
MECHANISTIC MODELING, SIMULATION AND
OPTIMIZATION OF WET GRANULATION

PROCESSES

BY ANWESHA CHAUDHURY

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Chemical and Biochemical Engineering

Written under the direction of

Dr. Rohit Ramachandran

and approved by

New Brunswick, New Jersey

January, 2015



c⃝ 2015

ANWESHA CHAUDHURY

ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

MECHANISTIC MODELING, SIMULATION AND

OPTIMIZATION OF WET GRANULATION

PROCESSES

by ANWESHA CHAUDHURY

Dissertation Director: Dr. Rohit Ramachandran

Particulate processes involving handling of solids are ubiquitous in various industries

and are typically operated inefficiently due to a lack of adequate mechanistic process

understanding. A primary application of such processes is found in the pharmaceutical

industry that involve manufacturing of solid dosage forms (e.g. tablets). Granulation

is a critical particulate process that plays an important role in the overall manufacture

of pharmaceutical drugs. This work focuses on improved mathematical modeling of

granulation processes using the population balance framework. One of the primary

objectives deals with model development for granulation followed by development of

improved numerical techniques for reduced computational overheads associated with

the solution techniques for solving population balance models. This study is also aimed

at identifying the influence of various operating parameters on the final granule prop-

erties through the development of a novel semi-mechanistic kernel and an integrated

mesoscale model framework that can effectively capture key granulation dynamics. A

compartmentalized model has also been formulated for a high-shear wet granulator that

can capture the inhomogeneities (with respect to liquid and particle velocity) within

the vessel. This integrated, compartment-based model can be further extended for open

ii



loop optimization and control of the granulation process, which can aid at obtaining

an optimal recipe for the operation of the granulation process. This work will make

a significant contribution towards improved understanding of the granulation process

and is aimed at mitigating the current inefficient operation of the process.
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Chapter 1

Introduction and Objectives

Particulate processes are ubiquitous in various branches of engineering with crystal-

lization, granulation, milling, polymerization and emulsification being examples of such

processes. Such processes are pervasive in various industries involving food processing,

pharmaceuticals, detergents etc. The pharmaceutical industry for instance is governed

by tight regulations and strict quality criteria, thus emphasizing the need for improved

manufacturing practices. The amendments to the laws dictated by the regulatory bodies

suggest the production to be compliant with the good manufacturing practices (GMP)

(Reklaitis et al., 2010). The rising overheads owing to research and development, man-

ufacturing costs and expiration of patented drugs provide a lot of pressure on the

pharmaceutical companies to adopt an economical manufacturing practice that would

alleviate cost and generate profit. This motivates the implementation of predictive

tools such as Quality by Design (QbD) and Process Analytical Tools (PAT) (Gernaey

and Gani, 2010; Klatt and Marquardt, 2009) which have been recently launched by

the Food and Drug Administration (FDA). QbD encourages a thorough understanding

of the process and the product along with the knowledge of the risks involved in the

manufacturing which could thereby be minimized utilizing detailed process knowledge.

This necessitates the application of process systems engineering (PSE) approach to

pharmaceutical manufacturing (Linniger et al., 2000) as it provides an impetus to such

industries (that involve solids handling) to move to a more sustainable and process in-

tensified position (Buccholz, 2010). Particulate processes involving granular materials

are not very well understood and lack available fundamental knowledge. This results

in the need for numerous assumptions while modeling or designing the system, which

may result in various processing problems while carrying out the process for industrial
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purposes (Boukouvala et al., 2010).

Granulation, a complex process involving the design of particle properties, is of im-

mense importance to various industries that require handling of particulate matter. It

is a process whereby primary powder particles adhere to each other (by creating liquid

bridges and thereafter solid bridges upon drying between them through the use of a

binding agent) to form larger, multi-particle entities called granules. Granulated par-

ticles exhibit better flow properties, increased bulk density, controlled dissolution and

uniformity in the distribution of multiple solid components thereby facilitating further

downstream operations such as tablet compaction (Sochon et al., 2010). Granulation

can be carried out in batch or continuous mode using various equipments such as under

high shear, using a fluid bed, in a twin screw granulator or in a drum. High-shear wet

granulation is a complex process with several agglomeration and breakage mechanisms

coming into play simultaneously: namely wetting and nucleation, aggregation and con-

solidation, breakage and attrition, and layering (Iveson et al., 2001a; Cameron et al.,

2005).

The industrial operation of the granulation process is often associated with large recycle

ratios and high batch rejection rate (Salman et al., 2007). This is highly undesirable

due to the significant wastage of inventories. It is therefore advisable to use a model

based systems approach in order to better control, predict and optimize the granula-

tion process (Linniger et al., 2000). It can significantly aid in improved process un-

derstanding, supplement available knowledge with new data, reduce time and cost for

process-product development. Numerous modeling approaches have surfaced over the

past years that aim at alleviating the operation of the granulation process by providing

apriori predictions.

In the following sections, a detailed description is provided which presents modeling

work that would help circumvent the issues which are faced in the current operation

of granulation process. Improved modeling frameworks exhibit better understanding of

the process thus enabling the implementation of a systems engineering based approach

for improved processing. Furthermore, numerical techniques have also been developed
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such that the solution of the population balance models can be eased. Most models

observed in the literature are empirical in nature. A more mechanistic understanding

of the process is necessary in order to apply the approach of QbD into practice and

also relate the various operating parameters to the final granule properties. A mecha-

nistic model is also developed which can significantly alleviate the problems faced with

empirical models/kernels and can enable predictions beyond the design space. A high-

shear wet granulator is typically considered to be a well-mixed system and is commonly

represented using a single equation describing the entire vessel. This is an oversimplifi-

cation and is typically incapable of capturing the inhomogeneities within the system. A

compartment based model is proposed for that purpose which can account for the sys-

tem heterogeneities. Using the compartment model along with the mechanistic PBM

for each individual compartment, an open loop optimization algorithm is run which

can provide some insight on the optimal recipe that should be followed while operating

granulation processes with a certain target output. With these intentions, the various

aims of this dissertation can be detailed as

Specific Aim I: Model development for high shear and fluid bed wet granulation

processes. Emphasizing on the importance of the various mechanisms influencing gran-

ulation and developing a heat and mass transport framework for drying during fluid

bed granulation.

Specific Aim II: Development of numerical techniques for improved solution of popula-

tion balance models (PBMs). Obtaining reduced order models for PBMs for alleviating

the ”curse of dimensionality” (i.e., reduce the simulation of time of high-dimensional

PBMs) .

Specific Aim III: Developing a mechanistic framework for relating the effect of various

operating parameters on the final outcome of the granulation process.

Specific Aim IV: Development of a generic compartment based model for high-shear

wet granulation followed by optimization and open loop control of the process using a

semi-mechanistic model.
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Chapter 2

Specific Aim I: Population balance model development for

high shear and fluid bed wet granulation

The details of the discussions provided in this section can be obtained in the publica-

tions:

• Chaudhury, A., Ramachandran, R., 2013, Integrated Population Balance Model

Development and Validation of a Granulation Process. Particulate Science and

Technology 31 (4), 407-418

• Chaudhury, A., Niziolek, A., Ramachandran, R., 2013, Multi-dimensional mech-

anistic modeling of fluid bed granulation processes: An integrated approach. Ad-

vanced Powder Technology 24 (1), 113-131

• Chaudhury, A., Barrasso, D., Pandey, P., Wu, H., Ramachandran, R., 2014,Popu-

lation balance model development, validation, and prediction of CQAs of a high-

shear wet granulation process: Towards QbD in drug product pharmaceutical

manufacturing. Journal of Pharmaceutical Innovation 9 (1), 53-64

2.1 Granulation-Modeling and general overview

Granulation processes have been modeled using various approaches such as Discrete El-

ement Modeling (DEM) (Gantt et al., 2006); hybrid models-DEM+PBM (Barrasso and

Ramachandran, 2014), PBM+Volume of fluid (VoF) method (Stepanek et al., 2009);

PBM+computational fluid dynamics (CFD) (Rajniak et al., 2009; Sen et al., 2014),

PBM (Immanuel and Doyle III, 2005; Poon et al., 2009; Ramachandran and Chaud-

hury, 2012; Ramachandran et al., 2011; Chaudhury and Ramachandran, 2013), and

so on. PBMs represent a mesoscopic framework wherein the microscopic information
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in the form of kernels is utilized to predict the macroscopic properties (e.g size and

porosity). Due to the inherent discrete nature of PBMs, it can efficiently describe

particulate processes such as granulation. This dissertation is focussed on employing

PBMs for effective modeling and optimization of granulation processes.

One dimensional PBMs have been widely studied for model-based analysis (Long et al.,

2005) but they are often inadequate in explaining all the mechanisms governing the

process (Iveson, 2002). Significant work has been done on the development of population

balance models for granulation, but most of them emphasize on a single mechanism

instead of studying the combined effect of all the sub-processes together (Rajniak et al.,

2007). This suggests the need for using multidimensional models for improved and

accurate modeling. It is not advisable to lump any of the multiple dimensions, since

that may lead to modeling errors. Therefore, these three particle attributes are re-

cast in terms of their individual volumes of solid (s), liquid(l) and gas(g) as it enables

decoupling of the integrated process with respect to the individual meso-scopic sub-

processes (Verkoeijen et al., 2002).

