it gives information on the probability of a 

time-to-event of interest.  

Depending on the types of outcomes, different statistical analysis approaches must be 

intended, including approaches based on parametric, semi-parametric or nonparametric 

models. Typical nonparametric approaches are based on little or no model assumptions 

and can only deal with a limited number of categorical predictors. Typical parametric, 

semi-parametric and other approaches, such as statistical learning techniques based on 

parametric models are built under some model assumptions, including but not limited to 

the distribution assumptions for outcome of interest, the distribution assumptions for 

variables to be included in the model, underlying relationships between factors and 

outcomes. As a result of the parametric modeling, statistical inferences can be estimated 

intuitively from the analysis. Since these approaches are built with some assumptions, 

violation of the assumptions, may lead to questionable inferences[1, 2, 3] and unexpectedly 

large prediction errors. Therefore, when violation of the assumptions is detected, effort 

should be sought to transform the data in order to satisfy the assumptions or alleviate the 

violation.  
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However, there are times when data transformation cannot solve or reduce the 

violation, when alternative applications should be intended, such as some procedures to 

relax the parametric assumptions, some approaches using parametric or semi-parametric 

models without similar stringent assumptions or with different assumptions, or other 

methods based on nonparametric models without or with little assumptions. No matter 

what type of models, they have to be stable, dependable and reliable, i.e., the same model 

from different processes should achieve similar or equivalent results. 

On the other hand, nonparametric approaches can be used across several different 

platforms; they are built with no or very little assumptions, such as recursive partition[4], 

random forest[5], boosting[6] and etc.; nevertheless, the approaches are limited for 

statistical inferences, and relatively more difficult to interpret. 

1.2 Previous Publications  

As for continuous and categorical outcome, extensive research has been carried out 

and the typical analysis approaches are quite efficient for prognostic factor detection and 

robust for prediction. In 2011, Zhou et al. [7] used a proportional odds logistic regression 

analysis to identify prognostic factors for open angle glaucoma and later in 2013, Zhou et 

al. [8] applied a statistical learning technique based on logistic discriminant models to 

predict the malignant breast cancer with extraordinary sensitivity and specificity.  

Since then, the research interest has been focused on prognostics factor analysis and 

predictive modelling for survival data.   

1.3 Focus of the Thesis 

Survival data arises in many fields, such as medicine, biology, public health, 

epidemiology, engineering, economics and demography. The tools and approaches 

presented in research paper should be general and applicable to all of these disciplines, 

but the focus of the research was survival data from biology and medicine.  

Frequently, survival outcomes are always collected when the intension is to study 

serious disease conditions, such as death, heart failures and recurrence of cancers. The 

occurrence of such conditions may be referred to as events or failures. Speaking of events 

of failures, some may take a long time to occur or may not occur within certain period of 

time, while others may occur within a short time; some may occur only once, while 
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others may occur multiple times; some events of the same type may occur repeatedly, 

while others may be accompanied by many other types of events. For these type of data, 

the outcome of interest typically includes a binary variable to indicate the occurrence of 

the conditions or events and a continuous variable to indicate the time of the 

occurrence(s) or the time of censoring (sometime, two continuous variables may be 

needed to indicate the interval within which the event or censoring occurs). These types 

of responses are also referred to as time-to-event outcomes. 

Although, the survival outcome consists of two (or more) variables; the continuous 

variable, time of the occurrence, can be evaluated using a typical multivariate regression 

analysis, and the binary variable, the occurrence of the event, can be assessed with a 

typical logistic regression to model. Yet, it is insufficient to draw conclusions based on 

either one of the analyses and it is almost impossible to get an overall picture with 

consideration of the results from both analyses. To best utilize time-to-event data, 

completely different statistical models are built to exploit the complete information about 

the occurrence of the event and the time of the event occurrence, with the intention to 

determine the probability of event to occur within a specific time, the probability of 

recurrence and/or the gaps between the occurrences.  

The intension of such models may be laid upon prediction of probability of the future 

occurrence within certain time, discovery of the contributing prognostic factors to the 

serious conditions, and/or identification of the subpopulation susceptible to the conditions 

of interest. The primary interest is to analyze survival data; the outcome includes the 

time-to-event from a certain cause, duration of response to treatment, time to disease 

recurrence, time to adverse event or simply time-to-death. As such, different survival 

models to bridge the statistical theory and medical research are developed, studied and 

compared to evaluate the prediction performance. 

To build models for survival data, common features of survival data have to 

discussed, such as censoring and/or truncation, which have contributed to the complexity 

of the data. Furthermore, different schemes of censoring and/or truncation have made the 

modeling even more difficult. Different combinations of censoring and/or truncations 

schemes have to be modeled differently. Hence, it is essential to study the nature of the 

censoring and truncation schemes.  
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Censoring exists when an individual lives through the study or discontinues the study 

without experiencing the event of interest. Three types of scheme for censoring have to 

be considered for survival analysis, right censoring, left censoring and interval censoring.  

Right censoring scheme occurs when a subject has left the study or study has ended 

before the event occurs. There are three subtypes for right censoring: type I, type II and 

random censoring. Type I censoring occurs when subjects enter the study at different 

time points and the study is followed for a pre-specified duration; the censoring time is 

the pre-specified “terminal point” for subjects who do not experience any event. Type II 

censoring occurs when the study ends as soon as a pre-specified number of events is 

collected; subjects may enter the study at different times, but they all terminate at the 

same time when the pre-specified number of events has occurred; the censoring time for 

subjects without any events is determined by the time when they enter the study. Another 

type, random censoring or progressive censoring, may occur when other competing 

events have caused subjects to be removed from the study randomly. As can be seen, type 

I and II censoring cannot occur at the same time, but either may occur with random 

censoring. For example: in a study with pre-specified follow-up time, subjects may not 

have had events before they dropped out the study due to unwillingness to participate, the 

random censoring occurs when the subject drops out before he even has any chance to 

have an event, for the rest of the subjects who do not experience any events, the type I 

censoring occurs at the time when they discontinue at the end of the pre-specified follow-

up. Right censoring is the most commonly reported censoring scheme in clinical studies 

and medical research. 

Left censoring occurs when a subject has experienced the event of interest prior to the 

start of the study, but the exact time of the event is unknown. An example of this scheme 

was reported by Turnbull and Weiss (1978)[9], a study was conducted in California to 

determine time to the first marijuana use among high school boys; in the study, a question 

was asked "when did you first use marijuana?" One of the responses was "I have used it 

but cannot recall just when the first time was."  A boy who chose this response indicated 

that the event had occurred prior to the interview but the exact time at which he started 

using marijuana is unknown. Left censoring scheme is not common in clinical studies, it 

is relatively more common in survey studies and usually accompanies with right 
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censoring scheme. In the above example, if one of the responses is "I never used it", then 

it is the right censored observations at the boys' current age. 

Interval censoring scheme arises when the exact time of the event cannot be obtained 

but can only be determined to occur within an interval from examination performed on 

scheduled follow-up visits; this is another commonly reported schema in clinical studies. 

Furthermore, right censoring is just a special case of interval censoring, when the left and 

right bounds of the intervals are equal to each other, i.e. both bounds of the interval are 

set to the exact time of event occurrence. 

Truncation is a variant of censoring where subjects are included in a study only if 

they survive until the start of the study or if events have occurred by a given date; 

truncation is usually caused by a systematic selection process from the study design. 

There are two schemes for truncation, right and left truncations. Right truncation occurs 

when a subject has experienced the event of interest before study entry. Left truncation 

arises when the subjects have survived or have been at risk for a sufficient time before 

entering the study. 

Studies to evaluate time-to-event data are usually conducted within a pre-specified 

follow-up duration; theoretically, if all subjects are followed long enough (without any 

limitation), everyone should experience the event of interest sooner or later. A practical 

survival model has to consider that the event of interest may not have occurred within the 

pre-specified follow-up period for some subjects; in other words, the model has to 

account for cases that the occurrence of the event may occur after the follow-up ends (or 

subject drops out).  

Therefore, when modeling survival data, at least two variables have to be considered, 

a binary variable to indicate the occurrence of the event of interest and a continuous 

variable to indicate the time of the occurrence of the event or the censoring time 

(sometimes, 2 continuous variables may be needed to indicate the interval within which 

the event occurs or the subject censors); if an event of interest has occurred before the 

follow-up ends or subject drops out, then it is flagged as a failure; otherwise if the event 

of interest has not occurred before the subject dropout or follow-up ends, it is flagged as 

censoring at the time of dropout or at the end of the follow-up. And the corresponding 

time is called event time and censoring time, respectively.  
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When the primary interest is to characterize the subgroup of subjects who are more 

likely to relapse after a surgery or who are prone to the side effect within certain period 

of time after treatment, prognostic factor analysis will play an important role. When the 

primary interest is to predict the probability whether the event will eventually occur, 

without concern too much about the time of the occurrence, then a pure classification 

model to predict the probability of event occurrence with the consideration of censoring 

shall be enough. 

Therefore, survival models are usually more complex as comparing to statistical 

models for other data types; the methodology utilized for survival models is more 

specific in both modeling and the type of data. Without losing generality, it is assumed 

throughout the research paper that all subjects are independent of each other, only events 

occurring within the same subject are correlated, the studies are right-censored and 

censoring is independent of the event.  

1.4 Evaluation Performance 

Models may underfit as well as overfit the data. Sometimes if a model does not 

perform well for the training set and larger than expected error is observed, then it is 

considered as underfitting and the corresponding error is referred to as the bias of the 

model. Some other times, a model may fit the training set quite well, but it may not be 

able to accurately predict future events, which is considered as overfitting; it may occur 

when too much variation, random errors or noises, have been built into the model, 

therefore it is also referred to as variance. Overfitting generally occurs when a model is 

excessively complex and it may exaggerate normal fluctuations in the data. This is due to 

different criteria used for analysis and prediction. For analysis, a model is typically 

selected by maximizing the cross validation performance on the collected dataset, while 

prediction is evaluated based on unseen data. Practically, it is more convenient to train 

the model, evaluate the cross validation performance and examine the prediction 

performance without waiting for the unseen data, therefore a random procedure to divide 

the collected data into the training set (or cross validation set) and the test set should be 

employed.  

The training set will be used to build and train the model; the test set will be used to 

examine the prediction performance of the mode. Usually cross validation can be 
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performed over the training set, for detection of underfitting; but sometimes a separate 

cross validation set may be needed for tuning the model (such as pruning a decision tree). 

Testing is the only and necessary set for detection of overfitting.  

As mentioned previously in section 1.3, survival data are usually collected for 

evaluation of serious disease conditions; and the goal of every survival analysis is to 

generalize the model from the training example to all possible input. Considering the 

price for collection such data, it is always wise to have most if not all information for 

training, especially when the size of the training set may be crucial for detection of 

prognostic factors. Then a bootstrap procedure may be needed for testing or validation; 

the bootstrap will randomly sample the original survival data with replacement for testing 

and validation. 

1.5 Objectives 

For survival analysis, nonparametric models can only be used to adjust for a few 

categorical factors, thus they have limited usage for prognostic factor detection and 

prediction of future events. On the other hand, the semi-parametric Cox regression model 

has been very flexible and robust, even if a completely parametric model may be more 

suitable. However, it is noticed that this model has been frequently misused in medical 

research. Frequently, even if not always, factors are only included in the Cox regression 

model in their first order linear forms, no interactions or only interactions between the 

linear form of predictors are included, and time-dependent covariates are not considered, 

adjusted or addressed. Such simplified strategies are not completely wrong, they are 

certainly not perfect; statistical inferences or predictions based on such model will 

certainly be questionable or vulnerable. Sometimes, the number of predictors in the 

survival data is no less than the total number of events, the typical Cox regression model 

will not work. Furthermore, complete parametric models, such as accelerated failure time 

models are similar to the semi-parametric models except that they make further 

assumptions about the baseline hazard function. Therefore, how to properly model 

survival data for better detection of prognostic factors and how to make more accurate or 

reliable inferences and predictions, have puzzled researchers for years. 

The objective of the research paper is to develop systematic approaches for 

appropriately modeling survival data, accurate detection of prognostic factors and robust 
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prediction of survival outcomes in order to bridge the statistical analysis with actual 

clinical practice. In this research, only right centered and left truncated data were 

considered, since these two schemes are most typical in clinical research. 

For survival data, only the subjects who have experienced the event of interest will 

contribute to the analysis, the subjects who do not have any event will make little or no 

contributions to the analysis. However, even with a large datasets, there will always be a 

portion of subjects who may actually experience event(s). For a typical survival model, in 

order make reasonable estimates and ensure a proper fit of the model, the number of 

events will have to be at least 10 times more than the number of factors to be fit to the 

model without considering interactions and non-linear effect. Is there a systematic 

approach to utilize the survival data more efficiently without losing too much generality? 

Yet, combining with machine learning techniques, we were able to build models 

including more factors, interaction and non-linear forms; we managed to analyze survival 

data even if the number of factors was no less than the total number of event (see section 

4.2 for the real world case study on NKI70 data).  

Before any analysis on prognostic factors, for typical parametric survival models, 

there are always concerns about multicollinearity, heteroscedasticity, interactions, 

confounding factors and time-dependent or time-varying effect, which may have 

significant impact on statistical inferences and prognostic factors detection, even though 

they may or may not affect the model predictions. Therefore, are there any systematic 

diagnostic tools that we can employ to diagnose, reduce or avoid these problems without 

affecting the model performance? Are there any survival models that can properly 

address these issues with reasonable model performance?  

For prognostic factors, are all factors always having linear relationships with the 

survival outcomes? Are all interactions between factors always linear? How to detect the 

nonlinear relationships? Additionally, some factors may have changed over the course of 

the disease, how to accommodate the changes for these factors and best utilize such 

information in model predictions. 

Machine learning is a new branch for carrying out data analysis without worrying too 

much about statistics and/or assumptions in order to make reliable inference and 

predictions. For many machine learning techniques, they are not built on strong statistical 
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foundations, many statistical rules or principals may not be applicable.  

With respect to survival models, most parametric statistical models are developed 

with some underlying assumptions, so that reasonable inference can be obtained from the 

analysis; some other approaches are based on nonparametric models with little or no 

assumptions, but inferences cannot be easily obtained. Are there systematical approaches 

to force the variables to satisfy the model assumptions or is there a way to relax the 

model assumptions so that we can still use the approaches based on parametric models to 

obtain reasonable inferences and predictions? Are there any approaches based on 

nonparametric models with little or no stringent assumptions for making predictions of 

future observations and perform formal analysis with reasonable performance? Are there 

any other approaches based on semi-parametric models with different or relaxed model 

assumptions for better inference and predictions? 

For certain disease conditions, subjects may experience multiple events while others 

may only experience one event; while multiple events occurred within the same subject 

may be correlated with each other, or sometimes competing events may occur within the 

same subject. Are there any models to adjust for the within-subject correlations? When 

competing events are observed, some subjects may not experience any event before they 

are terminated by a single serious state, such as death. Are there any approaches for 

modeling survival outcomes while accounting for competing events? 

For all intended models, how to evaluate the model performance, how to properly 

compare the performance of difference model, including the typical statistical approaches 

and the approaches based on machine learning techniques and how to interpret the 

results? It is a common belief that the more factors selected, the more accurate prediction 

can be achieved, is it really true? Are all factors making similar contributions to the 

survival outcomes, or are there any factors more important than others for prediction of 

the survival outcome?   

1.6 Hypotheses 

Statistics include many constituents other than hypothesis testing, such as study 

design, estimation, prediction and etc. The approaches discussed in this paper aims at 

develop systematic approaches for prognostic factors analysis on time-to-event data 

and/or accurate prediction of future survival outcomes; though some components may be 
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considered s superset of hypothesis testing and estimation, but others may be too 

complicated to be formulated as hypothesis testing, such as model performance and/or 

prediction of future outcomes, intra-subject correlations for multiple observations, 

diagnosis of nonlinearity, interactions and/or proportionality. Additionally, evaluating 

multiple hypotheses prior to application of formal analyses will end up spending extra 

degree of freedoms, which may further inflate the total variance and lead to overfitting; 

thus the ordinary point estimates arise from the hypotheses generating assessments are 

significantly biased because of “data over-dredging”. Theoretically, such hypotheses 

generation processes are supposed to be avoided in modern statistics; however, when 

such steps cannot be avoided. 

However statistics inferences and predictions are typically based on statistical 

models, some complicated task can be simplified using hypothesis tests to ensure proper 

fit. The following hypotheses are intrinsic within model building and model selection, 

which will assist in building the right and appropriate models for prognostic factor 

detection and predictions. Moreover, there are cases when statistical models involve too 

many predictors, hypothesis testing can be utilized as an alternative but convenient tool 

for automating the screening process.  

• Normality Assumption of Predictors: 

For parametric or semi-parametric survival, normality is the basic assumption for all 

generalized regression analysis. If data are highly skewed, extra caution should be 

taken and data may need to be transformed. So normality check is the first step for 

most parametric or semi-parametric approaches.  

H0: Predictor satisfies normality assumption;  
Ha: Normality assumption is violated. 

For normality, D's Agostino's K-squared test[10], Anderson-Darling test[11], 

Kolmogorov-Smirov test[12] and Shapiro-Wilk Test[13] may be performed. 

• Nonlinearity: 

Do all predictors have linear relationship with log hazard? Does any factor have a 

nonlinear form in the survival model? 

H0: Factor has a linear relationship with the hazard function;  
Ha: Nonlinearity exists. 
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Nonlinearity can be checked using hypothesis test by checking the p-value from the 

deviance difference between the fitted models with and without the nonlinear form. 

However hypothesis test for determination of functional form may lead to incorrect 

conclusion if a wrong form was pre-specified. For example, a quadratic form of the 

factors may not be detected with hypothesis testing; yet it can be easily detected with 

the graphic display of the Martingale residuals[14] against the linear form of the factor. 

Although hypothesis test may not be perfect, still it is a convenient tool when it is 

impossible or difficult to check the graphic display for every single factor. 

• Interactions between Factors for Cox PH Mode: 

Are there any interactions between factors?  

H0: There is not interaction between factors A and B;  
Ha: The interaction between factor A and B exists. 

Interactions can be evaluated using the p-value from the Wald tests by tentatively 

fitting to the Cox PH model, or it can be tested using the deviance difference between 

the fitted models with and without the interactions. Yet, both are not very robust, but 

they are convenient, which allow for systematical checks of the interactions using 

computer programs; otherwise, hypothesis tests as well as residual plot (scaled 

Martingale residuals) against each continuous factor stratified by the categorical 

variable may be more efficient.  

• Proportionality Assumption for Cox PH Mode: 

Do all factors satisfy the proportionality assumption for the intended survival model? 

H0: All predictors satisfy the proportionality assumption;  
Ha: At least one predictor does not satisfy the proportionality assumption. 

Proportionality assumption can be checked using a global Chi-square test[15] of the 

scaled Schoenfeld residuals[14] on a function of time,  yet it is not very stable, instead 

a residual plot vs. time is much more powerful (a non-zero slope is an indication of a 

violation of the proportional hazard assumption).  

• Multicollinearity Detection: 

Is there any multicollinearity among factors?  

H0: 𝑟𝑟𝑖𝑖𝑖𝑖 = 0;  
Ha: 𝑟𝑟𝑖𝑖𝑖𝑖 ≠ 0 for at least one pair of (𝑖𝑖, 𝑗𝑗), 𝑖𝑖 = 1 … 𝑝𝑝, 𝑗𝑗 = 𝑖𝑖… 𝑝𝑝, and 𝑖𝑖 ≠ 𝑗𝑗. 
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Please note that 𝑝𝑝 is referring the total number of factors (see section 2.1 for details). 

Correlation coefficient is just one measurement for multicollinearity, and there are 

other measurements, such as variance inflation factors. But detection of 

multicollinearity is only the first step, the next step is how to best utilize the 

information for modeling survival data. 

• Nonparametric test on survival curves 

The survival curves from all groups are equal to each other; in other words, are there 

any differences in survival probability among different groups; 

H0: All survival curves are the same. 
Ha: At least one survival curve is not the same as the others. 

If there are only 2 groups, the hypothesis test can be tested using log-rank test; if 

there are > 2 groups, Cox-Mantel l[26, 27]  test must be applied (see section 2.3 for 

details). 

• Goodness of Fit: 

Does the model fit; i.e., does the specified model describe the survival data 

appropriately? 

H0: Model fits (or the model correctly describes the data);  
Ha: Model does not fit (or the model does not describe the data well). 

Goodness-of-fit is a general measurement for evaluating how well the model can 

describe the survival data; for Cox model, it includes several components as 

discussed previously, proportionality assumption, linearity, interactions and finding 

of the overly influential data point.  

• Prognostic Factor Detection and/or Model Selection 

None of the covariates are significant for prediction of time-to-event outcome 

(probability of event within a certain period of time) vs. one or more covariates are 

significant for model prediction. In terms of each factor, is it a risk factor for 

predicting failure events of interest within certain period of time? 

H0: 𝛽𝛽1 = 𝛽𝛽2 = ⋯ = 𝛽𝛽𝜈𝜈 = 0; 
Ha: 𝛽𝛽1 ≠ 0, or 𝛽𝛽2 ≠ 0, … , or 𝛽𝛽𝜈𝜈 ≠ 0 (𝛽𝛽𝑖𝑖 ≠ 0 for at least one 𝑖𝑖, 𝑖𝑖 = 1, 2, … , 𝜈𝜈). 

Please note that 𝜈𝜈 (defined in section 2.1) is referring the total number of covariates, 

not the total number of factors. 
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A global Null hypothesis on 𝛽𝛽 = 0 can be checked with three tests, global likelihood 

ratio test, Score test and Wald test; of the 3 tests, the global likelihood ratio test is the 

most reliable, then Score test and Wald test is the least. 

Hypothesis test on 𝛽𝛽𝑖𝑖 for covariate 𝑖𝑖 can be incorporated into the model selection 

procedure to select contributing prognostic factors (this is one of the options for 

model selection, but it has to be admitted that the model selection procedure based on 

P-values violates statistical principals). 

⋮ 

In addition to the above, some tools may be more powerful than hypothesis testing 

and some measurements just cannot be formulated as hypothesis tests, such as the 

detection of linear or nonlinear relationship (see section 3.8.3 for details), then visual 

inspection of the smooth spline plots should be more intuitive; for proportionality 

assumption and nonlinearity, graphical display of data can reveal hidden relationships 

that cannot be detected from hypothesis testing. Moreover, for model selection, it is 

always advisable to use adjusted Akaike information criterion (AIC) and adjusted 𝑅𝑅2 for 

model selection than hypothesis tests; for model validation and calibration or 

performance, hypothesis tests are not available, alternative measurements should be 

evaluated (see section 3.3.2 for details).  

However, hypothesis tests are still useful, when alternative tools are unavailable or 

difficult to assembly; i.e., if there are too many predictors, it is difficult to check the pair-

wise interactions with graphic plots, but hypothesis tests can be implemented easily. 

1.7 Research Significance 

As mentioned previously, survival data are collected to assess the most serious 

medical conditions, such as death, heart failures, adverse side effects after initial 

treatment and recurrence of cancer cells after initial surgery or chemotherapy. In 

consideration of the seriousness of the conditions, researchers are more concerned about 

early diagnosis, so that preventative treatment can be administered before the condition is 

developed or deteriorated; for health care professionals, identify the susceptible 

subpopulation will assist in prescribing early treatment before the serious conditions 

become irreversible or futile; for scientists, prediction of the probability of time-to-event 

can help to prioritize and to develop personalized treatment; for insurance companies, 
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pre-screening and pre-detection of the serious conditions may help to save money by 

allowance of preventative treatment before the serious condition occurs. With this 

motivation, several analysis approaches for survival outcome were extensively studied in 

this research. 

For survival data, the primary outcome of interest includes the status of the 

conditions, indicating the event occurrence and a duration variable (or variables) 

indicating the time (or the interval) of the event occurrence; additionally, survival models 

also have to account for cases when individuals drop out prematurely or do not have any 

event before the end of the study; moreover, there are many censoring and truncation 

schemes, combination of different schemes should make survival analyses even more 

complex. For analysis of survival data, all information has to be considered in the 

modelling, which makes survival outcome much more difficult to model than typical 

continuous or categorical outcomes.  

Moreover, all statistical inferences are based on statistical models; incorrect models 

may lead to incorrect or biased inferences. Thus, the initial survival model is the basis for 

all successful statistical analysis; any further analysis procedures are descendent from the 

initial model. For example, model selection, prognostic factors detection and model 

prediction of further events are all derived from the initial survival model. However, it is 

not trivial to build an appropriate model without much knowledge about the model itself, 

especially when there are too many factors to consider.  

The parametric accelerate failure time (AFT) models depend on stringent model 

assumptions, thus these models are not widely used. Similarly, the semi-parametric Cox 

models also have stringent model assumptions, they do not assume baseline hazard as the 

parametric AFT models, but they do make an additional assumption on proportionality.  

However, due to the deficiency of effective tools, the model assumptions for 

parametric AFT or semi-parametric Cox models, are not always checked, therefore most 

of the analysis models may not be formulated appropriately; the inferences obtained from 

the inappropriate model may lead to incorrect conclusions. Furthermore, these models 

may sometimes run into non-estimability dilemma due to large number of parameters and 

small number of events. The typical nonparametric approaches however, have no or little 

assumptions, but they can only adjust for a limited number of categorical factors and 
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continuous factors have to be categorized before use in the analysis. Thus, all of these 

typical approaches have limitations. 

With the above considerations, alternative approaches with the help of machine 

learning techniques, such as lasso[16, 17], ridge[98] and principal component Cox regression 

models have been proposed, but these approaches also have limitations, lasso Cox 

regression model is only useful when the number of parameters is no more than the 

number of observations; ridge regression does not select factors, therefore it is not very 

useful for prognostic factor detection; principal component Cox regression model relies 

on latent components which are constructed independent of the survival outcomes, 

therefore it is difficult to interpret the results with respect to the original factor, moreover 

it is not guarantee to be estimable. 

In this research paper, we developed a systematic process to assess the assumptions 

for typical Cox regression models. During the process to assess the linearity assumption, 

appropriate functional forms were recommended if nonlinearity was detected; when 

assessing interaction effect, appropriate interactions were suggested if interaction effect 

was identified; when assessing proportionality assumption, appropriate time-dependent 

extension was integrated if non-proportionality was detected.  

In addition, to overcome the disadvantages and the limitations of the semi-parametric 

approach (Cox model), we introduced nonparametric random survival forest to select the 

best subset of prognostic factors with moderate prediction performance; we also applied 

an innovative semi-parametric elastic-net Cox model for prognostic factor detections with 

excellent prediction performance; in addition, we also developed a partial least squares 

Cox regression model for highly correlated survival data, which could be used to adjust 

for uncollected covariates (latent components). All of these approaches are capable of 

dealing with the cases when the number of parameters is no less than the total number of 

observations. 

  

  15 



 

Chapter 2. Literature Review  

This chapter will review the definitions, formulations and statistical models for 

survival analysis including parametric, semi-parametric and nonparametric models. 

Section 2.2 provides an overview of the terms and definitions for survival analysis, 

including definitions of hazard function, cumulative hazard function, probability density 

function, cumulative distribution function and the survival function. Section 2.3 reviews 

commonly used survival analysis models, including nonparametric survival analysis, 

parametric survival models and semi-parametric survival analysis models. The 

nonparametric survival analysis include Kaplan-Meier (KM) estimator or product limit 

(PL) estimator, Nelson-Aalen estimator for survival probability or survival curves, log-

rank test and Cox Mantel test for group comparison, Wang-Chang model for recurrent 

event survival analysis. The parametric analysis models, include exponential, Weibull, 

Gompertz and generalized Gamma, log-normal accelerated failure time (AFT) and log-

logistic AFT survival models. The semi-parametric survival analysis models include Cox 

proportional hazard (PH) model, and several extensions or variations of Cox PH model. 

Section 2.4 reviews the generalized regression analysis and section 2.5 reviews several 

survival models based on machine learning techniques. 

2.1 Naming Conventions 

Several conventions are used throughout the paper, only those terms that are not 

straightforward and have special hidden indication will be emphasized in this section. For 

example, factors or predictors will be referring to the actual variables or features 

collected from the survival data; the total number of factors is denoted by 𝑝𝑝. Covariates 

or terms will be referring to the actual terms included in the survival model; i.e., for 

linear form, each of the original factors will be used as the covariate term for the survival 

model; for nonlinear transformations, each term of the nonlinear forms of the factors will 

be used as a covariate term for the survival model; interaction terms will be constructed 

between the original factors or the nonlinear transformation of the factors as well as time-

dependent effect (option 2 from section 3.8.5); the total number of covariate terms is 

denoted by 𝜈𝜈. 

Random variables are denoted as 𝑇𝑇 or 𝑋𝑋 capitalized. The capitalized letter 𝑇𝑇 is used to 
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denote the random survival time; 𝑡𝑡 is used to denote the vector of time for each subject 

for analysis of time-to-event outcome;  the capitalized letter 𝑋𝑋 denote the matrix of 

covariates, with each covariate from different subjects as a column vector and with 

different covariates from the same subject as a row factor. For typical Cox proportional 

hazard model, the input matrix does not include the column vector of 1's, since the Cox 

regression model is based on partial likelyhood, it assumes no baseline hazard function. 

Thus, the Cox PH regression model does not have an intercept (see section 2.3.3.1 for 

details). However, the baseline hazard function may be specified for parametric 

proportional hazard models; i.e., the input matrix, 𝑋𝑋, should include a column vector of 

1's as its first column corresponding to the intercept for regression analysis for parametric 

exponential proportional hazard models. Lower letter, 𝑖𝑖, is usually used for index of time 

when an event occurs; lower letter, 𝑗𝑗, is usually used for index of subject; lower letter, 𝑙𝑙, 

is usually used for index of clusters; except otherwise as noted. 

Greek letter, 𝛽𝛽 or 𝛼𝛼 is used to denote the regression coefficient vector for covariate 

matrix, with each entry in the vector as a parameter coefficient for each covariate 

(column) in the design matrix, 𝑋𝑋. 𝑌𝑌(𝑇𝑇|𝑋𝑋) is a generic notation for the transformed 

response, which is the link function for the regression analysis; it can be a vector for 

typical survival analysis, or matrix for multiple outcomes (such as recurrent and terminal 

events). For Weibull model, 𝑌𝑌(𝑇𝑇|𝑋𝑋) ≡ log[− log(𝑆𝑆(𝑡𝑡|𝑋𝑋)], log [𝜆𝜆(𝑡𝑡|𝑋𝑋)] or log [Λ(𝑇𝑇|𝑋𝑋)]; 

for log-logistic model, this is 𝑌𝑌(𝑇𝑇|𝑋𝑋) ≡ log{𝑆𝑆(𝑡𝑡|𝑋𝑋) [1 − 𝑆𝑆(𝑡𝑡|𝑋𝑋)]⁄ }; for log-normal 

model, 𝑌𝑌(𝑇𝑇|𝑋𝑋) ≡ log(𝑡𝑡|𝑋𝑋); for Cox proportional hazard, 𝑌𝑌(𝑇𝑇|𝑋𝑋) ≡ log HR. The symbol, 

≡, means equivalent. When used in lower letters, 𝑦𝑦(𝑡𝑡|𝑋𝑋) and 𝑥𝑥, will be used as scalar 

function (or vector function for time-to-recurrence and terminal events) or a linear 

combination of all covariates for a particular subject, respectively. 

2.2 Overview of Terms and Definitions for Survival Data 

Survival data are used to measure time-to-event of interest, such as failures, deaths, 

occurrences of a given condition, event recurrence (relapse), occurrences (or recurrences) 

of competing events. The time variable(s) are subject to random variations, and like any 

other random variables, form a distribution. The distribution of survival time is usually 

described or characterized by one of the 5 functions: (1) survival function, (2) density 
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probability function, (3) cumulative probability function, (4) hazard function and (5) 

cumulative hazard function. These five functions are mathematically equivalent —if one 

is given, the other four functions can be automatically derived. More importantly, they 

form the basis for all survival models. In practice, the five functions can be used to 

illustrate different aspects of the survival data. A basic problem in survival analysis is to 

obtain estimates of one or more of these five functions from the collected sample of 

survival data and to draw inferences about the survival pattern in the population[18]. 

Above all, the formulations of the 5 functions are derived from the definition of the 

entities; no underlying distributions are assumed. Hence, they are still considered as 

nonparametric and can be applied across all survival models. 

The survival function 𝑆𝑆(𝑡𝑡) is defined as the probability of survival beyond time, 𝑡𝑡; 

𝑆𝑆(𝑡𝑡) = Pr(𝑇𝑇 > 𝑡𝑡) = � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

𝑡𝑡
= 1 − 𝐹𝐹(𝑡𝑡)  .................. Eq. 1 

The event density function, 𝑓𝑓(𝑡𝑡) 

𝑓𝑓(𝑡𝑡) = 𝐹𝐹′(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐹𝐹(𝑡𝑡) = 𝜆𝜆(𝑡𝑡) 𝑒𝑒𝑥𝑥𝑝𝑝[−𝛬𝛬(𝑡𝑡)]  .................. Eq. 2 

The lifetime (cumulative) distribution function, 𝐹𝐹(𝑡𝑡) 

𝐹𝐹(𝑡𝑡) = 𝑃𝑃𝑟𝑟(𝑇𝑇 ≤ 𝑡𝑡) = 1 − 𝑆𝑆(𝑡𝑡)  .................. Eq. 3 

The hazard function, 𝜆𝜆(𝑡𝑡), is the probability of event (event rate) at time 𝑡𝑡 for subjects 

at risk prior to that time conditional on survival beyond time, 𝑡𝑡.  

𝜆𝜆(𝑡𝑡) = lim
𝑑𝑑𝑡𝑡→0

Pr(𝑡𝑡 ≤ 𝑇𝑇 < 𝑡𝑡 + 𝑑𝑑𝑡𝑡 |𝑇𝑇 ≥ 𝑡𝑡)
𝑆𝑆(𝑡𝑡)𝑑𝑑𝑡𝑡

=
𝑓𝑓(𝑡𝑡)
𝑆𝑆(𝑡𝑡)

= −
𝑆𝑆′(𝑡𝑡)
𝑆𝑆(𝑡𝑡)

  .................. Eq. 4 

The cumulative hazard function, 𝛬𝛬(𝑡𝑡):  

Λ(𝑡𝑡) = � 𝜆𝜆(𝑥𝑥)
𝑡𝑡

0
𝑑𝑑𝑥𝑥 = − log 𝑆𝑆(𝑡𝑡)  .................. Eq. 5 

The survival function can also be expressed as the inverse function of the cumulative 

hazard function, 𝛬𝛬(𝑡𝑡) 

𝑆𝑆(𝑡𝑡) = exp [−Λ(𝑡𝑡)]  ................... Eq. 6 

Other than the 5 basic entities, the following statistics can also be estimated if the 

distribution of survival time is known; the mean survival time 𝜇𝜇 can be estimated using 

Eq. 7 and the corresponding 100(1-α)% CI can be estimated using the variance of the 

means using the standard variance formula. 

  18 



 

�̂�𝜇(𝑇𝑇) = � �̂�𝑆(𝑡𝑡)
𝑇𝑇

0
𝑑𝑑𝑡𝑡  ................... Eq. 7 

va�r(𝑇𝑇) = � 𝑡𝑡2𝑑𝑑𝑡𝑡 − 𝜇𝜇2
𝑇𝑇

0
  

The 𝑞𝑞th sample percentile of survival time and the corresponding 100(1-α)% CI can 

be obtained as (The median survival time, 𝑇𝑇0.5, can be obtained with 𝑞𝑞 = 0.5):  

𝑇𝑇𝑞𝑞 =
1
2
�inf�𝑡𝑡: 1 − �̂�𝑆(𝑡𝑡) ≥ 𝑞𝑞� + sup�𝑡𝑡: 1 − �̂�𝑆(𝑡𝑡) ≤ 𝑞𝑞��  ................... Eq. 8 

𝐼𝐼𝑞𝑞 = {𝑡𝑡: − 𝑧𝑧1−𝛼𝛼2
≤
�̂�𝑆(𝑡𝑡) − (1 − 𝑞𝑞)

�var ��̂�𝑆(𝑡𝑡)�
≤ 𝑧𝑧1−𝛼𝛼2

}  

2.3 Review of Survival Models 

Of all survival analysis approaches, the product-limit (PL) method, developed by 

Kaplan and Meier in 1958, has been one of the oldest nonparametric approaches for 

estimating survival function and it is still broadly used today. Another similar 

nonparametric approach, Nelson-Aalen estimator, was introduced for estimation of 

cumulative hazard function by Nelson (1972). For comparing two survival curves, log-

rank test was introduced in 1966 and Cox-Mantel test was later developed to compare 

more than 2 survival curves. Not until the last decade, Wang et al. and Pena et al. 

introduced an extension of the product limit estimator for studying recurrent event 

survival data. Even though more parametric models have been developed today, the 

above nonparametric approaches are still broadly used, not only for estimation of survival 

function, but for inspection the distribution of survival time as well. Just recently, several 

of these nonparametric models have been implemented using machine learning 

algorithms to detect prognostic factors for survival outcomes. 

Other than the nonparametric approaches, several parametric models may be used for 

analysis of survival data, such as exponential, Weibull, log-normal and log-logistic 

models. Except for exponential model, for which the hazard rate is a constant over time, 

the rest of the parametric models allow hazard to change over time with assumptions of 

probability distributions for the survival time, this is why they are also referred to as 

accelerated failure time (AFT) model. These models are as efficient and robust as Cox 

PH model if the data satisfy all parametric assumptions.  
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Nevertheless, the semi-parametric, Cox proportional hazard (PH) model is probably 

still the most popular approach for survival analysis. The imminent progress in machine 

learning algorithm has triggered the development of diversified approaches for survival 

analysis, most of them are built on top of Cox PH model.  

Moreover, many extensions of Cox PH model have been proposed for broader 

applications in survival analysis, such as time-dependency, recurrent events, competing 

events models etc. 

2.3.1 Nonparametric Estimation of Survival Curves 

Nonparametric or distribution-free methods are quite easy to apply; comparing to 

parametric models, they are less efficient if the survival time follows a theoretical 

distribution and they are more efficient if the underlying distributions for survival time is 

unknown. Therefore, nonparametric models are often used as alternative tools to 

compliment the parametric or semi-parametric approaches. Especially for identification 

of the underlying distribution of the survival time, estimates and plots of the survival 

probabilities as well as the cumulative hazards from the nonparametric analysis should be 

very helpful.  

2.3.1.1 Kaplan-Meier (KM) and Nelson-Aalen Estimator  

Edward L Kaplan and Paul Meier (1958) were among the first to develop the Kaplan-

Meier (KM) estimator[19] for estimation the survival probability for time-to-event data; it 

is also known as product limit estimator, which is a step function with steps at the event 

times when the event actually occurs. The estimation process takes advantage of the 

counting process, stochastic integral at each observed time (at the censoring time, the 

count of events will be 0; the count will be ≥1 only at the event times). Even though this 

is a simple estimation process, it is still widely used for preparing survival curves as a 

convenient nonparametric approach to estimate the survival probability beyond time, 𝑡𝑡; 

the actual formation for estimation of survival probability is presented in Eq. 8. The 

cumulative hazard function can be estimated accordingly base on Eq. 5 (section 2.2). For 

estimating the confidence intervals (CI) for KM estimator, several different formulas 

were proposed. The most popular one was proposed by Greenwood[20, 21]; another 

version, "exponential" Greenwood formula was proposed by Hosmer et al.[21] in 1999. 
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Both formulas will be discussed later in the section. 

The Kaplan-Meier method can be used to estimate the survival probability or 

probability of event for the observed time period without any assumption of the 

underlying distribution. This is also the simplest concept for estimating the survival 

probability when there are no covariates. Although simple, it forms a platform for 

understanding the more complex models and theories. The probability of surviving at 

time 𝑡𝑡𝑘𝑘 can be estimated using the product of the k observed survival rates for each 

𝑡𝑡𝑖𝑖,𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑖𝑖 = 1 … 𝑘𝑘. Let 𝑝𝑝𝑖𝑖 denote the proportion surviving the period [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖) with 

𝑡𝑡1 ≤ 𝑡𝑡2 ≤ 𝑡𝑡3 ≤ ⋯ ≤ 𝑡𝑡𝑘𝑘, then 𝑝𝑝𝑖𝑖 = 𝑟𝑟𝑖𝑖−𝑑𝑑𝑖𝑖
𝑟𝑟𝑖𝑖

, where 𝑟𝑟𝑖𝑖 is the number at risk at 𝑡𝑡𝑖𝑖−1. Then the 

survival probability at 𝑡𝑡𝑘𝑘, can be estimated by 

KM Estimator  �̂�𝑆(𝑡𝑡𝑘𝑘) = �𝑝𝑝𝑖𝑖

𝑘𝑘

𝑖𝑖=1

  .................. Eq. 9 

The likelihood function can be formulated as  

𝐿𝐿 = �(1 − 𝑝𝑝𝑖𝑖)𝑑𝑑𝑖𝑖𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖−𝑑𝑑𝑖𝑖

𝑘𝑘

𝑖𝑖=1

  ................ Eq. 10 

CI for survival probability at time 𝑡𝑡𝑘𝑘 can be estimated as �̂�𝑆(𝑡𝑡𝑘𝑘) ± zα/2�var��̂�𝑆(𝑡𝑡𝑘𝑘)�, 

where the variance can be estimated by Greenwood's formula  

var��̂�𝑆(𝑡𝑡𝑘𝑘)� = ��̂�𝑆(𝑡𝑡𝑘𝑘)�
2
�

𝑑𝑑𝑖𝑖
𝑟𝑟𝑖𝑖(𝑟𝑟𝑖𝑖 − 𝑑𝑑𝑖𝑖) 

𝑘𝑘

𝑖𝑖=1

  ................. Eq. 11 

A second approach (exponential Greenwood formula) for estimation of CIs is 

obtained through log negative log of the survival probability as log�− log��̂�𝑆(𝑡𝑡𝑘𝑘)�� ± 

zα/2�𝑉𝑉�𝑘𝑘, where 𝑉𝑉�𝑘𝑘 is the variance of the log negative log of the survival probability at 

time 𝑡𝑡𝑘𝑘 

𝑉𝑉�𝑘𝑘 =
1

�log��̂�𝑆(𝑡𝑡𝑘𝑘)��
2�

𝑑𝑑𝑖𝑖
𝑟𝑟𝑖𝑖(𝑟𝑟𝑖𝑖 − 𝑑𝑑𝑖𝑖)

𝑘𝑘

𝑖𝑖=1

  .................Eq. 12 

The second approach (exponential Greenwood formula) is more preferred over the 

traditional Greenwood CIs, as it guarantees the upper and lower bounds of the CI to lie 

within (0, 1). However, in finite samples, the exponential Greenwood formula may not be 
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a good in the tails either. In particular, if the last subject in the sample has an event, the 

estimator and the variance are infinite. 

An alternative nonparametric estimator, Nelson-Aalen estimator[22], was introduced 

for estimation of cumulative hazard function by Nelson in 1972, this estimate also 

utilized the stochastic integral at the observed times. In terms of survival probability, the 

Nelson-Aalen estimator and Kaplan-Meier estimator are asymptotically equivalent; but 

when sample size is small, Nelson-Aalen estimator performs better. On the other hand, 

the Nelson-Aalen estimator is commonly used to check assumptions for parametric 

models and get crude estimates for hazard function.  

The formulation of Nelson-Aalen estimator of the cumulative hazard function is 

displayed below and the estimator of survival probability can be further derived from Eq. 

6 (section 2.2; the corresponding 100(1-α) CI of the cumulative hazard function can be 

estimated asymptotically using the formula, �̂�𝛬(𝑡𝑡𝑘𝑘) ± zα/2�var[�̂�𝛬(𝑡𝑡𝑘𝑘)]. 

Nelson-Aalen Estimator �̂�𝛬(𝑡𝑡𝑘𝑘) = �
𝑑𝑑𝑖𝑖
𝑟𝑟𝑖𝑖

𝑘𝑘

𝑖𝑖=1

  ................ Eq. 13 

 
var[�̂�𝛬(𝑡𝑡𝑘𝑘)] = �

𝑑𝑑𝑖𝑖
𝑟𝑟𝑖𝑖2

𝑘𝑘

𝑖𝑖=1

  

 
var��̂�𝑆(𝑡𝑡𝑘𝑘)� = ��̂�𝑆(𝑡𝑡𝑘𝑘)�

2
�

𝑑𝑑𝑖𝑖
𝑟𝑟𝑖𝑖2 

𝑘𝑘

𝑖𝑖=1

  

2.3.1.2 Log-rank Test and Cox-Mantel Test (Nonparametric) 

Once the survival probabilities are obtained, difference between survival probabilities 

is the next to estimate. For parametric and semi-parametric approaches, the difference is 

frequently expressed as hazard ratio, which will be discussed later in section 2.3.2 and 

2.3.3. For nonparametric approaches, the difference is often assessed using hypothesis 

test against equal survival curves. In 1966, Nathen Mantel first introduced log-rank 

test[23, 24, 25] for assessing the differences between survival curves, which has become one 

of the most popular tools for comparing two survival functions. Another similar test, 

Log-rank form of Cox-Mantel[26, 27] test is capable for comparing difference among 

treatment groups of ≥ 2; there are several options for calculating the Cox-Mantel test 

statistics.  
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When there are only 2 groups, usually both tests give nearly identical results. But the 

results can differ when there are ties (events from multiple subjects occur at the same 

time), as pointed out by Bernsetin et al. in 1981[28] in a simulation study, neither method 

is accurate. They found that log-rank test tends to report equivalence (accept the null 

hypothesis as listed in section 1.6) and Cox-Mantel test tends to claim significance (reject 

null hypothesis as listed in section 1.6). 

The log-rank test[23, 24, 25] is used for comparison of two survival curves. The χ2 test 

statistics for log-rank test can be obtained as  

χ2 =
�∑ (𝑑𝑑𝑖𝑖

(𝑎𝑎) − 𝑟𝑟𝑖𝑖
(𝑎𝑎)𝑑𝑑𝑖𝑖/𝑟𝑟𝑖𝑖)𝑘𝑘

𝑖𝑖=1 �
2

∑
𝑟𝑟𝑖𝑖

(𝑎𝑎)𝑟𝑟𝑖𝑖
(𝑏𝑏)𝑑𝑑𝑖𝑖(𝑟𝑟𝑖𝑖 − 𝑑𝑑𝑖𝑖)
𝑟𝑟𝑖𝑖2(𝑟𝑟𝑖𝑖 − 1)

𝑘𝑘
𝑖𝑖

  .................Eq. 14 

where the superscripts (𝑎𝑎) 𝑎𝑎𝑎𝑎𝑑𝑑 (𝑏𝑏) refer to one of the two groups; 𝑘𝑘 is the number of 

distinct times that the events of interest were observed and 𝑖𝑖 refers to the time 𝑖𝑖. 

A more general form of this test (Cox-Mantel) statistics for comparison of the 

survival curves among 𝑢𝑢 (𝑢𝑢 ≥ 2) groups (𝑗𝑗 = 1, 2, …𝑢𝑢) is  

𝜒𝜒𝑢𝑢−12 = U′V𝑤𝑤−1U   ................. Eq. 15 

where U can be estimated by U𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖(𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖𝑖𝑖)𝑢𝑢
𝑖𝑖=1 ;𝑉𝑉�𝑤𝑤 = 𝑤𝑤V�𝑤𝑤, (V�𝑖𝑖)𝑖𝑖𝑖𝑖 =

𝑛𝑛𝑗𝑗𝑖𝑖�𝑛𝑛𝑖𝑖−𝑛𝑛𝑗𝑗𝑖𝑖�𝑑𝑑𝑖𝑖(𝑛𝑛𝑖𝑖−𝑑𝑑𝑖𝑖)
𝑛𝑛𝑖𝑖
2(𝑛𝑛𝑖𝑖−1)

  and the (V�𝑖𝑖)𝑙𝑙ℎ = 𝑛𝑛𝑙𝑙𝑖𝑖𝑛𝑛ℎ𝑖𝑖 𝑑𝑑𝑖𝑖(𝑛𝑛𝑖𝑖−𝑑𝑑𝑖𝑖)
𝑛𝑛𝑖𝑖
2(𝑛𝑛𝑖𝑖−1)

,ℎ, 𝑙𝑙 = 1, 2, …𝑢𝑢 − 1. The choice of 

weight, 𝑤𝑤𝑖𝑖, will lead to the choice of different options for Cox-Mantel test statistics.  

The weight 𝑤𝑤𝑖𝑖 for the log-rank (Peto et al.[29] 1972) test is 1. For generalized 

Wilcoxon test, the weight, 𝑤𝑤𝑖𝑖, is 𝑎𝑎𝑖𝑖  following the Gehan-Breslow[30, 31] method, the 

square root of 𝑎𝑎𝑖𝑖  following the Tarone-Ware[32] method and the Kaplan-Meier estimates 

of the survival probability multiplied by 𝑎𝑎𝑖𝑖/(𝑎𝑎𝑖𝑖 + 1) following the Peto-Prentice[33, 34] 

method. The expectation of the number of events in group 𝑗𝑗 at the 𝑖𝑖th time where 𝑑𝑑𝑖𝑖 

events is observed, can be estimated as, 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖/𝑎𝑎𝑖𝑖, where 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑖𝑖. Of the 

above methods, log-rank is more powerful if hazard rates are constant over time; the 

Gehan-Breslow Wilcoxon test is more powerful if the initial event rates (hazard rates) are 

higher, but it is less powerful if event rates are constant over time[35]. 
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2.3.1.3 Nonparametric Wang-Chang Estimator of Recurrent Event 

The nonparametric approaches discussed in the previous sections are all used to 

evaluate time-to-single-event data; however, in real world studies, multiple events 

survival data are very common in public health, epidemiology, medicine and clinical 

trials. Frequently, after multiple event survival data are collected, only the first 

occurrence of the events of interest from each experimental subject is used for most 

survival analysis (including the nonparametric analysis discussed above and most of the 

parametric and semi-parametric survival analysis). As a result, the extra information from 

the other events occurred in the same subject will be lost.  

To model the recurrent event survival data, complex nonparametric models for 

recurrent events have been proposed with the only assumption that the distribution is 

smooth and multiple in both the time-to-event and covariates [36, 37].  

In 2001, Peña et al.[38] proposed a nonparametric estimator as an extension to the 

product limit estimator (which was named as PSH estimator after the names of the 

authors) for recurrent event survival data with the only assumption that the inter-

occurrence times are iid from some underlying distribution. This assumption was 

obviously very stringent for clinical research, thereafter the generalized frailty model was 

proposed to allow for association among inter-occurrence times.  

For frailty distribution, a convenient choice is the gamma distribution with shape and 

scale parameter equal to an unknown parameter, 𝛼𝛼. Then, the marginal survival function 

can be written as, 𝐹𝐹 = [𝛼𝛼/(𝛼𝛼 + 𝛬𝛬0(𝑡𝑡)]𝛼𝛼. The parameter, 𝛼𝛼, reflects the degree of 

association between the inter-occurrence times of the multiple events within the same 

subject.  Peña et al. (2001) demonstrated that the estimation of 𝛼𝛼 and Λ0(𝑡𝑡) could be 

obtained via maximization of the marginal likelihood function using the expected-

maximization (EM) algorithm. The inter-occurrence times are assumed to be from an 

independently and identically distributed (iid) sample following some underlying 

distribution. To obtain a better convergence, 𝛼𝛼 was tentatively estimated; the initla 

estimates for 𝛼𝛼 was used as a starting point in the EM procedure; the maximization of the 

profile likelihood for 𝛼𝛼 was further estimated using a “golden section search method”. 

For the same reason, Wang and Chang (1999) proposed another nonparametric 

approach to obtain the estimator (this is named as Wang-Chang or WC estimator after the 
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names of the authors) of the common marginal survival function with adjustment of 

within-subject correlations among inter-occurrences. Wang and Chang claimed that this 

model should work with any frailty distributions, even though they considered an iid 

distribution with multiplicative properties. As such, gamma and other frailty models were 

just special cases.  

When the inter-occurrence times are correlated within subject units, this model 

eliminates the bias of the estimates as noted for the product-limit estimator developed by 

Peña et al in 2001. However, for iid inter-occurrence times, this approach does not 

perform as efficient as the PSH estimator.  

Compare the two nonparametric estimator, Peña, Strawderman and Hollander and 

Wang-Chang estimators (PSH and WC) for recurrent event survival data, WC estimator 

is preferably more reasonable in practice; however it only considers the situation that the 

initial occurrence of the event is an inclusion criterion for recruitment and the recurrences 

of the same type of events are observed within a pre-specified period of time. Therefore, 

the time of the initial occurrence of the event is defined as the origin of time (time=0).  

Let 𝑖𝑖 be the index for an event; j be the index for a subject; 𝑇𝑇𝑖𝑖𝑖𝑖 denote the time from 

(𝑖𝑖 − 1)th event to the 𝑖𝑖th event for subject 𝑗𝑗, where 𝑖𝑖 = 1, 2, … ,𝐾𝐾𝑖𝑖 and 𝑗𝑗 = 1,2, … . ,𝑎𝑎. Let 

𝐶𝐶𝑖𝑖 be the censoring time or the time between the initial event to the end of the follow-up 

for subject 𝑗𝑗; let 𝐺𝐺 be the survival function of 𝐶𝐶𝑖𝑖 and let 𝐾𝐾𝑖𝑖 = {𝑇𝑇𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1, 2, … . }. It is 

reasonable to assume that (𝑁𝑁1,𝐶𝐶1), (𝑁𝑁2,𝐶𝐶2), … , (𝑁𝑁𝑛𝑛,𝐶𝐶𝑛𝑛) are iid. Let 𝑚𝑚𝑖𝑖 denote the index 

satisfy ∑ 𝑇𝑇𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖
𝑚𝑚𝑗𝑗−1
𝑖𝑖=1  and ∑ 𝑇𝑇𝑖𝑖𝑖𝑖 > 𝐶𝐶𝑖𝑖

𝑚𝑚𝑗𝑗
𝑖𝑖=1 . Let 𝑚𝑚𝑖𝑖

∗ = �
1 if 𝑚𝑚𝑖𝑖 = 1 

𝑚𝑚𝑖𝑖 − 1 if 𝑚𝑚𝑖𝑖 ≥ 2  and 𝑈𝑈𝑖𝑖(𝑡𝑡) =

1
𝑚𝑚𝑗𝑗

: ∑ 𝐼𝐼(𝑇𝑇𝑖𝑖𝑖𝑖 > 𝑡𝑡)
𝑚𝑚𝑗𝑗
∗

𝑖𝑖=1 , then the mass of event set at time 𝑡𝑡 is 

𝑑𝑑∗(𝑡𝑡) = ��
𝑎𝑎𝑖𝑖𝐼𝐼(𝑚𝑚𝑖𝑖 ≥ 2)

𝑚𝑚𝑖𝑖
∗ �𝐼𝐼

𝑚𝑚𝑗𝑗
∗

𝑖𝑖=1

(𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡)�
𝑛𝑛

𝑖𝑖=1

   ................ Eq. 16 

The total mass of risk set at time, 𝑡𝑡, is  

𝑅𝑅∗(𝑡𝑡) = ��
𝑎𝑎𝑖𝑖
𝑚𝑚𝑖𝑖
∗�𝐼𝐼

𝑚𝑚𝑗𝑗
∗

𝑖𝑖=1

(𝑇𝑇𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡)�
𝑛𝑛

𝑖𝑖=1

  ................ Eq. 17 

  25 



 

The survival function can be estimated as  

WC Estimator  �̂�𝑆(𝑡𝑡) = �� � �1 −
𝑑𝑑∗�𝑇𝑇𝑗𝑗𝑖𝑖�
𝑅𝑅∗�𝑇𝑇𝑗𝑗𝑖𝑖�

�
𝑖𝑖:𝑇𝑇𝑗𝑗𝑖𝑖≤𝑡𝑡

�
𝑛𝑛

𝑖𝑖=1

  ................ Eq. 18 

However when subjects are sampled from a target population, recurrent events are 

observed during the follow-up period and the initial occurrence of the event is not the 

requirement for recruitment, it is possible that some subjects may not experience any 

events during the follow-up period. Unfortunately, neither the PSH, nor the WC estimator 

is appropriate; in this case, both parametric and nonparametric approaches should be 

intended. 

Although the above nonparametric approaches are widely used without assumption 

concerns, they provide no inference about group difference; they can only deal with 

categorical factors (continuous factors have to be categorized before analysis if they are 

involved); the approaches can only deal with a limited number of factors via 

stratification; they can estimate survival probability, but relatively low power for model 

prediction compares to parametric or semi-parametric models. Therefore, typical 

nonparametric approaches cannot be used for prognostic factor detection if there are more 

than a few categorical factors or if one or more continuous factors are involved. There are 

ways to get around some of these drawbacks by combining the nonparametric models 

with machine learning techniques, such as random survival forest[39, 40] (RSF), recursive 

partition[4] and support vector machine (SVT)[41]; however the results from the analysis 

are subject to random variation due to the nature of machine learning. Moreover, the 

nonparametric models are relatively less efficient for predictions. Thus it is still necessary 

to consider parametric or semi-parametric models for better inferences, mathematical 

simplicity and attractive properties. 

2.3.2 Parametric Models of Survival Analysis 

Parametric model is the one of the frameworks for implementation of multivariate 

regression analysis[42], in which the link function is expressed as a linear combination of 

all covariates (including the original factors or transformed factors, nonlinear form of the 

factors or transformed factors, interactions and etc.); the coefficients can be estimated via 

maximizing the joint likelihood of the link function. For parametric survival models, the 
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most commonly used distributions for survival time include exponential[43], Weibull[43], 

Gompertz[44], log-logistic and log-normal distributions. For most of these parametric 

models (except for exponential model), the survival time is changing over time following 

the distributions, thus these models are also called accelerated failure time (AFT) models. 

2.3.2.1 Exponential Distribution and Exponential Survival Model  

The exponential model[43] is one of the most popular parametric models based on 

exponential distribution; it is the simplest and possibly one of the most important model 

for survival analysis. Epstein et al. (1953) was among the first to introduce the 

exponential distribution for estimating the parameters for singly censored data; again in 

1958, Epstein further discussed the justification of the exponential distribution 

assumption. Since then, the exponential model has continued to play an important role in 

survival analysis. 

Exponential distribution is also one of the few distributions for which the estimator of 

its parameter has a closed-form solution when censoring is present. The estimator is a 

function of the number of events observed and the total exposure duration. This model is 

often used to analyze events which may have occurred "at random in time"[45].  

In practice, the distribution is the basis for exponential proportional hazard model and 

is related to the extreme-value distribution; specifically, T, follows an exponential 

distribution with a constant hazard rate over the lifetimes of subjects. With the 

distribution assumption, the hazard, cumulative hazard, survival, density and cumulative 

distribution functions, all have simple forms; the mean and median survival time can be 

easily derived.  

When λ(𝑡𝑡) = 𝜆𝜆 (fixed over time), then 

𝜆𝜆(𝑡𝑡|𝑋𝑋) = 𝜆𝜆(𝑡𝑡) exp(𝑋𝑋𝛽𝛽) = 𝜆𝜆 exp(𝑋𝑋𝛽𝛽)  .................Eq. 19 

𝛬𝛬(𝑡𝑡|𝑋𝑋) = 𝛬𝛬(𝑡𝑡) exp(𝑋𝑋𝛽𝛽) = 𝜆𝜆𝑡𝑡 exp(𝑋𝑋𝛽𝛽)  

𝑆𝑆(𝑡𝑡|𝑋𝑋) = exp[−𝛬𝛬(𝑡𝑡)]exp(𝑋𝑋𝑋𝑋) = exp(−𝜆𝜆𝑡𝑡)exp (𝑋𝑋𝑋𝑋)  

where 𝛬𝛬(𝑡𝑡) is the cumulative hazard function; 𝑆𝑆(𝑡𝑡|𝑋𝑋), is the probability of survival 

beyond time 𝑡𝑡 given the values of the covariates, which can also be written as  

𝑆𝑆(𝑡𝑡|𝑋𝑋) = 𝑆𝑆(𝑡𝑡)exp (𝑋𝑋𝑋𝑋)  .................Eq. 20 

where the baseline survival probability 𝑆𝑆(𝑡𝑡) = exp (−𝜆𝜆𝑡𝑡). 

  27 



 

The log-hazard, log-cumulative-hazard can be linearized with respect to 𝑋𝑋𝛽𝛽 using the 

following identifies  

log 𝜆𝜆(𝑡𝑡|𝑋𝑋) = log 𝜆𝜆(𝑡𝑡) + 𝑋𝑋𝛽𝛽   ................ Eq. 21 

log𝛬𝛬(𝑡𝑡|𝑋𝑋) = log𝛬𝛬(𝑡𝑡) + 𝑋𝑋𝛽𝛽  

Thus, these can be analyzed using a regression analysis and the parameter λ is the 

antilog of the intercept. The expected failure time and median failure time is as follows 

𝐸𝐸(𝑇𝑇|𝑋𝑋) = 1/[λ(𝑡𝑡)exp (𝑋𝑋𝛽𝛽)]  ................ Eq. 22 

T0.5|𝑋𝑋 = log2/[𝜆𝜆(𝑡𝑡) exp(𝑋𝑋𝛽𝛽)]  

This model has a property that the future lifetime of a subject remains the same no 

matter how long he stays in a study. This ageless property has made it a poor choice for 

modeling survival data from medical research except over a short period of time. 

2.3.2.2 Weibull Distribution and Weibull Survival Model  

Weibull model[43] is another parametric survival model based on Weibull distribution, 

which is a more generalized distribution. Unlike exponential model, this model does not 

assume a constant hazard rate; thus Weibull model has broader applications. The Weibull 

distribution was first introduced by Weibull in 1939 and its application to various failure 

time examples were discussed again by Weibull in 1955.  Since then, the model has been 

broadly used for analyses of reliability and disease mortality.  

The general form of the Weibull model is presented in Eq. 23; the distribution has 

two parameters, 𝛼𝛼 and 𝛾𝛾. The parameter 𝛾𝛾 determines the shape and the parameter 𝛼𝛼 

determines the scale of the distribution curve, therefore 𝛾𝛾 and 𝛼𝛼 are called the shape and 

scale parameters, respectively. When 𝛾𝛾 = 1, the model becomes the exponential model 

and the hazard remains constant over times; when 𝛾𝛾 > 1, the hazard increases with time; 

and when 𝛾𝛾 < 1, the hazard decreases with time. Thus, Weibull model may be used to 

analyze survival data from a population with increasing, decreasing or constant risk.  

The Weibull PH regression model is defined by the following:  

𝜆𝜆(𝑡𝑡|𝑋𝑋) = 𝛼𝛼𝛾𝛾𝑡𝑡𝛾𝛾−1 exp(𝑋𝑋𝛽𝛽)  ...............  Eq. 23 

𝛬𝛬(𝑡𝑡|𝑋𝑋) = 𝛼𝛼𝑡𝑡𝛾𝛾  exp(𝑋𝑋𝛽𝛽)  
𝑆𝑆(𝑡𝑡|𝑋𝑋) = exp(−𝛼𝛼𝑡𝑡𝛾𝛾)exp (𝑋𝑋𝑋𝑋)  
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For numerical reasons, sometime it is advantageous to write the Weibull PH model as 

𝑆𝑆(𝑡𝑡|𝑋𝑋) = exp [−𝛬𝛬(𝑡𝑡|𝑋𝑋)]  ...............  Eq. 24 

where 𝛬𝛬(𝑡𝑡|𝑋𝑋) = exp (𝛾𝛾 log 𝑡𝑡 + 𝑋𝑋𝛽𝛽). 

The expected and median failure times are as follows 

𝐸𝐸(𝑡𝑡|𝑋𝑋) = 1/[λ(𝑡𝑡)exp (𝑋𝑋𝛽𝛽)]  ...............  Eq. 25 

T0.5|𝑋𝑋 = �
log 2

[𝛼𝛼 exp(𝑋𝑋𝛽𝛽)]�
1/𝛾𝛾

  

The model can be diagnosed with graphical display, a linear relationship between 

log[− log 𝑆𝑆(𝑡𝑡)] vs. log 𝑡𝑡 is a strong evidence for Weibull models. Another feature of the 

Weibull model is that it has both AFT form and proportional hazard form.  

