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ABSTRACT OF THE DISSERTATION

Shift equivalence and a combinatorial-topological

approach to discrete-time dynamical systems

by Justin Bush

Dissertation Director: Konstantin Mischaikow

Given a parameterized family of discrete-time dynamical systems, we aim to investigate

how the global dynamics depends on the parameters in a way that is meaningful for

applications. The discrete Conley index is an algebraic topological invariant of recurrent

dynamics that is robust to small changes in parameters. Its definition, however, is given

in terms of shift equivalence, which is not straightforward to compute in the category

of abelian groups. We discuss the challenge of interpreting shift equivalnce, and give a

construction that for every square integer matrix produces an interval map that giving

rise to dynamics represented by that matrix. We conclude with applications of this

approach to dynamical systems to the logistic map, Newton’s method in the plane, and

to population models in biology.

ii



Acknowledgements

First and foremost I would like to thank my advisor, Konstantin Mischaikow, for all

of his support and guidance. The work in this dissertation is greatly indebted to his

influence and counsel.

Thank you to Chuck Weibel, Steve Ferry, and Sarah Day for serving on my thesis

committee and for many helpful comments that have improved this dissertation. I

am also grateful to Chuck for his insight into the algebra of shift equivalence, which

influenced my presentation in Chapter 3.

Selections from Chapter 5 have been published previously in the journal Chaos,

and a modified version of Chapter 7 has been published in Entropy. Other parts of

this dissertation are currently in preparation to be submitted, as indicated in the cita-

tions throughout. I want to acknowledge all of my coauthors for their contributions.

In particular, the figures in Chapter 6 are based on computations performed by Wes

Cowan using software written by Shaun Harker, both of whom (along with Konstantin

Mischaikow) are coauthors of the preprint on which the chapter is based.

I am an incredibly lucky person to have the family I do, and it is impossible for

me to imagine accomplishing anything that I have without them. Thank you all for

making my life so wonderful.

Finally, thank you to the many friends that were there while I was working on this

dissertation. I appreciate everything you have added to my life.

iii



Dedication

I dedicate this work to Charles Bush, Jr. and Attilio Necciai—the two people who would

have been most proud had they been able to see this day—and also to Dave Williams,

who would have made it clear that I’m still just a nephew he could tell embarrassing

stories about.

Papa, Till, and Uncle Dave, I miss you.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. A coarse approach to dynamics . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. Combinatorialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Recurrent and nonrecurrent dynamics . . . . . . . . . . . . . . . . . . . 14

2.3. Conley index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Problem of shift equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. Constructing Conley indices . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. Application: the logistic map . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1. Database output and classical theory . . . . . . . . . . . . . . . . . . . . 43

5.2. Phase vs parameter subdivision . . . . . . . . . . . . . . . . . . . . . . . 45

6. Application: Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2. The angular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3. The dynamics database . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4. The computed dynamics database . . . . . . . . . . . . . . . . . . . . . 59

7. Application: population models . . . . . . . . . . . . . . . . . . . . . . . 68

7.1. Plant and Fish models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



7.2. Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vi



1

Chapter 1

Introduction

The impossibility of a complete understanding of most dynamical systems was recog-

nized by Henri Poincaré well over a century ago [39]. One of the foremost achievements

to that point in what we would today call dynamical systems was the prediction of the

planetary orbits around the sun using Newtonian gravitation, carried out by Newton

himself in the Principia [37]. As an expedient for solving for the orbits of each planet

explicitly, however, he considered only the effect of gravity between the sun and each

planet taken separately. This is, of course, a simplification of the full solar system,

which would require modeling the effect of gravity of each planet on all the others.

Poincaré was interested the three-body problem: the problem of determining the

future trajectories of three objects under Newtonian gravitation. Mathematically this

amounts to a solution of a set of nonlinear ordinary differential equations. Poincaré’s

work showed, among other things, that in general there will be no analytic solution to

such a system.

The three body problem is an example of what we would now call a continuous-time

dynamical system. We will give a formal definition shortly, but informally a dynamical

system is a mathematical model where the state of the world is represented by a point

in space, and how the state of the world changes over time is given deterministically

by a function. In the case of the three body problem, the state of the system is given

by the positions and the velocities of each of the three bodies. This is considered a

continuous-time dynamical system because the resulting differential equations give the

future state of the system for any positive real-valued time.

With the advent of computational methods, mathematicians and scientists by the
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1960s were able to see even more clearly with computer simulations the complicated be-

havior of dynamical systems that Poincaré was able to demonstrate by hand. Perhaps

the most well known example is Lorenz and the discovery of the famous butterfly at-

tractor while simulating a simple climate model [25]. Subsequent decades saw intensive

investigation into the ubiquitous “chaos” present in dynamical systems [43].

To be more formal, we start with the following definition:

Definition 1.1. Let X be a metric spaces, and let T+ denote either the nonnegative

reals R+ or the nonnegative integers Z+. A dynamical system on X is a continuous

map

ϕ : T+ ×X → X

subject the following semigroup condition for all s, t ∈ T+ and x ∈ X:

ϕ(t, ϕ(s, x)) = ϕ(s+ t, x)

Any map g : T+ → X such that ϕ(t, x0) = g(t) is called a solution (or trajectory) of the

system with initial condition x0.

We call X the phase space, which we think of as representing the possible states of

the system, and we almost always think of T+ as representing time.

Often instead of a single dynamical system in isolation we want to consider a col-

lection of systems which depend continuously on some parameters. In the three body

problem, for example, the masses of each of the three bodies affect the dynamics, but do

not themselves change over time. Although these can be modeled as part of the state of

the system, it is simpler in many cases to model them as parameters in the manner of

the forthcoming definition. In many applications, the parameters of a system represent

a quantity that is either unknown (in which case we may want to infer the parameters)

or “tuneable” (in which case we may want to control the parameters) and so the how

the dynamics change as parameters change will be of great interest.
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Definition 1.2. Let Z be a metric space, and X and T+ as in Definition 1.1. Then a

dynamical system on the parameter space Z is a continuous map

ϕ : T+ ×X × Z → X

subject to the condition

ϕ(t, ϕ(s, x, z), z) = ϕ(s+ t, x, z)

for all s, t ∈ T+, x ∈ X, and z ∈ Z.

Some authors call the functions defined in Definitions 1.1 and 1.2 semi-dynamical

systems because time is restricted to be positive. If time is instead taken to be all of

R or Z, the semigroup condition implies that the map ϕt := ϕ(t, ·) is invertible for all

t with inverse ϕ−t. This is not the case with the definiton we use here, so what we call

a dynamical system is more general than some other uses of the term.

The above definition could also be further generalized in several ways, for example

taking X and Z to be general topological spaces. Because we need metric spaces for

some of the theory we develop later (e.g. in order to define the diameter of a grid in

Chapter 2), we choose to use this more restrictive definition. Indeed, for the calculations

we perform in Chapters 5 and 7 we are computing on subsets of Euclidean space (and

in Chapter 6 on Euclidean space with points identified) so that special case is often

enough to bear in mind. But this means that a lot of the definitions and theorems we

use along the way also hold in a more general setting than we use here.

Finally, a dynamical system where T+ = Z+ is called a discrete-time dynamical

system, while one where T+ = R+ is called a continuous-time dynamical system. These,

of course, are both subsumed under Definition 1.2, but in practice are distinct enough

to often require separate mathematical methods. In this dissertation we will focus

almost exclusively on discrete-time dynamical systems. Note that if we define a function

fz(x) := ϕ(1, x, z), that we can express ϕ by the t-fold composition

ϕ(t, x, z) = fz ◦ fz ◦ · · · ◦ fz(x) = f tz(x)

.
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For this reason we will typically choose to represent a discrete-time dynamical system

ϕ by the collection of maps f : X × Z → X where f(x, z) = fz(x) = ϕ(1, x, z), and use

the word map in certain contexts as a synonym for discrete-time dynamical system.

In some ways discrete-time systems are simpler and in some ways they are more

complicated than continuous-time systems. One way discrete-time systems are more

complicated is that chaotic behavior can arise even with a one-dimensional phase space,

whereas it requires at least a three-dimensional phase space in continuous time. More-

over, the Conley index, which features prominently throughout this dissertation, is a

more complicated invariant in discrete time. On the other hand when studying dynam-

ics on a computer, a map is typically much easier to handle numerically when compared

to integrating a flow. So for concrete problems that we wish to implement on a com-

puter there are computational advantages to focusing on discrete time that motivate

work on the more difficult theoretical aspects.

Despite the aforementioned hopelessness of completely understanding most dynam-

ical systems, there are many impressive analytic results that go a long way towards

giving both a qualitative and quantitative understanding of their complex behavior. As

an example, Feigenbaum discovered that the ratios of the interval lengths in the period

doubling cascade in the logistic map (about which we will say more in Chapter 2 and

Chapter 5) is in fact a universal and regular phenomena [16]. This is an archetypal

example of a remarkably general statement true of otherwise extremely complicated

dynamics. Although from the point of view of someone using the logistic map or sim-

ilar unimodal map to model population growth, we can reasonably wonder just how

much period-doubling behavior we could expect to observe in practice, and whether the

limit in which the Feigenbaum constant holds would even be observable. This relation-

ship between the continuous model and what is mathematically robust and practically

observable is a recurring theme.

In this thesis we follow a combinatorial-topological approach to dynamical systems

outlined in [2] and [6]. Chapter 2 gives an overview of both the philosophy and the

implementation of this approach to dynamics. Specifically, we discuss how we discretize

phase and parameter spaces to achieve a combinatorial representation of the dynamics
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of f : X ×Z → X, and some motivations for approaching the problem in this way. We

then discuss how the Conley index, an algebraic-topological invariant, allows us to draw

conclusions about the dynamics.

The Conley index has an extensive literature, starting with [9]. Early work dealt

mostly with the case of continuous-time flows, where the Conley index can be repre-

sented by the homotopy type of a topological space (in a way that we will define in

Chapter 2) or, more commonly, by the homology groups of such a space. In discrete

time, however, this does not suffice—the same dynamics can give rise to two spaces that

are not homotopy equivalent when näıvely extending the continuous-time definition.

The index has been extended to the case of discrete-time dynamical systems in

several ways [42, 32, 44, 17]. A general feature of these extensions is that, beyond

just a space, one must consider endomorphisms along with an equivalence relation. In

this dissertaion we follow the work of Franks and Richeson [17], who show that any

two endomorphisms arising from the same dynamics (in a way to be made precise) are

related by an equivalence relation called shift equivalence.

The definition of shift equivalence was first given by Williams [48], and has been

used extensively in the study of symbolic dynamics. In that context the focus is on

shift equivalence of positive integer matrices and much of the literature focuses on this

case. But when working with the homological Conley index the entries of our matrices

can be any integer (or potentially entries from a different ring entirely). Thus we are

interested in establishing results about shift equivalence in the integral case. In Chapter

3 we discuss the problem of computing shift equivalence of matrices. As we will see,

shift equivalence is readily computed when the matrices have field entries, but becomes

much more delicate when the entries are integers.

Going from a dynamical system to the Conley index is deep theoretically, but thanks

to extensive work can be carried out in an automated, algorithmic way [2, 6, 19]. Using

the Conley indices to “go backwards” and make a statement about dynamics is far less

straightforward, however. One way to try to get a handle on the dynamics associated

to a Conley index is through examples. For some Conley indices there is a sensible

choice for representative dynamics having that particular Conley index, but it is not
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always easy to make explicit and to do so in a way that is conducive to computation. In

Chapter 4 we demonstrate that for any Conley index represented by an integer matrix

it is possible to construct a dynamical system f : [0, 1] → [0, 1] realizing that Conley

index on the level of first homology. This construction gives an explicit example in the

simplest possible setting. Furthermore, it provides a connection between the discrete

Conley index as defined by Robbin and Salamon [42] which is extremely general and

powerful but difficult to get a handle on, with the discrete Conley index defined by

Franks and Richeson [17] which is given in terms of shift equivalence.

Ultimately we are interested in using the information we compute to draw conlcu-

sions about specific dynamical systems. In the final three chapters we look at three

systems in particular: the logistic map, Newton’s method in the plane, and a family of

age-structured population models.

The logistic map is a classical example in discrete dynamics that can be thought of

as one of the simplest nonlinear discrete-time population models. The period doubling

cascade observed for the logistic map has been extensively studied in the literature.

Here we investigate the implications our approach of discretizing the dynamics has for

understanding and representing what is happening. This serves as a nice test case for

investigating the relationship between the scale of discretization of phase space and

parameter space and the tradeoffs involved therein. This is the subject of Chapter 5,

and comes from work in [6, 7].

The behavior of Newton’s method for real-valued functions is well-understood. We

know that the rate of convergence is quadratic, but moreover that the direction in

which it will converge is determined by the sign of f ′′(x)/f ′(x) where x is a root of f .

For Newton’s method in R2, however, the direction in which the approximations to the

root converge is more complicated. In Chapter 6 we model the problem as a dynamical

system S1 × Z → S1 and apply our methods with the goal of better understanding

the dynamics. The hope is that this could lead to improved numerical performance of

algorithms for Newton’s method. This is joint work with Wes Cowan, Shaun Harker,

and Konstantin Mischaikow [5].

The logistic map is, as we mentioned, one of the simplest nonlinear discrete-time
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population models. More realistic population models take into account things like the

age-structure of the population, and can use different nonlinearities. Even superficially

similar choices of nonlinearity can have implications for the dynamics on parameter

space, however. We investigate this phenomena in Chapter 7, which comes from work

published with Konstantin Mischaikow [8].
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Chapter 2

A coarse approach to dynamics

To motivate the approach we take towards dynamical systems consider the logistic map,

a discrete-time dynamical system defined by the function

f(x, r) = rx(1− x) (2.1)

Here x ∈ [0, 1] is the phase variable, and r is a parameter which we take to be in [0, 4]

in order to make f is a well defined map on the unit interval.

The logistic map is typically introduced as a simple nonlinear population model

and a discrete time analogue to the logistic differential equation dx
dt = rx(1 − x). As

a population model, the logistic map determines the population at the next time pe-

riod by applying f to an initial population x0. The parameter r controls the growth

rate of the population for small values of x. The (1 − x) term in the map produces

an overcrowding effect, where for initial populations 0.5 < x1 < x2 the immediately

subsequent populations satisfy f(x2) < f(x1).

A classical and important approach to studying dynamical systems is to be con-

cerned with the invariant sets of a particular system. The simplest example of an

invariant set is an equilibrium. Formally:

Definition 2.1. Let ϕ : T+×X → X be a dynamical system. Then a subset S ⊆ X is

an invariant set if for all t ∈ T+, the set ϕ(t, S) := {ϕ(t, s) : s ∈ S} satisfies ϕ(t, S) = S.

If ϕ is a discrete-time dynamical system represented by the map f : X → X, this

definition is equivalent to f(S) = S.

Definition 2.2. A point x ∈ X is called an equilibrium (or fixed point) if {x} is an

invariant set. Furthermore we say x is
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a) a stable equilibrium if x is an equilibrium and furthermore for every ε > 0 there

exists δ > 0 such that if |y − x| < δ then |ϕ(t, y)− x| < ε for all t ∈ T+.

b) an unstable equilibrium if x is an equilibrium but it is not stable.

c) an asymptotically stable equilibrium if x is both a stable equilibrium and there exists

δ′ > 0 such that if |y − x| < δ′ then limt→∞ ϕ(t, y) = x.

As a simple example, the point x̄ = r−1
r is a fixed point of the logistic map, but one

whose stability depends on r. It is asymptotically stable for 1 < r < 3, stable but not

asymptotically stable for r = 3, and unstable for r > 3.

For the logistic differential equation, every solution either tends to an equilibrium

or diverges to infinity. And for positive initial conditions and values of r, every solution

tends to the asymptotically stable equilibrium x = 1. For the logistic map, however,

there are parameter values in [0, 4], namely r > 3, with solutions that do not approach

an equilibrium—this, despite the superficial similarity to the logistic differential equa-

tion. As an example of different behavior, for some parameters solutions to the logistic

map will, instead of approaching an equilibrium, approach a periodic orbit, defined as

follows:

Definition 2.3. A solution g(t) to a dynamical system ϕ : T+ ×X → X is a periodic

orbit if there exists T > 0 such that g(t + T ) = g(t). The minimal T for which this

holds is called the period of the periodic orbit.

For yet other parameters, however, the behavior of the logistic map is extremely

complicated and will not approach anything as simple as a periodic orbit. Moreover,

the dependence of the dynamics on parameters is extremely sensitive, in a way that also

has no analogue in the logistic differential equation. Thus the logistic map serves as

important example of how discrete time dynamics can exhibit much more complicated

behavior than continuous time dynamics in low dimensions. We discuss implications of

these aspects of the logistic map in greater detail in Chapter 5.

From a philosophical perspective, we can think more concretely about what it means

to say that the logistic map is a population model. There are lots of simplifications
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and idealizations that take place when taking the formal mathematical setup above and

making claims about what it represents in the real world. One obvious idealization,

for example, is that we are taking our population to be a real number. In some cases

this is perhaps easily justified—say in the case of bacteria where mass provides a useful

measure of population. In applications where the population is more discrete, however,

this assumption requires further examination. Outlining some of the problematic as-

pects of modeling a real-world system mathematically here is meant to motivate the

mathematical approach to dynamics we describe in the remainder of the chapter. The

following list of sources of potential error is by no means exhaustive.

• Continuous approximation - In some cases, like the population example discussed

above, it may not be clear whether the phase space is actually well approximated

by a continuous space. Furthermore, the assumption that future states depend

continuously on past states may not be reasonable. Even small, imperceptible

discontinuities could undermine certain analytic approaches to investigating such

systems.