Binder content, granule porosity and granule size are some of the most crucial charac-

teristics that can be tracked using the PBM for a granulation process. Binder content

has a significant role to play in the growth of granules, as, with higher amount of the

binder, there is larger availability of surface-wet granules (Knight et al., 1993; Osborne

et al., 2011). Studies have shown that the type and amount of binder fluid affect the

type of coalescence/aggregation (Liu et al., 2000). Porosity is also very crucial while

modeling granulation because with the granule porosity below a certain critical poros-

ity, liquid is squeezed on the surface thus resulting in surface-wet granules which helps

promote granule growth. Moreover, porous granules have a higher tendency to break

initially and aggregate thereafter, leading to the formation of more dense granules (An-

napragada and Neilly, 1996). Using these particle aspects, a multi-dimensional PBM

can be formulated, which takes into account the key mechanisms that affect the final

product properties.

Granulation processes have been widely investigated using regime-maps. Based on
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various dimensionless numbers (e.g. spray flux, Stokes deformation number, viscous

Stoke’s number etc), the predominant mechanisms affecting the granulation process

have been identified. Iveson et al. (2001b) have significantly worked on identifying

the growth regimes for granulation based on the Stoke’s deformation number and pore

saturation. Iveson et al. (2001a); Litster et al. (2001); Emady et al. (2011, 2013) have

also investigated the various regimes pertaining to the nucleation mechanism. Based on

the operating conditions for the process, the granulation system has been categorized as

droplet controlled or mechanical dispersion regime. These analysis provide meaningful

insights towards the behavior of the system.

Traditionally, granulation has been performed in various equipment such as fluid bed,

high shear, twin screw or in a drum. Significant work has been observed in literature

that involve understanding the granulation behavior in these equipments. Previously, a

detailed study has been conducted by Pandey et al. (2013) that focussed on the effect of

the various operating parameters on the final granules formed in a high-shear granulator

using a full factorial DOE (for liquid to solid ratio, impeller speed and the wet mass-

ing time). The study revealed a pronounced effect of wet massing time and impeller

speed at higher liquid to solid ratios. The effect of the various binder addition modes

have also been previously studied by Osborne et al. (2011). In a drum granulator, the

effect of the formulation properties and the operating variables have been studied on

the process dynamics and end-point granulation outcome in a lab-scale drum granula-

tion process by Ramachandran et al. (2008). Glaser et al. (2009) had performed some

initial control studies following which Ramachandran and Chaudhury (2012) used a

compartment based model for conducting control studies on a drum granulator. In the

latter work, a multiple input-multiple output (MIMO) control system was studied for

the pairings followed by the assessment of a novel control configuration. Constrained

optimization studies have also been performed on drum granulation for control pur-

poses (Wang et al., 2006; Wang and Cameron, 2007). The operation of a fluid bed

equipment is inherently complex and involves interconnected process variables that are

available at the operator’s disposal in obtaining a suitable recipe for achieving good

granulation. Advantages of fluid bed granulation over other granulation methods are
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usually indicated to be higher product density, and lower solvent and energy consump-

tion (Boerefijn and Hounslow, 2005). In a fluid bed granulation aggregation occurs due

to the combined effect of viscous and capillary forces by the binder (Reynolds et al.,

2005). For the fluid bed operation, binder content and the particle/excipient solubility

have an important role to play in the granulation process (Rajniak et al., 2007). Various

other experimental studies have been carried out in order to link the process variables

and various microscopic properties of the particles with the granulation process (Liu

et al., 2000; Stepanek and Rajniak, 2006).

This work focuses on implementing the 3-D population balance model framework for

the granulation process. The 3-D population balance equation can be written as

∂

∂t
F (s, l, g, t) +

∂

∂s

[
F (s, l, g, t)

ds

dt

]
+
∂

∂l

[
F (s, l, g, t)

dl

dt

]
+

∂

∂g

[
F (s, l, g, t)

dg

dt

]
= ℜnuc + ℜagg + ℜbreak (2.1)

where F(s,l,g,t) represents the population density function such that F(s,l,g,t)dsdldg is

the moles of granules with solid volume between s and s+ds, liquid volume between l

and l+dl and gas volume between g and g+dg. The partial derivative term with respect

to s accounts for the layering of fines onto the granule surface; the partial derivative

term with respect to l accounts for the drying of the binder and the re-wetting of

granules; the partial derivative with respect to g accounts for consolidation which, due

to compaction of the granules, results in an increase of pore saturation and decrease in

porosity.

2.2 Mechanisms included within the model

The key mechanisms that play a significant role in shaping the final characteristics of

a granule are aggregation, breakage, nucleation, consolidation, layering and drying/re-

wetting (Verkoeijen et al., 2002). In the integrated model considered in this work, all of

the above mentioned mechanisms have been included except for nucleation, which can

be easily incorporated in the developed framework given more advances and consensus

in nucleation modeling. In literature, a mechanistic nucleation kernel has been proposed
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by Poon et al. (2008) for the droplet-controlled regime. Intensive experimental studies

have also been conducted on the nucleation of particles during granulation (Hapgood

et al., 2003; Emady et al., 2011; Tan and Hapgood, 2011).

Aggregation is a sub-process in which two or more particles collide with each other

and combine together to form larger particles. The overall net aggregation rate can be

broken into the corresponding birth and death terms as

ℜagg(s, l, g) = ℜform
agg −ℜdep

agg (2.2)

such that,

ℜform
agg =

1

2

∫ s−snuc

snuc

∫ lmax

0

∫ gmax

0
β(s′, s− s′, l′, l − l′, g′, g − g′)

×F (s′, l′, g′, t)F (s− s′, l − l′, g − g′, t)ds′dl′dg′ (2.3)

ℜdep
agg = F (s, l, g, t)

∫ s−snuc

snuc

∫ lmax

0

∫ gmax

0
β(s′, s− s′, l′, l − l′, g′, g − g′)

×F (s′, l′, g′, t)ds′dl′dg′ (2.4)

where, snuc is the solid volume of nuclei (assumed zero in this study), β(s′, s− s′, l′, l−

l′, g′, g − g′) is the size-dependent aggregation kernel that signifies the rate constant

for aggregation of two granules of internal coordinates (s’,l’,g’) and (s-s’,l-l’,g-g’). The

formation term accounts for the new particles that are formed after coalescence whereas

the depletion term accounts for the particles that are lost when the smaller particles

coalesce and aggregate.

An empirical kernel proposed by Madec et al. (2003) shown in Equation ( 2.5), that

takes into account the various parameters such as the particle size and binder vol-

ume was considered to be more appropriate empirical kernel for the developed multi-

dimensional PBM.

β = β0(L
3
1 + L3

2)

(
(c1 + c2)

α

(
100− c1 + c2

2

)δ
)α

, (2.5)
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where

ci ≡
volume of liquid

volume of agglomerate
× 100 =

l

s+ l + g
× 100 (2.6)

and α and δ are empirical parameters. The length of the particles are L1 and L2.

Breakage is the breakdown of a particle into two or more fragments and is mainly

governed by attrition and impact. It plays a crucial role in controlling the final granule

size distribution in high shear granulators. Many published breakage kernels have been

observed in literature including an empirical kernel proposed by Pandya and Spielman

(1983) and a semi-mechanistic kernel containing one tunable empirical parameter that

was previously used by Soos et al. (2006). The semi-mechanistic kernel has also been

utilized in this work. Mechanistic kernels have also been observed in literature, where

the kernel has been expressed to be proportional to the ratio of the external stress to

the intrinsic strength (Ramachandran et al., 2009). The breakage kernel used in this

work is expressed as a function of the shear rate, G and empirical parameter, B as

Kbreak(s, l, g) =

(
4

15π

) 1
2

×G× exp

(
− B

G2R(s, l, g)

)
(2.7)

and the breakage function that has been used, is based on the work by Pinto et al.

(2007). Using this information, the breakage term can be broken into its corresponding

birth and death terms as

ℜbreak(s, l, g) = ℜform
break −ℜdep

break, (2.8)

such that the birth and death terms can be explained using Equations (2.9) and (2.10)

ℜform
break =

∫ smax

0

∫ lmax

0

∫ gmax

0
Kbreak(s

′, l′, g′)b(s, s′, l, l′, g, g′)× F (s′, l′, g′, t)ds′dl′dg′

(2.9)

ℜdep
break = Kbreak(s, l, g)F (s, l, g, t). (2.10)

Along with the various source terms-aggregation and breakage, various growth based
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mechanisms also influence the granulation operation. These mechanisms include con-

solidation, drying/rewetting and layering. The consolidation model used in the works

of Verkoeijen et al. (2002) was used to represent the negative growth with respect to the

gas volume. For the growth rate with respect to the liquid dimension, a mass balance

equation has been used to define the drying/rewetting. The layering of fines has been

represented in the form of a Monod based growth model (Wang et al., 2006).