2.3.2.3 Gompertz Model 

Gompertz distribution was introduced by Benjamin Gompertz in 1825; it was 

originally introduced for time series analysis. Since then, it has been a choice for 

modeling biological and survival data.  

Gompertz survival model[44] is a 2-parameter survival distribution; the hazard 

function has the form, 𝜆𝜆(𝑡𝑡|𝑋𝑋) = 𝛼𝛼 exp(𝛾𝛾𝑡𝑡) where log𝛼𝛼 = 𝑋𝑋𝛽𝛽. The log hazard is a linear 

function of the survival time with the form, log[𝜆𝜆(𝑡𝑡)] = 𝑋𝑋𝛽𝛽 + 𝛾𝛾𝑡𝑡. If the shape parameter, 

𝛾𝛾 > 0, the hazard is monotonically increasing; if 𝛾𝛾 = 0, it is the exponential model; if 

𝛾𝛾 < 0, the hazard declines monotonically.  

This model is not commonly used, because the parameter estimation procedures, such 

as regression or maximum likelihood estimation (MLE) require knowledge of the actual 

lifespan for estimation of the parameters to be successful, which is not very realistic in 

analysis of survival data.  

2.3.2.4 Gamma Distribution and Generalized Gamma Survival Model 

In 1947, Brown et al. used a gamma distribution, a generalized form of both 

exponential and chi-square distribution, to describe the lifetime of glass tumblers served 

in a cafeteria; later in 1958, Birnbaum et al. used it as a statistical model to study the life 

length of various materials. Since then the model has been frequently used for reliability 

and survival problems. The model is intuitive for analysis of multiple-stage events or 
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failures; recently, it has been used as a distribution function of the random effect for 

clustered or multiple-event survival models.  

In 2001, Pan W. discussed an AFT model with gamma frailty[46] to account for 

possible correlations and heterogeneity of multiple failure times. An EM-like algorithm 

was adapted for estimation. Several simulation studies were performed to compare the 

performance of this model with the other models assuming independence among multiple 

events. 

This model was built to study multiple stage events or multiple failures per subject. 

The failure should take place in 𝛾𝛾 stages or as soon as 𝛾𝛾 sub-failures occurred. 𝑇𝑇𝑖𝑖 is the 

time between the start of the 𝑖𝑖th stage, the 𝑖𝑖th sub-failure occurred and the 𝑖𝑖 + 1 sub-

failure occurred. Then the total survival time, 𝑇𝑇 = ∑ 𝑇𝑇𝑖𝑖
𝛾𝛾
𝑖𝑖 , follows a gamma distribution, if 

the times 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3, … ,𝑇𝑇𝛾𝛾 are independently distributed following an exponential 

distribution with the probability of 𝜆𝜆 exp(−𝜆𝜆𝑡𝑡𝑖𝑖) , 𝑖𝑖 = 1, 2, … , 𝛾𝛾. Once the gamma 

distribution is obtained, the following can be derived easily following Eq. 2, Eq. 3 and 

Eq. 6, respectively. 

𝑓𝑓(𝑡𝑡) =
𝜆𝜆

Γ(𝛾𝛾)
(𝜆𝜆𝑡𝑡)𝛾𝛾−1 exp(−𝜆𝜆𝑡𝑡)      𝑡𝑡, 𝛾𝛾, 𝜆𝜆 > 0  ................  Eq. 26 

𝐹𝐹(𝑡𝑡) =
1

Γ(𝛾𝛾)� 𝑢𝑢𝛾𝛾−1
𝜆𝜆𝑡𝑡

0
exp(−𝑢𝑢)𝑑𝑑𝑢𝑢  

𝑆𝑆(𝑡𝑡) = �
𝜆𝜆

Γ(𝛾𝛾) (𝜆𝜆𝑥𝑥)𝛾𝛾−1
∞

𝑡𝑡
exp(−𝜆𝜆𝑥𝑥)𝑑𝑑𝑥𝑥  

2.3.2.5 Other AFT Model 

Log-normal distribution[47, 48, 49] is another frequently used distribution for time-to-

event data. In the simplest form, the lognormal distribution can be described using a 

normal distribution for the logarithm of the time, 𝑇𝑇; i.e., log𝑇𝑇 ~ Normal(𝜇𝜇,𝜎𝜎). In 1879, 

the distribution was first introduced by McAlister et al.; in 1945, Gaddum et al. reviewed 

several applications for biological survival problems; in 1949, Boag et al. used this 

distribution in a cancer research to model survival times. Later, it was noted that the 

distribution of patient age at the onset of Alzheimer's disease and the distribution of 

survival time for several other diseases, such as Hodgkin's disease and chronic leukemia, 

could be approximated by a log-normal distribution.  
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Since then, this distribution has become more popular for survival analysis in part due 

to its theoretical relationship with normal distribution and in other part due to its practical 

approximation of survival time for certain disease[50, 51]. Similar to the normal 

distribution, log-normal distribution can be described using two parameters, 𝜇𝜇 and 𝜎𝜎 (see 

Eq. 28 for details). The distribution is the basis for log-normal accelerated failure time 

(AFT) model. Recently, this model has been extended to study multiple event survival 

data; in 1999, Klein et al.[52] utilized this model to perform a random effect survival 

analysis for censored data. 

Other than log-normal AFT models, there are other AFT models include log-

linear[53], log-logistic[54], Weibull extreme AFT model[55] and etc. These parametric AFT 

models have offered a variety of hazard function to model survival data; the effect of the 

linear combination of the covariates is to accelerate or decelerate the survival time of the 

event f interest. A common feature of the AFT models is the underlying assumption of 

the probability distribution for the logarithm of the survival time, log (𝑇𝑇); the assumption 

may be a too restrictive to satisfy for modeling the distribution of the survival time. 

However, the estimates of coefficients from the AFT models are robust; i.e. the parameter 

estimates of the existing covariates are not affected by the omitted covariates[56], nor are 

they affected by the choice of the probability distribution for the logarithm of time. 

Moreover, it has been argued by Wei (1992)[57] and Cox (1997)[58] that the AFT model is 

more intuitively interpretable than PH model. 

Recently, more complex models have been developed on the basis of the discussed 

AFT to account for random effects, correlated multiple or recurrent events, competing 

events and survival data with referral bias and etc.  

In 2004, Lambert et al.[59] described a mixture of AFT models with a shared random 

effect to evaluate explanatory factors with adjustment of clusters effect of the investigator 

centers following kidney transplants. Different distributions for the random effects and 

the baseline hazard functions were considered; a flexible AFT model was proposed to 

account for both the short-term and long-term frailty effect for the hazard function. The 

model was then evaluated with the transplant survival data.  

In 2013, Wang et al. described an AFT model to adjust for referral bias[60] when 

evaluating prognostic risk factors for progression in hepatitis C. In the paper, they 
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presented a study, of which the subject recruitment was significantly biased due to 

referral preference; subjects with more rapid disease progression were more likely to be 

recruited with liver clinics than any other clinics. A parametric random effect AFT model 

with adjustment of the correlation between the time referred to the clinics and the time to 

the development of cirrhosis was employed.  

Another AFT model was described by Dang et al. (2013) for dealing with censored 

survival data with competing risks[61]; the model combined a mixture of AFT models for 

competing risks within a cluster weighted modeling framework; each competing risk was 

weighted by the cluster of the occurrence. They also used log-normal AFT model with 

alternating expectation conditional maximization algorithm for parameter estimation and 

bootstrap method for standard error estimation.  

Below are the general forms of the AFT models; the log-logistic, log-normal, and 

Weibull extreme AFT models, can be derived by substituting the function 𝜓𝜓 with the 

corresponding distribution functions, respectively. 

General Form 𝑆𝑆(𝑡𝑡|𝑋𝑋) = 𝜓𝜓{[log(𝑡𝑡) − 𝑋𝑋𝛽𝛽]/𝜎𝜎}  ...............  Eq. 27 
𝑇𝑇0.5|𝑋𝑋 = exp (𝑋𝑋𝛽𝛽 + 𝜎𝜎𝜓𝜓−1(0.5))  

where 𝜓𝜓 is any standard survival distribution function.  

Log-Normal Model �̂�𝑆(𝑡𝑡|𝑋𝑋) = 1 − ϕ{[log(𝑡𝑡) − 𝑋𝑋𝛽𝛽]/𝜎𝜎}  ................ Eq. 28 

𝑇𝑇�0.5|𝑋𝑋 = exp (𝑋𝑋�̂�𝛽)  

Log-Logistic Model �̂�𝑆(𝑡𝑡|𝑋𝑋) =
1

1 + exp{[log(𝑡𝑡) − 𝑋𝑋𝛽𝛽]/𝜎𝜎]}
  ................ Eq. 29 

 𝑇𝑇�0.5|𝑋𝑋 = exp (𝑋𝑋�̂�𝛽)  

Similarly, the AFT equivalent of Weibull model can be obtained from the extreme 

value distribution (Eq. 23), by replacing 𝛾𝛾 with 1/𝜎𝜎, and the median survival time can be 

obtained by replacing [𝛼𝛼 exp(𝑋𝑋𝛽𝛽)]−1/𝛾𝛾 with exp(𝑋𝑋𝛽𝛽). 

Weibull Extreme AFT  �̂�𝑆(𝑡𝑡|𝑋𝑋) = exp �− exp�
[log(𝑡𝑡) − 𝑋𝑋𝛽𝛽]

𝜎𝜎
��  ................  Eq. 30 

 𝑇𝑇�0.5|𝑋𝑋 = [log(2)]𝜎𝜎exp (𝑋𝑋�̂�𝛽)  

Again, a graphic display is also the best diagnosis tool for parametric AFT models; 

for example, log-normal AFT model can be diagnosed by plotting the probability density 

of log𝑇𝑇; log-logistic AFT model can be diagnosed by detection of a linear relationship of 
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log{𝑆𝑆(𝑡𝑡)/[1 − 𝑆𝑆(𝑡𝑡)]} vs. log 𝑡𝑡; Weibull extreme AFT model can be confirmed with 

detection of linear relationship between log[− log 𝑆𝑆(𝑡𝑡)] vs. log 𝑡𝑡.  

Comparing to Cox proportional hazard model, the AFT models are flexible, but they 

need additional verification for the distribution assumption for the baseline hazard, they 

are more complex, and needs numerical computations to obtain parameter estimates. 

2.3.3 Semi-Parametric Survival Analysis 

Cox proportional hazard (PH) model was first introduced by David Cox in 1972[62] to 

study age-specific failure rate, with a list of explanatory variables. Since then, the model 

has been adapted to a broad range of applications to health science, medical research, 

epidemiology and engineering industry. It is by far the most popular semi-parametric 

model[63, 64, 65, 66], for generalized survival regression analysis, where the regression 

coefficients are estimated with partial log likelihood. It allows for testing the difference 

between survival probabilities among groups of subjects while allowing for other 

prognostic factors; the group difference in survival probabilities is actually measured by 

hazard ratios. It makes a parametric assumption concerning the proportional effect of 

covariates with respect to the hazard ratio, but makes no assumption about the probability 

distribution of the baseline hazard. The outcome variable is the hazard rate as defined 

with Eq. 4 in section 2.2. The model assumes no probability distribution of the baseline 

hazard function but it does assume constant baseline hazard function, i.e., no time-

dependency (such as time by covariate interactions).  

Cox PH model is built on the rank ordering of the failure and censoring times, thus it 

is less affected by outliers in the event times than the parametric models. A second 

advantage of Cox PH model over other models is its ability to adjust for factors that are 

not modeled; hence, factors that are too difficult to model or do not satisfy the PH 

assumption, can be adjusted as the form of stratification factors. Thus, Cox PH model is 

efficient and robust; even when all assumptions for parametric models are satisfied, Cox 

PH model is still as efficient as parametric models.  

When the proportionality assumption of Cox PH model is not met, extensions of Cox 

PH models are developed to relief the violation of the assumption. When recurrent or 

multiple events are of primary interest, various extensions of Cox PH models, such as 

Wei, Lin and Weissfeld (WLW)[67], Andersen-Gill (AG) [68], Prentice, Williams and 
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Peterson (PWP)[69] and etc., have been developed to handle clustered or multiple event 

data.  

In the past decade, statistical learning approaches have been advancing rapidly; they 

were developed by applying machine learning techniques on top of the existing survival 

models or statistical testing procedures with the intension to overcome the limitations or 

restrictions of the typical statistical models. However, most of these were developed for 

regression and classification problems; and little has been done for survival data, and 

very few success stories have been reported for survival data. In this research, typical 

statistical approaches, multiple Cox regression models will the implemented and 

evaluated; the following statistical learning approaches will also be developed and 

assessed, including random survival forest[70, 71, 72] (RSF), generalized regression 

method[43] based on Cox model, regularized or penalized regression[73] method based on 

Cox model[74], derived input Cox model, such as principal component Cox regression[75] 

and partial least squares Cox regression models. These approaches will be evaluated 

based on two studies (one simulation study and one real world case study); the model 

performance will be assessed and compared.  

2.3.3.1 Cox Proportional Hazard (Cox PH) Model  

The Cox PH model can be commonly expressed as, 

𝜆𝜆(𝑡𝑡|𝑋𝑋) = λ(𝑡𝑡) exp(𝑋𝑋𝛽𝛽)   ................  Eq. 31 

The Cox PH model can also be written in terms of the cumulative hazard and survival 

functions: 

𝛬𝛬(𝑡𝑡|𝑋𝑋) = 𝛬𝛬(𝑡𝑡) exp(𝑋𝑋𝛽𝛽)  
𝑆𝑆(𝑡𝑡|𝑋𝑋) = 𝑆𝑆(𝑡𝑡)exp (𝑋𝑋𝑋𝑋) 

 ................  Eq. 32 

Thus the model can be linearized with respect to Xβ using the following 

log 𝜆𝜆(𝑡𝑡|𝑋𝑋) = log 𝜆𝜆(𝑡𝑡) + 𝑋𝑋𝛽𝛽 
log 𝛬𝛬(𝑡𝑡|𝑋𝑋) = log 𝛬𝛬(𝑡𝑡) + 𝑋𝑋𝛽𝛽 

 ................  Eq. 33 

No assumptions were made for the baseline hazard function, 𝜆𝜆(𝑡𝑡), or the baseline 

cumulative hazard function, 𝛬𝛬(𝑡𝑡); the baseline hazard is not needed for estimating the 

hazard ratio, formulated as 𝜆𝜆1 𝜆𝜆2⁄ = 𝑒𝑒𝑥𝑥𝑝𝑝 [(𝑋𝑋1 − 𝑋𝑋2)𝛽𝛽], which only involves the relative 
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hazard function of 𝑒𝑒𝑥𝑥𝑝𝑝(𝑋𝑋𝛽𝛽); thus partial log likelihood function can be utilized to obtain 

the regression coefficients of β.  

𝐿𝐿(𝛽𝛽) = �
exp (𝑋𝑋𝑖𝑖𝛽𝛽)

∑ exp (𝑋𝑋𝑖𝑖𝛽𝛽)𝑌𝑌𝑗𝑗≥𝑡𝑡𝑖𝑖 𝑌𝑌𝑖𝑖 uncensored

   ................  Eq. 34 

log 𝐿𝐿(𝛽𝛽) = � {𝑋𝑋𝑖𝑖𝛽𝛽 − log [� exp (𝑋𝑋𝑖𝑖𝛽𝛽)
𝑌𝑌𝑗𝑗≥𝑡𝑡𝑖𝑖

]}
𝑘𝑘

𝑖𝑖=1
  

where k denotes the total number of unique failure times.  

Since the model does not need to make assumptions for baseline hazard, and the 

partial log likelihood only involves the relative hazard function, such model does not 

have intercept parameter; the reference category omitted from the model will go into the 

underlying hazard function. Thus the hazard function for the reference category cannot be 

directly estimated.  

The Cox PH model is convenient, flexible and often more powerful than other 

parametric or nonparametric models, however it has often been improperly used. When it 

is used for prognostic factor analysis, all prognostic factors are often included in their 

original linear form in the model without even considering interactions. Even if 

interactions are considered, only second order interactions with prior knowledge are 

included. Although there is no reason to believe higher order interactions do not exist. 

Additionally, forcing all factors to have a linear relationship with log hazard or log 

cumulative hazard may be convenient in formulating the model, but the linear 

relationships are rarely legitimate in practice[76]. Furthermore, the last but the most 

important step, assessments of proportionality assumptions are often skipped; instead, the 

Cox PH model is often applied without consideration of time-dependent covariates. For 

such model, only constant baseline hazard is allowed. In other words, the relationship of 

the covariates to the log hazard is assumed to be fixed at all values of 𝑡𝑡 since 𝑙𝑙𝑙𝑙𝑙𝑙 [𝜆𝜆(𝑡𝑡)] is 

separated from 𝑋𝑋𝛽𝛽, which may not always be reasonable in clinical settings. Hence, 

inferences obtained from such models may be biased; predictions based on such models 

may have significant variance.  
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2.3.3.2 Cox PH Model with Time-Dependent Covariates 

As discussed previously in section 2.3.3, typical Cox PH models does not adjust for 

time-dependent covariates, i.e., the values of all covariates are determined at the point 

when the follow-up begins on each subject (at time 0) and the values do not change over 

the course of the follow-up. However, in clinical settings, there may be situations in 

which the values of factors change over time, such as the level of AST/ALT may change 

over the course of Hepatitis. In these cases, the hazard function will depend more on the 

current values of the covariates than on the value at time 0. To handle similar situations, 

Abrahamowicz et al. (1996)[77] used regression splines to model the hazard ratio as a 

flexible function of time; Herndon et a. (1990) [78] used a restricted cubic spline function 

of time as the baseline hazard in a parametric proportional hazard model to account for 

time-dependent covariates ; Hess (1994) [79] also suggested to include a cubic spline 

function of time to adjust for non-proportionality and nonlinearity of time-by-covariate 

interaction. 

To account for the time-varying covariates, extensions of the Cox PH model has been 

proposed allow for interactions between covariates and ɡ(𝑡𝑡), where ɡ is a function of 

time. The extension of the Cox PH model is formulated as 

𝜆𝜆(𝑡𝑡|𝑋𝑋) = λ(𝑡𝑡) exp�𝑋𝑋(1)𝛽𝛽(1) + ɡ(𝑡𝑡)𝑇𝑇𝑋𝑋(2)𝛽𝛽(2)�   ................ Eq. 35 

where the covariate matrix X, is a combination of two parts, the 1st part, 𝑋𝑋(1) has all time-

independent covariates, and 𝑋𝑋(2) has all time-varying covariates.  

2.3.3.3 Cox-based Models for Recurrent Events  

Besides time-to-single-event, researchers may also be interested in correlated event 

times due to multiple events or event recurrence. Multiple event survival data occurs 

when each subject may have one or more correlated events. Multiple events can be 

further classified into two categories, event recurrence and competing or multiple-type of 

events. Recurrent event data is defined as repeated occurrences of the same type of events 

in the same subject, such as repeated asthma attacks; multiple types of events occurs 

when each subject may experience events of completely different types, such as repeated 

occurrences of cancer cells at different sites, which may be referred to as competing 

events.   
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One popular extension of the Cox model recurrences of the same type of event is the 

Andersen-Gill extension[68]. The model assumes that events occurred within the same 

subject are independent, thus the number of events, 𝑁𝑁(𝑡𝑡), occurs over the interval, [0, 𝑡𝑡), 

is considered as a counting process; then 𝑑𝑑𝑁𝑁(𝑡𝑡) over a small interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑡𝑡) will take 

the general form as 𝜆𝜆(𝑡𝑡|𝑋𝑋) = 𝜆𝜆(𝑡𝑡)𝑒𝑒𝑥𝑥𝑝𝑝 (𝑋𝑋(𝑡𝑡)𝛽𝛽). To further account for heterogeneity 

among subjects, a random effect intensity model is proposed as 

𝜆𝜆(𝑡𝑡|𝜂𝜂,𝑋𝑋) = 𝜂𝜂λ0(𝑡𝑡) exp[𝑋𝑋(𝑡𝑡)𝛽𝛽]   ...............  Eq. 36 

where 𝜂𝜂 is the subject level random effect. However, the independent event assumption is 

still very much stringent, which may not be practical in clinical settings. 

Other similar extensions include Prentice, Williams and Peterson (PWP) [69] model 

(proposed in 1981). The model is more powerful when there are a fairly large number of 

subjects available for analysis. Since the model is built as a generalized regression 

analysis with consideration of covariates and preceding failure time history; partial 

likelihood function is derived for estimation of the regression coefficients. Additionally, 

PWP model does not assume independent events within the same subject, thus it is more 

favorable. 

Vaida et al. (2000) [80] proposed a generalized proportional hazard model with random 

effects for clustered or recurrent-event survival data. The generalized frailty model 

accounted for the random effects in the log hazard ratio, just as the random effects are 

modelled for generalized linear and non-linear mixed models. In the study, the 

distribution of the random effects was assumed to be multivariate normal, but they also 

claimed it should work with other distributions. The regression coefficients, variance 

components and baseline hazard function were estimated using EM algorithm. 

Another nested gamma frailty model, proposed by Rondeau et al. in 2006[81], was 

another generalized random effect parametric model for adjustment of unobserved 

heterogeneity of dependent observations within nested clusters from the dataset. The 

nested frailty model used a hierarchical clustering with two nested levels of random 

effects to model repeated infections of subjects from different hospitals. 

Rondeau et al. (2008)[82] used a Gaussian frailty Cox model with additive random 

effects in a meta-analysis to combine the survival analysis results from different clinical 

trials. The model accounted for possible heterogeneity among different clinical trials; a 
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general correlation structure was considered for the random trials effects or the random 

treatment-by-trial interaction effects. The regression coefficients and hazard function 

were estimated using a semi-parametric “penalized marginal likelihood method” with a 

pre-specified variance-covariance structure for the random effects.  

2.3.3.4 Cox Models for Competing Events 

When recurrent events (of the same type) from the same subject are terminated by a 

major failure event (different type) and the terminal failure event may be correlated with 

recurrent events, then they are considered as competing events; the recurrent events are 

competing with the terminal event. There are a variety of ways to model the random 

effects for analysis of competing events. A popular choice was to use a marginal model 

for the recurrent events and a Cox model with time-dependent covariates summarizing 

the history of the recurrent events for the terminal event. This approach is referred to as 

the "selection model" defined by Little et al. [83] in 1995. 

Alternatively, Little et al. (1995) also suggested a shared or correlated random effects 

to account for the association between the recurrent events and terminal event. When the 

primary interest is to characterize the recurrent events, the terminal event may be adjusted 

with a "pattern-mixture" model. 

In 1997, Li and Lagakos [84] presented another example with marginal WLW [67] 

extension of the Cox model; in the study, the terminating event was considered as a 

censoring event for the recurrent event, and each occurrence time of the recurrent events 

was considered as the first occurrence for the next event (including both recurrent events 

or the terminal event, whichever was the first). In 2003, Ghosh and Lin [85] proposed a 

joint marginal Cox model to evaluate recurrent events with a correlated terminal 

censoring event. 

Other methods based on counting process were also proposed. In 1998, Lancaster and 

Intrator [86] presented a joint parametric Poisson model to evaluate hospitalization 

experience with impatient repeated episodes of infections from HIV positive patients. 

The model used a subject-level frailty term to evaluate the recurrent failure event with 

adjustment of inter-subject and intra-subject correlations. Sinha and Maiti (2004)[87] 

considered a more general model, a hierarchical Bayesian framework, to adjust for 

recurrent events following a counting process and a dependent terminal events. 
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In 2002, Huang and Wolfe [88] suggested to utilize the informative censoring as 

terminal event for recurrent event survival data. In 2004, Liu et al. [89] presented a joint 

semi-parametric model with a shared gamma frailty effect to address the intensity 

functions of both recurrent events and terminal event. In these models, the random effects 

on recurrent events and terminal event were slightly different and the regression 

coefficients were estimated using Monte Carlo expectation maximization (EM) 

algorithm. 

Rondeau et al. (2007) [90] presented an analysis of repeated occurrences of follicular 

lymphomas for subjects who could be terminated by a terminal event. In the study, the 

terminal event was correlated with the recurrent events from the same subject; the 

nominal assumption of non-informative censoring of the recurrent events by a terminal 

event was violated. A joint Cox frailty model was proposed to obtain the unbiased 

parameter estimates for both the recurrent events and the terminal event. 

Recurrent Event 𝑟𝑟(𝑡𝑡|𝑋𝑋, 𝑣𝑣) = 𝑣𝑣r0(𝑡𝑡) exp(𝑋𝑋𝛽𝛽)   ...............  Eq. 37 

Death 𝜆𝜆(𝑡𝑡|𝑋𝑋, 𝑣𝑣) = 𝑣𝑣𝛼𝛼𝜆𝜆0(𝑡𝑡)exp (𝑋𝑋𝛾𝛾)  

where 𝑟𝑟0(𝑡𝑡) and 𝜆𝜆0(𝑡𝑡) were the recurrent and terminal event baseline hazard function, β 

and γ were the regression coefficient vectors for X; the random effect vector, 𝑣𝑣 ~𝛤𝛤(1
𝜃𝜃

, 1
𝜃𝜃

). 

2.3.3.5 Random Effect Cox Models (Shared Frailty) 

Mauguen et al. (2013)[91] proposed a shared frailty Cox model to account for gamma 

distributed or log-normal distributed random effects of clusters; clustered survival times 

were evaluated. Cox model was used for estimation the random effect Cox model; 

marginal log likelihood function was employed. The regression coefficients were 

estimated through the maximization of the penalized marginal log-likelihood or through 

the maximization of the log-likelihood using the robust Marquardt algorithm[92].  

2.4 Generalized Regression Analysis for Survival Data 

𝑌𝑌(𝑡𝑡|𝑋𝑋) is a generic notation for the link function, which can be a matrix of time-to-

single-event or a matrix of time to competing multiple types of events. For Cox PH 

model, it is the log HR; note that for Cox PH model, no assumption is made for baseline 

hazard, 𝜆𝜆(𝑡𝑡), and log HR was the link function for the generalized regression analysis.  

  39 



 

A generalized regression analysis has the following forms. 

General Form 𝑌𝑌(𝑡𝑡|𝑋𝑋) = 𝑋𝑋𝛽𝛽  ...............  Eq. 38 

Vector Form 𝑦𝑦(𝑡𝑡|𝑥𝑥) = 𝛽𝛽𝑇𝑇𝑥𝑥  

The regression coefficient, 𝛽𝛽, can be estimated with linear algebra or can be estimated 

through maximization of the partial log likelihood. 

Regression coefficient �̂�𝛽 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑌𝑌  ................  Eq. 39 

Predicted Value of Y 𝑌𝑌� = 𝑋𝑋�̂�𝛽  

The above solution needs the inverse of the matrix 𝑋𝑋𝑇𝑇𝑋𝑋, which however could be 

singular (non-invertible), as such the generalized regression may not have an estimable 

solution. There is a way to get around with the help of partial least squares[93, 94] 

regression approach, which was first introduced as a machine learning technique. 

A generalized random effect model should include terms for typical fixed effect and 

terms for random effect from a cluster or group, therefore the transformed outcome for 

subject 𝑗𝑗 who is from cluster 𝑙𝑙 will have to form:  

𝑌𝑌𝑙𝑙𝑖𝑖 = 𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑙𝑙 + 𝜖𝜖𝑙𝑙𝑖𝑖  ...............  Eq. 40 

where 𝑥𝑥𝑖𝑖 is a vector with values of all covariates for subject 𝑗𝑗; 𝑈𝑈𝑙𝑙 is the cluster-specific 

random effect, which measures the difference between the average of cluster 𝑙𝑙 and the 

average of entire population; 𝜖𝜖𝑙𝑙𝑖𝑖 is the subject level random error. 

2.5 A Review of Machine Learning Techniques 

Principal components analysis (PCA) was first invented by Pearson Karl (1901)[95] as 

an analogue of the “principal axes theorem” in mechanics; it was later independently 

developed (and named) by Harold Hotelling in the 1930s[96]. The approach is a procedure 

to transform possibly correlated continuous covariates into orthogonal space, such that 

components may become linearly uncorrelated. The uncorrelated components can be 

used as covariates for regression analysis and thereafter to select best subset of 

covariates. A brief description of the approach is presented in section 3.3.3.1.  

However, the approach has many disadvantages. Components are constructed 

independent of the response variable, thus there is no guarantee that the constructed 
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components are correlated with the response and because the relationship between the 

original factors and the response are linked by the constructed components, it is difficult 

to interpret the results without transformation back to the original factors. Moreover, the 

constructed components still rely on typical statistical models to estimate, thus the 

principal component regression may still be non-estimable due to too many components.  

Correspondence analysis (CA) proposed by Hirschfeld (1935)[97] was a similar 

multivariate statistical model to adjust for correlated categorical variables. It creates 

orthogonal components based on the contingency table from the categorical variables. 

Another extension, multiple correspondence analysis (MCA) is an analysis technique for 

nominal categorical data, to detect and represent the underlying structures in a dataset. 

For simplicity, both will be called correspondence analysis in the paper.  

Similar to principal component Cox regression, Eric et al. (2004) proposed a semi-

supervised principal Component analysis; the idea was to build only a few components to 

cluster small number factors that were highly correlated with response. The components 

that were highly correlated to the response should be much more important than those 

that were not correlated to the response; the components were constructed with several 

important factors with high predictive powers. This approach has overcome several of the 

major disadvantages of a principal component analysis; if none of the factors are really 

correlated with response, this model is no worse than a principal component analysis; but 

it can handle the case when the number of components is more than the total number of 

observations; if there are a few factors highly correlated with the response, the model can 

correctly cluster them into smaller components using a likelihood ratio test (unsupervised 

part); unlike the principal component analysis,  the model is not completely based on 

parametric approach, therefore it guarantee to obtain a model fit. 

Ordinary least square (OLS) analysis often does poorly in predictions; the idea of 

penalization has been proposed to improve the prediction of OLS, such as ridge, lasso 

and least angle regression. The ridge regression was first introduced into statistics by 

Marquardt et al (1970) [98] borrowing the regularization idea from Andrey Tikhonov 

(1943)[99] and Philips et al. (1962) [100]; the model can be clearly described using a loss 

function of the residual sum of squares with a L2 penalization (L2-norm of the 

coefficients, 𝜆𝜆𝛽𝛽𝑇𝑇𝛽𝛽). As a continuous shrinkage method, ridge regression achieves better 
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prediction through bias–variance trade-off. Unfortunately, this approach usually keeps 

most of the covariates in the model if not all, and the variable selection can produce a 

“sparse model”, which is extremely unstable because of its “inherent discreteness” 

(Breiman et al. 1996[101]). In 2012, Jelle J. Goeman[16] introduced the ridge regression 

into survival analysis. 

Lridge = (𝑦𝑦 − 𝑋𝑋𝛽𝛽)𝑇𝑇(𝑦𝑦 − 𝑋𝑋𝛽𝛽) + 𝜆𝜆𝛽𝛽𝑇𝑇𝛽𝛽  ...............  Eq. 41 

�̂�𝛽ridge = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝐼𝐼)−1𝑋𝑋𝑇𝑇𝑦𝑦  

Or                    �̂�𝛽ridge  = argmin �∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖�
2

+ 𝜆𝜆∑ 𝛽𝛽𝑙𝑙2𝜈𝜈
𝑙𝑙=1

𝑁𝑁
𝑖𝑖=1 �  

Lasso regression is another penalized regression model proposed by Tibshirani 

(1996)[102]; in 2010, Jelle Goeman[17] introduced this approach to survival analysis, and 

later in 2012[16], he compared the performance of the lasso with the ridge Cox regression 

models. Similar to ridge regression, the loss function is defined as the residual sum of 

squares with an L1-penalty on the regression coefficients, 𝜆𝜆�𝛽𝛽𝑇𝑇𝛽𝛽 . One of the prime 

differences between Lasso and ridge regression is the penalization effect; for ridge 

regression, as the penalty increases, all parameters are shrinked toward zero but never 

reaches zero; for lasso regression, the increase in the penalty term will drive more 

parameters to zero and only the covariates with nonzero coefficients left in the model are 

selected. Owing to the nature of lasso regression, it does both shrinkage and variable 

selections simultaneously.  

 Llasso = 1
2
∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖�

2
+ 𝜆𝜆∑ ‖𝛽𝛽𝑙𝑙‖𝜈𝜈

𝑙𝑙=1
𝑁𝑁
𝑖𝑖=1   ................  Eq. 42 

 �̂�𝛽lasso  = argmin �∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖�
2

+ 𝜆𝜆∑ ‖𝛽𝛽𝑙𝑙‖𝜈𝜈
𝑙𝑙=1

𝑁𝑁
𝑖𝑖=1 �  

where 𝑦𝑦�𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑙𝑙𝛽𝛽𝑙𝑙 𝜈𝜈
𝑙𝑙=1 . 

For model performance, Tibshirani (1996) and Fu (1998)[103] compared the penalized 

models including the lasso, ridge and bridge regression; they found that none of these 

models uniformly dominated the other two in terms of predictions accuracy. However, as 

variable selection becomes increasingly important in modern data analysis, lasso has 

become much more appealing. 

Although lasso regression has shown some success, but it is limited in several 

situations; when there are more covariates than the number of observations, lasso will be 
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limited in variable selection; for highly correlated covariates, lasso regression tends to 

randomly select one from the group of correlated variables. When there are high 

correlations among covariates, the performance of lasso regression can be dominated by 

ridge regression [104]. 

To resolve the drawbacks that both ridge regression and lasso regression encounter, 

another shrinkage approach, Elastic-net regression was proposed by Zou et al. (2005)[104] 

for continuous outcomes. The penalization term includes both the L2 norm of the 

regression coefficient from ridge regression and the L1 penalty from Lasso regression 

(see section 3.3.2.1 for details). In terms of performance, elastic-net regression often 

outperforms both lasso and ridge. In terms of variable selections, the model encourages 

grouping effect for correlated factors; strongly correlated covariates tend to be all-in or 

all-out of the model together. The approach is especially helpful when the number of 

covariates is much more than the total number of observations. In 2004, Efron et al. [105] 

proposed an algorithm based on the “least angle regression” (LARS) to automatically 

estimate the penalization terms efficiently, which made this approach even more 

attractive. 

Partial least squares (PLS) regression was first introduced by a Swedish statistician 

Herman Wold, and it was fully developed by his son, Svante Wold (2001)[106]. The idea 

was to project all factors to the hyper-planes in the direction of the response. Today, PLS 

regression model is most widely used in chemometrics, bioinformatics and many other 

areas. In 2002, an extension of the PLS approach, orthogonal projections to latent 

structures (OPLS), was proposed by Trygg et al.[107]; the approach separated continuous 

covariates into predictive and uncorrelated components, which may be used for 

prognostic factor detection. This new extension improves the diagnostics, interpretability 

and visualization, but it does not affect the model predictions. Details of the algorithms 

will be provided in section 3.3.3.2. 

Another type of approach for regression and classification problems is the decision 

tree learning [108], which utilizes a decision tree as a predictive model to “map 

observations to their target value”. In the tree structure, leaves represent classes or 

subgroups, branches represent conjunctions of features that lead to the leaves (classes). 

Recursive partition[109] was proposed by Leo Breiman in 1984; this approach recursively 
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split the data into subsets based on the response, and it is completed when further 

splitting does not add any value to the predictions of the outcome (detailed algorithm will 

be described in section 3.3.1.1). However, the decision tree based learning approaches are 

well known for low bias and high variance; they tend to overfit the data (large variance).  

In 1994, Leo Breiman proposed a bootstrap aggregating (Bagging)[110] to improve the 

stability and accuracy of decision tree approach; in this approach, new training set is 

repeatedly sampled with replacement from the original training set, decision is voted 

within each bootstrapped training set, prediction is made by averaging all decisions, 

which can help to achieve better stability and accuracy. In 2001, Leo Breiman[111] 

proposed another Bagging based approach, Random forest. The approach has achieved 

substantial improvement over the traditional decision-tree based learning; in this 

approach, a large collection of de-correlated trees were built, all trees are averaged for the 

final decisions or results. So far, the approach has been widely used for assessing 

continuous and categorical outcomes. (Detailed algorithm will be discussed in section 

3.3.1.2). However, it is difficult to interpret the result from the analysis of random forest 

because of the "black-box" prediction.  

To combine the advantage of accuracy with reasonable interpretability, recently, Song 

et al.[112] proposed a random generalized linear model, which shares the same advantages 

of random forest model with a forward-selected generalized linear model, it is claimed to 

have excellent predictive accuracy, feature importance measures and outstanding 

interpretability. 
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Chapter 3. Research Methodology 

To improve the efficiency of typical Cox PH models, a systematical process was 

proposed to automatically assess the model assumptions, suggest reasonable solutions to 

resolve violations if detected and/or relax the model assumptions when necessary. The 

typical Cox PH models were implemented with three options, generalized Cox linear 

regression model /or (in short) Cox linear model, multivariate Cox regression models[43] 

with restrictive cubic spline (RCS) transformations /or (in short) Cox model with RCS 

transformations) and/or with fractional polynomial transformations (FP) /or (in short) 

Cox model with FP transformations. 

For generalized Cox linear regression model, all factors were included in their 

original linear forms, see section 3.1 for details; for multivariate Cox regression model 

with RCS and FP transformations, all continuous factors were included using RCS and 

FP transformation respectively, the interaction terms for either model were constructed 

using the corresponding transformations (see section 3.2 for details). The two 

transformation options for multivariate Cox regression are useful for modeling the 

nonlinear covariates. Unfortunately, they also add extra burdens to the analysis, 

especially for survival data, for which only the failure events of interest are contributing 

to the analysis. With the extra terms from the RCS or FP transformation, the Cox 

regression model have to spent more degree of freedoms for the analysis; thus it becomes 

quite cumbersome when there are more factors to be analyzed; furthermore, when the 

number of factors is close to or more than the number of events available, the typical Cox 

regression models become non-estimable. 

As mentioned in section 2.3.3, Cox PH model is very flexible and robust, even for 

survival data that satisfies complete parametric models; however it does have somewhat 

stringent assumptions. Nonparametric approaches on the other hand can only deal with a 

limited number of categorical factors with relative low prediction power. To overcome 

the disadvantages of the typical nonparametric and semi-parametric approaches, 

nonparametric random survival forest[5, 39, 113] approaches (see section 3.3.1.2 for details) 

were introduced, which should be able to handle many more predictors including both 

continuous and categorical factors, and it should work better than the typical Cox PH 

models when the number of factors is no less than the total number of events or the 
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survival time does not follow any known survival distributions; other than the 

nonparametric approaches, a semi-parametric approach, elastic-net was developed based 

on Cox model with the intension to achieve variable selection and obtain inferences 

simultaneously, with reasonably good prediction performance in cases; this approach 

should be able to handle cases when there are too many predictors to be estimated with 

typical Cox PH model; aside from the elastic-met Cox regression, an partial least squares 

Cox PH model was developed to adjust for uncollected covariates for highly correlated 

survival data.  

Then the other approaches based on machine learning techniques should become 

useful, including random survival forest, penalized Cox regression[104] (section 3.3.2.1) 

including lasso, ridge and elastic-net Cox regression models, derived input Cox 

regression models such as principal component Cox regression model (section 3.3.3.1)  

and partial least squares Cox regression model (section 3.3.3.2).  

Additionally, the decision tree based learning, recursive partition[114] was also 

implemented in this research; it was only used to impute missing value for categorical 

variables in the survival data during the data preparation step (Section 3.3.1.1); it was not 

used for survival analysis due to its instability and unreliability.   

Besides the above approaches, here are a few other tools implemented in this 

research. The least squares multiple regression incorporating optimum transformations 

were implemented for variable transformations[115, 116, 117, 118] and missing data 

imputations[119, 120] for continuous variables. Multicollinearity were assessed using 

Spearman's ρ2 rank correlation[121, 122]; factors were clustered using hierarchical cluster 

analysis[123] via Hoeffding's D statistics[124]. Factors identified from hierarchical cluster 

analysis were processed using principal component analysis[125, 126, 127] (PCA) with 

maximum total variance (MTV)[128] method; variable reduction or cluster should be 

confirmed by the PCA. The clustered variables were used to construct principal 

components, which were then used to replace the original factors in the survival analysis; 

multicollinearity should be fixed consequently. The last, but the most important part of 

the research was to propose model performance statistics for assessment of prediction 

accuracy and prediction powers for different survival models; for this purpose, the 
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concept of prediction errors and time-dependent AUCs were defined (see section 3.11 for 

details). 

3.1 Generalized Cox Linear Regression Model 

For this model, all factors or composite factors as derived from section 3.7 were 

included as the covariates in the Cox model in their 1st order linear form, potential 2nd 

order interaction terms between factors (or composite factors) as confirmed from Section 

3.8.4 were also included in the model; if composite factors were derived, they were used 

to replace the original factors in the model. The best model was then selected following 

the model selection procedures as described in Section 3.9; this model will also be 

referred to as Cox linear model (in short). The application was implemented with 

R/rms[129] package. 

3.2 Multivariate Cox Regression Models with Nonlinear Transformations 
Including Restrictive Cubit Spline (RCS) and Fractional Polynomial 
(FP)  

Multivariate Cox regression models with nonlinear transformations were 

implemented; the nonlinearity of the original factors (see section 3.8.3 for details on 

nonlinear transformations) or composite factors (see section 3.7 for details on variable 

clustering) was adjusted using two options, the RCS or FP transformations; all potential 

interactions were constructed between the transformed factors included in the model. 

Note that only continuous factors were transformed using restricted cubic spline (RCS) or 

fractional polynomial (FP) transformations (see section 3.8.3 for details). If interactions 

were confirmed following the instruction from section 3.8.4, the interaction terms should 

be constructed between all RCS forms (or FP forms) of the factors or composite factors 

involved in the interactions. For time varying covariates, time-dependent extensions of 

Cox PH model were intended (see section 3.8.5 for details). The multivariate Cox 

regression models with the two nonlinear transformation options were referred to as 

multivariate Cox regression models with RCS and FP transformations, or (in short) as the 

Cox model with RCS or FP transformations, respectively; time-dependent covariates or 

extensions may be considered if necessary. 

Given survival data �𝑥𝑥𝑖𝑖𝑇𝑇 , 𝑡𝑡𝑖𝑖�, 𝑗𝑗 = 1, 2, … ,𝑎𝑎, where 𝑎𝑎 is the total number of subjects, 𝑥𝑥𝑖𝑖𝑇𝑇is 

a row vector with all factors from subject 𝑗𝑗, 𝑥𝑥𝑖𝑖𝑇𝑇 = �𝑥𝑥𝑖𝑖1,𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑗𝑗�; 𝑦𝑦(𝑡𝑡𝑖𝑖|𝑥𝑥𝑖𝑖) is the link 
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function corresponding to �𝑥𝑥𝑖𝑖𝑇𝑇 , 𝑡𝑡𝑖𝑖� from subject 𝑗𝑗. Then the analysis model is:  

𝑦𝑦�𝑡𝑡𝑖𝑖�𝑥𝑥𝑖𝑖� = � 𝛽𝛽𝑙𝑙𝑥𝑥𝑖𝑖𝑙𝑙 + � 𝑓𝑓𝑙𝑙�𝑥𝑥𝑖𝑖𝑙𝑙� + 𝜖𝜖𝑖𝑖
𝑙𝑙∈𝐺𝐺nonlin𝑙𝑙∈𝐺𝐺lin

   ................  Eq. 43 

with 𝜖𝜖𝑖𝑖~ 𝑁𝑁(0,𝜎𝜎2). 𝐺𝐺 = {1, 2, … 𝑝𝑝}, where 𝑝𝑝 is the total number of factors. 𝐺𝐺lin,𝐺𝐺nonlin ⊂

𝐺𝐺; in particular, model selection is to identify the set 𝐺𝐺noe = 𝐺𝐺lın ∪ 𝐺𝐺nonlın����������������� of the 

covariates that are not included in the model (see Section 3.9 for details of model 

selection). The multivariate Cox regression model with RCS transformations were 

implemented with R/rms[129] package; the Cox model with FP transformation were 

implemented with R/mfp[130], coxph[131, 132] and rms[129] packages. 

3.3 Machine Learning Techniques  

As discussed in the previous chapter, the parametric or semi-parametric model should 

always have more power for making predictions and inferences; however in case the 

primary interest was to detect prognostic factors and predict the probability of future 

occurrence of failure event, without concerning inferences about the coefficients, 

classification approaches with consideration of centering information should be useful. 

3.3.1 Tree Based Approach 

There are many tree based approaches available, but in general they can be classified 

into two types; one type is regression-tree based approach, such as recursive partition and 

regression trees; these approaches are based on a single run of the data, therefore they 

have small bias but large variance and the variable selection process is not stable. 

Another type is bootstrap aggregation based approach, such as random forest; there are 

some random variations due to the nature of bootstrap, therefore they usually have 

relatively large bias but small variance compared to the regression-tree based approach. 

In this research, recursive partition was used to impute missing categorical variables and 

random survival forest was implemented for modelling the survival data.  

3.3.1.1 Recursive Partition 

The recursive partition approach was used to impute missing values of the categorical 

variables in the studies. Let 𝑓𝑓 be some impurity function, then the impurity (or diversity) 

of node 𝐴𝐴 is, 𝐼𝐼(𝐴𝐴) = ∑ 𝑓𝑓(𝑝𝑝𝑖𝑖𝑖𝑖)𝐶𝐶
𝑖𝑖=1 , where 𝑝𝑝𝑖𝑖𝑖𝑖 is the proportion of subjects in node A with 
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class 𝑖𝑖 and 𝐶𝐶 is the total number of different classes. Node A is split based on the 

maximum reduction in impurity, Δ𝐼𝐼 = 𝑝𝑝(𝐴𝐴)𝐼𝐼(𝐴𝐴) − 𝑝𝑝(𝐴𝐴𝐿𝐿)𝐼𝐼(𝐴𝐴𝐿𝐿) − 𝑝𝑝(𝐴𝐴𝑅𝑅)𝐼𝐼(𝐴𝐴𝑅𝑅), where 𝐴𝐴𝐿𝐿 

and 𝐴𝐴𝑅𝑅 are the two offspring nodes from 𝐴𝐴. The recursive partition was implemented 

with R/rms[129] package. 

3.3.1.2 Random Survival Forest (RSF) 

Random forest[5, 39] learning is recently developed, which is believed to have much 

better stability and accuracy over most decision tree based learning. Random forest 

learning is implemented based on nonparametric bootstrap aggregation (Bagging); it was 

originally developed for regression analysis on continuous outcomes, such as linear 

regression, for logistic regression analysis on binary outcomes, or for multiple regression 

and multinomial regression on nominal or ordinal outcomes. Only recently, the approach 

has been applied to model survival outcome; though there are a few publications on this 

topic, still there are more to improve, especially for model prediction and prediction 

performance. This model is implemented through bootstrap, which does not rely on any 

distribution assumptions; additionally, the approach makes no assumption about the 

covariates, therefore there should be no need to worry about variable transformation, 

nonlinearity, multicollinearity or time dependency.  

In this paper, two different version of random survival forest (RSF) were 

implemented. The first one was the random survival forest based on the log-rank test; one 

take-over advantage of this approach is that it could systematically detect interactions; 

this approach will be referred to as log-rank based RSF (LR-RSF) model onward. The 

second one was conditional inference based random survival forest[133, 134]; in this 

approach, forest trees are split based on the conditional probability, where multiple log-

rank tests are computed at each start of the algorithm based on permutation test, thus it is 

expected to have better performance for highly correlated survival data; this approach is 

referred to as conditional inference based RSF (CINF-RSF) model onward. The test 

statistics can be obtained with the average of all possible values of the test statistic under 

rearrangements of the bootstrapped samples, thus it should have reduced overfitting and 

variable selection bias. For both approaches, the implementation algorithm was the 

similar. 

Given a training set with 𝑁𝑁 observations: 
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1. From 𝑏𝑏 = 1 to 𝐵𝐵: 

a. Draw a bootstrap sample (sample with replacement) of size 𝑁𝑁; 

b. Grow a random forest tree for the sample, by recursively repeating the 

following steps for each terminal node of the forest tree, until the minimum 

node size 𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛 is reached. 

i. Select 𝑚𝑚 variables at random from the 𝑝𝑝 covariates. 

ii. Pick the best variable and split-point using the log-rank test. 

iii. Split the node into two offspring nodes. 

2. Output the random forest trees {𝑓𝑓𝑏𝑏} from the B bootstrapped sample. 

To make a prediction at a new time point, 𝑡𝑡, based on B forest trees: 
Survival probability: the predicted survival probability, �̂�𝑆𝑟𝑟𝑟𝑟𝐵𝐵 (𝑡𝑡) = 1/𝐵𝐵∑ �̂�𝑆𝑏𝑏(𝑡𝑡)𝐵𝐵

𝑏𝑏=1 ; 

Survival status: Let �̂�𝐶𝑏𝑏(𝑡𝑡) be the predicted survival status from 𝑏𝑏th tree. Then the 

predicted survival status of all B forest trees: �̂�𝐶𝑟𝑟𝑟𝑟𝐵𝐵 =majority vote ��̂�𝐶𝑏𝑏(𝑡𝑡)�
𝑏𝑏=1
𝐵𝐵

. 

Log-rank based RSF model was implemented with R/randomSurvivalSRC[135, 136, 137] 

package and conditional inference based RSF model was implemented with 

R/party[138, 139, 140] package.  

3.3.2 Shrinkage or Penalized Regression Analysis 

There are several shrinkage or penalized regression models, such as ridge, lasso, least 

angle and elastic net regression models. In this paper, only lasso, ridge and elastic-net 

Cox regression were implemented. The lasso and ridge models were briefly described in 

section 2.5, and they are considered as special cases of elastic-net Cox regression model 

(Lasso can be considered as elastic-net with λ2=0 from Eq. 44 or α=1 from Eq. 45 and 

ridge can be considered as elastic-net with λ1=0 from Eq. 44 or α=0 from Eq. 45). Thus, 

in this section, only elastic-net regression model will be discussed. 

3.3.2.1 Elastic-Net Regression 

Elastic-Net regression model[141] is a regularized least-squares regression approach 

for variable selections; it bears some resemblance to ridge and lasso regression, with the 

only difference in the penalization term, which involves the L2 norm from ridge 

regression (see section Eq. 41 from Section 2.5 for details) and the L1 norm (see Eq. 42 

  50 



 

from Section 2.5 or details) from lasso regression, where L1 and L2 are also known as the 

penalty terms or regularization parameters. 

LEN =
1
2
��𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖�

2
+  𝜆𝜆1�‖𝛽𝛽𝑙𝑙‖

𝜈𝜈

𝑙𝑙=1

𝑁𝑁

𝑖𝑖=1

+ 𝜆𝜆2�𝛽𝛽𝑙𝑙2
𝜈𝜈

𝑙𝑙=1

  ...............  Eq. 44 

�̂�𝛽EN = argmin���𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖�
2

+ 𝜆𝜆1�‖𝛽𝛽𝑙𝑙‖ + 𝜆𝜆2�𝛽𝛽𝑙𝑙2
𝜈𝜈

𝑙𝑙=1

𝜈𝜈

𝑙𝑙=1

𝑁𝑁

𝑖𝑖=1

�  

where 𝑦𝑦�𝑗𝑗 = ∑ 𝑥𝑥𝑗𝑗𝑙𝑙𝛽𝛽𝑙𝑙 
𝜈𝜈
𝑙𝑙=1  or �̂�𝛽EN can be re-write as 

�̂�𝛽EN = argmin���𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖�
2

+ 𝜆𝜆𝛼𝛼� |𝛽𝛽𝑙𝑙|
𝜈𝜈

𝑙𝑙=1

+
1
2
𝜆𝜆(1 − 𝛼𝛼)�𝛽𝛽𝑙𝑙2

𝜈𝜈

𝑙𝑙=1

𝑁𝑁

𝑖𝑖=1

�  ..............  Eq. 45 

where  𝜆𝜆1 = 𝜆𝜆𝛼𝛼 and 𝜆𝜆2 = 𝜆𝜆(1 − 𝛼𝛼)/2.  

Lasso and ridge regression are just special case of this formula; if α=1, it becomes 

lasso regression; if α=0, it becomes ridge regression. The regression coefficients can be 

obtained by minimizing the loss function ( Eq. 45), then the hazard, log hazard and log 

cumulative hazard can be obtained from Eq. 19, Eq. 20 and Eq. 21, respectively. 

Unlike lasso regression which only chooses a few nonzero coefficients and ridge 

regression which tends to keep all covariates by shrinking all coefficients towards 0, 

which never reaches 0. The elastic-net model combines the strength of both ridge and 

lasso regression; the penalization terms, λ and α, are chosen to balance between the two 

with a cross validation (CV) step; for a fixed λ, as alpha changes from 0 to 1, the 

behavior of the model moves from ridge-like to lasso-like regression, increasing the 

magnitude of all non-zero coefficients. With α =0.95 or above, the elastic-net behaves 

similar to lasso regression. Variables are selected through the penalization terms; 

covariates are excluded if the regression coefficients are zeroes. All three penalized 

regression approaches were implemented with R/glmnet[142] package.  

3.3.3 Derived Input Regression  

3.3.3.1 Principal Component Regression 

Principal component analysis is an unsupervised approach, since the construction of 

the components from the covariates is not based on the response. Once covariates are 

clustered into components based on principal component analysis (PCA); the selected 
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components can be used as covariates for Cox regression analysis; this approaches will 

be referred to as principal component Cox regression (or PCR) model in this paper. There 

are several versions of principal component analyses, however it was noted that different 

PCR models should yield similar results; in this research, only the covariance based PCR 

model was evaluated. The PCR model was selected via cross validation; coefficients of 

the principle components were estimated based on the selected PCR model (the 

coefficients of the original factors could be obtained by inverse-transforming the 

coefficients of the principal components), prediction of unseen data was made with the 

selected PCR model and prediction performance was assessed and compared with other 

survival models. For PCR analysis, the following steps should be followed: 

Derive orthogonal components as 𝑧𝑧𝑚𝑚 = 𝑋𝑋𝑤𝑤𝑚𝑚, where 𝑚𝑚 = 1, 2, … ,𝑀𝑀, where 𝑀𝑀 ≤ 𝑣𝑣, 

𝑣𝑣 is the total number of covariates, 𝑀𝑀 is the total number of components. Then 

𝑦𝑦�(𝑀𝑀)
pcr = 𝑦𝑦�𝟏𝟏 + � 𝜃𝜃�𝑚𝑚𝑧𝑧𝑚𝑚

𝑀𝑀

𝑚𝑚=1
  ...............  Eq. 46 

where 𝜃𝜃�𝑚𝑚 = 〈𝑧𝑧𝑚𝑚,𝑦𝑦〉
〈𝑧𝑧𝑚𝑚,𝑧𝑧𝑚𝑚〉

.  This is the initial PCR model, component scores for further variable 

clustering can be obtained from this model; for assessment of the model fit, the 

performance of this initial model is compared with a tentative fit from a Cox PH linear 

model (see section 3.1 for details) and tentative fits from multivariate Cox regression 

models (see section 3.2 for details). 

This PCR model can be processed to select the best subset of components (𝑀𝑀)� . Based 

on the selected PCR model, the log hazard can be regressed on the selected components 

as the only covariates using ordinary least squares regression to obtain the regression 

coefficients (with dimension equal to the number of the selected components).  

At last, the regression coefficient of the components can be inverse transformed to 

obtain the coefficients of the original covariates, using the selected PCA (or CA) loading 

matrix corresponding to the selected principal components.  

�̂�𝛽pcr�𝑀𝑀�� = � 𝜃𝜃�𝑚𝑚𝑤𝑤𝑚𝑚
𝑀𝑀�

𝑚𝑚=1
   ................  Eq. 47 

  52 



 

3.3.3.2 Partial Least Squares Regression 

Partial least squares (PLS)[106, 107] regression bears some resemblance to the principal 

components regression; both utilized orthogonal latent components to link the original 

factors with the response. However, unlike the principal component regression which 

constructs the components independent of the response, the PLS model tries to find the 

multidimensional direction of the explanatory covariates that explains the maximum 

variance in the direction of the response. The principal components can achieve 

dimensional reduction by projecting the covariates (though linear combinations) into 

uncorrelated components that bear minimum variance; by looking at the contribution of 

each component to the total variance of the covariates, the ones with the minimum 

contributions are considered as redundant, thus it achieves variable reduction without 

looking at the responses. Well, partial least squares regression shares the same thoughts 

of projecting the covariates into orthogonal components that can explain the maximum 

variance of the response; through the intermediate latent components, the fundamental 

relationships between the original covariates and the response can be elaborated. The 

theory of PLS was developed by Leo Brieman in 2001[5], since then this approach has 

earned it reputation in many disciplines. In this research paper, this approach was 

developed and implemented to model the survival data, since there had been many 

successful stories for predicting continuous and categorical outcomes with similar 

models. 

Given a training set with 𝑁𝑁: 

1. Standardize each 𝑥𝑥𝑙𝑙 to have mean zero and variance of 1. Set 𝑦𝑦�(0) = 𝑦𝑦�𝟏𝟏, and 

𝑥𝑥𝑙𝑙
(0) = 𝑥𝑥𝑙𝑙 , 𝑙𝑙 = 1, 2, … , 𝜈𝜈. 

2. From 𝑚𝑚 = 1, 2, … , 𝜈𝜈 

a. 𝑧𝑧𝑚𝑚 = ∑ ϕ�𝑚𝑚𝑙𝑙𝑥𝑥𝑙𝑙
𝜈𝜈
𝑙𝑙=1

(𝑚𝑚−1) , where ϕ�𝑚𝑚𝑙𝑙 = 〈𝑥𝑥𝑙𝑙
(𝑚𝑚−1),𝑦𝑦〉. 

b. 𝜃𝜃�𝑚𝑚 = 〈𝑧𝑧𝑚𝑚,𝑦𝑦〉/〈𝑧𝑧𝑚𝑚, 𝑧𝑧𝑚𝑚〉. 

c. 𝑦𝑦�(𝑚𝑚) = 𝑦𝑦�(𝑚𝑚−1) + 𝜃𝜃�𝑚𝑚𝑧𝑧𝑚𝑚. 

d. Orthogonalize each 𝑥𝑥𝑙𝑙
(𝑚𝑚−1) with respect to 𝑧𝑧𝑚𝑚: 

 𝑥𝑥𝑙𝑙
(𝑚𝑚) = 𝑥𝑥𝑙𝑙

(𝑚𝑚−1) − �
〈𝑧𝑧𝑚𝑚,𝑥𝑥𝑙𝑙

(𝑚𝑚−1)〉
〈𝑧𝑧𝑚𝑚,𝑧𝑧𝑚𝑚〉

� 𝑧𝑧𝑚𝑚, 𝑙𝑙 = 1, 2, … , 𝜈𝜈. 
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3. Output the sequence of fitted vectors {𝑦𝑦�𝑚𝑚}1𝜈𝜈 . Since {𝑧𝑧ℎ}1𝑚𝑚 are linear in the original 

𝑥𝑥𝑙𝑙, so is 𝑦𝑦�𝑚𝑚 = 𝑋𝑋𝛽𝛽PLS(𝑚𝑚). These linear coefficients can be recovered from the 

sequence of PLS transformation. 

where 𝑗𝑗 = 1, 2, …𝑁𝑁, 𝑁𝑁 is the total number of subjects in the training set; 𝑙𝑙 =

1, 2, … , 𝜈𝜈, 𝜈𝜈 is the total number of covariates (including linear, nonlinear and 

interaction terms); 𝑦𝑦�𝟏𝟏 is used to denote a vector of constant, which is the mean of 

vector 𝑦𝑦. 

3.4 Sample Size, Data Simulation or Data Selection 

For survival analysis, not all information from survival data contributes to the 

analysis and parameter estimation; only information about event occurrence should 

provide useful information for analysis rather than censoring information. Thus, only the 

total number of events was of concern for parameter estimation. As a rule of thumb, 

without considering any interactions and non-linear effect, the total number of events had 

to be at least 10 times[43] more than the total number of factors to be included in the 

survival model. If pair-wise interactions or non-linear effects (such as polynomial terms 

or restricted cubic spline transformed terms) were suspected, much more events should 

be needed to reasonably estimate all coefficients from the survival models. Hereafter, 

covariate or covariate term will be referred to as the individual term included in the 

analysis model; it may be a term from the polynomial transformations (i.e., 𝑥𝑥13, 𝑥𝑥12 𝑎𝑎𝑎𝑎𝑑𝑑 𝑥𝑥1 

are 3 terms for 3 degree polynomial transformation of 𝑥𝑥1 or an interaction term (such as 

𝑥𝑥1: 𝑥𝑥2). As an example, if 𝑝𝑝 factors [A, B, C …] are believed to be linear without any 

interactions, then there will be 𝑝𝑝 terms in the model, then at least 10 × 𝑝𝑝 events are 

required for reasonable estimation of all 𝑝𝑝 terms; for the same number of factors, if 

piecewise second order interactions exist among the 3 factors [A × B, A × C, B × C…] 

and factor A was transformed using a 𝜅𝜅-knot restricted cubic spline (RCS) transformation 

A, [denoted as RCS(A, 𝜅𝜅)], and all the rest of the factors are included in the linear form, 

then a total of 𝜈𝜈 = 𝑝𝑝 + �𝑝𝑝2� + (𝜅𝜅 + 1) terms should be included in the model, and 10 

times more events are required in order to estimate all parameters from the model; if 

more than one factor needs RCS transformation, more covariates terms should be 

included, consequently more events are required. In the above example, inclusion of the 

  54 



 

restricted cubic spline transformation for factor A in the survival model is only 

considered if one or more inflection points are detected of the residual plot: the minimum 

number of knots, 𝜅𝜅, is determined by the number of inflection points  (see section 3.8.3 

for details). 

Despite the size of the data, it is always easy to construct more terms than collection 

of more observations for analysis. To ensure enough data for analysis, in the simulation 

study, 2000 observations with 7 factors, including age, sex, race, systolic blood pressure 

(SBP), diastolic blood pressure (DBP), body mass index (BMI) and treatment were 

simulated (see section 4.1 for detailed description of the simulation). For the real world 

case study, a 70-gene-signature breast cancer[143] data was downloaded from Netherlands 

Cancer Institute to evaluate metastasis-free survival; in which, the number of factors was 

than the total number of events available. In the circumstances, typical Cox PH models 

did not work due to singular design matrix, then all other available models were 

evaluated, including random survival forest (RSF), penalized Cox-regression models , 

principal component Cox regression and partial least squares Cox regression models. 

3.5 Data Transformation and Normalization 

For simulation study, a majority of the continuous factors were transformed using 

restricted cubic spline function or fractional polynomial function if needed; other 

common transformation technique were also intended, such as normalization, log 

transformation, exponential and polynomial transformation, etc. For factors that could not 

be transformed to satisfy model assumptions, they should be included as stratification 

factors; but since the intension was to build predictive survival models for the entire 

study, not to evaluate the models for each stratification, therefore this step was not 

considered in this research. In case it was necessary, continuous factor should be 

categorized first based on intervals with cutoff of 25, 50 and 75 percentiles before they 

could be used as stratification factors; categorical factors however could be used directly.  

3.6 Missing Data   

For each factor, if more than 30% of all observations were missing, then the factor 

should be removed from the model since no imputation method could supplement the lost 

information without enough observed data; if more than 15% of all observations from a 
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factor were missing, then the missing values from the factor would be imputed. For 

continuous factor, imputation was carried out using the least squares multiple regression 

incorporating optimum transformations; and for categorical variables, missing values 

were imputed using recursive partitioning.  

3.7 Variable Reduction 

Completely independent factors do not exist in medical data; however including 

correlated factors in the model may lead to incorrect inferences and parameter estimates. 

To avoid harmful multicollinearity, variable reduction or clustering was intended. The 

reduction procedure was carried out using the original scale of the factors instead of the 

transformed values, so that the patterns were only derived from the original factors that 

were actually related.  