• Measurement uncertainty - Suppose a scientist takes the logistic map seriously

as a model for the population dynamics of some species. In practice, both the

parameter r and the state x of the real-world system are things that have to be

either measured or inferred in some way. And measurement is in most cases ap-

proximate, if only because there are only so many marks on a metaphorical ruler.

The question then becomes to what extent does this imprecision in measurement

diminish the usefulness of the mathematical model, especially given well known

phenomena like sensitive dependence on initial conditions and sensitive depen-

dence on parameters.

• Measurement interference - Suppose the scientist is less certain that the logistic

map is the right population model, and wants to consistently measure the popu-

lation to verify that the dynamics match what the logistic map predicts. To the

extent that measuring the system interferes with it, even imperceptibly, it will

be impossible to verify that the logistic map is indeed the correct model. Again,
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this is a consequence of sensitive dependence on initial conditions, and the fact

that any interference will have discontinuous effects. It might be that the best

that can be hoped after a measurement is that the system be the same as it was

pre-measurement to the extent that our metaphorical ruler allows us to determine.

• Model uncertainty - Suppose a scientist isn’t sure whether the logistic map is the

right model for the population dynamics of some species. We would be interested

in a test that could be performed that could determine whether the model is a

good one. Or, conversely, we might want a test that could definitively rule out all

the possible parameter values for the logistic map, “falsifying” it in some sense

[40].

• Representation on a computer - When implementing a dynamical system on a

computer for simulation, it will in most cases necessarily be an approximation.

The same features that make measurement uncertainty so problematic—sensitive

dependence on initial conditions and sensitive dependence on parameters—put

practical limits on the accuracy and usefulness of such simulations.

None of these considerations by any means invalidate the approach of using a dy-

namical system like the logistic map to model real-world phenomena. It is an advantage

of a mathematical approach, however, insofar as it addresses and assuages these con-

cerns. In what follows for the remainder of this chapter, we describe the background

of a computational approach to dynamical systems using the Conley index. This ap-

proach we will refer to as the database of dynamics, or database for short, and has

been described in the literature [2, 6] which we follow here. The database approach to

dynamics has two principal aspects:

1. Representing continuous dynamics in a discrete, combinatorial way.

2. Computing the Conley index, which rigorously relates the combinatorial dynamics

back to the underlying continuous dynamics.

Each of these will be elaborated on further in the remainder of this chapter. It is
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worth mentioning, however, in light of the sources of error listed above, the concep-

tual distinction between treating the discretizations performed as an approximation to

an underlying idealized model, and between treating them as the model itself. The

relation between discrete and continuous, of course, is the source of much of the math-

ematical substance of the theory. But from an application perspective, especially in

Chapters 5 and 7, we take seriously the idea of the combinatorial model perhaps being

more meaningful, because of all the uncertainties and imprecisions required for certain

applications.

2.1 Combinatorialization

Consider a discrete-time dynamical system defined by the map f : X × Z → X, and

recall that we are taking X and Z to be metric spaces. In order to study dynamical

systems using computational tools, we need a means of representing the dynamics in a

finite way. The first step in doing this is to discretize the spaces X and Z into a finite

number of pieces. For this purpose, we make the following definition, which is due to

Mrozek [33]. In what follows, we use the notation int to denote interior, cl to denote

closure, and bd to denote boundary.

Definition 2.4. A grid on a metric space X is a finite collection X of nonempty,

compact subsets of X with the following properties:

i) X =
⋃
ξ∈X

ξ

ii) ξ = cl(int(ξ)) for all ξ ∈ X

iii) ξ ∩ int(ξ′) = ∅ for all ξ 6= ξ′

For a subset A ⊆ X we denote
⋃
ξ∈A

ξ by |A|. We further define the diameter of a

grid X by

diam(X ) = sup
ξ∈X

diam(ξ).

An example of a grid on the n-cube [0, 1]n ⊆ Rn is the set

{
n∏
i=1

[ci2
−k, (ci + 1)2−k] | ci ∈ {0, . . . , 2k − 1}

}
.
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This is an example of a cubical grid, as each element of the grid is a product of

intervals. For the computations performed in this thesis, all of the grid elements will

be represented as cubes in this way. As far as intuition, very little is lost by thinking of

phase space X as a subset of Rn and parameter space Z as a subset of Rm that can be

represented by cubical grids X and Z, respectively. Note that in this setting we can,

by choosing k large enough create a grid of arbitrarily small diameter. Even in settings

where there may be no cubical grid, a grid of arbitrarily small diameters can always be

found for any compact metric space [21].

Given a parameterized dynamical system, for each z ∈ Z we can define the map

fz : X → X by fz(x) = f(x, z). To translate this map into the setting of grids, we

use the notion of a multivalued map Fz : X −→→X , where here the double arrow notation

denotes that this is a set-valued function. Equivalently, we can think of Fz as a directed

graph on the vertex set X , where there is an edge ξ1 → ξ2 if and only if ξ2 ∈ Fz(ξ1). We

will use whichever conceptual framework is more convenient depending on the context.

The idea is to define Fz in such a way that it captures important information about

the underlying dynamics of fz. In order to apply important theorems pertaining to

the Conley index, it is important that our multivalued map satisy certain conditions,

namely that it be an outer approximation, defined as follows:

Definition 2.5. A combinatorial multivalued map Fz : X −→→X is an outer approxima-

tion of fz, if

fz(ξ) := {fz(x) | x ∈ ξ} ⊆ int(|Fz(ξ)|) for all ξ ∈ X .

For a map fz there will in general be many valid outer approximations. Some of

these are trivial—the graph with a directed edge between every pair of grid elements in

X is an outer approximation of every map, for instance. Such an outer approximation

cannot possibly convey any interesting information about the underlying dynamics,

however, simply because whatever we might prove using such an outer approximation

will necessarily be true for every dynamical system. This illustrates in an extreme

way that the choice of outer approximation has implications for the quality of the

information about the underlying dynamics that we can extract.
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There are advantages worth noting about the fact that a single outer approximation

can be used to represent more than one map. Any outer approximation, for example,

will be somewhat robust to perturbations in the map. In particular for any outer

approximation Fz of fz there exists a δ > 0 such that if |fz(x)− g(x)| < δ for all

x ∈ X, this implies Fz is also an outer approximation for g.

The best possible outer approximation for fz on a grid X is the minimal outer

approximation defined by

F̃z(ξ) :=
{
ξ′ | ξ′ ∩ fz(ξ) 6= ∅

}
This is minimal, because any other outer approximation Fz of fz satisfies F̃z(ξ) ⊆ Fz(ξ)

for all ξ ∈ X [21].

The minimal outer approximation is in some sense the best discrete representation

of the dynamics for a given grid. In many cases, however, the computational cost of

finding the minimal outer approximation is substantial, and it is more efficient to use

another outer approximation that is easier to compute. This potentially comes at the

price of having a coarser representation of the dynamics in the account we give in the

sections that follow.

All of the definitions above are given in terms of a fixed map fz for a particular

parameter value z ∈ Z. In order to stay true to our goal of representing the dynamics

in a finite way, we need to perform a similar discretization in parameter space as we

did in phase space. Let Z be a grid on Z as in Definition 2.4. For every grid element

ζ ∈ Z, an outer approximation Fζ : X −→→X is any multivalued map satisfying

fz(ξ) ⊆ int(|Fζ(ξ)|) for all ξ ∈ X and z ∈ ζ

In other words an outer approximation Fζ is any multivalued map that is an outer

approximation for every z ∈ ζ.

2.2 Recurrent and nonrecurrent dynamics

Given a choice of grids X and Z and an outer approximation Fζ : X −→→X for some

ζ ∈ Z, we want to extract from the multivalued map information about the recurrent
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Figure 2.1: An illustration of a minimal outer approximation for the logistic map,

Equation 2.1. The lower parabola is the graph of r = 3, while the upper is for r = 3.2.

For each grid element contained in the domain (i.e. one of the eight intervals along the

x-axis), the outer approximation of the grid element under f for r ∈ [3, 3.2] is indicated

by the shaded boxes above the domain grid element. A shaded box corresponds to an

edge in the multivalued map from the domain grid element to the range grid element.

This outer approximation is minimal because removing any shaded box fails to yield

an outer approximation.
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and nonrecurrent dynamics. The goal is for the theorems we prove about Fζ to be true

statements about the dynamics for every z ∈ ζ. We start with the following definition.

Definition 2.6. A strongly connected path component of a directed graph Fζ on the

vertex set X is a subset Y ⊆ X such that for υ1, υ2 ∈ Y (not necessarily distinct) there

exists a directed path from υ1 to υ2.

A strongly connected path component represents recurrence on the graph level.

From this definition, there is nothing preventing a strongly connected component from

being contained in a larger strongly connected component, but conceptually we want to

partition the dynamics into disjoint components reflecting recurrent dynamics, along

with the remainder which contains all the nonrecurrent dynamics. To that end, we

make the following definitions:

Definition 2.7. A Morse set Mζ ⊆ X is a maximal strongly connected path compo-

nent of Fζ . The Morse decomposition of Fζ is the set of Morse sets.

Remark 2.8. In some contexts, a Morse set is defined to be Inv |Mζ |, making it an

object of the underlying continuous dynamics. Here we choose instead to define it in

terms of the discretization. These are not precisely equivalent: although Mζ clearly

determines Inv |Mζ |, the converse is not true, so different outer approximations can

yield different Morse sets under our definition while giving the same Morse sets under

the invariant set definition.

The choice to define Morse sets at sets of grid elements has a few advantages.

First, the Morse sets that result with either definition are necessarily dependent on

the choice of discretization and outer approximation. This is a consequence of the fact

that the Morse decomposition is not in general unique, so allowing for more possible

decompositions is at least in accordance with the dependence on Morse decomposition

on various choices. Second, this allows us to avoid some awkwardness when there are

two distinct Morse sets M1
ζ and M2

ζ such that InvM1
ζ = InvM2

ζ = ∅, because we

would prefer not to identify the two in this situation. The workaround for the invariant

set definition usually involves a separate index set for the partial order, which we are

able to omit.
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Let Mζ = {Mi
ζ} be the Morse decomposition for Fζ . Because Morse sets are

maximal subsets of X defined by an equivalence relation, we have Mi
ζ ∩ M

j
ζ = ∅

whenever i 6= j. Moreover, Fζ induces a partial order on Mζ by stipulating Mi
ζ ≤M

j
ζ

if and only if there is a directed path in the graph Fζ from a grid element in Mj
ζ to a

grid element in Mi
ζ . Note that because Morse sets are maximal, no distinct elements

are equivalent in this partial order.

This partial order encodes information about the underlying non-recurrent dynamics

as follows. If Mi
ζ < M

j
ζ then for any xi ∈ ξi ∈ Mi

ζ and xj ∈ ξj ∈ Mj
ζ there is no

trajectory from xi to xj . (Otherwise such a trajectory would define a path from Mi
ζ

to Mj
ζ in Fζ , by the assumption that Fζ is an outer approximation.)

To more concisely represent the partial order on the Morse sets, we often choose to

represent it as a directed acyclic graph, using the Hasse diagram [11]. To recover the

partial order information from the Hasse diagram simply take the transitive closure of

the relation induced by the edges of the directed acyclic graph.

Definition 2.9. The Morse graph MGζ of Fζ is the Hasse diagram for the Morse

decomposition Mζ of Fζ along with its associated partial order defined by Fζ

2.3 Conley index

What is missing thus far is an account of the structure of the recurrent dynamics within

each Morse set. This is accomplished with the Conley index. The classical approach to

studying dynamical systems focuses on the study of invariant sets (see Defintion 2.1).

We denote by Inv(N, f) the maximal invariant set contained in a neighborhood N ⊆ X

under f .

An invariant set S is said to be isolated if there exists a compact neighborhood

N such that Inv(N, f) = S ⊆ intN . Such a neighborhood N is called an isolating

neighborhood for S. Note, for example, that a single point of the identity map on a

space is an invariant set (it is a fixed point) but will not be an isolated invariant set.

The Conley index is a topological invariant of isolated invariant sets that is robust

to small changes in parameters. The original reference for the Conley index is [9],
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which discusses the index (under the name Morse index) in the case of continuous-time

dynamical systems. The spirit of Conley’s work—hence the name Morse index—is to

generalize the Morse index for critical points of vector fields to more general isolated

invariant sets. Informally, the Conley index associates to an invariant set the homotopy

type of a topological space. As an example, in the case of critical points, an index n

critical point is associated to the homotopy type of the sphere Sn.

In the case of maps, some care needs to be taken to generalize the definition of

the continuous-time Conley index. There have been several different formulations of

a suitable alternative invariant [42, 32, 44]. The Conley index, whether continuous or

discrete, is typically defined for a pair of topological spaces (P1, P0), P0 ⊆ P1 ⊆ X,

typically called an index pair. In the continuous time, the homotopy type of P1/P0

suffices to define an invariant, but in discrete-time extra information is needed. The

different approached to the discrete Conley index reflect different ways of encoding this

additional information, and different levels of generality. Here we follow the definition

of Franks and Richeson [17] and give a definition in terms of filtration pairs. This allows

us to use the characterization of the Conley index as a shift equivalence class, about

which we say more in Chapter 3.

Definition 2.10. Let f : X → X be a discrete time dynamical system, and P0 ⊆ P1

compact subsets of X that are closures of their interiors. Then the pair P = (P1, P0)

is a filtration pair for f if

1. cl(P1 \ P0) is an isolating neighborhood of Inv(P1 \ P0)

2. P0 is a neighborhood of the exit set E = {x ∈ P1 | f(x) /∈ intX} in P1.

3. f(P0) ∩ cl(P1 \ P0) = ∅

Furthermore, we say that P is a filtration pair for the isolated invariant set S, if S =

Inv(cl(P1 \ P0)).

We will use filtration pairs in a topological construction that we use to define the

Conley index. Recall that a pointed topological space is a pair (V, v0) where V is a

topological space and basepoint v0 ∈ V is a distinguished point. A continuous map
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between pointed topological spaces g : (V, v0) → (W,w0) is a continuous map from V

to W with the property that g(v0) = w0.

Consider a map g : X → X representing a discrete-time dynamical system, and

P = (P1, P0) a filtration pair. Let (P1/P0, [P0]) denote the pointed topological space

where [P0] represents the equivalence class of P0 under the quotient [34]. Define

gP : (P1/P0, [P0])→ (P1/P0, [P0]) by

gP ([x]) =


g(x) if x, g(x) ∈ P1 \ P0

[P0] otherwise

Ultimately, it is this map gP that we will use to carry information about the dy-

namics of g on P1 \ P0, but in order to do this we need to first define shift equivalence

Definition 2.11. Let C be any category. For endomorphisms a and b on the objects X

and Y respectively, we say that a is shift equivalent to b, denoted a ∼ b, if there exist

morphisms r : X → Y , s : Y → X and a positive integer l called the lag such that the

following four conditions hold:

(i) r ◦ a = b ◦ r (ii) a ◦ s = s ◦ b (iii) s ◦ r = al (iv) r ◦ s = bl

These equations represent the commutivity of the following diagram:

X X · · · X X

Y Y · · · Y Y

a

r

a a a

b b

s

b b

The important result for the definition of the Conley index is as follows.

Theorem 2.12 ([17], Theorem 4.3). Let S ⊆ X be an isolated invariant set for the

map g : X → X, and (P1, P0), (Q1, Q0) filtration pairs for S. Then the induced maps

gP and gQ are shift equivalent.

An important question for our approach to dynamics is how to go about finding

filtration pairs from our combinatorial representation. The following Proposition es-

tablishes the connection.
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Proposition 2.13. Let Mζ = {Mi
ζ} be the Morse decomposition for an outer approxi-

mation Fζ : X −→→X . Then for each Mi
ζ define

P1 :=
∣∣Fζ(Mi

ζ)
∣∣ , P0 :=

∣∣Fζ(Mi
ζ) \Mi

ζ

∣∣
Then (P1, P0) is a filtration pair for every z ∈ ζ.

Proof. First, we check that both P1 and P0 are are closures of their interiors. Let P

be any finite union of grid elements
⋃n
i=1 ξi, where ξi = cl(int ξi) by the definition of

grid. Because P is closed (as a finite union of compact sets), we trivially have that

cl(intP ) ⊆ P . To show P ⊆ cl(intP ), note that intxii ⊆ intP for every i, hence

cl(int ξi) ⊆ cl(intP ) for every i, hence P =
⋃n
i=1 ξi ⊆ cl(intP ). Since P1 and P0 are

unions of grid elements, each is the closure of its interior.

That cl(P1 \P0) is an isolating neighborhood follows from Proposition 2.8 in [6]. To

see that P0 is a neighborhood of the exit set E relative to P1, suppose for the sake of

contradiction that x ∈ E but x /∈ intP0 (relative to P1. Because x ∈ E, this means that

there exists ξ1 such that f(x) ∈ ξ1, but ξ1 /∈ P1. Because Fζ is an outer approximation,

then for every grid element ξ such that x ∈ ξ, ξ1 ∈ Fζ(ξ). At the same time, because

x /∈ intP0 then x ∈ cl(P1 \ P0), which implies x ∈ ξ2, for some ξ2 ∈ P1 \ P0. By the

definitions of P1 and P0, this means that ξ2 ∈ Mi
ζ . But this implies ξ1 ∈ Fζ(ξ2) hence

ξ1 ∈ P1, contradicting the fact that ξ1 was chosen to not be in P1.