Consolidation

Consolidation is a negative growth process which represents the compacting of granules

due to the escape of air from the pores. It can be modeled as an empirical exponential

decay relation (Verkoeijen et al., 2002) given by

dϵ

dt
= −c(ϵ− ϵmin), (2.11)

dg

dt
=
c(s+ l + g)(1− ϵmin)

s
× [l − ϵmins

1− ϵmin
+ g] (2.12)

where, the porosity ϵ is

ϵ =
l + g

s+ l + g
(2.13)

Here ϵmin is the minimum porosity of the granules and c is the compaction rate constant.

Layering

Layering of fines on the surface of particles is yet another crucial mechanism governing

the growth rate of particles during granulation. It is strongly dependant on the fraction

of powder/fines present in the system and the moisture content. The growth rate due

to layering has been formulated (Wang et al., 2006) analogous to the Monod model as

ds

dt
= Gmax

Mpowder

klayer
∑
Mi +Mpowder

e[−αlayer(xw−xwc)2] (2.14)
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where Gmax is the maximum growth rate, Mpowder is the mass of fine powder (particles

with a solid volume less than equal to that of the 7th bin is considered fines here and can

be defined as ρs
∫ s7
0

∫ lmax

0

∫ gmax

0 F (s, l, g)dsdldg with ρs being the density of solid), Mi

is the mass of particles in the ith size class (based on the solid, liquid and gas volumes,

x with respect to each internal coordinate), xwc is the critical moisture content and

considered a constant value of 0.1, klayer and αlayer are fitting parameters.

Drying/Rewetting

Drying is associated with the gain or loss of liquid into or from the granulation system

due to addition of more liquid or removal due to evaporation. As mentioned before,

the inhomogeneities associated with binder distribution has not been considered in

this work. Thus, we have assumed that all particles within the system receive equal

amount of liquid. For a more accurate model that takes into account the various

inhomogeneities, a multiscale approach is required which is beyond the scope of this

work. The liquid rate can be obtained from mass balance as

dl

dt
=
ṁspray(1− cbinder)− ṁevap

Ftotal ×Na× ρl
, (2.15)

Here, ṁspray is the spray rate of liquid, ṁevap is the evaporation rate, Na is the Avo-

gadro’s number, cbinder is the concentration of the binder and Ftotal is the total particle

distribution within the system. In the calculations for the drying/rewetting term, the

evaporation rate is considered 0 for the high-shear case as the drying of particles is

believed to exist in a separate unit operation altogether. In case of a fluid bed granula-

tion process, the granules are dried simultaneously as they granulate. In the following

discussions a heat and mass balance framework is also presented which illustrates the

calculation of the evaporation term for a fluid bed operation.

2.3 Calculation of the evaporation term

The evaporation term in the liquid balance can be obtained by using a detailed mass

and heat balance framework as presented in this section (Chaudhury et al., 2013b).
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Drying/liquid distribution denotes the increase or decrease of liquid content into or

from the granulation system due to addition of binder or removal due to evaporation.

The liquid water balance can be written in (2.16) as

dxbed
dt

=
ṁspray(1− cbinder)− ṁevap

Msolid
, (2.16)

where,

Msolid =Msolid fraction + ṁspraycbinder∆t, (2.17)

Here, xbed is the moisture content of the fluid bed, ṁspray is the spray rate of the liquid,

cbinder is the concentration of the solid binder in the liquid added, ṁevap is the rate of

moisture evaporated and Msolid is the mass of initial solid particles.

The water vapor balance can be written in Equation (2.18) as

dxout
dt

=
ṁair(xin − xout) + ṁevap

Mair
, (2.18)

where,

ṁevap = γAp,wetkmassρair(xsat − xout), (2.19)

xout is the moisture leaving the bed with the exiting air, ṁair is the rate of air entering

the bed,xin is the moisture content of the entering air, γ is the experimental correction

factor, Ap,wet is the wet surface area of the particles, ρair is the density of air and xsat

is the saturated moisture content.

The wet surface area can be expressed as a fraction of the total surface area as Ap,wet =

ηAp and the mass transfer coefficient, kmass can be expressed as a function of the

diffusivity of water, Dwater and particle diameter, D as

kmass =
2Dwater

D
, (2.20)

The surface area of granules can be approximated based on initial surface area as

ApD = Ap0D0. (2.21)
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where D0 is the initial diameter of a particle and Ap,0 is the initial surface of a particle.

Combining equations (2.20), (2.21) and expressing the wetted area as a fraction of the

overall surface area, we get

kmassAp,wet = 2DwaterηAp0
D0

D2
= 2Dwaterη

Ap0

D0

(
D0

D

)2

(2.22)

The total heat balance for the granulator can be expressed as:

Mair
dHout

dt
+Msolid

dHbed

dt
= ṁair(Hin −Hout)− Q̇evap − Q̇losses (2.23)

with the assumption that the granulator is well-mixed, the reference temperature is

the temperature of the liquid binder i.e., Tref = Tspray, and the bed temperature is

equivalent to the outlet air temperature i.e., Tbed = Tout. Hin, Hout and Hbed are the

specific enthalpies of the inlet air, outlet air and the bed respectively. Mair is the mass

of air in the granulator, Qevap is the heat lost due to evaporation and Qlosses is an

empirical correction quantity of heat used in the balance.

Making the necessary substitutions for Equation (2.23) and solving for dTout
dt gives:

dTout
dt

=
g(1)− ṁevap∆H − Q̇losses − g(2)dxbed

dt − g(3)dxout
dt

g(4)
(2.24)

where:

g(1) = ṁair[cp,air(Tin − Tout) + cgp,water[xin(Tin − Tref )− xout(Tout − Tref )]] (2.25)

g(2) =Msolidc
l
p,water(Tout − Tref ) (2.26)

g(3) =Mairc
g
p,water(Tout − Tref ) (2.27)

g(4) =Mair(cp,air + xoutc
g
p,water) +Msolid(cp,solid + xbedc

l
p,water) (2.28)

and cp,i designates the specific heat capacity of the ith species.

Solving the above set of equations, the evaporation term, ṁevap associated with the

drying term can be obtained. Due to the fluidization, there is a decrease in the liquid
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content of the particles from xliquid to xliquid − δxliquid, as particles get dried while

in the fluidized state. A mechanistic kernel has been utilized (for aggregation) in the

simulations such that the effects can be captured more efficiently.

Define initial values,  

distribution,  

and grid size. 

Update beta term  

in aggregation  

kernel defined by  

Immanuel, et al.  

Solve population balance function, 

calculate diameter of granules.  

Update granule properties  

(diameter, porosity, liquid content)  

Every 60 seconds 

Calculate formation, 

depletion, & consolidation  

terms in population balance. 

Use updated diameter to calculate 

mass transfer coefficient in  

evaporation rate.  

Calculate LOD, Xout, Bed Temperature  

Use Updated T in calculation of beta term 

Mass and Heat Balance 

Calculate liquid evaporated in each bin  

(Drying/Rewetting Term) 

Figure 2.1: Schematic of the algorithm for solving the coupled heat/mass balance and

PBM using a mechanistic kernel

2.4 Model calibration and Parameter estimation

The essence of developing sophisticated models to represent unit operations such as

granulation is to be able to predict the outcome of the process in advance and abide by

the principles of QbD. In order to obtain predictive models, it is important to calibrate

the model by aligning the model outcome with the experimental results pertaining

to a certain set of formulation and operating parameters. This suggests the need for

employing optimization algorithms in order to minimize the error between the simulated

property from the model and the experimental results obtained from real data. The

objective function fed into the optimization algorithm is a simple least square error. In

order to estimate the empirical parameters observed in the PBM, the error within the

crucial measurable quantities are minimized. A multi-objective optimization (MOO)

problem is formulated considering the particle size distribution (PSD) and the porosity
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of the granules for a certain size class. The multi-objective optimization problem is

formulated based on the principle of ε-constraint in order to obtain a pareto optima.

The main objective function comprises of the error in the PSD while the error in the

porosity is incorporated in the form of a constraint. The formulation is solved using

the particle swarm algorithm (PSA) which is a well acceptable algorithm for solving

MOO problems. The algorithm is forced to solve for parameters minimizing the PSD

error under the restrictions that the porosity is less than the desired tolerance.

For the estimation, four experimental datasets were used (based on the DOE provided

in Pandey et al. (2013)) and another three datasets were used for prediction purposes.

Due to lack of mechanistic knowledge in terms of the influence of impeller speed to the

different mechanisms, we have focussed on the datasets that were run at high RPM for

estimation and predicted the datasets obtained at low RPM. The PSD and porosity

measurements were used for the estimation.