Variable reduction or cluster analyses were executed through unsupervised 

learnings[144] to determine clusters; a hierarchical cluster analysis was used to determine 

the linkage among factors; once clusters were confirmed, composite factors could  be 

derived through a principal component analysis unless there was other better alternatives.  

Once the composite factors were derived, they were included in the survival model in 

place of the original factors (see section 3.7.3 for details) for further analysis. 

3.7.1 Multicollinearity 

Spearman's ρ2 rank correlations were calculated to assess the multicollinearity among 

covariates. The following analysis was performed to remove multicollinearity. 

3.7.2 Principal Component Analysis (PCA) 

For categorical factors, the correspondence analysis (see section 2.5 for a brief 

description of the approach) should be useful for factor reduction, however for a mixture 

of categorical and continuous factors, the principal component analysis (PCA) with total 

maximum variance[128] method should be used to convert all factors into linearly 

uncorrelated principal components. Only the factors that were determined to be clustered 

together should be processed via principal component analysis, once principle 

components were constructed, they should be used as the composite factors to replace the 

original clustered factors for further analysis, with the principal component score as the 

values of the composite factors.  
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3.7.3 Variable Reduction or Cluster Analysis 

Relationship among factors was assessed through hierarchical cluster analysis with 

Hoeffding's D statistic; clusters can be determined using the pedigree map among factors 

as obtained from the hierarchical cluster analysis. Only clusters picked up by hierarchical 

cluster analysis were used to derive the composite factors. 

To derive the values of the composite factor from the original factors, reinforcement 

algorithm should be followed as the first choice, if there was one from past experience or 

from external experts. However, when such algorithm did not exist, the algorithm for 

deriving composite factor should be achieved by obtaining the predictive cluster score 

from a subset of all factors in this cluster (using linear regression or recursive partition). 

The subset of factors were obtained from the tentative fit of the survival model fit; only 

the factors in the cluster were fit to the survival data using a tentative Cox regression 

model with the 1st order linear form of all factors in that particular subset (since this was 

a tentative fit, no need to check for functional forms, interactions or proportionality), and 

run a model selection, the subset of the factors that remains in the final model should be 

the ones with predictive power. Thus this subset of the factors should then be processed 

with the principal component analysis as discussed in section 3.7.2 to derive the values of 

the composite factor (or scores for the components).  

3.8 Description of Graphic and Non-Graphic Tools 

3.8.1 Normality  

Normality was checking using the following tests, including D's Agostino's K-

squared test [10], Anderson-Darling test[11], Kolmogorov-Smirov test[145, 146] and Shapiro-

Wilk Test[13]. Density plots were also used to confirm the normality test; if normality 

assumption was significantly violated, factors had to be transformed to ensure normality. 

3.8.2 Transformation Plot 

Each transformed factor was plotted against the original factor to determine proper 

transformations. If factors were already normal, transformations should not be needed for 

most of the models. However, for complicated models, such as penalized and partial least 

squares models, normalization may be needed to achieve convergence efficiently; yet for 

these models, normalization was part of the process when the model was implemented, 
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which should be automatically carried out within the modelling algorithm internally, and 

once complete, the model should be able to transform the normalized factors back to the 

original scale. Therefore, external normalization should not be needed unless departure 

from normality was detected. 

3.8.3 Nonlinearity and Heteroscedasticity 

For categorical variables with more than 2 categories, typical Cox models should 

create dummy variables internally to represent the pairwise difference between 

categories; however in the two studies it was more convenient to create dummy variables 

externally to represent the relative difference between any two levels of the categorical 

factor; either way categorical factors should not have nonlinearity concern, since 

categorization was nonparametric in nature. For continuous factors, transformation using 

nonlinear functional forms was a parametric process, it should be crucial to identify the 

proper functional forms for continuous factors; while graphic display of the Martingale 

residuals was a reliable and effective tool. Therefore, whenever possible, it was advisable 

to obtain the Martingale residuals from the Cox PH linear model including all continuous 

factors in their original linear forms as the only covariates, after which, the residuals were 

plotted against the factors in their original form to reveal the functional form for further 

transformation. The same plot could also be used to detect heteroscedasticity, if 

significant heteroscedasticity was detected, robust standard error should be used for 

inferences instead. However, if residual plots were not always available, especially when 

there were too many factors to be considered, then Wald test on the deviance difference 

between Cox models with and without the nonlinear forms could be used to narrow down 

the potential nonlinearities.  

If nonlinearity was confirmed, RCS and FP transformations would be intended for the 

typical Cox regression models. This step was not needed for the nonparametric RSF, 

penalized Cox regression or derived input Cox regression models (PCR or PLS Cox 

models). Details of the RCS and FP transformations are presented below. Given a 

nonlinear factor, 𝑥𝑥𝑙𝑙:   

• Restricted cubic spline (RCS)[43]: the minimum number of knots (𝑢𝑢) for the RCS was 

the number of inflection points from the residual plot on the continuous factor + 2: 
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𝑓𝑓𝑙𝑙(𝑥𝑥𝑙𝑙) = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥𝑙𝑙 + � 𝛼𝛼ℎ(𝑥𝑥𝑙𝑙 − 𝑡𝑡ℎ)3
𝑢𝑢

ℎ=2
  ................  Eq. 48 

where 𝑡𝑡ℎ’s were usually selected using the corresponding quantiles of 𝑥𝑥𝑙𝑙.  Note that 

for each RCS transformation, without considering the intercept, a total of 𝑢𝑢 + 1 

regression coefficients had to be estimated, but only need to spend an extra of 𝑢𝑢 − 1 

dfs comparing to the linear form, because the coefficient 𝛼𝛼ℎ+1 was derived from 𝛼𝛼ℎ 

and 𝛼𝛼ℎ−1. 

• Multivariate fractional polynomial (MFP)[147] transformation, the 4-df fractional 

polynomials (FP2) with power 𝑝𝑝1,𝑝𝑝2 (𝑚𝑚 = 2) from a pragmatically chosen restricted 

set 𝑉𝑉 = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, where 𝑥𝑥0 denote log 𝑥𝑥. The nonlinear form 

of 𝑥𝑥𝑙𝑙, is 

𝑓𝑓𝑙𝑙(𝑥𝑥𝑙𝑙) = � 𝛼𝛼ℎ𝑥𝑥𝑙𝑙
𝑗𝑗ℎ

𝑚𝑚

ℎ=1
   ................  Eq. 49 

FP1 of 1-df: 𝑚𝑚 = 1, 𝛼𝛼1 ≠ 0, 𝑝𝑝1 = 1; 2-df FP2: 𝑚𝑚 = 2,𝛼𝛼1 ≠ 0, 𝑝𝑝1 ≠ 1; 3-df FP2: 

𝑚𝑚 = 2, 𝛼𝛼1 = 𝛼𝛼2, 𝑝𝑝1 ≠; 4-df FP4:𝑚𝑚 = 2, 𝛼𝛼1 ≠ 𝛼𝛼2, 𝑝𝑝1 ≠ 𝑝𝑝2 ≠ 1, it become a 4-df FP 

test. 

3.8.4 Interactions 

For identification of interactions, Martingale residual plot was also an effective tool 

to examine the possibilities. For a pair of continuous factors, any one factor from the pair 

were categorized into 4 intervals using the 25, 50 and 75 percentiles of the same factor; 

the residuals were plotted against the other continuous factor in that particular pair 

stratified by the categorized factor. For interaction between continuous and categorical 

factors, interaction was visually checked by Martingale residual plot against the 

continuous factor stratified by the categorical factor. A separate smooth spline curve was 

fitted for each level of the stratification factor; interactions should be confirmed if lines 

were not parallel due to different slopes. And once the interaction between every pair of 

factors was confirmed, all interaction terms between the functional forms of the two 

factors were included in the model. For a pair of categorical factors, interactions were 

evaluated using Deviance Wald test, because the graphical display was not very intuitive. 

Additionally, when it was not possible to get the Martingale residual plots or it was 

visually impossible to examine the graphic displays of all possible interactions, the 
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deviance difference between the two models with and without the interaction terms could 

be used to screen the potential interaction terms. 

3.8.5 Proportionality and Time-Dependent (Varying) Covariate(s) 

To verify proportionality assumption, typical Cox PH model was tested against all 

terms, including the nonlinear functional forms of all factors and interaction terms as 

identified from section 3.8.3 and section 3.8.4.  

Proportionality assumption was checked using a global Chi-square test[ 15] of the 

scaled Schoenfeld residuals[14] on time (or a function of time, if transformation of time 

was deemed necessary), a p-value of <0.05 would suggest significant non-

proportionality; to be more conservative, a p-value of ≲  0.10 would suggest clues for 

non-proportionality. However, since this test was neither sensitive nor stable, a scaled 

Schoenfeld partial residuals were obtained from Cox regression, the residuals were 

plotted against each term (including the functional forms of the factors and the interaction 

terms) to verify the proportionality assumption. 

If non-proportionality was confirmed, extension of Cox PH model should be 

considered, in order to relax or fix the non-proportionality; then it is necessary to discuss 

the slight differences between the time-varying factors and time-dependent factors. Time-

varying factors refer to factors that change over the life time of subject; time-dependent 

factors refer to the factors that do not change over time but confounded with survival 

time. The difference is very subtle, but the solutions are slightly different. Time-varying 

factor can be modeled using both extension 1 and extension 2 as described below; in fact, 

the two extensions should applied in sequence, option 1 is the first choice for adjustment 

of time-varying factor; if option 1 does not completely resolve non-proportionality, 

option 2 can be applied on top of option 1. However, the time-dependent factor should be 

adjusted using extension option 2.  

1. Andersen-Gill extension of the Cox PH model (see section 2.3.3.3 for the 

formulation of the model) should be implemented for adjustment of time-varying 

factor; the time-varying factor was considered independent of the failure event, 

therefore the subject who had time-varying factor was assumed to have multiple 

observations, each with a single factor, censoring time (the time when the first 

varying was detected) or failure event time. 
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2. Time-dependent extension of Cox PH model should include a second order 

interaction term(s) (see section 2.3.3.2 for details); the interaction term(s) should 

be constructed between ɡ(𝑡𝑡) (transformation function of time) and the actual 

functional form of the factor(s) that depart from proportionality. The actual 

transformation function for time was determined solely based on experience. 

Therefore it is possible that the non-proportionality may not be completely fixed; 

then other alternatives may have to be intended (i.e. using the time-dependent 

factors as stratifications). 

Once non-proportionality was fixed or proportionality assumption was relaxed, 

different approaches based on multivariate Cox regression model with nonlinear 

transformations could then be performed following the procedures from section 3.3. 

3.9 Training, CV and Testing  

From non-statistician's direction, it is always sound to partition the original survival 

data into training and testing set, of which, training is carried out on the training set for 

bias reduction and testing is carried out using the test set for assessing the variance or 

prediction performance. However, statisticians would like to use the entire dataset for 

model selections; since it is considered a waste of information to use only a portion of the 

original data for statistical analysis. The topic has been quite controversy, therefore in 

this research, a compromise between the two was considered: the original survival data 

was randomly partitioned with 3:1 ratio, 75% of the original survival data was used for 

training and 25% was used for testing; whenever it was possible as long as the intended 

model was estimable, i.e., the training set was large enough to estimates the coefficients 

for all covariate,  the model selection should be carried out using the training set (except 

for the RSF), a 10-fold leave-one-out CV (see section 3.10 for details) should be 

performed over the training set for cross validation (CV) performance of the model; 

prediction of future events should be based on the test set and prediction performance 

should be evaluated over the test set similarly. However, if the intended model did not 

converge with the training set due to deficiency of data, in other words, if the training set 

did not have enough data points to estimate the coefficients for all covariates, then the 

entire survival data should be used instead. For the nonparametric random survival forest 

(RSF), the approach was based on bootstrap aggregation, which was used to select the 
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model corresponding to the best CV performance, therefore no separate CV was needed; 

otherwise it should follow the same procedure. 

For typical Cox regression models, CV should be carried out using model AIC based 

on the training set and the best model should be selected to achieve minimum AICs of all 

models. For penalized Cox models, the CV performance could be measured using partial 

log likelihood deviance or cross validation errors. Cross validation was carried out using 

the following steps: 

Randomly partition the survival data into 10 equal-sized subsamples.  

Do h=1 to 9; 

 Hold out subsample h; 
 Train the model based on the remaining 90% of the data; 
 Use subsample h, to validate the model selected from the training set; 
End; 

Calculate the average cross validation error across the 10 hold-out sets of 

predictions 

CV�𝑓𝑓� =
1

10
� 𝐿𝐿(𝑦𝑦(ℎ),𝑓𝑓−𝜅𝜅(ℎ)

10

ℎ=1
�𝑥𝑥(ℎ)�  .................  Eq. 50 

The prediction performances were measured with the test set; detailed specifications 

will be discussed in section 3.11. For penalized Cox regression models, the partial log 

likelihood deviance was used for cross validation. It was just -2 log(likelihood), the 

minimum of partial log likelihood deviance should correspond to the maximum of the 

partial log likelihood; the model with the minimum of the partial log likelihood deviance 

should have reached its best performance.  

Additionally, the selected Cox models should be validated using the following 

statistics, such as Somers' 𝐷𝐷𝑥𝑥𝑥𝑥 rank correlations¸ index of unreliability (𝑈𝑈), 

discrimination index (𝐷𝐷), overall quality (𝑄𝑄), slope of the overall calibration, the 

maximum absolute difference in the calibrated probabilities (𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥), concordance index 

(c-index). The Somers' 𝐷𝐷𝑥𝑥𝑥𝑥 is a rank correlation between the predicted and the observed 

survival status. The discrimination index, 𝐷𝐷, is measured as the model likelihood ratio 

(𝜒𝜒2 − 1)/𝑎𝑎; it is used to measure the ability to distinguish the two survival status. The 

index of unreliability (𝑈𝑈) is the difference in -2 × log likelihood between 𝑋𝑋�̂�𝛽(𝑢𝑢) with the 

uncalibrated slope, �̂�𝛽(𝑢𝑢), from the training sample and 𝑋𝑋�̂�𝛽𝑐𝑐 with the calibrated slope, �̂�𝛽𝑐𝑐, 
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from the test sample divided by n. The overall quality index is measured as 𝑄𝑄 = 𝐷𝐷 − 𝑈𝑈. 

The slope of the overall calibration is the lowess curve of the predictions vs. the actual 

survival status. B-index is the Brier and quadratic probability score. The ɡ-index is Gini's 

mean difference of each pair of predicted survival vs. observed survival status, weighted 

by the regression coefficients of the covariate terms including the original factors. The c-

index is an overall measurement of concordance and discordance.  

3.10 Analysis Procedures 

The overall procedures for analysis are listed below.  

1. Prepare data for analysis; 

A. Normality tests were performed; density plots for all factors were prepared for 

confirmation of normality. Transformation was need if departure was 

detected. 

B. Missing values were imputed as needed (see section 3.6). 

C. Nelson-Aalen estimates or KM estimates of the survival probability should be 

obtained without consideration of any covariates or stratification factors; this 

was to confirm legitimate application of Cox model. 

D. Variable reduction or cluster(see section 3.7 for details): perform 

multicollinearity analysis to identify highly correlated factors; use hierarchical 

cluster analysis to detect the linkage among factors and to identify potential 

clusters; fit a typical Cox PH model to select a subset of the factors within 

each potential cluster; construct the composite factor with existing 

reinforcement algorithm, or perform PCA (see section 3.7.2 for details) to 

construct principal component for the cluster of factors, component scores 

from the PCA should be used as the values for the new composite factor. 

E. The survival data should be randomly partitioned into training (75%) and 

testing (25%); for survival data with multiple records per subject, extra 

caution should be taken in order to retain the within subject correlation 

structure, the partition should be based on subject identifiers, if a subject is 

selected for the training set, all records from the same subject will be stay in 

the training set; the same should be followed for test set. 
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F. Use the training set to determine the initial survival model for model 

selection:  

i. In general, model assumptions should be carefully checked, proper 

functional forms of factors should be identified, interactions had to be 

checked and proportionality assumption had to be confirmed (time-

varying effect had to be properly adjusted and non-proportionality had 

to be fixed if violation of proportionality assumption was detected); 

CVs were attempted for model selections; test set was used for 

prediction future outcomes and for assessing prediction performance 

of the selected model. However, it has been controversy about how to 

fully utilize the original data, therefore in some special cases, the 

original data may be used instead of the training set due to deficiency 

of data points; for example, in the real world case study, the original 

NKI70 data was used to train the PCR model, since the PCR model 

was unable to converge with the training set.  

ii. Conventional Cox regression model was fit to the training set (see 

section 3.1 for details). 

iii. Multivariate Cox regression model with RCS transformation was fit to 

the training set (see section 3.2 for details).  

iv. For FP transformation:  

Perform a 4 df test at the level of the best-fitting second-degree FP 

against the null model. The model should automatically identify the 

best transformation for each factor, then Cox model with the best FP 

transformation was fit to the training set (see section 3.2 for details).   

2. Model selection or CV 

A. Model selection was performed for the typical Cox PH Regression with AIC 

as the selection criteria. 

B. Random survival forest was (see section 3.3.1.2 for details) were cross 

validated within the bootstrap aggregation algorithm ;  
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C. Penalized Cox regression (see section 3.3.2.1 for details) models were cross 

validated with partial log likelihood deviance or CV errors whichever was 

appropriate. 

D. Partial least squares regression (see section 3.3.3.2 for details) was tuned with 

the training set. 

For analysis of different datasets, there should be subtle differences in these 

procedures, but the general framework should remain the same: training (and/or 

CV) and testing. The sequence of models for each approach were trained using 

the training set and the best model was selected based on AIC, partial log 

likelihood deviance or mean CV error as appropriately for the survival model; 

prediction of future outcomes and prediction performance should be evaluated 

over the test set; the prediction performance were then compared across different 

models. As a general rule, the best model was selected if the most improvement 

were achieved with the minimum number of covariates with the only exception of 

the nonparametric random survival forest (RSF) approaches, where a separate 

cross validation step was not needed CV was done within the bootstrap 

aggregation. 

3. Predict future or unseen outcomes based on the best model with the selected 

covariates from step 2; estimate prediction performance of the best model based 

on the test set and bootstrap the test set to obtain the 95 percentile credible 

intervals (PCI) and compare the prediction performance across all survival 

models. 

3.11 Evaluation of Prediction Performance 

As discussed previously, several different measurements or statistics were developed 

to assess the model performance in this research, Brier score, AIC, partial log likelihood 

deviance and time-dependent AUCs. The first three statistics are considered as a loss 

function, the best model is the one to minimize the loss function; the last one is for 

prediction powers, the best model should achieve the best prediction AUCs. 

For typical Cox regression models, Akaike information criterion (AIC) was used to 

select the best model via CV; for penalized Cox regression models, one option was to use 

partial log likelihood deviance as the selection rule via CV, however it was found that 
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Brier score was more reliable for model selection; additionally, nonparametric RSF 

modes were also cross validated using Brier scores, which was named as out-of-bag 

errors (OOB).  

For test set, the time-dependent prediction error as measured by Brier scores was one 

of the statistics for assessing the prediction accuracy of all survival models; a perfect 

survival model should have zero prediction errors. The time-dependent AUC was another 

measurement for assessing the prediction performance of the models; theoretically, a 

perfect survival model should achieve 100% AUCs, but in practice, survival models can 

never reach 100% AUCs, instead a survival model with ≥65% prediction AUCs would be 

a reasonable model, ≥70% AUCs would be good, ≥75% would be exceptional, and ≥80% 

would be excellent; a prediction AUC of 50% should be no better than a random guess. 

The formula for Brier Score, AIC and partial log likelihood deviance are: 

Brier Score at 𝑡𝑡  𝐿𝐿(𝑡𝑡) = 1/𝑁𝑁∑ �𝑌𝑌(𝑡𝑡) − 𝑌𝑌�(𝑡𝑡)�𝑁𝑁
𝑖𝑖=1

2
  .................... Eq. 51 

AIC: AIC = 2𝜈𝜈 − 2log (Likelihood)  .................... Eq. 52 
Partial Log Likelihood Deviance −2log (Likelihood)  

where 𝜈𝜈 is the number of covariates in the model; 𝑌𝑌(𝑡𝑡) is the observed survival status at 

time 𝑡𝑡, which is 𝐼𝐼(𝑇𝑇𝑖𝑖 ≥ 𝑡𝑡), 𝑌𝑌�(𝑡𝑡) is the predicted survival probability at time 𝑡𝑡, 𝑁𝑁 is the 

total number of subjects. The prediction error, 𝐿𝐿, is used to estimate the prediction 

performance at time 𝑡𝑡, which is also known as the Brier score[148] at 𝑡𝑡. The integrated 

Brier score is obtained by averaging the total Brier scores for interval (0, 𝑡𝑡], which can be 

estimated with 1/𝑘𝑘 ∑ 𝐵𝐵𝑆𝑆(𝑡𝑡)𝑖𝑖 , where 𝑖𝑖 = 1 … 𝑘𝑘 different event times. For survival models, 

the empirical time-dependent Brier score 𝐵𝐵𝑆𝑆(𝑡𝑡) can also be obtained as 

BS(t) =
1
n
��

S�(t|xi)2I(ti ≤ t ∧ δi = 1)
G�(ti)

+
�1 − S�(t|xi)�

2
I(ti > t ∧ δi = 0)
G�(t)

�
n

i=1

  ...  Eq. 53 

with individual survival time 𝑡𝑡𝑖𝑖, censoring indication  𝛿𝛿𝑖𝑖, and the estimated survival 

probability �̂�𝑆(𝑡𝑡|𝑥𝑥𝑖𝑖) at time 𝑡𝑡 based on the prognostic model given covariate values 𝑥𝑥𝑖𝑖 for 

subject 𝑖𝑖 out of n subjects (Graf et al. 1999). G�(t) denotes the Kaplan-Meier estimate of 

the censoring distribution at time t, which is based on observations (𝑡𝑡𝑖𝑖, 1 − 𝛿𝛿𝑖𝑖), 𝑖𝑖 =

1, … , 𝑎𝑎. 𝐼𝐼 stands for the indicator function. 
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The time-dependent AUC measurement is were very much related to the c-index, as 

recommended by Harrell (2012), which is the probability of concordant pairs of predicted 

and observed survival status among all pairs of responses. Specifically, if the predicted 

survival probability is larger for the subject who (actually) lived longer, the predictions 

for that pair are said to be concordant with the (actual) outcomes. The c-index is an 

overall measurement of the prediction performance. But similar to the time-dependent 

prediction errors, the probability of concordance at each time point can also be evaluated 

by assigning each subject a survival status at the given time point: if the time point of 

interest occurs prior to the event time for a specific subject, the subject should be alive 

(status of 0) at that particular time point; if the time point of interest occurs after the 

subject had an event, the subject should have already been censoring (status of 1) at the 

particular time point; otherwise, the subject should have status of 0 at the time point. 

Consequently, at each time point, the predicted survival probability of each subject from 

the test set could be checked against the survival status of the same subject at the 

corresponding time point; averaging all subjects in the test set at the same time point, the 

probability of all concordant pairs could be obtained for the given time point; then the 

probabilities of concordance at different time points are referred to as time-dependent 

AUCs, it can be estimated as 

 𝐴𝐴𝑈𝑈𝐶𝐶(𝑡𝑡) = 𝑃𝑃𝑟𝑟 {�̂�𝑆𝑖𝑖 < �̂�𝑆𝑖𝑖|𝑇𝑇𝑖𝑖 < 𝑇𝑇𝑖𝑖 , 𝑇𝑇𝑖𝑖 ≤ 𝑡𝑡} =
∑ 𝐼𝐼(�̂�𝑆𝑖𝑖<�̂�𝑆𝑗𝑗)×𝐼𝐼(𝑇𝑇𝑖𝑖<𝑇𝑇𝑗𝑗)𝑇𝑇𝑖𝑖≤𝑡𝑡

∑ 𝐼𝐼(𝑇𝑇𝑖𝑖<𝑇𝑇𝑗𝑗) 𝑇𝑇𝑖𝑖≤𝑡𝑡
  .................  Eq. 54 

where S�i and S�j are the predicted survival probability for subject 𝑖𝑖 and 𝑗𝑗 at time 𝑡𝑡, 𝑖𝑖, 𝑗𝑗 =

1, 2, … ,𝑎𝑎 and 𝑖𝑖 ≠ 𝑗𝑗.  

For prediction errors and time-dependent AUC measurements, the robust estimates 

and the corresponding 95 percentile credible intervals (PCI) were obtained based on the 

mean and the 95 percentiles of the measurements from 1000 bootstrapped samples of the 

test set, unless noted otherwise. 

3.12 Software Packages 

All data were processed using SAS/BASE Software, Version 9.2 of SAS[149] System 

for Windows (2011, SAS Institute, Cary NC) and analyses were performed using R[150] 

Software for Windows, Version 3.03 or higher (R Core Team). 
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Chapter 4. Simulation and Case Studies 

One simulation and one real world case study were used to evaluate different survival 

models in this research paper. The data from the simulation study was simulated with a 

computer model, with which a time-varying treatment effect was also generated.  The 

real world case study was performed on a breast cancer dataset downloaded from 

Netherlands Cancer Institute for evaluation of metastasis-free survival[143]; in this dataset, 

a total 5 clinical factors and 70 gene signature profiles were collected from 144 subjects. 

4.1 Simulation Studies with Time-Varying Treatment Effect 

The survival data for the simulation study was generated from a computer model (see 

section 4.1.1 for detailed descriptions); once complete, data was randomly partitioned 

into training and testing set in 3:1 ratio. As previously mentioned in section 3.9, all 

survival models were initially trained with the training set, 10-fold cross validation was 

carried out over the training set to select the best subset of factors and the best survival 

model, the test set was used to predict future survival outcomes and to evaluate the 

prediction performance. In the simulation study, a time-varying treatment effect was also 

generated, a subject could have received different treatments at different time during the 

study, i.e., some subjects may have more than 1 observation, each with a different 

treatment. In order to retain the time-dependency and within subject correlation, the 

partition of training and testing sets was carried out on subject-level; each subject in the 

study was assigned a subject identifier; if a subject was selected for the training set, all of 

the observations from the same subject went into the training set; the data from the rest of 

the subjects comprised the test set.  

4.1.1 Description of the Survival Data Simulation 

A total of 2000 subjects were simulated using R software; 7 factors included age, sex, 

race, systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index 

(BMI) and treatment were generated from computer programs. The factors, SBP and 

DBP were highly correlated (correlation coefficient of 0.9) and either was weakly 

correlated with BMI (the correlation coefficient between SBP and BMI was 0.3 and the 

one between SBP and BMI was 0.2). Once generated, the factors were used to generate 
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the survival data following computer model. After which, a time-varying treatment factor 

was added based on a simplified but typical scenario, subjects were randomized to active 

and placebo treatment at the time of enrollment (the placebo treatment included active 

control such as standard of care (SOC), inert tablets or sham treatment). In this simulation 

study, the SOC was assumed for the placebo treatment. Subject were allowed to switch 

treatment after the 1 Year post-randomization; for simplicity reasons, only placebo 

treated subjects were programmed to switched to the active treatment after 1-year post 

randomization, which was quite common in phase III, IV and epidemiology studies. In a 

typical clinical study, subjects are usually closely monitored and are not allowed to 

switch treatment during the efficacy evaluation period (such as 1 year for this simulation 

study), after subjects reached the target duration, they should be allowed to switch 

treatment or therapeutic options per investigator’s discretion, required by the study 

protocol (to enter into an open-label phase) or any reasons other than random decisions. 

The same scenario was followed to simulate the time-varying treatment effect. The 

reasons for switching treatment could be very subjective, but the subjectiveness could not 

be simulated without complicated computer models, which was not the primary interest 

of this research. Thus, a simplified computer model was used to simulate the treatment 

switching (see below for details); the model was much more simplistic than any typical 

real world clinical trials, but the analysis approaches and models should be general to all 

studies. 

o Age was randomly generated from a normal distribution with a mean of 50 and a 

standard deviation of 12 years; Sex was a binary variable, randomly sampled from 

the set of {Male, Female} with replacement based on 6:4 ratio; Race was an 

ordinal variable, which was randomly sampled from the set of {White, Black, 

Hispanic and Asian} with replacement using 55:23:16:6 ratio, 55% of White, 

23% of Black, 16% of Hispanic and 6% of Asian;  

o SBP, DBP and BMI were generated from random normal distributions with 

correlation matrix of �
1 0.9 0.3

0.9 1 0.2
0.3 0.2 1

� 

and with mean (SBP) = 110 and SD (SBP) = 9 (mmHg), mean (DBP) = 75 and 

SD (DBP)= 5 (mmHg), mean (BMI) = 28.5 and SD (BMI) = 4 (kg/m2).  
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o Subject were randomized to active treatment or placebo (SOC) at the beginning of 

the study based on 2:1 ratio stratified by subject sex; at 1-year post randomization, 

placebo treated subjects were allowed to switch to active treatment (23.9% 

actually switched), the subjects from the active treatment group continued their 

treatment until the end of the study. In theory, subjects from the active treatment 

group could also switch to placebo or other treatment options, which could be 

programmed using the same model as we did for placebo treated subject, but it 

should just add more complexity to the simulations, nothing more. Furthermore, 

in a real world setting, subjects could switch back and force between treatment 

groups until they were censored or failed. However since the simulation model 

was not the focus of the research, it was not worth the effort to simulate the extra 

scenarios, such as subjects switching from the active to placebo treatment or 

switching back and force, since the same survival model(s) should be able to 

account for all these scenarios. Thus for the sake of simplicity, the extra scenarios 

was not simulated.  

o The hazard function was simulated using an exponential model. At baseline, male 

and female subjects had different hazard functions; subjects under different 

treatment should also have different hazard (subjects under active treatment were 

assumed to have smaller hazard). While subjects randomized to placebo at 

baseline were allowed to switch to active treatment after 1-year post 

randomization; they should follow the hazard function for active treatment 

starting at the time of switching, depending on their sex and the actual treatment 

received. But for subjects who stayed in the same treatment, their hazard function 

should remain the same.  

Female 𝜆𝜆(𝑡𝑡|𝑋𝑋)) = . 02 × exp {.16 × �age + .8 × {Female} +
0.07 × {White} + 0.8 × {Black} + 0.08 ×
{Hispanic} − 0.6 × {Active Treatment} + .1 ×
[(MAP − 91)/5.96]3} 

 ................  Eq 55 

 

Male  = . 02 × exp {.16 × �age + .8 × {Female} +
0.07 × {White} + 0.8 × {Black} + 0.08 ×
{Hispanic} − 0.6 × {Active Treatment} + .6 ×
[(MAP − 91)/5.96]3} 
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o Anticipated time of follow-up or drop out (censoring time), ctime, and proposed 

time of event (event time), etime, were generated from, ctime ~ Uniform (0, 14) 

and exp(−λ(1)  ×  etime(1)) ~ Uniform (0, 1) for subject who did not switch 

treatment arm until the end of the study;  

− For subjects who stayed in the same treatment until the end of the study: if 

etime ≤ ctime, the subject had an event at etime; otherwise censoring occurred 

at ctime; 

After 1-Year post baseline, placebo treated subjects who were at risk at 1-

Year were allowed to switch to active treatment with a probability of 60%: stime 

~ Uniform (0, 14); upon switching to active treatment, these subjects should 

follow the hazard function from the active treatment, then exp(−λ(2)  ×

 etime(2))~ Uniform (0, 1).  

− For those subjects who switched treatment, if 1 + stime + etime(2) ≤ ctime, 

event occurred at the time of stime + etime(2); otherwise it was censored at 

ctime. Here the superscript (1) or (2) is used to refer to the different treatment 

phase before or after switching to the different treatment, respectively, for the 

subjects who switched treatment. 

4.1.2 Results of the Simulation Study 

4.1.2.1 Summary Statistics of the Simulation Study 

The demographics of the study population are summarized in Table 1; as can be seen 

from the table that all factors were equally distributed between the two randomization 

groups. A summary of subject survival status at 1-year post baseline and treatment 

switching after 1-year post baseline is presented in Table 2. For this simulation study, a 

total of 106 (10.6%) subjects from active treatment arm had events prior to 1 year and 

163 (16.3%) subjects from the placebo (SOC) arm had events prior to 1 year. Of the 891 

subjects randomized to active treatment who survived 1 year, none of the subjects 

switched to placebo; of the 840 subjects randomized to placebo and survived 1 year, 201 

(23.9%) switched to the active treatment, and the rest of the 639 subjects stayed in the 

placebo (SOC) arm until they censored or failed. In this study, the treatment switching 

from placebo to active was assumed to be independent of the failure event, which 
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however may not be reasonable in practice; in a clinical study, patients may switch 

treatment due to adverse events or lack of efficacy. 

Table 1. Demographics of Simulation Study 

  Enrollment Randomization All 
Factors Statistics Active Treatment 

(N=997) 
Placebo SOC 

(N=1003) 
Enrollment  
(N=2000) 

Age Mean ± SD 49.8 ± 11.73 50.5 ± 11.73 50.2 ± 11.73 
 Median (25%, 75%) 49.4 (42.2, 57.9) 50.3 (42.7, 58.7) 49.7 (42.5, 58.2) 
 Min – Max 16.8 – 85.11 15.8 – 94.5 15.8 – 94.5 
     
Sex Male 596 (60%) 623 (62%) 1219 (61%) 
 Female 401 (40%) 380 (38%) 781 (39%) 
     
Race White 534 (54%) 546 (54%) 1080 (54%) 
 Black 215 (22%) 242 (24%) 457 (23%) 
 Hispanic 172 (17%) 181 (18%) 353 (18%) 
 Asian 76 (8%) 24 (3%) 110 (6%) 
     
SBP Mean ± SD 110.6 ± 8.64 110.3 ± 8.64 110.4 ± 8.64 
 Median (25%, 75%) 110.2 (104.8, 116.5) 110.5 (104.6, 115.7) 110.3 (104.6, 

116.1) 
 Min – Max 82.9 – 138.6 83.9 – 137.2 82.9 – 138.6 
     
DBP Mean ± SD 75.2 ± 4.87 75.2 ± 4.87 75.2 ± 4.87 
 Median (25%, 75%) 75.2 (71.9, 78.6) 75.3 (72.0, 78.4) 75.3 (72.0, 78.5) 
 Min – Max 58.4 – 89.66 58.0 – 91.5 58.0 – 91.5 
     
BMI Mean ± SD 28.8 ± 3.98 28.7 ± 3.98 28.7 ± 3.98 
 Median (25%, 75%) 28.6 (26.0, 31.6) 28.7 (26.1, 31.3) 28.7 (26.1, 31.4) 
 Min – Max 13.3 – 41.4 15.1 – 40.5 13.3 – 41.4 

 

Table 2. Summary of Subject Survival Status at 1-Year 
and Treatment Switching After 1-Year Post Baseline 

 Enrollment Randomization 
 Status or Treatment  Active Treatment  

(N=997) 
Placebo / SOC 

(N=1003) 
Survival at Year -1   
Status Event Free 891 (89.4%) 840 (83.7%) 
 Failure (Event) 106 (10.6%) 163 (16.3%) 
After Year-1 891 840 
 Active Treatment 891 (100%) 201 (23.9%) 
 SOC – 639 (76.1%) 
NOTE: None of the subjects who were randomized to active treatment at 
baseline switched to placebo during the study; "–" means "NA". 
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4.1.2.2 Data Preparations 

Before proceeding with actual analysis, the data had to be prepared for analyses, such 

as variable transformation, missing data imputation, normality test, variables reduction or 

clustering, checking for multicollinearity and heteroscedasticity, checking for linearity 

and determination of the correct functional form for each factor, testing on interactions, 

examination of proportionality assumption, etc. For this simulation study, missing values 

were not simulated; therefore missing data imputation was not performed. Otherwise, 

data preparation was carried out using the training set.  

4.1.2.2.1 Normality assumption 

Normality assumption was checked for all continuous factors; none of 4 normality 

tests (including D's Agostino's K-squared test, Anderson-Darling test, Kolmogorov-

Smirov test, and Shapiro-Wilk Test) had shown apparent departure from normality for all 

continuous factors; the Q-Q plots (Figure 1) also confirmed the normality assumption. 

Multicollinearity was checked using Spearman rank correlation coefficient as well as 

scatter plot; results are presented in Figure 2. The locally weighted scatterplot smoothing 

(LOESS) and the scatter plots of all factors are displayed in the lower-left triangle. 

Density probability histograms are displayed for all continuous factors in the diagonal of 

the figure (Sex and Race are categorical variables, histograms are not displayed); the 

   

Figure 1. QQ-plot for All Factors in the 
Original Scale from Simulation Study 

Figure 2. Scatter plot of All Factors from 
Simulation Study  
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Spearman rank correlation coefficient (ρ) and the corresponding p-values (p) are 

presented in the upper-right triangle. It was noted that SBP and DBP had very strong 

correlations (ρ=0.87); and both SBP and DBP had moderate correlations with BMI (the 

corresponding correlation coefficients were ρ = 0.25 and 0.14, respectively). The 

correlations between all other continuous factors were almost negligible; the correlations 

involving any of the categorical variables were not very much meaningful and probably 

were not very informative, instead correspondence analyses should be more useful, which 

were not performed for this study.  

4.1.2.2.2 Data Transformation/Missing Data Imputation 

Data were transformed independently of the survival outcome; each transformed 

factor was plotted against the same factor in its original scale, the plots are displayed in 

Figure 3. The transformed factor of Age had a local peak at 40 and local valley around 

the median of 50 years, which suggested that nonlinear transformation should be needed 

for Age, therefore at least 3-knot RCS or 4-df FP transformations should be considered 

for Age; for the rest of the continuous factors, the transformed factors were pretty much 

linear with the original factors. Since the transformation was conducted without looking 

at the survival outcomes, the final decision about the transformation should be made 

based on the analysis results by tentatively fitting a typical Cox PH model to the data. 

  

Figure 3. Transformed vs. Original Factors – Simulation Study 

The survival data were simulated using a computer model; missing values were not 
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intentionally simulated, since the actual reasons for missingness could be very subjective 

and the subjective cause for missingness could not be easily simulated with a simple 

statistical model. On the other hand, the focus of the study was to evaluate different 

survival models, not on simulation models. Thus, missing values were not intentionally 

generated for the study; consequently, missing data imputation was not needed. 

4.1.2.2.3 Variable Reduction/Clustering 

A principal component analysis (PCA) was performed to transform factors into 

uncorrelated latent variable (components); the Sex and Race were categorical factors of 

character values, they had to be converted to numeric to be processed in the PCA. Table 3 

presents the proportions of variance explained by each principal component without 

looking at the survival outcome; component 1 explained about 28% of the total variance, 

component 7 only explained 1% and each of the rest of the components explained about 

13% to 15% of the total variance. In terms of the contribution to the total variance, 

component 1 was the most significant, components 2 to 6 were of equivalent importance 

and component 7 was probably not needed.  

Table 3 Proportion of Total Variance Per Principal Components – Simulation Study 

  Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 
Standard deviation 1.41 1.04 1.01 0.99 0.97 0.94 0.32 
Prop of Variance 0.28 0.15 0.14 0.14 0.14 0.13 0.01 
Cumulative Prop 0.28 0.44 0.58 0.72 0.86 0.99 1.00 

The details of constitutes for each component are presented in Table 4. The 1st 

component consisted of SBP, DBP and BMI, contributed the most (28%) to the total 

variance; other than that, SBP and DBP also contributed to component 6 and 7. The 

categorical variables, sex, race and treatment were used as numeric variable in principal 

component analysis. Sex contributed to component 2, 4, 5 and 6, while race contributed 

to component 2, 3, 4, 5 and 6. Age however contributed to component 2, 3, 5 and 6. As 

can be seen easily, the two factors of SBP and DBP were always linked together for all 

components they contributed to; it was reasonable to combine the two variables together. 

The graphic display of the "cumulative" variance of the original and transformed 

factors explained by each component is presented in Figure 4. For all factors in their 

original scale, it can be seen that the first 6 components already explained 99% of the 
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total variance, component 7 was unnecessary. Additionally, the figure also displayed the 

variance of the transformed factors explained by the components originated from the 

transformed factors; comparing to the variance of the original factors explained by the 

original components, data transformation did not add too much value, therefore variable 

transformations were not needed for the typical Cox regression models.  

Table 4. Contribution of Factors to the Principal Components – Simulation Study 

Factors Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 
Age 

 
-0.566 0.558 

 
-0.493 0.353  

SBP -0.681 
    

-0.119 -0.715 
DBP -0.665 

   
-0.159 -0.217 0.694 

BMI -0.293 0.170 0.103 -0.117 0.485 0.786  
Sex (Numeric) 

 
0.524 

 
0.670 -0.430 0.287  

Race (Numeric) 
 

-0.340 -0.817 -0.126 -0.298 0.333  
Treatment (Numeric) 

 
-0.509 

 
0.717 0.463 

 
 

Survival data were tentatively fit using the principal components Cox regression 

models, the Cox linear model, the Cox model with 5-knot RCS transformations, and the 

Cox model with 4-df FP transformation; the Cox linear model, and the Cox models with 

nonlinear transformations were used as reference.  

 

 

Figure 4. Cumulative Variance 
Explained by Principal Components 

(PC) – Simulation Study 

Figure 5. AIC of PCR Model, Cox Linear 
Model, Cox Model with RCS and FP 
Transformations– Simulation Study 

Figure 5 displays the AIC of Cox models with one-component, two components, …, 

all 7 components. The reference lines were based on the AIC of 3 typical Cox models, 

Cox PH model with linear form (or Cox PH linear model), Cox PH model with 5-knot 
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RCS transformations and 4-df FP transformations; all 3 reference lines were well below 

the principal components regression (PCR) model, which indicated that PCR was 

probably not a good choice. Additionally, the Cox linear model and the Cox model with 

FP transformation had the similar performance and both were slightly better than the  

Cox model with RCS transformation.  

Figure 5 also confirmed that component 7 was probably not needed, because AIC of 

the PCR model with the first 6 components already dropped to the lowest point and 

addition of component 7 did not improve the model performance. Moreover, comparing 

the PCR model with the Cox PH linear model and the Cox model with 5-knot RCS 

transformations or 4-df FP transformations, the PCR model had the worst AIC even with 

all components included in the model, but the Cox PH linear model and the Cox model 

with 4-df FP transformations were slightly better than the Cox model with 5-knot RCS 

transformations, even though the difference (in AIC) was very minimal, it seemed that 

nonlinear transformation of the continuous factors might not make significant 

improvement to the model performance. 

Before further investigating the actual functional forms for all continuous factors, 

variable had to be clustered or reduced to eliminate multicollinearity and reduce 

dimensionality. A hierarchical cluster analysis based on Hoeffding's D statistics was 

performed; the linkage pedigree is displayed in Figure 6. As seen from the figure, SBP 

and DBP were close "siblings"; a composite variable, mean artery pressure (MAP), was 

constructed from the two factors, using the reinforcement learning (MAP = SBP/3 + 2 ×

DBP/3). As described in section 3.7.3 the reinforcement algorithm for MAP was better 

than the principal component from the PCA, since it was better for interpretation. 

Besides the two blood pressure factors, it can be seen from the pedigree that BMI was 

also weakly linked to the 2 blood pressure factors, except that the linkage was too weak 

to be combined with the 2 factors. If however, BMI should have stronger correlations 

with the 2 blood pressure factors, a typical Cox PH model with the 3 factors had to be 

performed, a subset of the factors as selected by the model should be considered as a 

cluster. The cluster (subject) of factors should be processed using a principal component 

analysis with the cluster of factors as the only covariates; a principal component should 

then be constructed from the cluster of factors; the principal component could be used as 

  77 



 

the composite factor to replace the cluster of factors for further analysis, the value of the 

composite factor should be set to the component score from the PCA. However, this was 

not needed for this simulation study.  

Additionally, the 3 dummy variables, RaceHispanic, RaceBlack and RaceWhite, 

referred to the relative difference between Hispanic and Asian, Black and Asian, White 

and Asian, respectively; the reference level of Asian was not shown in the figure. The 

three dummy variables also had very close linkage, but since the 3 dummy variables were 

all coming from the same factor (Race), a composite factor for the 3 dummy variables 

was not needed.  

 

Figure 6. Hierarchical Variable Cluster Analysis – Simulation Study 

4.1.2.2.4 Further Investigation of Functional Forms, Interactions and 
Proportionality 

In this step, the initial survival model was tentatively determined, which should be 

used as the basis for further analysis and model selections. Potentially, there are 

unlimited tentative models; for example, if only polynomial terms are considered, there 

will be unlimited possibilities of the orders for the polynomial terms. An initial model 

can only account for limited possibilities; thus it should be properly declared without 

losing too much generality. Ideally, it is always advisable to include more terms in the 

initial model; since the best model is selected from the predetermined initial model, and 

no extra terms are added to the model for further performance improvements. Different 

statistical or machine learning techniques are only able to reduce the inappropriateness, 
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which cannot recover from an error that has already made. Then, the "best" model is the 

one that can achieve the best performance of all incorrect models.  

On the other hand, more covariates should require more data to achieve reasonable 

estimates or inferences; even with the most advanced techniques, statistical inferences, 

predictive power, model performance, reliability and stability are also based on the size 

of the data; thus it is always desirable to have more data. Unfortunately, nobody can tell 

for sure if the size of any given data is big enough before the actual analysis. Thus a rule 

of thumb should be followed to predetermine the size of the data based on the number of 

potential factors considered (see section 3.4 for details).  

Still the determination of the initial survival model is one of the most important steps 

and it is advisable to be more conservative for choosing the initial survival models; i.e., 

all possible factors should be considered for the initial model if the size of data allows; if 

a factor is included in the model, all potential functional forms of the factor should be 

included; if a factor is involved in an interaction, all functional forms of the factor should 

be included in the interaction. 

The initial survival model should be determined only after the correct functional 

forms of the factors are identified, appropriate interactions are determined and 

proportionality assumptions are confirmed; if however non-proportionality is detected, 

time-dependent (or time-varying) adjustment should be considered. In this study, two 

approaches (RCS and FP transformations) were considered for nonlinear functional forms 

for typical Cox PH models:; for interactions, only second order piecewise interaction 

terms among all covariates (including all functional forms of continuous factors and 

categorical factors) were considered. 

For the simulation study, all subjects were assumed to stay their original 

randomization group, even though some of them switched to a different treatment after 1-

year follow-up following the intent-to-treat (ITT) analysis (the first analysis principal for 

superiority test); the plot of corresponding KM estimates of the survival curves is 

displayed in Figure 7. In this analysis, subjects who switched to the active treatment 

should theoretically follow the hazard from the active treatment arm immediately after 

the switching (assuming no carry-over effect), because of the treatment benefit from the 

active treatment, neglecting the switching should have incorrectly forced the benefit 
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received from the active treatment into the placebo, thus underestimate the hazard from 

the placebo group, which was the reason for underestimating the treatment benefit 

between the two groups. Moreover, the proportionality assumption was also significant 

violated (the scaled Schoenfeld residual of the randomization was significantly correlated 

with time, 𝜌𝜌 = −0.182  and P-value ≪ 0.0001); the downwarding slope of the scaled 

Schoenfeld residual plot as shown in Figure 8 also confirmed the non-proportionality 

finding.  

  
Figure 7. KM Estimates by Baseline 

Randomization: Subjects were Kept in 
their Original Randomization Group – 

Simulation Study 

Figure 8. Scaled Schoenfeld Residuals for 
Treatment vs. Time: Subjects were Kept 
in their Original Randomization Group – 

Simulation Study 

Another approach assumed that subjects who switched to a different treatment were 

censored at the time of treatment switch and the KM plot of the survival curves is not 

presented, since the plot is very similar to Figure 7. This approach violated the non-

informative censoring assumption (previously discussed in section 1.4, section 2.3.3.4). 

Both of the above two approaches were significantly biased in favor of placebo and 

violated the proportionality assumption. 

Apparently, placebo treated subjects who switched to active treatment should have 

received different treatments during different study period; these subjects were treated 

with placebo before the switch and treated with active treatment after the switch. 

Therefore, subjects who switched to a different treatment group should have two 

occurrences corresponding to the different treatment phases (only placebo subjects who 
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did not have event during the first treatment period were able to switch to the active 

treatment); thus the survival data was modeled the same way as if it was a multiple 

occurrence survival model, since the placebo subjects undergone treatment switching 

should have two observations, each with different treatment, but only one failure event 

occurred after the treatment switching and the treatment switching was considered as a 

different type of event (competing risk model).  

To account for multiple observations per subject with consideration of time-varying 

treatment effect, the two extensions as described in section 3.8.5 could be implemented 

following the same order as described. The Andersen-Gill extension (extension option 1) 

of Cox PH model was first applied. The survival curves stratified by the treatment 

received are displayed in Figure 9 and the corresponding scaled Schoenfeld residual plot 

against time is displayed Figure 10. The survival curves between the two treatments did 

not cross in the middle until they reached Year-15 when the last failure event occurred 

from the last subject; this was a theoretical scenario (all subjects failed before the end of 

the study), which was be very rare in practice, since almost all clinical trials or studies 

should have already had terminated before all subjects experienced a failure event. The 

scaled Schoenfeld residual plot is almost parallel to the x-axis, the proportionality test 

was no longer significant (p-value ≈ 0.41). Thus non-proportionality had been properly 

  
Figure 9. Cox PH Estimates of Survival 

Curves by Actual Treatment with 
Adjustment of Time Varying Treatment 

Effect – Simulation Study 

Figure 10. Scaled Schoenfeld Residuals 
for Treatment vs. Time with Adjustment 

of Time-Varying Treatment Effect – 
Simulation Study 
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resolved using the Andersen-Gill extension of Cox PH model. Comparing this approach 

with the previous two approaches, this model should be much more reasonable. 

Therefore, for the 3 typical Cox models as described in section 3.1 and 3.2,  

Andersen-Gill counting process extension of Cox regression models should be 

implemented first to adjust for the time-varying treatment effect (extension option 1 from 

section 3.8.5); if non-proportionality was an issue for any of the factors (including the 

time-varying treatment effect), extension option 2 from section 3.8.5 should be intended. 

The two extensions are still referred to as Cox PH models or Cox regression models. 

4.1.2.2.4.1 Functional Form and Interactions 

To investigate the actual functional forms for each continuous factor, RCS and FP 

transformations were intended; the former one was carried out using AG extension of 

Cox model with RCS transformation and the latter was carried out using AG extension of 

Cox model with FP transformations.  

For Cox model with FP transformation, the first step was to seek the nonlinear factors 

using a MFP procedure, the procedure was used to estimate the power terms for each 

factor (see Eq. 48 from section 3.8.3 for details). At this stage, only individual factors 

with 4-df FP transformations were included in the model without considering interactions 

or time-dependent covariates. The MFP procedure was used to search for nonlinear 

factors such that the log relative hazard should have a linear relationship with the entire 

functional form of the nonlinear factors. As discussed in 3.8.3, the nonlinear 

transformations were only considered for continuous factors; categorical factors were 

included just for reliability check, since categorization is a nonparametric process, all 

categorical factors should have linear relationships with the log relative hazard.  

Table 5 presents the results from the MFP analysis; for all categorical factors, such as 

Treatment, Sex and Race, the MFP procedure did suggest that the original form; for the 

two continuous variables, Age and MAP, nonlinear transformations were not suggested; 

for BMI, the following nonlinear transformation was suggested, BMI3 + BMI3 log BMI.  

Table 5. MFP Suggested Transformations using Cox Regression Model 

Factors Age MAP BMI Treatment Sex Race 
Suggested Transformation Age MAP BMI3+BMI3log(BMI) Treatment Sex Race 
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After the proper functional forms were determined, the next step was to investigate 

interaction terms and check the proportionality assumption; the procedures were similar 

between the Cox models with RCS or FP transformations.  

For multivariate Cox regression model with RCS transformation, to identify the 

correct functional form, Martingale residuals from a fully saturated Cox PH model was 

plotted against each of the continuous factors. Remember, the simulated survival data 

was consisted of 2000 subjects, 201 subjects from the placebo group switched to active 

treatment sometime after 1-year post randomization, each of whom should have 2 

observations. Of the original 2000 subjects, 1500 (75%) subjects were partitioned into the 

training set; of the 1500 subjects, 150 placebo-randomized subjects switched to active 

treatment and the rest of the 1350 subjects received the same treatment during the entire 

study, therefore a total of 1650 observations from the 1500 subjects were included in the 

training set. As such, the Martingale residual could be calculated on observation level or 

on subject level. The obtained martingale residuals were plotted against each of the 

continuous factors stratified by the categorical factor or categorized continuous factors; 

these plots were used to determine the actual nonlinear functional forms and existence of 

interactions for the initial survival model. In addition, Wald tests were also performed to 

test the existence of interactions between every pair of factors, including both continuous 

and categorical factors. 

To determine the actual function form of the factors for the initial survival model, a 

tentative model with the original factors was fit to the training set; incorrect functional 

forms could lead to under-detection of interaction terms. Nevertheless, it was still not 

worth implementing a different model, with the risk of losing extra degree of freedoms. 

The intension was to screen potential interaction terms for initial survival model for 

further selections, not to determine the exact interactions for the final model. 

Additionally, considering intra-subject variations, the subject-level Martingale residuals 

were also plotted against each continuous factor, though no cross-overs were observed 

among the curves from different stratifications, different slopes of the lowess fit between 

stratifications would suggest existence of interaction.  

To ensure a comprehensive initial survival mode, it is preferable to be more 

conservative to prescreen the factors, covariate and interactions, just to capture all 
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possible information (features) from the data, since a comprehensive initial model should 

be more likely (than a simplified model) to capture the correct relationship among factors 

though model selections. Thus, all possible (including the confirmed or questionable) 

pairwise interactions should be included in the initial survival model for further 

evaluations. For any factors included in interactions, the entire functional forms of the 

selected factors or the categorical factors should be used to construct the interaction 

terms. 

Figure 11 displays the Martingale residuals vs. each of the continuous factors 

stratified by the actual Treatment groups. As mentioned earlier, residuals could be 

obtained from each observation; the observation-level residuals are presented in the top 3 

plots of the figure; 3 inflection points were observed for MAP; for Age and BMI, one 

inflection point was observed from the curves of lowess fit. After adjustment of multiple 

observations per subject, the subject-level residuals were obtained; results are presented 

in the bottom 3 plots. In the subject-level residual plot, 3 inflection points were observed 

for Age and MAP, 1 inflection point was observed for BMI; to be more conservative, 5-

knot RCS transformation for Age and MAP, 3-knot RCS transformation for BMI was 

considered in the initial model with RCS transformations.  

However, for the Cox model with FP transformation, the actual functional form for 

  
Figure 11. Martingale Residuals against 

Continuous Factors Stratified by 
Treatment – Simulation Study 

Figure 12. Martingale Residuals against 
Continuous Factors Stratified by Sex – 

Simulation Study 
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each factor was already determined in Table 5 and only the suggested functional form 

was considered for the initial model with FP transformations. In addition, from the 

residual plot, the smoothed lowess curves of Age were parallel between the treatment 

groups, which suggested no interactions between Age and treatment. As for MAP, the 

lowess plots for different treatment groups were not crossed, but different slopes were 

apparent between the two treatment groups, which was an evidence for the existence of 

interactions, although the evidence was not substantial. Further investigation was 

attempted with hypothesis test of the interaction term involving Treatment and MAP. As 

for BMI, the placebo group had shown slight quadratic pattern in the Martingale 

residuals, but pretty much straight for the group with Active treatment, however the 

overall pattern did not show different slope, which suggested no interactions. 

To further investigate the interactions involving Treatment factor, a tentative model 

with all interactions involving treatment was fit to the data. Results are presented in Table 

6, where a significant P-value for the interaction term should be a strong evidence for 

confirmation of interaction, but a non-significant P-value did not confirm non-interaction, 

it just means that there was not enough evidence to confirm interaction. Combining the 

evidence from the hypothesis testing and the Martingale residual plots, the decision 

Table 6. Wald Test on Interactions 
between Treatment and All Other 

Factors – Simulation Study 

Table 7. Wald Test on Interactions 
between Sex and All Other Factors – 

Simulation Study 

  𝝌𝝌𝟐𝟐  df P-value 
Treatment   74.82 6 <.0001 
 All Interactions 9.07 5 0.1065 
Age   3.11 2 0.2109 
 With Treatment 0.03 1 0.8553 
MAP   54.28 2 <.0001 
 With Treatment 5.54 1 0.0186 
BMI   1.23 2 0.5408 
 With Treatment 0.41 1 0.5204 
Sex   31.64 2 <.0001 
 With Treatment 1.32 1 0.2511 
Race   25.56 2 <.0001 
 With Treatment 2.51 1 0.1130 
Total Interaction 9.07 5 0.1065 
TOTAL 175.73 11 <.0001 

 

  𝝌𝝌𝟐𝟐  df P-value 
Sex   38.32 6 <.0001 
 All Interactions 7.74 5 0.1715 
Age   3.56 2 0.1688 
 With Sex 0.17 1 0.6784 
MAP   49.37 2 <.0001 
 With Sex 0.86 1 0.3536 
BMI   1.78 2 0.4103 
 With Sex 1.00 1 0.3182 
Treatment   68.47 2 <.0001 
 With Sex 1.37 1 0.2412 
Race   27.95 2 <.0001 
 With Sex 4.85 1 0.0276 
Total Interaction 7.74 5 0.1715 
TOTAL 170.54 11 <.0001 
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should be much more reliable; it was unlikely to make wrong decisions with both 

evidences. Age, BMI and Sex had no interactions with Treatment, but MAP and Race 

might have interactions with Treatment. 

Similarly, the interactions between Sex and all other variables were also examined; 

the plots of Martingale residual are presented in Figure 12 and the interactions terms were 

tested using Wald test; results are presented in Table 7. From Figure 12, it can be seen 

that the lowess fitted curves for different sexes were parallel for Age and BMI, but were 

crossed for MAP, which suggested interactions between MAP and Sex; controversially, 

such interaction was not significant from the Wald tests (P-value=0.3536). Instead, the 

Wald tests found significant interaction between Sex and Race. Looking more carefully 

at the figure, it can be seen that curve of MAP for male and female pointed in different 

directions (concave and convex), which suggested nonlinear pattern of the factor, and 

such nonlinear pattern could lead to the under-detection of the interactions from the Wald 

test. Considering these clues, the questionable interactions between Sex and MAP, and 

between Sex and Race should both be considered for the initial model, just to be 

conservative.  

The interactions between Race and all other factors were also investigated; residual 

plots are presented in Figure 13; the lowess fitted curves for different Races were pretty 

  
Figure 13. Martingale Residuals against 
Continuous Factors Stratified by Race – 

Simulation Study 

Figure 14. Martingale Residuals for   
Continuous Factors Stratified by the 

Quantiles of Another – Simulation Study 
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much parallel most of the time, but there were a few crossovers between different Races 

in all of the three continuous factors, and many inflection points were also observed. 

Therefore, it was suspected that the few crossovers could be due in part to the nonlinear 

factors or due in other part to the random chance from small number of subjects; no 

substantial evidence had suggested interactions of any of the continuous factors with 

Race; the other factors considered for potential interactions with Race was Sex and BMI. 

Specifically, the lowess curves for Asian subjects were crossed with those from other 

Races, but looking at the small number of Asian subjects from Table 1, the evidence did 

not stand out substantially.  

Further evaluations were performed through hypothesis testing via Wald test; results 

are presented in Table 8. The results of Wald tests only suggested the interaction between 

Race and Sex (P-value = 0.0263). For interaction between Race and BMI, Wald test was 

boundary significant (P-value =0.0556), thus Race might be interacted with BMI, which 

should be considered for the initial model, if the design matrix was invertible. Just to be 

more conservative, the interaction between Treatment and Race (P-value=0.1118) were 

also considered if the model was estimable. 

Table 8. Wald Test on Interactions 
between Race and All Other Factors – 

Simulation Study 

Table 9. Wald Test on Pairwise 
Interactions between Continuous Factors 

– Simulation Study 

  𝝌𝝌𝟐𝟐  d.f. P-value 
Race   37.68 6 <.0001 
 All Interactions 12.84 5 0.0249 
Age   5.24 2 0.0728 
 With Race 1.62 1 0.2028 
MAP   48.65 2 <.0001 
 With Race 0.18 1 0.6726 
BMI   4.34 2 0.1144 
 With Race 3.66 1 0.0556 
Treatment   70.23 2 <.0001 
 With Race 2.53 1 0.1118 
Sex   36.69 2 <.0001 
 With Race 4.94 1 0.0263 
Total Interaction 12.84 5 0.0249 

 

 𝝌𝝌𝟐𝟐  df P-value 
Age   6.06 3 0.1088 
 All Interactions 1.22 2 0.5423 
MAP   43.95 2 <.0001 
 With Age 1.02 1 0.3124 
BMI   0.39 2 0.8234 
 With Age 0.07 1 0.7909 
Total Interaction 1.22 2 0.5423 
MAP   44.00 3 <.0001 
 All Interactions 1.24 2 0.5381 
BMI   0.41 2 0.8161 
 With MAP 0.09 1 0.7660 
Total Interaction 1.24 2 0.5381 

 

Tests on interactions involving at least one categorical factor were relatively easy to 

perform; but the interactions between continuous factors were not very straightforward 

with the residual plots, since no stratification could be utilized. Thus, one factor had to be 
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categorized into intervals using the cutoff points of 25, 50 and 75 percentiles. The 

residuals plots for each continuous factor stratified by the categorized factor are presented 

in Figure 14. The lowess residual curves were parallel for most of the time among 

different intervals, but there were a few inflections points and a few crossovers, which 

could be due to actual interactions or due to small number of subjects within each 

interval. Further confirmation could be achieved based on the P-values from the Wald 

test (hypothesis testing on interactions), which are presented in Table 9. There was no 

evidence for considering interactions between the continuous factors. 

4.1.2.2.4.2 Proportionality 

As shown previously in 4.1.2.2.4 that the non-proportionality was properly addressed 

after adjusting for the time-varying treatment effect with extension option 1 (see section 

3.8.5 for details) for the linear model. However, just in case the non-proportionality was 

not hidden due to the improper functional forms of the covariates, the proportionality 

assumptions were further assessed again for all covariates using the functional forms as 

identified from section 4.1.2.2.4.1. At this step, Cox regression model with all possible 

functional forms as well as the potential interactions as identified from the previous 

section was tentatively fit to the survival data. The tentative Cox model with RCS 

transformations is shown below. 

 𝜆𝜆(𝑡𝑡|𝑋𝑋) = 𝛽𝛽1𝑇𝑇𝑅𝑅𝐶𝐶𝑆𝑆(Age, 5) + 𝛽𝛽2𝑇𝑇𝑅𝑅𝐶𝐶𝑆𝑆(MAP, 5) + 𝛽𝛽3𝑇𝑇𝑅𝑅𝐶𝐶𝑆𝑆(BMI, 3) +
𝛽𝛽4𝑇𝑇I(Treatment) + 𝛽𝛽5𝑇𝑇I(Sex) + 𝛽𝛽6𝑇𝑇I(Race) +
𝛽𝛽7𝑇𝑇𝑅𝑅𝐶𝐶𝑆𝑆(MAP, 5): I(Treatment) +
𝛽𝛽8𝑇𝑇𝑅𝑅𝐶𝐶𝑆𝑆(MAP, 5): I(Sex) + 𝛽𝛽9𝑇𝑇𝑅𝑅𝐶𝐶𝑆𝑆(BMI, 3): I(Race) +
𝛽𝛽10𝑇𝑇 I(Treatment): I(Race) + 𝛽𝛽11𝑇𝑇 I(Sex): I(Race) 

 ................. Eq. 56 

 

where 𝑅𝑅𝐶𝐶𝑆𝑆 with 𝑢𝑢-knots was already defined in Eq. 48 from section 3.8.3, note that the 

𝑢𝑢-knot RCS transformations should have 𝑢𝑢 + 1 terms, therefore for each RCS 

transformation, the corresponding regression coefficient, 𝛽𝛽, was a vector with 𝑢𝑢 + 1 

entries (but only 𝑢𝑢 − 1 df were spent). The symbol I, is the information function, where 

I(𝑍𝑍) ≡  𝐼𝐼𝑍𝑍𝑖𝑖 = �1, if 𝑍𝑍 = Level 𝑖𝑖 
0, Otherwise       , 𝑖𝑖 = 1, … ,ℎ − 1 and ℎ is the total number of categories 

for the nominal factor 𝑍𝑍 (categorical factor with 3 or more category levels). 

