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 Ecology is the study of interactions between organisms and their environment. 

These interactions are shaped by the decisions made by both humans and non-human 

animals. From the human perspective our decisions to develop or preserve land have had 

and continue to have far reaching impacts on non-human animals.  In light of the 

decisions we make, non-human animals must then make decisions on when/where to 

move, where to feed and where to breed. Understanding how animals make decisions is a 

difficult and complex endeavor, but one that can provide a vast amount of  ecological 

knowledge.  Knowledge related to animal decision making and other ecological processes 

can then be used to inform our own decision making processes in terms of when, where 

and how to invest scarce monetary resources intended for animal conservation. 

 In this dissertation I use simulation models to examine animal movement 

decisions and how these decisions can affect species persistence and ultimately species 

conservation. Additionally, I make use of optimization techniques to study how the 

different ways in which we choose to quantify the costs of conservation management can 

affect monetary expenditures. From the simulation models I found that evolved behaviors 

that dictate patterns of animal movement in the early breeding season can have profound 
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effects on species persistence, in some cases leading to declines in expected annual 

growth rates of  25-50% when cues are altered by anthropogenic change. Additionally, 

the simulation models show that differences in animal behavior at the level of the 

individual affects the relative costs and benefits of animal movement which in turn help 

us to understand how animal decision making interacts with and responds to 

anthropogenic habitat changes. Finally, the use of optimization techniques allowed us to 

determine that using detailed tax records to quantify the costs of conservation 

management allows for a cost-savings of 70-75% over other, more traditional metrics 

used to quantify costs within the conservation planning literature. 

 The results obtained here have important implications for how we approach 

conservation management. The results of our simulation models provide a bridge 

between the seemingly unrelated fields of animal behavior and conservation.  

 

 

 

 

 

 

 

 

 

 

 



 
 

iv 
 

Acknowledgements  

 I would like to begin by thanking my advisor Julie Lockwood. She has been the 

best advisor I could have hoped for while in graduate school and has always encouraged 

me to pursue research that I find interesting, while still finding a way to push me outside 

of my comfort zone. I will miss our lunches at Dudley's that always started by talking 

about work, but inevitably devolved into conversations about sports, our favorite TV 

shows or any of the other inane events that might have happened during the week. 

 I would also like to thank my committee: Nina Fefferman whose patience for non-

math people is limitless and who is always there to provide guidance in my modeling 

endeavors. Ed Green who has the unique trait of never sugar coating his opinions while 

still being able to provide helpful insights and guidance. Ed provided some of the most 

sage advice that I received while in graduate school when he told me, "programming is 

hard for everyone, why would you be any different?". Martha Hoopes for reading my 

manuscripts and always asking the hardest question, why did you do it this way?  

 My time in graduate school was also made immeasurably more fun by my former 

lab mates and friends: Drs. Julian Avery, Orin Robinson, Kevin Aagaard, Brian Johnson, 

Wes Brooks and Zac Freedman. 

 Finally and most importantly, I would like to thank my wife Jenny and my 

parents, Greg and Angie Burkhalter. I might have given up on graduate school many 

times before had it not been for all the love and support Jenny provides me every day, I 

would be lost without her. As for my parents, they were the ones who instilled in me the 

importance of education and hard work. They have always provided me the example by 



 
 

v 
 

which to live my life and no words can express the love and admiration I have for them 

both. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vi 
 

Table of Contents 

DECISION MAKING IN ECOLOGY AND ITS APPLICATIONS TO ANIMAL 

CONSERVATION 

Abstract..............................................................................................................................ii 

Acknowledgements...........................................................................................................iv 

Table of Contents..............................................................................................................vi 

List of Tables....................................................................................................................vii 

List of Figures...................................................................................................................ix 

Introduction.......................................................................................................................1 

Chapter 1: When prospecting behavior turns into a trap...........................................11 

Chapter 2: The impact of personality on the success of prospecting behavior in  

changing landscapes........................................................................................................39 

Chapter 3: Evaluating the role of cost surrogates when planning protected area  

networks within urban landscapes.................................................................................76 

Conclusion......................................................................................................................112 

 

 

 

 

 

 

 

 



 
 

vii 
 

List of Tables 

Chapter 1 

Table 1. List of species that exhibit early season prospecting behavior. Life history 

classifications based upon annual adult survival and annual egg production values found 

in Bennett and Owens (2002). Species specific demographic parameters (survival (s) and 

fecundity (m) sourced from 7 other studies (see Methods). HQ denotes high quality 

estimate and LQ denotes low quality estimate......................................................page 32 

  

Table 2. Conceptual framework of how cues relate to traps and prospecting behaviors. (+) 

indicates that organisms exhibit attraction towards a certain habitat type based upon 

perceived habitat quality.  (-) indicates that organisms are not attracted towards a certain 

habitat type based upon perceived habitat quality. (•)indicates no preference towards a 

certain habitat type based upon perceived habitat quality. Range of parameter values used 

to characterize strength of cues to leave a given habitat type for the reliable cue scenario, 

perceptual traps scenario and the traditional ecological trap  scenario. Higher parameter 

values indicate that an organism is more likely to leave a given habitat type and lower 

parameter values indicate that an organism is less likely to leave a given habitat type. HQ 

denotes high quality habitat  and LQ denotes low quality habitat. .........................page 33 

Chapter 2 

Table 1. Mechanistic rules used within the model and the various changes made to each 

one in order to determine its relative importance. λ = expected fitness (product of survival 

and fecundity), HQ=High quality habitat, M=Mid-quality habitat, P= Poor quality habitat 

, γ = Probability of initiating a search....................................................................page 74 



 
 

viii 
 

Table 2. Average differences in costs/benefits of prospecting, measured using the NP 

ratio, when differences reached their maximum and minimum between various parameter 

scenarios. For the differing levels see Table 1........................................................page 75 

 

Chapter 3 

Table 1. Basic landownership categories of all land parcels within the study area; If the 

landownership category is bolded this indicates that all parcels with this landowner 

designation were excluded for inclusion in the final reserve design, unless already under 

some form of protection........................................................................................page 103 

Table 2. Listing of the 17 avian species used as focal conservation targets. 
1
Significant 

declines from 2001-2010 in the NE US region (Sauer,2011); . 
2
Substantial portion of 

range restricted to NE US region (Dettmers and Rosenberg,2000); . 
3
Listed as Special 

Concern by NJ Endangered and Nongame Species Program..............................page 104  

 

 

 

 

 

 

 

 

 

 



 
 

ix 
 

List of Figures 

Chapter 1 

Figure 1.  A graphical representation of the basic inputs of our modeling framework. Θz 

represents the proportion of the landscape made up of high and low quality habitat, d is 

the probability of leaving a habitat type once it is found, q is the probability of staying in 

habitat type once it is found, mz is the fecundity of a given habitat type, sz is the survival 

of a given habitat type and λn is the expected annual population growth rate of the two 

actions.......................................................................................................................page 36 

Figure 2a-c. Line graph showing how expected annual population growth rates for slow 

life history species change in response to the proportion of the landscape composed of 

low quality habitat and the strength of cues. Moving from left to right, the first panel 

depicts the results of random movement and prospecting using reliable cues (Fig. 2a), the 

second panel depicts the results of random movement and prospecting under perceptual 

traps (Fig. 2b), and the third panel depicts the results of random movement and 

prospecting under perceptual traps traditional ecological traps (Fig. 2c). The solid line 

black line (      ) corresponds to the expected annual population growth rate across all 

model runs for random movement. The solid red line (     ), the solid blue line (       ), and 

the solid green line(      ) lines correspond to the expected annual population growth rate 

across all model runs for prospecting associated with cue strength scenarios 1, 2 and 3 

respectively...............................................................................................................page 37 

Figure 3a-c. Line graph showing how expected annual population growth rates for fast 

life history species change in response to the proportion of the landscape composed of 

low quality habitat and the strength of cues. Moving from left to right, the first panel 



 
 

x 
 

depicts the results of random movement and prospecting using reliable cues (Fig. 3a), the 

second panel depicts the results of random movement and prospecting under perceptual 

traps (Fig. 3b), and the third panel depicts the results of random movement and 

prospecting under perceptual traps traditional ecological traps (Fig. 3c). The solid line 

black line (      ) corresponds to the expected annual population growth rate across all 

model runs for random movement. The solid red line (     ), the solid blue line (       ), and 

the solid green line(      ) lines correspond to the expected annual population growth rate 

across all model runs for prospecting associated with cue strength scenarios 1, 2 and 3 

respectively............................................................................................................page 38                                                                                        

Chapter 2  

Figure 1. The payoff matrix is a graphical representation of the basic inputs of a statistical 

decision problem. States of nature (θn) are listed across the horizontal axis, and actions 

(ax) are listed on the vertical axis. The payoff values (Px,n) for each respective state of 

nature x action combination are presented inside the table. The net payoff of each action 

(NPx) is calculated according to Equation 2..........................................................page 68 

Figure 2. Graph depicting the three time-dependent functions (i.e. exponential, 

logarithmic and linear) used to determine cost of movement used within  

Equation 1................................................................................................................page 69  

Figure 3. Line graph depicting how the NP ratio changes as more low quality habitat is 

added to the landscape. Each line represents the mean NP ratio at each landscape 

composition and the shaded region around the line is the 95% CI of the mean estimate 

calculated across all simulations at each landscape composition. The solid blue line (     ) 



 
 

xi 
 

represents the simulations estimates obtained from Level 1 of the demographic rule. The 

dashed blue line (         ) represents the simulation estimates obtained from Level 2 of the 

demographic rule. The dotted blue line (      ) represents the simulation estimates obtained 

from Level 3 of the demographic rule. The solid green line (      ) represents the 

simulation estimates obtained from  Level 1 (i.e. fickle) of the tenacity rule. The dashed 

green line (         ) represents the simulation estimates obtained from Level 2 (i.e. 

'realistic') of the tenacity rule. The dotted green line (      ) represents the simulation 

estimates obtained from Level 3 (i.e. very tenacious) of the tenacity rule. The solid red 

line (      ) represents the simulation estimates obtained from  Level 1 of the selectivity 

rule. The dashed red line (         ) represents the simulation estimates obtained from  Level 

2 of the selectivity rule.  The dotted red line (      ) represents the simulation estimates 

obtained from Level 3 of the selectivity rule. When the NP ratio is above 1 it indicates 

that prospecting results in greater fitness rewards than not prospecting and when it is 

below 1 not prospecting results in greater fitness rewards than prospecting...........page 70 

Figure 4a-c. Three-dimensional surface plots depicting how the costs/benefits of 

engaging in prospecting behavior are altered across various landscape compositions. 

Along the x- and y-axes is the proportion of the landscape composed of high quality 

habitat and mid-quality habitat, respectively. Along the z-axis (i.e. vertical axis) we show 

the cumulative absolute difference in the NP ratio (CAD) between each of the different 

levels for a given mechanistic rule (see text, Table 1). The NP ratio defines by how much 

prospecting results in a higher net fitness payoff as compared to the net fitness payoffs 

associated with not engaging in prospecting. Panels show CAD when we alter the 

tenacity of individuals via the cost of movement (a), the demographic parameters 



 
 

xii 
 

associated with mid-quality habitat (b), and the selectivity exhibited in high and poor 

quality habitat (c). When CAD is high, an alteration in a mechanistic rule associated with 

prospecting results in a relatively large change in the net fitness payoff associated with 

engaging in this behavior.................................................................................pages 71-73  

Chapter 3 

Figure 1. Scatterplot depicting acquisition costs for all parcels available for purchase 

within the entire study area. The green squares and solid green line show the results when 

tax assessed land value was used as the cost metric, the yellow circles and solid yellow 

line show the results when area as a cost surrogate was used as the cost metric, and the 

white triangles and solid white line show the results when county wide average 

agricultural land values were used as the cost metric.............................................page 105 

Figure 2.  Total land acquisition funds required to achieve conservation targets using tax 

assessed land value for land acquisition costs, area as a surrogate for land acquistion 

costs, and average agricultural land prices for land acquistion costs......................page 106 

Figure 3. Lowess curves fit to the scatterplot depicting acquisition costs for all parcels 

selected for purchase within the entire study area. The green squares and solid green line 

show the results when tax assessed land value was used as the cost metric, the yellow 

circles and solid yellow line show the results when area as a cost surrogate was used as 

the cost metric, and the white triangles and solid white line show the results when county 

wide average agricultural land values were used as the cost metric......................page 107 



 
 

xiii 
 

Figure S1. A frequency histogram depicting the distribution of parcel sizes measured in 

hectares. This distribution applies only to those parcels that were available for 

acquisition.............................................................................................................page 108 

Figure S2. Map showing the final reserve designs when using tax assessed values and 

parcel area as a proxy for acquisition cost. The areas highlighted in green are the existing 

reserve sites throughout the study area. The gray areas show sites that were not selected 

for inclusion in the final reserve design. The areas highlighted in red are the sites selected 

for inclusion in the final reserve design when using area as a acquisition cost surrogate. 

The areas highlighted in blue are the sites selected for inclusion in the final reserve 

design when using tax assessed land values for acquisition cost. The sites highlighted in 

purple designate the sites that were selected for inclusion in the final reserve design by 

both cost metrics......................................................................................................page 109 

Figure S3. Map showing the final reserve designs when using tax assessed values and 

agricultural land values as acquisition cost metrics. The areas highlighted in green are the 

existing reserve sites throughout the study area. The gray areas show sites that were not 

selected for inclusion in the final reserve design. The areas highlighted in red are the sites 

selected for inclusion in the final reserve design when using agricultural land values as a 

proxy for acquisition costs. The areas highlighted in blue are the sites selected for 

inclusion in the final reserve design when using tax assessed land values for acquisition 

cost. The sites highlighted in purple designate the sites that were selected for inclusion in 

the final reserve design by both cost metrics........................................................page 110 



 
 

xiv 
 

Figure S4. Map showing the final reserve designs when using area and agricultural land 

values as proxies for acquisition cost. The areas highlighted in green are the existing 

reserve sites throughout the study area. The gray areas show sites that were not selected 

for inclusion in the final reserve design. The areas highlighted in red are the sites selected 

for inclusion in the final reserve design when using agricultural land values as a proxy for 

acquisition costs. The areas highlighted in blue are the sites selected for inclusion in the 

final reserve design when using parcel area as proxy for acquisition cost. The sites 

highlighted in purple designate the sites that were selected for inclusion in the final 

reserve design by both cost metrics.........................................................................page 111 



1 
 

 
 

Introduction 

Decisions about the management of threatened and endangered species are often made in 

the face of considerable uncertainty (McDonald‐Madden et al. 2008).  This uncertainty 

can take on many forms ranging from uncertainty of the population dynamics of a 

species, to how much money is available for conservation or how changing 

environmental conditions may affect our approach to conservation. Ignoring these 

uncertainties can lead to poor decision-making in regards to species conservation and 

management (Regan et al. 2005). In order to address some of these uncertainties we must 

attempt to synthesize information from multiple fields of study and question existing 

paradigms so that we can reevaluate how we think about species conservation in light of 

new information. This dissertation attempts to do this by first bridging the disparate fields 

of animal behavior and conservation biology by examining animal decision making 

processes and evaluating how this information can be applied to real conservation issues.  

Additionally, we then examine how the decisions we make in regards to reserve site 

selection and the monetary metrics by which we do so affect conservation expenditures in 

human dominated landscapes. 