To solve this optimization problem, the model was implemented in MATLAB. Since

the formulation is in the form of a multi-objective optimization problem considering

minimization of the error for both the PSD and the porosity, an attempt has been made

to obtain the pareto optimal solution. A multiobjective optimization problem produces

solutions which are not necessarily optimal with respect to any of the objectives con-

sidered separately, but are the best tradeoff solutions. The pareto solution provides a

set of parameters which represents the best possible situation for both (simultaneously)

the objective functions in focus. The multi-objective optimization problem has been

implemented in the form of an ε − constraint framework, where one of the objective

functions is tracked for the overall minimization while the other objective function is in-

corporated in the form of a constraint which dictates the feasible domain for the search

algorithm. The ε − constraint restricts the optimization calculations such that the

minimization of the PSD is brought about only for parameters that calculate the error

in the porosity to be less than the tolerance. The overall multi-objective optimization

(Equation (2.29)) framework was minimized using the particle swarm algorithm (PSA).
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Φ(θ) = min
θ

N∑
k=1

(Ok − Ek(θ))
2 (2.29)

θ = [β0 α δ B c xsat εmin] (2.30)

In this equation, θ is the set of adjustable parameters. Ok is the kth measurement

value, and Ek(θ) is the simulated value of that measurement. N is the total number of

measurements across all experiments used in parameter estimation. The measurements

encompass the porosity values of a particular size class as well as the relative volume

of each size class in the final PSD.

Particle swarm algorithm (PSA) that has been used for the minimization is a global

optimization algorithm that mimics the flight of a flock of birds and was first proposed

by Kennedy and Eberhart (1995). The algorithm is based on the synchrony of the

flocking behavior and depends significantly on the inter-individual distances between the

birds and their neighbors. The calculations using which the algorithm aims at obtaining

the minima by scanning the entire domain in a smart way is shown in Equations (2.31)

vt+1
b = w.vtb + c1.rand1.(bbest − xtb) + c2.rand2.(gbest − xtb) (2.31)

xt+1
b = xtb + vt+1

b .∆t (2.32)

Here b represents the bird, t is the number of iterations, vb and xb are the velocity

and position of the birds respectively, c1 and c2 are called the cognitive and social

parameters, w is the inertial weight which was an inclusion into the algorithm by Shi

and Eberhart (1998), rand1 and rand2 are random numbers, bbest is the best known

position x having the lowest objective function Φ(x) the bird itself and gbest is the best

known position of the entire particle (bird) swarm. The cognitive and social parameters,

c1 and c2 respectively were fixed at 0.3 for both in our PSA implementation. The

inertial weight, w has been varied linearly with the iterations between a maximum (=1)

and minimum value (=0.1). In Equation (2.31), the first term in the right hand side
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represents the inertial term, the second term represents the cognitive component

and the last term depicts the social component. Initially N birds were distributed

randomly in the parameter space, with a random initial velocity using a maximum

value of a fourth of the parameter spaces elongation. Birds leaving the parameter were

updated according to the mirroring concept in which the bird is mapped back into

the parameter space with a sign inversion of its velocity. After each iteration, the

ability of each bird to improve its bbest or gbest is checked within the algorithm. In this

approach, significant emphasis has been given to the fulfilment of the constraints and

the feasibility of the problem. A schematic diagram showing the implementation of the

PSA into our parameter estimation problem has been shown in Figure 2.2. The striking

characteristic of this algorithm is its feature of having the birds spread all over in the

search domain during the initial iterations and then have the birds more concentrated

to the regions which seems more promising.
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Figure 2.2: Schematic showing the algorithm employed for the parameter estimation

using particle swarm algorithm

To evaluate the success of the estimation, R2 values were calculated according to

Equation 2.33, comparing the predicted values with the measurements.

R2 = 1−

∑
k

(Ek −Ok)
2∑

k

(Ok − Ōk)2
(2.33)

(2.34)

Here, Ōk is the mean value of all measurements in k. R2 values were determined

separately for the porosity measurements and the relative volumes of each size class.
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SSE =
∑
k

(Ok − Ek)
2 (2.35)

The SSE values for the three predicted porosity and PSDs were compared to those of

the datasets used for parameter estimation. If the SSE of the predicted dataset is much

greater than the SSE values of the fitted data, the predicted data is poor, indicating

that the calibrated model fails to quantify the effects of the process conditions.

2.5 Calculation of output properties

After the multidimensional population balance equation is simulated, the various gran-

ule properties such as average diameter, average liquid and porosity are obtained from

the simulation results in order to qualitatively and quantitatively analyse the macro-

scopic properties. The average particle diameter (Equation (2.37)) is obtained from the

average volume with the assumption of the particle being spherical as

Average volume(t) =

∑
i,j,k[F (si, lj , gk, t)× (si + lj + gk)]∑

si,lj ,gk
F (si, lj , gk, t)

(2.36)

Average diameter(t) =
6

π
× (Average volume)

1
3 (2.37)

The average liquid content (Equation (2.38)) of the particles is obtained as a normalized

quantity by dividing the total liquid with the total volume as

Average liquid(t) =

∑
i,j,k[F (si, lj , gk, t)×

li
(si+lj+gk)

]∑
i,j,k F (si, lj , gk, t)

(2.38)

The average porosity (Equation (2.39)) of the granules is obtained as

Average porosity(t) =

∑
i,j,k[F (si, lj , gk, t)×

(lj+gk)
(si+lj+gk)

]∑
i,j,k F (si, lj , gk, t)

(2.39)

Number xm(t) (Equation (2.40)) distribution were also obtained by converting the three
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dimensional distribution function into a one-dimensional distribution. For better visu-

alization purposes, the three dimensional distribution is converted into a 1-D granule

size distribution by breaking the particle size span between the maximum and minimum

diameter into a certain number of one dimensional grids and considering the cumulative

distribution of the particles lying in each grid, as the overall distribution for the granule

size range. D is the individual particle diameter at the i,j,k grid.

xm(t) =
∑

Lm≤Dijk<Lm+1


F (si, lj , gk, t)

ns∑
i=1

nl∑
j=1

ng∑
k=1

F (si, lj , gk, t)

 (2.40)

2.6 Results and discussion

In this section, we will focus on obtaining a detailed analysis of the simulated PBM

with respect to varying input conditions and describing the competing effects of the

underlying mechanisms. We will also elucidate the effect of the various control variables

towards the final granule properties for a fluid bed process. All model simulations were

carried out on a 2.93 GHz Intel quad-core single processor desktop computer with 8GB

RAM in Matlab. The key material, process, design and empirical parameters used for

the simulations can be obtained from the paper (Chaudhury and Ramachandran, 2013).

These simulations are representative of a high-shear system where the evaporation term

is considered zero for the sake of simplicity.

2.6.1 Effect of various mechanisms on final product characteristics

Various cases have been considered as the basis to perform qualitative validation to

conclude that the dynamics exhibited by a typical granulation process (e.g. high-

shear) is best described by the consideration of multiple key granulation mechanisms as

opposed to single mechanisms such as aggregation which are traditionally the only one

considered. Moreover, the incorporation of a mass balance to account for liquid addition

is key to discern the difference between the granulation and wet massing regime.
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Table 2.1: Parametric values for the simulations used to study the effect of various
mechanisms

Parameter name Value

ρsolid 2700 kgm−3

ρliquid 1000 kgm−3

ρgas 1.2 kgm−3

Number of grids in solid, liquid and gas volume 22
Grid Width (same in each volume) 1.79× 10−13m3

Initial distribution: Mean 181.2µm
Initial distribution: Standard deviation 8.215µm

Binder Spray rate, u 8× 10−5m3s−1

Total volume of liquid added 0.048m3

cbinder 0.1
ϵmin 0.2
Gmax 1× 10−12

Consolidation constant, c 1× 10−4

Aggregation Constant for the kernel, β0 1× 1019

α for Madec kernel 1
δ for Madec kernel 1

Shear rate, G for the Breakage kernel 64s−1

Empirical parameter for Breakage 10

Table 2.2: Summary of the different cases used in PBM simulations

Case no. Aggregation Breakage Consolidation Liquid Layering

1
√ − − − −

2
√ − − √ −

3
√ − − √ √

4
√ − √ √ −

5
√ √ − √ −

6
√ √ √ √ √
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Bulk Properties

Figure 2.3 depicts the evolution of the average granule diameter as a function of time

for the different cases. Following the initial 200 seconds, the average diameter increases

with time due to the addition of liquid which promotes granule growth (mainly through

aggregation of particles). It can be seen that if the liquid addition is not accounted

for, there is a smaller change in the rate of increase of average diameter from the

granulation stage to the wet massing stage which is atypical of an industrial granulation

process. Experimental studies have shown a predominant increase in average diameter

at the granulation stage compared to the wet massing stage (Pandey et al., 2011).