Race had 4 categories: 3 dummy variables were created corresponding to the relative 

difference compared to the reference level, therefore the coefficient, 𝛽𝛽6, should have 3 
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entries corresponding to the 3 dummy variables. For Sex and Treatment, only 2 

categories were observed for either variables, no dummy variables were needed, and the 

coefficient, 𝛽𝛽4 and 𝛽𝛽5, should be scalar corresponding to the relative difference between 

the two categories; yet in the formula, the regression coefficients were presented using 

vector forms, with only 1 entry. 

Another tentative model with respect to fractional polynomial should include the 

same factors as the model with RCS transformation, except that the covariate terms 

included the nonlinear form of continuous factors as identified from Table 5, the original 

categorical factors as well as all possible interactions as previously discussed. The 

tentative model is shown below.  

 λ(t|X) = α1T × Age + α2T × MAP + α3T × [BMI3 + BMI3 log(BMI)] + α4T ×
Treatment + α5T × Sex + β6T × Race + α7T × MAP: Treatment +
α8T × MAP: Sex + α9T × [BMI3 + BMI3 log(BMI)]: Race + α10T ×
Treatment: Race + α11T × Sex: Race 

 ...............  Eq. 57 

 

where coefficients are represented using 𝛼𝛼𝑖𝑖, where 𝑖𝑖 = 1 … 11, just to be differentiated 

from the Cox model with RCS transformations.  

Proportionality assumption for each predictor was examined using the Cox model 

with RCS transformation as presented in Eq. 56; the Scaled Schoenfeld residual plots are 

presented in Figure 15 and the results of the Wald tests for proportionality assumptions 

are presented in Table 10. Figure 15 displays the first 200 scaled Schoenfeld residuals 

along with the fitted least square lines (in orange), a reference line at Beta(t)=0, smoothed 

spline curves (in black); the number of 200 was chosen so that the smoothed spline 

curves were representative of the survival data, but the individual residuals should not 

hide the pattern of the spline curves. None of the predictors showed substantial evidence 

for non-proportionality, which was confirmed by the 𝜒𝜒2 tests presented in Table 10. The 

table presents the Pearson product-moment correlation between the scaled Schoenfeld 

residuals and time for each covariate, the 𝜒𝜒2 statistics for the proportionality test for each 

predictor, and the corresponding P-values. Based on the results from the table, there was 

not enough evidence to suggest violation of the proportionality assumption. Therefore, 

time-dependency was not considered for the Cox model with RCS transformations after 

the time-varying treatment effect was adjusted with the AG extension. 

  89 



 

  

Figure 15. Scaled Schoenfeld Residual 
Plot for Each Covariate Based on the Cox 

Model with RCS Transformation – 
Simulation Study 

Figure 16. Scaled Schoenfeld Residual 
Plot for Each Covariate Based on the 

Cox PH Model with FP Transformation 
– Simulation Study 

For FP transformation, a tentative Cox PH model was attempted including factors 

with suggested fractional polynomial transformations (see Table 5 for details) as well 

potential interactions as previously identified. Figure 16 shows the plot of the Scaled 

Schoenfeld residuals for each covariate for the Cox model with FP transformation. 

Table 10. Proportionality Test on Each of the Predictor in the Cox PH model with 
RCS Transformation – Simulation Study 

Factors 𝝆𝝆 𝝌𝝌𝟐𝟐 P 
Age -0.0112 0.16 0.687 
MAP -0.0012 0.00 0.963 
BMI 0.0010 0.00 0.971 
Treatment -0.0363 1.85 0.174 
Sex -0.0190 0.57 0.448 
Race -0.0191 0.50 0.480 
BMI:Race -0.0206 0.58 0.446 
Treatment:Race 0.0032 0.01 0.906 
Sex:Race 0.0094 0.12 0.726 
MAP:Treatment -0.0328 1.51 0.220 
MAP:Sex -0.0194 0.60 0.438 
GLOBAL NA 9.35 0.589 

 

Table 11 presents the correlation coefficient of the scaled Schoenfeld residual with 

time for each covariate; a significant nonzero correlation coefficient is a strong evidence 
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for non-proportionality. It can be seen from Table 11, Treatment showed boundary 

significance against proportionality assumption (p-value =0.088); in Figure 16, the 

lowess curve of the scaled Schoenfeld residual for Treatment was declining at the tail, 

which indicated that the time-dependency for treatment effect was not completely 

resolved. Other than Treatment, none of the other predictors showed any evidence against 

proportionality assumption. The cause for this non-proportionality was possibly due to 

inclusion of the nonlinear functional forms of BMI; although the non-proportionality was 

only boundary significant, still it had to be addressed just to be conservative.  

For the above reason, a time-dependent interaction terms should be further attempted 

following extension 2 for the Cox model with FP transformations after adjustment of 

time-varying treatment effect (extension 1 as described in section 3.8.5); the interaction 

term was constructed between Treatment and the corresponding treatment duration, 

which was further added to the covariates for the Cox model as formulated in Eq. 57. The 

Treatment Duration was transformed as: 

Duration. TF = �
Duration,                   if Duration ≤ 2 Yrs
exp(−Duration2) , if Duration > 2 Yrs. 

Table 11. Proportionality Test on Each of the Covariate for the Cox model with FP 
Transformation – Simulation Study 

 
𝝆𝝆 𝝌𝝌𝟐𝟐 𝑷𝑷 

Age -0.0114 0.19 0.666 
MAP 0.0273 1.04 0.308 
Treatment -0.0448 2.92 0.088 
Sex 0.0406 2.34 0.126 
Race -0.0238 0.77 0.379 
BMI3 0.0081 0.10 0.758 
BMI3log(BMI) 0.0077 0.08 0.771 
Sex:Race -0.0004 0.00 0.988 
BMI3:Race -0.0255 0.90 0.344 
BMI3log(BMI):Race -0.0247 0.84 0.360 
MAP:Treatment -0.0416 2.51 0.113 
MAP:Sex 0.0413 2.42 0.119 
GLOBAL NA 14.00 0.302 

 

Proportionality assumptions were tested again for the Cox model with FP 

transformation including the interaction between Treatment and Duration.TF (extension 

option 2) with adjustment of the time varying Treatment effect (extension option 1); the 
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scaled Schoenfeld residual plots for all covariates are presented in Figure 17. 

 
Figure 17. Scaled Schoenfeld Residual Plot for Each Covariate for the Cox Model 

with FP Transformation including the Interaction between Treatment and 
Transformed Treatment Duration – Simulation Study 

 

Table 12. Proportionality Test on Each of the Predictor in the Cox PH model with 
FP Transformation (Including Interaction between Treatment and Transformed 

Treatment Duration) – Simulation Study 

 
𝝆𝝆 𝝌𝝌𝟐𝟐 P 

Age -0.0287 1.19 0.274 
MAP 0.0366 1.89 0.169 
Treatment -0.0378 2.05 0.152 
Sex 0.0380 2.03 0.154 
Race 0.0007 0.00 0.979 
BMI3 0.0134 0.26 0.608 
BMI3log(BMI) 0.0146 0.31 0.577 
Sex:Race -0.0028 0.01 0.917 
BMI3 :Race -0.0096 0.13 0.718 
BMI3log(BMI):Race -0.0128 0.23 0.632 
MAP:Treatment -0.0348 1.74 0.187 
MAP:Sex 0.0394 2.19 0.139 
Treatment:Duration.TF* -0.0545 2.47 0.116 
GLOBAL NA 13.90 0.378 

 

* Duration. TF = �
Duration,                   if Duration ≤ 2 Yrs
exp(−Duration2) , if Duration > 2 Yrs. 

The proportionality tests of all covariates, including the time-dependent interaction 

between treatment and treatment duration for the Cox model with FP transformation are 
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presented Table 12. It can be seen from the table that the non-proportionality was 

resolved (p-value=0.152), but comparing with Figure 17, the pattern of the residual for 

the time-dependent treatment effect (the interaction between treatment and transformed 

treatment duration) was still prominent within the first 2 years. However, looking at the 

entire study period, the severity of non-proportionality had been alleviated to a 

reasonable level so that the Cox model with FP transformation could be implemented 

with adjustment of the time varying treatment effect as well as the time-dependent effect 

in terms of the interaction between the treatment and the transformed duration. 

4.1.2.3 Analysis (Model Selection) 

So far data from the simulation study was ready for analysis; factors were properly 

reduced and clustered, model assumptions were carefully checked, appropriate functional 

forms and interactions between factors were identified. Next, different survival models 

could be attempted. 

4.1.2.3.1 Conventional Cox Regression 

The Cox linear model was carried out including the linear form of all factors in their 

original scale and the 2nd order interactions as identified in section 4.1.2.2.4.1; this model 

was considered as a reference for comparison with all other models. The multiple 

observations due to Treatment switching were adjusted using Andersen-Gill (AG) 

extension (extension 1 from Section 3.8.5 adjusting the time-varying treatment effect). 

The formula for the initial Cox PH model is shown below; all interactions identified in 

section 4.1.2.2.4 were included in the model.  

Prob{𝑇𝑇 ≥ 𝑡𝑡} = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑋𝑋𝑋𝑋 ,   where 𝑋𝑋�̂�𝛽 = 

Age +  BMI +  MAP +  Treatment +  Sex + Race + Treatment: Race
+ MAP: Treatment +  Sex: Race +  MAP: Sex + BMI: Race  

Models were selected using backward step-down procedure with AIC as the selection 

rule. Intentionally, AIC ≥1e-10 was preset so that all factors could be deleted eventually 

and AIC for all models were traced. Table 13 presents the summary of all deleted factors 

in the order of deletion from the Cox PH linear model; the first column showed the names 

of the covariates deleted; the order of the covariate names in the column was the same as 

it was deleted from the model; for the full model with all factors in linear forms, the total 
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df was 19, the sum of the dfs from all deleted factors.  

Table 13. Summary of Linear Factors Deleted from Cox Linear Model with 
Backward Selection Using AIC as the Selection Rule – Simulation Study 

Deleted 𝝌𝝌𝟐𝟐 df P Residual AIC 
Race 1.12 3 0.7712 1.12 -4.88 
Treatment:Race 3.86 6 0.2767 4.99 -7.01 
Sex 0.12 7 0.7268 5.11 -8.89 
MAP:Sex 1.21 8 0.2719 6.32 -9.68 
Treatment 3.04 9 0.0813 9.35 -8.65 
Age 3.69 10 0.0547 13.05 6.95 
BMI 4.29 11 0.0383 17.34 4.66 
BMI:Race 28.14 14 <.0001 45.47 17.47 
Sex:Race 29.08 17 <.0001 74.55 40.55 
MAP 58.23 18 <.0001 132.78 96.78 
MAP:Treatment 56.25 19 <.0001 189.03 151.03 

 

Figure 18 displays the Model AIC vs. the degree of freedom; each deleted factor was 

labelled on the X-axis.  

  

Figure 18. Model AIC vs. df of Cox Linear 
Model After Backward Selection  – 

Simulation Study 

Figure 19. Hazard Ratio Obtained from 
the Selected Cox Linear Model – 

Simulation Study 

Comparing the table with the figure, a good choice was to retain MAP:Treatment, 

MAP, Sex:Race BMI:Race, Treatment, Sex, Race, BMI and Age. As a general rule, if an 

interaction was retained in the model, both factors involved in the interaction should be 
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retained in the model; as an example, including Treatment did make slight deterioration 

to the model (increase in AIC), still it should be included in the final model since it 

interacted with MAP and the interaction between MAP and Treatment was retained in the 

model. According to the deletion rule mentioned in section 3.11 (the minimum number of 

deletions to achieve the maximum improvement in performance), both MAP and 

Treatment should be retained in the model; for the same reason, Sex, Race and BMI 

should also be included in the model. Additionally, the factor, Age, was also included in 

the model due to the boundary p-value. As such, only covariates (Treatment:Race, 

MAP:Sex) should be removed. After further looking at the final model, the interaction 

terms BMI:Race and Sex:Race were removed due to high p-values and the covariate term 

BMI was also removed for the same reason. 

Table 14. Regression Coefficients of the Selected Cox Linear Model from Backward 
Step-Down Selection – Simulation Study 

 Coef SE Z Pr(>|Z|) 
Age 0.004 0.0023 1.86 0.0628 
{Male} -0.301 0.0557 -5.41 <.0001 
Race  {Black} 0.328 0.1275 2.57 0.0102 
 {Hispanic} 0.029 0.1312 0.22 0.8241 
 {White} 0.017 0.1202 0.14 0.8894 
MAP 0.046 0.0074 6.18 <.0001 
{Active Treatment} 1.429 0.8407 1.70 0.0892 
MAP:{Active Treatment} -0.022 0.0096 -2.25 0.0242 

 

At last, the regression coefficients from the Cox linear model with the selected 

factors, the standard errors of the coefficients and the corresponding P-values were 

estimated from the reduced model; results are presented in Table 14. It has to be cautious 

when interpreting the factors involved in the interaction terms, because the effect of 

individual factors could not be properly interpreted without accounting for the 

interactions. For example, Active Treatment had a regression coefficient of 1.429, but 

since it was involved in the interaction with MAP, the coefficient of Treatment was only 

referred to as the log hazard of Active Treatment vs. Placebo given MAP=0. Therefore 

for better interpretation, the log hazard and hazard ratios were estimated with each 

continuous factors fixed at the median and categorical factors fixed at the lowest 

alphabetic level; results are presented in Table 15. Please note that the estimated hazard 

ratio of Male vs. Female was -0.298 (Table 15), which was slightly different from the 
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coefficients (-0.301) for Male relative to female as presented in Table 14; this was 

possible due to rounding errors. Additionally, for continuous factors, the inter-quartile 

hazard ratios and the corresponding 95% CI are 9 presented in Table 15 and the forest 

plots of the estimated hazard ratios corresponding to the regression coefficients obtained 

from the selected Cox linear model are displayed in Figure 19. 

For continuous factor, the low and high columns corresponds to the lowest and 

highest values for the factor; the difference is the difference between the highest and 

lowest values for the factor; the effect, is the log hazard/hazard ratios corresponding to 

unit change in the factor; SE is the standard error of the log hazard corresponding to the 

unit change in the factor; lower and upper 95% CI are the corresponding lower and upper 

bounds of the 95% CIs. The hazard ratio was obtained by taking the exponential of the 

regression coefficients, so were the lower and upper bound of the 95% CIs. For 

categorical variables, the effect is the log relative hazard (or hazard ratios) between the 

category levels. In this table, the interaction effects are not presented separately from the 

individual factors, instead they are summarized by different levels of the factors involved 

in the interactions: using Treatment as an example, interaction existed between MAP and 

Treatment (see Table 14); the hazard ratio between Active Treatment and Placebo was 

calculated based on the median MAP.  

Table 15. Regression Coefficients and the Corresponding Hazard Ratio Estimates 
from the Selected Cox Linear Model after Backward Selection – Simulation Study 

 
Low High Diff. Effect 

SE of 
Effect 

Lower  
95% CI 

Upper  
95% CI 

Age 42.67 57.96 15.29 0.067 0.0357 -0.0034 0.1365 
  Hazard Ratio 42.67 57.96 15.29 1.069  0.9966 1.1463 
MAP 82.85 90.69 7.84 0.388 0.0743 0.2427 0.5341 
  Hazard Ratio 82.85 90.69 7.84 1.475  1.2747 1.7060 
Sex - Male:Female 1 2  -0.298 0.0559 -0.4081 -0.1889 
  Hazard Ratio 1 2  0.742  0.6649 0.8278 
Race - Black:Asian 1 2  0.330 0.1276 0.0801 0.5801 
  Hazard Ratio 1 2  1.391  1.0834 1.7863 
Race - Hispanic:Asian 1 3  0.035 0.1315 -0.2228 0.2926 
  Hazard Ratio 1 3  1.036  0.8003 1.3400 
Race - White:Asian 1 4  0.020 0.1204 -0.2157 0.2561 
  Hazard Ratio 1 4  1.020  0.8060 1.2919 
Treatment - Active:Placebo 1 2  -0.452 0.0572 -0.5645 -0.3403 
  Hazard Ratio 1 2  0.636 

 
0.5686 0.7116 
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After the model was selected, the model was cross validated using 10-fold cross 

validation (CV) as described in section 3.9; the performance statistics obtained from the 

10-fold leave-one-out cross validation are presented in Table 16. Index.Orig was 

referring to the performance statistics estimated from the entire training set; training was 

referring to the statistics estimated from the 9-fold of the bootstrapped dataset within the 

CV step, and test was referring to the 1-fold sample that were left out from each iteration 

of CV; optimism was the difference in the performance statistics between the training and 

testing within the CV step. Index.corrected was the value obtained by subtracting the 

optimism from Index.Orig. A positive optimism indicates overfit and a negative 

optimism indicates underfit. The statistics presented in the table do not suggest underfit 

or overfit; the selected model was the best fit for the data for Cox PH linear model.  

Table 16. CV Performance of the Selected Cox Linear Model from the Backward 
Selection – Simulation Study 

 
Index.Orig Training Test Optimism Index.Corrected 

Dxy -0.1979 -0.1987 -0.1874 -0.0113 -0.1866 
R2 0.0927 0.0933 0.0878 0.0055 0.0872 
Slope 1.0000 1.0000 0.9671 0.0329 0.9671 
D 0.0091 0.0093 0.0125 -0.0032 0.0123 
U -0.0001 -0.0001 0.0010 -0.0011 0.0010 
Q 0.0092 0.0094 0.0115 -0.0021 0.0113 
g 0.4266 0.4282 0.4113 0.0169 0.4097 

 

After the Cox linear model was trained and cross validated, it was fit to the test set for 

evaluation the prediction performance, in terms of time-dependent prediction errors and 

time-dependent AUCs; results are summarized in Table 17. The prediction errors were 

calculated using the sum of the squared difference between the predicted survival 

probability and the actual survival status of each subject at the corresponding time point; 

smaller prediction error suggested better predictions. The AUC was the area under the 

ROC curve; a value of 0.5 corresponded to the probability of a random guess and a value 

of 1 corresponded to 100% accuracy (100% sensitivity and specificity); a value of 65% is 

meaningful, value of 70% suggests a good fit and a value of 75% indicates excellent 

prediction. The plots of the prediction errors and time-dependent AUCs as well as the 

corresponding 95% PCIs are presented and Figure 20. 
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Table 17. Prediction Performance of the Cox Linear Model – Simulation Study Test 
Set 

Yrs Prediction Error (95% PCI) AUC (95% PCI) 
1 0.1118 (0.0933, 0.1329) 0.6832 (0.6194, 0.7463) 
2 0.1674 (0.1494, 0.1849) 0.6438 (0.5968, 0.6923) 
3 0.2021 (0.1872, 0.2163) 0.6316 (0.5896, 0.6749) 
4 0.2177 (0.2065, 0.2276) 0.6307 (0.5957, 0.6707) 
5 0.2324 (0.2224, 0.2421) 0.6218 (0.5868, 0.6587) 
6 0.2350 (0.2236, 0.2471) 0.6207 (0.5889, 0.6543) 
7 0.2330 (0.2190, 0.2476) 0.6190 (0.5887, 0.6530) 
8 0.2290 (0.2120, 0.2466) 0.6176 (0.5883, 0.6489) 
9 0.2214 (0.2013, 0.2433) 0.6171 (0.5878, 0.6484) 
10 0.2096 (0.1835, 0.2325) 0.6173 (0.5877, 0.6477) 
11 0.2006 (0.1723, 0.2278) 0.6172 (0.5881, 0.6485) 
12 0.1921 (0.1610, 0.2217) 0.6178 (0.5888, 0.6482) 
13 0.1877 (0.1521, 0.2223) 0.6167 (0.5878, 0.6471) 
14 0.1793 (0.1405, 0.2169) 0.6163 (0.5877, 0.6467) 

 

 

 

Figure 20. Prediction Performance of the Selected Cox Linear Model – Simulation 
Study Test Set 

With the selected model, the survival probability for future events and median 

survival time were predicted. The nomogram, a simple way to display the predictions for 

an average subject, was shown in Figure 21. For any given subject, there was a point 

corresponding to each of the factors, then the projection of the sum of the Points from all 

factors to the line of total points, can be used to obtain the predicted log hazard (𝑋𝑋�̂�𝛽); the 

projection of the sum of the Points of all factors to the lines of the 1-year, 3-year, 5-year 
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and 10-year survival probability or the median survival time to estimate the 

corresponding 1, 3, 5 and 10 year survival probability or median survival time.  

At last, the log-hazard (the regression coefficients) and the survival probability vs. 

each continuous factor stratified by Sex and Treatment, the predicted survival probability 

stratified by each categorical factor, and the median survival time for each continuous 

factor and the corresponding 95% CI are displayed in Figure 22. Additional to the log 

hazard (regression coefficients), the relative hazards (or the hazard ratios) for each 

predictor could be derived easily from the log hazard; it was just the exponential of the 

log-hazard; which are not presented in this paper, just to save some space. 

 
Figure 21. Nomogram of Survival Probability and Median Survival Time Based on 

the Selected Cox PH linear model – Simulation Study 
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Figure 22. Plots of Log Hazard, Survival Probability and Median Survival Times 
based on the Selected Cox Linear Model – Simulation Study 

4.1.2.3.2 Multivariate Cox Regression Models 

4.1.2.3.2.1 Multivariate Cox Regression with RCS Transformation 

The initial Cox model with RCS transformation was built with the RCS 

transformation of all continuous factors, the original categorical factors and all potential 

interaction terms as identified in section 4.1.2.2.4.1; multiple observations per subject 

with time-varying treatment effect were adjusted using AG counting process extension 

(extension option 1 from section 3.8.5). The initial model is presented below.  
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 Prob{𝑇𝑇 ≥ 𝑡𝑡} = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑋𝑋𝑋𝑋 , where 𝑋𝑋�̂�𝛽 = 

 
Similar to what was done for Cox PH linear model, the above model was backward 

selected following a step-down procedure using AIC as the selection rule; again 

AIC>=1e-10 was preset to ensure all terms to be deleted. The summary of all deleted 

covariates from the multivariate Cox Regression model with RCS transformations are 

presented in Table 18.  

Table 18. Summary of Backward Selection for Cox Model with RCS Transformed 
Factors – Simulation Study 

Deleted 𝝌𝝌𝟐𝟐 df P Residual AIC 
BMI:Race 8.61 6 0.1969 8.61 -3.39 
Treatment:Race 2.33 3 0.5060 10.94 -7.06 
MAP:Treatment 5.26 4 0.2616 16.2 -9.8 
Sex:Race 5.33 3 0.1493 21.53 -10.47 
Age 2.94 2 0.2294 24.47 -11.53 
Sex 2.71 1 0.0995 27.19 10.81 
BMI 6.77 2 0.0339 33.96 8.04 
MAP 22.75 4 0.0001 56.71 6.71 
Race 24.67 3 0.0000 81.38 25.38 
Treatment 69.41 1 0.0000 150.79 92.79 
MAP:Sex 79.43 4 0.0000 230.22 164.22 

 

The plot of AIC of the remaining model vs. the degree of freedom after each deletion 

for Cox model with RCS Transformations are displayed in Figure 23; each deleted factor 

was labelled on the X-axis. 
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Figure 23. Model AIC vs. df after Each 
Backward Deletion for Cox Model with 

RCS Transformations– Simulation Study 

Figure 24. Hazard Ratios Estimated from 
the Selected Cox Model with RCS 

Transformations – Simulation Study 

The reduced Cox model with RCS transformation as selected from the backward step 

down procedure is summarized in Table 19; the formulation of the reduced model is: 

Prob{𝑇𝑇 ≥ 𝑡𝑡} = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑋𝑋𝑋𝑋 , where 𝑋𝑋�̂�𝛽 = 

 
 

 Table 19. Regression Coefficients of the Selected Cox Model with RCS 
Transformations from Backward Step-Down Selection – Simulation Study 

 Coef S.E. Z P(>|Z|) 
Sex=Male 6.243 3.8531 1.62 0.1052 
Race=Black 0.326 0.1293 2.52 0.0116 
Race=Hispanic 0.045 0.1328 0.34 0.7326 
Race=White 0.028 0.1214 0.23 0.8169 
Treatment=Active -0.475 0.0574 -8.28 <.0001 
BMI 0.026 0.0151 1.73 0.0844 
BMI' -0.043 0.0177 -2.43 0.0149 
MAP 0.063 0.0417 1.50 0.1337 
MAP' -0.140 0.1816 -0.77 0.4403 
MAP'' 0.990 1.0592 0.93 0.3498 
MAP''' -1.824 1.7453 -1.05 0.2960 
Sex=Male : MAP -0.084 0.0487 -1.72 0.0859 
Sex=Male : MAP' 0.544 0.2209 2.46 0.0137 
Sex=Male : MAP'' -4.148 1.3237 -3.13 0.0017 
Sex=Male : MAP''' 7.952 2.2253 3.57 0.0004 
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The summary of the coefficients (/or log hazards) and the corresponding hazard ratios 

for all covariates estimated from the Cox model with RCS transformations after backward 

step-down selection is presented in Table 20. The forest plot of the hazard ratio 

corresponding to each of the factor is displayed in Figure 24; the hazard ratio for each 

factor was estimated using the above model with all other factors fixed.  

Table 20. Coefficients and Hazard Ratios of All Covariates from the Selected Cox 
Model with RCS Transformations After Backward Selection – Simulation Study 

 
Low High Diff. Effect 

SE 
(Effect) 

Lower 
0.95 

Upper 
0.95 

BMI 25.95 31.48 5.52 -0.0359 0.0381 -0.1106 0.0387 
  Hazard Ratio 25.95 31.48 5.52 0.9647  0.8953 1.0395 
MAP 82.85 90.69 7.84 0.3373 0.1183 0.1054 0.5692 
  Hazard Ratio 82.85 90.69 7.84 1.4012  1.1112 1.7669 
Sex - Male:Female 1 2  -0.0460 0.1103 -0.2621 0.1701 
  Hazard Ratio 1 2  0.9550  0.7694 1.1854 
Race - Black:Asian 1 2  0.3262 0.1293 0.0728 0.5797 
  Hazard Ratio 1 2  1.3857  1.0755 1.7854 
Race - Hispanic:Asian 1 3  0.0454 0.1328 -0.2148 0.3056 
  Hazard Ratio 1 3  1.0464  0.8067 1.3574 
Race - White:Asian 1 4  0.0281 0.1214 -0.2098 0.2661 
  Hazard Ratio 1 4  1.0285  0.8107 1.3048 
Active:Placebo 1 2  -0.4754 0.0574 -0.5879 -0.3629 
  Hazard Ratio 1 2  0.6216 

 
0.5555 0.6956 

The performance statistics obtained from 10-fold CV are presented in Table 21. 

Again, there was no indication of overfit or underfit for this model. 

Table 21. Model Performance of the Selected Cox Model with RCS Transformation 
– Simulation Study 

 
index.orig training test optimism index.corrected 

Dxy -0.2101 -0.2111 -0.1951 -0.0160 -0.1941 
R2 0.1063 0.1073 0.0968 0.0105 0.0959 
Slope 1.0000 1.0000 0.9373 0.0627 0.9373 
D 0.0105 0.0108 0.0140 -0.0033 0.0138 
U -0.0001 -0.0001 0.0009 -0.0011 0.0009 
Q 0.0106 0.0109 0.0131 -0.0022 0.0128 
g 0.4593 0.4617 0.4313 0.0304 0.4288 

 

The prediction performance of the selected Cox model with RCS transformations was 

evaluated based on the test set; the prediction errors, the time-dependent AUC and the 
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corresponding 95% PCIs are summarized in Table 22; the corresponding plots are 

displayed in Figure 25. 

Table 22. Prediction Performance of the Selected  Cox PH model with RCS 
Transformations – Simulation Study Test Set 

Yrs Prediction Error (95% PCI) AUC (95% PCI) 
1 0.1108 (0.0905, 0.1315) 0.6647 (0.6005, 0.7244) 
2 0.1690 (0.1511, 0.1859) 0.6266 (0.5776, 0.6763) 
3 0.2047 (0.1907, 0.2187) 0.6166 (0.5751, 0.6584) 
4 0.2210 (0.2103, 0.2328) 0.6177 (0.5783, 0.6554) 
5 0.2370 (0.2253, 0.2484) 0.6081 (0.5715, 0.6438) 
6 0.2386 (0.2250, 0.2510) 0.6090 (0.5744, 0.6456) 
7 0.2375 (0.2218, 0.2534) 0.6083 (0.5754, 0.6417) 
8 0.2339 (0.2147, 0.2522) 0.6062 (0.5743, 0.6380) 
9 0.2269 (0.2045, 0.2493) 0.6054 (0.5738, 0.6368) 

10 0.2143 (0.1897, 0.2391) 0.6048 (0.5743, 0.6354) 
11 0.2047 (0.1770, 0.2335) 0.6047 (0.5743, 0.6349) 
12 0.1962 (0.1678, 0.2277) 0.6054 (0.5748, 0.6353) 
13 0.1913 (0.1597, 0.2247) 0.6047 (0.5748, 0.6348) 
14 0.1823 (0.1473, 0.2193) 0.6046 (0.5746, 0.6344) 

 

 

 
Figure 25. Prediction Errors and Time-Dependent AUCs of the Selected Cox PH 

Model with RCS Transformations vs. Time – Simulation Study Test Set 

With the cross validated model, the log-hazards, the predicted survival probability 

stratified by each of the categorical factors and the predicted median survival time can be 

obtained, the corresponding plots are displayed in Figure 26. 
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Figure 26. Predicted Log Hazard, Survival Probability and Median Survival Time 
based on the Selected Cox PH Model with RCS Transformations – Simulation Study 

The nomogram of the predicted survival probability and median survival time using 

the selected Cox PH model with RCS transformation is displayed in Figure 27.  

4.1.2.3.2.2 Multivariate Cox Regression Model with FP Transformation 

The Cox model with FP transformation was initially attempted including the FP 

forms of continuous factors (see Table 5), interactions terms and time-dependent 

treatment effect as identified in section 4.1.2.2.4.1; multiple observations per subject due 

to time-varying treatment effect were adjusted using AG extension (extension option 1 

from section 3.8.5). 
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Figure 27. Nomogram of Predicted Survival Probability and Median Survival Time 

on Test Set with Regression coefficients Estimated from the Selected Cox Model 
with RCS Transformed Factors – Simulation Study 

The formulation of the initial model is presented below. 

Prob{𝑇𝑇 ≥ 𝑡𝑡} = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑋𝑋𝑋𝑋 , where 𝑋𝑋�̂�𝛽 = 
 −4.2418 +  0.0049 Age + 0.0445 MAP − 0.9044 {Treatment} + 0.6893 {Male} −
0.1344 {Black} − 0.5685 {Hispanic} + 0.3059 {White} + 0.1147 BMI3 −
0.0890BMI3 log(BMI) + Treatment × �ifelse �Duration ≤ 2, Duration, e−Duration2�� +
Male × [−0.3799 {Black} + 0.0098 {HIspanic} − 0.0770 {White}]− 0.0168 MAP ×
{Treatment} + BMI3 × [0.00561 {Black} + 0.0828 {Hispanic} − 0.0773 {White}] +
BMI3 log(BMI) × [−0.0301 {Black} + 0.2885 {Hispanic} + 0.0897 {White}]  −
0.0098 MAP × Male 

Again, the initial model was selected following a backward step-down procedure 

based on AIC; to ensure all terms to be deleted, the selection criterion was preset to AIC 
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≥ 1e-10. The summary of the backward selection process is presented in Table 23. 

Table 23. Backward Step-Down Selection of the Cox Model with FP 
Transformations – Simulation Study 

Deleted Chi-Sq df P Residual AIC 
Treatment:Race 0.83 3 0.8419 0.83 -5.17 
Race 1.8 3 0.6144 2.63 -9.37 
Race:BMI3log(BMI) 2.45 3 0.4841 5.09 -12.91 
Sex∶ Race 4.93 3 0.1772 10.01 -13.99 
Sex 0.78 1 0.3779 10.79 -15.21 
Treatment 1.26 1 0.2619 12.05 -15.95 
BMI3 4.14 1 0.0419 16.19 -13.81 
BMI3log(BMI) 2.01 1 0.1563 18.20 -13.8 
Age 4.92 1 0.0265 23.12 -10.88 
Race:BMI3 11.88 3 0.0078 35.00 -5 
MAP∶Sex 26.24 1 <.0001 61.24 19.24 
MAP 48.66 1 <.0001 109.90 65.9 
MAP∶Treatment 66.49 1 <.0001 176.39 130.39 
Treatment:Duration.TF* 607.54 1 <.0001 783.93 735.93 

 

Duration. TF*  = �
Duration,                  if Duration ≤ 2 Yrs
exp(−Duration2) , if Duration > 2 Yrs 

Figure 28 displays the plot of the model AIC vs. the remaining df after each deletion 

of the covariates for Cox model with FP transformations. Apparently, MAP, MAP:Sex, 

MAP:Treatment and the time-dependent treatment effect (Treatment:Duration.TF) should 

remain in the reduced model. Other than the above factors, the individual factors 

involved in the interactions as selected by the procedure such as Treatment and Sex 

should remain in the reduced model; the other terms such as Age, Race:[BMI3 +

BMI3log(BMI)] and  [BMI3 + BMI3log(BMI)] were also included in the initial Cox 

model due to significant p-values. The model was then fitted to the training set again; it 

was noticed that the term Race: [BMI3 + BMI3log(BMI)] was not needed due to 

extremely large p-value. Thus the final model should include Age, MAP, BMI3, 

BMI3log(BMI), Sex, Treatment, MAP:Sex, MAP:Treatment, Race and the time-

dependent effect as expressed using the interaction terms of Treatment:Duration.TF 

(transformed Treatment Duration). 

The coefficients of all terms for the selected Cox model with FP transformation are 

summarized in Table 24; only log hazards (regression coefficients from the Cox model) 
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were estimated instead of the hazard ratios, which could be easily derived by taking the 

exponential of the log hazard. Figure 29 displays the forest plot of the hazard ratio 

corresponding to each term in the selected Cox model with FP transformation. 

  

Figure 28. AIC vs. df of Backward 
Selection for Cox Model with FP 

Transformations – Simulation Study 

Figure 29. Hazard Ratios from the 
Selected Cox Model with FP 

Transformations – Simulation Study 
 

Table 24. Summary of Regression Coefficients of the Selected Cox Model with FP 
Transformations – Simulation Study 

 
Coef S.E. Z P(>|Z|) 

Age 0.005 0.0023 2.05 0.0401 
MAP 0.046 0.0096 4.81 0.0000 
Treatment=Active 0.834 0.8406 0.99 0.3211 
Sex=Male 0.775 0.8537 0.91 0.3640 
Race=Black 0.252 0.1281 1.96 0.0496 
Race=Hispanic 0.091 0.1317 0.69 0.4877 
Race=White 0.037 0.1205 0.30 0.7614 
BMI3 0.000 0.0001 2.18 0.0296 
BMI3log(BMI) 0.000 0.0000 -2.20 0.0281 
MAP:{Treatment} -0.015 0.0096 -1.59 0.1120 
MAP:Sex=Male -0.012 0.0098 -1.24 0.2144 
Duration.TF*:{Placebo} 1.508 0.0704 21.42 <.0001 
Duration.TF*:{Treatment} 1.215 0.0726 16.73 <.0001 

 

*  Duration. TF = �
Duration,                   if Duration ≤ 2 Yrs
exp(−Duration2) , if Duration > 2 Yrs 

Previously in Figure 19 and Figure 24, the inter-quartile hazard ratios and the 
corresponding 95% CIs were presented for continuous covariates; but here in Figure 29, the 
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hazard ratio corresponding to unit increase of each continuous factors is presented. The standard 

errors of the hazard ratios for Treatment and Sex were much larger than the rest of the terms such 

that the 95% CI of the hazard ratios for the rest of the terms could hardly be seen from the graph; 

hence the hazard ratios for unit increase were used instead. 

The formula of the selected Cox model with FP transformation after backward step-

down selection is presented below: 

Prob{𝑇𝑇 ≥ 𝑡𝑡} = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑋𝑋𝑋𝑋 , where 𝑋𝑋�̂�𝛽 = 

−3.5631 + 0.0048 Age +  0.0462 MAP − 0.88341 {Treatment} + 0.7749 {Male} +

0.2515 {Black} + 0.0914 {Hispanic} + 0.0366 {White} +  0.0002 BMI3 −

0.0001BMI3 log(BMI) − 0.0153 MAP × {Treatment} − 0.0121 MAP × {Male} +

1.2146 Duration. TF × {Treatment} + 1.5083 Duration. TF × {Placebo}  

The performance statistics for this model was evaluated using 10-fold CV; results are 

presented in Table 25. Again, there was no indication of overfitting or underfitting.  

Table 25. Model Performance of the Selected Cox Model with FP Transformation  
– Simulation Study 

 
Index.Orig Training Test Optimism Index.Corrected 

Dxy -0.4100 -0.4106 -0.3976 -0.0130 -0.3970 
R2 0.3196 0.3199 0.3046 0.0154 0.3042 
Slope 1.0000 1.0000 0.9852 0.0148 0.9852 
D 0.0360 0.0367 0.0521 -0.0154 0.0515 
U -0.0001 -0.0001 0.0004 -0.0005 0.0004 
Q 0.0361 0.0368 0.0517 -0.0149 0.0511 
g 0.8785 0.8798 0.8648 0.0150 0.8635 

 

On the other hand, the prediction performance of this model was surprisingly better 

than the other two semi-parametric Cox regression models as discussed so far. The 

prediction errors and time-dependent AUCs of the selected Cox model with FP 

transformation were evaluated based on the test set at each time point; the 95% PCIs 

were obtained from 1000 bootstrap samples; results are summarized in Table 26. The 

plots of prediction errors time-dependent AUCs as well as the 95% PCIs are displayed in 

Figure 30.  

It can be seen that the prediction performance of the selected Cox model with FP 

transformation was much better than the Cox linear models and the Cox model with RCS 

transformation. The reason for the improvement was probably due to the addition of 
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time-dependent interaction term of Treatment:Duration.TF, after adjustment of the time-

varying treatment effect. However, this model was much more complex than the previous 

two models; it involved a time-dependent treatment interaction term, in which the 

transformation function for factor, Treatment Duration, was extremely hard to find, it had 

gone through a lot of trials-and-errors. 

Table 26. Prediction Performance of the Selected Cox Model with FP 
Transformations – Simulation Study 

Yrs Prediction Error (95% PCI) AUC (95% PCI) 
1 0.1292 (0.1075, 0.1521) 0.7548 (0.7109, 0.7933) 
2 0.1114 (0.0950, 0.1279) 0.8222 (0.7921, 0.8494) 
3 0.1495 (0.1328, 0.1651) 0.7674 (0.7392, 0.7945) 
4 0.1755 (0.1607, 0.1906) 0.7469 (0.7175, 0.7736) 
5 0.2034 (0.1888, 0.2191) 0.7246 (0.6976, 0.7480) 
6 0.2148 (0.2000, 0.2312) 0.7166 (0.6905, 0.7390) 
7 0.2202 (0.2028, 0.2388) 0.7099 (0.6859, 0.7310) 
8 0.2231 (0.2039, 0.2434) 0.7032 (0.6803, 0.7245) 
9 0.2194 (0.1987, 0.2408) 0.6994 (0.6771, 0.7201) 

10 0.2119 (0.1876, 0.2373) 0.6964 (0.6739, 0.7166) 
11 0.2047 (0.1750, 0.2318) 0.6958 (0.6734, 0.7154) 
12 0.1978 (0.1657, 0.2275) 0.6957 (0.6731, 0.7152) 
13 0.1922 (0.1560, 0.2261) 0.6948 (0.6729, 0.7142) 
14 0.1825 (0.1468, 0.2207) 0.6940 (0.6719, 0.7131) 

 

 

 

Figure 30. Time Dependent AUC vs. Time for the Selected Cox Model with FP 
Transformations – Simulation Study Test Set 
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With the selected Cox PH model with FP transformation, the log relative hazard for 

each factor, including Age, BMI, MAP and Race, was predicted with the rest of the 

factors fixed at a constant value. For interaction between continuous factor and 

categorical factor, separate curves were produced based on the levels of the categorical 

factor involved in the interaction.  

  
Figure 31. Predicted Log Hazard vs. 

Age Based on the Selected Cox Model 
with FP Transformations – Simulation 

Study 

Figure 32. Predicted Log Hazard vs. 
BMI Based on the Selected Cox Model 
with FP Transformations – Simulation 

Study 

Figure 31 presents the predicted log relative hazard against age and the corresponding 

95% CI, with the rest of the factors fixed (continuous factors were fixed at the medians, 

MAP=87.1 mmHg and BMI=28.6; categorical factors were fixed at the largest category 

level). Changes made to any of these factors should result in a different predicted value 

and further lead to a different plot of log relative hazard for Age. For the same reason, a 

different plot could be produced for different category levels of a particular categorical 

factor. However, considering Age did not interact with any other factors, a separate plot 

was not produced, since the log relative hazard curve for Age should be parallel between 

levels of another factor. Similarly, BMI was a nonlinear term, but it did not interact with 

any other factors (see Table 24 for details), a single log relative hazard against BMI is 

presented in Figure 32 as well as the 95% CI (blue shaded area). 

The log relative hazard for MAP was produced similarly; however the factor 

interacted with both Treatment and Sex; it should have different predicted log relative 

hazard for different treatment and different Sex, thus plots with stratification of 
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Treatment are presented separately for Female and Male in Figure 33. Figure 34 presents 

the log hazard for Race; the factor had 4 category levels, the log hazards for the 4 

category levels were connected, but the actual slope of the curve was not statistically 

meaningful, since Race was a nominal factor; only the relative difference between levels 

was meaningful. 

  
Figure 33. Predicted Log Hazard for 

MAP from the Selected Cox Model with 
FP Transformations – Simulation Study  

Figure 34. Predicted Log Hazard for 
Race from the Selected Cox Model with 
FP Transformations – Simulation Study 

Figure 35 presents the predicted log relative hazard for Treatment Duration stratified 

by Treatment; a quadratic pattern was apparent between 0 and 3 years. Figure 36 presents 

the predicted median survival time against Age while fixing the rest of the factors 

constant. 

  
Figure 35. Predicted Log Hazard for 

Treatment Duration from the Selected 
Cox Model with FP Transformation – 

Simulation Study  

Figure 36. Predicted Median Survival 
Time for Age from the Selected Cox 

Model with FP Transformation – 
Simulation Study  
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Figure 37 presents the predicted median survival time vs. BMI and Figure 38 presents 

the median survival time vs MAP stratified by treatment for different Sex. 

Figure 39 shows the median survival time vs. Race; again the slope or the incremental 

change had no meanings. Figure 40 displays the median survival time vs. Treatment 

Duration. 

  
Figure 39. Predicted Median Survival 
Time for Race from the Selected Cox 

Model with FP Transformation – 
Simulation Study  

Figure 40. Predicted Median Survival 
Time for Treatment Duration from the 

Selected Cox Model with FP 
Transformation– Simulation Study  

 

  
Figure 37. Predicted Median Survival 
Time for BMI from the Selected Cox 

Model with FP Transformation – 
Simulation Study  

Figure 38. Predicted Median Survival 
Time for MAP from the Selected Cox 

Model with FP Transformation– 
Simulation Study  
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Figure 41 and Figure 42 presents the predicted survival probability stratified by 

Treatment for different Sex based on the selected.  

Figure 43 and Figure 44 presents the predicted survival probability stratified by 

different Race for different Treatment. 

  
Figure 43. Predicted Survival Probability 
by Race for Active Treatment from the 

Selected Cox Model with FP 
Transformation– Simulation Study 

Figure 44. Predicted Survival by Race 
for Placebo Treated Subjects from the 

Selected Cox Model with FP 
Transformation – Simulation Study 

4.1.2.3.3 Nonparametric Random Survival Forest (RSF) 

Nonparametric, random survival forest (RSF) approaches were also introduced in 

  
Figure 41. Predicted Survival 

Probability By Treatment for Female 
Based on the Selected Cox Model with 
FP Transformation – Simulation Study 

Figure 42. Predicted Survival Probability 
By Treatment for Male Based on the 

Selected Cox Model with FP 
Transformation – Simulation Study 
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study; the approaches do not make any assumption of the survival probability or hazard 

function, therefore there is no need to worry about the actual functional forms for all 

factors, interactions or proportionality assumptions.  

Two different algorithms of RSF were intended. The log-rank based RSF, had all 

necessary tools developed for cross validation, prediction of future outcomes, but the 

performance of the approach may be affected for highly correlated survival data. 

Additionally, the log-rank based RSF model cannot account for multiple observations per 

subject. Therefore in order to implement this model, the subject who switched from 

placebo to active treatment were considered as two different subjects, one treated with 

placebo starting at day 0 and censored at the time of treatment switching and the other 

one treated with active treatment starting at the time of treatment switching until event or 

censoring; this was only reasonable if the treatment switching was independent of the 

failure event.  

A second RSF model, conditional inference (CINF) based RSF model, was also 

implemented for this study. The approach was developed based on conditional 

probability; thus it should have better performance for highly correlated data; 

additionally, the model is capable of handling multiple events or multiple observations 

per subject. However this model had just been proposed; not many features or functions 

were available; thus significant effort was spent to derive features and functions for 

evaluation of predictions and prediction performance. Additionally, a flexible function 

was also developed to retrieve conditional forest trees for predicting survival outcomes 

based on the analysis results. 

4.1.2.3.3.1 Log-rank Based Random Survival Forest (RSF) 

As mentioned earlier, log-rank based random survival forest model (LR-RSF) could 

not model multiple observations per subject due to the time-varying treatment effect; for 

this simulation study, placebo treated subjects who switched treatment were considered 

as 2 independent subjects (see section 4.1.2.1 for details), each with a different treatment 

for different durations; therefore this should be one of the disadvantages for the log-rank 

based RSF model. On the other hand, the LR-RSF is a nonparametric model and no 

model assumptions are involved, thus there is no need to check for nonlinearity or non-

proportionality, which is one of the advantages for this approach.  
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The initial fit of the log-rank based RSF model was carried out including all factors; 

the variable importance (VIMP) and Brier scores were assessed via CV; VIMP of all 

factors are summarized in Table 27. Figure 45 displays the out-of-Bag (OOB) error rate 

and the VIMP.  

Table 27. VIMP from Log-Rank Based 
RSF – Simulation Study 

Table 28. VIMP from Log-Rank Based 
RSF with SBP and DBP Removed – 

Simulation Study 
 VIMP Relative VIMP 
MAP 0.0081 1.0000 
Sex 0.0080 0.9887 
SBP 0.0078 0.9572 
DBP 0.0056 0.6907 
Race 0.0041 0.5026 
BMI 0.0021 0.2646 
Age 0.0004 0.0530 
Treatment 0.0004 0.0501 

 

 VIMP Relative VIMP 
MAP 0.0081 1.0000 
Sex 0.0080 0.9887 
Race 0.0041 0.5026 
BMI 0.0021 0.2646 
Age 0.0004 0.0530 
Treatment 0.0004 0.0501 

 

As previously mentioned in section 4.1.2.2.3, SBP, DBP and MAP were highly 

correlated, all of the three factors were equally important (as seen in Table 27 and Figure 

45). Thus, a second model was attempted with SBP and DBP excluded. Table 28 presents 

the VIMP of all factors excluding SBP and DBP. The plots of out-of-Bag (OOB) error 

rate and VIMP with SBP and DBP excluded are presented in Figure 46; significant 

change was not observed. 

  

Figure 45. CV Out-of-Bag Error Rate 
and Variable Importance (VIMP) of 
Log-Rank Based RSF – Simulation 

Study 

Figure 46. Out-of-Bag Error Rate and 
VIMP of Log-Rank Based RSF with 
SBP and DBP Removed – Simulation 

Study 
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However, to be consistent with all other survival models, the second model with SBP 

and DBP excluded was focused; with this model, pair-wise interactions were 

systematically checked via maximum subtree and variable importance (VIMP). Table 29 

presents the normalized minimum depths for each pair of factors; for the normalized 

minimum depths matrix, factors with off-diagonal entries smaller than the diagonal entry, 

were suspected to have of interactions, thus BMI and Age were suspected to interact with 

all factors;  Table 30 presents the analysis of all pair-wise interactions via variable 

importance (VIMP) in the scale of × 10-3; the columns of "Var1" and "Var2" are the 

VIMP for each pair of factors in the interaction, the column of "Paired" is the VIMP of 

the interaction terms, the column of "additive" is the sum of the VIMP from Var1 and 

Var2, and the column of "Diff" is the VIMP difference between "paired" and "additive". 

The interaction terms of MAP:BMI, MAP:Treatment, Sex:Treatment, Race:Treatment, 

and Treatment:Age seem to be important, since the absolute differences are reasonably 

large as compared to additive VIMP.  

Table 29. Pairwise Interactions via 
Maximum Subtree Analysis for Log-
Rank Based RSF – Simulation Study 

Table 30. Interactions Detection via VIMP 
(× 10−3) Analysis with Log-Rank Based 

RSF – Simulation Study  
 Treat MAP Race Sex BMI Age 

Treat 0.04 0.07 0.1 0.29 0.11 0.11 
MAP 0.57 0.05 0.1 0.32 0.09 0.09 
Race 0.63 0.07 0.09 0.33 0.09 0.08 

Sex 0.62 0.08 0.12 0.09 0.1 0.1 
BMI 0.68 0.08 0.11 0.38 0.12 0.08 
Age 0.68 0.08 0.11 0.4 0.08 0.13 

NOTE: 
1. If the values in the diagonal at [i, i] entry is 

small and the off-diagonal elements are even 
smaller than the diagonal entry, then interaction 
may be suspected. 

2. Treat: Treatment 
 

Interactions Var
 

Var2 Paired Additive Diff 
MAP:Sex 15.8 9.4 23.1 25.3 -2.1 
MAP:Race 15.8 5.9 23.1 21.8 1.3 
MAP:BMI 15.8 4.7 15.8 20.6 -4.8 
MAP:Treatt 15.8 2.2 22.5 18.1 4.4 
MAP:Age 15.8 1.2 17.8 17.0 0.8 
Sex:Race 9.0 5.9 13.9 14.9 -1.0 
Sex:BMI 9.0 4.7 12.1 13.7 -1.6 
Sex:Treat 9.0 2.2 15.7 11.2 4.4 
Sex:Age 9.0 1.2 9.8 10.2 -0.4 
Race:BMI 5.3 4.7 8.8 10.0 -1.2 
Race:Treat 5.3 2.2 11.8 7.5 4.3 
Race:Age 5.3 1.2 6.0 6.4 -0.4 
BMI:Treat 5.3 2.2 10.4 7.5 2.8 
BMI:Age 5.3 1.2 4.1 6.5 -2.3 
Age:Treat 2.6 1.2 9.4 3.8 5.6 

 

The cross validated log-rank based RSF model was then used for predictions of future 

events and assessment of prediction performance. The predicted survival probability, 

cumulative hazard and hazard function for a subset of 3 subjects are presented in Figure 

47 and the overall OOB survival probability, OOB Brier scores and mortality are 

presented in Figure 48.  
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Figure 47. CV Survival, Cumulative 

Hazard and Hazard function for Log-
Rank Based RSF (Subset of 3 Subjects) – 

Simulation Study 

Figure 48. CV Survival, OOB Brier 
Scores and Mortality for Log-Rank 

Based RSF (All Subjects) – Simulation 
Study 

The predicted mortality and predicted survival probability were obtained for the test 

set; the corresponding plots are presented in Figure 49 and Figure 50 respectively. 

  
Figure 49. Predicted Mortality vs Each 

Factor from Log-Rank Based RSF – 
Simulation Study 

Figure 50. Predicted Survival vs Each 
Factor from Log-Rank Based RSF – 

Simulation Study 

4.1.2.3.3.2 Conditional Inference (CINF) Based RSF 

Another nonparametric RSF model, conditional inference based random survival 
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forest (CINF-RSF), was also tuned with the training set via cross validation. A 

conditional inference based forest tree is presented in Figure 51; the survival plots are 

displayed in the terminal node. 

The tree response from the cross validated conditional inference based RSF model 

was then used for prediction of future events or assessment of prediction performance 

based on the test set. Figure 52 presents the predicted survival probability for the test set 

based on the cross validated CIINF-RSF model, in which the Kaplan Meier curve in light 

green is the gold reference. 

  

Figure 51. A Sample Forest Tree from 
Conditional Inference Based RSF – 

Simulation Study 

Figure 52. Prediced Survival from 
Conditional Inference Based RSF 

and Kaplan Meier Curve – 
Simulation Study 

As discussed, both RSF models (LR-RSF and CINF-RSF models) managed to pick 

up the important prognostic factors, although slight difference was observed between the 

two models; next, the performance of the two models should be obtained in terms of 

prediction errors and time-dependent AUCs.  

The prediction errors for log-rank based RSF (LR-RSF) and conditional inference 

based RSF (CINF-RSF) are summarized in Table 31; the corresponding 95 percentile 

credible intervals (PCI) were obtained with 200 bootstrap samples; unlike the other 

models, for which the 95% credible intervals were obtained from 1000 bootstrap samples, 

the two RSF models were built on bootstrap aggregation, it was very resource consuming 

to bootstrap 95% PCIs based on 1000 bootstrap sample (the process was attempted twice 

with 1000 bootstrap samples; each time, it ran out of memory after 96 hours of computer 

time); thus, 200 bootstrap samples were used instead to obtain the 95% PCIs, the 
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estimates were quite reasonable (see Table 31). For cross comparisons purpose, the 

prediction errors obtained from Cox PH linear model (as discussed in section 4.1.2.3.1) 

was used as reference. (The corresponding 95% PCIs for Cox PH linear model should 

have already been presented in Table 17, thus they are not again in Table 31.) 

Table 31. Prediction Errors for Log-Rank Based RSF, Conditional Inference Based 
RSF and Conventional Cox Linear Model – Simulation Study Test Set 

Yrs LR-RSF (95% PCI) CINF-RSF (95% PCI) CoxLin 
1 0.1109  (0.0909, 0.1325) 0.1123  (0.0929, 0.1337) 0.1118 
2 0.1671  (0.1504, 0.1919) 0.1675  (0.1541, 0.1942) 0.1674 
3 0.1986  (0.1838, 0.2176) 0.2023  (0.1912, 0.2187) 0.2021 
4 0.2181  (0.2051, 0.2330) 0.2182  (0.2128, 0.2321) 0.2177 
5 0.2425  (0.2290, 0.2549) 0.2330  (0.2298, 0.2495) 0.2324 
6 0.2463  (0.2309, 0.2611) 0.2357  (0.2264, 0.2515) 0.2350 
7 0.2490  (0.2309, 0.2654) 0.2339  (0.2242, 0.2557) 0.2330 
8 0.2425  (0.2236, 0.2613) 0.2294  (0.2196, 0.2565) 0.2290 
9 0.2302  (0.2081, 0.2527) 0.2219  (0.2068, 0.2507) 0.2214 

10 0.2157  (0.1893, 0.2428) 0.2093  (0.1908, 0.2429) 0.2096 
11 0.2021  (0.1753, 0.2303) 0.2000  (0.1778, 0.2335) 0.2006 
12 0.1925  (0.1676, 0.2200) 0.1922  (0.1674, 0.2254) 0.1921 
13 0.1853  (0.1524, 0.2134) 0.1879  (0.1590, 0.2254) 0.1877 
14 0.1722  (0.1419, 0.2046) 0.1795  (0.1504, 0.2188) 0.1793 

 

 

  
Figure 53. Prediction Errors for LR-

RSF, CINF-RSF and Cox Linear Model 
– Simulation Study Test Set  

Figure 54. Prediction AUC for LR-RSF, 
CINF-RSF and Cox Regression – 

Simulation Study Test Set 
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The plots of the prediction errors for the two RSF models and the corresponding 95% 

PCIs are displayed in Figure 53. The black solid curve over the grey shaded area refers to 

the prediction errors and the corresponding 95% PCIs for CINF- RSF; the red dashed 

curve with the light pink shaded area is the prediction errors and the corresponding 95% 

PCIs for LR-RSF; the blue dotted curves is the reference prediction errors from the Cox 

PH linear model. In terms of prediction errors, the Cox PH linear model was slightly 

better than the two RSF models overall; the two RSF models were similar to each other 

within the first 5 years and the 95% PCIs were almost overlapping for this period. From 5 

to 10 years, the log-rank based RSF model was slightly worse than the conditional 

inference based RSF model and at the tail (beyond year-10), the LR-RSF model was 

slightly better than the CINF-RSF model. Considering the nonparametric nature of the 

RSF models, the prediction errors were reasonably satisfactory. 

Table 32. Prediction AUC for Log-Rank Based RSF, CINF Based RSF and 
Conventional Cox Model – Simulation Study Test Set 

Yrs LR-RSF (95% PCI) CINF-RSF (95% PCI) CoxLin 
1 0.6523  (0.5838, 0.7181)  0.6529  (0.5887, 0.7211)  0.6832 
2 0.6379  (0.5896, 0.6865)  0.6130  (0.5626, 0.6549)  0.6438 
3 0.6447  (0.6028, 0.6857)  0.6242  (0.5845, 0.6618)  0.6316 
4 0.6359  (0.6004, 0.6727)  0.6187  (0.5870, 0.6562)  0.6307 
5 0.6115  (0.5803, 0.6485)  0.6070  (0.5763, 0.6388)  0.6218 
6 0.6067  (0.5735, 0.6416)  0.6105  (0.5815, 0.6429)  0.6207 
7 0.6019  (0.5704, 0.6358)  0.6046  (0.5764, 0.6370)  0.6190 
8 0.6017  (0.5679, 0.6326)  0.5959  (0.5687, 0.6296)  0.6176 
9 0.5984  (0.5676, 0.6314)  0.5961  (0.5695, 0.6289)  0.6171 

10 0.5933  (0.5638, 0.6258)  0.5985  (0.5721, 0.6304)  0.6173 
11 0.5973  (0.5677, 0.6306)  0.5996  (0.5719, 0.6320)  0.6172 
12 0.5912  (0.5636, 0.6265)  0.5939  (0.5666, 0.6234)  0.6178 
13 0.5824  (0.5541, 0.6137)  0.5837  (0.5580, 0.6140)  0.6167 
14 0.5714  (0.5442, 0.6026)  0.5761  (0.5529, 0.6015)  0.6163 

 

The time-dependent AUCs for the two RSF models as well as the 95% PCIs are 

presented in Table 32; the prediction AUCs from the Cox PH linear model are also 

presented as a reference (the 95% PCI for Cox PH linear model were presented in Table 

17). The AUC curves of the three models are displayed in Figure 54. The black solid 

curve is the AUCs for conditional-inference based RSF model and the grey shaded area 

covers the 95% PCIs; the red dashed curve with the light orange shaded area is the AUCs 

and the 95% PCIs for LR-RSF model; the blue dotted curves is the reference AUCs from 
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the Cox PH linear model. Again, the Cox PH linear model was still the best of all 3 

models in general and the two RSF models had the maximum difference within the first 5 

years, after which the two RSF models had similar AUCs. 

Comparing all three different models in terms of prediction performance and ease of 

use, the Cox PH linear model had the best prediction performance than the two RSF 

models. For ease of use, the two RSF models were efficient alternatives for assessing 

survival outcomes with reasonable performance; LR-RSF model is favorable if the 

covariates are not highly correlated, however the CINF-RSF model may be more 

reasonable for highly correlated data. Additionally, the two RSF models should both be 

able to deal with many more predictors than Cox PH linear model; considering the 

nonparametric nature of the two models, they were much easier to implement, since they 

had no model assumptions. However, the LR-RSF model could not accounted for 

multiple observations per subject caused by time-varying treatment effect, the multiple 

observations obtained from the same subject was considered as two independent subject, 

which was the only pitfalls for these LR-RSF model. 

4.1.2.3.4 Penalized (Lasso, Ridge and Elastic-Net) Cox Regression Models 

For penalized Cox regression models, three models were evaluated, lasso Cox 

regression, ridge Cox regression and elastic-net Cox regression. The R/glmnet package 

was implemented for assessment of the three penalized Cox regression models. 

Unfortunately, the penalized Cox regression models could not handle multiple 

observations per subject caused by time-varying treatment effect either, therefore the 

subject who switched from placebo to active treatment were considered as two 

independent subjects, one subject treated with placebo starting at day 0 and censored at 

the time of switching and another one treated with active treatment starting at the time of 

treatment switching, until the failures or censors. For this simulation study, this was 

reasonable since the treatment switching was independent of the failure event. 

In terms of the formulation, the 3 models were very similar; the only difference was 

in the penalization terms; these approaches were originally developed to handle 

correlated high dimensional data, where the number of covariate were more than the total 

number of observations, i.e., 𝑝𝑝 ≫ 𝑁𝑁. Additionally, the penalized terms were introduced 

to regularize correlated factors. However, this simulation study only included a few 
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factors, thus correlated factors could be generated from polynomial transformations as 

well as interaction terms; the intention was to compare the performance of these 

penalized models to the typical Cox regression models, including generalized Cox linear 

model and the multivariate Cox regression models with nonlinear transformations. 

Before implementing the models, all continuous variables were transformed to 5-

degree polynomials terms, and the nominal variables were transformed into dummy 

binary variables and pairwise interactions were constructed between any two terms. A 

total of 345 polynomial and interaction covariate terms were constructed for the 

penalized Cox regression models; the 345 polynomial and interaction terms are presented 

in Appendix 1. As mentioned in section 3.3.2.1, lasso Cox regression could be cross 

validated by setting α =1 and ridge regression could be obtained by setting α =0, the 

partial log likelihood deviance of the lasso Cox regression and ridge Cox regression were 

displayed in Figure 55 and Figure 56, respectively.  

  
Figure 55. CV for Lasso Regression – 

Simulation Study 
Figure 56. CV for Ridge Regression – 

Simulation Study 

In the figures, the left vertical line colored in grey corresponds to the λ when the log 

partial likelihood deviance reaches the minimum and the right vertical line corresponds to 

the λ for the regularized model with deviance within 1 standard deviation of the 

minimum. The numbers above the figure indicates the number of terms left in the model. 

For lasso Cox regression, the model reached the minimum log partial likelihood deviance 

at λ of 0.0357, where the model kept 23 terms in the model; for ridge regression, the 

model reached the minimum deviance at λ of 3.1815, where the model included 342 

terms in the model. For the selected "best" models, the corresponding regression 
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coefficients for lasso and ridge Cox regression are presented in Appendix 2 and 

Appendix 3, respectively. However, it was noted that the results from the lasso and ridge 

regression were not very stable; for a different seed, the results could be slightly 

different; such unreliability would potentially limit the generalization of the approaches, 

and it would be impossible to make accurate predictions based on the selected “best” 

models. 

To improve the robustness, a different cross validation process was developed to 

achieve more stable results which did not change over different processes or different 

seeds. The idea was to use Brier score as the selection rule for cross validate the lasso and 

ridge Cox models, where the empirical time-dependent Brier scores, 𝐵𝐵𝑆𝑆(𝑡𝑡), were 

calculated using the formula from Error! Reference source not found.. The goal was to 

select the penalization term, λ and the corresponding penalized models which could 

achieve a minimum Brier score. 

The lasso Cox model achieved the minimum Brier scores with λ = 0.2855. The CV 

errors (Brier scores) are displayed in Figure 57. With this process, different seeds were 

attempted for the CV; results were quite stable, the selected λ and the lasso Cox model 

corresponding to the λ from the CV did not change with the different processes or seeds.  