 Anytime that an animal chooses one particular behavior from a set of alternatives 

a 'decision' has been made (Dill 1987). Decision-making as it applies to questions such as 

where to breed, who to mate with, and where/what to eat is a central determinant of an 

organism's fitness (i.e. the product of its survival and fitness) (Kao & Couzin 2014). As 

such, decision-making in animals has been the subject of many studies and is still an 

active area of research within the field of behavioral ecology (Lima 1998; Sih 1980; 

Stahlschmidt et al. 2014). The incorporation of this important behavioral knowledge into 
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the field of conservation biology has been championed by many researchers, but the 

linkage between the two fields remains weak at best (Berger-Tal et al. 2011; Caro 1999).  

This weak linkage stems from the fact that many conservation biologists believe 

behavioral studies operate at scales irrelevant to protecting entire landscapes, the most-

cost effective means of conservation (Buchholz 2007). Regardless of whether this 

assertion is actually true or not, it is important that we harness all available sources of 

information to better inform conservation management given the ever-present influence 

of anthropogenic change that all organisms are subject to.   

 The anthropogenic change that virtually all organisms experience is especially 

important from both a behavioral and conservation standpoint because behavior mediates 

the interactions of an organism with its environment (Sih et al. 2011).  This statement 

leads to a few hypotheses concerning the effect of anthropogenic change on behavior: 1) 

an organism could alter its behavior such that it adapts to its new surroundings and 

continues to persist in human dominated landscapes, 2) an organism does not change its 

behavior in any way, in which case the result for species persistence is not always readily 

apparent,  3) or the organism changes its behavior, but it does so maladaptively  and 

potentially expedites its own decline. It is this final point about altered decision making 

under anthropogenic change that is especially troubling and thus requires that we begin to 

examine decision making in animals more closely so that we can better inform 

conservation management decisions. 

 Maladaptive decision-making is a product of a mismatch between the cues that 

individuals use to make decisions and the fitness associated with those choices 

(Robertson et al. 2013).  Cues that result in an individual showing preference for low 
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quality habitat have been termed ecological traps (Robertson & Hutto 2006; Schlaepfer et 

al. 2002). Related is the possibility that cues become reversed so that individuals mistake 

high quality habitat for low; called perceptual traps (Patten & Kelly 2010). For many 

years it seemed that traps were a seemingly rare and unimportant ecological phenomenon 

(Robertson & Hutto 2006). More recent research though has shown that the incidence of 

traps is indeed quite ubiquitous and widespread across many animal groups (Jaquemet et 

al. 2011; Leighton et al. 2008; Semeniuk et al. 2009).      

 Species whose annual fitness depends on accurate and reliable cues appear to be 

very susceptible to traps (Robertson et al. 2013). It is for this reason that I chose to 

examine prospecting behavior and its potential for acting as a trap in human modified 

landscapes. Prospecting has been documented in a number of animal groups and thus a 

greater understanding of potential changes in prospecting behavior could have far-

reaching implications (Ponchon et al. 2012; Ward 2005). Prospecting individuals actively 

search their local landscape assessing the quality of nearby habitats in advance of 

breeding (Reed et al. 1999).  Prospecting individuals will enjoy higher fitness (as 

compared to when they do not prospect)(Baker 1978; Boulinier & Danchin 1997; 

Ponchon et al. 2012), and thus higher annual growth rates (Schjorring et al. 1999). If the 

cues that prospecting individuals use to identify high quality habitat become unreliable, 

these individuals will become trapped. By explicitly modeling traps as maladaptive 

prospecting decisions we can determine when evolved behaviors are particularly 

detrimental to population persistence. Further insights into prospecting behavior provided 

by an examination of individual personality traits may alter how we view the prospecting 

process and ultimately what it means for species under changing environmental 
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conditions. Recent studies have shown that aggressiveness, boldness and sociality often 

differs between individuals of a species and these differences could have direct impacts 

on ecological process and thus alter our approach to animal conservation (Cote et al. 

2010; Duckworth 2008). 

 While it is imperative that we try to consider all aspects of a species biology and 

ecology when considering conservation management, it is also true that species 

conservation is often limited by the availability of money (Joseph et al. 2009). In light of 

this it is important that we make smart decisions and use limited conservation funds in an 

efficient and cost-effective manner. Typical conservation efforts focus on setting aside 

land in reserve sites and there has been a large amount of money that has been spent on 

trying to do this (Szabo 2007). In spite of these large expenditures there are landscapes 

that have been largely ignored by the conservation community, specifically those are 

rapidly urbanizing landscapes (Rouget et al. 2003).  Modern urban landscapes are 

complex mosaics of land uses with associated high heterogeneity in land values (Seto & 

Shepherd 2009). Recent research shows that optimal planning tools that explicitly 

incorporate costs of land acquisition tend to result in large total savings while also 

realizing all conservation targets (Armsworth 2014; Naidoo et al. 2006).  This provides a 

modicum of optimism that, if such tools were utilized in future land acquisitions, it may 

be possible to acquire land in these urbanizing landscapes in a more cost-effective 

manner. However, this supposition is often based upon the use of land values that either 

take into account only land area or the value of agricultural land (Jantke et al. 2013; 

Margules et al. 1988). The validity of using these metrics of cost should be reexamined in 
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urban landscapes due to the fact that these measures may do a poor job at capturing the 

high heterogeneity of costs typical of these areas.  

 My work will contribute to the field of conservation biology by showing the value 

of incorporating decision making behavior into how we approach animal conservation 

and additionally by reevaluating how we make decisions concerning the incorporation of 

costs in landscape- level conservation planning in human dominated landscapes.  The 

objectives of my dissertation are the following: 

 Examine how evolved behaviors such as prospecting can serve as traps 

within rapidly changing environments and propose how this may affect 

species conservation efforts 

 Investigate the influence of individual personality traits in animal decision 

making and examine how this decision making may change in the face of 

increased anthropogenic change 

 Compare traditional conservation cost metrics to another more detailed 

cost metric to evaluate how this affects spatial conservation planning in 

highly urbanized landscapes 

Evolved behaviors and traps  

Human-altered environments are increasingly common.  In many instances these 

alterations lead to maladaptive decision-making via a mismatch between the cues that 

individuals use to make decisions and the fitness associated with those choices.  The 

dissociation of cues can result in individuals showing preference for low quality habitat 

or mistaking high quality habitat for low; called ecological and perceptual traps 
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respectively. We suggest that species that prospect for breeding habitat are particularly 

susceptible to being trapped. Prospecting allows individuals to actively search and assess 

their local landscape prior to breeding, and has been documented across a variety of 

animals. We show that when prospecting takes place within the context of ecological and 

perceptual traps there are reductions of 25-50% in annual population growth rates; albeit 

the effects of ecological traps are not as severe as those of perceptual traps. Furthermore, 

our results show interactive effects between strength of cues and landscape change under 

both trap scenarios. Because there is very rarely any information on the perception of 

organisms and how they integrate cues into their decision making, this final result argues 

that our current interpretations of how traps affect organisms are inadequate, which in 

turn severely complicates our attempts to conserve animal populations. 

This chapter is formatted for Conservation Biology and will be submitted there 

(Burkhalter and Lockwood, in prep). 

Individual personality and its role in evolved behavior  

Personality can play a large role in dispersal decisions, influencing how each individual 

estimates and values expected costs versus benefits of venturing out to explore the 

unknown. We contrast the impact of persistence on fitness using statistical decision 

theory to examine the relative success of prospecting movement (which is a widespread 

behavior used by animals to explore available breeding habitat before determining where 

to settle) in different landscapes among individuals with different personalities. We 

provide a quantifiable measure of the impacts of relative tenacity in prospecting behavior 

on fitness gains/losses. Our results indicate that, regardless of landscape composition, 
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individuals with greater tenacity in prospecting strategy have reduced fitness gains 

relative to individuals who are more willing to both initiate novel strategies, but then also 

abandon the new strategy rapidly if initial search does not seem fruitful. We show that 

fitness gains from choosing an appropriate prospecting strategy (i.e. abandoning poor 

habitat or staying in rich habitat) can be very high, indicating a potentially large influence 

from personality on fitness. Importantly, we show that relative fitness gains are highly 

dependent on the availability of high quality habitat in the landscape, even if the 

difference under varying fitness outcomes between poor and rich habitat was substantial. 

We further provide some insight into the impact climate-related change in habitat 

quality/availability may have on the success of different personality types.  

 This chapter is formatted for Current Zoology and will be submitted there 

(Burkhalter, Fefferman, and Lockwood, in prep). 

Conservation planning decisions in urban landscapes 

Habitat loss is one of the most common causes of species endangerment, and thus 

conservation groups have invested heavily in building networks of protected areas. 

However, the costs of acquiring protected areas can be quite high. In spite of these large 

conservation expenditures these networks do not sufficiently represent the full variety of 

terrestrial ecoregions within its boundaries.  The ecoregions that appear to be largely 

ignored from a conservation perspective  and are under-represented in existing protected 

areas often lie within urbanizing landscapes which consist of complex mosaics of land 

uses with associated high heterogeneity in land values. Our work illustrates the 

importance of accurately defining cost metrics in reserve design planning. Relative to 



8 
 

 
 

relying on cost surrogates or average land values across our study area, we were able to 

achieve the same conservation goals for approximately 1/4 of the cost by using tax 

assessed values of individual land parcels. This results demonstrates that in urban 

landscapes we must reconsider the usage of agricultural land and land area as cost proxy 

for evaluating the costs of conservation. There is further need to evaluate whether our 

results in terms of  the conservation efficiencies obtained using tax assessed land values 

hold in other urban landscapes, but as of yet systematic conservation planning studies 

have largely ignored a more detailed analysis of landscapes that have a large urban 

component.  

 This chapter is formatted for Conservation Biology and will be submitted there 

(Burkhalter, Lockwood, Maslo, Leu, and Fenn, in prep).  
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Abstract 

Human-altered environments are increasingly common.  In many instances these 

alterations lead to maladaptive decision-making via a mismatch between the cues that 

individuals use to make decisions and the fitness associated with those choices.  The 
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dissociation of cues can result in individuals showing preference for low quality habitat 

or mistaking high quality habitat for low; called ecological and perceptual traps 

respectively. We suggest that species that prospect for breeding habitat are particularly 

susceptible to being trapped. Prospecting allows individuals to actively search and assess 

their local landscape prior to breeding, and has been documented across a variety of 

animals. We show that when prospecting takes place within the context of ecological and 

perceptual traps there are reductions of 25-50% in annual population growth rates; 

although the effects of ecological traps are not as severe as those of perceptual traps. 

Furthermore, our results show interactive effects between strength of cues and landscape 

change under both trap scenarios. Because there is very rarely any information on the 

perception of organisms and how they integrate cues into their decision making, this final 

result argues that our current interpretations of how traps affect organisms are inadequate, 

which in turn severely complicates our attempts to conserve animal populations. 

Key words:  population model, prospecting, behavior, ecological traps, perceptual 

trap, conservation 
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1.  Introduction 

Virtually all species on Earth live in environments that have to some extent been altered 

by humans (Sih et al. 2011).  In some cases, such alterations will lead to individuals 

making maladaptive behavioral decisions in regards to where to breed, who to mate with, 

and where and what to eat (Robertson et al. 2013).  Maladaptive decision-making is a 

product of a mismatch between the cues that individuals use to make decisions and the 

fitness associated with those choices (Robertson et al. 2013).  Cues that result in an 

individual showing preference for low quality habitat have been termed ecological traps 

(Robertson & Hutto 2006; Schlaepfer et al. 2002). Related is the possibility that cues 

become reversed so that individuals mistake high quality habitat for low; called 

perceptual traps (Patten & Kelly 2010). Species whose annual fitness depends on 

accurate and reliable cues appear to be very susceptible to traps (Robertson et al. 2013).  

We suggest that species that prospect for breeding habitat fall into this susceptible 

category.  Prospecting individuals actively search their local landscape assessing the 

quality of nearby habitats in advance of breeding (Reed (1999).  Prospecting individuals 

will enjoy higher fitness (as compared to when they do not prospect) (Baker 1978; 

Boulinier & Danchin 1997; Ponchon et al. 2012), and thus higher annual growth rates 

(Schjorring et al. 1999). If the cues that prospecting individuals use to identify high 

quality habitat become unreliable, these individuals will become trapped. We seek to gain 

insight into the effect of traps on population growth by explicitly modeling traps as 

maladaptive prospecting decisions.  Our results provide insight into when traps are 

particularly detrimental to population persistence.  
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There has been extensive documentation of prospecting across a variety of animals; 

principally among birds, but also in groups as disparate as mammals and insects (Aragón 

et al. 2006; Canonge et al. 2011; Reed et al. 1999; Ward & Schlossberg 2004; Young et 

al. 2005). Prospecting behavior can occur within any age class and across a wide range of 

life history strategies (e.g., long-lived vs. short lived, colonial vs. territorial, etc., see 

Dittmann et al. 2005; Kesler et al. 2007; Reed et al. 1999; Serrano et al. 2004; Zicus & 

Hennes 1989). Furthermore, prospecting can occur either prior to, or after, a breeding 

season.  All prospecting individuals respond to site-specific social and physical cues, 

which together provide reliable indicators of the quality of resources and/or mates at that 

site (Cox & Kesler 2012; Doligez et al. 2003).  The proximal mechanisms for how 

prospecting individuals distinguish habitat quality are thought to include factors like 

conspecific reproductive success, but the topic remains unclear and is under active 

investigation (Mares et al. 2014).  Human-related activities can change the quality of a 

habitat (i.e. convert habitat quality from high to low) without altering the cues that 

prospecting individuals use to determine that quality (Ahlering et al. 2010; Ward 2005).   

When these cues are no longer reliable due to anthropogenic change, we should expect 

maladaptive decisions to reduce fitness (Battin 2004).  

There are a handful of published population models that seek to represent prospecting 

behavior (Delgado et al. 2014; Reed et al. 1999), but none have linked prospecting to 

traps. Existing models of prospecting have primarily been concerned with predicting the 

optimal amount of time to spend prospecting (Baker 1978; Johnson 1989). Although 

these models provide relevant insights, they do not represent prospecting decisions in a 

manner that allows them to be easily modified to include traps.  Existing models do not 
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explicitly include a term which dictates how movement is related to the quality of habitat 

an individual is assessing in any given time step.  These models instead assume that 

individuals will randomly search until they encounter high quality habitat, and related, 

that those individuals that spend more time moving are more likely to find high quality 

habitat.  In the context of prospecting, we suggest that traps can be modeled by including 

a term that defines how individuals respond to the cues they encounter as they move 

across a landscape at each time step, and what effect altering those cues have on 

population growth rates.  If we set cues to be reliable indicators of low and high quality 

habitat, and we have individuals respond to these cues by either settling (high) or moving 

on (low), then this model will depict reliable prospecting and it can be used to judge 

under what circumstances such behavior provides a substantial boost in annual growth 

rate.  If we set the cues to be unreliable, individuals will respond by settling in low 

quality habitat (ecological trap) or moving out of high quality habitat (perceptual trap).  

Incorporation of such dynamics within population models will thus allow us to 

realistically depict the consequences of traps via prospecting and the factors that 

moderate their effects on annual population growth rates.   

 Here we develop a simple model framework to compare annual population growth 

rates produced by individuals that randomly search for breeding habitat, prospect for high 

quality habitat using reliable cues, and prospect for breeding habitat using unreliable cues 

(traps). Furthermore, we examine how a change in the prevalence of high and low quality 

habitat within a landscape (composition) modifies the effects of prospecting on annual 

growth rates.  We identify when reliable prospecting provides the needed boost in fitness 

to push annual population growth rates above replacement levels. We expect that the 
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benefit of prospecting will be higher than random searching when high quality habitat is 

relatively scarce in the landscape, but only when cues are reliable.  We explore these 

relationships at two ends of the life history spectrum; species that exhibit high annual 

reproduction and low survival (fast life history) and those that exhibit the reverse (slow 

life history).  Although species falling on either end of this spectrum have shown 

empirical evidence of prospecting (Reed 1999), existing models have not considered the 

degree to which their growth rates may increase via prospecting, what effect traps have 

on growth rates, and under what circumstances either of these outcomes is likely.  We use 

bird populations as our empirical support for this model, in large part because prospecting 

and traps are well-documented within this group but also because there is considerable 

published information on bird life history.   