This can also be confirmed by the plots corresponding to cases 2-6. Within cases

2-6, the effect of other competing mechanisms such as breakage, consolidation and

layering are investigated and results show their influence on bulk properties such as

average diameter where breakage and consolidation demonstrate a reduction in average

diameter and layering an increase in average diameter. The layering phenomenon does

not result in significant increase in granule diameter compared to aggregation due to the

assumption that the granulation takes place in the viscous regime where the viscous

forces promote aggregation as compared to layering which predominantly occurs in

the capillary regime (Ramachandran et al., 2008). Consolidation of particles lead to

a reduction in the gas volume and hence Case 3 suggests less increase in the average

particle diameter. Case 4, which considers aggregation, rewetting and breakage also

indicate reduced increase in the average particle diameter, primarily because of the

fragmentation of bigger particles into smaller bits.
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Figure 2.4: Effect of various mechanisms on the bulk properties for liquid flowrate=

8× 10−5 m3/sec, ρs = 2700 kg/m3, ρl = 1000 kg/m3, xwc = 0.04, initial distribution of

particles having a mean of = 1.82× 10−4m

Figure 2.4 a shows the influence of each mechanism on the average liquid content of

the population. Cases 4 and 6 show a rise in the average liquid content of the particles,

primarily since the amount of liquid added is constant, but, due to consolidation, the

gas volume is reduced and hence the denominator of the liquid content reduces thereby
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leading to an increase in the liquid content term. Figure 2.4 b shows the effect of

the various mechanisms on the average porosity of the granules. Overall, granulated

particles are shown to have higher porosity and a similar trend is also observed in the

figure. The average porosity of granules do not change when only aggregation is taken

into consideration, since there is no change in the overall liquid or gas volume of the

particles throughout the process. The figure suggests that the increase in porosity of the

population is greater when there is breakage of granules. This outcome could be a result

of the breakage kernel used which leads to particles with greater gas volume and thus

increased porosity. The increase in porosity is less when consolidation comes into play

since particles are compacted with the escape of gas from the granules. Both figures

are qualitative indicators that an integrated model must be considered to demonstrate

experimental observations in granulation processes (Ramachandran et al., 2008).

Distributed properties: Granule size distribution

Figure 2.5 shows the normalized mass frequency with respect to particle size classes

of a batch of granules. The maximum distribution of particles can be observed to lie

in the range of 180-500 µm. This suggests that particles tend to shift from smaller

bins to the larger bins as granulation proceeds. The different cases illustrate the effect

of competing mechanisms on the final GSD and results show that for integrated case

(case 6) the GSD is in an intermediate range with the effects of liquid addition, aggre-

gation and layering (positive growth mechanisms) striking a balance with breakage and

consolidation (negative growth mechanisms). Case 2 and 3 exhibit highest number of

large particles, since these two plots represent only the positive growth terms. Cases 4

and 5 have larger particles due to aggregation and liquid addition but there also exists

negative growth and breakage terms which lead to a relative decrease in the particle

size. Therefore, these cases have larger number of intermediate sized particles. The ex-

tent of shift (towards the left) of the distribution depends on the choice of parameters

considered for the respective mechanisms.
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Time evolution of granule size classes

Figure 2.6 suggests the variation in the number distribution for various mechanisms and

under different regimes. We can see that as granulation proceeds, due to aggregation,

smaller particles shift to larger bins as they agglomerate to form larger particles and

hence there is a steady increase in the number distribution of larger particles with

time and vice versa for smaller particles. With the addition of liquid, the number of

smaller particles reduce with time due to an increase in the particle diameter, but with

the onset of wet massing, the slope of the curve representing large particles decreases

slightly and the reverse happens for smaller particles. This trend is more or less similar

for all mechanisms, but as breakage comes into play, the decrease in the slope of larger

particles becomes more due to the reduction in particle growth as breakage becomes

dominant and leads to a decrease in the increase of larger particles.
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0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

N
um

be
r 

di
st

rib
ut

io
n

 

 
150−180 µm

180−250 µm

250−425 µm

425−600 µm

Dry Mixing

Granulation

Wet Massing

(d) Aggregation, liquid addition and consolida-

tion

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

N
um

be
r 

di
st

rib
ut

io
n

 

 
150−180 µm
180−250 µm
250−425 µm
425−600 µm

Granulation

Dry Mixing

Wet Massing

(e) Aggregation, liquid addition and breakage
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Figure 2.6: Number density of particles under various mechanisms

The mode in which liquid is added also has a marginal effect on granule properties.

In this simulation, the total volume of liquid added to the system was held constant
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with the scheduling of liquid delivery varying. Three cases were considered which is

1) continuous addition (nominal case), 2) 3 pulse addition and 3) 7 pulse addition.

Therefore with lower number of pulses for liquid addition, the rate of liquid addition

in each pulse was raised. For the case considering liquid addition in 3 pulses, liquid

was added at the time intervals 200-320, 440-560 and 680-800 seconds, whereas for the

case considering 7 pulses, liquid was added at time intervals 200-246, 292-338, 384-430,

476-523, 569-615, 661-707 and 753-800 seconds. The total volume of liquid added was

held constant at 0.6012 m3. From Figure 2.7, it can be seen that for the continuous

liquid addition mode, the plot for average diameter shows a smooth increase. With the

addition of liquid in the form of semi-continuous pulses, the diameter is also observed to

vary in a non-smooth fashion following the binder addition. Similar trend is observed

for porosity, where porosity is observed to show a non-smooth variation at the intervals

where binder is sprayed. From the number and porosity distributions, results show

minimal variations in the variances of the distribution.
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Figure 2.7: Bulk properties for different liquid addition modes, total liquid=0.6012m3

2.6.2 Effect of initial primary particle size distribution on granule

properties

The initial distribution also effects the final product characteristics. Figure 2.8 shows

the average diameter, average porosity, number distribution and porosity distribution

for various initial particle distributions. The initial particle population has same mean

for all the three cases and only the standard deviation was different in each case. Batch

1 refers to the narrowest size distribution (6.665 σ), batch 2 refers to intermediate size

distribution (8.215 σ), and batch 3 with the widest size distribution (12.72 σ). Results

show that for average diameter versus time (Figure 2.8 a), batch 3 shows the largest

increase in diameter during the granulation stage but batches 1 and 2 show a steeper

increase during the wet massing stage. The dynamics of batch 1 can be attributed
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to the fact that given the narrowest size distribution, there is less aggregation due

to particles being more of the same size initially relative to batch 3, where there is

preferential aggregation of bigger and smaller particles compared to particles of similar

sizes. For average porosity (Figure 2.8 b), batch 1 shows the highest increase in porosity

due to reduced consolidation for this case, as the initial particles were not very porous

too begin with. The effect of variability is also captured in the number and porosity

distributions (Figures 2.8 c and 2.8 d) where results show the difference in end-point

variance due to the differences in initial primary particle size distributions. However

the variability in primary particle size distribution demonstrates changes in the key

granule properties demonstrating the propagation of disturbances through the process.
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Figure 2.8: Bulk properties for initial particle distributions, Mean= 182.2µm

The effect of primary particle size distribution and the mode of binder addition

also play a significant role in the final granule properties and a detailed discussion
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can be found in Chaudhury and Ramachandran (2013). The previous results reflect

the behavior and trends observed in a high-shear granulation system. The following

subsection focuses at accounting for the evaporative term in the drying/rewetting term

of the PBM. The effects of the multiple control parameters affecting a fluid bed system

have been studied.

2.6.3 Effects of the evaporative term in case of a fluid bed process

The coupled model that has been developed considering the heat and mass balances

with the PBM is applied and the different granulation process variables are simulated.

In this work, the variables of interest are the spray rate of liquid binder, the inlet air

temperature, the inlet dew point, and the flow rate of dry air. The values for the

parameters used have been listed in Table 1 of Chaudhury et al. (2013b). The effects

of these variables on the theoretical granule properties (loss on drying, particle size,

porosity, etc.) have been discussed in the published paper (Chaudhury et al., 2013b)

where the process variable of interest is varied, while all the other variables are held

constant.

Effect of Spray Rate of Liquid Binder

Figure 2.9 (a) shows the effect of varying spray rate of liquid binder on the loss on

drying (LOD) of the granules. From the figure, we see that as the spray rate of the

liquid binder increases, the LOD increases. This is in accordance with the liquid water

balance, Equation (2.16), as the spray rate directly affects the amount of moisture in the

granulator and leads to an overall increase in the LOD. This trend is also in agreement

with the experimental observations published previously (Rambali et al., 2001), (Hu

et al., 2008).
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Table 2.3: Parametric values for the fluid-bed simulations

Parameter name Value

ρsolid 2700 kg/m3

ρliquid 1000 kg/m3

ρgas 1 kg/m3

Number of grids in solid, liquid and gas volume 6
Grid Width (same in each volume) 4.5× 10−13 m3

Initial mass charged to the granulation 2 kg
Initial LOD 0.018 kg water/kg solid

Temperature of inlet air 333 K
Volume of air in the granulator 0.009056
Mass of air in the granulator 0.0107 kg

Binder Spray rate, u 0.001 m3/sec
xin 0.00505

Specific heat capacity of air 1006 J/kg −K
Specific heat capacity of water vapor 1996 J/kg −K
Specific heat capacity of liquid water 4187 J/kg −K

Specific heat capacity of solid 1000 J/kg − s
Latent heat of vaporization 2270 kJ/kg

Qlosses 200 J/sec
Experimental correction factor, γ 0.002

cbinder 0.1
ϵmin 0.2

Mass flowrate of inlet air 0.067 kg/sec
Consolidation constant, c 1× 10−2

Aggregation Constant for the kernel, β0 2× 1030

Stokes deformation number, Stdef 1
Yield Stress, Yd 4.1× 104 Pa

Y ∗
d 0.01

Elastic modulus, E∗ 8.3× 104Pa
Granule saturation at which surface liquid first appears, s∗ 0.2

Viscosity, µ 0.002 kg/m− sec
Simulation time 900 secs
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Figure 2.9: Effect of varying the mass spray rate of liquid binder on the output prop-

erties of the granules.