  
Figure 57. CV Error for Lasso Cox 

Regression with λ = 0.2855 – Simulation 
Study 

Figure 58. CV Error for Ridge Cox 
Regression with λ = 1.8153 – 

Simulation Study 
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Similarly the best ridge regression model was selected using cross validation via 

Brier's score. The ridge regression reached its best performance with λ = 1.8153; the 

cross validation Brier's scores are displayed in Figure 58. In the two figures (Figure 57 

and Figure 58), the blue solid line is cross validation error of the null model in which the 

survival probability was estimated with the Cox model without any covariates over the 

entire training set and the red solid line is the CV error of the full model with penalization 

parameters obtained from the entire training set; the black solid line is the CV error of the 

selected “best” model, in which the survival probability was estimated from lasso (or 

ridge) Cox regression over the 10th (left-out) CV samples and adjusted with .632 rule as 

suggested by Efron et al. (1997)[151] based on the best model with the penalization 

parameters obtained from 9 CV samples; the gray shaded area is covered by the 

resampling data. 

With λ = 0.2855, a total of 10 covariate terms were kept by the lasso Cox model and 

the corresponding coefficients for the "best" lasso Cox regression model are presented 

below. The regression coefficients were kept 5 decimal places, in order to retain the 

interaction term of Age5: Race = White, which is presented as Age5: {White}. 

Prob{𝑇𝑇 ≥ 𝑡𝑡} = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑋𝑋𝑋𝑋 , where 

𝑋𝑋�̂�𝛽 = 0.00327 MAP4 + 0.00650 MAP5 +  0.00298 Age4: {Placebo} −
0.00018 Age5: {Male} − 0.00004 Age5: {White} + 0.00667 MAP5: {Placebo} +
0.00178 MAP5: {Male} − 0.00378 BMI4: {Male} − 0.00104 BMI5: {Placebo} −
0.00094 BMI5: {Hispanic} 

Similarly, with λ=1.8153, the ridge Cox regression achieved the optimum CV Brier 

Scores with a total of 342 covariate terms; the coefficients for the 342 covariate terms are 

not presented in this paper, since they were only slightly different from the ones cross 

validated via the minimum partial log likelihood deviance (see Appendix 3 for the 

coefficients for ridge Cox model from CV with partial log likelihood deviance). 

For elastic-net Cox regression, both α and λ should be needed. With any given α, the λ 

could be searched automatically; however, the search of α was quite computation 

intensive, theoretically the alpha could be set as an entry of the sequence from 0.1 to 0.9 

with a step of 0.1, then use CV to search for the λ corresponding to the best performance 

in terms of partial log likelihood deviance, then the number of covariate terms were 
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obtained accordingly. The goal of this step was to achieve the minimum number of terms. 

Such approach was named as exhaustive searching (ES). Figure 59 presents the 

exhaustive search paths. The best partial log likelihood deviance was not monotone with 

α; as can be seen from the figure, the elastic-net Cox regression model with alpha=0.68, 

achieved the minimum deviance with only 12 covariate terms based on the selected 

sequence. After the "best" α (0.68) was identified, the penalization parameter, λ, was 

searched again for the minimum partial log likelihood deviance, λ =0.0695 should 

achieve the minimum deviance; the search paths for λ with α set to 0.68 are displayed in 

Figure 60. 

  
Figure 59. CV for Selection of α for 

Elastic-Net Cox Regression – Simulation 
Study 

Figure 60. CV for Elastic-Net Cox 
Regression with α=0.68 – Simulation 

Study 

The elastic-net Cox regression model with α=0.68 and λ = 0.0695 as obtained from 

exhaustive search algorithm retained 12 covariate terms; the corresponding model is 

formulated as  

Prob{𝑇𝑇 ≥ 𝑡𝑡} = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑋𝑋𝑋𝑋 , where  
𝑋𝑋�̂�𝛽 = 0.0914 MAP + 0.0011 Age: MAP2  +  0.0064 MAP3 + 0.0014 MAP5  +

0.0002 BMI2 +  0.0155 Age: MAP −  0.3092 {Active} − 0.0956 {Male}  +
 0.0028 Age3: MAP −  0.0242 BMI2: {Male} −  0.0083 Age2: BMI2 −
 0.0477 {Male}: {White} 

And, the coefficients estimated from the cross validated elastic-net Cox model are 

presented in Table 33.  
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Table 33. Coefficients of the Selected Elastic-Net Cox Regression Model with 
Penalization Parameters Obtained from Exhaustive Search (α =0.68 and λ 

=0.0695) – Simulation Study 

Terms Coefs Terms Coefs 
MAP 0.0914 Sex=Male -0.0956 

Age:MAP2 0.0011 Age:MAP:BMI:Sex=Male 0.0107 
MAP3 0.0064 Age3:MAP:BMI:Race=Hispanic 0.0028 
MAP5 0.0014 BMI2:Sex=Male -0.0242 

Age:MAP:BMI2 0.0155 Age2:BMI2:Race=Asian -0.0083 
Treatment=Active Treatment -0.3092 Sex=Male:Race=White -0.0477 

 

The partial log likelihood deviance of the three models, ridge, lasso and elastic-net 

Cox regression are compared in Figure 61, in which, the penalization parameters, λ’s for 

the lasso and ridge Cox models, were obtained from the CV using Brier score as the 

selection rule. 

 
Figure 61. CV Performance of Ridge, Lasso and Elastic-Net Cox models – 

Simulation Study 

However for elastic-net Cox regression, the penalization parameters (α and λ) 

obtained from the exhaustive search were still extremely unstable, different seeds might 

yield different penalization parameters and the training process was very time 

consuming; more importantly, there was no guarantee of global minimum of partial log 

likelihood deviance or cross validation errors; further, the search of alpha was very much 

depending on the searching sequence; i.e., the step of 0.1 for the selected sequence from 

0.1 to 0.9 could be too big to find a minimum. In fact, any pre-specified step would not 

be a good idea, since the partial log likelihood deviance was not monotonic over the 

range of penalization parameters and the minimum of the deviance did not correspond to 

the minimum of CV errors. 
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With the above considerations, an interval search algorithm (IS) was developed, 

which was originally proposed for support vector machine learning. The idea was to 

globally search both penalization parameters simultaneously through a Gaussian model of 

the error surface in the parameter space and sampling systematically towards the global 

minimum of the Brier scores. The algorithm still did not guarantee to find the global 

minimum of the partial log likelihood deviance, but it could achieve the minimum cross 

validation errors (Brier scores). Additionally, the search path was very efficient; both 

penalization terms (α and λ) were searched simultaneously. Furthermore, the penalization 

parameters obtained from the interval search were quite reliable; different seeds were 

attempted again for the searching process, the same penalization parameters were 

achieved and the corresponding model also achieved the same Brier scores and partial log 

likelihood deviance.  

The interval search paths for penalization parameters are displayed in Figure 62; the 

partial log likelihood deviances are presented on the top border of the figure; the 

penalization parameters are presented on the x- and y-axis and the number of covariate 

terms is labelled next to each point. The coordinates to the intersection of the red solid 

lines reflect the penalization terms when the elastic-net Cox regression model achieved 

the optimum CV performance, where α =0.2321 and λ = 0.2234.  

  
Figure 62. Interval Search Paths for 

Elastic Net Cox Regression – 
Simulation Study 

Figure 63. CV Brier Score for Elastic 
Net Cox Regression with α =0.2321 and 

λ = 0.2234  – Simulation Study 
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The CV errors of the corresponding elastic-net Cox model are displayed in Figure 63. 

It can be seen from the figure that the elastic-net Cox model had the almost the same CV 

errors (black solid curve) as the full apparent model (red solid curve), which suggested 

that the elastic-net Cox regression had achieved almost the same amount of information 

as the full apparent model with respect to the survival outcome. 

With penalization terms α =0.2321 and λ = 0.2234, the model retained a total of 16 

covariate terms; the coefficients of the 16 covariate terms for the best elastic-net Cox 

regression model are summarized in Table 34; the corresponding elastic-net Cox 

regression model was formulated with the coefficients from the table.  

Table 34. Coefficients of the Best Elastic-Net Cox Model with Penalization 
Parameters (α =0.2321 and λ = 0.2234) from Interval Search – Simulation Study 

Terms Coeffs 
MAP 0.0482 

MAP3 0.0078 
MAP5 0.0008 

Age:MAP:BMI2 0.0039 
Treatment=Placebo 0.2457 

Sex=Male -0.0794 
Age2:Treatment=Placebo 0.0089 
MAP:Treatment=Placebo 0.0629 

MAP3:Treatment=Placebo 0.0063 
MAP5:Sex=Male 0.0001 

Age:MAP:BMI:Treatment=Placebo 0.0112 
Age3:MAP:BMI:Race=Hispanic 0.0018 

BMI2:Sex=Male -0.0200 
Age2:BMI2:Race=Asian -0.0046 

Age:MAP:BMI2:Treatment=Placebo 0.0165 
Sex=Male:Race=White -0.0387 

 

Prob{𝑇𝑇 ≥ 𝑡𝑡} = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑋𝑋𝑋𝑋 , where  
 𝑋𝑋�̂�𝛽 = 0.0482 MAP + 0.0078 MAP3 +

8 × 10−4 MAP5 +
0.0039 Age: MAP: BMI2 +
0.2457 {Placebo} −
0.0794 {Male} +
0.0089 Age2: {Placebo} +
0.0629 MAP: {Placebo} +
0.0063 MAP3: {Placebo} +
10−04 MAP5: {Male} +
0.0112 Age: MAP: BMI: {Placebo} +
0.0018 Age3: MAP: BMI: {Hispanic}
0.0200 BMI2: {Male} −
0.0046 Age2: BMI2: {Asian} +
0.0165 Age: MAP: BMI2: Placebo +
−0.0387 {Male}: {White"} 

Table 35 compares the CV Brier scores across lasso, ridge Cox models, elastic-net 

Cox model via interval search and the elastic-net Cox model via exhaustive search; the 

plots of CV errors against time are also displayed in Figure 64. The elastic-net Cox model 

via exhaustive search and interval search were almost overlaid on top of each other; the 

two models had almost the same prediction errors (only slight differences were 

observed). Please note that for cross validation errors (Brier scores), the 95% PCIs could 

not be obtained from 10-fold CV (to obtain the 95% PCIs, a bootstrap process with at 
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least 100-fold should be needed). The two elastic-net Cox models with different 

searching algorithms had achieved almost the same CV errors; the elastic-net Cox model 

via exhaustive search was not as reliable due to the unstable penalization parameters 

obtained from the CV searching processes; since the different penalization terms could 

have resulted in selection of different covariates; as a results, it was difficult to generalize 

the application for broader use. While the selected elastic-net Cox regression model 

obtained from the interval search algorithm should have overcome these disadvantages, 

thus it was further assessed for the prediction performance. 

Table 35. CV Errors (Brier Score) for Elastic Net, Lasso and Ridge Cox 
Regression – Simulation Study Training Set 

Yrs Elastic-Net (IS) Elastic-Net (ES) Lasso Ridge 
1 0.1013 0.1009 0.1063 0.1068 
2 0.1750 0.1742 0.1851 0.1867 
3 0.2085 0.2075 0.2212 0.2198 
4 0.2280 0.2273 0.2430 0.2318 
5 0.2337 0.2329 0.2460 0.2339 
6 0.2277 0.2269 0.2403 0.2281 
7 0.2146 0.2139 0.2362 0.2212 
8 0.1958 0.1954 0.2179 0.2078 
9 0.1794 0.1792 0.1975 0.2004 

10 0.1543 0.1542 0.1683 0.1704 
11 0.1330 0.1331 0.1424 0.1439 
12 0.1069 0.1069 0.1120 0.1128 
13 0.0686 0.0687 0.0706 0.0705 

 

 

 

Figure 64. CV Errors (Brier Score) for Elastic Net, Lasso and Ridge Cox 
Regression (Training Set) – Simulation Study 
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For performance comparisons, the prediction performance measurements of the three 

selected penalized Cox models (lasso, ridge and elastic-net Cox regression models via 

interval search) were assessed based on the test set. The prediction errors (Brier scores) 

and time-dependent AUCs of the selected penalized Cox regression models are 

summarized in Table 36; the corresponding 95% PCIs for prediction errors and time-

dependent AUCs obtained from 1000 bootstrap samples are also presented.  

Table 36. Prediction Errors and Time Dependent AUCs for Lasso, Ridge and 
Elastic-Net Cox Models – Simulation Study Test Set 

 Years Lasso (95% PCI) Ridge (95% PCI) Elastic-Net IS (95% 
PCI) 

Pr
ed

ic
tio

n 
Er

ro
rs

 

1 0.113  (0.093, 0.137) 0.115  (0.093, 0.141) 0.115  (0.096, 0.138) 
2 0.175  (0.157, 0.193) 0.175  (0.155, 0.196) 0.173  (0.157, 0.190) 
3 0.213  (0.200, 0.226) 0.213  (0.196, 0.229) 0.209  (0.197, 0.222) 
4 0.230  (0.222, 0.237) 0.227  (0.215, 0.238) 0.225  (0.218, 0.233) 
5 0.243  (0.238, 0.247) 0.241  (0.233, 0.251) 0.238  (0.232, 0.243) 
6 0.244  (0.236, 0.251) 0.242  (0.237, 0.251) 0.239  (0.230, 0.24) 
7 0.242  (0.230, 0.252) 0.239  (0.243, 0.251) 0.237  (0.224, 0.249) 
8 0.234  (0.219, 0.248) 0.233  (0.216, 0.248) 0.233  (0.216, 0.247) 
9 0.227  (0.206, 0.246) 0.227  (0.205, 0.246) 0.227  (0.206, 0.247) 

10 0.213  (0.188, 0.236) 0.218  (0.192, 0.242) 0.214  (0.189, 0.240) 
11 0.206  (0.176, 0.236) 0.209  (0.180, 0.238) 0.208  (0.178, 0.239) 
12 0.199  (0.171, 0.236) 0.203  (0.175, 0.237) 0.201  (0.172, 0.239) 
13 0.193  (0.159, 0.231) 0.196  (0.165, 0.236) 0.196  (0.163, 0.235) 
14 0.180  (0.144, 0.221) 0.182  (0.150, 0.226) 0.184  (0.149, 0.229) 

Ti
m

e 
D

ep
en

de
nt

 A
U

C
s 

1 0.644  (0.584, 0.715)  0.666  (0.604, 0.728)  0.690  (0.631, 0.750)  
2 0.599  (0.553, 0.649)  0.634  (0.583, 0.681)  0.649  (0.603, 0.697)  
3 0.590  (0.548, 0.632)  0.627  (0.584, 0.670)  0.636  (0.591, 0.677)  
4 0.590  (0.550, 0.628)  0.625  (0.584, 0.662)  0.634  (0.593, 0.672)  
5 0.586  (0.549, 0.623)  0.616  (0.578, 0.652)  0.626  (0.590, 0.662)  
6 0.582  (0.549, 0.620)  0.614  (0.579, 0.649)  0.625  (0.591, 0.661)  
7 0.579  (0.545, 0.616)  0.614  (0.579, 0.647)  0.625  (0.591, 0.657)  
8 0.576  (0.542, 0.611)  0.611  (0.576, 0.643)  0.621  (0.586, 0.651)  
9 0.575  (0.542, 0.609)  0.609  (0.575, 0.640)  0.619  (0.585, 0.650)  

10 0.574  (0.541, 0.607)  0.606  (0.573, 0.636)  0.618  (0.584, 0.648)  
11 0.574  (0.542, 0.608)  0.607  (0.574, 0.636)  0.612  (0.584, 0.647)  
12 0.574  (0.542, 0.607)  0.606  (0.573, 0.636)  0.618  (0.585, 0.647)  
13 0.573  (0.542, 0.607)  0.606  (0.573, 0.635)  0.617  (0.584, 0.647)  
14 0.573  (0.542, 0.606)  0.605  (0.573, 0.635)  0.617  (0.584, 0.647)  

The graphic display of the prediction errors, the time-dependent AUCs and the 

corresponding 95% PCIs are presented in Figure 65. The solid black line and the grey 

shaded area indicate the prediction errors (or AUCs) and the corresponding the 95% PCIs 

for the lasso Cox model; the dotted blue line and the light blue shaded area are the 
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prediction errors and the corresponding 95% PCIs for ridge Cox regression model; the 

prediction errors for elastic-net was the orange line covered by the orange shaded area for 

the corresponding 95% PCIs. In terms of the prediction errors, the three models were 

very similar to each other. As can be seen from the figure, in terms of the time-dependent 

AUCs, the elastic-net had the best performance and the lasso Cox model had the worst 

performance. 

Prediction Errors Time-Dependent AUCs 

  
Figure 65. Prediction Errors and Time-Dependent AUCs for Lasso, Ridge and 

Elastic-Net Cox Models – Simulation Study Test Set 

Additionally, comparing with the typical Cox regression models, the regression 

coefficients from the penalized Cox regression models including ridge, lasso or elastic-

net Cox regression were all biased, because of the regularization from the penalization 

parameter(s). Unbiased estimates of the regression coefficients were obtained by fitting 

typical Cox regression models with the exact same covariate terms as obtained from the 

above penalized Cox model. The unbiased estimates of the coefficients for lasso and 

elastic-net Cox models are reported in Table 37 and Table 38. For ridge Cox regression, 

the model was non-estimable due to too many covariate terms (342). On the other hand, 

the ridge Cox regression model was able to achieve good performance only by keeping 

the most (if not all) of the covariate terms; therefore even if there were enough data, it 

was still not possible to use ridge Cox model to perform prognostic factor selection.  

  132 



 

Table 37. Unbiased Coefficients for Lasso Cox Model – Simulation Study 

 
Coef HR SE (Coef) z P-value 

MAP4 0.0104 1.0105 0.0039 2.64 0.0082 
MAP5 0.0051 1.0051 0.0028 1.85 0.0648 
Age4:Treatment=Placebo 0.0113 1.0113 0.0032 3.47 0.0005 
Age5:Sex=Male -0.0019 0.9981 0.0010 -1.85 0.0648 
Age5:Race=White -0.0017 0.9983 0.0011 -1.49 0.1350 
MAP5:Treatment=Placebo 0.0086 1.0087 0.0031 2.79 0.0053 
MAP5:Sex=Male 0.0040 1.0040 0.0032 1.27 0.2035 
BMI4:Sex=Male -0.0117 0.9883 0.0039 -3.01 0.0026 
BMI5:Treatment=Placebo -0.0026 0.9974 0.0016 -1.66 0.0975 
BMI5:Race=Hispanic -0.0033 0.9967 0.0014 -2.27 0.0232 
 

Table 38. Unbiased Coefficients for Elastic-Net Cox Model (IS) – Simulation Study 

 
Coef HR SE (Coef) z          P-value 

MAP 0.2211 1.2474 0.0813 2.72 0.0066 
MAP3 -0.1139 0.8923 0.0490 -2.32 0.0201 
MAP5 0.0184 1.0186 0.0075 2.46 0.0141 
Age:MAP:BMI2 0.0187 1.0188 0.0232 0.81 0.4205 
{Placebo} 0.4256 1.5306 0.0617 6.90 0.0000 
Sex=Male -0.1499 0.8608 0.0720 -2.08 0.0374 
Age2:{Placebo} 0.0290 1.0294 0.0255 1.14 0.2553 
MAP:{Placebo} 0.0656 1.0678 0.0978 0.67 0.5023 
MAP3:{Placebo} 0.0437 1.0447 0.0320 1.37 0.1712 
MAP5:{Male} 0.0021 1.0021 0.0038 0.55 0.5829 
Age:MAP:BMI:{Placebo} 0.0801 1.0834 0.0424 1.89 0.0585 
Age3:MAP:BMI:{Hispanic} 0.0418 1.0427 0.0209 2.00 0.0460 
BMI2:{Male} -0.0467 1.2474 0.0252 -1.85 0.0641 
Age2:BMI2:{Asian} -0.0756 0.8923 0.0646 -1.17 0.2420 
Age:MAP:BMI2:{Placebo} 0.0605 1.0186 0.0323 1.87 0.0610 
Sex=Male:{White} -0.1496 1.0188 0.0705 -2.12 0.0339 
HR = exp(Coef);       

 

4.1.2.3.5 Principal Component Cox Regression (PCR) 

Principal component Cox regression (PCR) model was implemented and cross 

validated; the multiple observations due to subject switching treatment were adjusted 

with AG counting process extension. Note that the initial tentative fit of principal 

component regression was already discussed in section 4.1.2.2.3; the AIC performance of 

the PCR model was not very good. Therefore, in this section, the analysis results were 

only be briefly discussed and summarized.  
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It can be seen from Figure 4 that the first 6 components contributed to the 99% of the 

total variance and the Figure 5 provided additional evidence that component 7 did not 

improve the performance of the PCR model. Therefore, the initial PCR model only 

included the first 6 components.  

The 6-component PCR model was further selected via a backward step-down 

procedure based on AIC criterion; again the AIC was preset to ≥1e-10 to ensure all 

components to be deleted from the model. Figure 66 presents the deleted components vs. 

the AIC and dfs remained for the PCR model. The AIC reaches the minimum after 

component 4 was deleted, therefore the final model should include the rest of the 5 

components.   

Deleted 
Components 

df 
remained  AIC 

None 6 17474.6 
-Comp.4 5 17473.7 
-Comp.6 4 17474.0 
-Comp.3 3 17477.0 
-Comp.5 2 17517.5 
-Comp.1 1 17561.2 
-Comp.2 0 17577.1 

 

 
Figure 66. AIC vs. df. of the Remaining PCR Models after Each Component 

Deletion – Simulation Study 

The coefficients of the 5-component PCR model are presented in Table 39; all of the 

components were significant, with p-value < 0.05.  

Table 39. Coefficients of the 5-Component PCR Model – Simulation Study 

 
Coef HR SE (coef) z Pr(>|z|) 

Comp.1 0.1412 1.1517 0.0198 7.12 0.0000 
Comp.2 0.2072 1.2302 0.0271 7.65 0.0000 
Comp.3 0.0585 1.0602 0.0268 2.18 0.0291 
Comp.5 0.1918 1.2114 0.0289 6.63 0.0000 
Comp.6 0.0399 1.0407 0.0267 1.49 0.1360 

The model selected from the above step were evaluated via 10-fold leave-one-out 

cross validation, the performance statistics are presented in Table 40. There was no 
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concern of overfitting or underfitting. 

Table 40. Cross Validation Performance for Principal Component Cox 
Regression – Simulation Study 

 
index.orig training test optimism index.corrected 

Dxy -0.1855 -0.1861 -0.1810 -0.0050 -0.1804 
R2 0.0824 0.0828 0.0804 0.0024 0.0800 
Slope 1.0000 1.0000 0.9830 0.0170 0.9830 
D 0.0080 0.0082 0.0114 -0.0032 0.0112 
U -0.0001 -0.0001 0.0008 -0.0009 0.0008 
Q 0.0081 0.0083 0.0106 -0.0023 0.0104 
g 0.4054 0.4063 0.3978 0.0086 0.3968 

Prediction performance of the selected PCR model was also assessed with the test set, 

including prediction errors and time-dependent AUCs. Table 41 presents the estimated 

prediction errors and time-dependent AUCs for the selected PCR model based on the test 

set. The corresponding plots are presented in Figure 67.  

The coefficients of the components from the PCR model had to be converted back to 

the original factor for interpretations; for this reason, the loading matrix of the selected 

PCR model would be helpful, which should indicate the contribution of each factor to the 

total variance of the model; however it was still quite difficult to intuitively interpret the 

results since the survival outcomes were indirectly linked to the original factor via the 

latent components.  

Table 41. Prediction Errors and Time-Dependent AUCs for PCR – Simulation 
Study Test Set 

Yrs Pred Errors (95% PCI) AUCs (95% PCI) 
1 0.1132  (0.0955, 0.1321) 0.6621  (0.5985, 0.7198)  
2 0.1696  (0.1518, 0.1866) 0.6329  (0.5840, 0.6803)  
3 0.2064  (0.1924, 0.2190) 0.6159  (0.5715, 0.6567)  
4 0.2186  (0.2083, 0.2292) 0.6199  (0.5808, 0.6569)  
5 0.2332  (0.2227, 0.2441) 0.6136  (0.5781, 0.6460)  
6 0.2354  (0.2231, 0.2481) 0.6109  (0.5780, 0.6422)  
7 0.2327  (0.2182, 0.2478) 0.6119  (0.5797, 0.6411)  
8 0.2278  (0.2107, 0.2463) 0.6104  (0.5801, 0.6394)  
9 0.2218  (0.2015, 0.2448) 0.6089  (0.5783, 0.6367)  

10 0.2098  (0.1852, 0.2368) 0.6086  (0.5787, 0.6363)  
11 0.2009  (0.1731, 0.2294) 0.6086  (0.5789, 0.6358)  
12 0.1912  (0.1622, 0.2253) 0.6093  (0.5792, 0.6365)  
13 0.1835  (0.1509, 0.2194) 0.6087  (0.5792, 0.6356)  
14 0.1739  (0.1392, 0.2130) 0.6084  (0.5789, 0.6351)  
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Figure 67. Prediction Errors and Time-Dependent AUCs for PCR – Simulation Study Test 

Set 

4.1.2.3.6 Partial Least Squares Cox Regression 

Partial least squares regression models have been reported to fit continuous and 

categorical outcomes with success; but very little has been published on survival 

outcomes. The same approach was developed on top of Cox PH model for evaluation of 

survival outcomes; several features and analyses tools were developed to assess 

predictions and prediction performance. The partial least squares Cox (PLS-Cox) model 

shared some resemblance with PCR model; latent components were initially derived to 

achieve the maximum correlation with respect to the survival outcome; the PLS 

components would be used as covariates for Cox regression model.  

The PLS components were constructed with all factors in their original scale, 

including all correlated factors; once constructed, the components should be orthogonal 

(uncorrelated) to each other but pointing in the direction of the log hazard. Therefore, 

multicollinearity should be of no concerns. In addition, as Ron Wehrens (2011)[152] 

pointed out that polynomial transformations of the covariates generally should not 

improve the model performance, thus in this simulation study, all factors in their original 
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scale were attempted for the PLS Cox model. Multiple observations with time-varying 

treatment effect were adjusted using AG extension. 

The PLS Cox model including all factors in their original scale and all pair-wise 

interactions, was cross validated with the training set. A total of 52 covariate terms were 

initially included in the model (see Appendix 4 for complete list of terms). The cross 

validation performance, model AIC corresponding to the number of components retained 

in the model is presented in Figure 68. The AIC curve suggested that the PLS Cox model 

reached the best performance with the first 8 components.  

Comps AIC Comps AIC 
0 17573.9 8 17412.5 
1 17462.4 9 17414.3 
2 17460.3 10 17415.8 
3 17450.6 11 17416.6 
4 17452.1 12 17418.6 
5 17435.6 13 17420.6 
6 17436.8 14 17417.2 
7 17424.7 15 17418.1 

 

 
Figure 68. Model Performance of PLS Cox Linear Model – Simulation Study 

Next, the 8-component PLS model were evaluated over the training set; the 

regression coefficients of the 8 components were estimated from a typical Cox regression 

model, which are presented in Table 42. For this model, the order of the components 

should be very important, the latter components were derived based on the results of 

earlier components; i.e., components 2 were not significant (p-value =0.62), but it had to 

be kept in the final model, since it was needed for deriving component 3 and above. 

Therefore, if a particular component was selected by the cross validation process, all 

components prior to that should also be included in the final model no matter whether 

they were significant or not. 

Additionally, the original factors were linked to the log hazard through the latent 

components, therefore the coefficients for the PLS components had to be converted back 

to the original factors for interpretation (see Appendix 5 for the coefficients of the 
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original covariate terms as converted from the PLS components).  

Table 42. Regression Coefficients from PLS Cox Regression Model with Linear 
Terms (1st Degree Polynomials) – Simulation Study 

Comp Coef HR SE (Coef) z p 
 #1 -0.1243 0.8831 0.0110 -11.33 <.0001 
#2 -0.0256 0.9747 0.0119 -2.15 0.0315 
#3 -0.0563 0.9452 0.0138 -4.08 <.0001 
#4 0.0105 1.0105 0.0154 0.68 0.4944 
#5 0.0839 1.0875 0.0194 4.33 <.0001 
#6 -0.0169 0.9833 0.0159 -1.06 0.2882 
#7 0.0655 1.0677 0.0170 3.85 0.0001 
#8 -0.0978 0.9068 0.0257 -3.80 0.0001 

 

Then the 8-component Cox PH model can be validated using 10-fold cross validation; 

results are presented in Table 43. There was no indication of underfitting or overfitting; 

however, these statistics were obtained from the typical Cox regression model with the 8 

PLS components as the only covariates. Typical Cox regression model with all factors 

and all pair-wise interactions did not converge due to non-estimability. For cross 

validation performance, the 8 PLS components had to be used as the only covariates for 

the Cox PH model; the coefficients obtained from the PLS Cox model were set as the 

initial coefficients corresponding to the 8 PLS components for the Cox PH model.  

During the cross validation, the coefficients of the 8 PLS components were derived from 

the Cox PH model instead of from the PLS Cox model, therefore the results may not fully 

represent the actual performance of the PLS Cox model. 

Table 43. Model Performance of PLS Cox Regression Model with Linear Terms (1st 
Degree Polynomials) – Simulation Study 

 
Index.Orig Train Test Optim Index.Corrected 

Dxy -0.212 -0.212 -0.209 -0.003 -0.209 
R2 0.102 0.102 0.1008 0.002 0.101 
Slope 1.000 1.000 1.006 -0.006 1.006 
D 0.010 0.010 0.015 -0.005 0.015 
U 0.000 0.000 0.001 -0.001 0.001 
Q 0.010 0.010 0.014 -0.004 0.014 
G 0.454 0.454 0.455 0.001 0.445 

 

The cross validated PLS Cox model was then assessed against the test set; the 
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prediction errors and the time-dependent AUCs were obtained similar to the other 

approaches; results are presented in Table 44; and the prediction errors, time-dependent 

AUCs and the corresponding 95% PCIs are displayed in Figure 69. 

Table 44. Prediction Performance of PLS Cox Model with linear forms of all 
variables – Simulation Study Test Set 

Yrs Pred Errors (95% PCI) AUCs (95% PCI) 
1 0.1060  (0.0867, 0.1267) 0.6369  (0.5708, 0.7003)  
2 0.1634  (0.1457, 0.1823) 0.6126  (0.5613, 0.6623)  
3 0.2021  (0.1883, 0.2164) 0.5896  (0.5450, 0.6324)  
4 0.2289  (0.2198, 0.2387) 0.5859  (0.5506, 0.6229)  
5 0.2399  (0.2309, 0.2489) 0.5827  (0.5480, 0.6179)  
6 0.2421  (0.2319, 0.2529) 0.5843  (0.5498, 0.6182)  
7 0.2378  (0.2238, 0.2527) 0.5887  (0.5569, 0.6203)  
8 0.2343  (0.2166, 0.2517) 0.5875  (0.5563, 0.6180)  
9 0.2269  (0.2057, 0.2482) 0.5876  (0.5566, 0.6176)  

10 0.2170  (0.1912, 0.2414) 0.5875  (0.5572, 0.6170)  
11 0.2035  (0.1730, 0.2297) 0.5891  (0.5589, 0.6174)  
12 0.1965  (0.1629, 0.2262) 0.5884  (0.5583, 0.6162)  
13 0.1872  (0.1494, 0.2197) 0.5883  (0.5588, 0.6160)  
14 0.1807  (0.1418, 0.2185) 0.5878  (0.5586, 0.6155)  

 

 

 
Figure 69. Prediction Performance of PLS Cox Regression with Linear Terms 

(1st-Degree Polynomial) – Simulation Study Test Set 
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4.1.2.3.7 Prediction Performance Comparison of Intended Survival Models for 
the Simulation Study 

Thus far, the Cox PH linear model with all factors in their original scale and all 

potential interactions, multivariate Cox regression models with RCS or FP 

transformations, log-rank based RSF model, conditional-inference based RSF model, 

lasso, ridge, elastic-net, principal component and partial least squares Cox regression 

models were evaluated.  

The prediction errors for all intended models are displayed again in Figure 70 for 

cross comparison. Of all intended models, Cox model with FP transformation had the 

best prediction error at the beginning (before year 10), but it caught up with the rest of the 

models at the tails, which was due to the inclusion of the time-dependent treatment 

interaction term; the Cox PH linear model, PCR and CINF-RSF models were the next, 

followed by the elastic-net Cox model and Cox model with RCS transformations; the 

lasso and PLS Cox models had almost the worst prediction errors (other than the LR-RSF 

model); the LR-RSF model had the worst prediction errors between 5 to 10 years, 

otherwise it had similar prediction errors to the CINF-RSF model.   

  
Figure 70. Comparisons on Prediction 

Errors – Simulation Study 
 

Figure 71. Comparisons on Time-
Dependent AUC(t) – Simulation Study 

Figure 71 displays the time-dependent AUCs for all the intended approaches; again, 
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the multivariate Cox regression with FP transformation had the best performance overall 

due to the inclusion of the time-dependent treatment interaction. Otherwise, the elastic-

net Cox model was the second and followed by Cox PH linear model, ridge model, Cox 

model with RCS transformation and PCR; the CINF-RSF and LR-RSF model were the 

next. However, considering the nonparametric nature of the two RSF approaches, the 

convenience might overweigh the prediction performance in some cases; thus they should 

provide an alternative tool for analysis of survival data. Of all intended models, the lasso 

and the PLS Cox model had almost the worse prediction AUCs for this study.  

For the 3 typical Cox PH models, the Cox model with FP transformation had the best 

performances in both prediction errors and time-dependent AUCs; and the Cox model 

with RCS transformation had the worst performance in both prediction errors and time-

dependent AUCs. 

LR- RSF had the worse prediction errors than the rest of the models in the middle of 

the curve, between 5 to 10 years; but at the tail (beyond 10-year), it became similar to the 

other survival models; while the CINF-RSF model had moderate prediction errors 

overall. In terms of time-dependent AUCs, both RSF models were moderate before year-

10, and after year-10, they started to get worse until they became the worst at the year 15. 

In terms of selecting prognostic factors, the two RSF models picked up different factors; 

LR-RSF model ranked MAP as the most important factor, followed by Sex, Race and 

BMI; Age and Treatment were the least important factors; while the CINF-RSF model 

picked up Treatment then followed by MAP and Race. Apparently, the two RSF models 

had shown different selection patterns for prognostic factors, which was probably due to 

the moderate correlation between MAP and BMI. With respect to usability, both RSF 

models were the most convenient of all survival models due to the nonparametric nature. 

For the penalized Cox models, elastic-net Cox regression models had the best 

performance, and selected 16 out of 345 covariate terms; the ridge Cox model was 

slightly worse than the elastic-net Cox model but better than the lasso Cox model and the 

model selected 342 out of 345 covariate terms; lasso Cox had the worst performance out 

of all intended survival models, but it selected 10 out of 245 covariate terms. Both Lasso 

and elastic-net had been very effective for prognostic factor selections.  

The performance of the PCR model was also moderate, and it was only able to select 
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prognostic factors through loading scores for the latent components, therefore the results 

from this model were not intuitively interpretable. 

PLS Cox regression model was an innovative approach derived for highly correlated 

survival data; but the prediction performance for this model was not as good as most of 

the intended survival models; this was possibly due to the system errors involved in the 

evaluation of the predicted survival probability.  

Both the prediction errors and time-dependent AUCs were calculated based on the 

predicted survival probability estimated from a typical Cox model with the PLS 

components as the covariates. Instead of having the typical Cox model to solve for the 

coefficient estimate, the coefficients obtained from the PLS model were assigned to the 

corresponding PLS components as the coefficients for the Cox regression model; further, 

the Cox regression model was forced to take the assigned coefficients without updating 

them.  

For evaluation of the prediction errors and time-dependent AUCs, the predicted 

survival probability should be based on the Cox model with coefficients corresponding to 

the PLS components at different time points. However, the survival status for each 

patient should be different at different time points, then the PLS components should be 

slightly different (for example, if a subject had an event at year-10, but the same subject 

had to be event-free at year-1; as such, the PLS components should be different at year-1 

from those constructed at year-10). However, the Cox PH model itself was unable to 

automatically update the PLS components accordingly, it was only able to predict the 

survival based on the pre-assigned PLS components from the PLS Cox model. Therefore 

the prediction errors and time-dependent AUCs calculated from the predicted survival for 

the PLS Cox model were not as good as the other survival models. 

 In addition, another problem of PLS model was noticed in the analysis. In some 

extreme cases, the PLS Cox model might not be able to construct the PLS components 

unless all covariates were normalized; since normalized covariates should help to achieve 

convergence efficiently. But normalization of all covariates could potentially inflate the 

noise (covariates) within the dataset, thus the PLS Cox model could have picked up more 

noise variable than any other approaches that did not need normalized covariates; as a 

result, the PLS Cox model with normalized covariates tend to overfit the data.  
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4.2 Real World Case Study 

4.2.1 NKI70 Data from Netherlands Breast Cancer Institute  

A breast cancer data with 5 clinical factors and 70 gene signatures downloaded from 

the Netherlands Cancer Institute was used to evaluate metastasis-free survival, which will 

be called NKI70[143] data onward. The data included a total of 144 independent lymph-

node-positive breast cancer subjects, followed for 17 months; of the 144 subjects, 48 

subjects experienced metastasis since the start of the study.  

This type of data reflects a new trend in today’s clinical and statistical practice. In the 

recent years, the advances in technology and genetic analysis tools have enabled 

collection of large amount of genetic information; as a result, the total number of genes 

can be much more than the number of observations or the number of events for survival 

data. Such data has become very typical in biomedical research or genetic lab, especially 

for microarray analysis. A recent example was the study published by Beer et al. in 2002, 

which was performed on lung adenocarcinoma microarray expression data, the 

expression data were collected from 86 subjects with 7129 probe sets[153]. Another 

similar study published by Bhattacharjee et al. in 2001, was designed to use mRNA 

expressions to reveal distinct adenocarcinoma subclasses. A third study published by 

Garber et al. in 2001, was to study the diversity of lung adenocarcinoma with gene 

expressions. Many other similar studies can be found in literature. However, typical 

statistical models do not work for such scenarios; thus efficient analysis tools for 

correlated high dimensional survival data have become very demanding.  

The NKI70 data were chosen intentionally for this case study so that the performance 

of different survival models could be studied for survival data when the number factors 

are more than or close to the total number of event available (𝑝𝑝 ≫ 𝑁𝑁). 

4.2.1.1 Summary Statistics of the NKI70 Data 

Considering it was impossible to present all factors in one page and it was probably 

overwhelmed to look at the descriptive summary for all 75 factors; only the 5 clinical 

factors as well as 2 of the 70 gene signatures are summarized in Table 45. Contingency 

tables for categorical factors are presented in the top half of the table. Continuous factors, 
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including Age and 2 of the 70 gene signatures are summarized in the bottom half. 

Complete summary of all gene signatures can be found in Appendix 6.  

Table 45. Brief Summary of the NKI70 Data 
Factors Statistics 

(N=144) 
Survival: Metastasis  48 (33%) 
Diameter of Tumor    

≤ 2 cm 73 (51%) 
> 2 cm 71 (49%) 

Number of affected lymph nodes  
1-3 106 (74%) 
≥ 4 38 (26%) 

Estrogen receptor status  
Negative 27 (19%) 
Positive 115 (80%) 
Missing 2 (1%) 

Grade of the tumor  
Poorly Differentiated 48 (33%) 
Intermediate 52 (38%) 
Well Differentiated 41 (28%) 
Missing 3 (2%) 

Factors (71) n/nmiss Mean ± SD Median Quartiles Ranges 
Age 142/2 44.31 ± 5.34 45 41, 49 16 – 53 
TSPYL5 144/0 -0.109 ± 0.33 -0.089 -0.331, 0.117 -1.08 – 0.6018 
DIAPH3 144/0 -0.033 ± 0.24 -0.022 -0.179, 0.241 -0.679, 0.618 
⋮  ⋮ ⋮ ⋮ ⋮ ⋮ 

C20OR46 144/0 -0.086 ± 0.25 -0.133 -0.256, 0.020 -0.451 – 0.992 

For all 75 factors, it was impossible to perform visual or manual check of the model 

assumptions for the Cox regression model; moreover, typical Cox models were incapable 

of handling so many predictors with such small number of events, thus typical Cox 

regression models could not be applied. For this case study, only the two RSF models, 

three penalized Cox regression models, PCR and PLS Cox regression models were 

implemented. These models were either distribution free or were capable of dealing with 

correlated high dimensional data; most of these models should be able to select 

prognostic factor, except for the ridge Cox regression, which kept most if not all factors 

to achieve better performance. For these approaches, there were many controversial 

opinions about the nonlinear transformations; in this case study, the 3 penalized Cox 

models and PLS Cox models were evaluated using the following 3 approaches: all factors 

in their original scale without interaction or transformations, all factors as well as all pair-
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wise interactions and all potential 3-degree polynomial transformations for all continuous 

factors as well as all possible pair-wise interactions between any pair of functional forms. 

For 3-degree polynomial transformations, all 71 continuous factors (including Age 

and the 70 gene signatures) were transformed using 3 degree polynomial forms; pair-wise 

interactions between any two factors (including all polynomial forms of the factors) were 

also constructed. Then, there would be too many covariate terms to evaluate for the 

survival models; for the sake of efficiency, we used hypothesis tests to prescreen 

potential important covariates. If a nonlinear term was significant at 0.05 level, then the 

term should be included as a covariate in the initial model for selection; if any one of the 

3 polynomial forms of a factor was significant, then lower order forms for the same factor 

should also be included. For pair-wise interactions, all nonlinear forms identified from 

above step were used to construct the interaction terms; the interaction terms were 

prescreened again at 0.05 significance level. If an interaction term was significant, then 

the interactions should be constructed between all possible forms (including the linear 

and nonlinear forms of the participating factors) as identified above for the initial survival 

model. 

4.2.1.2 Data Preparations 

For this dataset, 4 clinical factors were categorical; Age and the 70 gene signatures 

were continuous, a good deal of the continuous factors departed from be normality. 

Theoretically, the departure from normality should have been fixed using transformations 

prior to the analysis, however transformations of gene signatures could potentially 

destroy the relationships among them; thus without losing too much generality, the 

transformations were not intended. However, in the dataset, a total of 7 missing values 

were observed, 2 subjects had missing Estrogen receptor status, 3 subjects had missing 

Grade of the tumor and 2 subjects had missing Age. The missing values for Age were 

imputed using the least squares multiple regression with optimum transformations; the 

other 5 missing categorical factors, were imputed using recursive partition (see section 

3.6 for details). Additionally, one clinical factor, Grade of tumor, had 3 category levels; 2 

dummy variables were created for the relative difference between categories. Thus a total 

of 76 factors should be considered.  
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Again the first step before the actual analysis is to look at the NKI70 data; the 

Kaplan-Meier (KM) estimates of the survival probability and Fleming-Harrington 

estimates of log(-log(Survival)) /or log(cumulative hazard) were plotted; results are 

displayed in Figure 72; the green dotted line superimposed on top of the cumulative 

hazard was the hazard assuming exponential survival models; where little change was 

observed in the slope of cumulative hazard over time. Thus, it was reasonable to consider 

Cox model. Figure 73 displays the correlation map of all factors; blue color indicated a 

positive correlation and red color indicated a negative correlation. The intensity of the 

color indicated the severity of collinearity. Apparently, several of the gene-signatures 

were highly correlated. 

 
Figure 72. Kaplan Meier Survival 

Probability and  Fleming Harrington 
Cumulative Hazard for NKI70 Data  

 
Figure 73. Factor Correlation Map for 

NKI70 Data 
 

For principal component Cox regression (PCR) over all factors in their original 

scales, the first step was to find the minimum number of components that could achieve 

the majority of the total variance from all factors. Detailed summary of the component 

variance and the corresponding proportions are presented in Appendix 7. Figure 74 

displays the total variance and the cumulative proportion of the variances contributed by 

each of the components; with at least 34 components, the cumulative proportion of 

variance can reach 90% of the total variance.  
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Figure 74. Total Variance against 
Cumulative Number of Principal 

Components – NKI70 Data 

Figure 75. AIC of PCR Models against 
the Number of Principal Components – 

NKI70 Data 

Figure 75 presents the AIC of the Cox regression model with the number of 

components included in the model; detailed summary is presented in Appendix 8. The 

AIC curve reached the minimum at components 58. To find out the contributions of 

different factors, the loadings of component 59 are presented in Figure 76; in which every 

5th factor was labelled on the x-axis. The loadings had spectrum shapes, the closer to 0 in 

the loadings, the smaller the contributions of the factors into the component. No evident 

trend was noticed and the loadings of components beyond component 59 had similar 

patterns to what was shown in Figure 76, i.e. all of the factors had made fair contributions 

to the components. Looking back at Figure 74 and Figure 75, the total variance and the 

AIC of the Cox model were gradually decreasing with each additional component, which 

did not suggest exclusion of any components. Furthermore, to achieve better predictions, 

it was preferable to keep as many components as the model could handle. However, the 

more components added to the model, the less estimability. It was believed that the first 

58 components were reasonable for the initial principal component Cox regression 

model.  

Figure 77 is the hierarchical cluster analysis, which displays the linkage between 

factors, factors with higher correlations should probably assigned into one cluster. 

However, the "family" map was quite complex; it was quite trivial and time consuming to 
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manually construct clusters. On the other hand, the loading values of all components 

were used o constructed a matrix of 77 by 76 dimension; otherwise, it was not easy to get 

the overall picture. For similar reason, the variable clustering was skipped. Figure 77 is 

the hierarchical cluster analysis of all factors; highly correlated factors are linked together 

in the pedigree; thus the linked factors should be clustered together. However, the 

pedigree map was quite complex; it was quite trivial and time consuming to manually 

construct clusters. On the other hand, all of the intended survival models were developed 

for highly correlated survival data, correlated factors should be handled inside the 

modelling. Thus, variable clusters were not manually constructed. 

 
 

Figure 76. Loading Values of 
Components vs. All Factors – NKI70 

Data 

Figure 77. Hierarchical Cluster Analysis 
with Hoeffding's D statistics – NKI70 

Data 

Without considering nonlinearity, the linear model should include all factors in their 

original scale + all pair-wise interactions; thus a total of �76
2 � − 1 + 76 =2925 covariate 

terms should be considered; however considering nonlinearity, the polynomial model 

should include all possible 3-degree polynomial forms + all pairwise interactions between 

the function forms of factors; thus the model should include approximately 64 billion, 

[713 + �713 + 5
2

� − 1 + 76] covariate terms. Unfortunately none of the computer 

software was able to handle a design matrix of dimension (64 × 109) × (64 × 109); thus 

without a proper Cox model, the residuals for every single term were not obtained. In this 
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case, hypothesis tests were used to prescreen potential nonlinear forms or all potential 

interaction terms (at 0.05 significance level). It was easy to setup hypothesis tests (see 

section 1.6 for the formulation of the hypotheses tests) to check for existence of 

polynomial forms or interaction terms. As an example:  

Model 1 𝑆𝑆(𝑡𝑡|𝑋𝑋) = 𝑥𝑥1𝑇𝑇𝛽𝛽1  

Model 2 𝑆𝑆(𝑡𝑡|𝑋𝑋) = 𝑥𝑥1𝑇𝑇𝛽𝛽1 + 𝑓𝑓(𝑥𝑥1)𝑇𝑇𝛽𝛽 

Model 1'  𝑆𝑆(𝑡𝑡|𝑋𝑋) = 𝑥𝑥1𝑇𝑇𝛽𝛽1 + 𝑥𝑥2𝑇𝑇𝛽𝛽2 

Model 2' 𝑆𝑆(𝑡𝑡|𝑋𝑋) = 𝑥𝑥1𝑇𝑇𝛽𝛽1 + 𝑥𝑥2𝑇𝑇𝛽𝛽2 + (𝑥𝑥1:𝑥𝑥2)𝑇𝑇𝛽𝛽I 

where 𝑓𝑓(𝑥𝑥1)𝑇𝑇 is the nonlinear functional form of 𝑥𝑥1. 

The difference in the partial log likelihood deviance between model 2 and model 1 

should be the deviance corresponding to the nonlinear form of 𝑥𝑥1, which were checked 

using Wald test; and the difference in the deviance between model 2' and model 1' was 

the deviance corresponding to the interaction terms between 𝑥𝑥1: 𝑥𝑥2; again hypothesis was 

evaluated using Wald test.  

For nonlinear functional forms, a quadratic form of the factors was first introduced to 

the Cox PH model, the deviance difference statistics between model 2 and model 1 was 

used to test the existence of the quadratic term; similarly, the existence of cubic form of 

the factors was tested using the deviance difference between the model with quadratic 

and cubic form of factors. For interactions terms, all functional forms of the participating 

factors (factors involved in the interactions) were used to construct interaction terms. 

Table 46 presents the highest polynomial terms that were found to be significant from 

the Wald tests on the deviance difference (detailed above); the p-values from the Wald 

tests are also presented. A total of 19 factors were found to have significant nonlinear 

polynomial forms. Theoretically, if a higher order polynomial form of a particular factor 

was found to be significant, any lower order forms for the same factor should also be 

included in the initial survival model. As an example, the highest degree of the significant 

polynomial form for FGF18 was 3, then the cubic form, quadratic form and linear form 

of the gene should all be included in the initial model as well as the pair-wise interactions 

involving the gene signature, FGF18. Besides these predictors expressed in nonlinear 

polynomial forms, the rest of the 57 predictors were also included in the initial survival 
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model in their original scale.  

Table 46. All Possible 3-Degree Polynomial Forms of Factors – NKI70 Data 

Variables Age Contig63649_RC QSCN6L1 FGF18 DIAPH3.1 
Degrees 3 2 2 3 2 
P-values 0.0448 0.0465 0.0203 0.0489 0.0478 
Variables Contig32125_RC DIAPH3.2 RP5.860F19.3 KNTC2 WISP1 
Degrees 3 2 2 2 3 
P-values 0.0151 0.0163 0.0334 0.0046 0.0128 
Variables CDC42BPA TGFB3 MELK DTL ORC6L 
Degrees 2 2 2 2 2 
P-values 0.0072 0.0187 0.0456 0.0127 0.0251 
Variables LOC643008 MCM6 PITRM1 C20orf46 

 Degrees 3 2 3 2 
 P-values 0.0274 0.0474 0.0464 0.0222 

 
For interactions, the Wald test on the deviance difference detected a total of 508 

significant interactions, which were constructed from all potential polynomial forms for 

the 19 factor as found in Table 46, and the rest of 57 predictors in their original scale; the 

list of the 508 significant interactions is presented in Appendix 9. As mentioned in 

section 3.8.4, when an interaction between any two factors was included in the model, 

then all potential functional forms (as determined from the previous paragraph) from the 

two factors should also be included in the initial survival model and the interaction terms 

should be constructed by all potential functional forms of the two factors. Thus, the above 

508 significant interactions, all possible polynomial forms of the 19 significant nonlinear 

factors and the rest of the 57 factors in their original scale formed a total of 735 covariate 

terms; detailed list of the 735 terms is presented in Appendix 10.  

The proportionality assumptions were only tested for the 5 clinical factors; as 

mentioned earlier, the time-varying or time-dependent gene signatures did not make any 

sense, especially for the short study duration (17 months). The scaled Schoenfeld 

residuals plots of the 5 clinical factors were produced; the 3-level categorical factor, 

grade of tumor, was handled by the typical Cox model internally. 

Since the 3-degree polynomial form of Age was found to be significant (see Table 

46), the proportionality test for Age was carried out using linear, quadratic and cubic 

forms of Age; the proportionality tests for the rest of the clinical factors were performed 

using the factors in their original forms, since they were all categorical. The scaled 

  150 



 

Schoenfeld residual plots for the 5 clinical factors are presented in Figure 78; the 

proportionality assumptions were tested using a global Chi-square test[15]; results are 

presented in Table 47.  

Table 47. Proportionality Assumptions for All Clinical Factors – NKI70 Data 

 
ρ  Chisq P-Value 

Diameter -0.3029 4.37 0.0366 
N 0.2926 5.28 0.0216 
ER 0.0429 0.09 0.7604 
Grade -0.2677 3.66 0.0558 
Age3 -0.4140 11.50 0.0007 
GLOBAL NA 16.62 0.0053 

 

It can be seen from the table that proportionality tests showed significance for almost 

all of the clinical factors except for Estrogen Receptor Status (ER), of which the Chi-

square test did not show significance due to the quadratic pattern of the scaled Schoenfeld 

residuals against time (shown in Figure 78), but the quadratic pattern was a clear 

evidence of non-proportionality. Thus, extension 2 from Section 3.8.5 was attempted for 

the 5 clinical factors; time-dependent interaction terms were constructed between the 

original factor and logarithm of time, after which proportionality assumptions were tested 

again, just to ensure non-proportionality had been fixed. 

  

Figure 78. Scaled Schoenfeld Residuals 
for All Clinical Factors – NKI70 Data 

Figure 79. Scaled Schoenfeld Residuals 
for Clinical Factors + Diam:log(Time) 

from Cox Model – NKI70 Data 
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Table 48 presents the results of non-proportionality test for all clinical factors as well 

as the interaction term between the diameter of tumor and logarithm of time. Figure 79 

displays the scaled Schoenfeld residuals plot for all clinical factors and the interaction 

term. Several factors showed slight patterns of non-proportionality, especially for the 

interaction between diameter of tumor:logarithm of time, which displayed some patterns 

of non-proportionality; but none of the proportionality tests was significant. Thus, with 

the addition of the time-dependent interaction term between diameter of tumor and 

logarithm of time, the non-proportionality issues were alleviated to allow for applications 

of Cox proportional hazard model. 

Table 48. Proportionality Tests for Clinical Factors + Diam:log(Time) – NKI70 Data 

 ρ Chisq P-Value 
Diam -0.049 0.07 0.7970 
N 0.228 1.50 0.2200 
ER 0.071 0.14 0.7040 
Grade 0.095 0.34 0.5580 
I(Age3) 0.117 0.45 0.5030 
Diam:log(time) 0.748 2.50 0.1140 
GLOBAL NA 4.26 0.6420 

 

4.2.1.3 Analysis (Model Selection) 

For this case study, typical Cox PH models were not able to handle so many 

predictors with such small number of events (due to singular design matrix). Therefore, 

only RSF model, penalized Cox regression (including lasso, ridge, elastic-net Cox 

regression), principal component (PCR) and partial least squares Cox regression models 

were intended. Again, the original data were randomly partitioned into training set which 

included a total of 32 events from 108 (75%) subjects and test set with 16 events from 36 

(25%) subjects. The training set was used to train and tune the models; the test set was 

used for assessing predictions performance.  

4.2.1.3.1 Nonparametric Random Survival Forest (RSF) 

As discussed in section 3.3.1.2, Random survival forest (RSF) is a nonparametric 

approach with little or no assumptions, nonlinearity, non-proportionality, 

multicollinearity or interactions should be of no concern for RSF model; therefore it was 

reasonable to evaluate the two RSF models, log-rank based RSF and conditional 
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inference based RSF models based the training set without consideration of interactions 

or transformations.  

4.2.1.3.1.1 Log-rank Based Random Survival Forest (RSF) 

All 76 factors were fitted to the log-rank based RSF. Table 49 presents the variable 

importance (VIMP) of a subset of the 76 factors; one gene signature of the least 

importance was GPR180 with VIMP of -0.0027; 3 gene signatures with the least absolute 

value of VIMP were Grade.Intermediate, Contig40831.RC and PECI.1 with VIMP = 0; 

the factors with VIMP ≥ 0.0027, which was the absolute value of the least VIMP (from 

factor GPR180), should be potentially important. As a general rule, only factors with 

VIMP ≥ the absolute value of the least VIMP should be of interest.  

Table 49. VIMP from Log-Rank Based RSF – NKI70 Data 

Factors VIMP Relative VIMP Factors VIMP Relative VIMP 
ZNF533 0.0236 1.0000 Diam.GT2 0.0028 0.1167 

PRC1 0.0108 0.4598 DTL 0.0027 0.1165 
QSCN6L1 0.0070 0.2960 ⋮  ⋮  ⋮  

RFC4 0.0066 0.2778 Grade.Intermediate 0.0000 0.0015 
CDCA7 0.0046 0.1970 Contig40831.RC 0.0000 -0.0012 
IGFBP5 0.0046 0.1934 PECI.1 0.0000 -0.0020 
SLC2A3 0.0034 0.1434 ⋮  ⋮  ⋮  

N.GE4 0.0028 0.1178 GPR180 -0.0027 -0.1137 
 

 

 
Figure 80. OOB Error Rate and VIMP from Log-Rank Based RSF – NKI70 Data 
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Figure 80 displays the cross-validation error and the VIMP for all factors. Based on 

the CV errors, the log-rank based RSF was stabilized at 25 trees and above, while the tree 

response still exhibited some random variations due to the nature of bootstrap 

aggregation. For VIMP plot, the factors were ordered from the least VIMP to the most 

VIMP; the factors with negative VIMP were colored in red and the ones with positive 

VIMP were colored in blue. 

Table 50. Variable Selection from Log-Rank Based RSF – Cast Study 1 
Minimum Depth Rule Variable Hunt  Variable Importance 

Genes 
Min 

Depth VIMP Genes 
Min 

Depth 
Rel 

Freq Genes 
Rel 

Freq 
ZNF533 6.05 0.0236 ZNF533 2.26 100 ZNF533 98 
MS4A7 6.18 0.0017 PRC1 2.72 76 PRC1 58 
EXT1 6.44 -0.0008 NM.004702 3.04 52 N.GE4 56 
PRC1 6.49 0.0108 IGFBP5.1 2.96 48 QSCN6L1 52 
NM.004702 6.50 0.0020 IGFBP5 2.97 42 MS4A7 48 
PECI.1 6.52 0.0000 QSCN6L1 2.91 40 IGFBP5 44 
RTN4RL1 6.54 0.0012 PECI.1 3.36 36 GNAZ 34 
IGFBP5 6.55 0.0046 CDCA7 3.32 36 ER.Pos 28 
GNAZ 6.60 0.0023 EXT1 3.24 28 ECT2 26 
IGFBP5.1 6.67 0.0020 CENPA 3.39 24 EGLN1 22 
QSCN6L1 6.68 0.0070 OXCT1 3.23 18 ORC6L 18 
AA555029.RC 6.74 0.0015 SLC2A3 3.56 18 FLT1 16 
SLC2A3 6.75 0.0034 MMP9 3.43 16 CDCA7 16 
WISP1 6.76 0.0003 PECI 3.25 16 DTL 12 
COL4A2 6.78 -0.0023 N.GE4 5.01 14 RFC4 10 
CDCA7 6.78 0.0046 Contig40831.RC 3.50 14 GMPS 8 
AYTL2 6.83 -0.0009 GPR126 3.40 14 NM.004702 8 
DTL 6.85 0.0027 GNAZ 3.41 12 PECI 6 
ECT2 6.87 0.0005 RUNDC1 3.36 12 COL4A2 6 
SCUBE2 6.90 0.0005 ER.Pos 5.77 8 EXT1 4 
EGLN1 6.90 0.0023 UCHL5 3.51 8 OXCT1 4 
C16orf61 6.94 0.0006 FLT1 3.58 6 BBC3 2 
UCHL5 6.94 -0.0001 TGFB3 2.96 6 RP5.860F19.3 2 
MMP9 6.95 0.0005 ORC6L 3.70 6 C9orf30 2 
RFC4 6.95 0.0066 MS4A7 2.41 6 ESM1 2 
OXCT1 6.96 0.0003 DIAPH3 4.03 2 

  HRASLS 6.96 0.0004 AP2B1 3.52 2 
  PECI 6.96 0.0008 EGLN1 2.71 2 
  For log-rank based RSF model, important factors were selected using one of three 

different options, minimum depth, variable hunting and variable importance. There were 

slight differences amongst the results obtained with the 3 options. Table 50 presents all 
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factors selected with the three options. The same background color indicates the factors 

were consistent across all three options; the shaded background indicates the factors were 

consistent across two of the options. As can be seen, VIMP option selected the most 

factors in common with the other two options. 

Additionally, Log-Rank Based RSF was able to systematically detect important pair-

wise interactions, which could be useful to identify potential interactions for Cox 

regression analysis. Two options were available for identify potential interaction terms, 

maximum subtree and VIMP. However, for this cases study, a total of 2925 pair-wise 

interactions were constructed from the 76 factors (see section 4.2.1.2 for details) without 

considering the polynomial transformations, the minimum depth matrix for the maximum 

subtree analysis should have dimensions of 2925 × 2925, which was almost impractical 

to review; thus only the VIMP of the interaction was checked and the maximum subtree 

analysis was not performed. An example of the pair-wise interactions with relatively 

large VIMP as compared to either of the factors involved in the interaction is presented in 

Table 51. 

Table 51. A Subset of All Pair-Wise Interactions with Highest VIMP from Log-rank 
Based  –  NKI70 Data 

Interactions 
Factor 1 

(×10-3)  
Factor 2 

(×10-3) 
Paired 
(×10-3) 

Additive 
(×10-3) 

Diff 
(×10-3) 

Relative 
Diff 

COL4A2:Age -0.1 1.8 2.9 1.7 1.1 11.00 
AYTL2:SLC2A3 -0.6 -0.1 0.3 -0.7 1 10.00 
QSCN6L1:SLC2A3 10.6 -0.1 9.6 10.6 -0.9 9.00 
RFC4:C9orf30 8.1 -0.1 7 7.9 -0.9 9.00 
HRASLS:KNTC2 0.1 -0.2 0.9 0 0.9 9.00 
CENPA:ESM1 0.1 0.4 -0.1 0.6 -0.7 7.00 
HRASLS:DTL 0.1 0.7 1.5 0.8 0.7 7.00 
HRASLS:CDC42BPA 0.1 0 -0.6 0.1 -0.7 7.00 
⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  
PALM2.AKAP2:FLT1 0.4 -2.1 -1.5 -1.7 0.2 0.50 
C9orf30:Contig35251.RC -0.6 -1.5 -1.8 -2.1 0.3 0.50 
⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

 

During the cross validation of the log-rank based RSF model, the OOB outcomes 

(from the left out sample) were predicted (based on the training set). The predicted OOB 

survival probability, OOB cumulative hazard and OOB hazard function for a subset of 3 

subjects from the training set are presented in Figure 81 and the predicted OOB survival, 
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OOB Brier scores and OOB mortality for all subjects from the training set are presented 

in Figure 82. 

  
Figure 81. CV Survival, Cumulative 
Hazard and Hazard for LR-RSF (A 
Subset of 3 Subjects) – NKI70 Data 

Figure 82. CV Survival, CV Error and 
Mortality for Log-rank Based RSF (All 

Subjects) – NKI70 Data 

Similar to the predictions from the cross validation step, predictions on the test set 

were obtained from the cross validated LR-RSF model; the predicted mortality rate vs. 

each factor for the test set is presented in Figure 83 and the predicted survival probability 

against each factor for the test set is presented in Figure 84. 

  
Figure 83. Predicted Mortality Rate for 
the first 12 Important Factors from LR-

RSF  –  NKI70 Data 

Figure 84. Predicted Survival for the 
first 12 Important  Factor from LR-RSF  

–  NKI70 Data 
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4.2.1.3.1.2 Conditional Inference Based Random Survival Forest (RSF) 

The conditional inference based random survival forest (CINF-RSF) model was 

applied to the data with 76 factors; a conditional inference forest tree is presented in 

Figure 85. The CINIF-RSF model was a reasonable approach for highly correlated 

survival data. However, it is awkward to see negative predicted survival probably in the 

terminal leaves (Figure 85). In the nonparametric CINF-RSF analysis, survival 

probability is a step function of time; whenever there is an event, the survival probability 

is declined one step. For the forest tree obtained from CINF-RSF, the survival 

probabilities in the terminal node were estimated at the last time point; but prior to the 

terminal leaf, if all subjects within the same branch had already had an event, i.e., the 

actual survival probability might have already reached 0 before the terminals. But the 

predicted survival probability from the branch above the terminal leaf might not have 

reached 0 yet (due to incorrect predictions); thus failure events could still be predicted at 

the terminal leaves from the model. In other words, the cross validated CINF-RSF model 

could have incorrectly predicted event-free for a subject within a leaf when a metastasis 

event actually occurred for the same subject; therefore at the terminal leaf, incorrect 

predictions could have led to negative the survival probability.  