2.  Materials and Methods 

We built a spatially-implicit model to quantitatively compare annual growth rates that 

result from three possible pre-breeding within-season dispersal actions; random 

movement, prospecting using reliable cues, and prospecting using unreliable cues (traps).  

We set annual growth rates (λ) to be a product of habitat-specific survival and fecundity, 

where  is calculated independently for populations that prospect (p) and those that 

randomly search available habitat (rs); 

(λrs) =                   
   
                                                   

 (1a) 

(λp) =                           
   
       (1b) 
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where s and m  are the survival and fecundity of an average individual respectively, and θ 

represents the amount of habitat of type z within the landscape (where z is either high or 

low quality).  We use a time-dependent sub-routine to determine the length of a search, 

whether a search is random or involves prospecting using reliable or unreliable cues.  We 

use this sub-routine to determine the habitat in which an average individual settles to 

breed, and thus the values of s and m in equation 1a,b. This sub-routine is described 

below in more detail.  When individuals prospect we include a cost of movement 

function, we
bt

, that serves to subtract from the fecundity experienced in the settlement 

location.  Here w serves as the intercept term of an exponential function, e is the base of 

the natural log and b is a constant that determines the steepness of the exponential curve; 

while t represents duration of search. We use an exponential function to represent this 

movement cost to ensure that prospecting behaviors that are relatively short in duration 

will not incur much loss in fecundity, while behaviors that delay settlement have 

significant effects on final reproductive output. We refined our exponential function to 

reflect greater levels of realism by determining a value for our b parameter that reflects 

breeding bird phenology (Battin 2004). The exponential cost function is commonly 

assumed in dispersal literature (Pettersson & Hedenström 2000; Phillips et al. 2008).  

We represent movement before settling to breed (within-season) using a time-

dependent search sub-routine where the probability of settling in habitat of low or high 

quality is calculated as the proportion of a given habitat type within the landscape (θz), 

the probability of initiating a search given the type of habitat (d), and the probability of 

staying in the given type of habitat (q, where q =1-d). The values of d and q are set for 

each run of the model according to the scenario under consideration (Figure 1; see 
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below).  Within each run, habitat type is chosen at each time step according to its 

prevalence in the landscape. To determine how prospecting occurs during each run of the 

model, an exhaustive set of possible prospecting strategies is constructed, with each 

strategy differing in the number of time steps spent prospecting and the sequence of 

habitat types visited by a prospecting individual. A single prospecting strategy is chosen 

for each run of the model based upon the cumulative probability that results from the 

individual probabilities of finding a habitat type (i.e. θz), the probability of settling in the 

chosen habitat (q), and the probability of leaving a particular habitat (d). Thus, for 

example, if high quality habitat is common in the landscape (θ1 is high and thus is likely 

to be found) and there is a high probability of settling in that habitat type (q is high), and 

the probability of initiating a search is low in high quality habitat (d is low), the 

cumulative probability of continuing to search (advancing another time step) is low.  If 

another time step is not initiated, settlement has occurred and the values of m and s that 

correspond to that habitat type are used in equation 1b.  Alternatively, if low quality 

habitat is common (θ2 is high and thus is likely to be found), and the probability of 

initiating a search is high in low quality habitat (d is high), the probability of continuing 

to another time step is high; that is, searching continues.  This process continues until the 

search is terminated (settlement), or three time steps have passed.  In such cases, we 

assume that the individual is a  'floater' and never breeds (m = 0).  Each time that an 

individual leaves a particular habitat type it is assumed that the search phase lasts three 

days, and we reference this duration in the cost of movement function as t in we
bt

.  

Because our model is spatially implicit we assume that the probability with which a 

particular habitat is chosen in each time step remains constant.   
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We use the above model to explore three search scenarios; random search, 

prospecting with reliable cues, prospecting with unreliable cues (i.e. traps).  These 

scenarios are defined by the values of d and q used.  For random searching, these 

variables are both set to 0.  This ensures that for each model run, a habitat type is chosen 

according to its prevalence in the landscape and the survival and fecundity associated 

with that habitat are used in equation 1a.  Functionally, annual growth rate is then the 

sum of habitat specific survival and fecundity values weighted by the prevalence of each 

habitat type in the landscape (equation 1a).   

For scenarios where prospecting occurs, d (and by default, q) are varied 

systematically to represent strength of cues and their reliability.  To depict prospecting 

using reliable cues we set d to be high within low quality habitat, and low in high quality 

habitat (Table 2).  If the strength of cues is low, then the difference in the probabilities of 

moving between the two types of habitat will be small. We are thus assuming that 

individuals may use reliable cues to judge habitat quality, but their response is muted so 

that they do not show a strong aversion to low quality habitat or great affinity to high 

quality habitat (low cue strength). We represent heightened response to cues by 

simultaneously increasing the value of d in low quality habitat and reducing it in high 

(high cue strength; Table 2).  To represent traps we changed the value of d so that an 

individual would show either a preference for settling within low quality habitat 

(ecological trap), or a high probability of moving out of high quality habitat (perceptual 

trap).  For the perceptual trap scenario, we simply reversed the probabilities of 

prospecting used for reliable prospecting, across all strengths (Table 2).  For ecological 

traps, we used a constant, low value of d for high quality habitat, but successively 
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lowered d within low quality habitat (Table 2).  This change had the effect of reducing 

the strength of the cue to move on in low quality habitat, and thus increased the 

likelihood that individuals would settle there to breed.   

To create landscapes with differing amounts of the two habitat types (high and low 

quality), we generated a sequence of numbers ranging from zero to one, moving along 

this range in steps differing by 0.005 (i.e. 0→1, by 0.005).  This effort produced a total of 

201 unique landscape compositions.  To define survival and fecundity across habitat 

qualities (high and low) we used empirically-derived average survival and fecundity 

(defined as the number of fledglings to successfully leave the nest) data for seven bird 

species that we know exhibit within-season prospecting. The data were sourced from 

published research and from life history tables within Bennett and Owens (2002) (see 

Table 1, Brown & Brown 1998; Clark & Martin 2007; Mills & Ryan 2005; Niel & 

Lebreton 2005; Nolan Jr 1978; Robertson 1993; Rolland et al. 2010). The seven bird 

species were binned into either slow or fast life history categories, which we defined 

based upon annual survival and egg production values within Bennett and Owens (2002).  

For two of the seven species we could not find a survival value for low quality habitat. 

When this occurred, we calculated the percentage difference in fecundity between high 

and low quality habitat in this species and reduced the survival rate in the high quality 

habitat by this amount to derive survival value for low quality habitat. For each life 

history group we then calculated the average survival and fecundity measurements in 

both habitat types and used these as the model input parameters for the different life 

history groups. 
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Within each search scenario (prospecting or random), a model run represents a single 

calculation of annual population growth rate () according to equation 1a or 1b. For each 

unique landscape composition we conducted 1000 model runs.  We then computed an 

average  value across all of these runs. Thus, each model run can be thought of as 

independent realization of either random settlement or prospecting, and the average  

value calculated can be thought of as the population-level consequence of either action.  

The entire process was repeated for both life history types.  All simulations and 

subsequent analysis were performed in program R v.3.1.0.   

3.  Results 

In the random movement scenarios, annual population growth rate () always declines in 

a monotonic fashion as the prevalence of low quality habitat increases in the landscape 

(Fig. 2 and 3).  For slow life history species, prospecting, whether reliable or not, always 

results in a lower value of  as compared to random movement on average (Fig 2a–c).  

When prospecting is reliable (Fig. 2a), there is an interaction between the strength of the 

cue and the amount of low quality habitat in the landscape.  When we assume individuals 

react strongly to reliable cues, population growth rates stay relatively high (hovering 

around  = 1) until the landscape is composed of >40% low quality habitat; after which 

growth declines sharply (Fig. 2a).  This threshold response occurs because individuals 

strongly respond to low quality habitat by continuing to search, and searching has a cost 

in the form of reduced fecundity.  As the landscape becomes dominated by low quality 

habitat, the probability of long prospecting searches increases.  Because we set the cost of 

searching to be exponential through time, longer searches result in much higher costs, 
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and thus larger reductions in . For slow life history species, this threshold response is 

muted when the strength of the cue is lessened so that individuals are less likely to either 

move out of low quality habitat or stay in high quality habitat.   

For slow life history species, unreliable cues consistently result in annual population 

growth rates that are lower than either random or reliable prospecting (Fig. 2b, c). When 

we set cues so that they mimic ecological traps (i.e. individuals are unlikely to move out 

of low quality habitat), population growth for slow life history species steadily declines 

as low quality habitat becomes more common in the landscape (Fig. 2c).  The differences 

in strength of cues are negligible in this scenario although there is an interaction with cue 

strength and prevalence of low quality habitat (Fig. 2c). Note however that when low 

quality habitat is common (nearly 100% of the landscape) annual population growth rates 

remain higher than when prospecting occurs using reliable and strong cues (comparing 

Figs. 2a and c).  Finally, in the perceptual trap scenario annual population growth rates 

for slow life history species increase as the prevalence of low quality habitat increases; 

especially when the strength of cues is high (Fig. 2b).  The influence of cue strength 

diminishes on growth rate as low quality habitat becomes common.  The decreased 

values of λ when there are large amounts of high quality habitat are the result of 

increased searching due to the perception of lower attractiveness of the high quality 

habitat. 

For the fast life history species we see very different results when prospecting uses 

reliable cues (Fig. 3a). When cue strength is at its highest level (i.e. the attractiveness of 

high and low quality habitat are at their respective maximum and minimum) reliable 

prospecting produces a positive population growth rate ( > 1) as long as the landscape 
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consists of at least 60% of high quality habitat. Additionally, reliable prospecting with 

moderate to strong cues produces a higher annual population growth rate than random 

movement up to the point at which there is approximately 70% low quality habitat in the 

landscape (Fig. 3a). When we evaluate the effect of perceptual traps on annual growth 

rates for fast life history species we again see reductions in λ when there is very little low 

quality habitat in the landscape (Fig. 3b).  However, unlike the slow life history species 

we do not see an attenuation in these reductions as more low quality habitat is added to 

the landscape. Additionally, as the strength of cues increases we see that λ remains 

consistently low across all landscape configurations indicating that if cues are strong, the 

population will decline drastically regardless of landscape configuration (Fig. 3b).  When 

we evaluate annual growth rates under the ecological trap scenario we again see a 

decrease in λ as low quality habitat increases in prevalence, but this reduction is nowhere 

near as severe as under the perceptual trap scenario (Fig. 3c). Finally, under the 

ecological trap scenario for fast life history species, we do not observe an interaction 

between strength of motivation and increases in low quality habitat as is the case in every 

other scenario regardless of life history. As more low quality habitat is added to the 

landscape we see almost identical rates of population decline regardless of strength of 

cues (Fig. 3c). 

4.  Discussion 

Attempts to conserve animal populations, especially within changing environments, may 

be severely complicated by ecological traps (Robertson et al. 2013). However 

populations models routinely used within conservation biology direct us away from 

considering ecological traps by not explicitly accounting for habitat selection (Battin 
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2004). In doing so these models will produce overly optimistic estimates of population 

persistence when traps are present. We show that perceptual traps in particular will 

profoundly reduce population growth rates. For both slow and fast life history species we 

show reductions of 25-50% in annual population growth rates in the presence of 

perceptual traps. The effects of ecological traps also reduce annual population growth 

rates, but these reductions are not as severe. Furthermore, our results point to the fact for 

both slow and fast life history species there are interactive effects between strength of 

cues and landscape change under both trap scenarios. Because there is very rarely any 

information on the perception of organisms and how they integrate cues into their 

decision making, this final result argues that our current interpretations of how traps 

affect organisms are inadequate. 

 Both types of traps lead to lower population growth rates when compared to 

random settlement irrespective of the strength of cues or the landscape composition.  This 

suggests that prospecting can lead to rapid population declines if the cues organisms use 

to select habitat are altered in some way.  Perceptual traps are considerably worse than 

ecological traps due to their effect of driving down population growth rates (λ) when the 

landscape is composed mostly of high quality habitat. When there is a mostly high 

quality habitat perceptual traps lead to reductions in growth rates of up to 50%, while 

ecological traps lead to declines of 10%. The low population growth rates observed when 

high quality habitat is common are the result of avoidance of high quality habitat and thus 

increased time spent prospecting. In order to counteract traps it has been suggested that 

you simply have to restore degraded habitat or preserve more high quality habitat 
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(Robertson et al. 2013). In addition to performing these actions, our results suggest that if 

the cues are not there or are incorrect, the population will suffer severe declines.    

Conservation biologists often lack sufficient knowledge of animal decision making 

behaviors to implement successful behavioral manipulations (Greggor et al. 2014). This 

gap may have severe consequences because the degree to which prospecting individuals 

rely on cues to make decisions determines the drop in growth rate they experience when 

traps occur.  When cues are strong, individuals respond sharply to this information and 

either stay put or move on.  When cues are reliable and strong we can see benefits to 

population growth rates, but these benefits drop off very quickly as low quality habitat 

increases in prevalence.  Interestingly, when cues are strong but incorrect, as in 

perceptual traps, it does not matter what the landscape looks like; population growth rates 

drop precipitously.  Animal behavior has been shown to be an important determinant of a 

species ability to cope with anthropogenic change (Sih 2013); and our results strengthen 

this assertion. We suggest that understanding not only the cues themselves, but how 

much species rely on these cues to make breeding decisions will determine the severity of 

traps.   

It is imperative for any species to select the best quality habitat for breeding, but for a 

fast life history species this need is even more pressing because one bad breeding season 

can greatly affect lifetime reproductive success. Our results indicate that for fast life 

history species prospecting leads to positive population growth rates when strength of 

cues is high (i.e. individuals can accurately assess habitat quality), even when there is a 

moderate amount of low quality habitat within the landscape. We know that prospecting 

is common in these species (Reed et al. 1999), which would also lead us to presume that 
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traps may be very common for these species in areas that have experienced significant 

anthropogenic change. Our results also suggest that prospecting may not be as important 

in long-lived species due to the fact that prospecting does not increase expected annual 

population growth rates above those observed for random settlement. Interestingly in 

both cases, when cues are accurate, the prevalence of low quality habitat has a marked 

effect on growth rates.  This effect can be thought of as a behavioral sink, whereby 

population growth drops at a very rapid rate when large amounts of low quality habitat 

are around due to the effects of evolved behaviors.  This behavioral sink is so severe that 

it eclipses the effects of ecological traps (regardless of cue strength) and approaches that 

of strong perceptual traps.  To some extent this arises due to the way we penalized for 

continued searching, but even if a less severe penalty is imposed the effect will remain.  

This result raises the question of what empirical evidence exists for assessing the penalty 

of continuing to prospect. There is some indication that individuals that do not settle to 

breed within a timely fashion ultimately become ‘floaters’, which allows them to remain 

in a population, but results in their not breeding in a given year (Reed et al. 1999).   