Figure 2.9 (b) illustrates the effect of varying spray rate on the bed temperature,

which decreases as the spray rate increases. As mentioned previously, with increasing

spray rate, the dxbed
dt term in Equation (2.16) increases, as does the LOD, or xbed.

These trends cause Equation (2.24) to decrease and therefore the resultant outcome is

a decrease in the temperature of the bed.

Effect of Inlet Air Temperature

The effect of inlet air temperature on the loss of drying is shown in Figure 2.10 a. We

see that as the inlet temperature increases, the LOD of the granules decreases. As

mentioned in the previous section, at higher temperatures, xsat increases. Therefore,

from the model perspective, the evaporation rate increases. From Equation (2.16), the

LOD decreases with an increased evaporation rate, consistent with the results shown

in the figure and is in agreement with the observations found previously in Hu et al.

(2008).
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Figure 2.10: Effect of varying inlet air temperature on various output macroscopic

properties

As the inlet air temperature increases, the average particle diameter decreases as also

illustrated in Figure 2.10 b. With an increased inlet air temperature, there is a higher

evaporation rate. Intuitively, the inlet temperature of air being higher, the overall bed

temperature would rise, as also seen with reference to the model, the bed temperature is

obtained by using the inlet air temperature as the initial conditions for Equation (2.24).

From Figure 2.10 c it can be observed that as the inlet air temperature increases, the

temperature of the bed of granules increases. This way the mechanistic kernel is reduced
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as well, which results in lower agglomeration. These result in a smaller liquid volume

and also a reduced particle diameter. The effect of inlet air temperature was investigated

extensively by Rambali et al. (2001), Davies and Gloor (1971), and similar results were

observed by the authors.

With increasing inlet air temperature, the evaporation rate increases and therefore

the outlet humidity increases (Figure 2.10 d), which is consistent with the qualitative

results from the mass balance for water vapor as shown in Equation (2.18). As the

inlet humidity increases, the driving force for evaporation decreases as more moisture

is supplied to the granulator. Thus the evaporation rate in the system decreases which

leads to an increases in the loss on drying as also shown in Figure 2.11 a.

With an increased inlet humidity, the moisture content of the system increases and

hence the bed temperature is reduced due to the removal of heat from the system.

Moisture has a relatively high specific heat capacity and acts as a coolant. This trend

has also been exhibited in Figure 2.11 b.
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Figure 2.11: Effect of varying inlet air humidity on various output macroscopic prop-

erties

As the inlet humidity of air increases, the outlet humidity increases as well Figure 2.11

c since the increased moisture content that enters the granulator, also leaves the gran-

ulator in the form of outlet humidity. Although, in this case, the increase in the outlet

humidity imparted by the evaporation of existing moisture is reduced. From the model

perspective, this is mainly because the initial conditions for Equation (2.18) are deter-

mined by the inlet air humidity.
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Effects of Mass Flow Rate of Dry Air

It can be observed from Figure 2.12 a that as the flow rate of dry air increases, the

LOD decreases. This trend is exhibited due to the increase in the evaporation rate due

to increased air flow rate which leads to a decrease in the moisture content of the bed.

This is in agreement with the observations found in Hu et al. (2008).

In Figure 2.12 b, the flow rate of air was varied to study the effect on the particle

size. Due to increased evaporation with higher air flow rate, the liquid content of the

particles decreases, which results in a reduction in the liquid volume of the particles

and also a reduced aggregation kernel. Therefore, the particle size decreases slightly,

which has also been reported previously by Rambali et al. (2001).

In Figure 2.12 c, we vary the flow rate of dry air and examine the effects this has on

the temperature of the granules. From the figure, we observe that as we increase the

flow rate, the bed temperature increases.

Figure 2.12 d shows the effects on the outlet humidity that is an outcome of varying

the flow rate of dry air. With an increased air flow rate, the evaporation rate increases

and therefore more water is expected to exit the system with the outlet air. Since the

outlet humidity is expressed as the ratio between the mass of water and the mass of

dry air, kg of water
kg of dry air , we see from the figure that the flow rate of dry air does indeed

increase the amount of water leaving the system.
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Figure 2.12: Effect of varying flow rate of dry air on various output macroscopic prop-

erties

2.6.4 Parameter estimation and predictive modeling

The PBM that has been utilized in this work and has been described above consists

of multiple empirical parameters. This necessitates the need for parameter estimation

in order to calibrate the model for making effective predictions. This section describes

the methodology utilized for the same. The DOE presented in Table 2.4 has been run

in a high-shear 1-L Diosnar (16-cm diameter and 8-cm depth). The material used

for the placebo formulation in this study comprised of microcrystalline cellulose and

anhydrous lactose in a 2:1 ratio. Batches of 200 gms were mixed at an impeller speed of

5 m/s and a chopper speed of 2000 rpm. During the liquid addition time, the amount
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of liquid and impeller speed were varied based on the DOE presented in Table 2.4. The

wet massing time has also been varied based on the values outlined in the DOE. The

resultant granules were characterized for size by sieve analysis using an Allen Bradley

Sonic Sifter (Allen Bradley, Milwaukee, WI) equipped with six screens and a pan-US

30 (590 µm), 40 (420 µm), 60 (250 µm), 80 (180 µm), 140 (106 µm), and 270 mesh

(53 µm). The details on the experimental results and the experimental procedure is

presented in Pandey et al. (2013). The batches utilized for the estimation are 3, 4, 7

and 10 from the DOE shown in Table 2.4. If one solution is better than another with

respect to one objective, while the second is better with respect to a different objective,

then the two solutions are considered nondominated or equivalent, and are called pareto

solutions. The pareto set of optimal solutions obtained from the estimation are such

that an improvement in one objective function would lead to a deterioration in the

other objective functions.

Table 2.4: Full Factorial DOE

Batch # Liquid to Solid ratio (%) Impeller speed (m/s) Wet massing time (s)

1 40 4.0 30
2 30 4.75 60
3 20 5.5 90
4 20 5.5 30
5 20 4.0 30
6 30 4.75 60
7 40 5.5 90
8 40 4.0 90
9 30 4.75 60
10 40 5.5 30
11 20 4.0 90
12 30 4.75 60

The estimated parameters from the optimization algorithm has been listed in Table

2.5. The optimization algorithm not only fits the model to the experimental PSD

but also the porosity. The fitted particle size distributions have been shown in Figure

2.13. The sum of square error, SSE between the simulated and the experimental

distributions are significantly low. It can be seen that there is a fairly good agreement
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between the experimental results and the simulated distribution from the estimated

parameters. The median diameter, D50 values were calculated for the experimental and

the simulated particle size distributions. Comparison between the median diameters

for the experimentally measured PSD and the simulated PSD has been shown in Figure

2.14. The 450 line in the plot represents complete agreement between the experimental

and simulated values. The simulated values are close to the 450 line and thus reveal

good estimation of the median diameters using the parameter estimation technique.

The optimization technique employed in this estimation simultaneously considered the

errors in both the PSD and porosity for adequate estimation of the empirical param-

eters. Figure 2.15 shows the porosity values from the experimental measurements and

simulated parameters. The estimation could capture the porosity values reasonably

close to the experimental measurements. The error in porosity, SSE is also signifi-

cantly reduced, however there is some mismatch associated with the porosity fits. A

vital causal link behind the mismatch in the porosity fits is the empirical and inade-

quate representation of the consolidation rate of the granules. Consolidation has been

observed to be a function of the material cohesion (liquid to solid ratio) and the impeller

speed (Iveson et al., 1996). However, a mechanistic representation has not yet been de-

veloped. It is expected that a mechanistic expression depicting the effect of moisture

content and impeller speed on the consolidation rate can yield better predictive capabil-

ity for the granule porosity. Iveson and Litster (1998) had proposed the consolidation

rate as a function of the viscous Stoke’s number, while Litster and Ennis (2004) had

related the consolidation rate to the Stoke’s deformation number. Future work can be

proposed investigating the moisture content to the yield strength of particles so that

the consolidation rate can be effectively correlated to the impeller speed and moisture

content of the granulation system.