In summary, the cross validated CINF-RSF model picked ZINF533, EGLN1, 

UCHL5, PRC1, MTDH, C20orf46, LGP2 and RTN4R1 as important prognostic factors.  

The predicted survival probabilities were obtained from the cross validated 

conditional inference based RSF model based on the test set; the predicted survival 

probability and the KM curve for the test set are presented in Figure 86. There was a 

significant departure in the middle of the predicted survival probability curves from the 

Kaplan-Meier curve; the predicted survival probability curve was overly optimistic, 

which indirectly confirmed the cause of the negative survival probabilities in the terminal 

leaves. The real reason for this optimism was not completely known. It may be partly due 

to the extra loss of information during the split of the forest tree, since the CINF-RSF 

model developed forest trees based on the cutoff intervals of the predictors from the cross 

validation, which could have led to significant information loss due to the nature of 

categorizations. 
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Figure 85. Forest Tree from CINF-RSF  

–  NKI70 Data 
Figure 86. Prediced Survival Probability 

from CINF-RSF Along with Kaplan 
Meier Curve  –  NKI70 Data 

The prediction performance of the cross validated models was assessed again based 

on the test set. The prediction errors, time-dependent AUCs of the two RSF models and 

the corresponding 95% PCIs were estimated based on 1000 bootstrap samples of the test 

set; results are presented in Table 52.  

Table 52. Prediction Error and Time-Dependent AUCs for LR-RSF and CINF-
RSF Models – NKI70 Data Test Set 

 Prediction Errors Time-Dependent AUCs 
Months LR-RSF (95% PCI) CINF-RSF (95% PCI) LR-RSF (95% PCI) CINF-RSF (95% PCI) 

1 0.054  (0.001, 0.134) 0.052  (0.001, 0.129) 0.713  (0.553, 1.000)  0.765  (0.615, 1.000)  
2 0.095  (0.031, 0.177) 0.092  (0.029, 0.172) 0.705  (0.567, 0.826)  0.756  (0.624, 0.870)  
3 0.163  (0.080, 0.245) 0.155  (0.073, 0.239) 0.703  (0.547, 0.828)  0.756  (0.624, 0.868)  
4 0.179  (0.109, 0.255) 0.174  (0.101, 0.251) 0.697  (0.500, 0.829)  0.757  (0.627, 0.867)  
5 0.206  (0.130, 0.276) 0.213  (0.133, 0.293) 0.673  (0.500, 0.825)  0.754  (0.620, 0.867)  
6 0.202  (0.129, 0.268) 0.208  (0.131, 0.286) 0.659  (0.500, 0.816)  0.753  (0.613, 0.871)  
7 0.217  (0.151, 0.289) 0.224  (0.150, 0.299) 0.675  (0.500, 0.816)  0.753  (0.610, 0.866)  
8 0.217  (0.151, 0.289) 0.224  (0.150, 0.299) 0.681  (0.500, 0.820)  0.755  (0.613, 0.869)  
9 0.224  (0.165, 0.290) 0.226  (0.161, 0.292) 0.694  (0.500, 0.820)  0.757  (0.618, 0.871)  

10 0.223  (0.169, 0.283) 0.223  (0.164, 0.284) 0.694  (0.538, 0.819)  0.757  (0.618, 0.869)  
11 0.223  (0.169, 0.283) 0.223  (0.164, 0.284) 0.697  (0.541, 0.821)  0.758  (0.621, 0.871)  
12 0.224  (0.170, 0.403) 0.214  (0.174, 0.332) 0.701  (0.558, 0.819)  0.760  (0.624, 0.871)  
13 0.276  (0.180, 0.419) 0.258  (0.178, 0.377) 0.701  (0.562, 0.829)  0.757  (0.618, 0.870)  
14 0.276  (0.180, 0.419) 0.230  (0.181, 0.298) 0.701  (0.562, 0.829)  0.757  (0.618, 0.870)  

 

Figure 87 presents the plot of the prediction errors and the corresponding 95% PCIs 

and Figure 88 presents the plot of the time-dependent AUCs and the corresponding 95% 

PCIs. For cross comparison, the performance of the cross validated LR-RSF and CINF-
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RSF models are superimposed on top of each other except with different colors. In terms 

of prediction errors, the two RSF models were almost equivalent most of the time, but at 

the tail, the conditional inference based RSF model was slightly better. In terms of the 

time-dependent AUCs, the conditional inference based RSF model was consistently 

better than the log-rank based RSF model, and the difference was quite substantial. 

Prediction Errors Time-Dependent AUCs 

  
 

Figure 87. Prediction Error for LR-RSF 
and CINF-RSF – NKI70 Test Set 

Figure 88. Time-Dependent AUC(t) for 
LR-RSF and CINF-RSF – NKI70 Test 

Set 

It has to be noted that in this case study, a slight different algorithm based on 

asymptotic predictions was implemented for calculation of time-dependent AUCs. Since 

the test set only included a total of 36 subjects, of which 16 subjects had experienced 

metastasis and 2 of which had metastasis within the 1st months. To obtain the 95% PCIs 

for time-dependent AUCs, bootstrap approach was employed, where the 36 subjects were 

sampled with replacement. Then it was highly possible that the first two occurrences of 

metastasis from the test set did not make into one of the bootstrap samples; for this 

particular sample, the first event could occur any time after month 1; then the predicted 

survival time for each subject would have been infinity at month 1, the according to the 

definition of AUC for survival outcome (see section 3.11 for detailed definition of AUC), 

the AUCs could not be estimated at month 1 for this sample. Consequently, the exact 
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approach employed in the simulation study for estimating the time-dependent AUC 

would not work for this case study; therefore an asymptotic method for estimating the 

time-dependent AUC was developed instead: within each random sample, the scheduled 

AUC evaluation time was compared against the time of the next occurrence of metastasis 

event, the AUC(s) at the evaluation time point(s) was (/were) replaced by the AUC at 

occurrence of the next metastasis event, unfortunately the predicted survival probability 

at the occurrence of the next metastasis event should always be no better than the 

predicted survival probability at the evaluation time point(s). Therefore, after the 

replacement, the asymptotic AUCs should always be more pessimistic than the actual 

AUCs of the model, but considering the same method would be used to assess all 

intended survival models for this case study, it should still provide reasonable evidence 

for comparisons in this study. Though the asymptotic method was a little bit pessimistic, 

but with this method, the time-dependent AUCs (mean) and the corresponding 95 

percentile credible intervals were obtained for each time point based on the 1000 

bootstrap samples (200 bootstrap samples for RSF models).  

4.2.1.3.2 Penalized Cox Regression Models 

For evaluation of the penalized Cox regression models, three options were intended. 

The first option was to model all 76 factors or gene signatures in their original scale 

without any transformation or interaction terms. The second option was to model all 

factors in their original scale as well as all pair-wise interactions; thus total of 2925 terms 

(see section 4.2.1.2 for details) were included as covariates for the penalized Cox models. 

The last option was planned to account for all potential 3-degree polynomial 

transformations of the 19 factors whose nonlinear forms were found to be significant (see 

section 4.2.1.2 for details), the linear form for the rest of the 57 factors as well as 508 

significant interactions terms, thus a total of 735 covariate terms were considered for the 

last option (see section 4.2.1.2). The 3 options will be referred to as linear model, 

interaction model and polynomial model, respectively, in this case study.  

Similar to what was done in the simulation study, the penalization terms for lasso Cox 

regression model can obtained via CV using partial log likelihood deviance as the 

selection rule by setting α =1 and α =0 for ridge, but the search grid via partial log 

likelihood deviance is not stable, the search results are dependent on the process (results 
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can be slightly different based on different seeds), but the CV should be able to obtain the 

penalization terms when there are more factors than the number of observations 

available. On the other hand, the CV via Brier score is quite robust and the search paths 

for the penalization terms are very stable; however if the total number of observations are 

less than the number of factors, the search paths based on Brier scores are not able to 

retrieve the penalization terms for lasso and ridge Cox regression models.  

In this case study, the total number of covariate terms well exceeded the total number 

of observations from the training set (108 subjects). Unfortunately, the cross validation 

via Brier score could take at most 108 factors for the lasso and ridge Cox interaction and 

polynomial models, thus the interaction and polynomial options for lasso and ridge 

models could not be  cross validated via Brier score. Then CV with partial log likelihood 

deviance was employed instead. For all elastic-net Cox models, the cross validation via 

interval search was proved to be very reliable and robust from the simulation study, 

therefore the interval search algorithm was employed to retrieve the penalization 

parameters (α and λ) corresponding to the minimum cross-validation errors. For elastic-

net model, there was no restriction on the total number of covariate terms to be included 

in the model. 

4.2.1.3.2.1 Lasso Cox Models 

4.2.1.3.2.1.1 Lasso Cox Linear Model 

For lasso Cox linear model, a total of 76 factors (the categorical factor, Grade of 

tumor had 3 levels, 2 dummy variables were previously created for the relative difference 

within the 3 categories) were considered; the number of factors was less than the total 

number of observations (108), the CV via Brier score was employed. The coefficient 

solution paths for all factors included in the lasso Cox regression linear model are 

displayed in Figure 89; an increasing 𝜆𝜆 could shrink all coefficients towards 0; i.e., if λ is 

sufficiently large, all coefficients could be shrunk to 0, in which case the model would 

have no covariates left; smaller penalization term (λ) could keep more covariates. When λ 

was close to 0, the performance of the lasso model would be dominated by ridge 

regression; most (if not all) of the covariates should be kept in the model. For lasso Cox 

linear model, cross validation via Brier score was employed to retrieve the penalization 

  161 



 

terms corresponding to the minimum CV errors. As a result, the penalization term, λ = 

0.0441, was selected corresponding to the best performance (minimum Brier scores); the 

cross validation error (Brier score) curves are displayed in Figure 90.  

  
Figure 89. Coefficients Solution Path 

for all Factors  – NKI70 Data 
Figure 90. CV Errors for Lasso Cox 

Linear Model – NKI70 Data 

The coefficients obtained from the cross validated lasso Cox linear model are 

presented in Table 53, as a comparison, the unbiased coefficients estimates for the 

corresponding factors obtained from a typical Cox regression model are also presented. 

From the table, it can be seen that smaller coefficients (in absolute values), should have 

less bias, the bigger the absolute values of the coefficients, the bigger the bias. For lasso 

Cox linear model, 3 factors were selected, Diam.GT2, Age and ZNF533; of which, Age 

had the smallest coefficient (0.04) in absolute values, the unbiased coefficient estimate 

for Age was 0.05, the observed bias was very small; for ZNF533, the coefficient estimate 

was -0.6451, the absolute value of the coefficient was the biggest; the unbiased 

coefficient estimate was -1.6468; the bias was quite substantial. The forest plot of the 

estimated hazard ratios from Lasso Cox linear model is presented in Figure 91.  

Table 53. Biased of Coefficients from Lasso (λ=0.0441) Cox Linear Model and 
Unbiased Estimates from Typical Cox Regression Model – NKI70 Data 

 Lasso Cox Regression (Biased)   Cox Regression (Unbiased) 

 
Coef HR SE (Coef) P-val   Coef HR SE (Coef) P-val 

Diam.GT2 0.1075 1.1135 0.3666 0.7693   0.8182 2.2664 0.3894 0.0356 
Age -0.0407 0.9601 0.0316 0.1987   -0.0585 0.9432 0.0312 0.0607 
ZNF533 -0.6451 0.5246 0.4186 0.1233   -1.6468 0.1927 0.4967 0.0009 
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Figure 91. Forest Plot of Hazard Ratios for Lasso Linear Cox model (λ=0.0441) – 
NKI70 Data 

The cross validated model was then evaluated against the test set to obtain the 

prediction performance, including prediction errors and time-dependent AUCs. For cross 

comparisons with the other lasso Cox models, the prediction performance will be 

presented later in section 4.2.1.3.2.2; the prediction errors will be presented in Table 58 

and the corresponding plot will be displayed in Figure 96 and the prediction AUCs will 

be presented in Table 59 and the corresponding plot will be displayed in Figure 97. 

4.2.1.3.2.1.2 Lasso Cox Interaction Model 

Lasso Cox interaction model was intended with a total of 2925 covariate terms, 

including 76 factors and all pair-wise interactions; the number of covariates was much 

more than the total number of observations in the training set (32 events from 108 

observations) or the original NKI70 dataset (48 events from 144 observations). In this 

case, the solution paths via Brier score did not work; instead the partial log likelihood 

deviance had to be used in the cross validate. The CV via partial log likelihood deviance 

should be able to obtain the penalization terms even if the number of covariates is more 

than the total number of observations, although the CV did not guarantee to achieve the 

global minimum of partial log likelihood deviance or global minimum of Brier scores. 

Unfortunately, the CV with partial log likelihood deviance was not very robust; in order 

to endure a better chance for finding the global minimum, the CV process was repeated 

100 times, the minimum deviance and the corresponding λ and seed used within each of 

the 100 CV process were saved. At the end, the λ corresponding to the minimum of all 

saved minimum deviance from the 100 CVs should be the optimal penalization 
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parameter. Again, even 100 CVs still did not guarantee to find the global minimum of the 

partial log likelihood deviance, it should ensure a better chance to find a reasonably 

minimal partial log likelihood deviance. 

Table 54. Top 10 Minimum Deviance from 100 CVs of Lasso Cox Interaction 
Models via Partial Log Deviance – NKI70 Data 

Iteration Seeds λ  Min Deviance 
70 -516583668 0.363084 9.086516 
29 1524008346 0.346582 9.219817 
38 -801485208 0.346582 9.230079 
18 307686511 0.315792 9.263575 
60 1495701791 0.346582 9.267386 
25 -999248145 0.363084 9.337632 
4 1954615209 0.398485 9.341521 
16 -1297945748 0.437337 9.380679 
90 1473660482 0.380373 9.459718 
68 1977097653 0.346582 9.485587 
70 -516583668 0.363084 9.086516 

 

Table 54 only presents the results from the smallest 10 minimum deviances out of 

100 CVs; Iteration is the number of cross validation in which the minimum deviance was 

obtained; the seeds corresponding to the 10 minimum deviances are also presented. 

Unfortunately, the deviance was not equivalent to the CV error; the penalization terms for 

the reasonably minimal partial log likelihood deviance may not correspond to the 

minimum of CV error.  

  
Figure 92. Minimum Deviance from 100 

CVs of Lasso Cox Interaction Models 
vs. λ – NKI70 Data 

Figure 93. Biased Estimators of Hazard 
Ratios from Lasso Cox Interaction Model 

with λ = 0.3630845 – NKI70 Data 
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Figure 92 displays the minimum partial log likelihood deviance from the 100 CVs 

against the corresponding λ (presorted by the minimum deviance); the red vertical line is 

the λ corresponding to the reasonably minimal deviance obtained from the 100 cross 

validations. 

As can be seen that the minimum partial log likelihood deviance was not 

monotonically increasing with λ; the irregular shape of the curve indicated that the 

deviance could have many local minimums; within each iteration, the CV process had 

selected a minimum partial log likelihood deviance and each minimum corresponded to a 

local minimum of the deviance function. Fortunately, there was a single λ valued at 

0.3630845, corresponding to the reasonably minimal deviance of 9.086516, from the best 

lasso Cox interaction model.  

With λ = 0.3630845, the lasso Cox interaction model retained 25 covariate terms; a 

brief summary of the coefficients corresponding to the 25 covariate terms is presented in 

Table 55; full summary of the coefficient estimates for all covariates from the lasso 

interaction model can be found in Appendix 11 and the unbiased estimates are presented 

in Appendix 12.  

Table 55. Biased Coefficient Estimates from Lasso Cox Interaction Model with λ = 
0.3631 – NKI70 Data 

Terms Coef Terms Coef Terms Coef 
Age:TSPYL5 -0.0068 Age:COL4A2 0.0123 Age:PRC1 0.0313 
Age:Contig63649.RC 0.0089 Age:GPR126 -0.0397 Age:CENPA 0.0047 
Age:QSCN6L1 0.0064 Age:PECI.1 -0.0156 Age:NM.004702 0.0440 
Age:Contig32125.RC 0.0213 Age:CDCA7 0.0135 Age:ESM1 0.0208 
Age:MMP9 0.0106 Age:LOC643008 -0.0013 Age:C20orf46 -0.0055 
Age:RUNDC1 0.0359 Age:MS4A7 -0.0383 Age:N.GE4 0.0107 
Age:KNTC2 -0.0526 Age:IGFBP5 0.0387 Age:ER.Pos -0.0289 
Age:RAB6B -0.0034 Age:HRASLS -0.0377 Age:Grade.Well -0.0003 
Age:ZNF533 -0.0119     

 

Surprisingly, all of the 25 covariate terms as selected by the CV were interactions 

involving Age, which suggested that Age was probably the most important factor for the 

survival outcome. Forest plot of the biased estimates of the hazard ratios (exponential of 

the coefficients) from lasso Cox interaction model is presented in Figure 93.  

The selected model was assessed against the test set to obtain the prediction 

performance, which will be presented in section 4.2.1.3.2.2 for cross comparison with the 
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other 2 lasso Cox models. 

4.2.1.3.2.1.3 Lasso Cox Polynomial Model 

The lasso Cox polynomial model, was intended to model the 735 covariate terms 

including all potential 3-degree polynomial forms of the 19 factors, the 57 factors in their 

original scale and all potential interactions; again, the number of covariate terms were 

much more than the total number of observations in the training set (32 events from 108 

observations). Therefore, Brier score could not be used to cross validate the model. This 

model was cross validated via partial log likelihood deviance as well. Similarly, the cross 

validation was repeated 100 times, each with different seed. Table 56 only presents the 

smallest 10 minimum deviances of the 100 CVs; Iteration is the number of CV in which 

the minimum deviance was obtained based on partial likelihood deviance; the seeds 

corresponding to the minimum deviances were also saved.  

Table 56. Top 10 Minimum Deviance from 100 CVs of Lasso Cox Polynomial 
Regression Models via Partial Log Deviance – NKI70 Data 

Iteration Seeds λ  Min Deviance 
64 -1024794212 445.440228 9.6388 
93 -1693777294 709.266811 9.9326 
87 -1746691985 937.608983 9.9534 
3 1356247314 646.257502 9.9570 
54 432562754 1638.49833 9.9592 
85 2131291292 1716.51666 9.9674 
92 141228043 2377.18052 9.9761 
34 -1946920574 2377.18052 9.9820 
62 -11704700 854.314385 9.9991 
59 1904569528 2377.18052 10.0255 
96 -1003577209 2377.18052 10.0288 

 

Figure 94 displays the minimum deviance from the 100 CVs against the 

corresponding penalization term λ; the red vertical line is the λ corresponding to the 

reasonably minimal deviance of all minimum deviance obtained from the 100 cross 

validations. The minimum deviance curve was not necessarily increasing with increasing 

λ’s again; however, of all penalization terms (λ’s), there was a single λ valued at 

445.440228 corresponding to the reasonably minimal deviance at 9.6388. 

With the penalization term, λ=445.440228, the model retained three factors, Age3, 

Age3:GNAZ and Age3:Contig40831.RC. The coefficient estimates for the 3 factors are 
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presented in Table 57; as a comparison, the unbiased estimates for the three coefficients 

estimated from a typical Cox model are also presented. 

 

 

 
Figure 94. Minimum Deviance from 
100 CVs of Lasso Cox Polynomial 

Regression Models vs. λ – NKI70 Data 

Figure 95. Forest Plot of Hazard Ratios 
from Lasso Cox Interaction Model with λ 

= 445.44 – NKI70 Data 

The coefficient estimates from the lasso Cox polynomial regression were not too 

much biased from the ones obtained from typical Cox regression model, but substantial 

differences were observed in the p-values. The biased estimates of the hazard ratios from 

lasso Cox polynomial model are displayed in the top half of Figure 95; the bottom half of 

the figure presents the unbiased estimates of the hazard ratios from a typical Cox 

regression model. Some bias was observed, even though not very much; the 95% 

confidence intervals of the unbiased estimates of the hazard ratios obtained from the 

typical Cox regression model were slightly narrower than the ones from the lasso Cox 

polynomial model. 

Table 57. Biased and Unbiased Coefficient Estimates from Lasso Cox Polynomial 
Regression Model with λ = 445.44 – NKI70 Data 

 
Biased Coefficients –  Lasso Cox 

Polynomial 
Unbiased Coefficients –  Typical 
Cox Model 

 Coef HR 
SE 

(coef) z P-val Coef HR 
SE 

(Coef) z P-val 
Age3 -7.9E-06 1.0 5.9E-6 -1.35 0.178 -1.0E-05 1.0 5.8E-6 -1.75 0.080 
Age3:GNAZ 1.2E-05 1.0 1.1E-5 1.08 0.280 1.8E-05 1.0 1.1E-5 1.69 0.091 
Age3:Contig40831.RC 1.2E-07 1.0 1.1E-5 0.01 0.991 7.1E-06 1.0 1.1E-5 0.63 0.530 

 

4.2.1.3.2.2 Prediction Performance of Lasso Linear, Lasso Interaction and Lasso 
Polynomial Cox Models 

The 3 lasso Cox models, lasso linear, lasso interaction and lasso polynomial with 
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appropriate penalization term (λ) obtained from cross validations were assessed based on 

the test set for prediction performance. The prediction errors and the corresponding 95% 

PCIs (obtained from 1000 bootstrap samples) are presented in Table 58 and the plots of 

prediction errors of the 3 models were superimposed on top of each other, which is 

displayed in Figure 96.  

Table 58. Prediction Errors for Lasso Cox Models – NKI70 Test Set 

Months 
Lasso Linear  

(95% PCI) 
Lasso Interaction  

(95% PCI) 
Lasso Polynomial  

(95% PCI) 
1 0.053  (0.000, 0.130) 0.051  (0.000, 0.128) 0.054  (0.000, 0.133) 
2 0.090  (0.027, 0.175) 0.085  (0.017, 0.175) 0.095  (0.029, 0.184) 
3 0.162  (0.075, 0.255) 0.145  (0.057, 0.247) 0.166  (0.077, 0.260) 
4 0.187  (0.105, 0.282) 0.174  (0.084, 0.283) 0.195  (0.110, 0.290) 
5 0.234  (0.148, 0.327) 0.228  (0.123, 0.336) 0.240  (0.155, 0.331) 
6 0.230  (0.147, 0.319) 0.223  (0.121, 0.329) 0.236  (0.152, 0.324) 
7 0.238  (0.154, 0.323) 0.238  (0.140, 0.343) 0.245  (0.161, 0.332) 
8 0.238  (0.154, 0.323) 0.238  (0.140, 0.343) 0.245  (0.161, 0.332) 
9 0.247  (0.182, 0.316) 0.252  (0.167, 0.348) 0.246  (0.181, 0.313) 

10 0.240  (0.181, 0.302) 0.243  (0.162, 0.332) 0.238  (0.181, 0.300) 
11 0.241  (0.181, 0.304) 0.243  (0.162, 0.334) 0.239  (0.181, 0.301) 
12 0.234  (0.184, 0.374) 0.237  (0.150, 0.432) 0.230  (0.185, 0.367) 
13 0.261  (0.194, 0.355) 0.275  (0.157, 0.437) 0.257  (0.189, 0.357) 
14 0.261  (0.194, 0.355) 0.275  (0.157, 0.437) 0.257  (0.189, 0.357) 

 

In Figure 96, the black solid curve, the red dashed curve and the blue dotted curve are 

the prediction errors from the lasso Cox linear, lasso Cox interaction and lasso Cox 

polynomial models, respectively; the gray shaded area, the orange shaded area and the 

greenish yellow shaded area covers the 95% PCI of the prediction errors from the lasso 

Cox linear, lasso Cox interaction and lasso Cox polynomial models, respectively. As can 

be seen, very minimal difference was observed between the three models. Specifically, 

within the first 9 month, the lasso Cox interaction model had the best prediction errors 

numerically and the lasso Cox polynomial model was the worst, however, the maximum 

difference of 0.02 in prediction errors between any two models was probably not much 

meaningful. Beyond month 9, the lasso Cox polynomial model had the best prediction 

errors numerically and the lasso Cox interaction model was the worst, again the 

maximum difference had never exceeded 0.02. In terms of the 95% PCIs, the 3 lasso Cox 

models almost overlapped with each other for the entire study period; whilst the lasso 
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Cox interaction model had the widest 95% percentile credible intervals. Overall, the 

prediction errors of 3 lasso cox models were almost equivalent to each other except that 

the lasso Cox interaction model had the worst prediction errors in the tail (beyond 12-

year). 

  
Figure 96. Prediction Errors for Lasso 

Cox Models – NKI70 Test Set 
Figure 97. Time-Dependent AUCs for 
Lasso Cox Models– NKI70 Test Set 

Besides predictor errors, model performance was also evaluated using time dependent 

AUCs; results are summarized in Table 59 and the plot of AUCs is displayed in Figure 

97. With respect to the time-dependent AUCs, the lasso Cox polynomial model had 

consistently the worst performance; the lasso Cox interaction model had consistently the 

best performance; and the lasso Cox linear model was just in the middle. Thus, 

polynomial transformation of the factors did not improve the performance of lasso Cox 

model. Again, the difference was quite persistent among the three lasso models even 

though it was very minimal.   

In terms of prediction errors, the 3 lasso Cox models were almost equivalent, except 

lasso Cox interaction model had the worst prediction errors in the tail (beyond month 12). 

However, in terms of time-dependent AUCs, the lasso Cox interaction model 

demonstrated the best performance over the other two models and the lasso Cox 

polynomial model had the worst performance. Therefore, polynomial transformation of 

input factors was probably unnecessary for lasso Cox model. On the other hand, the lasso 
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interaction Cox model had the best AUCs for the entire study duration, which confirmed 

the existence of interactions among factors. 

Table 59. Prediction AUCs for Lasso Cox Models – NKI70 Test Set 

Months 
Lasso Linear  

(95% CI) 
Lasso Interaction  

(95% CI) 
Lasso Polynomial  

(95% CI) 
1 0.738  (0.592, 1.000)  0.752  (0.602, 1.000)  0.711  (0.561, 1.000)  
2 0.725  (0.587, 0.855)  0.740  (0.602, 0.886)  0.698  (0.561, 0.831)  
3 0.722  (0.562, 0.852)  0.737  (0.588, 0.883)  0.695  (0.524, 0.828)  
4 0.714  (0.500, 0.851)  0.732  (0.500, 0.883)  0.691  (0.500, 0.828)  
5 0.694  (0.500, 0.848)  0.712  (0.500, 0.882)  0.673  (0.500, 0.822)  
6 0.680  (0.500, 0.845)  0.697  (0.500, 0.882)  0.662  (0.500, 0.823)  
7 0.702  (0.500, 0.847)  0.718  (0.500, 0.882)  0.679  (0.500, 0.820)  
8 0.706  (0.500, 0.845)  0.721  (0.500, 0.881)  0.682  (0.500, 0.820)  
9 0.716  (0.500, 0.849)  0.732  (0.500, 0.881)  0.690  (0.500, 0.823)  

10 0.730  (0.554, 0.855)  0.735  (0.578, 0.882)  0.693  (0.521, 0.826)  
11 0.722  (0.575, 0.852)  0.738  (0.594, 0.882)  0.696  (0.552, 0.828)  
12 0.724  (0.585, 0.852)  0.739  (0.600, 0.883)  0.697  (0.560, 0.826)  
13 0.724  (0.587, 0.852)  0.739  (0.601, 0.883)  0.697  (0.561, 0.828)  
14 0.724  (0.587, 0.852)  0.739  (0.601, 0.883)  0.697  (0.561, 0.828)  

 

4.2.1.3.2.3 Ridge Cox Models 

4.2.1.3.2.3.1 Ridge Cox Linear Model 

Ridge Cox linear model started with the original 76 factors without any 

transformation or interactions; the model was cross validated via Brier scores to obtain 

the optimal penalization term, λ. The solution paths of coefficients and penalization terms 

for ridge Cox linear model are not presented, but can be provided upon request. The CV 

errors are presented in Figure 98. The λ corresponding to the best model was 0.04111. 

For this model, the CV errors were much worse than the full apparent model, which 

was possibly due to overfitting; the ridge Cox linear model had probably picked up too 

many noise covariates with the penalization term. The CV errors from ridge regression 

(.632+ estimates) were estimated via the predicted survival probability from the 10th left-

out sample based on the model with the penalization parameters obtained from the 9-fold 

CV samples. And the CV error of the "full apparent" model was obtained by fitting the 

full model with the penalization term estimated from the entire training set. Therefore, 

the CV errors for the full apparent ridge Cox linear model were different from the ones 

for full apparent Lasso Cox linear model, since the penalization terms were different. The 
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penalization parameter λ=0.04111 achieved the minimum cross validation errors for the 

ridge Cox linear model by keeping all covariates. 

  
Figure 98. CV Errors for Ridge Cox 

Linear Regression Model with λ = 0.0411  
– NKI70 Data 

Figure 99. Forest Plot of the Subset of 
Hazard Ratios from Ridge Cox Linear 

Regression – NKI70 Data 

With the penalization parameter, λ = 0.04111, the model kept all 76 factors; the 

coefficient estimates for a sample of 11 factors (randomly selected) are presented in 

Table 60; the complete summary of the coefficient estimates from the ridge Cox linear 

regression is presented in Appendix 11. 

Table 60. A Subset of Coefficients from the Ridge Cox Linear Regression with λ 
=0.0411 – NKI70 Data 

 
Coef HR SE (coef) z P-val 

Diam.GT2 0.3059 1.358 1.0199 0.2999 0.7642 
N.GE4 0.2979 1.347 1.0546 0.2825 0.7776 
ER.Pos -0.3960 0.673 2.4597 -0.1610 0.8721 
Grade.Well -0.1101 0.896 1.3102 -0.0840 0.9331 
Grade.Intermediate 0.0664 1.069 1.0708 0.0620 0.9505 
Age -0.0472 0.954 0.0904 -0.5219 0.6017 
TSPYL5 -0.1953 0.823 1.3696 -0.1426 0.8866 
Contig63649.RC 0.1990 1.220 2.2566 0.0882 0.9297 
DIAPH3 0.0101 1.010 3.8526 0.0026 0.9979 
⋮  ⋮  ⋮ ⋮ ⋮ ⋮ 
ESM1 0.2628 1.301 1.8927 0.1389 0.8896 
C20orf46 -0.1501 0.861 2.0366 -0.0737 0.9412 
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Forest plot of the hazard ratios is displayed in Figure 99; the hazard ratio for gene 

signature, DIAPH3, had a very wide 95% CI of [0.0005, 1921.8], which was almost 20 

times wider than the second widest, therefore the confidence interval was truncated at the 

maximum of 150 in order to see the CIs for the rest of factors. Again, these coefficient 

estimates were biased. The unbiased coefficient estimates could not be obtained from the 

typical Cox regression model due to nonestimability; the typical Cox model could not 

solve for the coefficients due to singular design matrix. 

The cross validated ridge Cox linear regression model was applied to the test set for 

assessing the predictions performance. For cross comparison with other ridge Cox 

models, the prediction errors will be presented later in Table 62 from section 4.2.1.3.2.3.4 

and the corresponding plot will be displayed in Figure 103; the time-dependent AUCs 

will be presented in Table 63 and the corresponding plot will be displayed in Figure 104. 

4.2.1.3.2.3.2 Ridge Cox Interaction Model 

Similar to lasso Cox interaction model, the ridge Cox interaction model was cross 

validated via partial log likelihood deviance, which was repeated 100 times to search for 

the best partial log likelihood deviance and the corresponding penalization parameter (λ); 

the seeds and λ's corresponding to the global minimum of the minimum deviances from 

the 100 CVs were saved. For this model, the cross validation process was extremely 

unreliable (as mentioned for the simulation study), the same penalization term, λ, could 

result in different deviance. In this case, the same seed corresponding to the smallest 

deviance had to be employed in order to get the same result; fortunately, no other 

penalization terms could lead to the global minimum deviance. As such, the penalization 

term, λ, of 33.86138 with the corresponding seed of -1629866724 was able to achieve the 

global minimum deviance of 8.934825 (from the 100 CVs).  

Figure 100 displays the solution paths for the coefficients and the penalization term 

(λ) for the ridge Cox interaction model. The model retained all 2925 covariate terms; all 

of the coefficients were either very close to zero or infinity, thus they are not be presented 

in the paper; a forest plot for hazard ratios for 11 random selected covariates is displayed 

in Figure 101. 

The cross validated ridge Cox interaction model was assessed against the test set for 
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prediction performance; results will be presented in section 4.2.1.3.2.3.4 for cross 

comparison with other ridge Cox models. The prediction errors and the corresponding 

95% PCIs will be summarized in Table 62 and the plot of the prediction errors will be 

displayed in Figure 103; the time-dependent AUCs and the corresponding 95% PCIs will 

be summarized in Table 63 and the corresponding plot of the AUCs will be displayed in 

Figure 104. 

  
Figure 100. Solution Paths of Coefficients 

and λ for Ridge Cox Interaction Model 
– NKI70 Data 

Figure 101. Forest Plot of the Subset of 
Hazard Ratios from Ridge Cox Interaction 

Model – NKI70 Data 

4.2.1.3.2.3.3 Ridge Polynomial Cox Model 

Similar to lasso Cox polynomial model, the CV via Brier score did not work for ridge 

Cox polynomial model either, because the number of covariate terms (735) were much 

more than the number of subjects (108) in the training set (or the original NKI70 dataset 

with all 144 subjects). The partial log likelihood deviance was used as the CV rule; the 

cross validation was repeated 100 times for searching the global minimum of the partial 

log likelihood deviance and the corresponding penalization term (λ). 

Based on the 100 cross validations, the penalization term, λ, valued at 2377181, 

achieved a global minimum deviance of 9.629749 and the corresponding ridge Cox 

polynomial model kept all covariate terms (a total of 735 terms). Correspondingly, the 

coefficients were estimated from the ridge Cox polynomial model with the saved λ and 
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seed.  The solution paths of the coefficients are presented in Figure 102. 

 
Figure 102. Solution Paths of Coefficients for Ridge Cox Polynomial Regression Model 

using CV via Partial Log Deviance – NKI70 Data 

As mentioned in the above paragraph, the cross validated ridge Cox polynomial 

model kept all 735 covariate terms, only a subset of 11 random selected covariate terms 

are reported; and the coefficient estimates of the 11 covariate terms from the ridge Cox 

polynomial model are presented in Table 61; the biased estimates of the 735 coefficients 

from the ridge Cox polynomial model were either close to zero or infinity, the unbiased 

estimates however could not be obtained from typical Cox regressions due to 

nonestimability, therefore the complete summary of the biased or unbiased coefficient 

estimates are not presented. Moreover, the standard errors of the coefficients were 

extremely big comparing to the coefficient estimates, which should result in very wide 

confidence intervals, therefore the forest plot is not presented either. 

Table 61. A Subset of Biased Coefficient Estimates from Ridge Cox Polynomial 
Model with λ = 2377181 – NKI70 Data 

Factors Coef Factors Coef Factors Coef 
Diam.GT2 4.64E-38 Grade.Intermediate 5.52E-39 AA555029.RC 2.21E-39 
N.GE4 5.86E-38 TSPYL5 -7.12E-40 ⋮  ⋮  
ER.Pos -5.10E-38 DIAPH3 1.88E-38 LGP2:C20orf46^2 7.28E-40 
Grade.Well -3.92E-38 NUSAP1 3.57E-38 CENPA:NM.004702 -1.45E-38 

 

4.2.1.3.2.3.4 Prediction Performance of Ridge Linear, Ridge Interaction and Ridge 
Polynomial Cox models 

The prediction performance of the three ridge Cox models, including ridge linear, 
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ridge interaction and ridge polynomial Cox models were evaluated using the test set, 

which included a total of 36 subjects and 16 events of metastasis, therefore it is expected 

that the 95% credible intervals should be very wide.  

The prediction errors and the corresponding 95% PCIs are presented in Table 62 and 

the prediction errors for the 3 ridge Cox models are superimposed in Figure 103.  

Table 62. Prediction Errors for Ridge Cox Models – NKI70 Test Set 
Months Ridge Linear (95% PCI) Ridge Interaction (95% PCI) Ridge Polynomial (95% PCI) 

1 0.050  (0.000, 0.127) 0.051  (0.000, 0.129) 0.053  (0.001, 0.134) 
2 0.082  (0.021, 0.161) 0.079  (0.017, 0.160) 0.094  (0.027, 0.184) 
3 0.131  (0.055, 0.221) 0.131  (0.050, 0.223) 0.160  (0.073, 0.256) 
4 0.152  (0.074, 0.235) 0.159  (0.079, 0.251) 0.188  (0.107, 0.274) 
5 0.189  (0.110, 0.280) 0.194  (0.109, 0.294) 0.233  (0.149, 0.325) 
6 0.184  (0.108, 0.273) 0.190  (0.108, 0.286) 0.230  (0.149, 0.319) 
7 0.195  (0.117, 0.284) 0.202  (0.119, 0.297) 0.239  (0.162, 0.323) 
8 0.195  (0.117, 0.284) 0.202  (0.119, 0.297) 0.239  (0.162, 0.323) 
9 0.200  (0.134, 0.268) 0.202  (0.129, 0.280) 0.237  (0.175, 0.299) 

10 0.193  (0.131, 0.254) 0.194  (0.126, 0.265) 0.229  (0.173, 0.286) 
11 0.193  (0.131, 0.255) 0.194  (0.126, 0.267) 0.229  (0.173, 0.287) 
12 0.192  (0.131, 0.386) 0.193  (0.123, 0.393) 0.223  (0.167, 0.382) 
13 0.236  (0.141, 0.394) 0.237  (0.126, 0.403) 0.253  (0.170, 0.373) 
14 0.236  (0.141, 0.394) 0.237  (0.126, 0.403) 0.253  (0.170, 0.373) 

 

 

  
Figure 103. Prediction Errors for Ridge Cox 

Models – NKI70 Test Set 
Figure 104. Prediction AUCs for Ridge Cox 

Models – NKI70 Test Set 

In terms of prediction errors, the ridge linear and ridge interaction Cox models were 
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similar to each other; and both were numerically better than the ridge polynomial Cox 

model; though not significant, the difference was consistent over the entire study period. 

It suggested that polynomial transformation was unnecessary for ridge Cox models.  

Besides the predictor errors, the prediction performance was evaluated using the time-

dependent AUCs. The time-dependent AUCs for the 3 ridge Cox models are summarized 

in Table 63 and the time-dependent AUCs of the 3 models are superimposed in Figure 

104. Of the 3 ridge Cox models, ridge Cox linear model had the best prediction 

performance with respect to the time-dependent AUCs; and the ridge polynomial Cox 

model had the worst prediction AUCs. Though the time-dependent AUCs among the 

three ridge Cox models were not significantly different, still the difference was consistent 

cross all time points, which suggested that the ridge Cox polynomial model and ridge 

Cox interaction model had probably overfitted the data. 

Table 63. Prediction AUCs for Ridge Cox Models – NKI70 Test Set 

Months 
Ridge Linear  

(95% PCI) 
Ridge Interaction  

(95% PCI) 
Ridge Polynomial  

(95% PCI) 
1 0.805  (0.693, 1.000)  0.764  (0.616, 1.000)  0.712  (0.558, 1.000)  
2 0.798  (0.692, 0.893)  0.756  (0.614, 0.881)  0.704  (0.557, 0.841)  
3 0.794  (0.673, 0.893)  0.752  (0.585, 0.880)  0.701  (0.541, 0.840)  
4 0.787  (0.500, 0.892)  0.747  (0.500, 0.879)  0.696  (0.500, 0.840)  
5 0.762  (0.500, 0.892)  0.726  (0.500, 0.879)  0.680  (0.500, 0.837)  
6 0.753  (0.500, 0.888)  0.718  (0.500, 0.878)  0.671  (0.500, 0.833)  
7 0.776  (0.500, 0.888)  0.736  (0.500, 0.877)  0.687  (0.500, 0.840)  
8 0.781  (0.500, 0.888)  0.741  (0.500, 0.878)  0.691  (0.500, 0.840)  
9 0.790  (0.627, 0.888)  0.748  (0.551, 0.878)  0.697  (0.516, 0.838)  

10 0.793  (0.673, 0.888)  0.751  (0.584, 0.878)  0.699  (0.541, 0.840)  
11 0.797  (0.691, 0.892)  0.755  (0.608, 0.879)  0.702  (0.553, 0.840)  
12 0.798  (0.692, 0.892)  0.755  (0.614, 0.879)  0.703  (0.557, 0.840)  
13 0.798  (0.692, 0.892)  0.755  (0.614, 0.879)  0.703  (0.557, 0.840)  
14 0.798  (0.692, 0.892)  0.755  (0.614, 0.879)  0.703  (0.557, 0.840)  

 

A major disadvantage of the ridge Cox regression model was that it did not perform 

variable selections. It kept all covariates in order to achieve “better” prediction 

performance; the coefficients of all covariates was shrunk towards zero with the 

penalization term, but never reached zero.  Furthermore, it has to be noted that the 

prediction performances were estimated based on 16 metastasis events, therefore the 95% 

PCIs were extremely wide. 
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4.2.1.3.2.4 Elastic-Net Cox Models 

Elastic-net Cox models were original build for continuous outcomes, and later it was 

accommodated for categorical outcomes; however little has published on survival data. In 

this research, the elastic-net Cox models were developed for survival outcome, three 

elastic net Cox models were evaluated, elastic-net linear, including the original 76 factors 

in  the model; elastic-net Cox interaction model, include the original 76 factors as well as 

all pair-wise interactions (a total of 2925 covariate terms); elastic-net Cox polynomial 

models,  including all potential 3-degree polynomial forms of the 19 factors, the linear 

form of the rest of the 57 factors and all potential interactions (a total of 735 covariate 

terms); the prediction performance was evaluated against the test set. 

4.2.1.3.2.4.1 Elastic-Net Cox Linear Model 

Elastic-net Cox linear model was cross validated using interval search algorithm; 

Figure 105 displays the last iteration of the search paths for the penalization parameters 

(α and λ); the model reached the best performance with the penalization parameters of α 

= 0.00686 and λ = 1.127488; the model retained a total of 68 covariate terms.  

  
Figure 105. Interval Search Paths for 

Elastic Net Cox Linear Model – NKI70 
Data 

Figure 106. HR for a Subset of 11 
Factors from Elastic-Net Cox Linear 

Model with Penalization Parameters (α = 
0.0069 and λ = 1.1275) – NKI70 Data 

Of all 68 covariate terms, the coefficients of 11 random selected covariate terms are 
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presented in Table 64; full summary of all coefficients is presented in Appendix 14. It can 

be seen from Table 64 that the p-values were extremely big and none were significant; 

since the elastic-net model selected covariates not by p-values, but by the regularization 

of the regression coefficients. On the other hand, the elastic-net linear Cox model 

selected all covariates that were highly correlated, and the number of covariates well 

exceeded the maximum number of parameters that could be estimated with typical Cox 

regressions (due to singularity); thus unbiased estimates of the coefficients could not be 

produced. The forest plot of hazard ratios corresponding to 11 covariate terms is 

displayed in Figure 106. The factor, DIAPH3, again had extremely wide confidence 

intervals, which was cutoff at 150. 

Table 64. Subset of Coefficients for the Elastic-Net Cox Linear Model with 
Penalization Parameters (α = 0.00686 and λ = 1.127488) – NKI70 Data 

 
Coef HR SE (Coef) z P-val 

Diam.GT2 0.0840 1.088 0.8061 0.10 0.9170 
N.GE4 0.1531 1.165 0.8841 0.17 0.8625 
ER.Pos -0.1239 0.883 1.6094 -0.08 0.9386 
Grade.Well -0.0468 0.954 1.1061 -0.04 0.9663 
Grade.Intermediate 0.0060 1.006 0.8958 0.01 0.9946 
Age -0.0090 0.991 0.0707 -0.13 0.8983 
TSPYL5 -0.0665 0.936 1.1965 -0.06 0.9557 
Contig63649.RC 0.1670 1.182 1.8354 0.09 0.9275 
DIAPH3 0.0144 1.015 3.0319 0.00 0.9962 
⋮  ⋮  ⋮  ⋮  ⋮  ⋮  
ESM1 0.1222 1.130 1.5323 0.08 0.9427 
C20orf46 -0.1032 0.902 1.4690 -0.07 0.9440 

 

The cross validated elastic-net Cox linear model were checked against the test set to 

assess the prediction errors and the time-dependent AUCs; results will be summarized 

later in Table 67 and Table 68, respectively; the plots of the prediction errors and AUCs 

of the selected model will be presented in Figure 111 and Figure 112, respectively; for 

cross comparison, the elastic-net Cox linear model will be superimposed with the elastic-

net Cox interaction and elastic-net Cox polynomial models in the figure. 

4.2.1.3.2.4.2 Elastic-Net Cox Interaction Model 

The elastic-net Cox interaction model was cross validated with interval search 

algorithm. Figure 107 displays the interval solution paths; surprisingly the cross 
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validation selected α = 0.9999 and λ = 0.1892601, which was the very close to the 

penalization terms for the lasso Cox model, thus the performance of this model was 

dominated by the lasso Cox interaction model 

 

 

 
Figure 107. Solution Paths for 

Elastic Net Cox Interaction Model 
– NKI70 Data 

Figure 108. Hazard Ratios from the Elastic-
Net Cox Interaction Model with α = 0.9999 

and λ = 0.1893 – NKI70 Data 

With the obtained penalization parameters (α = 0.9999 and λ = 0.1892601), the 

elastic-net Cox interaction model selected only 2 terms; the results are summarized in 

Table 65. 

Table 65. Biased and Unbiased Coefficients for the Elastic-Net Cox Interaction 
Model with α = 0.9999 and λ = 0.1893 – NKI70 Data 

 
Biased Estimates from Elastic-Net 
Cox Interaction 

Unbiased Estimates from Cox 
Regression Model 

 Coef HR 
SE  

(Coef) z P-val Coef HR 
SE 

(Coef) z P-val 
QSCN6L1:NM.004702 -0.595 0.552 3.497 -0.17 0.865 -12.73 3.0E-6 2.900 -4.39 <.001 
ZNF533:Diam.GT2 -0.513 0.598 0.547 -0.94 0.348 -2.364 0.094 0.546 -4.33 <.001 

 

The forest plot of the hazard ratios for the selected terms is displayed in Figure 108. It 

can be seen from the figure that the estimates of the coefficients from the elastic-net Cox 

interaction were extremely biased as comparing to the ones from a typical Cox regression 

model. Moreover, the CV only selected 2 covariates due to the lasso-like penalization 

terms, which led to a lasso-like elastic-net interaction model; thus it will not be fair to 

compare elastic-net interaction model with the other survival models. 
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For cross comparison with elastic-net Cox models, the prediction performance will be 

reported later in section 4.2.1.3.2.4.4; prediction errors of the elastic-net Cox interaction 

model will be presented in Table 67 and Figure 111and the prediction AUCs will be 

presented in Table 68 and Figure 112. 

4.2.1.3.2.4.3 Elastic-Net Cox Polynomial Model 

Similarly, elastic-net polynomial model was cross validated with the training set. 

Figure 110 displays the interval search paths for penalization parameters; the values of 

the partial log likelihood deviance are presented on the top border of the figure; and the 

corresponding penalization parameters are presented on the axes; the number of 

covariates left in the model is presented next to each point. The coordinates of the 

intersection of the red solid lines correspond to the penalization parameters, α = 0.03704 

and λ = 1.091373, corresponding to the minimum CV errors and the model selected 226 

covariate terms, which were too many to be estimated with typical Cox regressions, thus 

unbiased estimates of coefficients could not be obtained.  

  
Figure 109. Solution Paths (Interval 

Search) for Elastic Net Cox Polynomial 
Model – NKI70 Data 

Figure 110. Forest Plot of the Subset of 
Coefficients from the Elastic-Net Cox 

Polynomial – NKI70 Data 

Of the 226 covariate terms; a sample of 12 covariate terms were randomly selected 

and the coefficients of the 12 covariates are presented in Table 66; complete summary of 
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the 226 covariate terms, the corresponding coefficients, and hazard ratios are presented in 

Appendix 13.  

Table 66. Subset of Coefficients for the Elastic-Net Polynomial Cox Model with 
Penalization Parameters α = 0.0370 and λ = 1.0914 – NKI70 Data 

 
Coef HR SE (Coef) z P-val 

ECT2 0.0467 1.048 8.61 0.0054 >0.99 
EGLN1 -0.1042 0.901 19.27 -0.0054 >0.99 
Age3 0.0000 1.000 0.02 0.0000 >0.99 
Contig63649.RC2 0.4989 1.647 113.78 0.0044 >0.99 
NUSAP1:RAB6B -0.1243 0.883 70.87 -0.0018 >0.99 
ALDH4A1:DTL -0.4106 0.663 76.47 -0.0054 >0.99 
QSCN6L1:Contig20217.RC -0.5274 0.590 314.09 -0.0017 >0.99 
TGFB3:FGF183 -0.0088 0.991 273.37 0.0000 >0.99 
FGF18:PITRM1 0.4207 1.523 75.94 0.0055 >0.99 
MCM6:Contig32125.RC3 1.3030 3.680 1.2e5 0.0001 >0.99 
BBC3:PALM2.AKAP2 0.0437 1.045 53.55 0.0008 >0.99 
ORC6L:DIAPH3.2 -0.1364 0.873 191.20 -0.0007 >0.99 

 

A forest plot was produced for the coefficients (instead of the hazard ratios, since the 

confidence intervals for hazard ratios were too wide for this case study); the plot is 

displayed in Figure 110. 

4.2.1.3.2.4.4 Prediction Performance of Elastic-Net Linear, Elastic-Net Interaction 
and Elastic-Net Polynomial Cox Models 

The prediction performance of the three elastic Cox models, including elastic-net 

linear, elastic-net interaction and elastic-net Cox polynomial models were evaluated 

against the test set with a total of 36 subjects and 16 metastasis event, due to the small 

sample size, it is expected that the 95% PCIs were very wide for all of the 3 models.  

The prediction errors and the corresponding 95% PCIs are presented in Table 67 and 

the plot of the time-dependent prediction errors is displayed in Figure 111. In terms of 

prediction errors, the elastic-net Cox polynomial model had the best performance; the 

elastic-net Cox linear model was the next one and the elastic-net Cox interaction model 

had the worst performance due to the lasso-like behavior. On the other hand, the elastic-

net Cox linear and elastic-net Cox polynomial models had similar performance in terms 

of prediction errors, there were slight differences between the two models, the elastic-net 

Cox linear had slightly better prediction errors in the beginning half of the study (prior to 
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month 8) and had slightly worse prediction errors in the second half of the study (after 

month 8).  

Table 67. Prediction Errors for Elastic-Net Cox Models – NKI70 Test Set 

Months 
E-Net Linear  
(95% PCI) 

E-Net Interaction  
(95% PCI) 

E-Net Polynomial  
(95% PCI) 

1 0.045  (0.000, 0.127) 0.055  (0.000, 0.134) 0.057  (0.000, 0.139) 
2 0.082  (0.021, 0.161) 0.097  (0.030, 0.186) 0.074  (0.008, 0.161) 
3 0.131  (0.055, 0.221) 0.174  (0.078, 0.274) 0.137  (0.057, 0.218) 
4 0.152  (0.074, 0.235) 0.201  (0.113, 0.298) 0.160  (0.085, 0.241) 
5 0.189  (0.110, 0.280) 0.247  (0.162, 0.344) 0.196  (0.120, 0.277) 
6 0.184  (0.108, 0.273) 0.244  (0.162, 0.337) 0.191  (0.118, 0.268) 
7 0.195  (0.117, 0.284) 0.257  (0.178, 0.345) 0.202  (0.132, 0.274) 
8 0.195  (0.117, 0.284) 0.257  (0.178, 0.345) 0.202  (0.132, 0.274) 
9 0.200  (0.134, 0.268) 0.265  (0.200, 0.334) 0.190  (0.135, 0.249) 
10 0.193  (0.131, 0.254) 0.258  (0.202, 0.321) 0.182  (0.129, 0.236) 
11 0.193  (0.131, 0.255) 0.258  (0.202, 0.322) 0.182  (0.129, 0.237) 
12 0.192  (0.131, 0.386) 0.251  (0.209, 0.369) 0.181  (0.127, 0.318) 
13 0.236  (0.141, 0.394) 0.269  (0.219, 0.331) 0.217  (0.138, 0.330) 
14 0.236  (0.141, 0.394) 0.269  (0.219, 0.331) 0.217  (0.138, 0.330) 

 

 

  
Figure 111. Prediction Errors for 

Elastic-Net Cox Models – NKI70 Test 
Set 

Figure 112. Prediction AUCs for 
Elastic-Net Cox Models – NKI70 Test 

Set 

Besides the predictor errors, model performance was also evaluated using the time-

dependent AUCs. The AUCs of the 3 elastic-net Cox models are summarized in Table 68 

and the corresponding plot is displayed in Figure 112. Again, the time-dependent AUCs 
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of the three models were parallel for the entire study; the elastic-net Cox polynomial 

model had the best AUCs and the elastic-net interaction model had the worst. 

Table 68. Prediction AUCs for Elastic-Net Cox Models – NKI70 Test Set 

Months 
E-Net Linear  
(95% PCI) 

E-Net Interaction  
(95% PCI) 

E-Net Polynomial  
(95% PCI) 

1 0.776  (0.633, 1.000)  0.645  (0.477, 1.000)  0.796  (0.669, 1.000)  
2 0.768  (0.633, 0.900)  0.631  (0.476, 0.771)  0.789  (0.669, 0.895)  
3 0.765  (0.625, 0.894)  0.627  (0.476, 0.768)  0.785  (0.659, 0.891)  
4 0.757  (0.500, 0.894)  0.622  (0.476, 0.768)  0.776  (0.500, 0.889)  
5 0.737  (0.500, 0.888)  0.611  (0.478, 0.764)  0.753  (0.500, 0.891)  
6 0.728  (0.500, 0.894)  0.608  (0.479, 0.764)  0.743  (0.500, 0.887)  
7 0.743  (0.500, 0.889)  0.617  (0.479, 0.767)  0.761  (0.500, 0.887)  
8 0.751  (0.500, 0.894)  0.620  (0.477, 0.766)  0.769  (0.500, 0.888)  
9 0.763  (0.613, 0.894)  0.626  (0.476, 0.767)  0.783  (0.656, 0.889)  

10 0.763  (0.611, 0.894)  0.627  (0.476, 0.767)  0.783  (0.652, 0.891)  
11 0.765  (0.625, 0.889)  0.628  (0.477, 0.768)  0.785  (0.662, 0.891)  
12 0.767  (0.633, 0.894)  0.629  (0.476, 0.768)  0.788  (0.669, 0.891)  
13 0.767  (0.633, 0.894)  0.629  (0.476, 0.768)  0.788  (0.669, 0.891)  
14 0.767  (0.633, 0.894)  0.629  (0.476, 0.768)  0.788  (0.669, 0.891)  

 

Unlike the lasso Cox models, elastic-net polynomial Cox model had the best 

prediction performance; and the elastic-net interaction Cox model had the worst 

prediction performance. As mentioned in section 4.2.1.3.2.4.2, the cross validation for 

elastic-net Cox interaction model had achieved lasso-like penalization terms (α = 0.9999 

and λ = 0.1892601); which was close to those for the lasso Cox interaction model (α=1 

and λ =0.3630845). But the elastic-net Cox interaction model only retained 2 covariate 

terms as compared to 25 covariate terms selected for the lasso Cox interaction model, the 

under performance of the elastic-net Cox interaction model was probably due to underfit 

caused by the lasso-like penalization terms. The real reasons leading to the lasso-like 

penalization terms were not known, therefore it was not advisable to use elastic-net Cox 

interaction model for prognostic factor detection and prediction of future outcomes. 

4.2.1.3.3 Principal Component Cox Regression (PCR) 

For PCR, the initial step was to performance principal component analysis (PCA) to 

construct principal components. For the case study, a total of 76 components were 

constructed. As mentioned earlier in section 4.2.1.2, the original NKI70 data with all 144 

subjects and 48 events was used to train the model; even so, the number of events was 

  183 



 

still not enough to produce coefficient estimates for all 76 components, however 

considering that the first 70 components contributed more than 99.8% of the total 

variance, the first 70 components were probably enough for the initial PCR model. Since 

the principal components were constructed independently from the survival outcome and 

the total number of observations or events were barely enough to produce estimates for 

all 70 components, additional models to account for interaction or polynomial 

transformations were not implemented for the principal component Cox regression (PCR) 

model. Additionally, cross validation were carried out using the original NKI70 with all 

144 subjects instead of the training set, then the model performance had to be evaluated 

based on the same data as the model was trained, thus the prediction performance was 

expected to be very good, but it would not be fair to compare with the other models, since 

the prediction performance of all the other models was assessed based on the test set.  

Table 69. AIC of Deleted Components vs. df. for the Remaining PCR Model – 
NKI70 Data 

Comp df AIC Comp df AIC Comp df AIC Comp df AIC Comp df AIC 
Null 70 346.7 -64 65 336.7 -29 60 327.7 -66 55 321.1 -2 50 315.4 
-27 69 344.7 -5 64 334.8 -21 59 326.2 -47 54 319.8 -42 49 314.9 
-17 68 342.7 -70 63 332.8 -61 58 324.9 -59 53 318.7 -10 48 314.2 
-63 67 340.7 -12 62 331.0 -28 57 323.6 -31 52 317.4    
-13 66 338.7 -56 61 329.3 -60 56 322.5 -40 51 316.0    

 

The initial PCR model included all 70 components; after backward step-down 

selection, 48 components remained in the model. The deleted components are presented 

in Table 69 in the same order as they were deleted from the model, as well as the AIC 

and total degrees of freedom for the corresponding model with the remaining factors. 

 
Figure 113. AIC of Deleted Components vs. df. for PCR Model – NKI70 Data  
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Figure 113 displays the AIC (Y-axis) of the PCR model against the corresponding 

degree of freedoms (X-axis); the deleted components are labelled on the X-axis in the 

same order as they were deleted. Detailed summary of the coefficients, hazard ratios, 

standard errors and the corresponding p-values for the remaining 48 components is 

presented in Appendix 16. Surprisingly the number of selected components was exactly 

the same as the total number of events, which was suspected to be accidental. 

The selected principal component Cox regression (PCR) model was then validated 

using 10-fold cross validation; a summary of the performance statistics is presented in 

Table 70. The optimisms are quite large for every single statistics, which was probably 

due to overfitting.  

Table 70. CV Performance for PCR Model – NKI70 Data (Original) 

 
index.orig training Test optimism index.corrected 

Dxy -0.9392 -0.9486 -0.6820 -0.2666 -0.6726 
R2 0.8138 0.8380 0.4606 0.3774 0.4364 
Slope 1.0000 1.0000 0.2208 0.7792 0.2208 
D 0.4925 0.5361 0.2738 0.2623 0.2302 
U -0.0046 -0.0052 1.7426 -1.7478 1.7432 
Q 0.4971 0.5414 -1.4688 2.0102 -1.5130 
g 10.7989 13.2515 2.9586 10.2929 0.5059 

 
Table 71. CV Errors and CV AUCs for PCR Model – NKI70 Data (Original) 

Months Prediction Errors (95% PCI) Prediction AUCs (95% PCI) 
1 0.003  (0.000, 0.006) 0.964  (0.909, 0.985)  
2 0.015  (0.006, 0.026) 0.944  (0.884, 0.983)  
3 0.013  (0.005, 0.023) 0.937  (0.889, 0.983)  
4 0.013  (0.005, 0.024) 0.938  (0.896, 0.981)  
5 0.019  (0.008, 0.033) 0.944  (0.902, 0.980)  
6 0.016  (0.007, 0.027) 0.957  (0.924, 0.983)  
7 0.033  (0.017, 0.054) 0.947  (0.500, 0.985)  
8 0.033  (0.017, 0.054) 0.957  (0.931, 0.984)  
9 0.152  (0.102, 0.208) 0.964  (0.938, 0.985)  

10 0.174  (0.121, 0.232) 0.968  (0.946, 0.985)  
11 0.174  (0.121, 0.232) 0.968  (0.946, 0.985)  
12 0.212  (0.150, 0.272) 0.957  (0.896, 0.984)  
13 0.240  (0.174, 0.303) 0.953  (0.900, 0.984)  
14 0.240  (0.174, 0.303) 0.956  (0.904, 0.983)  

 

As previously mentioned, the PCR model was cross validated with the original 
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NKI70 data; the prediction errors and time-dependent AUCs had to be assessed with the 

same data set, thus they should also be referred to as the CV errors and CV AUCs. The 

CV errors are presented in Table 71 and the corresponding plots are displayed in Figure 

114. The prediction performance of the model was unexpectedly good in terms of both 

the CV errors and the CV AUCs, since the performance was evaluated using the same 

dataset. It was also the main reason of overfitting. Besides the predictor errors, the CV 

AUCs for the selected PCR models are also summarized in Table 71 and the 

corresponding plot is displayed in Figure 115. 

  
Figure 114. Cross Validation Errors for 

PCR Model – NKI70 Data (Original) 
Figure 115. Cross Validation AUC(t) for 

PCR Model – NKI70 Data (Original) 

For prognostic factor detection, it was almost impossible to identify important factors 

based on the selected PCR model, since it was impractical to read through the 48 by 76 

loading matrix. 

4.2.1.3.4 Partial Least Squares Cox Regression 

For partial least squares Cox regression models, the actual analyses were performed 

on the PLS components, which was constructed from the original covariates, to achieve 

the maximum correlation with the survival outcome. For this model, the multicollinearity 

should be of no concerns, since the PLS components are orthogonal.  

However, for this case study, interactions and polynomial transformations were also 

considered for PLS Cox models, just to achieve a better understanding of this approach. 
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Similar to the penalized Cox regression models, 3 PLS Cox regression models were 

performed incorporating the original 76 factors, all 2925 covariate terms (including the 

original factors and all pair-wise interactions), and incorporating all 735 potential 

polynomial terms, separately; the models are referred to as PLS Cox linear, PLS Cox 

interaction and PLS Cox polynomial models, respectively. Once again, all of the models 

were cross validated with the training set. 

4.2.1.3.4.1 Partial Least Squares (PLS) Cox Linear Model 

Of 76 factors from the training set, which included 32 metastasis events observed 

from 108 subjects, initially 25 PLS components were intended for the PLS Cox linear 

model. The model was cross validated via AIC rule; results are presented in Table 72. 

Table 72. CV AIC of PLS Cox Linear Model – NKI70 Data 

Comp AIC Comp AIC Comp AIC Comp AIC Comp AIC Comp AIC 
0 266.9 5 152.4 10 88.53 14 44.6 18 44.3 22 48.4 
1 248.8 6 139.8 11 77.5 15 42.5 19 46.0 23 49.6 
2 196.9 7 127.5 12 59.7 16 42.2 20 47.4 24 50.8 
3 180.2 8 112.7 13 50.6 17 43.5 21 48.8 25 311.3 
4 166.2 9 97.92         

 

 

   

Figure 116. CV 
Performance of PLS Cox 
Linear Model  – NKI70 

Data 

Figure 117. Forest Plot of 
Component Coefficients 

from PLS Cox Linear 
Model – NKI70 Data 

Figure 118. Forest Plot of 
Coefficients for the Top 9 

Factors with the 
Maximum Loadings from 
PLS Cox Linear Model – 

NKI70 Data 

The plot of the model AICs against the number of components in the PLS Cox Linear 

model is displayed in Figure 116. The model achieved the minimum AIC with the first 16 
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components, then AIC gradually inclined and at the component 25, the model AIC 

jumped up abruptly. Thus the best PLS Cox linear model should retain the first 16 PLS 

components. 

The coefficients for the first 16 components were estimated from a typical Cox PH 

model with the 16 PLS components as the covariates; the coefficients corresponding to 

the 16 PLS components are presented in Table 73; noted that component 16 had p-value 

of 0.1674, not significant at 0.05 level, but it was still kept in the final model just to be 

conservative.  