Our model provides an initial attempt at incorporating prospecting behavior into a 

conservation model, while also providing a bridge between the fields of animal behavior 

and conservation management. Behavioral ecology is increasingly recognized as a part of 

species conservation, yet there is continued debate over its relevance to conservation 

biology (Moore et al. 2008). Much of this debate stems from the fact that many 

conservation ecologists believe behavioral studies operate at scales irrelevant to 

protecting entire landscapes, the most-cost effective means of conservation (Buchholz 

2007). Understanding how prospecting and traps operate in different species and how 
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changes in landscape composition in turn affects these processes allows for more 

informed management. The identification of traps is crucial and there are many places 

that have been identified as potential locations of traps such as, agricultural fields, 

airports, artificial wetlands and most commonly habitat edges (Best 1986; Flaspohler et 

al. 2001; Gates & Gysel 1978; Kershner & Bollinger 1996; Tilton 1995). 

Our model can accommodate a wide variety of species, any range of habitat values or 

number of habitat types, and is thus easily parameterized using basic field-derived 

information on survival, fecundity and movement.  Although our model is spatially 

implicit, we suggest this is appropriate due to the complexity associated with 

incorporating different life histories and habitat specific probabilities of prospecting. 

Additionally, spatially implicit models such as ours possess an inherent strength in that 

they allow modelers to combine all existing quantitative knowledge in a straightforward 

manner, providing a more transparent view of how dispersal behaviors influence 

conservation outcomes (Bode & Brennan 2011). Detailed dispersal data is sparse for 

many large, free-ranging species, and thus our modeling approach provides an avenue by 

which researchers can begin to investigate how behavior influences conservation 

planning without having to wait for detailed behavioral information.  
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FIGURE LEGEND 

FIG. 1.  A graphical representation of the basic inputs of our modeling framework. Θz 

represents the proportion of the landscape made up of high and low quality habitat, d is 

the probability of leaving a habitat type once it is found, q is the probability of staying in 

habitat type once it is found, mz is the fecundity of a given habitat type, sz is the survival 

of a given habitat type and λn is the expected annual population growth rate of the two 

actions. 

FIG. 2a-c. Line graph showing how expected annual population growth rates for slow life 

history species change in response to the proportion of the landscape composed of low 

quality habitat and the strength of cues. Moving from left to right, the first panel depicts 

the results of random movement and prospecting using reliable cues (Fig. 2a), the second 

panel depicts the results of random movement and prospecting under perceptual traps 

(Fig. 2b), and the third panel depicts the results of random movement and prospecting 

under perceptual traps traditional ecological traps (Fig. 2c). The solid line black line(      ) 

corresponds to the expected annual population growth rate across all model runs for 

random movement. The solid red line (     ), the solid blue line (       ), and the solid green 

line(      ) lines correspond to the expected annual population growth rate across all model 

runs for prospecting associated with cue strength scenarios 1, 2 and 3 respectively.  

FIG. 3a-c. Line graph showing how expected annual population growth rates for fast life 

history species change in response to the proportion of the landscape composed of low 

quality habitat and the strength of cues. Moving from left to right, the first panel depicts 

the results of random movement and prospecting using reliable cues (Fig. 3a), the second 
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panel depicts the results of random movement and prospecting under perceptual traps 

(Fig. 3b), and the third panel depicts the results of random movement and prospecting 

under perceptual traps traditional ecological traps (Fig. 3c). The solid line black line (      

) corresponds to the expected annual population growth rate across all model runs for 

random movement. The solid red line (     ), the solid blue line (       ), and the solid green 

line (      )  correspond to the expected annual population growth rate across all model 

runs for prospecting associated with cue strength scenarios 1, 2 and 3 respectively. 
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Abstract 

Personality can play a large role in dispersal decisions, influencing how each individual 

estimates and values expected costs versus benefits of venturing out to explore the 

unknown. We contrast the impact of persistence on fitness using decision theory to 

examine the relative success of prospecting movement (which is a widespread behavior 

used by animals to explore available breeding habitat before determining where to settle) 

in different landscapes among individuals with different personalities. We provide a 

quantifiable measure of the impacts of relative tenacity in prospecting behavior on fitness 

gains/losses. Our results indicate that, regardless of landscape composition, individuals 

with greater tenacity in prospecting strategy have reduced fitness gains relative to 

individuals who are more willing to both initiate novel strategies, but then also abandon 

the new strategy rapidly if initial search does not seem fruitful. We show that fitness 

gains from choosing an appropriate prospecting strategy (i.e. abandoning poor habitat or 

staying in rich habitat) can be very high, indicating a potentially large influence from 

personality on fitness. Importantly, we show that relative fitness gains are highly 

dependent on the availability of high quality habitat in the landscape, even if the 

difference under varying fitness outcomes between poor and rich habitat was substantial. 

We further provide some insight into the impact climate-related change in habitat 

quality/availability may have on the success of different personality types.  
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Introduction 

One of the least understood but more common components of dispersal is prospecting 

behavior (Ponchon et al. 2012, Morales et al. 2010). Prospecting movements are 

exploratory in nature and aid an individual in finding, assessing and settling within high 

quality habitat. It occurs at either the start or end of the breeding season, and involves 

individuals moving within their local landscape, assessing available information about 

the quality of the various habitats present. If prospecting occurs at the begin of the 

breeding season it is used to choose where to settle and breed in the current breeding 

season. If prospecting occurs at the end of the breeding season it is used to choose where 

to breed in the following breeding season (Reed, 1999). The ability of an individual to 

find, recognize, and settle within the highest quality habitat available provides fitness 

payoffs in the form of higher fecundity and survival, and thus has direct implications for 

population persistence (Morales et al. 2010). While the degree to which fitness is 

increased by moving into a new habitat (i.e. differences in the demographic rates between 

available habitats relative to each other) and the energetic and opportunity costs 

associated with engaging in searches (cost of moving) can be considered objective 

metrics, both tenacity in prospecting strategy (i.e. how long one persists in one’s current 

behavior) and individual estimation, or selectivity, of current habitat quality seem highly 

susceptible to influence from individual personality. We explore how varying these 

factors influences fitness gains associated with prospecting movements, and evaluate 

these fitness gains across a variety of landscape compositions. We thereby provide a 

more mechanistic understanding of how individual personality can affect the evolutionary 



42 
 

 
 

success of prospecting behavior, especially as habitat patch quality might be expected to 

change over time.  

 While individual dispersal events seemingly only have fitness consequences for 

that individual, numerous studies have shown that dispersal has important implications 

for population dynamics and species’ distributions (Bowler and Benton, 2005). In 

contrast to this statement, a simplifying assumption made in many studies of dispersal is 

that all individuals of a population behave identically. While helping to reduce 

complexity, this assumption prohibits exploration of the ways in which individual 

personality can affect the dispersal process. Recent studies have shown that 

aggressiveness, boldness and sociality often differs between individuals of a species and 

these differences could have direct impacts on the dispersal process (Cote, Clobert, 

Brodin, Fogarty and Sih 2010, Duckworth 2008). These studies provide the impetus to try 

and provide a more mechanistic understanding of how personality affects prospecting 

movements. 

 Prior to dispersing and settling in a new breeding site organisms will often 

prospect for more favorable conditions in neighboring areas (Matthysen 2012), and 

prospecting has been documented in a variety of animals (Ponchon, Gremillet, Doligez, 

Chambert, Tveraa, González‐Solís and Boulinier 2012, Reed, Boulinier, Danchin and 

Oring 1999, Ward 2005). For prospecting behavior to provide a consistent net fitness 

payoff to an individual, three things must be true. First, there must be enough high quality 

habitat within a landscape for an individual to have a reasonable chance of finding it, and 

the boost in survival and fecundity that comes with moving to and settling within these 

habitats must be relatively high (Fahrig 2007). Second, the costs of searching for high 
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quality habitat must be small due to there being some combination of (a) low energetic 

requirements of movement or (b) a lack of a fecundity penalty associated with delaying 

the onset of breeding while searching (Bonte, Van Dyck, Bullock, Coulon, Delgado, 

Gibbs, Lehouck, Matthysen, Mustin and Saastamoinen 2012). Third, an individual must 

be able to gather reliable information on the quality of the various habitats they encounter 

while prospecting, and then be able to transfer this information behaviorally into a 

motivation to either move or stay put (Dall, Giraldeau, Olsson, McNamara and Stephens 

2005).  

 There have been a variety of theoretical and field investigations into each of these 

three factors as they relate to dispersal patterns more broadly (Burgess, Bode and 

Marshall 2013, Caswell, Lensink and Neubert 2003, Lidicker Jr and Stenseth 1992). 

These studies highlight the context-dependent nature of when dispersal should be 

favored, and provides relevant mechanistic details about each factor in isolation (Cote 

and Clobert 2012, Matthysen 2012). In regards to prospecting there have been a variety 

of field experiments that document prospecting behavior (e.g., Calabuig, Ortego, 

Aparicio and Cordero 2010, Mares 2012), but little exploration of its mechanistic 

underpinnings other than as a way to gather public information (Blanchet, Clobert and 

Danchin 2010, Danchin, Giraldeau, Valone and Wagner 2004). More interestingly the 

impact of individual personality on estimations of the two subjective factors (i.e. tenacity 

and selectivity), and thus on the relative fitness of personality types within the same suite 

of external environmental factors, has gone unexplored. 

 Mathematical and simulation models have a long history of producing basic 

insights into dispersal more generally (Kisdi, Utz and Gyllenberg 2012). The output from 
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such models provide insight into understanding the evolution of dispersal, and how to 

devise conservation actions while explicitly considering dispersal dynamics (Lookingbill, 

Gardner, Ferrari and Keller 2010). We use a population-level, spatially implicit 

simulation model to evaluate the impact on the costs and benefits of prospecting over a 

variety of landscape compositions from two major facets of personality: tenacity in 

prospecting strategy and selectivity about habitat quality.  We also explore the resultant 

effects on the net fitness gains (or losses) for individuals with those personality traits 

living in these landscapes. 

  

Methods 

Our model describes early-season prospecting behavior only (as opposed to late-season; 

Reed, 1999).  Thus, the fitness consequences of an individual’s prospecting decisions are 

realized within that year’s breeding season and not in the following season.  This decision 

simplified the conceptualization of fitness components (survival in particular); but we 

note that our model structure can be modified to represent late-season prospecting 

behaviors as well.   

Our modeling framework is based on decision theory (DT), which was developed 

within a biological context as a conceptual framework to evaluate optimality of behavior 

under uncertain conditions (McNamara 1980). DT models have at their core a 

mathematical formulation of the costs and benefits of a suite of possible actions. Here we 

utilize the essential structure of DT models (i.e. formalizing costs and benefits associated 

with actions), but we do not assume the need for an optimal decision. Instead, we 



45 
 

 
 

quantitatively compare net fitness payoffs associated with the impact of personality type 

on the success of resulting prospecting behavior given three mechanistic rules about how 

costs and benefits accrue to individuals. DT provides a way to study complex outcomes 

associated with behavioral decisions that can in some cases be solved without the use of 

complicated mathematical formulations (Possingham, Andelman, Noon, Trombulak and 

Pulliam 2001). This aspect of DT models is ideal for our goals here as it provides a 

relatively simple and transparent way of calculating costs and benefits over a range of 

often-complex inter-relationships. We collate our results in such a way so as to create a 

framework for future study, indicating under what circumstances each cost-benefit 

mechanism plays a dominant role in the fitness payoffs of prospecting under different 

personality types. 

We designed our model so that individuals either settle in the breeding habitat 

first encountered and never use prospecting to assess other habitat types (‘Not 

Prospecting’), or they can engage in prospecting behaviors that allow them to move 

across a landscape seeking other habitat states (‘Prospecting’). If they do not prospect, we 

defined them to select a settlement site at random based strictly upon the proportional 

amount of each habitat type available.  If they are prospecting, we defined them to 

disperse using prospecting behavior in which each individual has the option to search 

among all available habitats or a subset of all habitat types. We define θ to describe the 

habitat options available to a prospecting individual. This variable is often referred to as a 

‘state of nature’ in SDT parlance (McNamara 1980). We define the first state of nature, 

θ1, as the proportion of habitat available that could be considered objectively high quality 

breeding habitat. The remaining states of nature, θ2 and θ3, are defined as the proportion 
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of the landscape that consists of objectively mid-quality breeding habitat and unsuitable 

breeding habitat, respectively. (These proportions are designated as external reality, 

rather than reflecting the estimation of the quality from the perspective of the individual; 

influence of individual personality on habitat estimation is captured solely in whether or 

not the individual is highly selective in their habitat preferences.) 

 These two basic inputs to the SDT framework (actions and states of nature) are 

organized into a payoff matrix (i.e. a graphical structure that allows us to determine the 

fitness outcomes associated with each behavior), and for each unique action by state of 

nature combination there is a resultant fitness payoff value,      (e.g., Ppros,2 is the payoff 

associated with prospecting and the state of nature represented by θ2; see Figure 1), 

calculated as; 

 Eq.1   (    ) = [(ft – Κ(d)) * st)] - [(fi * si)] , 

where fi  and si are the fecundity and survival of an individual in its initial location, ft and 

st are the fecundity/survival of an individual in its location of settlement (terminal 

location), Κ(d) represents the cost of movement as a function of search duration.  

By moving to a habitat of lower quality relative to the initial location, an 

individual can be expected to lower their survival and fecundity. The losses that result 

from moving into lower quality habitat can be thought of as opportunity costs. The cost 

of movement is the energetic costs associated with engaging in search behaviors. For 

purposes of our exploration into the impact of personality, we assume that the energetic 

cost is linear in time, but that individual personality manifests by estimation of that cost 

and we therefore explored three functional forms: linear, exponential, and logarithmic 
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functions of search duration (Figure 2; Table 1). As assumed, a linear function represents 

an “accurate” estimate of monotonically increasing costs with increased time searching 

across the landscape.  In this case, the individual’s personality can be considered as 

moderate: willing to begin prospecting should it seem appropriate, but also willing to 

abandon prospecting should the first few days of effort fail to yield a more promising 

option (hereafter referred to as a ‘realistic’ personality). In comparison, the exponential 

function captures a less tenacious personality type, easily willing to engage in short 

duration movements but hesitant to prospect for longer durations (hereafter referred to as 

a ‘fickle’ personality). Lastly, the logarithmic function captures a very ‘tenacious’ 

personality type, in which there is a large individual preference for continuing in 

whichever is the current strategy.  For individuals with this personality, initiating even 

short duration searches is very unlikely, but once initiated, it is also unlikely that they 

would abandon prospecting until an acceptable quality habitat is found.  

To capture these personality types mathematically, we set the cost of movement 

in Equation 1 as (1) md+b for the linear function (where m is the slope; b is the intercept; 

and d represents the duration of search) (2) be
md

 for the exponential function personality 

type (where b is the intercept term of the exponential function, e is the base of the natural 

log; m is a constant that determines the steepness of the exponential curve; and d 

represents duration of search), and (3) as b(logbase10(md)) for the logarithmic function 

(where b is the intercept term; m is a constant that determines the shape of the logarithmic 

curve; and d once again represents duration of search). A value of 0.1 was used to define 

b for the linear and exponential functions and a value of 0.6 was used to define b for the 

logarithmic function. The values of the slope term were 0.10, 0.14 and 2.3 for the linear, 
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exponential and logarithmic cost functions respectively. While the exact values and 

quantitative predictions made by our models are, of course, dependent on the choices of 

these values, they were chosen to provide insight into general outcomes and 

interpretations gained by comparison of the qualitative representation of the curves as we 

attempted to capture broad personality types. We also assume that mortality is uniform 

across personality types and therefore due no include a direct mortality penalty term 

within the model. Our model is built to explore only the relative impact of personality 

type and its impact on prospecting success. To determine whether or not prospecting 

under each personality type results in a net fitness gain or loss given a particular 

landscape composition, we took the sum over all states of nature for each action such that 

Eq. 2   (NPx) =                
   , 

is the net payoff associated with either not engaging in prospecting behavior (NPNot), or 

engaging in prospecting behavior (NPPros). The value of    is the proportion of the 

landscape composed of each habitat type, and Px,n is the prospecting cost/benefit of each 

action (Prospect or Not Prospect) as calculated in Eq. 1. Because ‘not prospecting’ does 

not include any searching, Px,n for that case does not any include opportunity or energetic 

costs. 