Finally to verify condition 3, suppose for the sake of contradiction that there exists

x ∈ P0 such that fz(x) ∈ cl(P1 \ P0) for some z ∈ ζ. Then in particular fz(x) ∈ P1

since P1 is closed. Because x ∈ P0 it must be that there exists ξ such that x ∈ ξ ∈

Fζ(Mi
ζ \Mi

ζ). Since ξ ∈ Fζ(Mi
ζ) then there must exist ξ1 ∈Mi

ζ such that ξ ∈ Fζ(ξ1).

But then by our hypothesis that fz(x) ∈ cl(P1 \ P0), there must exist ξ2 ∈ Mi
ζ such

that ξ2 ∈ Fζ(ξ). Since for any grid element η there is a directed path from η to ξ1,

there must therefore be a directed path from η to ξ. Similarly, there is a directed path

from ξ2 to η, hence a directed path from ξ to η. Therefore, by the maximality of Morse

sets, it must be the case that ξ ∈ Mi
ζ which contradicts ξ /∈ Mi

ζ as required by the

definition of P0.
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To define the discrete Conley index, we need to be explicit about what object,

precisely we are associating an index to. Traditionally, the Conley index has been

defined for isolated invariant sets. Following Franks and Richeson we can make the

following definition:

Definition 2.14. Let S be an isolated invariant set for f : : X → X and P = (P1, P0) a

filtration pair for S. Let [fP ] denote the homotopy class of the map fP : (P1/P0, [P0])→

(P1/P0, [P0]). Then the homotopy Conley index of S is the shift equivalence class of

[fP ].

In general, however, homotopy type is too difficult to get a handle on directly.

Instead, we typically choose to pass via a functor to something more readily computable.

In this dissertation, we typically choose to work with homology.

Definition 2.15. Let S be an isolated invariant set for f : : X → X and P = (P1, P0)

a filtration pair for S. Then the homology Conley index of S is the shift equivalence

class of fP∗ : H∗(P1/P0, [P0])→ H∗(P1/P0, [P0]).

It is an important fact about the combinatorial approach we employ that in many

cases these homology classes of a map fz are recoverable just from the discrete repre-

sentation of the map Fζ . This will be true, for instance, under the assumption that

|Fζ(ξ)| is acyclic for every ξ ∈ X . More details are found in [2, 6, 19]. For our purposes

here, what is important is that whenever the map on homology can be computed for a

Morse set Mζ we are able to assign a Conley index to Mζ , namely the Conley index

of S = Inv |Mζ |. Attaching this Conley index data to the Morse graph, we get the

Conley-Morse graph.

In Chapters 5–7 we take a more global view of parameter space, and aim to relate

dynamics on different grid elements ζ, ζ ′ ∈ Z. For the database approach, we compute

two different Morse graphs based on the different multivalued maps Fζ and Fζ′ . If

ζ
⋂
ζ ′ 6= ∅ then we say ζ and ζ ′ are in the same isolating neighborhood continuation

class if each Morse set of Fζ intersects a unique Morse set of Fζ′ and each Morse set
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of Fζ′ intersects a unique Morse set of Fζ . This is an equivalence relation that can

be extended to Morse sets in non-adjacent parameter boxes by transitivity. By [29,

Theorem 3.10] any two Morse sets in the same isolating neighborhood continuation

class have the same Conley index.

The adjacent parameter cubes ζ, ζ ′ are said to be in the same Conley-Morse graph

continuation class when their Conley-Morse graphs are isomorphic and the isomorphism

gives an isolating neighborhood continuation for each of the nodes. Two classes CMCCi

and CMCCj are adjacent if there exists ζi ∈ CMCCi and ζj ∈ CMCCj such that ζi
⋂
ζj 6=

∅. These adjacencies can then be summarized in a graph called the continuation graph.

In the case where parameter space is high dimensional and therefore difficult to visualize,

the continuation graph gives an interpretable representation of parameter space.
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Chapter 3

Problem of shift equivalence

Shift equivalence is first discussed extensively by Williams in [48] as an invariant of

symbolic dynamics. In that context, edge shift dynamics can be represented by square

matrices with nonnegative integer entries, and shift equivalence is an invariant of the

dynamics up to conjugacy. For more about shift equivalence and symbolic dynamics

see [24].

In this dissertation we are interested in the role of shift equivalence in defining

the Conley index for discrete time dynamical systems. In Section 2.3 we defined the

homology Conley index for an isolated invariant set S with filtration pair P = (P1, P0)

by the shift equivalence of [fP ], and the homology Conley index as the shift equivalence

class of the map fP∗. These various types of shift equivalence are all special cases of

the general categorical definition given in Definition 2.11.

A couple general remarks hold for shift equivalence in any category. Let a and b

Remark 3.1. Shift equivalence is, in fact, an equivalence relation as we can check. For

reflexivity a ∼ a, let r be the identity, s = a, and l = 1. For symmetry just exchange r

and s. For transitivity, suppose a ∼ b via r, s with lag l and b ∼ c via r′, s′ with lag l′.

Then a ∼ c via r′r, ss′ with lag l + l′.

Remark 3.2. If a ∼ b with lag l via r, s, then a ∼ b with lag l + 1 via r, sb.

We can translate our examples above in the language of categories straightforwardly

as follows. For symbolic dynamics the relevant category is the set of finitely-generated

free abelian groups with morphisms restricted to those that can be represented as

positive integer matrices. (One just needs to observe such maps contain the identity

and are closed under composition.) For the Conley index as defined by Franks and
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Richeson in [17] the category is homotopy classes of pointed topological spaces. The

type of shift equivalence we are principally concerned with in computational approaches

to the Conley index is the category of abelian groups, since both the homology of

a filtration pair and the map induced on homology by the dynamics can be readily

computed [19].

Passing to homology, of course, means that the Conley index we choose to work

with is coarser than the homotopy Conley index defined by Franks and Richeson. For

an example where this means we lose information about the dynamics consider the

space S1 ∨ S1. If we take the generators of π1(S
1 ∨ S1) to be a, b, then the map

S1∨S1 → S1∨S1 defined by a 7→ aba−1b−1 and b 7→ 1 will have the same Conley index

as the constant map as we have defined it on the homology level. But because this

induces a nontrivial map of fundamental groups these two maps can be distinguished

on the homotopy level.

In this chapter we focus on shift equivalence of the restriction of the induced map to

the free part of homology, and even more narrowly on maps that can be represented by

2× 2 integer matrices. These represent dynamics that commonly arise in applications

and that it would be ideal to understand comprehensively. First, note that we are

able to recast the problem of determining whether two matrices are shift equivalent

into the language of modules. This perspective is due to C. Weibel [47], and related

remarks appear in [24]. If we denote the set of n × n matrices with entries in Z by

Mn(Z), then for any A ∈ Mn(Z), we can define an Z[t]-module MA on the underlying

set Zn by having A act as t. This follows the standard treatment of the classification of

linear transformations over a field using the fundamental theorem of finitely generated

modules over a PID, but of course Z[t] is not a PID, making the classification problem

more difficult.

The following proposition characterizing shift equivalence requires that we consider

the localization MA[t−1] of the Z[t]-module MA [15]. Informally, we are inverting the

element t in the ring Z[t] and carrying out all the implications this has for the module

MA. To be concrete about what localization is, we can think about the elements as

being “fractions” where the denominator is a power of t. Representing these fractions
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as ordered pairs, we can write the elements of MA[t−1] as (m, tk) for m ∈ MA and

k ∈ Z+, subject to the relation (m1, t
k1) ∼ (m2, t

k2) iff there exists j ∈ Z+ so that

tj(tk2m1−tk1m2) = 0. This relation is essentially the same one that defines equivalence

of different representations of Q. The leading tj (unnecessary in the case of rational

numbers) ensures that any module element that yields 0 when multiplied by a power

of t is zero in the localization.

Proposition 3.3. Let A ∈ Mn(Z) and B ∈ Mm(Z) define the Z[t]-modules MA and

MB. Then A ∼ B iff MA[t−1] ∼= MB[t−1] as Z[t, t−1]-modules.

Proof. First assume A ∼ B. Then from the definition of shift equivalence there exist Z-

module homomorphisms r : Zn → Zm and s : Zm → Zn. Condition (i) in the definition

of shift equivalence gives us that for every m ∈MA

r(t ·m) = r(Am) = A(r(m)) = t · r(m)

So r is in fact a Z[t]-module homomorphism. An exactly analogous argument holds

for condition (ii) and s. Condition (iii) then tells us s(r(m)) = tl ·m. Passing to the

localization, s(r(m)) = tl ·MA[t−1]. Therefore the homomorphism t−l · s : MB[t−1] →

MA[t−1] is an inverse to r, so MA[t−1] ∼= MB[t−1].

Now assume MA[t−1] ∼= MB[t−1]. Let φ : MA[t−1] → MB[t−1] be an isomorphism,

and m1, . . . ,mn be generators for MA as an Z-module. Then φ((mi, 1)) has a represen-

tative (ni, t
ki) in MB[t−1]. Let l1 = max ki, so that tl1 · (ni, tki) ∼ (tl1−ki · ni, 1).

We can then define the Z-module map r : Zn → Zm by r(mi) = tl1−ki ·ni or, briefly,

r = tl1φ. Similarly, define the map s : Zm → Zn using φ−1 and a generating set for

MB. This can be written as s = tl2φ−1.

The maps r and s commute with multiplication by t (acting as either A or B)

because they are defined in terms of the Z[t, t−1]-module isomorphism φ. Therefore

conditions (i) and (ii) for shift equivalence are met. Furthermore, s◦ r = tl2φ−1(tl1φ) =

tl1+l2φ−1φ = tl = Al, where l = l1 + l2. Similarly, r ◦ s = tl = Bl. So conditions (iii)

and (iv) are met, and A and B are shift equivalent.
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We expect the problem of determining isomorphism classes of Z[t, t−1] to be too

difficult to admit any solution besides in special cases. Naive methods of direct compu-

tation will not be efficient, even in the case of 2×2 matrices as the following proposition

shows.

Proposition 3.4. For every positive integer n there exist matrices A,B ∈M2(Z) such

that A ∼ B with minimal lag n. In other words, there is no shift equivalence between

A and B with lag l < n.

Proof. Let λ and p be relatively prime integers not equal to 1 or -1, and consider the

matrices

A =

λ p

0 λ

 , B =

λ pλn

0 λ


where n is any positive integer.

We will show that the matrices A and B are shift equivalent with minimum lag n.

To show this we directly solve for R and S. Let

R =

r11 r12

r21 r22

 , S =

s11 s12

s21 s22


Then solving RA = BR we get that

R =

λnr22 r12

0 r22

 , r22 6= 0

and AS = SB yields

S =

s11 s12

0 λns11

 , s11 6= 0

Therefore
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SR =

λnr22s11 s11r12 + r22s12

0 λnr22s11



In order that SR = Al =

λl lλl−1p

0 λl

, we need λl = λnr22s11 and therefore l ≥ n.

We can check that equality holds directly by setting r22 = s11 = 1, r12 = p and s12 = 0

so that

R =

λn nλn−1p

0 1

 , S =

1 0

0 λn



SR =

λn nλn−1p

0 λn

 = An

RS =

λn nλ2n−1p

0 λn

 = Bn

Thus A and B are shift equivalent with (smallest) lag n.

The lesson of Proposition 3.4 is that to determine näıvely whether a pair of 2 × 2

matrices are shift equivalent there is no a priori bound on the number of conditions

that potentially need to be checked. So either more sophisticated methods are needed,

or we will have to seek out efficiently computable invariants of shift equivalence. In

the latter case, it becomes important to understand for each invariant the kinds of

dynamics the invariants we use can and cannot distinguish.

One way of thinking about why classification is so difficult is that the ring Z[t] is

not a PID. This suggests a computable invariant for shift equivalence: namely, to view

our matrix as having entries in a field F, so that the F[t]-module structure would be

characterized by the fundamental theorem of finitely generated modules over a PID.

Another way to view this invariant is that we compute homology with coefficients in

F instead of Z. An argument perfectly analogous to Proposition 3.3 shows that shift

equivalence in that case is the same as isomorphism of the induced F[t, t−1]-modules.
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This will hold for any field F, but starting from an integer matrix a natural choice of

field would be either Q, C, or Z/pZ for prime p. In Chapters 6 and 7 we opt to compute

the Conley index over finite fields, and discuss the considerations that go into making

the particular choices we do.

The connection between the F[t]-module viewpoint and more elementary linear al-

gebra is that two matrices will induce isomorphic F[t]-modules iff they are similar. An

equivalent way of expressing this is to say that the the matrices have the same invariant

factors (i.e. the same rational canonical form) or, in the case of algebraically closed

fields, the same elementary divisors (i.e. the same Jordan canonical form). In the gen-

eral case where our field is not necessarily algebraically closed, we choose to work with

invariant factors. To characterize shift equivalence, however, we must localize at t and

consider the resulting F[t, t−1]-module. A small modification of the invariant factors

suffices to characterize isomorphism (and therefore shift equivalence) in this case, as

the following proposition shows.

Recall that the invariant factors of a matrix M are a sequence of monic polynomials

(pk(x)) such that pi | pi+1 and which characterize M up to similarity. Define the reduced

invariant factors of M to be (p̃k(x)) where p̃k(x) = pk(x)/xd where xd is the largest

power of x dividing pk.

Proposition 3.5. Let F be a field. Then the matrices A ∈Mn(F) and B ∈Mm(F) are

shift equivalent iff they have the same reduced invariant factors (ignoring factors of 1).

Proof. From [24, Theorem 7.4.10], A ∼ B iff they have the same Jordan form away

from zero (over the algebraic closure F̄). Therefore the elementary divisors of A and

B that are not powers of x are in correspondence. By using the translation between

elementary divisors and invariant factors [13] and ignoring these powers of x, we get

that the reduced invariant factors must also be identical.

Since if two endomorphisms are shift equivalent with lag l they are shift equivalent

for every lag l′ > l, the notion of shift equivalence should in some sense “ignore” nilpo-

tent behavior. The reduced invariant factors of a matrix A are a way of characterizing

the similarity of A ignoring the eventual kernel.
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The problem with choosing to compute Conley indices over fields instead of Z is

that much of the surprising subtlety of shift equivalence is lost. For example a result

due to Tollmer discussed in [24, 38] is

19 5

4 1

 6∼
19 4

5 1


Because a matrix over a field is always similar to its transpose, there is no hope for

shift equivalence over fields to capture the same dynamics as shift equivalence over the

integers in this case.

As we can see, even in the case of 2 × 2 full rank integer matrices, the problem is

already difficult. We can start by using our obervations about shift equivalence over Q

to note that two matrices shift equivalent over Z must have the same eigenvalues. This

is because the integer matrices R and S giving a shift equivalence over Z also give a

shift equivalence over Q and consequently the shift equivalent matrices must have the

same rational canonical form, hence the same eigenvalues.

Shift equivalence of upper-triangular 2× 2 matrices

One special case of particular interest is that of upper-triangular matrices, because of

the connection to attractor-repeller pairs in dynamics. For example, the matrix

λ a

0 µ


arises when there exists an invariant set with Conley index representative

[
µ

]
and

a second invariant set of Conley index representative
[
λ

]
along with the (potential)

connecting orbits between them, which are represented by a. Conley theory guarantees

us that if this matrix is not shift equivalent to the diagonal matrix

λ 0

0 µ

 that there

must be a connecting orbit. Thus, determining the Conley indices in this special case

is very useful for extracting dynamical information. In this special setting, we can

determine a fair amount of information about the Conley index with a “hands-on”
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approach.

Theorem 3.6. The matrices

λ a

0 µ

 and

λ b

0 µ

 are shift equivalent if the prime

factors of a and b that do not divide either λ or µ are identical.

Proof. If λ = µ = 0, then every prime factor of a or b trivially divides λ and µ. In this

case the matrices are both nilpotent and therefore shift equivalent to
[
0

]
.

If one of λ or µ is zero, again, every prime factor of a or b trivially divides either λ

or µ. Suppose λ 6= 0. Then we have

λ a

0 0

 ∼ [λ] via R =
[
λ a

]
, S =

1

0


If µ 6= 0 then we have

0 a

0 µ

 ∼ [µ] via R =
[
0 1

]
, S =

a
µ


Since these shift equivalences do not depend on a we see that the result holds.

If λ, µ are both nonzero, we can assume without loss of generality that gcd(a, λ) =

gcd(a, µ) = 1. Then the result for general a and b will follow by the transitivity of shift

equivalence. Furthermore we can write b = aγ, where every prime factor of γ divides

either λ or µ. There must, then, exist an integer n such that γ | (λµ)n.

Write λn = γλxλ, where γλ = gcd(γ, λn) and xλ = λn/γλ. Next write µn = γµxµ,

where γµ = γ/γλ and xµ = µn/γµ. (The asymmetry in the definitions of γλ and γµ is

an artifact of an arbitrary choice. Really all we need is a way to express γ as γ = γλγµ

where γλ | λn and γµ | µn. The terms xλ and xµ are then whatever factors of λn and

µn remain.)

Now we construct the following R and S:

R =

λnγλ aγλ(µn−1 + µn−2λ+ · · ·+ λn−1)

0 xµ


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S =

xλ aγµ(µn−1 + µn−2λ+ · · ·+ λn−1)

0 µnγµ



In the special case where λ = µ we also have the converse.

Theorem 3.7. The matrices

λ a

0 λ

 and

λ b

0 λ

 are shift equivalent only if the prime

factors of a and b that do not divide λ are identical.