Table 2.5: Set of pareto optimal solutions from the parameter estimation technique

Parameter name β0 δ α B c εmin xsat
Estimated value 1.6362e22 0.0993 0.4538 4.6644 1.865e−4 0.134 0.5013
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Figure 2.13: Selected experimental and estimated simulated particle size distributions

from high shear granulator using multi-objective parameter estimation
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Figure 2.14: Experimental and estimated simulated D50 from high shear granulator

using multi-objective parameter estimation
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Figure 2.15: Experimental and estimated simulated porosity from high shear granulator

using multi-objective parameter estimation

The batches utilized for the predictions are 1, 2 and 11 from Table 2.4. The model

predictions have been shown in Figures 2.16-2.18. The predicted PSD shows low error

between the simulated and the experimental distributions (Figure 2.16). The predicted

median size has been shown in Figure 2.17 which also shows considerable agreement

with the experimental measurements. The predicted porosity values for the desired size

class has been shown in Figure 2.18 which shows predictions that are close to the actual

experimental values.
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Figure 2.16: Experimental and predicted simulated particle size distributions from high

shear granulator from the calibrated model
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Figure 2.17: Experimental and predicted simulated D50 from high shear granulator

from the calibrated model
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Figure 2.18: Experimental and predicted simulated porosity from high shear granulator

from the calibrated model

2.7 Chapter Conclusions

In this study, an integrated 3-D population balance model is developed to describe the

dynamics of granulation process. The model specifically incorporated liquid addition

to demarcate the regimes of pre-mixing, granulation (liquid addition) and wet massing,

showing qualitative agreement with profiles obtained in the literature (Pandey et al.,
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2011). The mode of binder addition in the form of continuous addition or different pulses

was simulated in the integrated model and results suggested the lack of sensitivity in

current form but highlights the implementation of more mechanistic kernels to capture

accurate sensitivities. The effect of variability in primary particle size distribution was

also studied and results illustrated the effect of this variability on key granule properties.

Results showed that the integration of all the different key granulation mechanisms need

to be considered to ensure better validation and prediction of key granule properties.

Without the consideration of all mechanisms within the PBM, the effect of all process

conditions cannot be taken into account which might lead to poor predictive ability of

the model.

Later, a mechanistic PBM has also been integrated with a coupled heat and mass model

for a fluid bed granulator, in order to obtain a more mechanistic understanding of the

granulation dynamics. The various quantities such as particle diameter, liquid content

and temperature change in the system evolve as granulation proceeds. These updated

quantities have been used after an interval of 60 seconds to modify the aggregation

kernel used in the PBM simulation. With increasing computational power, this update

can be performed more often to obtain a more refined coupling. Since, the kernel used

is mechanistic in nature, it can effectively capture the behavioral changes introduced

due to the varying quantities in the system. The detailed analysis performed provides

a better insight on the outcome of the system that is associated with the changes in

the various input parameters. The coupled heat and mass model is novel in nature and

enables to track the various granule properties. This lends credence to the use of the

overall model for predictive granulation process design in fluid bed systems.

The parameter estimation considering the PSD and the porosity simultaneously shows

good calibration of the model. The simulated quantities during the estimation can very

well capture the results observed experimentally. The predictions obtained from the

calibrated model are in line with the experimental results. The porosity could not be

tracked as accurately as the PSD due to the fact that the consolidation of granules is

not mechanistically related to the liquid to solid ratio or the impeller speed as known

from literature (Iveson and Litster, 1998). The current empirical kernel cannot capture
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the system behavior accurately, however, in later chapters a more mechanistic approach

is discussed for modeling granulation.
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Chapter 3

Specific Aim II: Development of numerical techniques for

the solution of PBMs

The details of the discussions provided in this section can be obtained in the publica-

tions:

• Chaudhury, A., Kapadia, A., Prakash, A. V., Barrasso, D., Ramachandran, R.,

2013, An extended cell-average technique for a multi-dimensional population bal-

ance of granulation describing aggregation and breakage. Advanced Powder Tech-

nology, 24 (6), 962-971

• Chaudhury, A., Oseledets, I., Ramachandran, R., 2014, A computationally ef-

ficient technique for the solution of multi-dimensional PBMs of granulation via

tensor decomposition. Computers and Chemical Engineering, 61, 234-244

3.1 Numerical solution techniques of PBMs

Population balance models are hyperbolic integro partial differential equations that

describes the dynamic evolution of a discrete distribution with respect to a certain

attribute. Population balance models are used in various fields of research such as crys-

tallization, granulation, polymerization, extraction, milling, aerosol engineering and

biological applications (considering cells). The discrete nature of the PBM is charac-

teristic of its application to the various particulate processes. The numerical solution to

such equations are complicated due to the presence of the advective growth terms that

impart to the hyperbolic nature of the partial differential equation (PDE). However, the

calculations involving the integral terms is associated with large simulation times. The
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advective terms primarily attribute to stability issues and can lead to numerical diffu-

sion (due to lack of optimal discretization of the spatial domain) while using explicit

solution techniques. The consideration of a fine grid (with large number of grid points)

makes the calculation of the integral terms highly expensive. The discretization scheme

has to be thus chosen wisely, such that the Courant-Friedrich-Levy (CFL) criterion is

fulfilled.

Many approaches have surfaced over the past few decades that illustrate the obtain-

ment of the solution for this class of equations. The solution of a population balance

equation can be obtained using various methods such as direct discretization, Monte

Carlo and the method of moments. Direct discretization methods are a more deter-

ministic approach, where the internal coordinate affecting the process is discretized

over the entire domain using techniques such as finite difference method, finite vol-

ume method or finite element method (Marchal et al., 1988; Kumar and Ramkrishna,

1996a; Immanuel and Doyle III, 2003). Direct discretization is a more straightforward

approach for obtaining an accurate estimate of the particle size distribution, but a dis-

advantage associated with such methods is the inaccuracy with tracking the moments.

Monte Carlo methods are more stochastic in nature and can be used to obtain the so-

lution of multi-component or poly-disperse population balance equations provided the

probability of dynamic behavior in the system obeys the balance principle for system

details, the time step for each successful event can be calculated accurately and all the

events occurring in the system are mutually dependant (Fichthom and Weinberg, 1991;

Marshall Jr. et al., 2011, 2013). Monte-Carlo methods can be broadly classified into

time-driven and event-driven algorithms. Time driven algorithms were proposed by

Liffman (1992) whereas approaches using the theory of Markov chains was proposed by

Garcia et al. (1987). Event-driven approaches were proposed by Smith and Matsoukas

(1998); Lin et al. (2002) which aimed at overcoming the shortcomings of the previous

methods. A very crucial drawback of using the Monte Carlo methods is the presence of

noise in the data and also the difficulty to couple it with other approaches such as CFD

for multi-scale granulation modeling. The method of moments is yet another approach

used for solving population balance equations since the initial days. Depending on the



47

value of k in Equation (3.1), the moments can be expressed as

mk(t) =

∫ ∞

0
ξkf(ξ, t)dξ (3.1)

Here, k=0 represents the number of particles, k=1 represents the total length of par-

ticles, k=2 leads to obtaining the total area and k=3 indicates the total volume of

particles. Various approaches involving the method of moments were developed by

Hulburt and Katz (1964); Marchisio et al. (2006); Lee (1983). Quadrature method of

moments (QMOM) and discrete quadrature method of moments (DQMOM) are some

of the more recent and commonly used methods for solving population balance equa-

tions. There have been many improvisions on these approaches in order to alleviate

the previous existing problems. A lot of significant developments have been made by

Wright et al. (2001); Marchisio et al. (2003b,a); Attarakih et al. (2006); Su et al. (2007,

2008, 2009) with regard to implementing the method of moments.

This work will focus on the solution of the PBM utilizing direct discretization methods.

Batterham et al. (1981) had initially derived a numerical technique to address the ag-

gregation of particles which was further extended to breakage by Vanni (2000). These

techniques were associated with the inability to conserve the total number of particles.

Hence Hounslow et al. (1988) developed a novel discretization technique for a geometric

grid, which could conserve particles, but it was lacking in conserving the other moments

and showed reduced accuracy when the grid was made coarser. This drawback was later

overcome by the improved approach suggested by Litster et al. (1995) which could ac-

commodate adjustable geometric discretizations involving a progression factor of 2
1
q .

The problem still persisted as Wynn (2004) showed that the method was only applica-

ble to formulations where q < 4. Recently further advancements have been made with

regard to the approach proposed by Hounslow et al. by Peglow et al. (2006). Qamar

and Warnecke (2007) had proposed a second accurate finite volume discretization tech-

nique for one and two-component aggregation processes, using a semi-discrete upwind

scheme for a geometric grid. A wavelet based approach was also proposed by Liu and
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Cameron (2001, 2003) which was appropriate for multiple peak distributions. A sig-

nificant development made by Kumar and Ramkrishna (1996b,a) led to the proposal

of the fixed-pivot discretization technique (FPDM) and moving pivot discretization

technique which could be used to allocate particles to the neighboring grids when the

daughter particle did not exactly fall on the pivot in a non-linear grid. Chakraborty

and Kumar (2007) extended this approach for higher dimensional formulations and also

investigated the usage of triangular grids. This technique by Kumar and Ramkrishna

(1996b) was quite efficient but was accompanied by over-prediction of particle property

distribution. The shortcomings from this technique was alleviated to a great extent by

the cell-average technique proposed by Kumar (2006); Kumar et al. (2008, 2011).

In our previous works, the PBM solution has also been tackled using parallel comput-

ing tools with the help of the Parallel Computing toolbox (PCT), JACKET (Prakash

et al., 2013b) and the MATLAB distributed computing toolbox (Prakash et al., 2013a).