Table 73. Component Coefficients from PLS Cox Linear Model – NKI70 Data 

Comp Coef HR SE (Coef) z P-val 
1 5.0367 153.9608 1.1050 4.56 <.0001 
2 13.7563 9.4251E+05 3.0229 4.55 <.0001 
3 13.2505 5.6835E+05 2.9040 4.56 <.0001 
4 6.7358 842.0456 1.5284 4.41 <.0001 
5 16.8814 2.1453E+07 3.7367 4.52 <.0001 
6 12.6750 3.1967E+05 2.8329 4.47 <.0001 
7 11.3521 8.5145E+04 2.5326 4.48 <.0001 
8 9.5231 1.3672E+04 2.1223 4.49 <.0001 
9 3.9733 53.1588 0.9385 4.23 <.0001 

10 4.3393 76.6547 1.0794 4.02 0.0001 
11 4.6306 102.5805 1.1152 4.15 0.0000 
12 5.3949 220.2728 1.4575 3.70 0.0002 
13 1.8371 6.2785 0.6212 2.96 0.0031 
14 2.0187 7.5287 0.7096 2.84 0.0044 
15 1.1576 3.1822 0.5270 2.20 0.0281 
16 0.8565 2.3549 0.6203 1.38 0.1674 

 

For PLS Cox linear model, forest plot for coefficients (the log relative hazard) of the 

PLS components and the corresponding 95% CIs are presented in Figure 117. 

The coefficients for the original 76 factor were obtained by transforming the 

coefficients of the PLS components using the loading matrix from the PLS Cox linear 

model, where the loadings reflected the importance of the factors with respect to the 

survival outcome.  Of the 76 factors, the top 9 factors with the most absolute loading 

from the PLS Cox linear model were selected; the corresponding coefficients are 

presented in Table 74; the coefficients of all 76 factors are presented in Appendix 17. For 

this model, each factor should have 16 loadings corresponding to the 16 PLS 
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components, only the maximum (in absolute values) for each factor is presented. 

Although there were 16 PLS components, there was only one coefficient corresponding 

to each of the 76 factors. The forest plot of the coefficients for the top 9 factors with the 

maximum absolute loadings from the PLS Cox linear model is displayed in Figure 118. 

Table 74. Coefficients of the Top 9 Factors with the Maximum Loadings from PLS 
Cox Linear Model – NKI70 Data 

Factors Coef SE (Coef) Loadings 
DIAPH3.1 -126.19 -7.155 0.5487 

PRC1.1 349.00 22.270 0.4877 
MELK -150.04 -8.310 0.4405 

COL4A2 470.21 17.459 0.4137 
NUSAP1 -22.44 -1.457 -0.4026 
MS4A7 0.11 0.007 -0.3909 

Contig40831.RC -109.37 -5.515 -0.3841 
PECI 250.56 11.370 0.3760 

ZNF533 -8.77 -0.990 -0.3746 
 

 

 
Figure 119. Log HR vs. Factors for the Top 9 Factors with the Most Loadings from 

the PLS Cox Linear Model – NKI70 Data 
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The plots of the log relative hazard vs. each of the 9 factors with the maximum 

absolute loadings from the PLS Cox linear model are displayed in Figure 119. 

Theoretically, only factors with loadings of 0 are irrelevant; however, in practice, 

loadings can never reach 0. Thus, a soft threshold was employed to select important 

factors; all factors above the predetermined soft threshold were considered as important. 

For example, a total of 11 factors with absolute loadings ≤ 0.15 were considered 

irrelevant; 45 factors with absolute loadings > 0.15 and ≤ 0.30 were considered relevant; 

only 20 factors with loadings > 0.3 were considered as important prognostic factors, the 

20 factors are ER.Pos, Contig63649.RC, NUSAP1, DIAPH3.1, DIAPH3.2, KNTC2, 

ZNF533, PECI, Contig40831.RC, TGFB3, MELK, COL4A2, DCK, FBXO31, 

LOC643008, MS4A7, AP2B1, PITRM1, PRC1 and NM.004702. 

The prediction performance of the PLS Cox linear model was then evaluated based 

on the test set. For cross comparisons, The prediction errors and the time-dependent 

AUCs of the PLS Cox linear model together with the other PLS Cox models will be 

presented in Table 81 and Table 82; the corresponding plots will be displayed in Figure 

128 and Figure 129, respectively.  

4.2.1.3.4.2 PLS Cox Interaction Model 

The PLS Cox interaction model was cross validated using the training set with 2925 

covariate terms from 108 subjects and 32 events; a total of 30 components were initially 

intended, cross validation only retrieved the first 25 PLS Components. The model AICs 

from the cross validation are presented in Table 75.  

Table 75. CV Performance of PLS Cox Interaction Model – NKI70 Data 
Comp AIC Comp AIC Comp AIC Comp AIC Comp AIC Comp AIC Comp AIC 

0 266.9 4 80.2 8 28.1 12 31.9 16 38.9 20 45.4 23 49.5 
1 188.5 5 52.4 9 26.2 13 33.0 17 39.6 21 46.2 24 51.2 
2 148.3 6 35.1 10 29.6 14 34.5 18 40.4 22 48.6 25 55.5 
3 109.7 7 31.7 11 31.4 15 37.9 19 43.0     

 

Figure 120 displays the AIC against the number of components from the PLS Cox 

Interaction model. The model reached the minimum AIC with the first 9 components; the 

components beyond component 9 should be excluded to construct the best PLS Cox 

interaction model.  
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Figure 120. CV 

Performance of PLS Cox 
Interaction Model  – NKI70 

Data 

Figure 121. Forest Plot of 
the 9 PLS Component from 
PLS Cox Interaction Model 

– NKI70 Data 

Figure 122. Forest Plot of 
the Top 9 Factors with the 
Maximum Loadings from 
the PLS Cox Interaction 

Model – NKI70 Data 

The coefficients of the 9 PLS components were estimated from the PLS Cox 

interaction model with the training set; results are presented in Table 76; component 9 

was not significant (P-value = 0.1530) and component 8 was boundary significant (P-

value= 0.0599), both of them were still kept in the final model, just to be conservative. 

Forest plot of the coefficients for the 9 PLS components is presented in Figure 121; the 

coefficients were used instead of the hazard ratios, since the 95% CIs for hazard ratios 

were too diverse. 

Table 76. Component Coefficients from PLS Cox Interaction Model – NKI70 Data 

Comp Coef HR SE (Coef) z Pr(>|z|) 
1 3.0475 21.0634 0.7318 4.16 0.0000 
2 1.9931 7.3382 0.4853 4.11 0.0000 
3 1.6998 5.4731 0.4126 4.12 0.0000 
4 0.7907 2.2049 0.1980 3.99 0.0001 
5 0.4831 1.6211 0.1303 3.71 0.0002 
6 0.3894 1.4761 0.1290 3.02 0.0025 
7 0.3030 1.3539 0.1222 2.48 0.0131 
8 0.2026 1.2246 0.1077 1.88 0.0599 
9 0.1319 1.1410 0.0923 1.43 0.1530 

 

With the loading matrix from the PLS Cox interaction model, the coefficients of the 

original 2925 covariates were obtained by inverse transformation from the coefficients of 

the PLS components; full summary of all 2925 coefficients is not presented; only the 

coefficients of the top 9 factors with the max absolute are presented in Table 77. The 
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forest plot of the coefficients for the top 9 factors with the max absolute loadings from 

the PLS Cox interaction model is displayed in Figure 122. 

Table 77. Coefficients of the Top 9 Factors with the Maximum Loadings from PLS 
Cox Interaction Model – NKI70 Data 

 
Coef 

SE 
(Coef) 

Load 
ings  Coef 

SE 
(Coef) 

Load
ings 

Contig40831.RC:Grade.Well 4.0 0.11 0.31 FBXO31:Grade.Well -3.8 -0.08 0.14 
DIAPH3:NMU -0.5 -0.02 0.29 NUSAP1:NMU 3.1 0.1 0.14 
DIAPH3.2:NMU 5.4 0.16 0.19 MELK:Grade.Well -1.4 -0.05 0.13 
NUSAP1:Grade.Well -12.4 -0.52 0.17 DIAPH3:ESM1 -13.5 -0.24 0.12 
DIAPH3.2:RP5.860F19.3 2.7 0.03 0.15     

 

The plots of log relative hazard vs. each of the 9 factors with the max absolute 

loadings from the PLS Cox interaction model are displayed in Figure 123.  

 

Figure 123. Log HR vs. Factors for the Top 9 Factors with the Most Loadings from 
the PLS Cox Interaction Model – NKI70 Data 

The prediction performance of the PLS Cox interaction model was evaluated based 

on the test set. For cross comparisons with other PLS Cox models, the prediction errors 

and the time-dependent AUCs will be presented in Table 81, Table 82, respectively and 
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the corresponding plots will be displayed in Figure 128 and Figure 129, respectively. 

4.2.1.3.4.3 PLS Cox Polynomial Model 

The PLS Cox polynomial model with all 735 covariates was initially intended with 25 

components. However, the majority of these covariates were probably not relevant to the 

survival outcomes. Thus, the coefficients for most of the covariates were close to 0 or 

infinity; as a result, for the PLS components, many entries of the transformation matrix 

were close to infinity or zero; which had made the PLS Cox polynomial model difficult 

to convergent. To improve the convergence, all original factors were normalized first; 

additionally, instead of keeping all none-zero coefficients, only significant components 

(p-value <0.20) were kept in the final model. Moreover, to further improve the efficiency, 

all covariate terms were normalized before fitting to the PLS Cox polynomial model. 

With the above modification, the PLS Cox polynomial model was able to converge and 

the AICs for the PLS Cox polynomial model are presented in Table 78.  

Table 78. CV Performance of PLS Cox Polynomial Model – NKI70 Data 
Comp AIC Comp AIC Comp AIC Comp AIC Comp AIC Comp AIC 

0 266.9 2 162.4 4 120.0 6 71.4 8 39.00 10 25.9 
1 195.3 3 139.7 5 90.3 7 48.4 9 33.2   

 

 

   
Figure 124. CV Performance 

of PLS Cox Polynomial 
Model – NKI70 Data 

Figure 125. Forest Plot of the 
10 PLS Components for PLS 

Cox Polynomial Model – 
NKI70 Data 

Figure 126. Forest Plot of the 
9 Covariates with the 

Maximum Loadings from 
PLS Cox Polynomial Model – 

NKI70 Data 

Figure 124 displays the AIC against the number of components in the model. As 

noted, the AIC curve showed slightly different patterns from the one for PLS Cox linear 

model (Figure 116) or PLS Cox interaction model (Figure 120). The CV of the PLS Cox 
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polynomial model was only able to achieve10 PLS components and the model reached 

the minimum AIC with the first 10 components; therefore best PLS Cox polynomial 

model should include the first 10 PLS components. 

The coefficients of the first 10 components are presented in Table 79; note that 

component 7 was not significant at the 0.05 level (p-value = 0.1735), but it was still kept 

in the final model, since it was needed to derive components 8, 9 and 10, subsequently. 

(For PLS Cox models, the order of the components are important, since higher ordered 

components are derived from lower ordered components.) The forest plot of the 

coefficients of the 10 PLS Components is displayed in Figure 125.  

Table 79. Component Coefficients from PLS Cox Polynomial Model – NKI70 Data 

Comp Coef HR SE (Coef) z P-val 
1 5.7971 3.2934E+02 1.5727 3.69 0.0002 
2 9.4679 1.2938E+04 2.6986 3.51 0.0005 
3 5.5114 2.4749E+02 1.5166 3.63 0.0003 
4 6.3110 5.5061E+02 2.0102 3.14 0.0017 
5 1.8380 6.2837E+00 1.0146 1.81 0.0701 
6 -2.9926 5.0155E-02 1.7538 -1.71 0.0879 
7 1.5778 4.8443E+00 1.1593 1.36 0.1735 
8 4.6961 1.0952E+02 1.5174 3.09 0.0020 
9 16.3070 1.2079E+07 5.0164 3.25 0.0012 

10 9.3612 1.1628E+04 3.9528 2.37 0.0179 
 

The coefficients for the original 735 covariate terms were obtained by back-

transforming the coefficients of the PLS components with the loading matrix from the 

PLS Cox polynomial model. Table 80 presents the coefficients of the top 9 covariate 

terms with the max absolute loadings from the PLS Cox polynomial model. 

Table 80. Coefficients of the Top 9 Covariate Terms with the Maximum Loadings 
from PLS Cox Polynomial Model – NKI70 Data 

Covariate Terms Coef 
SE 

(Coef) 
Load 

ing Covariate Terms Coef 
SE 

(Coef) 
Load 

ing 
LOC6430083:C20orf462 574.9 16.99 0.83 DIAPH3.2:DTL2 -1377.4 -6.56 0.42 
LOC6430082:C20orf462 -316.5 -8.65 0.67 DIAPH3.12:DTL2 -1463.4 -4.67 0.37 

CDC42BPA2:LOC6430083 1250.8 4.66 0.48 DIAPH3.22:MCM6^2 -1007.0 -1.00 0.36 
CDC42BPA2:LOC6430082 -1892.1 -7.39 0.44 LOC6430083:C20orf46 -72.4 -2.26 0.32 

MELK2:MCM62 1006.0 5.68 0.43     
 

The coefficient estimates for all 735 covariates are presented in Appendix 18. Again 

each covariate should have 10 loadings corresponding to the 10 PLS components; only 
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the max absolute loading is selected out of the 10 loadings for each covariate and 

presented in Table 80. Although there were 10 loadings for each covariate term, after 

back-transformation from the coefficients of the PLS components using the loading 

matrix, only one coefficient was estimated corresponding to each covariate terms. The 

forest plot of the coefficients for the top 9 covariates with the max absolute loadings is 

displayed in Figure 118. 

The 9 covariate terms were made up of 9 factors, LOC643008, C20orf46, 

CDC42BPA, LOC643008, MELK, MCM6, DIAPH3.2, DTL and DIAPH3.1; for each of 

these 9 factors, predictions were made based on the cross validated PLS Cox polynomial 

model while fixing the rest of the 75 factors (continuous factors were fixed at the 

medians and the categorical factors were fixed at the most frequent category level); 

Figure 127 displays the log hazard ratio vs each of the 9 factors.  

 
Figure 127. Log HR vs. Factors for the Top 9 Factors with the Most Loadings from 

the PLS Cox Polynomial Model – NKI70 Data 

For this model, the 10 PLS components were constructed from all of the 735 

covariate terms, it was impossible to manually check the loading matrix; again, a soft 

threshold was employed to select the important covariates. A total of 685 covariates with 
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absolute loading ≤ 0.15 were considered irrelevant; 39 covariates with loading > 0.15 and 

≤ 0.30 were considered as mild relevant; only 11 terms with loading > 0.3 were 

considered as important, the 11 terms are DIAPH3.22:MCM62, DIAPH3.12:DTL2, 

LOC6430082:C20orf462, LOC6430083:C20orf46, DIAPH3.2:DTL2, 

CDC42BPA2:LOC6430082, MELK^2:PITRM13, LOC6430083:C20orf462, 

QSCN6L1:DIAPH3.22, , MELK2:MCM62, CDC42BPA2:LOC6430083. 

4.2.1.3.4.4 Prediction Performance Comparison of Intended Survival Models for 
the Real Word Case Study (NKI70 Data) 

For PLS Cox models, the prediction errors and corresponding 95% PCIs are 

presented Table 81 and the prediction errors of the 3 PLS Cox models are superimposed 

on top of each other in Figure 128. Of the 3 models, PLS polynomial model had the best 

prediction errors except that it became slightly worse than the PLS interaction model in 

the tail; the PLS interaction model had similar prediction errors with the PLS linear 

model for the first 9 months, but it became the best of the 3 models after that; the PLS 

linear model had almost the worst prediction errors. However, the differences were very 

minimal; the maximum difference was less than 0.045 numerically. 

Table 81. Prediction Errors of PLS Cox Models  – NKI70 Test Set 

Months 
PLS Linear  
(95% PCI) 

PLS Interaction  
(95% PCI) 

PLS Polynomial  
(95% PCI) 

1 0.051  (0.000, 0.139) 0.058  (0.000, 0.153) 0.051  (0.000, 0.139) 
2 0.109  (0.028, 0.222) 0.117  (0.028, 0.225) 0.109  (0.028, 0.222) 
3 0.214  (0.083, 0.361) 0.210  (0.083, 0.361) 0.196  (0.083, 0.333) 
4 0.265  (0.135, 0.417) 0.261  (0.091, 0.443) 0.247  (0.111, 0.411) 
5 0.345  (0.167, 0.528) 0.346  (0.150, 0.549) 0.327  (0.167, 0.505) 
6 0.345  (0.167, 0.528) 0.346  (0.150, 0.549) 0.327  (0.167, 0.505) 
7 0.356  (0.181, 0.556) 0.367  (0.151, 0.569) 0.334  (0.148, 0.532) 
8 0.356  (0.181, 0.556) 0.367  (0.151, 0.569) 0.334  (0.148, 0.532) 
9 0.405  (0.214, 0.611) 0.344  (0.132, 0.542) 0.360  (0.189, 0.517) 

10 0.405  (0.214, 0.611) 0.344  (0.132, 0.542) 0.360  (0.189, 0.517) 
11 0.405  (0.214, 0.611) 0.344  (0.132, 0.542) 0.360  (0.189, 0.517) 
12 0.403  (0.214, 0.611) 0.342  (0.131, 0.545) 0.359  (0.187, 0.520) 
13 0.397  (0.214, 0.583) 0.338  (0.137, 0.531) 0.357  (0.170, 0.527) 
14 0.397  (0.214, 0.583) 0.338  (0.137, 0.531) 0.357  (0.170, 0.527) 

 

The time-dependent AUCs and the corresponding 95% PCIs are presented in Table 

82 and the plots of the time-dependent AUCs for the 3 models are displayed in Figure 
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131. In terms of the time-dependent AUCS, the PLS Cox interaction model had the best 

performance and the PLS Cox linear model had the worst performance; the AUC curve of 

the three model were almost parallel with each other. 

Table 82. Prediction AUCs of PLS Cox Models  – NKI70 Test Set 

Months 
PLS Linear  
(95% PCI) 

PLS Interaction  
(95% PCI) 

PLS Polynomial  
(95% PCI) 

1 0.562  (0.500, 1.000)  0.694  (0.500, 1.000)  0.645  (0.500, 1.000)  
2 0.534  (0.500, 0.777)  0.681  (0.500, 0.857)  0.628  (0.500, 0.832)  
3 0.540  (0.500, 0.777)  0.712  (0.500, 0.860)  0.635  (0.500, 0.834)  
4 0.537  (0.500, 0.774)  0.701  (0.500, 0.856)  0.622  (0.500, 0.833)  
5 0.529  (0.500, 0.776)  0.676  (0.500, 0.857)  0.610  (0.500, 0.832)  
6 0.516  (0.500, 0.760)  0.643  (0.500, 0.855)  0.597  (0.500, 0.831)  
7 0.513  (0.500, 0.745)  0.645  (0.500, 0.859)  0.618  (0.500, 0.842)  
8 0.514  (0.500, 0.739)  0.647  (0.500, 0.859)  0.623  (0.500, 0.841)  
9 0.516  (0.500, 0.744)  0.653  (0.500, 0.859)  0.631  (0.500, 0.841)  

10 0.519  (0.500, 0.761)  0.653  (0.500, 0.860)  0.634  (0.500, 0.839)  
11 0.517  (0.500, 0.750)  0.652  (0.500, 0.858)  0.638  (0.500, 0.840)  
12 0.517  (0.500, 0.756)  0.679  (0.500, 0.859)  0.650  (0.500, 0.847)  
13 0.523  (0.500, 0.769)  0.691  (0.500, 0.860)  0.650  (0.500, 0.844)  
14 0.523  (0.500, 0.769)  0.691  (0.500, 0.860)  0.650  (0.500, 0.844)  

 

 

  
Figure 128. Prediction Errors of PLS 

Cox Models – NKI70 Test Set 
Figure 129. Prediction AUCs of PLS Cox 

Models – NKI70 Test Set 

Comparing the log HR plots from the 3 PLS Cox models, the PLS Cox linear model 

had the smallest interval of the three PLS Cox models, which suggests that the PLS Cox 
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linear model was the most powerful for making inferences about the coefficients of the 

factors; however the prediction performance was almost the worst of the three models, 

which was probably due to underfitting. 

4.2.1.4 Result Summary of the Case Study 

For cross comparison of all survival models intended for this case study, the 

prediction errors for all models are displayed in Figure 130 and the time-dependent 

AUCs for all models are displayed in Figure 131; the 95% PCIs are not presented. As 

noted in section 4.2.1.3.3, principal component Cox regression (PCR) were trained with 

all 144 subjects of the original NKI70 data, therefore it had the almost perfect 

performance in terms of both prediction errors and time-dependent AUCs, except that it 

was only slightly worse than ridge linear, elastic-net linear and elastic-net polynomial 

Cox models at the tail (after month 11). However, it was unfair to compare this model 

with the rest of the models, since the same dataset with all available subjects (144 

subjects) was used for both training and testing (assessing the prediction performance) for 

the PCR model, while all the other models were trained and cross validated with the 

training set (108 subjects) and prediction performance measurements, including 

prediction errors and time-dependent AUCs, were assessed with the test set.  

  
Figure 130. Prediction Errors of All 

Models  – NKI70 Data 
Figure 131. Time-Dependent AUC of 

All Models – NKI70 Data 

Of the rest of the survival models (excluding the PCR model), ridge Cox linear, ridge 
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Cox interaction, elastic-net Cox linear and elastic-net Cox polynomial models had the 

best prediction errors. The 3 PLS Cox models (linear, interaction and polynomial) had the 

worst prediction errors. 

While the prediction AUCs were almost parallel among all different models. The 

PCR model had the best AUCs again; otherwise, the ridge Cox linear, elastic-net Cox 

polynomial, elastic-net Cox linear had extraordinary prediction AUCs, followed by ridge 

interaction, conditional inference based RSF and lasso interaction, lasso linear and ridge 

Cox polynomial models; the log-rank based RSF model had moderate AUCs comparing 

with the other semi-parametric models. The elastic-net Cox interaction as well as the 

three PLS Cox models had the worst prediction AUCs; as mentioned previously, the 

prediction AUCs of the elastic-net Cox interaction model and the PLS Cox linear model 

was extremely disappointing due to significant underfitting. 

While comparing the PLS models with all other survival models, the prediction 

performance was unexpectedly unsatisfying, which was possibly due to the system errors 

as discussed in section 4.1.2.3.7. Additionally, unlike the PLS Cox interaction and PLS 

Cox linear models, the PLS Cox polynomial model could not achieve convergence with 

all covariates in their original scale, while the same model was able to achieve 

convergence after all covariate terms were normalized; however, normalization of all 

covariate terms could have inflated the noise (covariates) for the model. This was 

probably the reason why the prediction performance of the PLS Cox polynomial model 

was worse than the PLS Cox interaction model. 

In terms of model selection, the elastic-net interaction model selected the minimum 

number of covariates, however the lasso-like penalization parameters had caused 

significant underfit; otherwise, the 3 lasso Cox models selected the smallest number of 

covariates; the elastic-net Cox polynomial and linear models were also efficient for 

selecting important prognostic factors. In terms of prediction future events, ridge linear, 

elastic-net polynomial and elastic-net linear Cox models had the best predictions 

performance; the ridge Cox interaction model was only slightly worse. If both purposes 

(prediction of future event and prognostic factors detection) were of equally importance, 

elastic-net Cox linear and elastic Cox polynomial models were the most effective tools. 

For the two nonparametric RSF models, the prediction errors of the log-rank based RSF 
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and conditional inference based RSF models were moderate; however, in terms of 

prediction AUCS, the conditional inference based RSF model was better than expected, 

comparable to the ridge interaction model, while the AUCs of the log-rank based RSF 

was still moderate; additionally, the two RSF models were very effective for prognostic 

factor detections.  

For the two derived input Cox regression models, the PCR and PLS Cox models have 

limited capabilities for selecting prognostic factors due to the construction of latent 

components. The prediction performance of the PCR model for this case study was not 

comparable to the other models since the same dataset was use for both training and 

testing, thus the performance of the model could not be generalized to other studies; 

additionally, the model may still be non-estimable for too many components. Unlike the 

PCR model, the PLS models do not construct as many components, thus it is unlikely to 

encounter a non-estimable PLS model; however the PLS Cox model had unsatisfying 

prediction performance, which was possibly due to the system errors involved in 

calculating the predictive survival probability. Thus, the two derived input Cox 

regression models are not recommended unless no other choices are available. 
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Chapter 5. Conclusions and Discussions 

In this research paper, 3 typical Cox PH models were evaluated, including Cox linear 

model, Cox model with RCS transformations, Cox model with FP transformations; two 

nonparametric RSF models were studied, including log-rank based random survival 

forest and conditional inference based survival forest; multiple penalized Cox regression 

models were assessed extensively, including lasso, ridge and elastic-net Cox regression 

models; and two derived input Cox regression model including principal component Cox 

regression (PCR) and partial least squares (PLS) Cox regression models were also 

implemented.  

Concerning prognostic factors detection, the Cox linear model and Cox models with 

nonlinear transformations are semi-parametric approaches, they are the most stringent of 

all intended survival models, however they can provide unbiased parameter estimates and 

prediction performance for these models are better than most survival models; however 

they do not work when the number of factor is close to or more than the total number of 

events. Of the 3 typical Cox PH models, the Cox model with FP transformation had the 

best prediction performance, possibly due to the inclusion of time-dependent treatment 

effect; the Cox model with RCS transformation was not very sensitive to non-

proportionality, the prediction performance was not as good as the one with FP 

transformation; the Cox PH linear model was the simplest of the three typical Cox 

models, but the prediction performance of the model was quite satisfactory. Additionally, 

typical Cox PH models are well developed with many options and extensions; the 

recurrent event extensions on top of the Cox PH model are very useful, the extension Cox 

PH models can deal with multiple event survival data, such as event recurrence or 

competing events survival outcomes. In addition, typical Cox PH models are also the 

most popular survival models; almost all features are well studied, therefore they are the 

most convenient solutions for most survival problems.  

The two random survival forest models including log-rank based RSF (LR-RSF) and 

conditional inference based RSF models (CINF-RSF) are the most flexible of all intended 

survival models; they are nonparametric, thus they have inherited all the flexibility of a 

nonparametric approach. They are developed with no or very little model assumptions; 

there are no concerns of non-proportionalities, multicollinearity or nonlinearity. In the 
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simulation study, both RSF models detected all of the prognostic factors as those detected 

by the typical Cox regression models and they had moderate prediction performance, 

slightly worse than typical Cox PH models. Of the two random survival forest 

approaches, the prediction performance of the LR-RSF model were similar to the CINF-

RSF model in the simulation study; but in the real world case study, the prediction 

performance of the LR-RSF was consistently worse than the CINF-RSF model; the 

reason was possibly due to the high correlations among factors. In the real word case 

study, CINF-RSF model had better prediction performance, since this model builds forest 

trees based on conditional probabilities; thus the CINF-RSF model works better for 

highly correlated survival data. 

In this research paper, three penalized Cox regression models including lasso Cox 

regression, ridge Cox regression and elastic-net Cox regression models were studied and 

3 options including linear, interaction and polynomial transformations were assessed 

intensively. During the study, it was found that the cross validation via partial log 

likelihood option was not very stable. In which, the selection of the penalization term, λ, 

was based on partial log likelihood deviance, which was not a good reflection of the 

model performance. In fact, the deviance is related to the joint likelihood of the full 

model, as derived by Simon et al. (2011)[154], the maximization of the joint likelihood has 

become the minimization process for the partial log likelihood deviance measurement. 

But both the deviance and the full model likelihood are dependent upon the initial Cox 

model with all covariate terms. It basically assumes that the full model has the best fit of 

the survival data, which may not be necessarily true. Instead, during the studies, it was 

found that the deviance was only related to the active survival data through the full model 

fit, and the search of the penalization parameter was neither stable nor robust, it was very 

much depending on the seed chosen; additionally, the deviance measurement might have 

multiple local minimum, all searching algorithms should be able to locate a local 

minimum, but there was no guaranteed to find the global minimum. Therefore, searching 

for the penalization parameters could be problematic.  

Thus, a modified cross validation process was developed; the cross validation was 

carried out using Brier Scores as the selection rules, which was proved to be very stable 

and robust; however for lasso and ridge Cox regression models, this modified cross 
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validation algorithm could not take more factors than the actual number of observations 

in the dataset. While for elastic-net Cox regression models, an interval search algorithm 

was deployed within the CV process, to achieve reasonably robust estimates of the 

penalization terms (α and λ) simultaneously. This modified CV algorithm did not 

guarantee to find the global minimum of the partial log likelihood deviance, but it 

guaranteed to find the model with the minimum cross validation errors given the training 

set. 

Besides, two derived input Cox regression models, principal component and PLS Cox 

models, were also studied. The prediction performance of the PCR model was similar to 

the typical Cox models (except for the Cox model with FP transformation), mainly due to 

the components were constructed by most or all of the covariate terms. The approach is 

consisted of two steps. The first step is to construct the principal components 

independently from the survival outcomes, thus it has been widely used for variable 

reduction. The second step is to perform typical Cox regression analysis over the 

constructed components. Hence, this approach should have the same advantage as the 

typical Cox PH models, such as unbiased estimator (for components), and capability of 

dealing with recurrent event or competing event survival data. Additionally, since the 

constructed components are orthogonal, the model can handle more components than 

typical Cox models can deal with covariates. However, aside from the advantages, the 

model is limited for prognostic factor detections, and the results are difficult to interpret 

since the coefficients are estimated corresponding to the latent components which has to 

be further transformed back for the original factors for interpretation; additionally, when 

the constructed components are more than the total number of events, the model may still 

be non-estimable due to singularity. 

Similarly, the PLS model also derives latent orthogonal components, which are 

constructed to have the maximum correlation with the survival outcome; therefore 

multicollinearity should be of no concerned for this analysis. In contrast to the principal 

component regression which constructs the components to achieve high covariance or 

correlations within the independent variables (Stone and Brooks, 1990; Frank and 

Friedman, 1993), the partial least squares regression model derives the components in the 

directions that can achieve the maximum variance and correlations with the response; the 
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path of deriving the PLS components is a nonlinear transformation of both the 

independent and dependent variables. Additionally, unlike the principal component 

regression, the partial least squares regression model rarely needs to construct more than 

30 components; the design matrix of the PLS model should usually be invertible, thus the 

PLS model is often estimable with the available data. The partial least squares approach, 

was initially proposed for continuous outcomes, and later extends to categorical 

outcomes. In this paper, the approach has been generalized to survival outcomes. While 

this approach has not been widely utilized, and there have been very little publications on 

this topic. In this research, the partial least squares Cox regression model was 

implemented  and evaluated over two studies, one simulation study and one real world 

case study on macro array survival data.  

The PLS Cox model is implemented using latent components to link the covariates 

with the survival outcomes, which may not be intuitive for interpretation; in addition, the 

same factors or covariates should make contributions to all of the PLS components, 

therefore it could be difficult to identify the important factors or covariates corresponding 

to the selected PLS components. On the other hand, the PLS components can be 

considered as uncollected or unseen latent variables from the original dataset. 

Unfortunately, the prediction performance of the PLS Cox model is not as good as most 

of the intended survival models due to the unavoidable system errors. 

5.1 Findings from the Simulation Study 

Of all intended survival models, the Cox model with FP transformation had the best 

prediction performance (including both prediction errors and time-dependent AUCs) at 

the beginning of the study, which was due to the inclusion of time-dependent treatment 

effect; but it caught up with the rest of the models at the tail. The prediction performance 

of the Cox PH linear model was the second of the 3 typical Cox PH models and it 

exceeded the Cox model with FP transformation slightly in the tails. Surprisingly, the 

prediction performance of the Cox model with RCS transformations was the worst of the 

3 models, even though the difference was very minimal. This was possibly due to the fact 

that the model missed the factor Age but falsely selected BMI as one of the important 

prognostic factors. 
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For the 2 nonparametric random survival forest models, the prediction performances 

of the 2 RSF models were reasonably satisfactory; furthermore, the 2 approaches were 

very convenient since they had little or no model assumptions, such as multicollinearity, 

proportionality, nonlinearity or interactions etc. Of the two RSF models, both models had 

similar prediction errors at the beginning of the study; while during the middle of the 

study, the conditional inference based RSF model had slightly better prediction errors; 

and the log-rank based RSF behaved slightly better in the tail. In terms of time-dependent 

AUCs, the log-rank based RSF model was slightly better at the beginning of the study; 

otherwise the two RSF models were similar. During the analysis, it was found that the 

two RSF models had some disadvantages; they were black-box approaches, which made 

them difficult to interpret the mechanism for model selections; the approaches were based 

on bootstrap aggregation, therefore they could be very resource-consuming for training 

and cross validation the models and it was extremely time consuming for evaluating the 

prediction performance.  

Of all 3 penalized Cox models, the elastic-net Cox model via interval search had the 

best time-dependent AUCs. The ridge Cox model was the next by keeping all prognostic 

factors or covariate terms; and the lasso Cox model was the last. While in terms of 

prediction errors, the three penalized Cox models were very similar to each other. 

The prediction performance of the principal component Cox regression model was 

above average for the simulation study. The prediction error of this model was excellent, 

but the prediction AUC was just about average. For PLS Cox model, the prediction 

performance was almost the worst of all intended models. 

In terms of prediction errors, the Cox model with FP transformation was the best at 

the beginning, then it caught up with the rest of models in the tails; the Cox PH linear 

model, the principal component Cox model and conditional inference based RSF model 

was the second best; then the Cox model with RCS transformation and elastic-net Cox 

model was the next followed by the ridge, PLS and lasso Cox models. The prediction 

error of the log-rank based RSF model was the worst during the middle of the study, 

between 5 to 10 years, otherwise it was comparable to all other models. 

In terms of prediction AUCs, the Cox model with FP transformation was the best at 

all time-points; the elastic-net Cox model was the second, followed by Cox PH linear 
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model, ridge, Cox model with RCS transformation and principal component Cox 

regression model; the lasso and PLS Cox models were the worst. The conditional 

inference based and log-rank based RSF models were in the middle; however, consider 

the convenience of the two models due to the nonparametric nature; they can be used as 

alternative tools for studying survival data. 

5.2 Findings from the Real World Case Study on NKI70 Data 

For the real world case study on NKI70 data, the conditional inference based RSF had 

better prediction AUCs than the log-rank based RSF, which was possibly due to the high 

correlation among factors; since the conditional inference based RSF model was 

developed based on conditional probabilities, which was specifically good at dealing with 

correlated data; while the log-rank based RSF model completely discard the 

multicollinearity among the factors, which might have some impact on the prediction 

performance. While in terms of prediction errors, the two RSF models were almost 

equivalent. 

For the case study on NKI70 data, the principal component Cox regression (PCR) 

approach constructed orthogonal latent components, but the model was not estimable 

with the training set, instead the original NKI70 data was used for both training and 

testing the PCR model, thus this model had exceptional prediction performance, which 

could not be generalized to other studies; in addition, it was found that the number of 

selected principal components was exactly the same as the total number of available 

events, which was possibly due to a random chance.  Additionally, the results of the 

analysis are not intuitively interpretable because the model was built on the latent 

components.  

Other than the PCR model, the ridge Cox linear model had very good prediction 

performance; the elastic-net Cox polynomial model also achieved excellent performances 

(for both prediction errors and prediction AUCs); the elastic-net Cox linear model should 

be ranked next, followed by the ridge Cox interaction model.  

For lasso Cox models, the prediction errors of the 3 lasso Cox models were similar to 

each other; for time-dependent AUCs, the lasso Cox interaction model had the best 

AUCs, followed by the lasso Cox linear model; the lasso Cox polynomial model was the 

worst of 3, which suggested that polynomial transformations were not necessary for lasso 
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Cox models. Comparing with the other penalized Cox models, the 3 lasso Cox models 

were almost the worst of all intended penalized Cox models. In general, the lasso Cox 

models were efficient for selecting prognostic factors, but they should not be used for 

predictions. 

For ridge Cox models, the ridge Cox linear and ridge Cox interaction models had 

similar prediction errors and prediction errors of the ridge Cox polynomial model was 

consistently the worst of the 3 options. In terms of time-dependent AUCs, the ridge Cox 

linear model had the best AUCs and the ridge Cox polynomial model had the worst 

prediction AUCs, which suggested that the polynomial transformation was not necessary 

for the ridge Cox models. Additionally, it was also found that the ridge Cox model did 

not perform prognostic factor selections, the models kept all covariates with the intension 

to achieve good performance. 

For elastic-net Cox models, the elastic-net Cox interaction model had the worst 

performance (in both prediction errors and AUCs) due to the significant underfit from the 

lasso-like penalization parameters. The elastic-net Cox linear and elastic-net Cox 

polynomial models had similar prediction errors; while the prediction AUCs of the 

elastic-net Cox polynomial model was slightly better than the elastic-net Cox linear 

model. In general, the elastic-net Cox models were effective for selecting prognostic 

factors and prediction of unseen outcomes with excellent prediction performance.  

For the partial least squares models, the prediction performance was very 

unsatisfying, possibly due to the system errors as discussed in section 4.1.2.3.7. 

Additionally, it was found that the PLS Cox polynomial model was only able to achieve 

convergence unless all covariate terms were normalized; but normalization of all 

covariate terms should have inflated the noise (covariates) for the model. This was 

probably the reason why the prediction performance of the PLS Cox polynomial model 

was worse than the PLS Cox interaction model. 

For this study, polynomial transformation did not improve the model performance for 

lasso and ridge Cox models and slight improvement was observed from the elastic-net 

Cox polynomial model and PLS Cox polynomial model; pair-wise interaction terms did 

not improve the performance for ridge and elastic-net Cox model, but slight improvement 

was observed for lasso Cox interaction and PLS Cox interaction models. 
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Therefore for the case study, polynomial transformation was unnecessary for lasso 

and ridge Cox regression models, instead it cost more damage than improvement to the 

prediction performance of the models; on the contrary, for the elastic-net Cox regression 

model and partial least squares Cox model, the polynomial transformation achieved slight 

improvement over the linear ones in the prediction performance.   

For lasso Cox regression model, cross validation randomly selected only one term 

from the correlated group of covariates (note that a polynomial transformation of a 

particular factor should include multiple terms involving the same factor, the correlation 

within multiple terms of the same factor should have strong correlations for sure); 

however elastic-net Cox model was able to select multiple covariates within a correlated 

group if one was selected from the same group, therefore it should be able to pick up the 

correlated covariate terms appropriately. For ridge Cox regression, the under-

performance for the model with polynomial transformation was possibly due to the same 

reason for the lasso Cox polynomial model, except that the ridge Cox regression tend to 

shrink the extra correlated terms to zero instead of dropping them.  

5.3 Additional Comments 

In this paper, several typical Cox regression models were implemented over the 

simulation study; but none of them worked with the NKI70 microarray survival data from 

the real world case study, since the number of covariates was more than the number of 

events available. They are typical statistical models; therefore if they are able to fit to the 

data, they should provide unbiased estimates and the prediction performance of these 

models should be better than most of the survival models. Additionally, the typical Cox 

regression model has been well developed with many useful options and features; the 

recurrent event extension of the typical Cox regression model is capable of handling 

recurrent-event survival data, competing risk survival data, and interval-censored data. 

As shown in the simulation study, the time-varying treatment effect was handled as if the 

treatment switching was competing with death, or as if multiple observations occurred 

within a subject, subjects who switched treatment were considered as having two 

different observations, except that only one event occurred. In the simulation study, 

Andersen-Gill (AG) extension of Cox PH model was employed, where different 

observations from the same subject were considered independent; this assumption was 
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quite stringent, and it might not be reasonable. Other models such as WLW marginal Cox 

regression model  or PWP conditional Cox regression model are also available, which 

have more relaxed assumptions; the former assumes events are unordered, but they are 

competing with each other; the latter assumes events are ordered, i.e., a subject cannot be 

at risk for event 2 until event 1 occurs. All three models are available for the typical Cox 

PH model. 

As found in the both studies, the lasso Cox regression had some nice features; it 

provided regularization (variable selection) and shrinkage simultaneously, however it 

also had some problems, in cases when the number of factors were bigger than the 

number of observations (n), the lasso Cox regression selects at most 𝑎𝑎 factors; if high 

correlations existed among factors, the lasso regression only randomly selected one from 

the correlated group of factors and the prediction performance of the lasso was dominated 

by ridge regression. Another disadvantage was persistent to all penalized Cox models; the 

parameter estimates were biased, which would have been even worse if the true unknown 

parameter was large. As found from the real world case study, polynomial 

transformations did not improve the model performance for lasso Cox models; inclusion 

of pair-wise interactions was able to achieve slight improvement to the prediction AUCs 

for lasso Cox regression.  

In general, ridge Cox regression model had very good prediction performance, but it 

did not select predictors; instead, it shrank most of the coefficients towards zero, but 

never reached zero, the exceptional prediction performance was achieved by keeping 

most if not all covariates. Additionally, it was found in the case study that, nonlinear 

(polynomial) transformation and inclusion of pair-wise interactions did not improve the 

prediction performance, instead it cost substantial deterioration to the prediction 

performance of ridge Cox regression. 

On the other hand, Elastic-net Cox regression served the purpose for variable 

selection with relatively good prediction accuracy comparing to lasso and ridge Cox 

regression. In the real world case study, elastic-net Cox regression models should have 

relative excellent prediction performance compared to most of the other survival models; 

however, it was found that the elastic-net interaction model did not perform as good due 

to the lasso-like penalization terms (α ≈ 1), which should be considered as an exception. 
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Otherwise, the elastic-net Cox model was the most effective of all intended survival 

models. 

For the 3 penalized Cox regression models, unfortunately none of them were able to 

deal with recurrent-event survival data or interval censored survival data; different 

observations from the same subject was assumed to be independent subjects. 

For PCR and PLS Cox model, all covariates were needed for construction of the 

latent components; unless the model had selected only one or two components, it could 

be very difficult to distinguish the important predictors from irrelevant covariates, 

although not all factors were equally important and correlated to the survival outcome. 

One options to narrow down the relatively more important factors was to apply a soft 

threshold over the loadings of the factors, however it was a trade-off between prognostic 

factor detection and the prediction performance; if the threshold was set very high, then 

only a few important factors could be selected, but the prediction performance would be 

worse; if a threshold was set too low, the prediction performance could be very good, but 

many more factors could be left in the model. In addition, the coefficients obtained from 

the models were corresponding to the constructed components, which was an 

intermediate between the survival outcome and the original factors; the actual 

coefficients of the original covariates could be obtained by transforming the coefficients 

of the latent component with the loading matrix from the models, which made it very 

difficult to link the survival outcome with the original factors; therefore it was not very 

intuitive for interpretations. 

In the real world case study, the principal components constructed from the original 

76 factor was barely estimable with the Cox model, thus the interaction and polynomial 

transformations were not assessed for PCR analysis. Similar to PLS Cox model, this 

model was also capable of evaluating unseen variables (the principal components), 

however because the orthogonal components were constructed independent of the 

survival outcome, there was no guarantee that the most important factors were selected; if 

there were too many components needed, the model would become non-estimable.  For 

the simulation study, the prediction performance of the PCR was above average, but it 

was exceptional for the real world case study since the same dataset was used for both 

training and testing. Overall, PCR model is not as flexible as most of the survival models, 
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the results are not intuitively interpretable; the model is useful for variable reduction or 

clustering, but model performance does not seemed to have much advantage over the 

other intended models, thus the model is not recommended unless there is no other choice 

available. 

The prediction performance for PLS Cox models was very unsatisfying. However, 

PLS Cox models were capable of analyzing the uncollected components based on 

collected factors. Moreover, the model can deal with recurrent-event or competing-risk 

survival data, since the typical Cox regression model is involved to estimate the 

coefficients of the PLS components, thus this model should share some benefits from the 

typical Cox regression analysis: the extensions of Cox model, such as AG, WLW and 

PWP are also available for PLS Cox model. However, considering the disappointing 

prediction performance, this model is not recommended unless the intension was to study 

the unseen variables. 

Additionally, two random survival forest (RSF) models, the log-rank based RSF and 

conditional inference based RSF, were evaluated in the two studies. Both approaches are 

completely nonparametric, thus they have no model assumptions and should be very 

flexible with most survival data. Comparing the two RSF models, the conditional 

inference based RSF model should have slightly better prediction performance for highly 

correlated survival data; thus the conditional inference based RSF model should be more 

preferred, even though the log-rank based RSF model could also achieve satisfactory 

prediction performance.  
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Chapter 6. Future Work to be Done 

In the simulation study, a time-varying treatment effect was noted for the Cox model 

with FP transformation; to resolve the non-proportionality, an interaction between 

treatment and transformed treatment duration was incorporated, which resolved the non-

proportionality for almost all of the factors; but looking at the Martingale residual plot, it 

was  noticed that the distribution of the residuals still showed some patterns before year-

2, it was suspected that the transformation for the treatment duration might not have 

captured all the time-dependent effect, future work will be focused on improvement of 

the time-varying treatment effect for the model, and further evaluate the impact of the 

improvement in the time-varying treatment on the model prediction performance, 

including prediction errors and prediction AUCs. 

In the simulation study, some placebo treated subjects had switched treatment during 

the study; the placebo treated subjects who had switched treatment were considered as 

two different observations, since the same subject had different treatment over different 

study period. For this particular case, the switching was independent of the failure event, 

therefore the AG extension of the Cox PH model was employed; however, in clinical 

setting, subjects may switch treatment due to lack of efficacy, then the other models such 

as WLW marginal Cox regression and PWP conditional Cox regression model should 

have better fit, if subjects had multiple observations or multiple correlated events. Further 

example of multiple events survival data should be a good topic for evaluation the 

prediction performance of the three different models.  

In the simulation study, the time-varying treatment effect was adjusted using multiple 

observations per subject; unfortunately the LR- RSF model could not model multiple 

observations per subject; the CINF-RSF model was able to deal with the situation by 

assuming that the treatment switching was independent of the failure event, however in 

clinical studies, time-varying effect may be linked to the outcome, in which case, the 

CINF-RSF model will not be appropriate. Thus, new RSF models for multiple-event 

survival data should be very useful. 

In both studies, the elastic-net Cox regression models had consistently better 

prediction performance than most of the other survival models. Unfortunately, the model 
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cannot handle multiple-event survival data either. It should be more useful, if it can 

handle multiple event survival data.  

In addition to the above approaches, support vector machines was reported to be very 

efficient for analysis of continuous and categorical outcomes from high dimensional data; 

thus  the learning algorithm on top of Cox regression models may be another effective 

tool for survival data.
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APPENDICES 

APPENDIX 1. Polynomial Covariate Terms for Penalized Cox Models – 
Simulation Study 

Total Covariate Terms: 345  Page 1 of 3 
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Appendix 1: Polynomial Covariate Terms for Penalized Cox Models – Simulation Study  
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APPENDIX 2. Covariate Terms for the "Best" Lasso Cox Regression Model 
Cross Validated via Partial Log Likelihood Deviance – Simulation Study 
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APPENDIX 3. Covariate Terms for the "Best" Ridge Cox Regression Model 
Cross Validated via Partial Log Likelihood Deviance – Simulation Study 
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Appendix 3: Covariate Terms for the "Best" Ridge Cox Regression Model Cross 
Validated via Partial Log Likelihood Deviance – Simulation Study  
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Appendix 3: Covariate Terms for the "Best" Ridge Cox Regression Model Cross 
Validated via Partial Log Likelihood Deviance – Simulation Study  
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Appendix 3: Covariate Terms for the "Best" Ridge Cox Regression Model Cross 
Validated via Partial Log Likelihood Deviance – Simulation Study 
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APPENDIX 4. Covariate Terms for Partial Least Squares Cox Regression Model 
– Simulation Study 
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APPENDIX 5. Regression Coefficients for all Factor in the Original Scale for PLS 
Cox Model – Simulation Study 
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APPENDIX 6. Descriptive Summary of the NKI70 Data 
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Appendix 6. Descriptive Summary of the NKI70 Data  
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APPENDIX 8. AIC vs. Number of Components for Principal Component Cox 
Regression Model − NKI70 Data  
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APPENDIX 9. Preselected Interactions from Deviance Test − NKI70 Data 
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Appendix 9. Preselected Interactions from Deviance Test − NKI70 Data 
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Appendix 9. Preselected Interactions from Deviance Test − NKI70 Data 
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APPENDIX 10. All 3-degree Polynomial Terms, Including All Linear, Nonlinear 
and Interactions – NKI70 Data 
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APPENDIX 11. Biased Estimates of the Regression Coefficients from Lasso 
Interaction Model  – NKI70 Data 

 
Coef HR SE (Coef) z Pr(>|z|) 

Age:TSPYL5 -0.0068 0.993 0.0176 -0.39 0.6991 
Age:Contig63649.RC 0.0089 1.009 0.0246 0.36 0.7165 
Age:QSCN6L1 0.0064 1.006 0.0382 0.17 0.8676 
Age:Contig32125.RC 0.0213 1.022 0.0319 0.67 0.5047 
Age:MMP9 0.0106 1.011 0.0243 0.44 0.6612 
Age:RUNDC1 0.0359 1.037 0.0304 1.18 0.2383 
Age:KNTC2 -0.0526 0.949 0.0383 -1.37 0.1701 
Age:RAB6B -0.0034 0.997 0.0185 -0.18 0.8534 
Age:ZNF533 -0.0119 0.988 0.0137 -0.87 0.3864 
Age:COL4A2 0.0123 1.012 0.0348 0.35 0.7236 
Age:GPR126 -0.0397 0.961 0.0219 -1.82 0.0695 
Age:PECI.1 -0.0156 0.984 0.0338 -0.46 0.6442 
Age:CDCA7 0.0135 1.014 0.0229 0.59 0.5544 
Age:LOC643008 -0.0013 0.999 0.0210 -0.06 0.9490 
Age:MS4A7 -0.0383 0.962 0.0242 -1.58 0.1134 
Age:IGFBP5 0.0387 1.039 0.0152 2.54 0.0110 
Age:HRASLS -0.0377 0.963 0.0245 -1.54 0.1242 
Age:PRC1 0.0313 1.032 0.0404 0.77 0.4384 
Age:CENPA 0.0047 1.005 0.0318 0.15 0.8815 
Age:NM.004702 0.0440 1.045 0.0313 1.40 0.1605 
Age:ESM1 0.0208 1.021 0.0243 0.85 0.3928 
Age:C20orf46 -0.0055 0.994 0.0235 -0.24 0.8140 
Age:N.GE4 0.0107 1.011 0.0116 0.92 0.3562 
Age:ER.Pos -0.0289 0.972 0.0172 -1.68 0.0937 
Age:Grade.Well -0.0003 1.000 0.0141 -0.02 0.9812 
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APPENDIX 12. Unbiased Regression Coefficients Corresponding to the 25 
Covariate Terms as Retained by Lasso Interaction Model – NKI70 Data 

 
Coef HR SE (Coef) z Pr(>|z|) 

Age:TSPYL5 -0.0152 0.985 0.0245 -0.62 0.5342 
Age:Contig63649.RC 0.0176 1.018 0.0298 0.59 0.5543 
Age:QSCN6L1 -0.0157 0.984 0.0556 -0.28 0.7777 
Age:Contig32125.RC 0.0708 1.073 0.0460 1.54 0.1238 
Age:MMP9 0.0331 1.034 0.0347 0.95 0.3398 
Age:RUNDC1 0.1172 1.124 0.0400 2.93 0.0034 
Age:KNTC2 -0.2158 0.806 0.0743 -2.90 0.0037 
Age:RAB6B -0.0252 0.975 0.0250 -1.01 0.3142 
Age:ZNF533 0.0007 1.001 0.0187 0.04 0.9691 
Age:COL4A2 0.0834 1.087 0.0446 1.87 0.0617 
Age:GPR126 -0.1001 0.905 0.0339 -2.95 0.0032 
Age:PECI.1 -0.0884 0.915 0.0496 -1.78 0.0749 
Age:CDCA7 0.0422 1.043 0.0355 1.19 0.2340 
Age:LOC643008 -0.0243 0.976 0.0301 -0.81 0.4198 
Age:MS4A7 -0.0408 0.960 0.0311 -1.31 0.1897 
Age:IGFBP5 0.0961 1.101 0.0274 3.51 0.0005 
Age:HRASLS -0.0780 0.925 0.0476 -1.64 0.1016 
Age:PRC1 0.0994 1.105 0.0520 1.91 0.0560 
Age:CENPA 0.0499 1.051 0.0467 1.07 0.2852 
Age:NM.004702 0.1145 1.121 0.0402 2.85 0.0044 
Age:ESM1 0.0826 1.086 0.0390 2.12 0.0340 
Age:C20orf46 -0.0062 0.994 0.0410 -0.15 0.8802 
Age:N.GE4 0.0106 1.011 0.0146 0.72 0.4692 
Age:ER.Pos -0.0575 0.944 0.0258 -2.23 0.0260 
Age:Grade.Well 0.0051 1.005 0.0177 0.29 0.7735 
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APPENDIX 13. Biased estimates of Regression Coefficients from Ridge Cox 
Linear Model – NKI70 Data 

 
Coef HR SE (Coef) z Pr (>|z|) 

Diam.GT2 0.3059 1.358 1.0199 0.30 0.7642 
N.GE4 0.2979 1.347 1.0546 0.28 0.7776 
ER.Pos -0.3960 0.673 2.4597 -0.16 0.8721 
Grade.Well -0.1101 0.896 1.3102 -0.08 0.9331 
Grade.Intermediate 0.0664 1.069 1.0708 0.06 0.9505 
Age -0.0472 0.954 0.0904 -0.52 0.6017 
TSPYL5 -0.1953 0.823 1.3696 -0.14 0.8866 
Contig63649.RC 0.1990 1.220 2.2566 0.09 0.9297 
DIAPH3 0.0101 1.010 3.8526 0.00 0.9979 
NUSAP1 0.3281 1.388 4.0716 0.08 0.9358 
AA555029.RC -0.0435 0.957 3.0798 -0.01 0.9887 
ALDH4A1 0.1015 1.107 3.6532 0.03 0.9778 
QSCN6L1 0.3323 1.394 3.5595 0.09 0.9256 
FGF18 -0.0031 0.997 2.2191 0.00 0.9989 
DIAPH3.1 -0.0805 0.923 5.3835 -0.03 0.9881 
Contig32125.RC 0.3070 1.359 2.7924 0.12 0.9125 
BBC3 0.0126 1.013 4.2787 0.00 0.9976 
DIAPH3.2 0.0178 1.018 7.6300 0.00 0.9981 
RP5.860F19.3 0.0888 1.093 2.6084 0.03 0.9728 
C16orf61 0.0285 1.029 4.9999 0.02 0.9955 
SCUBE2 -0.0908 0.913 1.3154 -0.07 0.9450 
EXT1 0.0620 1.064 3.9930 0.02 0.9876 
FLT1 0.2075 1.231 3.4875 0.06 0.9526 
GNAZ 0.1627 1.177 2.7607 0.06 0.9530 
OXCT1 0.1719 1.188 4.0154 0.04 0.9658 
MMP9 0.2197 1.246 1.7364 0.13 0.8993 
RUNDC1 0.3551 1.426 3.1603 0.11 0.9105 
Contig35251.RC 0.0607 1.063 3.3179 0.02 0.9854 
ECT2 0.2324 1.262 3.7434 0.06 0.9505 
GMPS 0.0054 1.005 3.3384 0.00 0.9987 
KNTC2 -0.3248 0.723 3.4907 -0.09 0.9259 
WISP1 -0.0225 0.978 3.7847 -0.01 0.9953 
CDC42BPA 0.0013 1.001 5.1306 0.00 0.9998 
SERF1A -0.1110 0.895 4.5575 -0.02 0.9806 
AYTL2 0.0405 1.041 3.7264 0.01 0.9913 
GSTM3 0.0779 1.081 1.6793 0.05 0.9630 
GPR180 -0.0856 0.918 3.4455 -0.02 0.9802 
RAB6B -0.1327 0.876 1.3581 -0.10 0.9221 
ZNF533 -0.5648 0.568 1.2358 -0.46 0.6476 
RTN4RL1 -0.1358 0.873 3.1103 -0.04 0.9652 
UCHL5 -0.1574 0.854 4.5542 -0.03 0.9724 
PECI -0.1985 0.820 4.8088 -0.04 0.9671 
MTDH 0.0283 1.029 4.4042 0.01 0.9949 
Contig40831.RC 0.0729 1.076 3.8774 0.02 0.9850 
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Coef HR SE (Coef) z Pr (>|z|) 

TGFB3 -0.1501 0.861 3.1853 -0.05 0.9624 
MELK -0.0168 0.983 5.0699 0.00 0.9974 
COL4A2 0.2496 1.284 3.7094 0.07 0.9463 
DTL 0.1159 1.123 4.8575 0.02 0.9810 
STK32B -0.1375 0.872 4.0412 -0.03 0.9729 
DCK -0.0068 0.993 3.5546 0.00 0.9985 
FBXO31 -0.0067 0.993 4.0274 0.00 0.9987 
GPR126 -0.4866 0.615 1.9416 -0.25 0.8021 
SLC2A3 -0.1399 0.869 2.7822 -0.05 0.9599 
PECI.1 -0.2692 0.764 5.3297 -0.05 0.9597 
ORC6L 0.1949 1.215 2.9478 0.07 0.9473 
RFC4 0.0724 1.075 4.5109 0.02 0.9872 
CDCA7 0.1341 1.144 1.8760 0.07 0.9430 
LOC643008 -0.1801 0.835 1.8487 -0.10 0.9224 
MS4A7 -0.5516 0.576 1.9365 -0.28 0.7757 
MCM6 -0.0832 0.920 4.7670 -0.02 0.9861 
AP2B1 -0.0092 0.991 3.6808 0.00 0.9980 
C9orf30 0.0880 1.092 5.3224 0.02 0.9868 
IGFBP5 0.4172 1.518 5.8902 0.07 0.9435 
HRASLS -0.3975 0.672 2.4114 -0.16 0.8691 
PITRM1 -0.2750 0.760 3.8104 -0.07 0.9425 
IGFBP5.1 0.3604 1.434 6.1854 0.06 0.9535 
NMU -0.0588 0.943 1.5366 -0.04 0.9695 
PALM2.AKAP2 -0.1418 0.868 4.2673 -0.03 0.9735 
LGP2 0.1985 1.220 2.6075 0.08 0.9393 
PRC1 0.3542 1.425 3.4851 0.10 0.9190 
Contig20217.RC -0.2426 0.785 3.5542 -0.07 0.9456 
CENPA 0.3056 1.357 2.4890 0.12 0.9023 
EGLN1 -0.2315 0.793 4.2708 -0.05 0.9568 
NM.004702 0.3567 1.429 3.9325 0.09 0.9277 
ESM1 0.2628 1.301 1.8927 0.14 0.8896 
C20orf46 -0.1501 0.861 2.0366 -0.07 0.9412 
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APPENDIX 14. Biased estimates of the Regression Coefficients from Elastic-Net 
Cox Linear Model – NKI70 Data 

 
Coef HR SE (coef) z Pr(>|z|) 

Diam.GT2 0.0840 1.0876 0.8061 0.10 0.9170 
N.GE4 0.1531 1.1654 0.8841 0.17 0.8625 
ER.Pos -0.1239 0.8835 1.6094 -0.08 0.9386 
Grade.Well -0.0468 0.9543 1.1061 -0.04 0.9663 
Grade.Intermediate 0.0060 1.0060 0.8958 0.01 0.9946 
Age -0.0090 0.9910 0.0707 -0.13 0.8983 
TSPYL5 -0.0665 0.9357 1.1965 -0.06 0.9557 
Contig63649.RC 0.1670 1.1818 1.8354 0.09 0.9275 
DIAPH3 0.0144 1.0145 3.0319 0.00 0.9962 
NUSAP1 0.2179 1.2434 3.0069 0.07 0.9422 
AA555029.RC -0.0045 0.9956 2.5999 0.00 0.9986 
ALDH4A1 0.0629 1.0650 3.2493 0.02 0.9845 
QSCN6L1 0.3011 1.3513 2.9176 0.10 0.9178 
Contig32125.RC 0.3228 1.3809 2.0882 0.15 0.8772 
DIAPH3.2 0.0523 1.0537 5.7656 0.01 0.9928 
C16orf61 0.0454 1.0464 4.1133 0.01 0.9912 
SCUBE2 -0.0307 0.9697 1.1255 -0.03 0.9782 
EXT1 0.1491 1.1608 3.0858 0.05 0.9615 
FLT1 0.2421 1.2740 2.8261 0.09 0.9317 
GNAZ 0.1310 1.1400 2.1298 0.06 0.9509 
OXCT1 0.2318 1.2609 3.2823 0.07 0.9437 
MMP9 0.1094 1.1156 1.3752 0.08 0.9366 
RUNDC1 0.3008 1.3509 2.6440 0.11 0.9094 
Contig35251.RC 0.0629 1.0649 2.6053 0.02 0.9808 
ECT2 0.2391 1.2702 2.9278 0.08 0.9349 
GMPS 0.0302 1.0306 2.7752 0.01 0.9913 
KNTC2 -0.1962 0.8218 3.0548 -0.06 0.9488 
WISP1 -0.0090 0.9910 2.6321 0.00 0.9973 
CDC42BPA -0.0019 0.9981 3.4245 0.00 0.9996 
SERF1A -0.1465 0.8637 3.7212 -0.04 0.9686 
AYTL2 0.0140 1.0141 3.0942 0.00 0.9964 
GPR180 -0.0494 0.9518 3.0623 -0.02 0.9871 
ZNF533 -0.1914 0.8258 1.0059 -0.19 0.8491 
RTN4RL1 -0.2318 0.7931 2.2914 -0.10 0.9194 
UCHL5 -0.2571 0.7733 4.1538 -0.06 0.9506 
PECI -0.2238 0.7995 4.1992 -0.05 0.9575 
MTDH -0.0159 0.9842 3.6851 0.00 0.9966 
Contig40831.RC 0.0171 1.0172 2.8525 0.01 0.9952 
TGFB3 -0.1090 0.8967 2.5451 -0.04 0.9658 
MELK 0.0136 1.0137 4.0957 0.00 0.9973 
COL4A2 0.3612 1.4350 3.0329 0.12 0.9052 
DTL 0.1611 1.1748 3.8112 0.04 0.9663 
STK32B -0.4084 0.6647 3.2324 -0.13 0.8995 
DCK -0.0338 0.9668 3.1372 -0.01 0.9914 
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Coef HR SE (coef) z Pr(>|z|) 

FBXO31 0.0136 1.0137 3.4892 0.00 0.9969 
GPR126 -0.2281 0.7961 1.6410 -0.14 0.8895 
SLC2A3 -0.1490 0.8615 2.1979 -0.07 0.9459 
PECI.1 -0.3259 0.7219 4.3165 -0.08 0.9398 
ORC6L 0.1507 1.1627 2.5465 0.06 0.9528 
RFC4 0.1232 1.1311 3.9352 0.03 0.9750 
CDCA7 0.0469 1.0480 1.6695 0.03 0.9776 
LOC643008 -0.0141 0.9860 1.4676 -0.01 0.9923 
MS4A7 -0.3220 0.7247 1.4817 -0.22 0.8280 
C9orf30 0.2048 1.2273 3.9428 0.05 0.9586 
IGFBP5 0.1950 1.2153 4.9570 0.04 0.9686 
HRASLS -0.2605 0.7706 2.0378 -0.13 0.8983 
PITRM1 -0.1711 0.8428 3.2465 -0.05 0.9580 
IGFBP5.1 0.2235 1.2504 5.3445 0.04 0.9666 
NMU -0.0048 0.9952 1.1286 0.00 0.9966 
PALM2.AKAP2 -0.0959 0.9086 3.1001 -0.03 0.9753 
LGP2 0.1652 1.1796 2.0051 0.08 0.9343 
PRC1 0.2537 1.2887 2.8290 0.09 0.9286 
Contig20217.RC -0.2111 0.8097 2.3974 -0.09 0.9298 
CENPA 0.1327 1.1419 2.1367 0.06 0.9505 
EGLN1 -0.3252 0.7224 3.3604 -0.10 0.9229 
NM.004702 0.1876 1.2064 3.0611 0.06 0.9511 
ESM1 0.1222 1.1300 1.5323 0.08 0.9364 
C20orf46 -0.1032 0.9020 1.4690 -0.07 0.9440 
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APPENDIX 15. Biased estimates of the Regression Coefficients from Elastic-Net 
Cox Polynomial Model – NKI70 Data 