Proof. Suppose A =

λ a

0 λ

, B =

λ b

0 λ

, and A ∼ B with lag n. We can assume

without loss of generality that gcd(a, λ) = gcd(b, λ) = 1. Then we know that R and S

can be written as

R =

x r

0 y

 , S =

λn/x s

0 λn/y


Looking at the upper-right entry of SR = An, we have (λn/x)r + ys = anλn−1.

Similarly, looking at the upper-right entry of RS = Bn we have (λn/y)r+xs = bnλn−1.

The left hand side of this second equation is x/y times the left hand side of the first,

while the right hand side of the second is b/a times the right hand side of the first.

These will be equal whenever ax = by. We have gcd(a, y) = gcd(b, x) = 1, since x and

y each divide λn. Therefore a divides b and b divides a, hence a = b.

This converse is not true in general for distinct eigenvalues, however. The difference

|µ− λ| between them also plays a role as in the following special case:

Proposition 3.8. The matrices

λ a

0 λ+ 1

 and

λ b

0 λ+ 1

 are shift equivalent for

all a, b.

Proof. Let R =

λ b(λ+ 1)− aλ

0 λ+ 1

, S =

1 a− b

0 1

.
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Chapter 4

Constructing Conley indices

Beyond just being an invariant, we are interested in knowing exactly what implications

the Conley index has for understanding dynamics. That the Conley index is a robust

and coarse invariant makes this a difficult problem. To take a particularly stark exam-

ple, the Conley index of the empty set is trivial, but so is the Conley index of the Smale

horseshoe. Thus the kind of statements we might hope to make about a set with trivial

Conley index has to somehow be true for both the absence of recurrent dynamics and

the Smale horseshoe.

The easiest kinds of statements to make are negative ones: if the Conley index of a

Morse set is nontrivial, then we can conclude that there are, in fact, recurrent dynamics

contained within the Morse set. (Furthermore, those recurrent dynamics will not be a

Smale horseshoe.)

We can also use the Conley index to make statements about other, perhaps more

familiar, invariants. For example, we can use information about the Conley index to

put lower bounds on entropy [3].

Not every Conley index can arise on the zero level of homology. Indeed, as [2,

Proposition 5.8] shows, the eigenvalues of every dimension zero Conley index must be

roots of unity. Since the eigenvalues are an invariant of the Conley index as we discuss

in Chapter 3 this shows that any matrix with an eigenvalue that is not a root of unity

cannot be a representative of a Conley index in dimension zero.

For the Conley index in level one and higher, however, there is no such restriction.

Any map, for example, can be realized as the Conley index of a map on a wedge of

Moore spaces. In what follows we go further and show that for Conley indices in

dimension 1 that can be represented by an integer matrix there is an interval map
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realizing that Conley index. Specifically, given any integer matrix M , we provide an

explicit construction of a 1-d map f : [0, 1] → [0, 1] and a pair P = (P1, P0) such that

the map

fP : H1(P1/P0, [P0])→ H1(P1/P0, [P0])

is shift equivalent to M .

To simplify this construction, it will be convenient to work with a more general

notion than a filtration pair. In particular, we produce an index pair in accordance with

the definition due to J. Robbin and D. Salamon [42], and show that the induced map

on homology for this index pair is shift equivalent to the induced map on homology for

a filtration pair for the same isolated invariant set. Here we state the Robbin-Salamon

definition of index pair:

Definition 4.1. Let f : T+×X → X be a dynamical system. A compact pair (P1, P0)

in M is an index pair if P1 \ P0 is an isolating neighborhood and f tP : (P1/P0, [P0]) →

(P1/P0, [P0]) is continuous for all t, where

f tP (x) =


f(t, x) if f(s, x) ∈ P1 \ P0,∀s, such that 0 ≤ s ≤ t

[P0] otherwise

Remark 4.2. In the case where T+ = Z+, this is equivalent to

fP :=


f(x) x, f(x) ∈ P1 \ P0

[P0] otherwise

being continuous.

We start by defining a special class of matrices, meant to capture necessary condi-

tions for an induced map on first homology for disjoint intervals on the real line.

Definition 4.3. Call a matrix B constructible if it has the following properties:

1. The entries of B are from {0, 1,−1}.

2. No column contains both 1 and -1.
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3. For each column, the nonzero entries in that column occur in contiguous rows.

Informally, think of the columns of B as indexing disjoint intervals in [0, 1] that are

ordered by the order of the columns. To incorporate notation we will use shortly, let

the ith interval be [xi, xi]. If we denote our interval map by f , then if the (i, j)-entry

is 1, this means that f(xi) < xj and xj < f(xi)—in other words, that the image of the

ith interval extends over the jth with the order of the endpoints preserved. If the entry

is -1, this corresponds to the order of the endpoints of the ith interval being reversed.

A zero entry means that the image of the ith interval does not intersect the jth. We

make this explicit in part a) of the following theorem with a construction.

Theorem 4.4. Suppose B is an n× n constructible matrix. Then

a) there exists an interval map f and an index pair (P1, P0) for an isolated invariant

set X of f so that B represents the map f∗ : H1(P1/P0, [P0])→ H1(P1/P0, [P0])

b) there is a filtration pair (P1, P̃0) for X, such that

c) the induced map f̃∗ : H1(P1/P̃0, [P̃0]) → H1(P1/P̃0, [P̃0]) is shift equivalent to f∗ :

H1(P1/P0, [P0])→ H1(P1/P0, [P0])

Proof. a) We want the dynamics we are interested in to be contained in n disjoint

intervals. To make things concrete, define Ik := [xk, xk] :=
[
2k−1
2n+1 ,

2k
2n+1

]
for k =

1, . . . , n.

In order to define f we will also want to make use of points that lie between each

of these intervals. For k = 0, . . . , n let mk be the midpoint between xk and xk+1 (or

the midpoint between 0 and x1 in the case of m0, and xn and 1 in the case of mn).

Explicitly mk = 4k+1
4n+2 . In this way, we ensure that xk < mk < xk+1.

The idea is to define f in a piecewise linear way, so that the image of f on the

interval Ij extends over the intervals Ik1 , . . . , Iks where k1, . . . , ks are the (contiguous)

nonzero entries of the jth column of B. If these entries are positive we want f to

have positive slope, otherwise for f to have negative slope. This choice gives us the

appropriate sign for the induced map on homology.
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Define

ck :=


(min{i : Mik = 1})− 1 ∃j,Mjk = 1

max{i : Mik = −1} ∃j,Mjk = −1

0 ∀j,Mjk = 0

ck :=


max{i : Mik = 1} ∃j,Mjk = 1

(min{i : Mik = −1})− 1 ∃j,Mjk = −1

0 ∀j,Mjk = 0

We now define f as the linear interpolation between the values f(xk) = mck and

f(xk) = mck .

f(x) :=



mc1 x < x1

(2n+ 1)(mck −mck)(x− xk) +mck xk ≤ x < xk, k = 1, . . . , n

(2n+ 1)(mck+1
−mck)(x− xk) +mck xk ≤ x < xk+1, k = 1, . . . , n− 1

mcn x ≥ xn

In order to get a Conley index, we need an index pair (P1, P0) in addition to this

map. Let P1 =
⋃
k Ik, P0 =

⋃
k{xk, xk}. We need to check both conditions for an

index pair.

First, we verify that cl(P1\P0) is an isolating neighborhood. Since bd cl(P1\P0) = P0

and for every x ∈ P0, f(x) = mi /∈ P1 for some i, we have that x cannot be in

Inv(cl(P1 \ P0)). Therefore Inv(cl(P1 \ P0))
⋂

bd(cl(P1 \ P0)) = ∅, so cl(P1 \ P0) is

an isolating neighborhood.

Next, we need to show that f# : (P1/P0, [P0])→ (P1/P0, [P0]) defined by

f# :=


f(x) x, f(x) ∈ P1 \ P0

[P0] otherwise
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is continuous.

This is a consequence of the following theorem:

Theorem 4.5. ([42], Theorem 4.5) Assume f : M →M , N ⊆M is closed, and

(bdN)
⋂
f−1(N)

⋂
f(N) = ∅

Define

L0 = f(N)
⋂

(bdN)

and

L1 = cl(N \ f−1(N))

Then L0 ⊆ L1 and f# : N/L → N/L is continuous for any closed subset L of N

satisfying L0 ⊆ L ⊆ L1.

Theorem 4.5 applies, since bdP1
⋂
f−1(P1) = ∅ and because

P0 = L0 = bdP1

⋂
f(P1) = bdP1.

Finally we verify that the induced map on first homology f∗ : H1(P1/P0, [P0]) →

H1(P1/P0, [P0]) is represented by the matrix B. We can give P1 a CW-structure, by

taking the 0-cells to be points of the set P0 and the 1-cells to be the intervals between

the points in P0. The generators of H1(P1/P0, [P0]) are given by the intervals (1-

cells)Ik. By looking at the degree of the map on the quotient, the image of a

generator Ik is 1 for every generator Ij such that f(xk) < xj and xj < f(xk), and is

-1 when f(xk) > xj and xj > f(xk). In all other cases the image is 0.

This is precisely what is achieved by our choice of ck and ck, and taking a straight-

line interpolation between f(xk) = mck and f(xk) = mck .

b) Define P̃0 := cl(P1 \ f−1(P1)). We check that the pair (P1, P̃0) is a filtration pair.

In what follows, let Y C denote the complement of Y in [0, 1]. We need to check

i) cl(P1 \ P̃0) is an isolating neighborhood.

Because cl(P1 \ P̃0) is a finite set of disjoint open intervals, bd(cl(P1 \ P̃0)) ⊆ P̃0.

By our definition, we have that f(P̃0) ⊆ cl(PC1 ), hence f(P̃0)
⋂
P1 ⊆ bdP1. But
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f(bdP1) ⊆ {mi} by the definiton of f , hence because the mi are disjoint from

P1, f(f(bd cl(P1 \ P̃0)))
⋂
P1 = ∅ and Inv cl(P1 \ P̃0) ⊆ int(cl(P1 \ P̃0)), which

is the definition of isolating neighborhood.

ii) P̃0 is a neighborhood of the exit set E = {x ∈ P1 : f(x) /∈ P1} in P1.

Because f−1(P1) is closed, we have that the exit set E = P1 \ f−1(P1) =

P1
⋂

(f−1(P1))
C is open in P1, hence P̃0 = cl(P1 \ f−1(P1)) = clE is a neigh-

borhood of E.

iii) f(P̃0)
⋂

cl(P1 \ P̃0) = ∅

We have f(P̃0) = f(cl(P1 \ f−1(P1)) ⊆ cl(PC1 ). Therefore f(P̃0)
⋂
f(P1) = P1.

Since bdP1 = (∪{xk}) ∪ (∪{xk})

c) We now need to check that the induced map on homology for f̃∗ : H1(P1/P̃0, [P̃0])→

H1(P1/P̃0, [P̃0]) is shift equivalent to f∗ : H1(P1/P0, [P0]) → H1(P1/P0, [P0]). We

need to check this because shift equivalence is only proven to define the an invariant

for filtration pairs and (P1, P0) is an index pair but not a filtration pair.

Let B be our constructible matrix representing f∗. We will produce matrices R̃ and

S̃ such that S̃R̃ = B, and such that the product R̃S̃ = C represents f̃∗.

Let p =
∑

i,j |Bij |, which is the number of generators of H1(P1/P̃0, [P̃0]). If p = 0,

that means both that B is the zero matrix and that H1(P1/P̃0, [P̃0]) = 0. This is

something of a special case, since there is no matrix representing f̃∗, but B is shift

equivalent to the zero map nevertheless. We assume p > 0 in what follows.

Let ξ1, . . . , ξn denote the generators of H1(P1/P0, [P0]), and η1, . . . , ηp the generators

of H1(P1/P̃0, [P̃0]). Let R̃ be a p× n matrix defined as follows:

R̃ij =


1 ηi ⊆ ξj

0 otherwise

Let S̃ be a n× p matrix defined by
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S̃kl =


1 ηl maps to ξk with positive orientation

−1 ηl maps to ξk with negative orientation

0 otherwise

Then (S̃R̃)ij =
∑

k S̃ikR̃kj . This is nonzero precisely when ηk maps to ξi and ηk ⊆ ξj ,

with sign determined by the orientation of the mapping. Summing over all k, this

gives the degree of the map from ξj to ξi, although by construction there will only

be at most one nonzero term in the sum, and it will be 1 if the orientation is positive

and -1 if it is negative. Thus S̃R̃ = B.

Switching factors around (R̃S̃)ij =
∑

k R̃ikS̃kj . This nonzero precisely when ηi ⊆ ξk

and ηj maps to ξk. This happens precisely when ηj maps to ηi, and thus R̃S̃

represents f̃∗.

We have shown that every constructible matrix B can indeed be realized as a repre-

sentation of the induced map on H1 for an index pair in [0, 1], and moreover than there

exists a filtration pair for the same isolated invariant set with shift equivalent Conley

index. This is a step towards relating the extremely general definition of Conley index

in terms of index pairs with the definition we give here for filtration pairs.

We can show something much more general still, however, that will allow us to

construct examples of nearly any Conley index we want with a map on the unit interval.

Theorem 4.6. Let M be an n × n integer matrix. Then M is shift equivalent to a

constructible matrix.

Proof. We will proceed by producing two matrices R and S, such that SR = M and

RS is constructible. First, we check that any such maps R and S automatically satisfy

conditions (i) and (ii) for shift equivalence. If SR = M , then RM = R(SR) = (RS)R

and MS = (SR)S = S(RS).

Let mi,j denote the (i, j) entry of M , and let p =
∑
i,j
|mi,j |. If p = 0 then M is

a zero matrix, which is already constructible, and every matrix is shift equivalent to
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itself. Otherwise, take R to be a p×n matrix and S an n× p matrix defined as follows.

We will construct the matrices R and S by assembling them blockwise from vectors.

For example, suppose v and w are column vectors of length lv and lw. Then the vectorv
w

 denotes a column vector of length lv + lw with entries from v followed by entries

from w. The two-column matrix
[
v w

]
is defined so long as lv = lw. For convenience,

we will want to define an empty vector ε such that v =

v
ε

.

We define the vectors we will use as bulding blocks as follows. Whenever mi,j 6= 0

let 0i,j denote the column vector of length |mi,j | with all zero entries, |1i,j | the column

vector of length |mi,j | with all entries one, and 1i,j = sgn(mi,j) |1i,j |. If mi,j = 0 let

0i,j , |1i,j |, and 1i,j denote the empty vector ε.

Now let R be a block matrix with n2 block rows and n block columns. Let c =

((k − 1) mod n) + 1 and d =
⌊
k−1
n

⌋
+ 1. Then the k, l block of R is |1c,d| if d = l and

0c,d otherwise.

R =



|11,1| 01,1 01,1 · · · 01,1

|12,1| 02,1 02,1 · · · 02,1

...
...

...
. . .

...

|1n,1| 0n,1 0n,1 · · · 0n,1

01,2 |11,2| 01,2 · · · 01,2

...
...

...
. . .

...

0n,n 0n,n 0n,n · · · |1n,n|


Now we define the block matrix S with n block rows and n2 block columns. With

c and d as before, we have that the l, k block of S is given by 1Tc,d if c = l and 0Tc,d

otherwise. It is more notationally convenient to write ST as follows:
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ST =



11,1 01,1 01,1 · · · 01,1

02,1 12,1 02,1 · · · 02,1

...
...

...
. . .

...

0n,1 0n,1 0n,1 · · · 1n,1

11,2 01,2 01,2 · · · 01,2

...
...

...
. . .

...

0n,n 0n,n 0n,n · · · 1n,n


We can use block multiplication to compute the product SR (and for convenience

allow indices to refer to blocks). In this case the i, j entry in the product is given by

n∑
m=1

Si,mRm,j

Where Si,m is a zero vector unless (m mod n) + 1 = i and Rm,j is a zero vector

unless
⌊
m
n

⌋
+ 1 = j. Thus the only nonzero term is when m = (j − 1)n+ i− 1 in which

case it is the dot product 1i,j · |1i,j | = mi,j .

It remains only to check that the product RS is constructible by checking that it

satisfies the three defining properties of a constructible matrix.

1. The entries of B are from {0, 1,−1}.

This follows from the fact that there is exactly one nonzero entry in each row of

R and all entries of R and S are 0, 1, or −1.

2. No column contains both 1 and -1.

3. For each column, the nonzero entries in that column occur in contiguous rows.

These two properties follow from the fact that the nonzero entries in each column

of R are a contiguous block of ones, hence because S has at most one nonzero

entry in each column (either ±1), the columns of the product must contain a

single contiguous block of either all ones (in the case the nonzero entry in the

column of S is 1), all minus ones (in the case the nonzero entry in the column of

S is 1), or all zeroes (in the case that the columns of S is all zeroes).
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Corollary 4.7. Let M be a square matrix with integer entries. Then M is a represen-

tative for the Conley Index on the first level of homology for an interval map f along

with filtration pair (P1, P̃0).

Proof. By Theorem 4.6 we can produce a constructible matrix B shift equivalent to M .

By Theorem 4.4 there exists a map f and a filtration pair (P1, P̃0) with Conley index

on the first level C shift equivalent to B. By transitivity of shift equivalence, M is shift

equivalent to C.
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Chapter 5

Application: the logistic map

In Chapter 2 we suggest ways the combinatorial-topological approach we take has ad-

vantages when studying “real-world” dynamics, taking into account factors like impre-

cision in measurement and computation and uncertainty about parameters. In this

chapter and the next two, we look at three specific maps and ways which they illustrate

different aspects of interpreting the output of database computations. In a very real

sense the computations we perform prove more theorems (of varying levels of interest)

than we can reasonably hope to look at. Thus we need heuristics and insight to separate

the wheat from the chaff. This particular chapter represents work that appears in [6]

and [7].