 Our goal was to explore how NPx varies according to personality type under 

different mechanistic rules (some reflecting objective states of reality, and others 

reflecting subjective states of personality). Our rules are therefore: the objective 

differences in survival and fecundity across habitat types (demographic difference 

relative to each other), the subjective estimations of energetic and opportunity costs from 
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initiation and continuation of searching (tenacity as measured by cost of moving), and the 

selectivity of an individual determining their propensity to move out of one habitat type 

and into another (motivation for moving). Our focal metric for relative fitness payoffs 

among the personality types, and within different objective environmental scenarios, 

becomes the NPPros/NPNot, hereafter referred to as the NP ratio (NPr). When this fraction 

is above 1, prospecting movements resulted in a higher net fitness payoff than not 

prospecting. When this fraction is below 1, not engaging in prospecting behavior 

provided a better net fitness payoff. The exact value of this fraction provides a continuous 

measure of how much more (or less) prospecting pays in terms of net fitness benefits. In 

this way, we can consider this the measure of when the environment will selectively 

favor which personality type, and by how much. We set three levels of each mechanistic 

rule, and by changing these rules independently we derived 9 scenarios (Table 1). We 

have only 9 scenarios because we examined changes in each mechanistic rule 

independently and without interactions. When changing the demographic rule we held 

tenacity constant at Level 2 (i.e. 'realistic' rule) and selectivity constant at Level 1. When 

changing the tenacity rule we held the demographics constant at Level 1 and again we 

held selectivity constant at Level 1. Finally, when changing the selectivity rule we held 

demographics constant at Level 1 and we held tenacity constant at Level 2 (i.e. 'realistic' 

rule). We then calculated NPr across all landscape compositions (see below) for each 

scenario. 

 To then determine which mechanistic rule, when changed, had the greatest effect 

on the expected fitness costs/benefits associated with moving, we calculated the 

cumulative absolute difference (CAD) in fitness between each scenario (Eq.3);  



50 
 

 
 

 Eq. 3:   CADn =                 
   
    

where n denotes the mechanistic rule under scrutiny, and x and y are place holders for the 

different levels associated with that mechanistic rule. For example, equation 3 formulated 

to estimate the cumulative absolute differences in fitness associated with the three more 

or less tenacious personality types assigned to cost of moving is:  

CADcost = |(    log – NPexp)| + |(NPlog – NPlin)| + |(NPlin – NPexp)| 

where log represents a logarithmic cost function, exp an exponential function and lin a 

linear function. Because CAD is a scalar quantity with an associated magnitude, but 

lacking any directionality (i.e. the differences between the various levels of a mechanistic 

rule could be positive or negative) we also recorded the direction of change. Due to the 

fact that we evaluated CAD over a large number of landscape compositions (see below), 

it would be impossible to report all the component differences that comprise all CAD 

values for each scenario. Thus we report the component differences in CAD when the 

values were at their maximum and minimum absolute differences within each scenario. 

 Based on first principles and from a variety of existing research (Jauker, 

Diekötter, Schwarzbach and Wolters 2009), we know that net fitness payoffs will vary 

according to the availability of habitats of different qualities across the landscape (i.e. 

landscape composition). Thus, we generated a set of landscape compositions that ranged 

in a standardized way from being dominated by low, to medium, to high quality habitat. 

To do this, we generated a sequence of numbers ranging from zero to one, moving along 

this range in steps differing by 0.05, to create landscapes that varied systematically in the 

proportion of high quality and mid-quality habitat available (θ1 and θ2). The proportion of 
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unsuitable habitat (θ3) was then created by simply subtracting the sum of each sequential 

pairing of θ1 and θ2 from one (i.e. θ3 = 1– (θ1 + θ2)). This effort produced a total of 231 

different landscape compositions after we removed those combinations of θ1 and θ2 that 

greater than one . We used this set of landscape compositions for all scenarios (see above, 

Table 1) thereby allowing composition to change (and thus alter the trade-offs explored 

within each scenario) but in a standardized manner.   

 A fundamental mechanistic determinant of expected fitness payoffs associated 

with prospecting is the range of survival and fecundity rates (with the product being 

represented as λ) experienced by individuals in each of available habitat types (see 

equation 1). We set λ for each habitat type initially at 0.5, 1.0 and 1.5 for low quality, 

mid- and high quality habitat respectively. We then created two alternative demographic 

scenarios by increasing and then decreasing in tandem the survival and fecundity of mid-

quality habitat by 15%. These changes had the effect of creating three levels of 

demographic payoff associated with moving from lower to higher quality habitat types 

(Table 1). 

 The costs of engaging in prospecting movement are also heavily influenced by the 

willingness of individuals to incur those costs (i.e. their motivation to move). There are a 

variety of factors that can influence this motivation (Christe, de Lope, González, Saino 

and Møller 2001, Travis, Murrell and Dytham 1999), but here we focus on ‘selectivity’: 

how habitat quality influences motivation. To characterize an individual’s selectivity 

about habitat type (i.e. how motivated they were to move from poor to rich habitat) we 

assigned probabilities of engaging in search behaviors that were specific to each habitat 

type (γ). We set the probability of searching to be greatest for individuals residing within 
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low quality habitat, allowing it to decrease in mid-quality habitat, and reach its lowest 

value in high quality habitat (Table 1). To explore how varying the selectivity of the 

individual influenced net fitness payoffs, we twice increased the selectivity (i.e. 

propensity to move) by 10% increments in low quality habitat while at the same time we 

decreased the selectivity by 10 % increments in high quality habitat (Table 1). This effort 

created three levels for how selective an individual was in discriminating between habitat 

of various qualities, and then in responding to this information by dispersing out of low 

quality habitat or remaining in high quality habitat (Table 1). The values contained within 

in Table 1 were not informed by empirical data, but rather were simulated to investigate 

the shape of particular model inputs as opposed to being concerned with particular 

numerical results. 

 We allowed for an individual to visit all habitat types, a subset of the different 

habitat types, or continue to search without ever settling to simulate instances in which an 

individual searches for so long all available mates or breeding territories become 

unavailable . The probability of any particular search strategy occurring is a stochastic 

process and is determined based upon its cumulative probability resulting from the 

product of 3 variables: 1) the proportion of a given habitat type within the landscape (θ), 

2) the probability of initiating a search (γ), and 3) the probability of the individual staying 

in a given habitat type once an it has initially arrived there (ps, where ps=1-γ.) Each time 

that an individual leaves a particular habitat type it is assumed that the search phase 

always lasts three days (as an arbitrary interval that allows uniform comparison), and we 

factor duration of search (d) into the relevant subjective cost function. 
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 For each combination of high, mid and low quality habitat (i.e. landscape 

composition) we conducted 100 model runs (100 realizations was determined to be 

computationally sufficient since there was no change in either outcome or variance of 

results from additional runs after this point). Each run consisted of the aforementioned 

steps where we combined the habitat specific estimates of survival and fecundity for each 

action per Eq. 1, allowing for the stochastic selection of a prospecting scenario to 

simulate the action of prospecting and its associated outcomes for each model run. We 

then computed the NP ratio and the cumulative CAD value to determine how the 

perceived costs and benefits of prospecting change when we change the mechanistic rules 

to reflect both changes in objective environment and subjective elements of individual 

personality from tenacity and selectivity. All simulations and subsequent analysis were 

performed in program R v.3.1.0.   

Assumptions, limitations and future applications of model framework  

Decision theory (DT) provides a concise and coherent framework with which to 

evaluate how various factors contribute to a complex ecological process, such as 

prospecting (Rousset and Gandon 2002). However, all models have their inherent 

limitations, tradeoffs and assumptions. We evaluated a subset of the factors we believe 

are important for the problem we addressed (McNamara 1980), and restricted ourselves 

to only the simplest cases (single factor influences; i.e. no interactive effects from more 

than one mechanistic rule being changed at once). This was done to ensure the clearest 

interpretation at this initial modeling step, but we anticipate that future models will want 

to explore these possibilities when applied to specific systems for which the shape of any 

interactive effects may be empirically determined. 
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Similarly, the model is spatially implicit, which imposes limitations to 

interpretation such as lack of any connection or distance between different types of 

habitat. However, the use of a spatially explicit landscape computationally limits the 

number of distinct habitat patches that could feasibly be modeled, in addition to 

introducing limits on the number of distinct habitat compositions that could be 

constructed. We opted to err on the side of greater flexibility in exploring a wide range of 

landscape compositions. Finally, much like nearly all other theoretical work on dispersal 

and movement, we do not have the empirical data to verify specifics of our results 

(Bowler and Benton 2011). Our model, like many others, is meant to provide the 

conceptual framework from which specific, testable hypotheses may be generated rather 

than to test those hypotheses directly.  

Results 

Overall NP ratios (NPr) and thus CAD values varied considerably across landscape 

compositions and as both the environmental and personality rules changed (Table 2).  

Changes in NPr across various landscape configurations  

A primary pattern in NPr is that prospecting generally resulted in a perceived net fitness 

payoff for the less tenacious (or ‘fickle’) personality types if at least 40% of the 

landscape was composed of some combination of mid- and high quality habitats. 

However, prospecting never provided a perceived net positive payoff for very tenacious 

individuals (Fig. 3). In addition, when habitat selectivity was high, prospecting provided 

a perceived net fitness payoff with a lower combination of high and mid-quality habitat 

(~35%). Finally, in cases where individuals had realistic (i.e. linear) perceptions of the 
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costs of movement, prospecting did not provide a perceived net fitness payoff until there 

was a relatively high amount of either mid- or high quality habitat (~60% total).  

Changes in CAD values in response to varying landscape configuration and mechanistic 

rules 

 To visualize how the cumulative absolute difference changes across all landscape 

configurations we constructed a series of 3-D surface plots. The cumulative absolute 

difference in NPr (CAD) associated with our demographic rule changes were consistently 

small across all landscape configurations, thus creating a flat, low elevation 3-D surface 

(Fig. 4a). This result indicates that changing the demographic payoffs associated with 

mid-quality habitat (either lowering or raising it) had very little influence on how often 

prospecting will pay off in higher net fitness, and that this result is unaffected by the 

prevalence of mid-quality habitat in the landscape. There was a somewhat flat 3-D 

surface plot depicting the effect on CAD from the different personality types as it relates 

to tenacity (Fig. 4b). There was a slight increase in CAD as high quality and/or mid-

quality habitat increased in prevalence, reaching a maximum value of 1.44 when the 

landscape is 95% high quality habitat. In marked contrast to the results for changing 

demographic rules, however, CAD values associated with personality type were 

consistently high, hovering around 1 across all landscape compositions (i.e. creating a 

flat, high elevation 3-D surface, Fig. 4b). This indicates that perceived fitness levels are 

somewhat insensitive to changes in landscape composition, but that fitness differences 

across personality types (more or less tenacious) are nearly always high. 
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 When looking at the surface plot showing how CAD responds to altering habitat 

selectivity, we see that CAD is zero when there was only low quality habitat in the 

landscape; but that there was an upswing in CAD as small amounts of mid-quality habitat 

were added (Fig 4c). As we approached greater availability of mid-quality habitat CAD 

values fell again, terminating in a value of zero when there was only mid-quality habitat 

in the landscape. Once high quality habitat reaches an availability of ~20% we began to 

see a gradual increases in the CAD values, approaching a maximum value of 1.14 when 

the landscape was composed of 90% high quality habitat. These results suggest that there 

is a strong interactive influence of landscape composition and individual habitat 

selectivity on the net payoffs expected when engaging in prospecting behavior.  

Component differences in CAD values  

The CAD values taken by themselves provide a magnitude of change, but do not 

indicate the directionality of change.  Thus we examined the component differences when 

the CAD value attained its maximum and minimum value across all landscape 

compositions for each mechanistic rule change (Table 2). There was a large difference 

between very tenacious individuals as compared to either realistic or fickle individuals. 

When the CAD value reached its maximum value of 1.44 in Fig. 3b, the largest 

component of this value was comprised of the difference between the fickle and 

tenacious individuals (0.72). This difference indicates that, when high quality habitat is 

abundant, there is a relatively greater perceived payoff to prospecting for fickle 

individuals relative to tenacious individuals. The difference value of –0.54 between the 

tenacious and realistic individuals also implied a fairly large difference in terms of the 

fitness benefits of prospecting (much as with the fickle individuals) with greater benefits 
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associated with prospecting when movement costs are closest to the realistic linear 

functions. The smaller difference in perceived payoff between the fickle and realistic 

personality types (0.18, Table 2) suggested that having either personality has similar 

effects on the fitness benefits of engaging in prospecting. When the CAD value is at its 

minimum we see similar patterns, but smaller magnitudes of change for each personality 

type. This result suggests that, even though the relative rewards of prospecting are not 

particularly high for fickle or realistic individuals, a tenacious individual can still be 

expected to do much worse in terms of perceived fitness outcomes. 

The component differences between the three levels for selectivity showed more 

interesting patterns. There was a change of -0.25 when we simultaneously increased and 

decreased the probability of dispersal by 0.1 in low and high quality habitats respectively 

from the initial values of probability of dispersal (i.e. Level 1 for the selectivity rule). 

This result indicated that prospecting has a higher relative fitness payoff when individuals 

could recognize the quality of the habitat in which they currently resided, and act more 

strongly to either remain or move on. When we doubled the changes in probability of 

initiating  a search to 0.2, thereby making individuals in high quality habitat even more 

likely to stay but those in low quality habitat more likely to move, we saw the relative 

benefit to prospecting more than double. This result indicates a non-linear dynamic 

whereby fitness gains associated with prospecting are the result of an interplay between 

landscape composition and individual selectivity in habitat evaluation. Much like when 

we changed the demographic rule, the differences between the various levels of 

selectivity were zero when the CAD value is at its minimum.  

     Discussion 
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Prospecting behavior has evolved within a variety of animal lineages and is seen 

as a common mechanism by which individuals can increase their annual and lifetime 

fitness through dispersal (Kesler, Haig and Brittingham 2007, Parejo, White, Clobert, 

Dreiss and Danchin 2007, Reed, Boulinier, Danchin and Oring 1999). We used a simple 

model scaffold to explore the complex interplay of one objective and two subjective, 

personality-based, mechanistic rules that underpin the fitness rewards associated with 

early-season prospecting behavior. Concomitantly, we also evaluated how the influence 

of these rules varies across a more or less heterogenous landscape. We found that when 

individuals have tenacious personality types, there is a marked drop in the expected 

fitness benefits of prospecting relative to the reality of the situation, meaning that 

individuals may fail to prospect in cases when their actual fitness benefits would be 

increased by prospecting behavior. There was, however, little difference between the 

perceived payoffs for fickle personality types versus realistic personality types, meaning 

that while tenacity may lead to missed opportunities, there is little to no realized fitness 

penalty for those individuals that are willing to initiate a search, but quickly abandon it if 

the search does not prove fruitful (i.e. fickleness). This result holds regardless of the 

range of habitats available in the landscape.  We also show that an individual with strong 

selectivity about habitat, causing them to be more likely to leave poor habitat and remain 

in good habitat, will experience a non-linear rise in fitness payoffs as the amount of high 

quality habitat in the landscape comes to dominate. This result implies that if an 

individual can easily find high quality habitat (because it is common), recognize the 

quality of this habitat and thus move no further, prospecting will pay comparatively large 

fitness dividends. Finally, we found that as long as there was at least some elevation in 
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survival and fecundity from low to higher quality habitat, prospecting paid a net fitness 

dividend. This result pertains despite the fact that we altered the differentials in 

demographic payoffs associated with the various quality habitats that ranged from 0.5 to 

1.5 (as measured by λ from low to high quality). 