 Coef HR SE (coef) z Pr(>|z|) 
Diam.GT2 0.0419 1.0428 24.3532 0.0017 0.9986 
N.GE4 0.0957 1.1005 15.1464 0.0063 0.9950 
ER.Pos -0.1041 0.9011 11.3852 -0.0091 0.9927 
Grade.Well -0.0070 0.9930 5.1677 -0.0014 0.9989 
NUSAP1 0.0405 1.0413 84.3027 0.0005 0.9996 
SCUBE2 -0.0085 0.9916 3.8881 -0.0022 0.9983 
EXT1 0.0215 1.0218 22.3565 0.0010 0.9992 
FLT1 0.0130 1.0131 13.4149 0.0010 0.9992 
OXCT1 0.0271 1.0275 46.6916 0.0006 0.9995 
ECT2 0.0467 1.0478 8.6073 0.0054 0.9957 
ZNF533 -0.1256 0.8820 4.5734 -0.0275 0.9781 
RTN4RL1 -0.1681 0.8453 41.1847 -0.0041 0.9967 
PECI -0.1258 0.8818 39.1872 -0.0032 0.9974 
COL4A2 0.2060 1.2287 44.7465 0.0046 0.9963 
STK32B -0.1571 0.8546 27.9478 -0.0056 0.9955 
GPR126 -0.0451 0.9559 31.3893 -0.0014 0.9989 
SLC2A3 -0.0127 0.9874 53.3869 -0.0002 0.9998 
PECI.1 -0.2381 0.7881 24.5508 -0.0097 0.9923 
RFC4 0.0184 1.0185 22.4870 0.0008 0.9993 
CDCA7 0.0044 1.0045 14.5616 0.0003 0.9998 
MS4A7 -0.1788 0.8363 16.5857 -0.0108 0.9914 
IGFBP5 0.0730 1.0757 31.1613 0.0023 0.9981 
IGFBP5.1 0.0903 1.0945 24.9787 0.0036 0.9971 
PRC1 0.1276 1.1361 33.1341 0.0039 0.9969 
CENPA 0.0664 1.0686 13.8298 0.0048 0.9962 
EGLN1 -0.1042 0.9010 19.2744 -0.0054 0.9957 
NM.004702 0.0927 1.0972 30.9679 0.0030 0.9976 
Age -0.0021 0.9979 115.3825 0.0000 1.0000 
I(Age^2) 0.0000 1.0000 2.8618 0.0000 1.0000 
I(Age^3) 0.0000 1.0000 0.0231 0.0000 1.0000 
Contig63649.RC 0.0321 1.0326 45.1516 0.0007 0.9994 
I(Contig63649.RC^2) 0.4989 1.6469 113.7782 0.0044 0.9965 
QSCN6L1 0.1870 1.2056 102.1358 0.0018 0.9985 
I(RP5.860F19.3^2) -0.0089 0.9912 109.5608 -0.0001 0.9999 
I(CDC42BPA^2) -1.2436 0.2884 74.2103 -0.0168 0.9866 
TGFB3 -0.0677 0.9346 9.2450 -0.0073 0.9942 
ORC6L 0.0365 1.0372 11.6879 0.0031 0.9975 
I(C20orf46^2) -0.1326 0.8759 13.3133 -0.0100 0.9921 
I(Contig63649.RC):I(RUNDC1) -1.0414 0.3530 95.0696 -0.0110 0.9913 
I(Contig63649.RC^2):I(RUNDC1) -0.0120 0.9880 309.3306 0.0000 1.0000 
I(Contig63649.RC):I(WISP1) 0.4958 1.6418 112.0984 0.0044 0.9965 
I(Contig63649.RC):I(WISP1^2) 0.7943 2.2130 283.2898 0.0028 0.9978 
I(Contig63649.RC):I(WISP1^3) 4.4659 86.9965 1437.0903 0.0031 0.9975 
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 Coef HR SE (coef) z Pr(>|z|) 
I(Contig63649.RC^2):I(WISP1) 0.2551 1.2906 2027.2687 0.0001 0.9999 
I(Contig63649.RC^2):I(WISP1^2) 2.5465 12.7620 2220.0226 0.0011 0.9991 
I(Contig63649.RC^2):I(WISP1^3) 8.3787 4353.5237 17740.4986 0.0005 0.9996 
I(Contig63649.RC):I(CDC42BPA) 0.0767 1.0797 104.6008 0.0007 0.9994 
I(Contig63649.RC^2):I(CDC42BPA^2) -2.5632 0.0771 7189.4251 -0.0004 0.9997 
I(DIAPH3):I(MCM6) -0.1804 0.8350 98.2633 -0.0018 0.9985 
I(NUSAP1):I(RAB6B) -0.1243 0.8831 70.8710 -0.0018 0.9986 
I(NUSAP1):I(TGFB3) 0.0626 1.0646 39.0425 0.0016 0.9987 
I(NUSAP1):I(CDCA7) -0.0531 0.9482 135.4924 -0.0004 0.9997 
I(MCM6):I(NUSAP1) -0.0341 0.9664 131.0418 -0.0003 0.9998 
I(NUSAP1):I(HRASLS) -0.1452 0.8648 109.2030 -0.0013 0.9989 
I(NUSAP1):I(CENPA) -0.0184 0.9818 94.5703 -0.0002 0.9998 
I(AA555029.RC):I(FLT1) 1.0221 2.7789 290.6267 0.0035 0.9972 
I(AA555029.RC):I(RTN4RL1) 0.9512 2.5887 259.5234 0.0037 0.9971 
I(RTN4RL1):I(ALDH4A1) -1.4300 0.2393 138.8473 -0.0103 0.9918 
I(ALDH4A1):I(DTL) -0.4106 0.6632 76.4673 -0.0054 0.9957 
I(ALDH4A1):I(AP2B1) -0.8431 0.4304 311.2000 -0.0027 0.9978 
I(QSCN6L1):I(C16orf61) -0.7848 0.4562 251.6089 -0.0031 0.9975 
I(QSCN6L1):I(KNTC2) -0.0687 0.9336 272.2287 -0.0003 0.9998 
I(QSCN6L1):I(SERF1A) -0.4612 0.6305 159.3749 -0.0029 0.9977 
I(SERF1A):I(QSCN6L1^2) -0.0741 0.9286 725.7190 -0.0001 0.9999 
I(QSCN6L1):I(MTDH) -1.1332 0.3220 275.8762 -0.0041 0.9967 
I(QSCN6L1^2):I(MTDH) -0.0790 0.9241 854.4795 -0.0001 0.9999 
I(QSCN6L1):I(Contig40831.RC) -0.7485 0.4731 139.1295 -0.0054 0.9957 
I(QSCN6L1):I(TGFB3^2) 0.6257 1.8696 180.5756 0.0035 0.9972 
I(QSCN6L1):I(MELK) -0.0039 0.9961 406.9697 0.0000 1.0000 
I(QSCN6L1):I(ORC6L) -0.3408 0.7112 110.9966 -0.0031 0.9976 
I(CDCA7):I(QSCN6L1) -0.1740 0.8403 191.4352 -0.0009 0.9993 
I(QSCN6L1):I(Contig20217.RC) -0.5274 0.5901 314.0915 -0.0017 0.9987 
I(CENPA):I(QSCN6L1^2) 1.3803 3.9760 867.6301 0.0016 0.9987 
I(QSCN6L1):I(NM.004702) -0.9431 0.3894 224.8059 -0.0042 0.9967 
I(FGF18^3):I(SCUBE2) -0.1723 0.8417 119.0617 -0.0014 0.9988 
I(WISP1):I(FGF18) -0.1990 0.8195 101.8365 -0.0020 0.9984 
I(TGFB3):I(FGF18^2) -0.3834 0.6816 283.5840 -0.0014 0.9989 
I(TGFB3):I(FGF18^3) -0.0088 0.9912 273.3668 0.0000 1.0000 
I(FGF18^2):I(STK32B) -1.5689 0.2083 497.6667 -0.0032 0.9975 
I(FGF18^3):I(STK32B) -0.7603 0.4675 554.6285 -0.0014 0.9989 
I(FGF18):I(DCK) -0.4431 0.6420 409.0938 -0.0011 0.9991 
I(FGF18^3):I(DCK) -1.9970 0.1357 1912.3392 -0.0010 0.9992 
I(MCM6):I(FGF18^3) 0.8442 2.3260 1243.9368 0.0007 0.9995 
I(FGF18):I(PITRM1) 0.4207 1.5231 75.9386 0.0055 0.9956 
I(FGF18):I(PITRM1^3) 1.7426 5.7121 391.5484 0.0045 0.9964 
I(FGF18^3):I(PITRM1^3) 2.3801 10.8059 7439.1157 0.0003 0.9997 
I(Contig40831.RC):I(DIAPH3.1) -0.0662 0.9359 83.4397 -0.0008 0.9994 
I(MCM6):I(DIAPH3.1) -0.2374 0.7887 455.3889 -0.0005 0.9996 
I(Contig20217.RC):I(DIAPH3.1) -0.0848 0.9187 92.8253 -0.0009 0.9993 
I(MTDH):I(Contig32125.RC) -3.0599 0.0469 617.2640 -0.0050 0.9960 
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 Coef HR SE (coef) z Pr(>|z|) 

I(MTDH):I(Contig32125.RC^3) 
-

40.4657 0.0000 3811.3305 -0.0106 0.9915 
I(MCM6):I(Contig32125.RC) 0.2187 1.2444 1231.2267 0.0002 0.9999 
I(Contig32125.RC):I(MCM6^2) 0.0539 1.0554 1627.7461 0.0000 1.0000 
I(MCM6):I(Contig32125.RC^2) -0.1021 0.9029 317.9007 -0.0003 0.9997 
I(MCM6):I(Contig32125.RC^3) 1.3030 3.6804 12160.9196 0.0001 0.9999 
I(Contig40831.RC):I(BBC3) 0.5622 1.7546 477.6828 0.0012 0.9991 
I(BBC3):I(MS4A7) 0.0128 1.0129 237.0779 0.0001 1.0000 
I(BBC3):I(PALM2.AKAP2) 0.0437 1.0447 53.5511 0.0008 0.9993 
I(Contig20217.RC):I(BBC3) 0.2697 1.3095 211.3592 0.0013 0.9990 
I(ORC6L):I(DIAPH3.2) -0.1364 0.8725 191.1954 -0.0007 0.9994 
I(MCM6):I(DIAPH3.2) -0.4151 0.6603 796.6407 -0.0005 0.9996 
I(MCM6^2):I(DIAPH3.2^2) -0.0093 0.9907 2032.2013 0.0000 1.0000 
I(Contig20217.RC):I(DIAPH3.2) -0.0617 0.9401 429.4714 -0.0001 0.9999 
I(CENPA):I(DIAPH3.2) -0.0023 0.9977 94.6417 0.0000 1.0000 
I(Contig40831.RC):I(RP5.860F19.3) 0.2566 1.2926 104.7481 0.0024 0.9980 
I(RP5.860F19.3):I(EGLN1) -0.3737 0.6882 95.8625 -0.0039 0.9969 
I(C16orf61):I(GMPS) -0.2814 0.7547 77.1363 -0.0036 0.9971 
I(TGFB3):I(C16orf61) 1.1471 3.1490 0.0000 Inf 0.0000 
I(C16orf61):I(MELK) -0.0116 0.9884 0.0000 Inf 0.0000 
I(DTL):I(C16orf61) -0.2043 0.8152 0.0000 Inf 0.0000 
I(MCM6):I(C16orf61) -0.2696 0.7637 0.0000 Inf 0.0000 
I(SCUBE2):I(AYTL2) -0.3300 0.7190 0.0000 Inf 0.0000 
I(RAB6B):I(SCUBE2) 0.0576 1.0593 0.0000 Inf 0.0000 
I(TGFB3^2):I(SCUBE2) -0.2261 0.7976 0.0000 Inf 0.0000 
I(RUNDC1):I(FLT1) -0.6345 0.5302 0.0000 Inf 0.0000 
I(FLT1):I(Contig35251.RC) 0.5632 1.7562 0.0000 Inf 0.0000 
I(WISP1):I(FLT1) 0.7370 2.0896 0.0000 Inf 0.0000 
I(WISP1^3):I(FLT1) 8.3381 4180.3477 0.0000 Inf 0.0000 
I(FLT1):I(AP2B1) -1.5923 0.2035 0.0000 Inf 0.0000 
I(FLT1):I(EGLN1) -2.4188 0.0890 0.0000 Inf 0.0000 
I(CDCA7):I(GNAZ) -0.1695 0.8441 0.0000 Inf 0.0000 
I(GNAZ):I(LGP2) 1.0317 2.8057 0.0000 Inf 0.0000 
I(OXCT1):I(NMU) 0.8875 2.4290 0.0000 Inf 0.0000 
I(CDC42BPA):I(MMP9) 0.0352 1.0358 0.0000 Inf 0.0000 
I(RUNDC1):I(ECT2) 0.1662 1.1808 0.0000 Inf 0.0000 
I(RUNDC1):I(LGP2) 0.6479 1.9115 0.0000 Inf 0.0000 
I(MTDH):I(Contig35251.RC) -0.0261 0.9742 0.0000 Inf 0.0000 
I(TGFB3):I(Contig35251.RC) 0.2465 1.2795 0.0000 Inf 0.0000 
I(ORC6L):I(Contig35251.RC) -0.1256 0.8819 0.0000 Inf 0.0000 
I(Contig35251.RC):I(ORC6L^2) 0.0572 1.0589 0.0000 Inf 0.0000 
I(DCK):I(ECT2) 0.4943 1.6393 0.0000 Inf 0.0000 
I(ECT2):I(GPR126) -0.7516 0.4716 0.0000 Inf 0.0000 
I(CDCA7):I(ECT2) -0.2589 0.7719 0.0000 Inf 0.0000 
I(MCM6):I(ECT2) -0.4955 0.6092 0.0000 Inf 0.0000 
I(EGLN1):I(GMPS) 0.8089 2.2454 0.0000 Inf 0.0000 
I(RAB6B):I(KNTC2) -0.2565 0.7738 0.0000 Inf 0.0000 
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 Coef HR SE (coef) z Pr(>|z|) 
I(TGFB3):I(KNTC2) 0.0524 1.0538 0.0000 Inf 0.0000 
I(TGFB3):I(KNTC2^2) 0.2041 1.2264 0.0000 Inf 0.0000 
I(KNTC2^2):I(MELK^2) -0.0129 0.9872 0.0000 Inf 0.0000 
I(KNTC2):I(LOC643008) -0.1428 0.8669 0.0000 Inf 0.0000 
I(KNTC2):I(LOC643008^3) -0.3483 0.7059 0.0000 Inf 0.0000 
I(KNTC2):I(Contig20217.RC) -0.1018 0.9032 0.0000 Inf 0.0000 
I(WISP1):I(UCHL5) 0.6361 1.8891 0.0000 Inf 0.0000 
I(WISP1^3):I(UCHL5) 3.5627 35.2573 0.0000 Inf 0.0000 
I(WISP1):I(ORC6L) 0.3452 1.4122 0.0000 Inf 0.0000 
I(WISP1^3):I(ORC6L) 0.1655 1.1800 0.0000 Inf 0.0000 
I(WISP1):I(CDCA7) 0.0056 1.0056 0.0000 Inf 0.0000 
I(WISP1):I(MCM6) 0.4825 1.6201 0.0000 Inf 0.0000 
I(WISP1^3):I(MCM6) 0.7862 2.1951 0.0000 Inf 0.0000 
I(WISP1):I(PITRM1^3) 5.5825 265.7406 0.0000 Inf 0.0000 
I(WISP1^3):I(PITRM1^3) 6.7883 887.3967 0.0000 Inf 0.0000 
I(WISP1):I(PRC1) 0.2792 1.3221 0.0000 Inf 0.0000 
I(WISP1):I(ESM1) 0.0968 1.1017 0.0000 Inf 0.0000 
I(WISP1^3):I(ESM1) 1.3130 3.7173 0.0000 Inf 0.0000 
I(CDC42BPA):I(LOC643008) 0.3761 1.4565 0.0000 Inf 0.0000 
I(CDC42BPA):I(LOC643008^3) 0.2471 1.2803 0.0000 Inf 0.0000 
I(CDC42BPA^2):I(LOC643008^2) -1.3624 0.2560 0.0000 Inf 0.0000 
I(CDC42BPA^2):I(LOC643008^3) -0.2646 0.7675 0.0000 Inf 0.0000 
I(MCM6):I(SERF1A) -0.4079 0.6650 0.0000 Inf 0.0000 
I(RTN4RL1):I(AYTL2) -2.2591 0.1044 0.0000 Inf 0.0000 
I(AYTL2):I(C9orf30) 1.8189 6.1652 0.0000 Inf 0.0000 
I(AYTL2):I(NMU) 0.5267 1.6933 0.0000 Inf 0.0000 
I(LGP2):I(GSTM3) 0.1841 1.2021 0.0000 Inf 0.0000 
I(RAB6B):I(UCHL5) -0.2923 0.7465 0.0000 Inf 0.0000 
I(RAB6B):I(Contig40831.RC) -0.0527 0.9487 0.0000 Inf 0.0000 
I(RAB6B):I(ORC6L) -0.0836 0.9198 0.0000 Inf 0.0000 
I(RAB6B):I(RFC4) -0.2576 0.7729 0.0000 Inf 0.0000 
I(RAB6B):I(CDCA7) -0.0115 0.9885 0.0000 Inf 0.0000 
I(RAB6B):I(C9orf30) -0.3970 0.6723 0.0000 Inf 0.0000 
I(RAB6B):I(PRC1) -0.1447 0.8653 0.0000 Inf 0.0000 
I(RAB6B):I(Contig20217.RC) -0.3086 0.7345 0.0000 Inf 0.0000 
I(RAB6B):I(EGLN1) -0.9377 0.3915 0.0000 Inf 0.0000 
I(HRASLS):I(RTN4RL1) -0.2098 0.8107 0.0000 Inf 0.0000 
I(RTN4RL1):I(PALM2.AKAP2) 0.0985 1.1035 0.0000 Inf 0.0000 
I(MS4A7):I(UCHL5) 0.1644 1.1787 0.0000 Inf 0.0000 
I(PALM2.AKAP2):I(PECI) 0.3973 1.4878 0.0000 Inf 0.0000 
I(CDCA7):I(MTDH) -0.0328 0.9678 0.0000 Inf 0.0000 
I(MTDH):I(PITRM1) -0.6765 0.5084 0.0000 Inf 0.0000 
I(MTDH):I(PITRM1^2) -1.8709 0.1540 0.0000 Inf 0.0000 
I(MTDH):I(PITRM1^3) -8.3174 0.0002 0.0000 Inf 0.0000 
I(TGFB3):I(Contig40831.RC) 0.6448 1.9055 0.0000 Inf 0.0000 
I(Contig40831.RC):I(ORC6L^2) 0.6172 1.8537 0.0000 Inf 0.0000 
I(CDCA7):I(Contig40831.RC) -0.1062 0.8993 0.0000 Inf 0.0000 
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 Coef HR SE (coef) z Pr(>|z|) 
I(MCM6):I(Contig40831.RC) -0.2011 0.8179 0.0000 Inf 0.0000 
I(Contig40831.RC):I(PITRM1) -0.3871 0.6790 0.0000 Inf 0.0000 
I(Contig40831.RC):I(PITRM1^2) -2.0889 0.1238 0.0000 Inf 0.0000 
I(Contig40831.RC):I(PITRM1^3) -4.6271 0.0098 0.0000 Inf 0.0000 
I(CENPA):I(Contig40831.RC) -0.3008 0.7402 0.0000 Inf 0.0000 
I(TGFB3):I(DCK) -0.6716 0.5109 0.0000 Inf 0.0000 
I(TGFB3^2):I(DCK) 2.2072 9.0904 0.0000 Inf 0.0000 
I(TGFB3^2):I(ORC6L) 1.4917 4.4448 0.0000 Inf 0.0000 
I(TGFB3^2):I(RFC4) 0.4337 1.5430 0.0000 Inf 0.0000 
I(CDCA7):I(TGFB3^2) 0.4906 1.6334 0.0000 Inf 0.0000 
I(TGFB3):I(AP2B1) -0.0116 0.9885 0.0000 Inf 0.0000 
I(TGFB3):I(PITRM1) 0.0462 1.0473 0.0000 Inf 0.0000 
I(TGFB3):I(PITRM1^3) 2.8509 17.3039 0.0000 Inf 0.0000 
I(TGFB3):I(Contig20217.RC) 0.6052 1.8316 0.0000 Inf 0.0000 
I(CENPA):I(MELK) -0.0085 0.9915 0.0000 Inf 0.0000 
I(STK32B):I(FBXO31) 0.4542 1.5749 0.0000 Inf 0.0000 
I(DCK):I(GPR126) -0.0826 0.9208 0.0000 Inf 0.0000 
I(NM.004702):I(DCK) 0.7736 2.1675 0.0000 Inf 0.0000 
I(HRASLS):I(FBXO31) -0.1206 0.8863 0.0000 Inf 0.0000 
I(PITRM1):I(FBXO31) -0.6946 0.4993 0.0000 Inf 0.0000 
I(PITRM1^3):I(FBXO31) -5.8673 0.0028 0.0000 Inf 0.0000 
I(CDCA7):I(SLC2A3) 0.0518 1.0531 0.0000 Inf 0.0000 
I(LGP2):I(SLC2A3) -0.2400 0.7866 0.0000 Inf 0.0000 
I(PALM2.AKAP2):I(PECI.1) 0.6482 1.9120 0.0000 Inf 0.0000 
I(ORC6L):I(LOC643008) -0.2327 0.7924 0.0000 Inf 0.0000 
I(ORC6L):I(LOC643008^3) -0.1266 0.8811 0.0000 Inf 0.0000 
I(ORC6L):I(Contig20217.RC) -0.1045 0.9008 0.0000 Inf 0.0000 
I(CDCA7):I(EGLN1) 0.6631 1.9408 0.0000 Inf 0.0000 
I(CDCA7):I(NM.004702) -0.2183 0.8039 0.0000 Inf 0.0000 
I(PITRM1):I(LOC643008) -0.1972 0.8211 0.0000 Inf 0.0000 
I(LOC643008):I(PITRM1^2) -0.3558 0.7006 0.0000 Inf 0.0000 
I(PITRM1^3):I(LOC643008) -3.0251 0.0486 0.0000 Inf 0.0000 
I(PITRM1^3):I(LOC643008^3) -0.4247 0.6539 0.0000 Inf 0.0000 
I(Contig20217.RC):I(LOC643008) -0.2397 0.7869 0.0000 Inf 0.0000 
I(LOC643008):I(C20orf46) -0.0561 0.9454 0.0000 Inf 0.0000 
I(MCM6):I(Contig20217.RC) -0.7534 0.4708 0.0000 Inf 0.0000 
I(Contig20217.RC):I(IGFBP5) -0.0342 0.9663 0.0000 Inf 0.0000 
I(HRASLS):I(NM.004702) -0.0264 0.9740 0.0000 Inf 0.0000 
I(Contig20217.RC):I(PITRM1) -0.1803 0.8351 0.0000 Inf 0.0000 
I(Contig20217.RC):I(PITRM1^3) -7.5199 0.0005 0.0000 Inf 0.0000 
I(Contig20217.RC):I(IGFBP5.1) -0.2156 0.8061 0.0000 Inf 0.0000 
I(LGP2):I(NMU) -1.3123 0.2692 0.0000 Inf 0.0000 
I(CENPA):I(NM.004702) -0.0821 0.9212 0.0000 Inf 0.0000 
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APPENDIX 16. Coefficients of the Principal Components from Principal 
Component Cox Regression Model – NKI70 Data 

# Comps Coef HR SE (Coef) z Pr (>|z|) 
1 1 0.8206 2.272 0.1345 6.10 0.0000 
2 3 -0.6571 0.518 0.1664 -3.95 0.0001 
3 4 0.9894 2.690 0.2458 4.03 0.0001 
4 6 -0.4600 0.631 0.1576 -2.92 0.0035 
5 7 -1.0694 0.343 0.2215 -4.83 0.0000 
6 8 -0.6303 0.532 0.1919 -3.28 0.0010 
7 9 1.1769 3.244 0.2148 5.48 0.0000 
8 11 2.1300 8.415 0.4090 5.21 0.0000 
9 14 -0.9535 0.385 0.3260 -2.92 0.0034 

10 15 0.9370 2.552 0.2576 3.64 0.0003 
11 16 1.1558 3.177 0.3048 3.79 0.0001 
12 18 -0.8841 0.413 0.2708 -3.26 0.0011 
13 19 0.9637 2.621 0.2922 3.30 0.0010 
14 20 -3.1295 0.044 0.5488 -5.70 0.0000 
15 22 2.2921 9.896 0.4202 5.45 0.0000 
16 23 -0.8391 0.432 0.3232 -2.60 0.0094 
17 24 -1.9186 0.147 0.3843 -4.99 0.0000 
18 25 -1.3847 0.250 0.2999 -4.62 0.0000 
19 26 1.6680 5.301 0.4253 3.92 0.0001 
20 30 1.0285 2.797 0.3176 3.24 0.0012 
21 32 -1.0131 0.363 0.3671 -2.76 0.0058 
22 33 1.1420 3.133 0.3565 3.20 0.0014 
23 34 1.1093 3.032 0.4567 2.43 0.0151 
24 35 0.6931 2.000 0.3917 1.77 0.0768 
25 36 1.2936 3.646 0.3556 3.64 0.0003 
26 37 -1.2220 0.295 0.3528 -3.46 0.0005 
27 38 -2.0139 0.133 0.4866 -4.14 0.0000 
28 39 0.6964 2.007 0.4140 1.68 0.0926 
29 41 1.4897 4.436 0.4293 3.47 0.0005 
30 43 -1.8973 0.150 0.5369 -3.53 0.0004 
31 44 -1.7497 0.174 0.6741 -2.60 0.0094 
32 45 3.5577 35.081 0.6471 5.50 0.0000 
33 46 -4.0079 0.018 0.7671 -5.23 0.0000 
34 48 1.0739 2.927 0.4666 2.30 0.0214 
35 49 1.7520 5.766 0.6286 2.79 0.0053 
36 50 -2.0974 0.123 0.7139 -2.94 0.0033 
37 51 -1.3793 0.252 0.5619 -2.45 0.0141 
38 52 -2.9088 0.055 0.7725 -3.77 0.0002 
39 53 1.1048 3.019 0.7014 1.58 0.1152 
40 54 2.0178 7.522 0.6534 3.09 0.0020 
41 55 4.7294 113.232 0.9922 4.77 0.0000 
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# Comps Coef HR SE (Coef) z Pr (>|z|) 
42 57 3.6193 37.312 0.7986 4.53 0.0000 
43 58 5.1328 169.485 1.1537 4.45 0.0000 
44 62 -1.4051 0.245 0.8396 -1.67 0.0942 
45 65 -2.4714 0.084 0.8577 -2.88 0.0040 
46 67 -1.3446 0.261 0.7998 -1.68 0.0927 
47 68 2.5310 12.566 1.1126 2.27 0.0229 
48 69 -3.3712 0.034 1.3217 -2.55 0.0108 
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APPENDIX 17. Coefficients for All Covariates Inversed Transformed from the 
Coefficients of the PLS Components from the PLS Cox Linear Model – NKI70 
Data 
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APPENDIX 18. Coefficients for All Covariates Inversed Transformed from the 
Coefficients of the PLS Components from the PLS Cox Polynomial Model – 
NKI70 Data 
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Appendix 18. Coefficients for All Covariates Inversed Transformed from the Coefficients 
of the PLS Components from the PLS Cox Polynomial Model – NKI70 Data 
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Appendix 18. Coefficients for All Covariates Inversed Transformed from the Coefficients 
of the PLS Components from the PLS Cox Polynomial Model – NKI70 Data 
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Appendix 18. Coefficients for All Covariates Inversed Transformed from the Coefficients 
of the PLS Components from the PLS Cox Polynomial Model – NKI70 Data 
 

SE
  

(C
oe

f) 
0.

11
21

 
0.

11
5 

0.
11

63
 

-1
.5

65
1 

-0
.8

68
8 

1.
28

62
 

0.
64

26
 

0.
83

32
 

0.
96

69
 

0.
40

1 
2.

17
68

 
0.

54
37

 
0 0.

65
03

 
-1

.6
53

5 
-0

.4
56

9 
0.

09
12

 
0.

02
79

 
0.

32
72

 
-1

.1
89

1 
1.

45
31

 
-0

.2
25

9 
0.

70
62

 
-1

.2
37

9 
-0

.9
81

2 
-2

.5
37

9 
-0

.8
97

7 
0.

48
16

 
1.

36
64

 
-0

.5
41

2 
0.

29
53

 
0.

43
87

 
-0

.4
73

8 
-0

.7
18

2 
0 

Co
ef

 
0.

04
97

 
0.

00
11

 
0 -1

32
.5

40
1 

-1
50

.5
72

1 
10

2.
91

21
 

15
3.

20
39

 
52

0.
54

61
 

13
8.

88
48

 
15

3.
29

35
 

19
88

.8
23

4 
64

.3
53

6 
0 23

5.
79

99
 

-2
75

8.
76

88
 

-3
3.

74
78

 
16

.4
16

6 
2.

39
73

 
17

.3
92

3 
-9

2.
78

39
 

15
2.

20
34

 
-1

8.
76

03
 

40
.0

17
3 

-1
18

.8
97

3 
-6

7.
20

33
 

-3
89

.9
47

9 
-5

1.
61

62
 

58
.3

32
8 

41
.5

25
2 

-4
1.

24
68

 
50

.2
60

4 
27

.1
83

8 
-4

5.
42

6 
-2

06
.6

67
1 

0 

Co
vs

 
Ag

e:
Co

nt
ig

40
83

1.
RC

 
Ag

e^
2:

Co
nt

ig
40

83
1.

RC
 

Ag
e^

3:
Co

nt
ig

40
83

1.
RC

 
Co

nt
ig

63
64

9.
RC

:R
U

N
DC

1 
Co

nt
ig

63
64

9.
RC

^2
:R

U
N

DC
1 

Co
nt

ig
63

64
9.

RC
:W

IS
P1

 
Co

nt
ig

63
64

9.
RC

:W
IS

P1
^2

 
Co

nt
ig

63
64

9.
RC

:W
IS

P1
^3

 
Co

nt
ig

63
64

9.
RC

^2
:W

IS
P1

 
Co

nt
ig

63
64

9.
RC

^2
:W

IS
P1

^2
 

Co
nt

ig
63

64
9.

RC
^2

:W
IS

P1
^3

 
Co

nt
ig

63
64

9.
RC

:C
DC

42
BP

A 
Co

nt
ig

63
64

9.
RC

:C
DC

42
BP

A^
2 

Co
nt

ig
63

64
9.

RC
^2

:C
DC

42
BP

A 
Co

nt
ig

63
64

9.
RC

^2
:C

DC
42

BP
A^

2 
DI

AP
H3

:Q
SC

N
6L

1 
DI

AP
H3

:Q
SC

N
6L

1^
2 

DI
AP

H3
:G

M
PS

 
DI

AP
H3

:G
ST

M
3 

DI
AP

H3
:G

PR
18

0 
DI

AP
H3

:U
CH

L5
 

DI
AP

H3
:C

on
tig

40
83

1.
RC

 
DI

AP
H3

:M
EL

K 
DI

AP
H3

:M
EL

K^
2 

DI
AP

H3
:D

TL
 

DI
AP

H3
:D

TL
^2

 
DI

AP
H3

:O
RC

6L
 

DI
AP

H3
:O

RC
6L

^2
 

DI
AP

H3
:C

DC
A7

 
DI

AP
H3

:M
CM

6 
DI

AP
H3

:M
CM

6^
2 

DI
AP

H3
:H

RA
SL

S 
DI

AP
H3

:P
IT

RM
1 

DI
AP

H3
:P

IT
RM

1^
2 

DI
AP

H3
:P

IT
RM

1^
3 

SE
  

(C
oe

f) 
-0

.0
14

5 
-0

.5
37

2 
0.

96
33

 
-2

.4
51

2 
0.

54
7 

-0
.0

81
2 

-0
.2

33
2 

-1
.3

69
2 

-6
.5

62
3 

-3
.2

79
4 

-0
.7

15
6 

-3
.1

97
3 

0.
76

48
 

-0
.5

36
6 

-0
.1

38
7 

1.
90

83
 

0.
19

92
 

-0
.7

02
1 

-0
.9

66
5 

0.
32

52
 

-0
.9

97
5 

-1
.4

56
3 

-1
.4

68
9 

-0
.1

96
1 

0.
34

83
 

-0
.4

32
1 

1.
84

67
 

-0
.4

61
3 

1.
34

18
 

0.
41

65
 

-0
.3

82
6 

0.
29

95
 

0.
50

69
 

-0
.5

66
7 

-0
.1

71
8 

Co
ef

 
-2

.3
78

5 
-1

39
.5

27
7 

49
7.

81
28

 
-2

07
.7

89
9 

82
.5

90
7 

-1
6.

79
25

 
-1

03
.2

19
6 

13
2.

-.6
99

1 
-1

37
7.

42
37

 
-7

65
.5

92
7 

-3
88

.6
66

6 
-2

99
.7

65
1 

15
4.

84
29

 
-1

42
.6

39
3 

-9
5.

16
15

 
90

.4
99

 
28

.6
90

5 
-8

6.
14

52
 

-2
80

.3
16

7 
11

2.
5 

-1
00

7.
03

52
 

-2
03

.4
06

1 
-6

75
.1

18
2 

-2
1.

12
91

 
10

8.
50

91
 

-2
7.

99
18

 
31

4.
49

97
 

-3
8.

96
31

 
29

8.
69

48
 

35
.8

74
8 

-9
4.

08
72

 
25

.1
46

9 
96

.6
53

1 
-1

41
.4

73
2 

-1
10

.0
86

6 

Co
vs

 
DI

AP
H3

.2
:T

GF
B3

^2
 

DI
AP

H3
.2

^2
:T

GF
B3

 
DI

AP
H3

.2
^2

:T
GF

B3
^2

 
DI

AP
H3

.2
:M

EL
K 

DI
AP

H3
.2

:M
EL

K^
2 

DI
AP

H3
.2

^2
:M

EL
K 

DI
AP

H3
.2

^2
:M

EL
K^

2 
DI

AP
H3

.2
:D

TL
 

DI
AP

H3
.2

:D
TL

^2
 

DI
AP

H3
.2

^2
:D

TL
 

DI
AP

H3
.2

^2
:D

TL
^2

 
DI

AP
H3

.2
:O

RC
6L

 
DI

AP
H3

.2
:O

RC
6L

^2
 

DI
AP

H3
.2

^2
:O

RC
6L

 
DI

AP
H3

.2
^2

:O
RC

6L
^2

 
DI

AP
H3

.2
:C

DC
A7

 
DI

AP
H3

.2
^2

:C
DC

A7
 

DI
AP

H3
.2

:M
CM

6 
DI

AP
H3

.2
:M

CM
6^

2 
DI

AP
H3

.2
^2

:M
CM

6 
DI

AP
H3

.2
^2

:M
CM

6^
2 

DI
AP

H3
.2

:L
GP

2 
DI

AP
H3

.2
^2

:L
GP

2 
DI

AP
H3

.2
:C

on
tig

20
21

7.
RC

 
DI

AP
H3

.2
^2

:C
on

tig
20

21
7.

RC
 

DI
AP

H3
.2

:C
EN

PA
 

DI
AP

H3
.2

^2
:C

EN
PA

 
DI

AP
H3

.2
:N

M
.0

04
70

2 
DI

AP
H3

.2
^2

:N
M

.0
04

70
2 

RP
5.

86
0F

19
.3

:C
on

tig
40

83
1.

RC
 

RP
5.

86
0F

19
.3

^2
:C

on
tig

40
83

1.
RC

 
RP

5.
86

0F
19

.3
:M

EL
K 

RP
5.

86
0F

19
.3

:M
EL

K^
2 

RP
5.

86
0F

19
.3

^2
:M

EL
K 

RP
5.

86
0F

19
.3

^2
:M

EL
K^

2 

SE
  

(C
oe

f) 
0.

73
18

 
1.

01
2 

0.
43

08
 

-0
.8

17
2 

0.
61

82
 

-0
.8

56
8 

-2
.0

32
2 

0.
36

85
 

0.
00

1 
-0

.6
13

9 
-0

.6
82

7 
-1

.2
64

9 
-0

.3
90

9 
-0

.3
34

1 
1.

07
57

 
-0

.0
76

3 
-0

.6
47

5 
-1

.5
46

2 
1.

56
34

 
0.

85
77

 
0.

03
29

 
2.

13
26

 
1.

60
21

 
-0

.2
43

1 
1.

18
61

 
0.

10
8 

1.
10

03
 

0.
12

77
 

0.
27

09
 

-0
.1

72
2 

-0
.1

27
5 

-0
.5

08
3 

-0
.7

29
9 

0.
67

49
 

-0
.5

85
7 

Co
ef

 
53

.2
24

3 
11

5.
71

75
 

64
.8

53
8 

-6
4.

71
93

 
10

8.
49

12
 

-3
1.

5 
-1

93
.3

83
5 

69
.8

63
2 

0.
11

59
 

-2
06

.4
33

7 
-5

33
.6

74
7 

-8
3.

35
1 

-2
5.

65
3 

-2
1.

01
89

 
12

6.
47

9 
-9

.4
82

6 
-1

56
.8

20
9 

-1
38

.0
73

 
30

1.
70

28
 

64
.1

47
1 

6.
14

81
 

38
7.

09
97

 
10

39
.8

77
3 -1

7.
74

46
 

16
1.

77
83

 
3.

58
92

 
81

.6
54

1 
9.

66
13

 
47

.9
93

6 
-2

6.
87

02
 

-5
1.

84
5 

-4
5.

87
01

 
-1

36
.7

51
2 

54
.9

15
3 

-1
42

.3
80

9 

Co
vs

 
Co

nt
ig

40
83

1.
RC

:M
EL

K 
Co

nt
ig

40
83

1.
RC

:M
EL

K^
2 

Co
nt

ig
40

83
1.

RC
:S

TK
32

B 
Co

nt
ig

40
83

1.
RC

:O
RC

6L
 

Co
nt

ig
40

83
1.

RC
:O

RC
6L

^2
 

Co
nt

ig
40

83
1.

RC
:C

DC
A7

 
Co

nt
ig

40
83

1.
RC

:M
CM

6 
Co

nt
ig

40
83

1.
RC

:M
CM

6^
2 

Co
nt

ig
40

83
1.

RC
:P

IT
RM

1 
Co

nt
ig

40
83

1.
RC

:P
IT

RM
1^

2 
Co

nt
ig

40
83

1.
RC

:P
IT

RM
1^

3 
Co

nt
ig

40
83

1.
RC

:C
EN

PA
 

Co
nt

ig
40

83
1.

RC
:N

M
.0

04
70

2 
TG

FB
3:

M
EL

K 
TG

FB
3:

M
EL

K^
2 

TG
FB

3^
2:

M
EL

K 
TG

FB
3^

2:
M

EL
K^

2 
TG

FB
3:

DC
K 

TG
FB

3^
2:

DC
K 

TG
FB

3:
O

RC
6L

 
TG

FB
3:

O
RC

6L
^2

 
TG

FB
3^

2:
O

RC
6L

 
TG

FB
3^

2:
O

RC
6L

^2
 

TG
FB

3:
RF

C4
 

TG
FB

3^
2:

RF
C4

 
TG

FB
3:

CD
CA

7 
TG

FB
3^

2:
CD

CA
7 

TG
FB

3:
M

CM
6 

TG
FB

3:
M

CM
6^

2 
TG

FB
3^

2:
M

CM
6 

TG
FB

3^
2:

M
CM

6^
2 

TG
FB

3:
AP

2B
1 

TG
FB

3^
2:

AP
2B

1 
TG

FB
3:

PI
TR

M
1 

TG
FB

3:
PI

TR
M

1^
2 

Total Covariates = 735 Page 4 of 8 

  266 



 

Appendix 18. Coefficients for All Covariates Inversed Transformed from the Coefficients 
of the PLS Components from the PLS Cox Polynomial Model – NKI70 Data 

 
 

SE
  

(C
oe

f) 
0.

60
97

 
-0

.2
71

4 
0.

35
42

 
-0

.9
25

8 
0.

64
99

 
0 1.

18
1 

-0
.1

19
9 

1.
10

54
 

-2
.1

99
9 

0.
25

64
 

1.
08

33
 

0.
83

58
 

-2
.6

15
7 

-2
.2

67
1 

-0
.6

99
4 

-1
.9

44
2 

-0
.2

99
3 

-0
.7

4 
0 0 0.

26
94

 
1.

22
59

 
0 0 -0

.9
84

4 
0.

11
65

 
-0

.7
00

6 
0 -0

.3
72

9 
-1

.1
29

1 
0.

17
43

 
-3

.0
61

1 
-0

.8
03

8 
0.

17
01

 

Co
ef

 
23

.7
24

7 
-1

9.
81

53
 

65
.2

86
4 

-4
2.

76
9 

42
.2

75
5 

0 30
.6

74
9 

-7
.7

94
1 

15
5.

38
92

 
-1

10
.0

69
7 

7.
90

2 
16

2.
36

18
 

11
4.

60
38

 
-3

55
.5

99
 

-2
93

.1
95

8 
-2

81
.6

93
6 

-2
77

.4
29

7 
-2

2.
59

73
 

-1
09

.3
64

 
0 0 28

.3
29

1 
29

8.
03

64
 

0 0 -1
07

.6
75

2 
38

.2
76

 
-6

0.
09

86
 

0 -3
3.

67
72

 
-2

59
.4

24
7 

35
.8

52
 

-1
57

7.
69

57
 

-8
8.

63
91

 
48

.8
08

5 

Co
vs

 
DI

AP
H3

:C
EN

PA
 

N
U

SA
P1

:D
IA

PH
3.

2 
N

U
SA

P1
:D

IA
PH

3.
2^

2 
N

U
SA

P1
:R

AB
6B

 
N

U
SA

P1
:T

G
FB

3 
N

U
SA

P1
:T

G
FB

3^
2 

N
U

SA
P1

:C
DC

A7
 

N
U

SA
P1

:M
CM

6 
N

U
SA

P1
:M

CM
6^

2 
N

U
SA

P1
:H

RA
SL

S 
N

U
SA

P1
:C

EN
PA

 
AA

55
50

29
.R

C:
FL

T1
 

AA
55

50
29

.R
C:

RT
N

4R
L1

 
AL

DH
4A

1:
RT

N
4R

L1
 

AL
DH

4A
1:

DT
L 

AL
DH

4A
1:

DT
L^

2 
AL

DH
4A

1:
AP

2B
1 

Q
SC

N
6L

1:
DI

AP
H3

.1
 

Q
SC

N
6L

1:
DI

AP
H3

.1
^2

 
Q

SC
N

6L
1^

2:
DI

AP
H3

.1
 

Q
SC

N
6L

1^
2:

DI
AP

H3
.1

^2
 

Q
SC

N
6L

1:
DI

AP
H3

.2
 

Q
SC

N
6L

1:
DI

AP
H3

.2
^2

 
Q

SC
N

6L
1^

2:
DI

AP
H3

.2
 

Q
SC

N
6L

1^
2:

DI
AP

H3
.2

^2
 

Q
SC

N
6L

1:
C1

6o
rf

61
 

Q
SC

N
6L

1^
2:

C1
6o

rf
61

 
Q

SC
N

6L
1:

EC
T2

 
Q

SC
N

6L
1^

2:
EC

T2
 

Q
SC

N
6L

1:
KN

TC
2 

Q
SC

N
6L

1:
KN

TC
2^

2 
Q

SC
N

6L
1^

2:
KN

TC
2 

Q
SC

N
6L

1^
2:

KN
TC

2^
2 

Q
SC

N
6L

1:
SE

RF
1A

 
Q

SC
N

6L
1^

2:
SE

RF
1A

 

SE
  

(C
oe

f) 
-0

.2
76

 
0.

75
7 

-1
.0

54
5 

-0
.4

29
 

-0
.4

62
8 

0.
79

78
 

-0
.6

12
1 

0.
99

55
 

0.
28

61
 

-1
.6

67
8 

-1
.3

99
8 

-1
.2

52
7 

-2
.3

87
7 

-0
.4

92
9 

-1
.0

63
3 

-0
.9

57
3 

-0
.4

76
6 

0 -1
.4

03
2 

0.
74

49
 

-0
.0

16
5 

0.
25

88
 

-1
.4

18
4 

-0
.2

03
6 

0.
36

71
 

-0
.0

92
6 

-1
.4

 
-0

.6
28

1 
0 -0

.7
86

8 
1.

02
9 

1.
18

61
 

0 1.
54

01
 

-1
.1

25
6 

Co
ef

 
-2

6.
33

1 
18

5.
02

58
 

-1
31

.1
72

3 
-1

74
.4

65
 

-3
0.

34
8 

15
4.

88
23

 
-5

5.
41

51
 

10
0.

15
29

 
68

.2
24

 
-1

43
.2

90
6 

-1
94

.6
97

4 
-1

32
.6

94
2 

-6
82

.1
32

 
-1

8.
68

1 
-1

04
.0

75
6 

-1
89

.1
53

2 
-3

4.
50

55
 

0 -6
1.

53
81

 
16

.6
01

 
-0

.5
3 

5.
78

71
 

-6
0.

85
9 

-1
1.

95
72

 
13

.4
04

 
-1

.6
26

3 
-3

1.
66

97
 

-1
4.

31
84

 
0 -6

7.
93

11
 

11
9.

37
18

 
13

5.
23

53
 

0 16
89

.8
13

4 
-1

88
.2

55
3 

Co
vs

 
RP

5.
86

0F
19

.3
:R

FC
4 

RP
5.

86
0F

19
.3

^2
:R

FC
4 

RP
5.

86
0F

19
.3

:E
GL

N
1 

RP
5.

86
0F

19
.3

^2
:E

GL
N

1 
RP

5.
86

0F
19

.3
:N

M
.0

04
70

2 
RP

5.
86

0F
19

.3
^2

:N
M

.0
04

70
2 

C1
6o

rf
61

:G
M

PS
 

C1
6o

rf
61

:T
GF

B3
 

C1
6o

rf
61

:T
GF

B3
^2

 
C1

6o
rf

61
:M

EL
K 

C1
6o

rf
61

:M
EL

K^
2 

C1
6o

rf
61

:D
TL

 
C1

6o
rf

61
:D

TL
^2

 
C1

6o
rf

61
:C

DC
A7

 
C1

6o
rf

61
:M

CM
6 

C1
6o

rf
61

:M
CM

6^
2 

C1
6o

rf
61

:H
RA

SL
S 

SC
U

BE
2:

Co
nt

ig
35

25
1.

RC
 

SC
U

BE
2:

AY
TL

2 
SC

U
BE

2:
RA

B6
B 

SC
U

BE
2:

PE
CI

 
SC

U
BE

2:
TG

FB
3 

SC
U

BE
2:

TG
FB

3^
2 

SC
U

BE
2:

ST
K3

2B
 

SC
U

BE
2:

PE
CI

.1
 

SC
U

BE
2:

LO
C6

43
00

8 
SC

U
BE

2:
LO

C6
43

00
8^

2 
SC

U
BE

2:
LO

C6
43

00
8^

3 
FL

T1
:M

M
P9

 
FL

T1
:R

U
N

DC
1 

FL
T1

:C
on

tig
35

25
1.

RC
 

FL
T1

:W
IS

P1
 

FL
T1

:W
IS

P1
^2

 
FL

T1
:W

IS
P1

^3
 

FL
T1

:A
P2

B1
 

SE
  

(C
oe

f) 
1.

62
21

 
0.

07
4 

1.
59

7 
-1

.0
87

7 
0 0 1.

16
84

 
-0

.1
55

3 
0.

51
71

 
-0

.1
08

9 
0.

89
2 

-1
.0

78
2 

0.
54

07
 

-0
.3

92
2 

-0
.6

51
9 

0.
86

04
 

0.
47

19
 

5.
67

91
 

-0
.3

32
3 

-1
.4

10
3 

0 -1
.7

65
7 

2.
31

92
 

1.
73

06
 

-0
.3

42
3 

0.
53

34
 

0.
17

48
 

-0
.0

92
9 

-0
.6

47
9 

0.
24

71
 

1.
85

61
 

2.
52

94
 

0.
25

25
 

2.
24

 
0.

92
13

 

Co
ef

 
10

09
.6

32
6 

11
.3

79
3 

74
7.

78
6 

-1
27

4.
15

89
 

0 0 92
.3

89
2 

-2
5.

71
51

 
33

.7
11

8 
-1

5.
23

28
 

53
.7

49
6 

-9
3.

86
82

 
17

.7
09

8 
-2

1.
72

44
 

-4
1.

79
07

 
10

3.
36

49
 

45
.2

62
2 

10
05

.9
73

1 
-3

1.
69

87
 

-3
84

.9
02

3 
0 -3

35
.7

04
5 

12
89

.3
58

7 
23

27
.0

45
9 

-1
4.

79
52

 
40

.0
13

2 
18

.9
02

3 
-1

5.
31

4 
-5

5.
83

5 
46

.2
31

7 
33

2.
94

11
 

11
21

.3
60

9 
10

.7
13

6 
26

8.
35

78
 

16
3.

71
73

 

Co
vs

 
TG

FB
3:

PI
TR

M
1^

3 
TG

FB
3^

2:
PI

TR
M

1 
TG

FB
3^

2:
PI

TR
M

1^
2 

TG
FB

3^
2:

PI
TR

M
1^

3 
TG

FB
3:

IG
FB

P5
.1

 
TG

FB
3^

2:
IG

FB
P5

.1
 

TG
FB

3:
Co

nt
ig

20
21

7.
RC

 
TG

FB
3^

2:
Co

nt
ig

20
21

7.
RC

 
TG

FB
3:

N
M

.0
04

70
2 

TG
FB

3^
2:

N
M

.0
04

70
2 

M
EL

K:
RF

C4
 

M
EL

K^
2:

RF
C4

 
M

EL
K:

CD
CA

7 
M

EL
K^

2:
CD

CA
7 

M
EL

K:
M

CM
6 

M
EL

K:
M

CM
6^

2 
M

EL
K^

2:
M

CM
6 

M
EL

K^
2:

M
CM

6^
2 

M
EL

K:
PI

TR
M

1 
M

EL
K:

PI
TR

M
1^

2 
M

EL
K:

PI
TR

M
1^

3 
M

EL
K^

2:
PI

TR
M

1 
M

EL
K^

2:
PI

TR
M

1^
2 

M
EL

K^
2:

PI
TR

M
1^

3 
M

EL
K:

CE
N

PA
 

M
EL

K^
2:

CE
N

PA
 

CO
L4

A2
:H

RA
SL

S 
CO

L4
A2

:L
GP

2 
DT

L:
M

CM
6 

DT
L:

M
CM

6^
2 

DT
L^

2:
M

CM
6 

DT
L^

2:
M

CM
6^

2 
DT

L:
N

M
U

 
DT

L^
2:

N
M

U
 

ST
K3

2B
:F

BX
O

31
 

  

Total Covariates = 735 Page 5 of 8 

  267 



 

Appendix 18. Coefficients for All Covariates Inversed Transformed from the Coefficients 
of the PLS Components from the PLS Cox Polynomial Model – NKI70 Data 

 
SE

  
(C

oe
f) 

-0
.7

44
3 

-0
.3

81
7 

-1
.1

28
8 

-0
.2

52
4 

-0
.2

61
2 

1.
03

01
 

-0
.5

48
4 

0.
45

88
 

-1
.1

34
7 

-1
.8

09
 

-0
.8

91
 

-2
.8

02
9 

-1
.2

32
 

-1
.4

18
6 

0.
31

03
 

-2
.6

20
3 

0 0.
53

38
 

-1
.3

23
3 

-1
.1

68
7 

0.
49

28
 

0.
28

04
 

-0
.3

68
9 

0.
87

25
 

-1
.0

28
1 

0.
69

73
 

-0
.8

48
1 

-0
.3

40
6 

-0
.0

93
5 

-0
.8

94
7 

-0
.6

59
6 

0 -0
.4

59
3 

1.
26

38
 

-1
.2

70
4 

Co
ef

 
-7

8.
66

5 
-9

2.
95

 
-1

08
.6

93
6 

-6
6.

34
65

 
-1

6.
03

38
 

11
5.

84
89

 
-7

8.
03

56
 

12
7.

67
88

 
-9

2.
70

35
 

-2
77

.7
94

6 
-1

55
.4

54
8 

-1
09

5.
60

19
 

-1
13

.0
12

7 
-3

01
.0

47
7 

61
.9

85
2 

-1
27

1.
59

36
 

0 17
2.

90
24

 
-1

01
.4

14
8 

-1
99

.7
03

9 
93

.2
66

3 
12

6.
43

98
 

-3
8.

21
73

 
21

0.
14

97
 

-4
4.

16
21

 
67

.9
30

8 
-7

9.
31

57
 

-7
4.

68
37

 
-1

9.
47

49
 

-4
70

.7
93

9 
-7

0.
17

29
 

0 -3
2.

26
11

 
22

1.
11

97
 

-8
7.

75
66

 

Co
vs

 
Q

SC
N

6L
1:

M
TD

H
 

Q
SC

N
6L

1^
2:

M
TD

H
 

Q
SC

N
6L

1:
Co

nt
ig

40
83

1.
RC

 
Q

SC
N

6L
1^

2:
Co

nt
ig

40
83

1.
RC

 
Q

SC
N

6L
1:

TG
FB

3 
Q

SC
N

6L
1:

TG
FB

3^
2 

Q
SC

N
6L

1^
2:

TG
FB

3 
Q

SC
N

6L
1^

2:
TG

FB
3^

2 
Q

SC
N

6L
1:

M
EL

K 
Q

SC
N

6L
1:

M
EL

K^
2 

Q
SC

N
6L

1^
2:

M
EL

K 
Q

SC
N

6L
1^

2:
M

EL
K^

2 
Q

SC
N

6L
1:

DT
L 

Q
SC

N
6L

1:
DT

L^
2 

Q
SC

N
6L

1^
2:

DT
L 

Q
SC

N
6L

1^
2:

DT
L^

2 
Q

SC
N

6L
1:

FB
XO

31
 

Q
SC

N
6L

1^
2:

FB
XO

31
 

Q
SC

N
6L

1:
O

RC
6L

 
Q

SC
N

6L
1:

O
RC

6L
^2

 
Q

SC
N

6L
1^

2:
O

RC
6L

 
Q

SC
N

6L
1^

2:
O

RC
6L

^2
 

Q
SC

N
6L

1:
RF

C4
 

Q
SC

N
6L

1^
2:

RF
C4

 
Q

SC
N

6L
1:

CD
CA

7 
Q

SC
N

6L
1^

2:
CD

CA
7 

Q
SC

N
6L

1:
M

CM
6 

Q
SC

N
6L

1:
M

CM
6^

2 
Q

SC
N

6L
1^

2:
M

CM
6 

Q
SC

N
6L

1^
2:

M
CM

6^
2 

Q
SC

N
6L

1:
Co

nt
ig

20
21

7.
RC

 
Q

SC
N

6L
1^

2:
Co

nt
ig

20
21

7.
RC

 
Q

SC
N

6L
1:

CE
N

PA
 

Q
SC

N
6L

1^
2:

CE
N

PA
 

Q
SC

N
6L

1:
N

M
.0

04
70

2 

SE
  

(C
oe

f) 
-2

.4
48

7 
-1

.4
57

 
0.

03
02

 
2.

14
95

 
0.

29
69

 
2.

62
52

 
0.

68
72

 
0.

15
99

 
0.

08
53

 
0.

05
76

 
0.

05
21

 
0.

09
88

 
0.

60
89

 
0.

28
2 

-0
.3

55
2 

0.
97

88
 

-0
.7

07
2 

0.
26

5 
-0

.4
65

1 
0.

47
65

 
-0

.3
37

1 
-0

.1
47

5 
0 -0

.8
67

3 
0.

54
69

 
0.

86
47

 
-0

.0
91

8 
-0

.6
70

3 
0.

50
73

 
-0

.7
52

7 
-0

.2
95

7 
0.

89
 

-0
.5

00
9 

-0
.8

67
7 

0 

Co
ef

 
-4

01
.1

73
6 

-5
6.

93
48

 
1.

82
21

 
23

4.
44

14
 

19
.8

03
2 

21
9.

44
74

 
42

.5
38

2 
47

.6
89

3 
5.

60
42

 
1.

44
89

 
1.

50
6 

9.
42

45
 

42
.7

56
6 

20
.5

83
5 

-4
9.

04
32

 
11

1.
74

42
 

-6
3.

23
76

 
31

.8
97

8 
-1

83
.3

75
3 

65
.8

16
2 

-1
91

.6
03

8 
-7

.7
14

3 
0 -1

18
.2

08
6 

41
.2

75
5 

60
.7

69
8 

-1
2.

76
75

 
-5

8.
27

82
 

11
9.

82
18

 
-5

3.
02

39
 

-2
3.

02
37

 
84

.1
76

 
-1

12
.0

68
7 

-1
10

.8
59

4 
0 

Co
vs

 
FL

T1
:E

GL
N

1 
GN

AZ
:C

DC
A7

 
GN

AZ
:M

S4
A7

 
GN

AZ
:L

GP
2 

O
XC

T1
:IG

FB
P5

.1
 

O
XC

T1
:N

M
U

 
M

M
P9

:C
DC

42
BP

A 
M

M
P9

:C
DC

42
BP

A^
2 

M
M

P9
:C

O
L4

A2
 

M
M

P9
:IG

FB
P5

 
M

M
P9

:IG
FB

P5
.1

 
RU

N
DC

1:
Co

nt
ig

35
25

1.
RC

 
RU

N
DC

1:
EC

T2
 

RU
N

DC
1:

TG
FB

3 
RU

N
DC

1:
TG

FB
3^

2 
RU

N
DC

1:
LG

P2
 

Co
nt

ig
35

25
1.

RC
:E

CT
2 

Co
nt

ig
35

25
1.

RC
:K

N
TC

2 
Co

nt
ig

35
25

1.
RC

:K
N

TC
2^

2 
Co

nt
ig

35
25

1.
RC

:C
DC

42
BP

A 
Co

nt
ig

35
25

1.
RC

:C
DC

42
BP

A^
2 

Co
nt

ig
35

25
1.

RC
:R

AB
6B

 
Co

nt
ig

35
25

1.
RC

:Z
N

F5
33

 
Co

nt
ig

35
25

1.
RC

:M
TD

H 
Co

nt
ig

35
25

1.
RC

:C
on

tig
40

83
1.

RC
 

Co
nt

ig
35

25
1.

RC
:T

GF
B3

 
Co

nt
ig

35
25

1.
RC

:T
GF

B3
^2

 
Co

nt
ig

35
25

1.
RC

:O
RC

6L
 

Co
nt

ig
35

25
1.

RC
:O

RC
6L

^2
 

Co
nt

ig
35

25
1.

RC
:C

EN
PA

 
Co

nt
ig

35
25

1.
RC

:N
M

.0
04

70
2 

EC
T2

:K
N

TC
2 

EC
T2

:K
N

TC
2^

2 
EC

T2
:U

CH
L5

 
EC

T2
:C

on
tig

40
83

1.
RC

 

SE
  

(C
oe

f) 
0.

75
89

 
-1

.1
64

 
-0

.6
26

7 
1.

77
05

 
-1

.6
27

3 
-0

.5
9 

-0
.3

35
9 

-1
.1

37
4 

0.
39

9 
-0

.5
42

3 
0.

58
26

 
0.

61
21

 
-0

.9
80

7 
0.

12
03

 
-1

.5
95

1 
-0

.3
14

 
0.

72
95

 
-0

.0
14

7 
-0

.2
64

1 
0.

43
43

 
0.

51
29

 
-2

.1
65

6 
0.

78
45

 
0.

19
36

 
0.

72
13

 
-1

.1
46

1 
0.

62
16

 
0.

17
44

 
0.

25
87

 
0.

29
6 

1.
37

73
 

-1
.1

90
5 

-0
.3

72
 

-0
.6

13
2 

-0
.6

75
6 

Co
ef

 
74

.6
04

8 
-7

3.
77

34
 

-9
9.

39
17

 
15

5.
12

12
 

-1
20

.1
10

1 
-1

01
.0

92
2 

-2
07

.4
04

6 
-2

26
1.

91
3 

18
.3

12
9 

-6
5.

94
95

 
73

.5
03

6 
75

.9
67

 
-4

7.
22

38
 

9.
68

43
 

-1
66

.6
51

6 
-3

7.
45

35
 

19
2.

06
02

 
-5

.1
72

9 
-2

0.
68

64
 

70
.5

81
4 

20
.2

39
8 

-1
75

.9
42

9 
34

.8
24

2 
15

.0
32

8 
10

2.
83

03
 

-6
0.

27
45

 
51

.8
75

3 
6.

79
95

 
21

.1
04

2 
11

.1
69

4 
73

.5
89

 
-3

3.
48

19
 

-2
6.

45
81

 
-1

21
.5

49
2 

-2
96

.8
73

6 

Co
vs

 
ST

K3
2B

:P
RC

1 
DC

K:
GP

R1
26

 
DC

K:
SL

C2
A3

 
DC

K:
N

M
.0

04
70

2 
FB

XO
31

:H
RA

SL
S 

FB
XO

31
:P

IT
RM

1 
FB

XO
31

:P
IT

RM
1^

2 
FB

XO
31

:P
IT

RM
1^

3 
SL

C2
A3

:C
DC

A7
 

SL
C2

A3
:L

GP
2 

PE
CI

.1
:R

FC
4 

PE
CI

.1
:P

AL
M

2.
AK

AP
2 

O
RC

6L
:L

O
C6

43
00

8 
O

RC
6L

:L
O

C6
43

00
8^

2 
O

RC
6L

:L
O

C6
43

00
8^

3 
O

RC
6L

^2
:L

O
C6

43
00

8 
O

RC
6L

^2
:L

O
C6

43
00

8^
2 

O
RC

6L
^2

:L
O

C6
43

00
8^

3 
O

RC
6L

:C
on

tig
20

21
7.

RC
 

O
RC

6L
^2

:C
on

tig
20

21
7.

RC
 

O
RC

6L
:C

EN
PA

 
O

RC
6L

^2
:C

EN
PA

 
RF

C4
:C

DC
A7

 
RF

C4
:M

CM
6 

RF
C4

:M
CM

6^
2 

RF
C4

:H
RA

SL
S 

RF
C4

:N
M

.0
04

70
2 

CD
CA

7:
M

CM
6 

CD
CA

7:
M

CM
6^

2 
CD

CA
7:

Co
nt

ig
20

21
7.

RC
 

CD
CA

7:
EG

LN
1 

CD
CA

7:
N

M
.0

04
70

2 
LO

C6
43

00
8:

PI
TR

M
1 

LO
C6

43
00

8:
PI

TR
M

1^
2 

LO
C6

43
00

8:
PI

TR
M

1^
3 

Total Covariates = 735 Page 6 of 8 

  268 



 

Appendix 18. Coefficients for All Covariates Inversed Transformed from the Coefficients 
of the PLS Components from the PLS Cox Polynomial Model – NKI70 Data 
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Appendix 18. Coefficients for All Covariates Inversed Transformed from the Coefficients 
of the PLS Components from the PLS Cox Polynomial Model – NKI70 Data 
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