Recall the definition of the logistic map from Chapter 2:

f(x, r) = rx(1− x)

where x ∈ [0, 1] and r ∈ [0, 4].

The logistic map is a standard example in the theory of dynamical systems, well

known for its period doubling behavior and chaotic dynamics. As the parameter r

increases from 3 to approximately 3.57, the attractor changes from a stable fixed point

to periodic orbits of period 2, 4, 8, . . . on successively shorter intervals. The ratio of

the lengths of consecutive intervals limits to Feigenbaum’s constant (≈4.67), a general

property of such period doubling bifurcations on unimodal maps with quadratic max-

imum [16]. Beyond this period doubling cascade, still more complicated behavior is

observed up until r = 4 beyond which the map is no longer well defined on the unit

interval.

Although the study of the logistic map has largely been motivated by these dynamic

phenomena, it is typically introduced as an extremely simple nonlinear discrete time
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population model. The question naturally arises, then, that if we suppose the logistic

map is a good model for the dynamics of some real world phenomena, what exactly

could we expect to see in practice bearing in mind the discussion in Chapter 2 of the

imperfections of any model?

5.1 Database output and classical theory

The logistic map is a good example of the tenuous connection between the database

viewpoint of dynamics, and the more classical, analytic viewpoint that emphasizes

things like bifurcation theory and structural stability. Under ideal circumstances—for

example, a classical saddle-node bifurcation—changes in the Morse graph for different

parameter values relate quite clearly to qualitative changes in the underlying dynam-

ics. In the case of the logistic map, however, the connection is more complicated and

equivocal.

However, it is important to note that there is no simple correspondence between

edges in the continuation graph and the classical notion of a bifurcation point. For a

more complete analysis in the context of the a saddle-node bifurcation see [1].

The transition from region A to region B indicates the first period doubling bifur-

cation in the cascade. Likewise the transition from region B to region C corresponds

to the second period doubling, and the transition from region C to region D the third.

But, beyond this, further period doublings are invisible at this level of discretization. In

fact, rather than the dynamics becoming finer, Figure 5.1 shows the dynamics becoming

increasingly coarse as one proceeds through the period doubling cascade. These tran-

sitions do not correspond to bifurcations, but instead to the more global phenomenon

of the periodic attractor moving around in a larger area of phase space given the level

of discretization. Thus, as the period doublings accelerate we actually see a sort of

“mirror image” effect of the first few doublings. The important observation is that

changes of continuation class can in some circumstances indicate the presence of clas-

sical bifurcations, but they can also be a consequence of dynamics without necessarily

corresponding to any change in structural stability, and that the two possibilities can
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Figure 5.1: Schematic picture of parameter space for the logistic map, r ∈ [2.9, 3.7].

For this computation, phase space was divided into boxes of size 2−16 and parameter

space was subdivided into a grid of size ∼ .008. Here the transition from A to B

occurs at 3.0078, B to C at 3.4563, and C to D at 3.5500. These transitions correspond

to the first three period doublings, and they necessarily occur after the actual period

doublings due to discretization in phase and parameter space. The actual bifurcations

occur at exactly 3, then approximately 3.4495, 3.5441. The transition from D back to

C occurs at 3.5727, C to B at 3.5914, and B to A at 3.6781. These transitions do not

correspond to bifurcations, but instead to the way the periodic attractor increasingly

spreads out through the discretized phase space, making it impossible to distinguish

from the unstable dynamics (except for the origin).
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not always immediately be distinguished.

5.2 Phase vs parameter subdivision

Consider still the parameter space Z = [2.9, 3.7] for the logistic map on X = [0, 1],

with grids Z and X respectively. For each grid element ζ ∈ Z the minimal Morse

set Mi
ζ in the Morse graph MG(Fζ) represents the stable dynamics that occur for all

z ∈ |ζ|. (In general a Morse graph can have more than one minimal node in cases

where there is more than one attractor. For the logistic map, however, the minimal

node will be unique.) Because Fζ is an outer approximation for a continuous map, and

because Mi
ζ is by definition a strongly connected path component, the map Fζi must

permute the connected components of |Mi
ζ |. In this sense, the number of connected

components of |Mi
ζ | gives a measure of the amount of periodicity visible over ζ given

the level of discretization in phase space. The number of connected components can be

determined from the Conley Index. A consequence of this is that two parameter boxes

with isomorphic Conley-Morse graphs have same level of periodicity visible.

By taking the maximum period observed over all ζ ∈ Z, we have a measure of the

amount of information visible given the level of subdivision in both phase and parameter

space. Longer periodic orbits mean that we can see “deeper” into the period-doubling

cascade. The choice of Z = [2.9, 3.7] was made above because for any reasonable level

of subdivision in parameter space the endpoints ζ0 and ζn will have isomorphic Conley-

Morse graphs. This is not to say that the dynamics for arbitrary r0 ∈ ζ0 and rn ∈ ζn

are at all similar. Indeed, they will be quite different. For r0 < 3 the logistic map has

an unstable fixed point at the origin and a stable fixed point isolated away from the

origin. The Conley-Morse graph will therefore consist of two nodes: the maximal one

representing the unstable origin and the minimal one exhibiting period-1 behavior (i.e.

one connected component containing the fixed point).

For rn ≈ 3.7, however, the dynamics can depend sensitively on the specific choice

of rn and is quite a bit more complicated. The origin is still unstable and the rest of

the dynamics is still isolated away from the origin, but there is no longer an attracting
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fixed point, and for many values of rn there is a chaotic attractor. Because of the

way the stable dynamics extends through phase space, however, the Morse graph will

again contain just two nodes: the maximal one representing the unstable origin and the

minimal one representing the attractor as a single connected component and therefore

exhibiting period-1 behavior. These similarities are enough to ensure in this case that

the Morse graphs MGζ0 and MGζn are isomorphic.

Figure 5.2 demonstrates the ability to resolve dynamics as a function of the level

of subdivision in phase and parameter space. There is a point of diminishing returns

in which increasing the resolution in whichever space is finer does very little to help

resolve further dynamics. This point is relevant for the computations in Chapters 6

and 7 where such practical choices need to be made.
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Figure 5.2: Representation of the resolution of dynamics for different levels of subdivi-

sion in phase and parameter space. Here the colors represent the number of Morse sets

present at the given level of subdivison of phase and parameter space. Finer resolution

leads to more finely resolved dynamics, but with diminishing returns for subdividing

exclusively in either phase or parameter space.
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Chapter 6

Application: Newton’s method

This chapter consists of lightly edited selections of [5], work done jointly with Shaun

Harker, Wes Cowan, and Konstantin Mischaikow. The contributions of the author of

this dissertation are noted.

6.1 Introduction

For a differentiable function f : Rd → Rd, Newton’s method is an iterative procedure for

approximating the roots of f . It can be understood by defining a sequence (x1, x2, . . .)

by the map

xn+1 = xn −Df(xn)−1f(xn). (6.1)

Under certain hypotheses, this sequence converges to a root of f . There exist instances

where globally this algorithm is not well defined (Df must remain invertible throughout

the application) or does not converge [4]. In this chapter we are concerned exclusively

with local convergence. By translating a root of f to the origin we can assume that

f(0) = 0, and we further assume that Df(0) is invertible. A theorem of Kantorovich

ensures that for an initial condition x0 sufficiently close to the origin limn→∞ ‖xn‖ = 0,

and moreover that the rate of convergence is quadratic [12, Theorem 2.1]. When d = 1

the direction is determined by f ′′(0)/f ′(0). Motivated by the work of Dupont and Scott

[14], we consider the question of the direction of convergence when d = 2 where things

are much more complicated.

The goal is to provide, using the techniques outlined in Chapter 2, a rigorous, finite

characterization of the asymptotic dynamics of the direction of convergence for all

nondegenerate nonlinear functions. As is demonstrated in Section 6.2 these dynamics
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are governed by the following four parameter family of maps

q : S1 × Z → S1 (6.2)

(θ; a, b, c, φ) 7→ arctan

(
a cos2(θ + φ) + b sin2(θ + φ)

c cos2 θ + sin2 θ

)
where Z = [−1, 1]3 × S1. This system undergoes a wide variety of bifurcations across

parameter space, making it impractical to give a description of the dynamics in terms

of the classical notion of invariant sets in a way that it robust to small changes in pa-

rameters. Instead we provide a database for the global dynamics as outlined Chapter 2.

Thus we begin in Section 6.2 with the derivation of (6.2). Section 6.3 provides a

brief discussion of how the computational methods we discuss in Chapter 2 apply in

this particular example. We include a simple table and discussion that is meant to

provide intuition as to the proper interpretation of the Conley indices that appear in

the Newton map. In Section 6.4 we provide synopses of results about the dynamics of

(6.2) as a function of different parameter values. In particular, we exhibit a number of

instances of the classically interesting dynamical behavior, discovered via exploration

of the computed database.

6.2 The angular dynamics

Definition. The angular dynamics map induced by performing Newton’s method on

a function f is defined (when it exists) by the map Θf : S1 → S1 with

Θf (x, y) := lim
r→0+

arg (sf (rx, ry)) , (6.3)

where sf : R2 → R2 describes the Newton iteration (6.1) applied to f , i.e.

sf (x, y) := (x, y)−Df(x, y)−1f(x, y).

Here “arg” refers to the angle formed by a vector from the origin to a point on the

plane with the positive x-axis.

For some functions f , the map (6.3) is not well-defined—e.g., in cases where f is

not differentiable, Df is singular, sf is not defined, or sf (rx, ry) = 0 infinitely often as

r → 0+ for some (x, y). Furthermore, in cases where it is well-defined it nevertheless
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might fail to be continuous. Accordingly, we define the following class of functions:

Nondegeneracy assumption. We say a C2 function f : R2 → R2 is nondegenerate

provided f(0) = 0, Df(0) is invertible, and the following condition holds of the Hessians

A and B at the origin of f1 and f2, respectively:

For all v ∈ R2,

 vTAv

vTBv

 = 0 =⇒ v = 0.

(Here f1 and f2 denote the 1st and 2nd coordinate functions of f , and the Hessian is

the 2×2 matrix of second derivatives evaluated at the origin.) We denote the collection

of such nondegenerate functions as F.

The following theorems first characterize the angular dynamics of non-degenerate

functions, and then provide a parameterization of all possible angular dynamics from

F. For proofs refer to [5], as these are not principally the work of the author of this

dissertation.

Theorem 6.1. Each f ∈ F induces a continuous angular dynamics map Θf . Moreover,

letting v = (x, y), J = Df(0), and A,B be the Hessians of f1, f2 at the origin, we have

Θf (v) = arg

J−1
vTAv
vTBv

 . (6.4)

Theorem 6.2. For every f ∈ F, there exists z = (a, b, c, φ) ∈ [−1, 1]3 × S1 such that

the angular dynamics map Θf is topologically conjugate to the map θ 7→ qz(θ) defined

by:

qz(θ) = arctan

(
a cos2(θ + φ) + b sin2(θ + φ)

c cos2 θ + sin2 θ

)
, (6.5)

defining the arctan function over the extended reals. Further, defining Zs ⊂ [−1, 1]3×S1

to be the set of z ∈ [−1, 1]3 × S1 for which qz is discontinuous or ill-defined,

Zs = {(a, b, c, φ) ∈ [−1, 1]3×S1 | ((a+bc) cos2 φ+(b+ac) sin2 φ)2 = 4abc, c ≤ 0}. (6.6)

taking Z = [−1, 1]3 × S1 \ Zs, we may define a parameterized map q : S1 × Z → S1 by

q(θ, z) = qz(θ) such that for any f ∈ F, there exists z ∈ Z such that Θf is topologically

conjugate to the map θ 7→ q(θ, z).
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Theorem 6.3. Let Z be the space ([−1, 1]3 × S1) \ Zs, where

Zs := {(a, b, c, θ) ∈ [−1, 1]3 × S1 | ((a+ bc) cos2 φ+ (b+ ac) sin2 φ)2 = 4abc}, (6.7)

and let q : S1×Z → S1 be a parameterized family of maps given by and let q : S1× (Z \

Zs)→ S1 be a parameterized family of maps given by

q : S1 × Z → S1 (6.8)

(θ; a, b, c, φ) 7→ arctan

(
a cos2(θ + φ) + b sin2(θ + φ)

c cos2 θ + sin2 θ

)
.

Then for each f ∈ F there exists z ∈ Z such that the angular dynamics map induced by

f ∈ F is topologically conjugate to the map θ 7→ q(θ, z).

Considering only functions from the class F is sufficient to ensure the angular dy-

namics map is continuous, but there are functions not in F where this is still the case.

Furthermore, some of these maps will have dynamics that do not arise when we restrict

our attention to F. For example, as we will see in Proposition 6.10, all of the angular

maps θ 7→ q(θ, z) as above will have winding number 0, −2, or 2. Yet, for N ∈ N,

taking

fN (x, y) =

 x+ Re((x± iy)N )

y + Im((x± iy)N )

 , (6.9)

it can be shown that the angular dynamics of fN are given by θ 7→ ±Nθ, a map of

winding number ±N . However, fN /∈ F for N > 2 because the Hessians vanish at the

origin. In general, the angular dynamics of Θ are governed by the lowest degree non-

linear terms in the expansion of f . As such, our present analysis is when the dynamics

are governed by the quadratic terms.

6.3 The dynamics database

This section gives more detail on how we apply the techniques of Chapter 2 to this

particular dynamical system.
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Computing the database

The purpose of the database, as outlined in Section 6.1, is to compute and store a

rigorous account of the global dynamics of the map q : S1 × Z → S1 over the entire

parameter space. To do this, we discretize parameter space Z it into a cubical grid Z.

The appropriate choice of scale for the grid is application dependent. In this Chapter

we chose the level of subdivision in terms of the time required for computation as well

as the size of the output. The most refined computation of the full parameter space is

subdivided uniformly in each of the four dimensions into 26 equal size intervals, forming

a grid with (26)4 = 224 cubes, see Section 6.4.

To give a sense of the scale of the computation, the full database for the Newton

map was computed on a cluster consisting of 896 processor cores. The computation

required approximately 4 hours. The resulting output is a roughly 17 GB file. Post-

processing this raw output to extract only continuation information results in a 20 MB

file.

As we did with Z, we start with a cubical grid X on the phase space S1. For

the full 4D parameter space computation we subdivide S1 into 212 intervals of equal

length. The question of what level of subdivision in phase space will optimally extract

information about the dynamics given the level of subdivision in parameter space is a

subtle one, discussed with respect to the logistic map in Section 5.2. If phase space

is too coarsely subdivided some important information about the dynamics will be

lost. But in practice we observe that beyond a point there are diminishing returns

to further subdivision in phase space without accompanying subdivisions in parameter

space. With no good theoretical estimates for the appropriate relationship, we choose

the level of subdivision in phase space through experimentation. Finally, given the grids

Z and X , we can for each ζ ∈ Z compute a multivalued map Qζ : X −→→X that is an

outer approximation of qz for all z ∈ ζ.

For this application, we choose to compute the induced map on homology over

the finite field Z5 and represent the shift equivalence class of each of the two linear

transformations by their invariant factors with coefficients taken mod 5. Moreover, we
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adopt the convention in the database of reporting all polynomials as monic, with other

coefficients chosen to be smallest in absolute value (considered as integers).

This choice is made for computational convenience, but potentially comes at a price.

For example, the uniform winding map on the circle of degree n has just one Morse set

with induced map on H1 represented by the polynomial x− n. Because x− 4 ≡ x+ 1

mod 5, it’s impossible to distinguish a degree 4 map from a degree −1 map without

further analysis. However, as shown in Proposition 6.10 for the Newton map the only

winding numbers that appear are 2, 0, and −2, and thus using Z5 coefficients yields

the “expected” output of x − 2 and x + 2 in the cases of winding number 2 and −2

respectively.

Interpreting the database

The database provides a wide variety of information about the underlying dynamical

system. For example, as discussed in Section 2.2, the Morse graph gives a charac-

terization of the gradient like structure of the dynamics. To see how to make use of

this information, assume that M denotes a minimal node in a Conley-Morse graph

CMG(ζ). For each z ∈ |ζ|, Qζ is an outer approximation of qz : S1 → S1. Since M is a

strongly connected path component and a minimal Morse set, for any ξ ∈M, we have

Qζ(ξ) ⊆M. Thus,

qz(|M|) ⊆ int(|M|)

and hence for all z ∈ ζ, |M| is a trapping neighborhood for qz. In particular, we obtain

the following proposition.

Proposition 6.4. Let ζ ∈ Z and let M denote a minimal node for the Conley-Morse

graph CMG(ζ). For each z ∈ |ζ|, the basin of attraction of Inv(|M| , qz) is a set of

positive measure.