Predicting personality in relation to prospecting behavior across animal groups 

While in our studied scenarios we assumed that the ‘realistic’ scenario was that 

captured by the linear cost function, this is, of course, not necessarily the case. Our 

results apply equally well to scenarios in which exponential or logarithmic functions are 

the ‘reality’, but then our interpretation of personality must be relative to that accepted 

reality. For example, if the exponential curve is the ‘real cost function’, then our results 

indicate that relatively more tenacious individuals (i.e. linear personality types) may 

actually not suffer any detriment in fitness payoffs, and it would not be until a personality 

type was so extreme as to perceive a ‘real’ exponential curve as a logarithmic outcome 

that fitness penalties would be incurred. This means we can make predictions about the 

variation in estimation of habitat quality and costs of movement for different species, 

depending on our external scientific estimates of the cost of movement function that best 

applies.  

For example, within birds and mammals, Sutherland et al. (2000) show that 

smaller species tend to disperse shorter distances than larger species, in part because there 

is increased energy consumption per unit of weight in smaller species (Kleiber 1947). 

Because of this relationship, small species will consume energy at such a rate that 

maintaining enough energy to reproduce once settled becomes compromised rapidly. 
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Therefore, a logarithmic cost function may be more appropriate for modeling deferred 

prospecting costs in smaller species while a linear or exponential cost function may be 

more appropriate for larger species that consume energy at a slower rate. If true, we 

would expect that larger species of birds and mammals should exhibit much greater 

variety of personality traits relevant to early-season prospecting behaviors as compared to 

their smaller counterparts.  

Similarly, those species that have very short breeding seasons (e.g., high latitude 

species) have very little time to prospect over multiple breeding sites and still have 

sufficient time to successfully breed that year. In this instance prolonged early-season 

prospecting forays would result in increased opportunity costs, as opposed to increased 

energetic costs. These species may be more likely to experience a logarithmic cost 

structure, and thus be expected to exhibit very little variation across personality types 

relative to than their longer breeding-season (e.g., lower latitude) counter-parts.  

Further eco-evolutionary insights  

From an evolutionary perspective, our results suggest that there is a potentially 

strong selective advantage to individuals that collect accurate habitat quality information 

and use this information to guide their breeding decisions, a conclusion reinforced by past 

studies of the source-sink dynamics of metapopulations (Doligez, Cadet, Danchin and 

Boulinier 2003, Major and Jones 2011, McNeely and Singer 2001, Redmond, Murphy, 

Dolan and Sexton 2009). From a conservation perspective, the non-linear relationship 

between individual selectivity and landscape composition could have profound impacts 

on population persistence. For example, several species have evolved to use particular 
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cues to locate high quality breeding habitat. When these cues become disassociated from 

the underlying demographic rates associated with a habitat, prospecting has the potential 

to create fitness sinks whereby populations decline faster than simple demographic rates 

or landscape quality would predict (Burkhalter and Lockwood, unpublished data).  

 The insensitivity of fitness rewards to alterations in the underlying differences in 

habitat qualities suggests that one or both of the following two statements must be true. 

First, the evolution of prospecting behavior is more constrained by mechanisms that 

govern the tenacity and selectivity of the individuals than it is the range of habitat 

qualities individuals encounter. All else being equal, we should therefore expect to find 

highly correlated matching between the two relevant personality traits affecting 

prospecting behaviors in a range of species, which together occupy a very wide array of 

natural landscape configurations, from highly heterogenous to nearly homogenous in 

habitat quality. Second, we did not capture within our model the full range of habitat 

quality differentials experienced in nature. It is possible that landscapes commonly 

provide a much more pronounced difference in expected demographic rates across 

habitats than we considered, and that if these differences are included, we would have 

seen a much higher sensitivity in terms of fitness rewards. Either of these outcomes can 

be explored either empirically or via simulation thus providing further insight into the 

conditions under which prospecting behavior is likely to be observed.  

Implications for Personality Types under Habitat Alteration from Climate Change 

Our findings demonstrate that there are scenarios in which personality traits can 

impact fitness more than differences in habitat quality. However, which traits are 
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important may shift over time, meaning there should be selective maintenance of varied 

personality types to enable success under different ecological conditions. For example, 

previous research on the evolution of dispersal suggests that temporally stable landscapes 

decrease the importance of prospecting in individuals that can learn and remember the 

location of various habitat patches, and vice versa (Clobert, Danchin, Dhondt and Nichols 

2001). Temporally stable environments would be expected to decrease the benefits from 

prospecting, favoring a decrease in tenacity and an increase in selectivity so that animals 

don't continually explore, but if they do prospect they still select the habitat that leads to 

the greatest fitness benefits. Conversely, under shifting landscape conditions (as with 

those that could be expected due to climate change), increased tenacity and decreased 

selectivity may be the more successful combination of personality traits due to the fact 

that animals would need to be willing to search for viable habitat (i.e. habitat that doesn't 

lead to declines in fitness), but not so discerning such that they only settle in the best 

habitat. Critically in the case of climate-driven landscape change, we may expect an 

interval of landscape shifting converging to a new stable pattern. In this scenario, the 

plasticity in behavior achieved by the influence of maintained diversity of personality 

traits within a population may be critical to the long-term success of the population. A 

natural next step from the work presented here would be to consider explicitly these types 

of time-dependent landscape scenarios. 

Conclusions 

By using DT to explore the impact of personality on the fitness implications from 

prospecting behavior, we can begin to make very general, testable hypotheses about a 

range of personality traits under different conditions. These hypotheses will be important 
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in both validating the insights from the theoretical models (using correlations in 

habitat/landscape types and observed prospecting behaviors), and in making predictions 

about the viability of populations over time as landscapes may change. The models 

presented here have provided a general framework that can be easily tailored to reflect 

the specifics of a variety of systems and will enable cross-taxa exploration of hypotheses 

as they relate to personality and changing environmental conditions.   
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Figure 1. The payoff matrix is a graphical representation of the basic inputs of a decision 

theory problem. States of nature (θn) are listed across the horizontal axis, and actions (ax) 

are listed on the vertical axis. The payoff values (Px,n) for each respective state of nature x 

action combination are presented inside the table. The net payoff of each action (NPx) is 

calculated according to Equation 2. 

Figure 2. Graph depicting the three time-dependent functions (i.e. exponential, 

logarithmic and linear) used to determine cost of movement used within Equation 1.  

Figure 3. Line graph depicting how the NP ratio changes as more low quality habitat is 

added to the landscape. Each line represents the mean NP ratio at each landscape 

composition and the shaded region around the line is the 95% CI of the mean estimate 

calculated across all simulations at each landscape composition. The solid blue line (     ) 

represents the simulations estimates obtained from Level 1 of the demographic rule. The 

dashed blue line (         ) represents the simulation estimates obtained from Level 2 of the 

demographic rule. The dotted blue line  

(      ) represents the simulation estimates obtained from Level 3 of the demographic rule. 

The solid green line (      ) represents the simulation estimates obtained from  Level 1 (i.e. 

fickle) of the tenacity rule. The dashed green line (         ) represents the simulation 

estimates obtained from Level 2 (i.e. 'realistic') of the tenacity rule. The dotted green line 

(      ) represents the simulation estimates obtained from Level 3 (i.e. very tenacious) of 

the tenacity rule. The solid red line (      ) represents the simulation estimates obtained 

from  Level 1 of the selectivity rule. The dashed red line (      ) represents the simulation 

estimates obtained from  Level 2 of the selectivity rule.  The dotted red line (      ) 



67 
 

 
 

represents the simulation estimates obtained from Level 3 of the selectivity rule. When 

the NP ratio is above 1 it indicates that prospecting results in greater fitness rewards than 

not prospecting and when it is below 1 not prospecting results in greater fitness rewards 

than prospecting. 

Figure 4a-c. Three-dimensional surface plots depicting how the costs/benefits of 

engaging in prospecting behavior are altered across various landscape compositions. 

Along the x- and y-axes is the proportion of the landscape composed of high quality 

habitat and mid-quality habitat, respectively. Along the z-axis (i.e. vertical axis) we show 

the cumulative absolute difference in the NP ratio (CAD) between each of the different 

levels for a given mechanistic rule (see text, Table 1). The NP ratio defines by how much 

prospecting results in a higher net fitness payoff as compared to the net fitness payoffs 

associated with not engaging in prospecting. Panels show CAD when we alter (a) the 

demographic parameters associated with mid-quality habitat, (b) the tenacity of 

individuals via the cost of movement, and (c) the selectivity exhibited in high and poor 

quality habitat . When CAD is high, an alteration in a mechanistic rule associated with 

prospecting results in a relatively large change in the net fitness payoff associated with 

engaging in this behavior. 
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Table 1. Mechanistic rules used within the model and the various changes made to each one in 

order to determine its relative importance. λ = expected fitness (product of survival and 

fecundity), HQ=High quality habitat, M=Mid-quality habitat, P= Poor quality habitat , γ = 

Probability of initiating a search   

Demographic 

rule 

Level 1 

λ of HQ: 1.5 

λ of M: 1.0 

λ of P: 0.5 

Level 2 

λ of HQ: 1.5 

λ of M: 1.15 

λ of P: 0.5 

Level 3 

λ of HQ: 1.5 

λ of M: 0.85 

λ of P: 0.5 

Tenacity rule 

Level 1 

Less tenacious or 

‘fickle’(Exponential Cost) 

Level 2 

Moderate or ‘realistic’ 

in regards to tenacity 

(Linear Cost) 

Level 3 

Very tenacious   

(Logarithmic Cost) 

Selectivity rule  

Level 1 

γ in HQ: 0.3 

γ
 
in M: 0.5 

γ in P: 0.7 

Level 2 

γ in HQ: 0.2 

γ in M: 0.5 

γ in P: 0.8 

Level 3 

γ in HQ: 0.1 

γ in M: 0.5 

γ in P: 0.9 
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Table 2. Average differences in costs/benefits of prospecting, measured using the NP ratio, 

when differences reached their maximum and minimum between various parameter scenarios. 

For the differing levels see Table 1. 

Changes in tenacity 

                                        

 

 

 

 

 

 

Changes in 

demographic inputs 

                                                   

 

 

 

 

 

Changes in selectivity 

Level 1-Level 2 
 

Level1-Level 3  
 

Level 2-Level 3 

Scenario 

Difference at  

Max.    and     Min. 

0.18                  0.07 
 

0.72                  0.30 
 

0.54                  0.23  

 -0.05                 0.00 
 

  0.02                 0.00 
 

  0.07                 0.00  

-0.25                  0.00 
 

-0.57                  0.00 
 

 0.32                  0.00  

Level 1-Level 2 
 

Level1-Level 3  
 

Level 2-Level 3 

Level 1-Level 2 
 

Level1-Level 3  
 

Level 2-Level 3 
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Abstract 

Habitat loss is one of the most common causes of species endangerment, and thus 

conservation groups have invested heavily in building networks of protected areas. 

However, the costs of acquiring protected areas can be quite high. In spite of these large 

conservation expenditures these networks does not sufficiently represent the full variety 

of terrestrial ecoregions within its boundaries.  The ecoregions that appear to be largely 

ignored from a conservation perspective  and are under-represented in existing protected 

areas often lie within urbanizing landscapes which consist of complex mosaics of land 

uses with associated high heterogeneity in land values. Our work illustrates the 

importance of accurately defining cost metrics in reserve design planning. Relative to 

relying on cost surrogates or average land values across our study area, we were able to 

achieve the same conservation goals for approximately 1/4 of the cost by using tax 

assessed values of individual land parcels. This results demonstrates that in urban 

landscapes we must reconsider the usage of agricultural land and land area as cost 

surrogates for evaluating the costs of conservation. There is further need to evaluate 

whether our results, in terms of  the conservation efficiencies obtained using tax assessed 

land values, hold in other urban landscapes. Systematic conservation planning studies 

have largely ignored a more detailed analysis of landscapes that have a large urban 

component.  
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Introduction  2 

There has been substantial investment in creating conservation planning tools that seek to 

maximize the biodiversity benefits of protected area networks, while also minimizing the costs 4 

associated with acquiring and managing these areas (Moilanen et al. 2009; Sarkar et al. 2006).  

There are two spatially explicit inputs required by these planning tools: information on species’ 6 

use of planning units (e.g., land parcels) and the costs associated with designating any given unit 

as ‘protected’ (Wilson et al. 2009).  There has been much more attention paid to the former than 8 

the latter (Armsworth 2014).  However, what evidence we have shows that information that 

reflects the real spatial heterogeneity of costs, as opposed to data that ignores this variation, tends 10 

to produce vastly cheaper (terrestrial) protected area networks while achieving the same 

biological conservation goals (Armsworth 2014; Naidoo et al. 2006). These results suggest that 12 

the ability of cost data to capture the full heterogeneity in land values will profoundly affect how 

one views the feasibility of implementing a protected area plan.  Here we utilize three measures 14 

of land acquisition cost to explore how and why better cost data produces cheaper conservation 

outcomes.   We explore these issues in the context of protecting eastern deciduous forests within 16 

an urbanizing region.  Conservation planning in urban areas presents a complex dilemma of 

protecting valuable habitat that is simultaneously expensive to acquire and in eminent threat of 18 

destruction.  Within this context, finding the cheapest solution to maximizing biodiversity 

protection is paramount.  20 

Temperate deciduous forests once covered a large swath of eastern North America, and 

despite over a century of logging and land conversion, remain the dominant habitat there 22 

(Ricketts 1999).   These forests harbor a substantial number of rare and endangered species and 
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are considered vital sources of global carbon (Askins et al. 1987; Turner et al. 1995), but they are 

vastly under-represented in existing networks of protected areas (Ricketts 1999; Scott et al. 2 

2001). As urban growth continues to exponentially expand outward from eastern coastal cities, 

land that support these forests are subdivided and sold off as ever-smaller parcels and then often 4 

converted into residential housing (Davies et al. 2010).  These factors create a vexing problem 

for those interested in increasing the representation of eastern deciduous forests in networks of 6 

protected areas.  These forests are under extreme threat of losing their ecological value while at 

the same time their economic value is extraordinarily high and growing.  Far from being an 8 

exception, the fate of eastern deciduous forests reflects a growing issue in conservation planning.  

Globally half of all people now live in or near urban centers, and the trend toward higher 10 

concentration of human populations within cities is likely to continue into the near future 

(McDonald et al. 2013).  The ecoregions that house these urban centers are also of substantial 12 

conservation value, creating a high-risk situation whereby ecological valuable lands are under 

intense development threat (McDonald et al. 2008; Rouget et al. 2003; Seto & Shepherd 2009) 14 

Conservation planning algorithms were first introduced in the 1980s and have since 

grown in complexity and capacity to become a standard tool for building networks of protected 16 

areas (Pressey et al. 1997).   Optimization algorithms require a measure of cost that can be 

assigned to each parcel of land (or water) that is considered for incorporation into the network.  18 

Most often this costs has been represented by area, with the assumption that larger parcels will 

cost more to acquire and manage than smaller parcels (Margules et al. 1988).  Area, however, 20 

does not accurately represent the true economic value of a parcel and thus tends to greatly 

suppress the heterogeneity in true costs between parcels (Armsworth 2014). In response to this 22 

issue, many recent global scale studies have relied upon gross revenue from agriculture and 
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nominal Gross Domestic Product (GDP) values to represent cost (Carwardine et al. 2008; Eklund 

et al. 2011). Recent continental, national or regional scale studies have utilized as cost surrogates 2 

agricultural price indices, which reflect either gross production output value or simply the price 

of agricultural land (Jantke et al. 2013; Lubowski et al. 2006; Polasky et al. 2008).  Of the 27 4 

conservation planning prioritization studies reviewed by Armsworth (2014), only one 

incorporated a surrogate for cost related to urban land value (Visconti et al. 2010).  None of these 6 

more recent cost surrogates seem to adequately capture the heterogeneity in true acquisition 

costs, and in particular it is not clear if (or when) surrogates accurately reflect the spatial 8 

differences in cost across parcels (Davies et al. 2010).   These spatial differences in costs create 

the backdrop over which optimization algorithms ‘run’, essentially dictating if and when trade-10 

offs in acquisition costs can be made without sacrificing achievement of biodiversity goals.   