To obtain a more detailed understanding of the dynamics associated with the Morse

sets we turn to the Conley index. As indicated in Section 6.3, the Conley index is an

algebraic topological invariant of Inv(|M|, qz), thus the dynamics associated with Morse

sets with different Conley indices must be fundamentally different. Table 6.1 provides



54

Invariant set Conley index (H0 , H1)

∅ (trivial , trivial)

stable fixed point (x− 1 , trivial)

unstable fixed point, orientation preserving (trivial , x− 1)

unstable fixed point, orientation reversing (trivial , x+ 1)

stable period-T orbit (xT − 1 , trivial)

unstable period-T orbit, orientation preserving (trivial , xT − 1)

unstable period-T orbit, orientation reversing (trivial , xT + 1)

S1 under f(θ) = 2θ (x− 1 , x− 2)

S1 under f(θ) = −2θ (x− 1 , x+ 2)

Table 6.1: This table shows the Conley indices corresponding to specific invariant sets

that can arise from a map S1 → S1. For the last two entries the invariant sets are

S1. As discussed in the text, the converse does not hold, i.e. the presence of a Conley

index on the right does not imply the existence of the corresponding invariant set. All

coefficients are mod 5.

a “one-way” dictionary: the invariant sets on the left are guaranteed to produce the

Conley indices on the right, but the Conley indices on the right, while suggestive of

behavior on the left, do not provide any such guarantee. Perhaps the most important

consequence of this is that any Morse set with nontrivial Conley index necessarily

implies that there is a nonempty invariant set in the corresponding region of phase

space. The converse, however, is not true: a Morse set with trivial Conley index need

not have empty invariant set.

As the previous comments indicate, given the Conley index of a Morse set Table 6.1

is at best a suggestion of what the associated dynamics may be. However, it is possible

to use the Conley index to obtain concrete descriptions of the dynamics.

Definition 6.5. A map f : X → X exhibits an attracting T -cycle set in N ⊂ X if there

exist non-empty, disjoint, compact regions Ni ⊂ X, i = 1, . . . , T , such that N := ∪Ti=1Ni

and f(Ni−1) ⊂ Ni for i = 1, . . . , T , where N0 := NT .
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The following result is an immediate consequence of [2, Proposition 5.8].

Proposition 6.6. Let M be a Morse set for a Conley-Morse graph CMG(ζ). If the H0

invariant factor for the Conley index of M is xT − 1, then for any z ∈ ζ, qz exhibits

an attracting T -cycle set in |M|.

In a convenient abuse of notation we refer to the Morse set M as an attracting

T -cycle if it satisfies the hypotheses of Proposition 6.6.

The following proposition is due to the author of this dissertation.

Proposition 6.7. Assume M is a Morse set for a Conley-Morse graph CMG(ζ) with

Z5 Conley indices of the form (x − 1, x ± 2). If z ∈ ζ then qz : S1 → S1 has winding

number ∓2(mod 5).

Proof. M is a subset of the grid X representing the circle S1, hence it must either be

a union of intervals or all of X . We will show that M must, in fact, be all of X .

Let P = (P1, P0) := (|Qζ(M)|, |Qζ(M) \ M|) be the index pair we produce for

M. Because the Conley index of M is nontrivial on the H0 level, there must be

some connected component of P1 that does not intersect P0, because every connected

component of P1 intersecting P0 becomes trivial in H0(P1/P0, [P0]).

Now consider the set of all connected components of P1 that do not intersect P0.

Each of these is a generator of H0(P1/P0, [P0]). Since P1 \ P0 = |M| these are also

connected components of |M|. Furthermore, since Qζ is an outer approximation of a

continuous map and |Qζ(M)| = P1, the image of each generator under the map qz must

be contained in the same connected component of P1 for every z ∈ ζ.

Choose an arbitrary z ∈ ζ and consider the map on homology qz∗. Each generator

of H0(P1/P0, [P0]) either maps to another generator (occurring when the image lies in a

component of P1 not intersecting P0) or it maps to zero. If every generator eventually

mapped to zero by iterating the map qz∗ then the shift equivalence class would be

trivial, so there must be at least one generator that does not eventually map to zero.

Consider the set of generators that are not eventually zero under qz∗. Because

M is by definition a maximal strongly connected path component of the graph Qζ
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and each generator is represented by grid elements in M, the map qz∗ must cyclically

permute the generators. If there are T generators, this results in an H0 Conley index of

xT − 1. Thus, if the H0 Conley index is x− 1 this means there is exactly one nontrivial

generator that is not eventually zero, and moreover that the generator must map to

itself. Furthermore, since M is a strongly connected path component, this generator

must be all of |M|. Indeed, the index pair (P1, P0) = (|M|, ∅).

A connected subset of S1 is either an interval or all of S1. Because the H1 Conley

index of M is nontrivial and M has index pair (|M|, ∅), it follows that |M| = S1 and

M = X .

Using integral homology, the map qz∗ : H1(S
1)
×k−−→ H1(S

1) implies qz has H1 Conley

index x− k and winding number k. The proposition follows taking coefficients mod 5.

The main Corollary of [30] and [26, Theorem 1] immediately imply the following

result.

Corollary 6.8. Assume M is a Morse set for a Conley-Morse graph CMG(ζ) with Z5

Conley indices of the form (x− 1, x± 2). If z ∈ ζ then qz : S1 → S1 is chaotic and its

topological entropy is bounded below by ln 2.

Conley-Morse graphs of the following form appear frequently in the databases dis-

cussed in Section 6.4.

[M2 : (trivial, xT−1 + xT−2 + · · ·+ x+ 1)]→ [M1 : (xT − 1, trivial)]

This diagram should be read as follows: there exist two Morse sets, M2 and M1, such

thatM2 >M1 (with respect to the partial order on the Morse sets) and they have the

given Conley indices. To shed some light on the dynamics associated with Morse set

M2 we investigate the special case where T = 3.

Using the database computation on the entire parameter space [−1, 1]3×S1 discussed

in Section 6.4 we know that the case T = 3 arises at the parameter value z = (a, b, c, φ) =

(−1, 1,−0.104, 1.597). In particular, the Conley index of the Morse setM2 is x2 +x+1

on H1 and trivial on H0. Figure 6.1 shows a graph of qz, along with an example of
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Figure 6.1: The blue line is the graph of the Newton map qz at parameter z =

(a, b, c, φ) = (−1, 1,−0.104, 1.597). The purple line is the line y = x. From the database

computation we are assured that at this parameter value there is an index pair (P1, P0)

with Conley index x2 + x + 1 on H1. The black regions are the exit set P0 and the

black and red regions together are P1. The dynamics we are interested in occur in the

red set P1 \P0. Here, after quotienting out the exit set there are two generators of first

homology, α and β, each corresponding to an interval in cl(P1 \ P0).

an index pair P = (P1, P0) for M2. There are two generators of first homology on

(P1/P0, [P0]) corresponding to the red intervals in P1 \ P0, labeled here α and β.

Under the map q, the image of the generator α extends across β. In the pointed

quotient space (P1/P0, [P0]) this corresponds to a wrapping around the loop β, hence

α 7→ β on homology. The image of β, on the other hand extends across β and α, but

with a change in orientation. This change in orientation is reflected by a minus sign, so

that β 7→ −α−β. Thus, the induced map qP∗ on first homology is given by the matrix0 −1

1 −1


The only invariant factor of this matrix is the characteristic polynomial x2 +x+ 1, and

since this polynomial is not divisible by x it represents the H1 Conley index for this

index pair.

Up to this point the comments of this section have focussed on interpreting the
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Figure 6.2: A picture of the parameter space for the map q restricted to the 2-

dimensional slice Z0 = {−1} × {1} × [−1, 1] × [0, π] ⊂ Z. Black regions correspond

to parameter boxes containing parameters for which the map is singular. Each non-

black color represents a distinct Conley-Morse graph continuation class. Conley-Morse

graphs for the regions labeled A and B are given in Figure 6.3.

dynamics associated with the Morse sets of the Conley-Morse graphs. The power of the

database approach is that it provides insight into the dynamics over the entire parameter

space. The “big picture” view of a database computation is given by its continuation

graph. Especially for high-dimensional parameter spaces where visualization is difficult

or impossible, the continuation graph gives an accessible representation of parameter

space, showing which dynamics are adjacent.

In cases where parameter space is two-dimensional or where we are interested in a

particular two-dimensional slice of parameter space, however, it is possible to visual-

ize the Conley-Morse graph continuation classes directly. In particular, the Database

Explorer is software that provides a picture of parameter space with the Conley-Morse

graph continuation classes as color coded regions. Figure 6.2 provides an example of

such an image extracted from the Database Explorer for the Newton map where the

parameter space is Z0 = {−1} × {1} × [−1, 1]× [0, π] ⊂ Z.

The two regions labeled A and B in Figure 6.2 have Conley-Morse graphs shown

in Figure 6.3. Here Proposition 6.6 allows us to conclude that region A exhibits an
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(a) Parameter region A (b) Parameter region B

Figure 6.3: Conley-Morse graphs for the respective parameter space regions in Figure

6.2. Each oval represents a Morse set with ordering given by the directed edges. The

Conley index at a given Morse set is represented by the tuple (H0 Conley index, H1

Conley index) contained within the oval.

attracting 4-cycle set and region B an attracting 2-cycle set.

What’s not indicated in Figure 6.3 is that the Morse sets in regions A and B with

Conley index (Trivial, x+ 1) are actually both part of the same isolating neighborhood

continuation class. By looking at the dictionary in Table 6.1 we see this continuation

class of Morse sets all have the Conley index of an orientation-reversing unstable fixed

point. Of course, this is reading the dictionary in the ‘wrong way’ and does not imply

that there is an isolated fixed point, but it is suggestive of the behavior at such Morse

sets.

6.4 The computed dynamics database

In this section we present more visual representations of the global angle dynamics over

parameter space, with the goal of exhibiting the most interesting dynamic phenomena.

A Conley-Morse Database over [−1, 1]3 × S1

We apply the Conley-Morse Database methods to the parameterized dynamical system

q : S1 × Z → S1 defined by (6.2). In particular, we grid the 4-dimensional parameter
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space Z = [−1, 1]3×[0, π) via uniform rectangular subdivision 26 on a side. This implies

that Z, the parameter space grid, consists of (26)4 = 224 ≈ 16 million rectangular

parameter regions. As is indicated at the end of Section 6.2, Y ⊂ Z denotes the

set of parameter boxes at which we do not compute Conley-Morse graphs. At this

resolution, Y consists of 3,223,104 boxes. This corresponds to approximately 19.2% of

the parameter space.

In this section we will analyze these results of these computations. We will be

able to replicate the finding of [14] that the dynamics can be more interesting than

a globally attracting fixed point. We also will identify parameter regions where there

are multiple basins of attraction, attracting T -cycles for T > 1, and chaotic behavior.

Finally we consider the structure of components of parameter space corresponding to

different winding numbers.

Interesting Dynamics

We begin by identifying the parameter regions for which our computations do not

rule out a globally attracting fixed point. By Table 6.1 the Conley-Morse graph of

such a dynamical system should have a single nontrivial Morse set with Conley index

(x− 1, trivial) (which will be minimal). There may be other Morse sets, but they must

all have trivial Conley index. Let A1 ⊆ Z denote the set of grid elements for which this

holds. We find A1 contains approximately 63.2% of the elements of Z \Y (equivalently,

at most 51.2% of Z). Noting that Conley-Morse graphs do not distinguish attracting

1-cycle sets from stable fixed points, we realize these figures as upper bounds for how

often this dynamics can occur.

On the complement (in Z \ Y) of these parameter values we have “interesting”

dynamics (i.e. dynamics other than a globally attracting fixed point). Our previous

discussion implies we get such behavior on at least 48.8% of Z. We consider three ways

(not all necessarily mutually exclusive) in which we can obtain interesting dynamics.

The first two ways involve attracting T -cycle sets and multiple basins of attraction:
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Proposition 6.9. Define

AT := {ζ ∈ Z | there is an attracting T -cycle, for T > 1}

and

AMMN := {ζ ∈ Z | MGζ has multiple minimal nodes} .

Let z ∈ ζ. If ζ ∈ AT, then there exists a set of initial conditions with positive

measure such that the asymptotic dynamics is not a fixed point. If ζ ∈ AMMN then

there exists two sets of initial conditions with positive measure that converge to along

different directions. Furthermore, AT and AMMN make up 18.79% and 1.56% of Z ,

respectively (approximately, rounding down).

Proof. Consider the case that ζ ∈ AT. Let M be a Morse note of CMG(ζ) which is

attracting T -cycle. By Proposition 6.6 for any z ∈ ζ, |M| is an attracting T -cycle set.

Since M is made up of elements of X , M has positive measure. By definition of an

attracting T -cycle set if x ∈ |M|, then ω(x, qz) ⊂ Inv(|M| , qz) and Inv(|M| , qz) does

not contain any fixed points. The argument for ζ ∈ AMMN is similar.

The percentages come from counting the parameter grid elements in both AT and

AMMN.

We now show the existence of chaotic dynamics indicated by our database compu-

tations. Corollary 6.8 establishes chaotic dynamics on the following parameter regions:

U±2 := {ζ ∈ Z | CMG(ζ) has the form [M1 : (x− 1, x∓ 2)]} .

From the full database computation we conclude that U2 and U−2 consist of at least

4.62% and 3.88% of Z, respectively.

Winding Numbers

By Proposition 6.7 if z is a parameter value associated with U±2, then the winding

number of qz is ±2. We remark that if z is associated with A1, then the winding

number of qz is 0. In fact, using the database computations we have discovered all
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possible winding numbers. For the proof see [5]—it is omitted here as it is not the work

of the author of this dissertation.

Proposition 6.10. The only possible winding numbers of qz are 0 and ±2.

Conley-Morse Databases over Two-Dimensional Slices of Parameter

Space

To obtain finer information about the structure of the dynamics of Newton’s method

we restrict ourselves to computations over two-dimensional regions of phase space. In

contrast to the full four-dimensional computations these computations can be performed

fairly rapidly. We computed a 2D database from which we were able to extract examples

demonstrating classically described dynamical phenomena.

A Full 2D Section

We apply the database methods over the cross-section of [−1, 1]3 × [0, π) given by

a = −1, b = 1. We subdivide this 2D parameter space [−1, 1] × [0, π) uniformly with

211 subdivisions on a side, and 216 divisions in phase space. The resulting parameter

space grid Z consists of (211)2 ≈ 4 million rectangular parameter regions. Addition-

ally, we compute over subregions of this parameter space, but still dividing into 211

subdivisions per side. The scale this translates to therefore depends on the region we

are computing on. The corresponding cross-section in the 4D computation discussed

earlier is comprised of only (26)2 = 4096 parameter boxes. Hence we are examining the

system at a much higher resolution. Figure 6.2 shows this high-resolution cross-section.

The finer resolution results in finer Conley-Morse graphs being computed compared

to the coarse 4D computations. Since the results in the cross-section do not necessarily

reflect what occurs over the rest of parameter space, we are less interested in reporting

observed fractions of parameter space in which we see certain behaviors. Rather, we are

interested in what behaviors happen at all; these tell us the richness of what dynamics

are possible under (6.2).
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Figure 6.4: A visualization parameter space restricted to a = −1, b = 1, with −0.32 ≤

c ≤ −0.02, 1.81 ≤ φ ≤ 2.21. Here c is on the x-axis and φ on the y-axis, and each

axis is subdivided into 211 boxes. The regions B(T ) indicate continuation classes with

a stable T -cycle. The surrounding yellow region has a stable 1-cycle. Some unlabeled

continuation classes appear, labeled, in Figure 6.5.

Ascending sequence of T -cycles

At a higher resolution, one interesting discovery was a sequence of continuation classes

with stable T-cycles of increasing degrees. This behavior is represented in Figure 6.4.

Each of these regions is surrounded by a continuation class with dynamics given by an

attracting 1-cycle.

For each of the indicated regions, the continuation class has a corresponding Conley-

Morse graph of consistent structure. For a specified period T , the Conley-Morse graph

of B(T ) is given by

[M1 : (trivial, xT−1 + xT−2 + . . .+ x+ 1)]→ [M2 : (xT − 1, trivial)]. (6.10)

The largest period found was T = 52.

To investigate whether we might find more with the same level of subdivision on

a smaller region, we computed the cross-section (a = −1, b = 1, −0.15 ≤ c ≤ −0.10,

and 1.98 ≤ φ ≤ 2.07) located roughly between B(13) and B(15). This computation is

shown in Figure 6.5.
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Figure 6.5: A visualization of parameter space restricted to a = −1, b = 1, with

−0.15 ≤ c ≤ −0.10, 1.98 ≤ φ ≤ 2.07. Here c is on the x-axis and φ on the y-axis, and

each axis is subdivided into 211 boxes. Compare with Figure 6.4.

We suspect further investigation at finer resolution would reveal even more struc-

tural detail.

Period Doubling Cascade

In the calculation represented by Figure 6.6 we see a sequence of adjacent continuation

classes with attracting cycle sets of periods 2, 4, 8, and 16. This suggests a period-

doubling cascade, as discussed in the context of the logistic map in Chapter 5 and [6,

Section II.E].

Observing Figure 6.6, the labeled continuation classes have Conley-Morse graphs
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Figure 6.6: A visualization of parameter space restricted to a = −1, b = 1, with

−0.022 ≤ c ≤ 0.10, 1.75 ≤ φ ≤ 1.88. Here c is on the x-axis and φ on the y-axis, and

each axis is subdivided into 211 boxes. The regions C(T ) indicate continuation classes

with attracting T -cycles.

given by the following:

C(2) :[M1 : (trivial, x+ 1)]→ [M2 : (x2 − 1, trivial)]

C(4) :[M1 : (trivial, x+ 1)]→ [M2 : (trivial, x2 + 1)]→ [M3 : (x4 − 1, trivial)]

C(8) :[M1 : (trivial, x+ 1)]→ [M2 : (trivial, x2 + 1)]

→ [M3 : (trivial, x4 + 1)]→ [M4 : (x8 − 1, trivial)]

C(16) :[M1 : (trivial, x+ 1)]→ [M2 : (trivial, x2 + 1)]

→ [M3 : (trivial, x4 + 1)]→ [M4 : (x8 + 1, trivial)]→ [M5 : (x16 − 1, trivial)]

(6.11)

As outlined in the indicated discussions, caution in interpretation is warranted,

however, as such behavior need not arise as a period doubling bifurcation. In this

example, the database is suggestive of where to conduct further confirmatory analysis.
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Figure 6.7: A visualization of parameter space restricted to a = −1, b = 1 with −0.17 ≤

c ≤ 0.012, 1.78 ≤ φ ≤ 1.87. Here c is on the x-axis and φ on the y-axis, and each axis

is subdivided into 211 boxes. The regions D(T ) indicate continuation classes with

attracting T -cycles.

Isolated Period 8 Cycles

Attracting T-cycles of period given by a power of 2 are not by themselves indicative

a period-doubling cascade. As an example, in the IsolatedPeriodEight database we

find the continuation classes indicated in Figure 6.7. The indicated parameter regions

have Conley-Morse graphs given by the following:

D(6) :[M1 : (trivial, x+ 1)]→ [M2 : (trivial, x4 + x2 + 1)]→ [M3 : (x6 − 1, trivial)]

D(8) :[M1 : (trivial, x+ 1)]→ [M2 : (trivial, x6 + x4 + x2 + 1)]

→ [M3 : (x8 − 1, trivial)]

D(10) :[M1 : (trivial, x+ 1)]→ [M2 : (trivial, x8 + x6 + x4 + x2 + 1)]

→ [M3 : (x10 + 1, trivial)].

(6.12)

Here we see evidence of attracting T-cycles with even T that do not appear to arise

as part of a period-doubling cascade. This is very much of the same flavor as the

previously described ascending sequence of T -cycles.
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Figure 6.8: A visualization of parameter space restricted to a = −1, b = 1, and 0.15 ≤

c ≤ 0.43, 1.10 ≤ φ ≤ 1.26. Here c is on the x-axis and φ on the y-axis, and each axis is

subdivided into 211 boxes. Regions labeled E(T ) have stable T-cycle attractors, while

E′(T ) regions have stable T-cycle attractors, and an additional attractor with a Conley

index of a fixed point.

Multiple Basins of Attraction

Multiple basins of attraction were observed in the full database computation. A more

refined computation shown in Figure 6.8 demonstrates a sequence of continuation classes

that exhibit an apparent period-doubling cascade, and then a bifurcation across which

the corresponding regions exhibit the same cascade, but with a second attractor with

the Conley index of a fixed point.
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Chapter 7

Application: population models

This chapter is a lightly edited version of work originally published in [8], done jointly

with Konstantin Mischaikow.

The logistic map discussed at the beginning of Chapter 2 and again in Chapter 5

is one of the simplest nonlinear discrete time models in population biology, but not

one of the most realistic. As effective as it is at demonstrating important dynamical

phenomena, e.g. a period-doubling cascade, in a very simple setting, we nevertheless

are interested in the practical analysis of functions with stronger biological motivation,

and many such models have been proposed [27, 41].

As much work of the last century has demonstrated, the invariant structures of

nonlinear systems can be extremely sensitive to arbitrarily small perturbations. For

example, bifurcations can occur on a Cantor set in parameter space [35, 36], making it

hopeless to try to give an explicit account of the dynamics for every parameter value.

The goal of this chapter is to provide a concrete demonstration of the potential

importance of this approach. This is done by considering a classical example from

population biology: a nonoverlapping overcompensatory two age class model. From

the perspective of modeling dynamical systems as networks this is an extremely simple

system
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where the first age class N1 produces offspring (the self edge) and becomes the second

age class N2, and the second age class produces offspring that belong to the first age

class.

A key decision affecting the dynamics that we investigate here is the functional form

of the nonlinear interactions associated with the edges.

In Section 7.1 we provide justification for using the following map as an analytic

representation for this network

N1
t+1 =

(
2∑
i=1

θiN
i
t

)
e
−0.1

(
2∑

i=1
(sθi+1−s)N i

t

)

N2
t+1 = 0.7N1

t

(7.1)

For the moment we remark that it is obtained by generalizing the models con-

sidered in [23, 45] and that that there are three parameters: 0 ≤ θi, i = 1, 2 which

represent reproduction rates and 0 ≤ s ≤ 1 which characterizes competition between

age classes.The purpose of exploring the dynamics is to either verify that this is an ade-

quate model or, having accepted the validity of the model, to understand the expected

observed behavior as parameters change.

Equation (7.1) makes use of the Ricker nonlinearity [41] which is unimodal and thus

it is reasonable to expect a period doubling cascade, e.g., the existence of infinitely many

bifurcations on arbitrary small scales with respect to parameters. In the real world,

however, except for carefully controlled laboratory settings [10], population measure-

ments are typically inaccurate and are subject to significant random perturbations.

Therefore, from an experimental perspective detecting the occurrence of bifurcations

is nontrivial under the best conditions, which calls into question whether we should

attach great practical significance to analyzing bifurcations.

Finally, the ‘verifiability’ of the different parameters are not the same. We might

suspect, for example, that the reproductive rates represented by θi are more easily

quantified than the degree or mechanisms of inter- and intra-species competition that

we are modeling by s. In Section 7.1 we provide a rationale for the use of s as a

parameter to model competition, but to a large extent this is speculative.

With these observations in mind the goals of this chapter are twofold: explain how



70

the database framework outlined in Chapter 2 can provide robust, rigorous information

about important dynamical structures, and at the same time demonstrate that model

assumptions (in particular regarding what we are understanding as intra-species compe-

tition) play a crucial role in determining the expected observable dynamics and, perhaps

more significantly, have an important impact on the relative roles of the reproduction

rates in achieving certain dynamics. Note that the complete results of performing the

database computations on Equation (7.1) can be accessed at [28].

In Section 7.2 we discuss three biologically relevant issues:

(1) biennial population dynamics,

(2) bistability, and

(3) permanence or persistence,

where we focus on how the choice of model, i.e. the value of s, affects the relative

significance of the reproduction rates θi.

7.1 Plant and Fish models

The database for dynamics is an especially useful tool in the modeling of complex sys-

tems where models cannot be completely determined from first principles. Population

biology, in this case, is an archetypical example of a discipline where modeling must

necessarily be tolerant of imprecision. To keep the discussion simple we make use of

discrete time models and consider the dynamics of the age structured population of a

single species. The network diagram for this type of system takes the form

which indicates that with time each age class ages into the successively older cohort,

and that the new youngest age class is formed by the offspring of all age classes taken
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Invariant set Conley index (H0 , H1)

∅ (trivial , trivial, trivial)

stable fixed point (x− 1 , trivial, trivial)

fixed point, 1-d unstable, orientation preserving (trivial , x− 1, trivial)

fixed point, 1-d unstable, orientation reversing (trivial , x+ 1, trivial)

fixed point, 2-d unstable, orientation preserving (trivial, trivial , x− 1)

fixed point, 2-d unstable, orientation reversing (trivial, trivial , x+ 1)

stable period-T orbit (xT − 1 , trivial, trivial)

period-T orbit, 1-d unstable, orientation preserving (trivial , xT − 1, trivial)

period-T orbit, 1-d unstable, orientation reversing (trivial , xT + 1, trivial)

period-T orbit, 2-d unstable, orientation preserving (trivial, trivial , xT − 1)

period-T orbit, 2-d unstable, orientation reversing (trivial, trivial , xT + 1)

stable invariant circle (x− 1 , x− 1, trivial)

invariant circle, 1-d unstable manifold (trivial, x− 1 , x− 1)

Table 7.1: This table describes the Conley indices of certain elementary invariant sets.

All coefficients are mod 3.
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together. While this network provides a framework in which to consider the problem,

any actual dynamics requires modeling assumptions about the function the edges in

the graph are meant to represent. Most of what follows in this section is classical.

However, we include it as it emphasizes the philosophy of how the database approach

can be employed to identify sensitive aspects of the modeling process.

Let Nt+1 ∈ Rn be the population vector representing the age structure of the popu-

lation at time t+ 1 where N i
t denote the population of age class i. We assume that the

future population is determined by a continuous function Nt+1 = f(Nt). The classical

Leslie matrix provides a linear model [22], but fails to explain observed complicated

population dynamics and populations levels typically become extinct or unbounded.

This suggests that a nonlinear function f may be a more appropriate choice. Certain

biological assumptions will constrain the choice of f—for example in the absence of mi-

gration and abiogenesis, we want f(0) = 0. Furthermore, even in very simple models it

is desirable to reflect the reality that a population cannot grow without bound. This can

be accomplished by insisting for a sufficiently large population |N | that |f(N)| ≤ |N |.

There are many biologically plausible functions that meet these criteria [27]. A

common way to ensure that the population remains bounded is to introduce an over-

crowding effect that make the reproduction rates density-dependent in such a way that

the reproduction rate grows more slowly for larger populations, perhaps even decreasing

beyond a certain point.

One particular choice of unimodal nonlinearity for discrete time models is the Ricker

nonlinearity [41], which in the simple case of only one age class N is given by

f(N) = Ner(1−N/K) (7.2)

where the parameters r and K represents the growth rate for small populations and

carrying capacity of the environment, respectively.

Depending on the kinds of data available to the ecologist, however, it may be more

convenient to express this same nonlinearity using different parameters. Two standard

reparameterizations are

f(N) = θNe−bN (7.3)
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(see [45]) and

f(N) = θNe−bθN (7.4)

(see [23]).

Although these are just reparameterizations, they offer some advantages for inter-

pretation. The parameter θ in each of these formulations, for example, represents the

reproduction rate when the population is small and overcrowding effects are negligible.

Perhaps more importantly, the exponent makes explicit what quantity is responsible

for the overcrowding effect, whereby at sufficiently high populations the number of off-

spring actually decrease. Taking b to be a constant, in Equation (7.3) the exponent is

proportional to the number of adults in the population, while in Equation (7.4) the ex-

ponent is proportional to the reproduction rate (in the absence of overcrowding) times

the population.

Both Equations (7.3) and (7.4) can be extended to the case of multiple age classes

(see [23, 45]) following the approach of the Leslie matrix. This introduces parameters θi

for the reproduction rate of age class i as well as ρi, the survival rate of the proportion

of age class i to age class i+ 1. In particular, Equation (7.3) generalizes to

N1
t+1 =

(
k∑
i=1

θiN
i
t

)
e
−b

k∑
i=1

N i
t

N i
t+1 = ρiN

i−1
t i = 2, . . . , k

(7.5)

and Equation (7.4) generalizes to

N1
t+1 =

(
k∑
i=1

θiN
i
t

)
e
−b

k∑
i=1

θiN
i
t

N i
t+1 = ρiN

i−1
t i = 2, . . . , k

(7.6)

As discussed above, each of these models can be given a different biological interpre-

tation based on the exponent in the equation determining N1
t+1. Because the exponent

in Equation (7.5) is proportional to the total population, this can be understood as

representing the youngest members of the species being overcrowded by—or competing

with—the existing adult population for resources. This might model, for example, the

way that saplings compete with taller, more mature trees for sunlight. For this reason

we will refer to Equation (7.5) as a “plant model”.
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The plant model is discussed from a more classical point of view in [45] and from

our database point of view in [2]. In particular, ([45, Figure 1]) gives a picture of

the bifurcation diagram along the line indicated in Figure 7.1. (Note that to make

this comparison requires the choice of ρ2 = 0.7). This bifurcation diagram shows

the presence of tremendously complicated changes in dynamics on fine scales that the

database approach summarizes in a much coarser way. In particular, the database

reduces all of this complexity to a relatively small number of Conley-Morse graphs.

In Equation (7.6), overcrowding depends on the potential number of recruits in the

absence of any density-dependent effects. Holding the adult population constant and

increasing the reproduction rate will increase the overcrowding in this model but not in

the plant model. Biologically, this can be taken to represent the youngest members of

the species being in competition with themselves. In [23] this is taken to be a model of

a striped bass population, so for that reason we will refer to Equation (7.6) as a “fish

model”.

We want to emphasize that both the fish and plant models have been extensively

studied [18, 23, 27, 41, 45] and both models exhibit similar and similarly wide range

of dynamics: global stable equilibria, stable periodic dynamics, bistability, chaotic dy-

namics, etc. However, these models are based on different assumptions concerning

overcrowding. Furthermore, it is reasonable to suspect that in reality the youngest age

group experiences competition both from themselves and from the older age groups.

Thus a natural series of questions is the following:

- Do the similarities observed in the dynamics of Equations (7.5) and (7.6) depend

on the reproduction parameters in the same way?

- If so, can we understand this similarity in terms of the similar network structure

of the two models?

- If not, can we understand the differences by putting these models in a wider

context of models with the same network structure?

With this in mind it is natural to consider a possible continuum of intermediate cases

where the young members of the species compete with both the adults and the offspring
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to different degrees. The simplest way to realize this continuum, in the absence of any

specific biological model, is to take a linear interpolation between the two exponents

using a new parameter s ∈ [0, 1], i.e.,

N1
t+1 =

(
k∑
i=1

θiN
i
t

)
e−b(s

∑k
i=1 θiN

i
t+(1−s)

∑k
i=1N

i
t)

N i
t+1 = ρiN

i−1
t i = 2, . . . , k

(7.7)

This reduces to the plant model when s = 0 and the fish model with s = 1. In this

larger framework we can observe how the dynamics change as the nature of competition

changes by varying s.

Given this crude level of modeling, a detailed description of the dynamics on the

level of invariant sets is somewhat ambitious and, given the difficulty of obtaining such

results, perhaps even counterproductive.

Note that these results are based on the dynamics that can be extracted from the

computed outer approximations F . Assume that g is an alternative model to Equation

(7.7) that is for example based on more information about the form of competition.

Furthermore, assume that F is an outer approximation of g, i.e.

g(ξ, ζ) ⊆ int(|Fζ(ξ)|), (7.8)

then the database information provided by the computations based on f are valid for

g.

The obvious question is, how plausible is the assumption of Equation (7.8)? Since

the computations we perform are based on rather crude grids in both phase space X

and parameter space Z, and since we are using interval arithmetic to approximate

the dynamics, we claim that this is not an unrealistic assumption. In particular, the

computations could be performed at a lower resolution to gain further confidence in the

assumption.

7.2 Computational Results

In this section, we provide the results of the database of dynamics computations as

outlined in Chapter 2. Details about the algorithms we use are given in [6]. For the
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full database computation on the three parameters θi, i = 1, 2 and s see [28].

We begin by discussing our choice of phase space X and parameter space Z. We

then describe the database results for s = 0 (plant model) and s = 1 (fish model). This

information is used to formally state the three questions of interest. We then discuss

these questions based on the above mentioned computations of intermediate values of

s.

Following [2, 45] we restrict our computations to Equation (7.1) that is obtained from

Equation (7.7) by restricting to two age classes and setting ρ1 = 0.7. The parameter b

is a scale parameter that has no effect on the dynamics, so we follow [2] and set b = 0.1.

Even in this simplified setting the difference between the dynamics of the plant and fish

models is apparent.

To apply the database computations requires us to restrict to a compact set of

parameter values. Conceptually this is not a problem since there always exists an

upper bound on the rate of reproduction, however appropriate values for this upper

bound is a modeling question that is problem specific. In this case we have chosen

Z = {(θ1, θ2) ∈ [0, 50]× [0, 50]}

for various values of s ∈ [0, 1], since this range of reproduction rates provides a diverse

set of dynamics.

As in the case of parameter space, to apply the database computations we need to

choose a compact phase space X. We note that Equation (7.1) has a global compact

attractor and hence there exists a compact forward invariant region in [0,∞)2 that

contains all the relevant dynamics. Explicit bounds on regions of this form depend on

s and can be determined by bounding the number of new recruits:

N1
t+1 =

(
k∑
i=1

θiN
i
t

)
e−b(s

∑k
i=1 θiN

i
t+(1−s)

∑k
i=1N

i
t).

The maximum of this function over the first quadrant is

10θ

e(1 + (θ − 1)s)
,

where θ = max{θ1, θ2}. This is a nondecreasing function of θ for all s ∈ [0, 1], so to

determine a the maximum value for all choices of θ1, θ2 we set θ = 50. This gives an
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upper bound on the value of N1
t+1 that roughly corresponds to the scale of the dynamics.

From this we can bound N2
t+2 = 0.7N1

t+1.

To allow for numerical error when computing the outer approximation, we round

these values up when determining the size of phase space. For s = 0, for example, we

take X = [0, 200]× [0, 140], while for s = 1 we take X = [0, 5.0]× [0, 3.5].

As we have emphasized, the scale at which X and Z are discretized into grids

is an important consideration that will very much depend on the problem at hand.

The precision with which the parameters can be measured, for example, gives one

natural and meaningful choice of grid size. Because we are working with an abstract

mathematical model in this paper, we have chosen the scale of our grids in phase and

parameter space to best illustrate, given our computational resources, the change in

dynamics between the plant and fish models. To this end, for each value of s we

subdivide Z into a 128×128 parameter grid Z. Similarly in phase space: for each value

of s we use an adaptive grid described in [2, 6] that is equivalent to a 4096× 4096 grid

X on X. We further allow for additional subdivisions of Morse sets with trivial Conley

index into smaller grid elements, to attempt to rule out numerical artifacts.

For each parameter grid element ζ ∈ Z, we must ensure the graph Fζ on X is an

outer approximation for the dynamics as described in Chapter 2. This can be accom-

plished with a variety of numerical techniques. We make use of the most straightforward

approach, interval arithmetic. Details concerning the theory and implementation of in-

terval arithmetic can be found in [31]. For our purposes it is sufficient to note that

given a real valued function r(a1, . . . , ak) : Rk → R and any assignment of intervals

[ai, ai] ⊂ R to the variable ai, i = 1, . . . , k, interval arithmetic returns an interval [B,B]

such that r(α1, . . . , αk) ∈ [B,B] as long as αi ∈ [ai, ai] for all i.