Here we calculate the total cost of setting up a network of protected areas that will 12 

support 17 forest bird species of conservation concern within the northern counties of New 

Jersey, USA.  This region is rapidly urbanizing due to the influx of people that want to live near 14 

or work in New York City.  Our conservation goal is to design a protected area network that 

incorporates existing protected forested lands and adds more so that the total network provides 16 

sufficient breeding habitat for 17 forest-dependent bird species. We utilize Marxan to derive an 

optimal solution whereby this biodiversity goal is satisfied while minimizing the total monetary 18 

cost of acquiring new lands.  We use three measures of ‘cost’:  area, value of agricultural land 

(calculated by county), and property tax assessment records produced for each land parcel.  The 20 

first two of these cost metrics have been used regularly within published conservation planning 

exercises, with the latter considered the more informative.  We use tax assessed land value at the 22 

parcel level as a benchmark for ‘true’ acquisition costs, and the one that best captures spatial 
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variation in land value.  We evaluate how these three costs metrics influence the total cost of the 

proposed optimal network, and the spatial configuration of this network.   2 

 

Methods 4 

Study Region and Species of Concern 

Our study area spans much of the northern half of New Jersey including the seven counties of 6 

Sussex, Warren, Hunterdon, Somerset, Morris, Passaic and Bergen (Supplemental Fig. 2-4; 6480 

km
2
). The easterly counties of Passaic, Bergen and portions of Morris are predominantly 8 

urban/suburban as a result of their proximity to New York City; while the remaining counties 

include a mix of suburban development, private agricultural farms, and large tracts of state and 10 

federally owned forested land.  New Jersey, like many areas surrounding large metropolises, 

requires a very complex approach to landscape level conservation planning due to the large 12 

number of small land parcels (898,029 in our study area) and the predominance of privately 

owned lands (72% private vs. 28% public) (Hasse & Lathrop 2003).  14 

As our biodiversity target we consider 17 forest bird species that have declined in 

population size by a minimum of 1.5% per year since 2001 both within New Jersey and across 16 

the northeastern US (Table 3,Sauer & Link 2011). Although all breed within deciduous forests, 

they require distinct forest structures representative of the different forest successional stages 18 

(e.g., mature versus early-successional shrub forests).  These species have been formally 

recognized as in need of conservation action by the State of New Jersey or by national non-profit 20 

conservation organizations (Dettmers & Rosenberg 2000).  Some species are of higher 

conservation concern than others (Table 1).  For example, the cerulean warblers (Setophaga 22 
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cerulea) is a rapidly declining Neotropical migrant species that is rare across its summer 

breeding range and has a persistent but localized breeding population in the mature second-2 

growth forests commonly found in the northwestern corner of our study area.  In contrast, the 

eastern towhee (Pipilo erythrophthalmus) is a small sparrow-like species that relies on the thick 4 

understories of early-successional forests, which are much more widespread in our study area.  

The towhee has experienced large annual declines in abundance in recent years despite being 6 

somewhat widespread, which is why it is considered of conservation concern.  Such differences 

in species’ habitat requirements and threat status require consideration when formulating 8 

conservation targets (see below).  

A principal requirement of conservation planning is to be able to designate planning units 10 

as habitat for the focal species.   To do this we utilized previously published species distribution 

maps for each of our 17 birds (Maslo et al. In Press). These authors used maximum entropy 12 

software to predict the occurrence of each species across our study area (Maxent v3.3.3k, 

Phillips et al. 2006).  Maslo et al. (In Press) used point-count data collected at over 2,000 14 

locations in 2002 across our study area to create distribution maps.  All of their distribution 

models provide a statistically reasonable depiction of the distribution of our focal species across 16 

our study area (see Maslo et al. In Press for more details).  We utilized their maps depicting the 

top 10 percentile of probability of occurrence to determine how much of each of our planning 18 

units were occupied by each species.  The 17 species occupied from 4% to 56% of our study 

area, with a mean of prevalence of 34% (Table 1).  Maslo et al. (In Press) show that the 20 

distribution of predicted habitat for our focal species is mostly split between publicly owned 

forests and privately owned agricultural lands.   22 
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Analysis framework 

To select planning units for inclusion in a reserve network we used the decision support tool 2 

Marxan (Possingham et al. 2000). Marxan relies upon a simulated annealing optimization 

algorithm to identify planning units (the unit of analysis specified by the user) for inclusion in a 4 

reserve network to achieve conservation goals at the minimum cost.  Our application of Marxan 

requires information on the spatial distribution and size of potential planning units, and the 6 

amount of habitat that is occupied by each of our 17 focal species in each of these planning units. 

Additionally, we had to set conservation targets for each of the focal species, define metrics that 8 

represent the costs of achieving the conservation targets, and define ways to measure the 

differences in cost that arise from using various metrics so that they are on a common scale for 10 

comparison.  We discuss each of these below.  

We used tax assessed land parcels to define our planning units. There are a total of 12 

898,029 land parcels within our study area ranging in size from <1 to 1,945 ha. We defined the 

boundaries of each parcel, and each parcel’s ownership category, using the New Jersey MOD IV 14 

Tax Manual (Table 2). The MOD IV Tax Manual is maintained by the New Jersey Division of 

Taxation, which is a division of the New Jersey Department of the Treasury.  The tax manual 16 

provides for the uniform preparation, maintenance, presentation and storage of local tax 

information for the entire state (Treasury 2014). We determined the current protection status (i.e. 18 

whether or not a parcel is under current protection by a governmental body or NGO) of each 

parcel using two of the most up-to-date protected areas databases available: the USGS Protected 20 

Areas Database of the United States, and the New Jersey Highlands Council Protected Areas 

Database (Council 2014; USGS 2012). These two databases were last updated in 2012, and 22 
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include protected areas that are under permanent protected status as well as land parcels that are 

enrolled in conservation easement programs.  2 

Using both ownership and protection status, we assigned all parcels to one of three status 

groups: 1) available for acquisition ; 2) already protected; or 3) not available for acquisition.  4 

Any parcel that had an ownership category that indicated existing facilities or structures were 

present were considered unavailable for acquisition (Table 1). These land parcels either were not 6 

likely purchasable (e.g., railroads), or had existing facilities or development on them that 

substantially reduced their ecological value (e.g., apartment complexes).  We considered parcels 8 

available for acquisition if they were not already protected and did not show evidence of 

substantial development (Table 1).  We also deemed a land parcel as unavailable for acquisition 10 

if it was smaller than 2.5 hectares, because it was likely too small to support any of our focal 

species (Blake & Karr 1987). To reduce computational complexity all unavailable land parcels 12 

that shared a common boundary were dissolved into one unit within ArcGIS, leaving all other 

parcels unchanged, so that the final land parcel count for the remaining analysis was 65,711.   A 14 

total of 15,881 land parcels were already protected, 41,639 were considered not available for 

acquisition, leaving 8,181 as acquirable.  The distribution of acquirable lands was heavily 16 

skewed toward smaller parcel sizes (Supplemental Figure 1).   

 To determine the conservation targets for each species we used the approach outlined in 18 

Wilson et al. (2010) that allows for equitable protection of each species by relying upon the their 

particular life history characteristics. Previous studies have shown that the mean time to 20 

extinction (M) for a population of organisms subject to environmental stochasticity can be 

determined using the following equation,  22 

   M = 2K
b
/σ

2
b

2
    (1) 
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where K is the carrying capacity of the population, σ
2
 is the variance in the growth rate of the 

population, b is a constant and is calculated according to ([2r/ σ
2
] -1) (Lande 1993; McCarthy et 2 

al. 2005). Assuming that M = 100,000 years is an average time to extinction for every species 

(per Wilson et al. 2010), then the target population size, K, can be found by rearranging Eq. 1 to, 4 

   K = (100 000 σ
2
b

2
/2)

1/b
 (2) 

 Data on r and σ
2
 are usually not available so approximations must be used to ultimately 6 

derive K. Wilson et al. (2010) used the following function to obtain estimates of the maximum 

instantaneous rate of population growth (rm) as a function of body mass, rm = 1.375W
-0.315

, where 8 

W is the adult live body mass of females in kilograms (Sinclair 1996). The coefficients derived 

by Sinclair (1996) are not applicable to our focal species because they were derived for 10 

mammals.  Therefore, we used the function described as rm = 0.025W
-0.26

, according to the 

allometric relationship determined by Blueweiss (1978) for a range of taxonomic groups 12 

(including birds). From here the instantaneous rate of change between population censuses, rt, 

can be approximated by rm/T, with T (i.e. generation time) being calculated using the avian 14 

specific coefficients via T = 53W
0.27

 (Millar & Zammuto 1983). We used the approximation for 

rt in place of σ
2
 to calculate b and then substituted these values into Eq. 2 to derive K, which we 16 

use as our conservation target. 

 Because K is measured in terms of the number of individuals, we then adjusted our 18 

conservation targets so that they are measured with the same metric and same scale as our 

planning units. We multiplied K by the average territory size for a pair of birds for each focal 20 

species to obtain the target area required for each species. Average territory size for each species 

and average adult live weight for females of each species, W, were obtained from species 22 

descriptions in Birds of North America Online (Ornithology 2014).  
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Conservation weights 

When designing a reserve network for multiple species it would be ideal to give equal 2 

importance to all species, but given that conservation managers work with monetary constraints 

there is the need to prioritize species that may be limited in range/habitat type or are currently 4 

experiencing the greatest levels of decline. To address this concern within our study we 

formulated a ranking of our 17 focal bird species by considering three factors: 1) their 6 

conservation status within New Jersey; 2) their regional rate of decline; and 3) how much of their 

overall geographic distribution lies within our study area. To reflect this ranking within Marxan 8 

we adjusted what is termed the 'species penalty factor'. This factor is a multiplier applied to the 

objective function calculated by the optimization algorithm when the conservation target for a 10 

given species is not met. A higher species penalty factor implies that a species is of higher 

conservation concern (see Table 2). Following the recommendations laid out in the Marxan User 12 

Manual we were able to calibrate our species penalty factors so that we balanced the need to 

meet our conservation targets, while also limiting any influence that our assigned values might 14 

have on Marxan optimization performance (Game & Grantham 2008). 

Cost Metric 16 

We derived an optimal protected area network using one of three different cost metrics; area, 

agricultural value, and tax assessed value. Area is simple the size of each parcel (m
2
) as recorded 18 

in the NJ MOD IV database.  We determined agricultural land value on a price per unit area 

(2014 USD$/m
2
) basis for each county in the study area (7) and then multiplied the total parcel 20 

area by its respective county agricultural land value.  Finally, we used the tax assessed dollar 

value attached to each land parcel taken from the NJ MOD IV database. New Jersey tax 22 

assessments are based on market value of land, and thus we consider these the most accurate 
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measure of true acquisition costs we have.  In New Jersey assessment practices are standardized 

across the state and assessment rates are uniformly 100% (Treasury, 2014).  If there was no 2 

dollar value attached to a land parcel, which was rare (< 1% of all ~898k parcels), we calculated 

the average land price (2014 USD$/m
2
) for each status group (i.e. status being either available 4 

for acquisition, already reserved or not available for acquisition) on a county-by-county basis and 

multiplied this value by the total size of each parcel with an unspecified value to determine its 6 

acquisition cost.  

 We deduct the cost of each parcel included in the protected network from an overall 8 

acquisition ‘budget’, which is not capped but is to be minimized. Thus the cost of each parcel is a 

form of a penalty, whereby more costly parcels penalize the overall budget more than less costly 10 

alternative.  To visualize how this acquisition penalty is represented by each cost metric, we 

plotted parcel size (ha) against the log-transformed cost metric.  To represent each cost metric on 12 

the same axis, we had to convert them all into the same units.  Tax assessed parcel value and 

agricultural land value are by default represented in 2014 USD.  To convert area into the same 14 

units we imposed a 1:1 ratio between area and USD, so that 1m
2
 = $1.  Logging the cost metric 

(acquisition penalty) was necessary in order to better visualize the relationship with parcel size 16 

since the distribution of parcel sizes is heavily weighted toward smaller sizes.  

To examine overall trends between parcel size and acqusition penalty we fit a lowess 18 

smoother using the 'lowess' package in program R v.3.0.1 for each cost-area relationship.  We 

derived a single function for the relationship between area and parcel size, and another single 20 

function for area and tax assessed value.  For agricultural land value, we fit a function for each of 

the seven counties since this value is county specific.  A 'lowess' smoother can serve different 22 

purposes, however, our purpose was to provide an exploratory graphical representation of the 
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relationship between parcel size and acquisition penalty (Cleveland & Devlin 1988). Lowess 

smoothers are also very useful because they do not assume that the data fits any particular 2 

distribution or that any one function describes all of the data.  Rather it subsets the data so that 

neighboring values of the independent variable are used to fit a response curve to the dependent 4 

variable (Trexler & Travis 1993). To balance the need to best portray the relationship between 

the data while avoiding 'oversmoothing' the curve, we implemented an iterative procedure that 6 

allowed us to refit the lowess curve multiple times until variability in fit no longer changed.  