In order to compute the image Fζ(ξ) of a grid element ξ ∈ X , we represent each

parameter and phase variable as an interval using the intervals defining ζ and ξ, and

then use interval arithmetic [31] to compute the image of the map. Observe that the

image is a rectangle in X. In general this rectangle will not correspond precisely to a

union of grid elements. Therefore, to ensure Fζ is an outer approximation we cover this

rectangle by grid elements. For any grid element ξ′ ∈ X that intersects this rectangle
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we add the edge ξ → ξ′ to Fζ .

A description of eleven important Conley-Morse graphs, that arise in all of the above

mentioned computations, is presented in Table 7.2. Each circle corresponds to a Morse

set, and the directed edges between Morse sets indicate the partial order on the Morse

sets as described in Chapter 2. Inside each circle are the polynomials constituting the

Conley index for each Morse set computed with Z3 coefficients.

To obtain intuition about the dynamics associated with each Conley index see Ta-

ble 7.1. Observe that there is a Morse set in the Conley-Morse graph titled pink with

Conley index x2 + x + 1 in dimension 1. This index does not appear in Table 7.1 so

is worth an additional comment. The database allows us to recognize this Morse set

arises as the result of a Morse set with Conley index x− 1 in dimension 2 merging with

a Morse set with Conley index x3 − 1 in dimension 1. Thus we take as our represen-

tative dynamics an unstable fixed point with two unstable directions connecting to an

unstable period 3 orbit with one unstable direction.

As is indicated in Table 7.1 the Conley index of the empty set is trivial. However,

as mentioned in Chapter 3 with regard to the Smale horseshoe, nontrivial invariant

sets can also have trivial Conley index. In particular, for the parameter values being

considered in this paper the origin is always an unstable fixed point for Equation (7.1).

However, because we are restricting the phase space to a compact subset of [0,∞)2, the

Conley index of the origin is always trivial. This is explicitly seen in all the Conley-

Morse graphs of Table 7.2 except for the Conley-Morse graph labeled gray and dark

gray.

This has interesting implications, however, for the gray and dark gray Conley-Morse

graphs. Namely, in these graphs our computations based on the outer approximation

must not isolate the origin. In the case of the dark gray Conley-Morse graph, the fact

that there is only one node implies that the computed isolating neighborhood for the

globally stable dynamics in the interior of [0,∞) also contains the origin. Reviewing the

explicit results for the gray Conley-Morse graph leads to the same conclusion. Since

in this biological system the origin plays the special role of extinction, this strongly

suggests that for these parameter values stochastic perturbations can easily lead to
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extinction. More on this below.

Having established interpretations for the individual Conley-Morse graphs, we now

turn to how they are related. Figure 7.1 displays a picture of parameter space output

by the database for the plant model s = 0. Each color region indicates a subset of phase

space with the same Conley-Morse graph. We hasten to add that this image represents

a simplification of the continuation classes defined in Section 2.3. In particular, in

Figure 7.1 the classification is based on just the Conley-Morse graph, a simplification

done for visual clarity.

The major color regions in Figure 7.1 correspond to the labeling of Conley-Morse

graphs in Table 7.2. Small changes in shading represent the presence of additional Morse

sets with trivial Conley index in the Conley-Morse graph. As discussed previously,

a trivial Conley index does not necessarily mean the invariant set of the underlying

continuous dynamics is empty. Moreover, given our philosophy of working with the

graph Fζ as a discrete representation of the dynamics on the parameter grid element

ζ, we do not want to completely disregard the presence of Morse sets with trivial

Conley index, since they indicate recurrent behavior that is observed at the level of

discretization chosen. There are at least two mechanisms that can lead to trivial Conley

indices. The first is the presence of slow dynamics that numerically manifests itself as

a kind of recurrent behavior. It should be noted that what is meant by “slow” will

depend on the level of discretization. The second is the presence of invariant dynamics,

the structure of which cannot be identified at the given level of resolution. In either

case the existence of a recurrent set with trivial Conley index is an indicator of a region

in phase space of possible interest, depending on the application.

Figure 7.2 shows the same picture as Figure 7.1 except for the fish model s = 1.

From the image alone we can see the answer to our question from Section 7.1: that

despite sharing many of the same dynamics, the way that those dynamics are situated

in parameter space is quite different between the plant and fish models. Thus, our

objective now is to understand what connection, if any, there is between the similar

dynamics as we vary the competition parameter s that interpolates between the two

models.
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Figure 7.1: Picture of parameter space for database computation with s = 0, i.e., the

plant model. As in all subsequent figures, the x-axis corresponds to θ1 (young age

class reproduction rate) and the y-axis θ2 (old age class reproduction rate). The bold

diagonal line corresponds to the bifurcation diagram in [45, Figure 1]. See Table 7.2

for the Conley-Morse graphs corresponding to each color.
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To do the comparison we have chosen to focus on three distinct dynamical phenom-

ena that have biological interest.

(1) Biennial Population Dynamics. The teal and green Conley-Morse graphs exhibited

in Table 7.2 indicate the presence of stable 2-cycle sets and stable 4-cycle sets, respec-

tively. Referring to Figure 7.1 for the plant model, the teal region is in the upper-left

corner corresponding to small θ1 and large θ2. Thus we can observe robust biennial

behavior in the presence of a small amount of reproductive capacity by the younger age

cohort.

In the corresponding figure for the fish model, Figure 7.2, the teal stable 2-cycle

region is larger, but it is oriented along the θ1 axis. Hence the dependence on stable

biennial dynamics on the rates of reproduction appear to be opposite. An interesting

question is if there is any connection between these two regions that can be observed in

the intermediate models. In other words, as s is varied is there a choice of reproductive

rates that preserves stable biennial population dynamics?

Choosing a particular parameter value and examining the associated stable 2-cycle

Morse sets in phase space shows that this biennial behavior corresponds to alternating

high-low populations between the two age cohorts. Of course, the actual values, i.e.

location in phase space, is parameter dependent and thus not directly accessible from

the database.

(2) Bistability. Bistability is easily detected in the Conley-Morse graphs; it occurs if

there is more than one minimal node in the Morse graph. Thus, the red, orange, and

yellow Conley-Morse graphs imply the existence of bistable dynamics. The dynamics

within attractor can be identified via the Conley index. Thus, the red Conley-Morse

graph indicates that one attractor is a stable 3-cycle set while the other attractor is

a 1-cycle set. Referring to Figure 7.1 for the plant model, the red region is vertically

oriented, so that it is sensitive to small changes in θ1 but robust to changes in θ2. In the

fish model, Figure 7.2, this is reversed, and the bistable region is much more sensitive

to changes in θ2 compared to θ1. As in the case of the biennial population dynamics,

there is the question of whether these dynamics are related by the intermediate models.
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Figure 7.2: Picture of parameter space for database computation with s = 1, i.e., the

fish model. This is an image of the subset [9, 50] × [0, 50] of the full parameter space.

The black regions along with the region θ1 ≤ 9 were not computed due to memory

constraints.
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Observe that in the fish model the teal region and the red region intersect in the

region that is colored orange. As the orange Conley-Morse graph indicates this region

exhibits characteristics of both the teal and the red regions—bistability where one

attractor is a stable 3-cycle set and the a stable 2-cycle set. This dynamics is not

detected by the database computations in the plant model.

(3) Lack of Permanence. We are using a continuous deterministic model of discrete

populations which for at least two reasons is suspect for small population levels: (i) the

model can predict population levels below a single unit; and (ii) when the origin is un-

stable the model does not allow a positive population to become extinct, a phenomenon

that one would expect to occur due to stochastic perturbations. The concepts of per-

manence [20] and persistence [46], which in our setting is equivalent to the attractor of

the positive orthant begin bounded away from the origin, were introduced to address

this concern. An advantage of the database approach is that it allows one to quantify

these ideas.

Suppose that the phase space grid is chosen at a scale to address concerns (i) and

(ii). For example, suppose that the grid element containing the origin is large enough

to both contain all points in phase space smaller than a single unit of population, and

to contain all points that the assumed random perturbations might take to extinction

within one time step. Then the fact that the database computations use an outer

approximation guarantees that every Morse set not containing the origin is bounded

away from the origin, and that any such Morse sets which are stable can be said to

exhibit permanence. In this direction the database provides a proof of this fact.

On the other hand, if the origin is not isolated by its own Morse set—for example, if

the only attractor contains the origin—then it suggests that at these scales permanence

is not achieved. This could be an artifact due to the choice of a poor outer approxima-

tion that prevents the database from separating stable dynamics away from the origin.

However, if this is an important modeling issue, then it can be resolved, at a computa-

tional cost, by using a better outer approximation to determine the multivalued map.

And in every case the database indicates all regions of parameter space with possible
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lack of permanence.

As is discussed above, the origin is not isolated in the gray and dark grey Conley-

Morse graphs. We focus on the gray Conley-Morse graph where the minimal Morse set

has the Conley index associated with a stable invariant circle (see Table 7.1). In fact,

the dynamics on the associated Morse set includes both the origin and large oscillations

in the population. It is reasonable to expect that due to stochastic fluctuations or less

than single unit population levels extinction will occur.

As indicated in Figure 7.1 for the plant model the gray Conley-Morse graph occurs

for large θ1, i.e., if the first age class produces large numbers of seeds then extinction

is expected (It is interesting to note that biennials typically produce no seeds the first

year). Furthermore, for θ1 sufficiently large, this phenomenon is essentially independent

of θ2. Figure 7.2 shows that for the fish model again this dependency is reversed.

Sufficiently high θ2 given a moderate θ1 means extinction, and these dynamics are

relatively insensitive to θ1.

We are interested in understanding how these phenomena (biennial population dy-

namics, bistability and lack of permanence) depend upon the type of intra-species

competition. Thus we perform the database computations using Equation (7.1) at the

parameter values s = 0.01, 0.02, 0.05, and 0.10. To explain the nonuniform choice of s it

should be noted that while s is taken to be a linear interpolation parameter between the

exponents of the plant and fish models, it does not follow that the dynamics changes

in a uniform manner. In fact, because for θi > 1 the exponent in the fish model is

larger than that of the plant model, the dynamics at s = 0.1 already begin to strongly

resemble the dynamics of the fish model at s = 1.

Figures 7.3–7.6 identify regions of parameter space with the Conley-Morse graphs

of Table 7.2 for the values s = 0.01, 0.02, 0.05, and 0.10, respectively. Looked at in

sequence this gives a picture of how the dynamics over parameter space can be expected

to change in response to a change in the nature of competition. In particular, we revisit

the contrasts observed between the dynamics of the plant and fish models to see how

these phenomena behave over the transition.
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Figure 7.3: Picture of parameter space for database computation with s = 0.01.

10 20 30 40 50

10

20

30

40

50

θ1

θ2

Figure 7.4: Picture of parameter space for database computation with s = 0.02.
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Figure 7.5: Picture of parameter space for database computation with s = 0.05.
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Figure 7.6: Picture of parameter space for database computation with s = 0.1.



87

(1) Mixed Competition and Biennial Population Dynamics. The teal Conley-Morse

graph (Table 7.2) which indicates the existence of a stable 2-cycle and occupies most

of the upper left corner of parameter space for the plant model (Figure 7.1) is already

much less robust by s = 0.01 (Figure 7.3) and invisible by s = 0.02 (Figure 7.4). It

reappears at s = 0.05 (Figure 7.5) for large values of θ1 and moderate values of θ2. We

can see that this 2-cycle region moves closer to the origin as s increases from 0.05 to 1

(Figures 7.5 and 7.6).

From this, we observe that the stable 2-cycle dynamics of the plant model do not

appear to continue to the stable 2-cycle dynamics of the fish model. In other words,

if the nature of competition changes within a biennial population from plant-like to

fish-like, then there is a point at which the biennial dynamics will be lost, regardless of

what happens to reproduction rates.

(2) Mixed Competition and Bistability. The red, orange, and yellow Conley-Morse

graphs indicate the existence of bistable dynamics. These colors are present in Fig-

ures 7.3–7.6, which suggests that bistability persists under continuous changes in s.

The ecological interpretation is that bistable dynamics is robust to changes in the type

of competition experienced by the young members of the species.

Although bistability is present in each slice of parameter space, the shape of the

bistable region changes with s. For s < 0.05 the region is more extended in the θ2

direction, although by s = 0.02 the tail that extends primarily in the θ2 direction is

very narrow. By s = 0.05 things look quite different—the bistable region is much larger

and extends much further along the θ1 direction than the θ2 direction. For 0.5 < s ≤ 1

this orientation is preserved and the bistable region narrows further in the θ2 direction.

(3) Mixed Competition and Lack of Permanence. While in the plant and fish models

a lack of persistence (represented by the gray regions) could be reasonably described

in terms of thresholds—large θ1 in the plant model and a combination of large θ2 and

moderate θ1 in the fish model—in the intermediate models this no longer holds. In

the case of s = 0.01, for example, large values of θ1 do not exhibit persistence if θ2 is

sufficiently large or small, but do exhibit persistence for moderate values of θ2. And
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even this non-montone behavior is not described by a threshold: looking at the upper

right corner when s = 0.01 or 0.02, there is a tradeoff between θ1 and θ2 that determines

whether the population will persist, given by the slope of the boundary.

7.3 Conclusions

Typically, network diagrams are used to model complex systems in settings in which

mechanisms associated with the interactions are poorly understood. It is reasonable to

expect that different modeling assumptions concerning these mechanisms will lead to

different dynamics, since the structure of invariant sets can be extremely sensitive to

small perturbations. However, in the context of limited information one might prefer

to understand those dynamic structures that are robust with respect to parameters.

In addition, for many applications, the precision with which measurements can be

taken will limit the observable dynamics. The database approach to dynamical systems

allows us to rigorously investigate qualitative dynamics in a way that is robust to these

limitations of precision in modeling.

There are other approaches to modeling dynamical systems that aim to reflect this

inherent uncertainty. As alluded to in our discussion on permanence, the inclusion of

stochastics into the model is a fairly common technique. How our approach compares

with a stochastic dynamical system depends on the kind of noise that is being modeled.

In the case in which it is important to include unbounded noise, any rigorous state-

ment hoping to summarize the dynamics needs to allow for low probability events that,

for example, can move systems between different basins of attractions. Invariant mea-

sures provide a means by which one can hope to describe such systems. At the moment

we know of no method for relating the structure of the Conley-Morse graphs to invari-

ant measure. Nevertheless, if we believe that the system that we are exploring has an

underlying deterministic model, the coarse features of which we have captured analyti-

cally, then database computations that indicate multiple basins of attraction over a set

of parameter values might suggest that the associate invariant measure is not unimodal.

If it is sufficient to assume bounded noise (in either phase or parameter space), then



89

the database approach can be used to make rigorous statements. Observe that if the

noise in the dynamical system is bounded, then this can be incorporated into the outer

approximation when the dynamics is combinatorialized. Thus, if we take our model to

be a deterministic map along with bounded noise, the database can be used to prove

that there can be no trajectory between two basins of attraction of the deterministic

system even in the presence of noise.

Finally, there is another interpretation of the database that is broader than merely

investigating the underlying deterministic dynamics, but that also does not fit neatly

into any stochastic model. We might call this the “ruler” interpretation. Suppose

we have instruments capable of measuring either the state or parameters of a system

with a certain precision, e.g., with a ruler we might be confident we can measure to

the nearest millimeter. The database computation we perform is still valid even if

the act of measurement disrupts the system, as long as the disruption does not alter

the measured value. In other words, the computation we perform is valid even if the

ruler changes the length of what we measure, just so long as it changes in a way that

rounds to the same value. This is distinct from typical stochastic models of noise for

a couple reasons. First and most importantly, there need be no assumption about

the distribution of the perturbations introduced. Second, the types of noise permitted

depend on the grid chosen—intuitively, points near the center of a grid element can

be moved in any direction, whereas points near the boundary can only be moved very

small distances in the direction of that boundary, but much larger distances away from

the boundary.

This kind of investigation can have potentially important implications for the prac-

tice of modeling. To the extent that the qualitative dynamics is preserved over param-

eter space, we can conclude that the particular choice of model is less important than

the general structure given by the network diagram. On the other hand, to the extent

that we see important changes in the structure of dynamics over parameter space we

can say that it is important to supplement the network diagram with further modeling

assumptions, even though the dynamics of interest may be very coarse.

In the example of overcompensatory age-structured population models, we see that
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two classical approaches using the same form of nonlinearity can exhibit similar dynam-

ics while having those dynamics situated quite differently in parameter space. The two

different models already have different a priori justifications in terms of the biological

understanding of competition. The database computations confirm that even looking

at the dynamics on a coarse level we can distinguish between the models, despite the

fact they arise from the same network diagram, use the same nonlinearity and locally

exhibit the same dynamic structures.

By embedding these models into a larger model that incorporates an additional

parameter s that represents intraspecies competition, we indicate how the database can

be used to investigate empirically the relative importance and impact of the structure

of competition. It should be emphasized that the parameter s is really an ordinal

parameter—we have no basis to assign any significance to particular values beyond their

ordering and furthermore it is not clear how it could be directly measured. However,

the database can be used to organize and characterize the changes in the qualitative

dynamics corresponding to different levels of competition. In principle, the associated

database information could suggest experimental tests to determine positions along this

scale.
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dark gray

gray blue maroon

teal pink red

green purple orange yellow

Table 7.2: Table of Conley-Morse graphs corresponding to each color
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