For each cost scenario, we determined the optimal reserve design by initiating Marxan 8 

using the guidelines set forth in the Marxan Good Practices Handbook (Ardron et al. 2008). We 

performed 1000 runs, each run containing 1,000,000 simulated annealing iterations.  We then 10 

selected the run that met the conservation goals for all 17 focal species at the lowest acquisition 

budget and used this optimal scenario as the basis of comparison between the different cost 12 

scenarios. Because our study area has a substantial number of existing protected areas, and these 

were always ‘locked into’ the final optimal network design (no matter the cost metric used), the 14 

total acquisition budget of each optimal network is calculated as the sum cost of all added land 

parcels.  When using the tax assessed NJ MOD IV value of each parcel as our cost metric, this 16 

simply required us to sum the tax value of all added parcels.  For the scenarios where cost was 

not based upon tax assessed land values (i.e. area as cost surrogate, agricultural land value), we 18 

looked up the tax assessed value of all added parcels in the NJ MOD IV database, and summed 

these. We then directly compared the total acquisition budgets across final optimized protected 20 

area networks realized under each cost metric.   To show how this total acquisition budget is 

divvied up across all selected parcels, we plotted parcel cost against size for each cost metric 22 

scenario.  We fit lowess functions to these data using the same methods as described above.   
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Results 2 

Heterogeneity in acquisition costs  

When we considered tax assessed land values as the acquisition penalty we observed a large 4 

heterogeneity costs ranging from 2014 USD$0.33/m
2
 to $55.28/m

2
 (Figure 1). Most between-

parcel variation in acquisition penalty as represented by tax-assessed value occurs within small 6 

parcels (Figure 1).  Agricultural land values were calculated on a per county basis, and doing so 

converted a substantial portion of this heterogeneity in parcel acquisition penalties into between-8 

county differences (Figure 1).   Representing acquisition penalties based on area alone collapsed 

all heterogeneity in parcel costs into a single linear function (which when depicted in semi-log 10 

space appears as an increasing and then saturating curve; Figure 1).  Agricultural land values 

captured some of this heterogeneity in parcel acquisition costs at small parcel sizes, but in 12 

general imposed higher costs across all parcel sizes than either area or tax assessed value.  For 

some counties, using agricultural land value as the measure of acquisition penalty greatly inflates 14 

costs across all parcel sizes (Figure 1).  Using area as the acquisition cost not only suppresses 

parcel heterogeneity in cost, but also tends to impose higher costs across all parcel sizes as 16 

compared to tax assessed values due to the fact that area of parcel does not always reflect its 

price.  This imposition of higher acquisition penalties by agriculture land value is due to the 18 

intrinsic properties of averages. When calculating the mean of a given sample, the mean is 

sensitive to extreme values and in our case this translates into small parcels of high cost inflating 20 

the average cost per unit area. When this inflated cost per unit area is then applied to all parcels it 

can result in an increasingly unrealistic representation of acquisition costs.    22 
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Costs of Conservation 

The minimum acquisition budget needed to achieve our conservation goals varied dramatically 2 

depending upon the cost metric used (Figure 2). When using the tax assessed land values as a 

measure of acquisition cost there was a 73% and 78% cost savings in comparison to networks 4 

derived using area or agricultural land value as acquisition penalties respectively. Given that all 

model parameters, except for cost metric were the same across all model scenarios we are 6 

confident that this result is due to the difference in how the costs are represented by the different 

cost metrics and not due to some other constraints imposed by the model (i.e. species penalty 8 

factors, the conservation targets and the boundary length modifier (BLM), which controls overall 

compactness of the final reserve design) (for further explanation of BLM see Game & Grantham 10 

2008). Figure 3 depicts how total acquisition budget was spread across selected parcels of 

various sizes, and thus it allows visualization of where efficiencies could be realized between 12 

cost metrics (i.e. what is the relative difference between the lines).  Figure 3 shows that that the 

low acquisition budget realized using tax assessed land values stems largely from the selection of 14 

much cheaper parcels that are <350ha as compared to what occurs using the other cost metrics 

(Figure 3).  Using area or agricultural land values as cost metrics resulted in largely the same 16 

acquisition costs for parcels <200ha.   At larger parcel sizes, using area as a cost metric 

continued to result in the selection of relatively expensive parcels for the network.  However, the 18 

use agricultural land values resulted in the highest savings in acquisition costs when selecting 

large (>400ha) parcels. Note that under no cost metric were the largest parcels selected in the 20 

optimal network (maximum parcel size of selected parcels was 551 ha, whereas the largest parcel 

available for acquisition was 903 ha).   22 
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Spatial differences in parcel selection 

To visualize the differences in the spatial distribution of parcels selected for inclusion an optimal 2 

network across cost metrics we created a series of spatial overlays of the final protected parcels 

(Supplemental Figures 2-4). From overlaying the map of selected parcels when using tax 4 

assessed value and area as cost metrics, we can see that, when tax assessed land value is used as 

the cost metric, most of the parcels added to the optimal network are located in the two 6 

westernmost counties (Sussex and Warren, Supplemental Fig. 2).  These two counties had on 

average the lowest tax assessed land values per unit area of all seven counties, and thus selecting 8 

parcels in these counties allowed conservation targets to be met while imposing the lowest 

acquisition penalty. Furthermore, we see that when using area as the cost metric a few relatively 10 

large parcels were selected for inclusion in the network in the southeastern portion of the study 

area (within Somerset county).  Similar spatial patterns were observed when we compared the 12 

location of parcels selected using tax assessed land value as the cost metric as compared to 

agricultural land value (Supplemental Fig. 3). Using agricultural land value led to inclusion of 14 

many more parcels in the southeastern portion of the study area, predominantly in Somerset 

county. However, when comparing the agricultural land value scenario to area cost values we see 16 

a high degree of overlap in the parcels that were selected for inclusion in the network 

(Supplemental Fig. 4). It is also worth noting that when comparing these two optimal networks, 18 

both cost metrics selected parcels in the western portion of the study area, but these parcels 

tended to not be the same ones. 20 

 

Discussion 22 
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There is an ever-rising need to set aside land in protected status for biodiversity conservation, 

while at the same time resources to meet this need are certain to remain limited.  This situation 2 

places high importance on deriving the most cost-effective conservation strategies as possible 

(Grantham et al. 2009; Wilson et al. 2007).  We show that accurately representing acquisition 4 

costs when planning protected area networks has substantial effects on the efficiency with which 

conservation goals can be met.  Relative to relying on cost surrogates such as average 6 

agricultural land value or area, we show that the use of tax assessed land values allows the 

achievement of the same conservation goals for approximately one-quarter of the cost.  In 8 

addition, we show that such cost savings can be realized even within urbanizing landscapes 

where the ecological threats are high and the value of land is high.  Perhaps most importantly 10 

relative to the conservation planning literature, we identify exactly where those cost savings 

come from (Kim et al. 2014).    12 

 It is well-known that using area as a surrogate for the cost of acquiring protected land 

suppresses all underlying heterogeneity in true costs (Armsworth 2014).  In New Jersey’s heavily 14 

urbanized landscape we see a large heterogeneity in land prices that varying from less than a 

dollar to over fifty dollars per square meter. We show that the use of agricultural land values not 16 

only also suppresses substantial heterogeneity in costs but also tends to over-estimate those 

costs; sometimes severely.  In our case, the vast majority of heterogeneity in costs occurred 18 

across parcels of small relative size.  Following long-established conservation axioms, we forced 

the optimization algorithm to favor larger parcels over smaller ones for acquisition.  From this 20 

perspective, we may expect wide differences in costs of small parcels may not have that much 

influence on the final acquisition budget.  However, in our case this heterogeneity had a 22 

substantial influence because (1) the differences in costs across small parcels spanned orders of 
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magnitude and (2) the vast majority of acquirable lands were small.  To achieve our conservation 

goals, large numbers of small parcels had to be acquired and the ability of the algorithm to 2 

choose a parcel of land that was of equal quality for our target species but for substantially less 

cost produced a huge net drop in total budget expenditures. 4 

 We also show that the heterogeneity in acquisition costs had a strong spatial signal in that 

parcels in the southern and eastern portion of our study area had 20 to 30X higher values than 6 

parcels in the western portion.  This difference in land value was consistent across all parcel 

sizes, thus indicating that large parcels were present across this spatial cost gradient (i.e. large 8 

parcels were not confined to low cost regions, or vice versa).   This substantial price 

heterogeneity is masked when using cost surrogates, and it significantly reduces the overall 10 

efficiency of allocating funds for conservation.  Our cost gradient is a product of the proximity of 

land to New York City, where land closer to the city (or to commuter rail lines) has high value.  12 

This gradient in land values is common to nearly all urbanizing regions, and may be a common 

feature of many ecological valuable landscapes.  Our results suggest that in such situations 14 

accurately representing this spatial pattern in costs is vital to realizing the most cost efficient 

protected area network design. Indeed, one reason why the use of agricultural land values as a 16 

cost metric failed to produce any cost savings (relative to the other metrics) is because it could 

not accurately represent this spatial difference in costs.  This effect was especially noticeable 18 

when evaluating the acquisition costs of land parcels that were relatively large.  

Agricultural land values and area tended to estimate much higher acquisition costs relative to 20 

tax assessed value across all but the smallest sized parcels.  This observation suggests that part of 

the larger total acquisition budgets associated with using area and agricultural land value is 22 

because the estimated cost for all selected parcels was inflated.  In our case, the fact that the final 
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networks produced under each cost metric included nearly the same number of parcels, and the 

same total area, suggests that this inflation did not restrict the size of the network chosen.  2 

However, if any one of our species’ habitat requirements dictated that only relatively expensive 

or large parcels would satisfy their needs, the general inflation of costs could have imposed 4 

stronger constraints on the total network size; perhaps even disallowing an optimal outcome 

altogether.  The decreasing variance in acquisition costs from small to large parcels that we 6 

observe ensures that any method that extrapolates costs across all parcel sizes will badly mis-

estimate costs at the larger end of the distribution. The most obvious case of this is within Morris 8 

county (top white curve in Figure 1), where tax assessed land values can be very high for very 

small parcels (including agricultural land).  When this cost per unit area is extrapolated to even 10 

slightly larger parcels sizes, it greatly over-estimates costs.  

We have relied upon highly detailed tax records to account for acquisition cost heterogeneity, 12 

but these data may not be available for many areas where conservation planning initiatives are 

taking place.  In such cases, cost surrogates are required.  Our results suggest that any surrogate 14 

should not only capture the spatial structure in cost heterogeneity as suggested by Armsworth 

(2014), but also how that heterogeneity manifests itself across the range of available parcel sizes.  16 

Additionally, we assume that acquisition costs are the only types of costs that determine overall 

conservation planning outcomes, although we know this to not be true (Naidoo et al. 2006). 18 

Transaction and management costs remain a vital, but badly under-documented element to 

devising optimal protected area networks, and we would expect these costs to be equally 20 

heterogeneous (and likely high) in urbanizing landscapes such as ours.  Finally, we suggest that 

the need to conduct conservation planning within urban areas is urgent both in terms of the 22 

surprising ecological value these areas often have (Donnelly & Marzluff 2004; Pennington et al. 
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2008) and the extremely high risk that remaining land of ecological value will be lost to land 

conversion.   However, as of yet systematic conservation planning studies have largely ignored 2 

landscapes that have a large urban component (Armsworth 2014). There are many large cities 

that sit within ecologically valuable landscapes and it would be informative to see if the patterns 4 

we observed here hold elsewhere. 

 6 
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Figure Legend 

Figure 1. Scatterplot depicting (log) acquisition penalties (2014 USD$) against size of 

parcels available for acquistion within our study area. Area is assigned a monetary costs 

of $1/1m
2
, and the other costs are directly measured in USD$ (see text). The green 

squares and solid green line depict parcel acquisition penalties based on their tax assessed 

land value, the yellow circles and solid yellow line depict penalties based on area, and the 

white triangles and solid white lines depict penalties based agricultural land values.  

Because agricultural land values were derived per county (seven), we fit functions for 

each county (seven white lines).  In semi-log plots, linear functions appear as increasing 

and then saturating functions.  Note that many data points (parcel costs) may stack on top 

of one another making them visually indistinguisable, which is most often the case when 

depecting agricultural land value and area costs per parcel.   

Figure 2.  Total land acquisition budgets (2014 USD$) required to achieve our 

conservation targets using tax assessed land value, area, and average agricultural land 

prices as acqusition cost metrics. 

Figure 3. Scatterplot depicting (log) acquisition cost (2014 USD$) by parcel size across 

all parcels selected for inclusing in the optimal preserved area network under each cost 

metric. The total acquitision budgets for each cost scenario correspond to Figure 2.  The 
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solid green line represents the cost of selected parcels when using tax assessed land value 

as the cost metric, the solid yellow line depicts the cost of selected parcel when area is the 

cost metric, and the solid white line represent the cost of selected parcels when 

agricultural land values are used as the cost metric.  The lower a line relative to the 

others, the less a selected parcel of that size penalized the total acquisition budget.   

Supplemental Figure 1. A frequency histogram depicting the distribution of parcel sizes 

measured in hectares. This distribution applies only to those parcels that were available 

for acquisition. 

Figure S2. Map showing the final reserve designs when using tax assessed values and 

parcel area as a proxy for acquisition cost. The areas highlighted in green are the existing 

reserve sites throughout the study area. The gray areas show sites that were not selected 

for inclusion in the final reserve design. The areas highlighted in red are the sites selected 

for inclusion in the final reserve design when using area as a acquisition cost surrogate. 

The areas highlighted in blue are the sites selected for inclusion in the final reserve 

design when using tax assessed land values for acquisition cost. The sites highlighted in 

purple designate the sites that were selected for inclusion in the final reserve design by 

both cost metrics 

Figure S3. Map showing the final reserve designs when using tax assessed values and 

agricultural land values as acquisition cost metrics. The areas highlighted in green are the 

existing reserve sites throughout the study area. The gray areas show sites that were not 

selected for inclusion in the final reserve design. The areas highlighted in red are the sites 

selected for inclusion in the final reserve design when using agricultural land values as a 
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proxy for acquisition costs. The areas highlighted in blue are the sites selected for 

inclusion in the final reserve design when using tax assessed land values for acquisition 

cost. The sites highlighted in purple designate the sites that were selected for inclusion in 

the final reserve design by both cost metrics 

Figure S4. Map showing the final reserve designs when using area and agricultural land 

values as proxies for acquisition cost. The areas highlighted in green are the existing 

reserve sites throughout the study area. The gray areas show sites that were not selected 

for inclusion in the final reserve design. The areas highlighted in red are the sites selected 

for inclusion in the final reserve design when using agricultural land values as a proxy for 

acquisition costs. The areas highlighted in blue are the sites selected for inclusion in the 

final reserve design when using parcel area as proxy for acquisition cost. The sites 

highlighted in purple designate the sites that were selected for inclusion in the final 

reserve design by both cost metrics 

 

 

 

 

 



103 
 

 
 

 

 

 

 

 

 

 

 

 



104 
 

 
 

 

 

 

 



105 
 

 
 

 

Figure 1 



106 
 

 
 

 

Figure 2 

 

 

 

 



107 
 

 
 

 

Figure 3 

 

 

 

 



108 
 

 
 

 

Figure S1 

 



109 
 

 
 

 

Figure S2 



110 
 

 
 

 

Figure S3 



111 
 

 
 

 

Figure S4 

 

 

 



112 
 

 
 

Conclusions 

 By providing a greater understanding of decision-making, from both the non-

human and human perspective, we should be able to improve animal conservation and 

management strategies. By studying animal decision-making processes we gain a greater 

understanding into how animals respond to anthropogenic change and what this could 

mean for species persistence within human-modified landscapes. Additionally, studying 

animal decision-making can allow us to determine which species may be more vulnerable 

to anthropogenic change by evaluating how evolved decision-making behaviors can 

become suboptimal. Finally, by examining our own decision making and how it relates to 

conservation management we can determine when we may be making suboptimal 

decisions due to misguided information. 

 My results provide direct information on how animal behavior relates to animal 

conservation. When the cues that animals use to guide movement decisions become 

decoupled from fitness consequences related to those movement decisions we see 

dramatic declines in population growth rates. This decoupling of fitness consequences 

from decision making can then result in evolved behaviors become a detriment to long 

term species persistence in human modified landscapes.  Additionally, we have found 

that the behaviors of individuals can have profound impacts on those same decision 

making processes in human modified landscapes. We observed interactions between 

individual selectivity and changes in landscape composition. Those individuals that are 

more selective often incur greater fitness costs as a result of movement when there is a 

large amount of poor quality habitat in the landscape and conversely can receive the 

greatest benefit when there is a large amount of high quality habitat within the landscape. 
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Furthermore, the tenacity of an individual greatly affects movement costs with those 

individuals displaying the highest levels of tenacity incurring the greatest fitness 

penalties. 

 By evaluating how we determine costs within conservation reserve site selection 

we have shown that different representations of costs can greatly impact the economic 

feasibility of conservation and thus our decisions in regards to how much we may be 

willing to invest in conservation. Commonly used metrics of cost, area and agricultural 

land values, are very poor indicators of the true cost of conservation in highly urbanized 

landscapes. This poor representation of costs in turn leads to conservation initiatives that 

would cost 3-4X as much when compared to a situation in which we used tax assessed 

land values. By showing that we can conserve the same number of species using 

significantly less money we provide the impetus to reevaluate current strategies for 

conservation on a landscape scale.  