Reduced order models have also been obtained by lumping the various internal coordi-

nate dependencies (Barrasso and Ramachandran, 2012). This significantly speeds the

computations, however the accuracy in the results is compromised.

Separation of variables are associated with low parameter representations of the high

dimensional systems as

f(x1, x2, .., xd) ≈
r∑

α=1

f (1)α (x1)f
(2)
α (x2)..f

(d)
α (xd) (3.2)

Singular value decompositions can be implemented on such systems which can aid at

obtaining faster computations of the system (Oseledets and Tyrtyshnikov, 2009). This

representation can also be extended for the d-dimensional tensors using the canonical

decomposition (Oseledets, 2011). Significant developments have been made by several

groups aiming at using this approach of tensor representations and separation of vari-

ables for faster computations and reduced memory requirements of high dimensional

systems. The application of such techniques have been found in areas which require

immense data handling and have been compiled in the review by Kolda and Bader
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(2009). Implementing the tensor decomposition approach for solving PBMs is how-

ever novel and has never been exploited before. The discretized PBMs lead to sparse

systems. Bader and Kolda (2007) has presented, in his work, the fast computations

for such sparse systems. This considers a combination of singular value decomposi-

tion (SVD) for multi-dimensional systems, lower rank, cross approximations and tensor

representations for obtaining an overall ROM.

The inability of a complex model to solve due to the presence of high dimensions or

larger number of grids in the discretized domain can be termed as curse of dimensional-

ity. Such complex models not only take large computational times but can also be not

be solved due to memory limitations. Sometimes, even though the ROM enables the

calculation of some large sized problems, the computational times required are higher

than the original model. Although this helps with being able to obtain the solution for

some large sized problems, it is more desirable to have a ROM that also has savings

in terms of the computational overheads. In this study, the particle population is first

discretised into sub-populations and the population balance is formulated for each of

these semi-lumped sub-populations. This is obtained by the integration of the popula-

tion balance equation (see Equation 2.1) over the domain of the sub-populations and

re-casting the population into finite volumes. In this finite volume scheme, Equation

2.1 may be re-written in a discrete form as shown in Equation 3.3.

dF ′
i,j,k

dt
+
F ′
i,j,k

△si
ds

dt

∣∣∣
si
−
F ′
i,j,k+1

△si+1

ds

dt

∣∣∣
si+1

+
F ′
i,j,k

△lj
dl

dt

∣∣∣
lj
−
F ′
i,j,j+1

△lj+1

dl

dt

∣∣∣
lj+1

+
F ′
i,j,k

△gk
dg

dt

∣∣∣
gk

−
F ′
i,j,k+1

△gk+1

dg

dt

∣∣∣
gk+1

= ℜagg(si, lj , gk) + ℜbreak(si, lj , gk) (3.3)

Here F ′
i,j,k =

∫ si+1

si

∫ lj+1

lj

∫ gk+1

gk
F (s, l, g) ds dl dg. si, lj and gk are the values of the solid,

liquid and gas volume at the upper end of the ith, jth and kth bins along the solid,

liquid and gas volume axes respectively. △si, △lj and △gk are. the sizes of the ith,

jth and kth bins. The particle population is assumed to be uniform within each of

the finite volumes. Thus, by this technique, the integro partial-differential equation
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as represented by the population balance equation, is reduced to a system of ordinary

differential equations in terms of the rates of aggregation (ℜagg(si, lj , gk)) and breakage

(ℜbreak(si, lj , gk)).

The numerical solution to such a class of equations is however very time consuming and

computationally complex. The solution technique for these equations therefore require

improvision which can enable quick and accurate solutions. Obtaining reduced order

models (ROMs) can help at alleviating the issues faced with large computational time

and out of memory limitations. In order to break the curse of dimensionality, we have

implemented the tensor decomposition technique to the PBM which can significantly

reduce the memory requirements and speed the computations.

3.2 Reduced order model using tensor decomposition

The overall model reduction technique can be subdivided into two broad subprocesses.

One of the aspects deal with the computation of the aggregation and breakage terms

using convolution, while the other subprocess involves approximation of the 6-D aggre-

gation kernel β which would aid in speeding up the overall computation.

3.2.1 Discretization of the problem

To compute the integrals (Equations (2.3, 2.4)), an appropriate discretization of the

problem is required. Firstly, the integral is replaced by a summation using a suitable

quadrature, followed by employing a fast summation technique in order to reduce the

complexity. For the discretization, the product rectangular rule has been implemented.

Uniform grids with n points have been introduced in the variables s, l, g, yielding in

total n3 quadrature points. The functions β and F have been replaced by their discrete

counterparts βh and Fh. βh is a 6-dimensional array, and Fh is a 3-dimensional array.

While describing our calculations, the indices for s, l and g have been represented as

i, j and k.

The resulting summation has the form
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ℜform
agg (i, j, k)h =

i−1∑
i1=1

j−1∑
j1=1

k−1∑
k1=1

βh(i1, j1, k1, i−i1, j−j1, k−k1)Fh(i1, j1, k1)Fh(i−i1, j−j1, k−k1)

(3.4)

ℜdep
agg(i, j, k)h = Fh(i, j, k)

i−1∑
i1=1

j−1∑
j1=1

k−1∑
k1=1

βh(i1, j1, k1, i− i1, j − j1, k − k1)Fh(i1, j1, k1)

(3.5)

The computation of these terms is the most expensive part. The computation of

the sum (Equation (3.4)) is considered first and the sum Equation ((3.5)) is treated

analogously. The direct computation of Equation (3.4) has the complexity O(n6),

which is not acceptable even for very small n. In what follows, the procedure to obtain

a reduction in this complexity to O(n3 log n) using the separation of variables, is shown.

3.2.2 Approximation of β

The main idea involves approximating β in the form

β(i1, j1, k1, i− i1, j − j1, k − k1) ≈
r∑

α=1

Φα(i1, j1, k1)Φα(i− i1, j − j1, k − k1) (3.6)

where r is the ”so-called” separation rank. The aggregation kernel, βh can be written

as

ch(i, j, k) =100
x2(j)

x1(i) + x2(j) + x3(k)
, (3.7)

Vh(i, j, k) =x1(i) + x2(j) + x3(k), (3.8)

βh(i, j, k, i1, j1, k1) =β0

(
V (i, j, k) + V (i1, j1, k1)

)(
c(i, j, k) + c(i1, j1, k1)

)α2

(3.9)

×
(
100−

(c(i, j, k) + c(i1, j1, k1)

2

))δα
.

To get the separation of (i, j, k) from (i1, j1, k1), β can be reshaped into a n3×n3 matrix

and its singular value decomposition (SVD) can thereby be computed. However, it is

not the optimal path given the associated computational expense (O(n9) operations).
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βh is represented as a product of three terms. The first term has a rank of 2, while the

second and third terms have the form

A(S, S1) = (d(S) + e(S1))
γ , (3.10)

where S is the multi-index (i, j, k), S1 is the multi-index (i1, j1, k1), and d, e are some

vectors of length n3. For matrices of the form given by Equation (3.10), it can be proven

that there always exists a low-rank approximation (de Silva and Lim, 2008; Chen and

Saad, 2009). The rank of the product is bounded by the product of the ranks of each

terms; therefore, it is not difficult to prove the existence of the low-rank approximation

for β with the rank, independent of n. To compute this low-rank approximation we

used the cross approximation method from previous works Oseledets and Tyrtyshnikov

(2010); Goreinov (2008). The computational complexity of this method is O(n3r)

operations. The typical rank of β was about 10.

3.2.3 Computation of the aggregation terms via convolution

As mentioned earlier, the discretized form for Equation (2.3) can be represented by

Equation (3.4). Substituting the low-rank approximation of β into Equation (3.4), the

following could be written

ℜform
agg (i, j, k)h =

i−1∑
i1=1

j−1∑
j1=1

k−1∑
k1=1

βh(i1, j1, k1, i− i1, j − j1, k − k1)Fh(i1, j1, k1)Fh(i− i1, j − j1, k − k1)

=

r∑
α=1

( i−1∑
i1=1

j−1∑
j1=1

k−1∑
k1=1

Φα(i1, j1, k1)Φα(i− i1, j − j1, k − k1)

× F (i1, j1, k1)F (i− i1, j − j1, k − k1)
)

=
r∑

α=1

ϕα(i, j, k)

where,

ϕα(i, j, k) =
i−1∑
i1=1

j−1∑
j1=1

k−1∑
k1=1

Φα(i1, j1, k1)Φα(i−i1, j−j1, k−k1)F (i1, j1, k1)F (i−i1, j−j1, k−k1).

(3.11)
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A new variable, F̂α is now introduced as:

F̂α(i, j, k) = Φα(i, j, k)F (i, j, k). (3.12)

The equation for ϕα can be thus written as

ϕα(i, j, k) =
i−1∑
i1=1

j−1∑
j1=1

k−1∑
k1=1

F̂α(i1, j1, k1)F̂α(i− i1, j − j1, k − k1). (3.13)

The computation of ϕα is just the convolution: it can be evaluated in O(n3 log n)

operations using the Fast Fourier Transform (FFT).

Applying a similar idea to ℜdep
agg we get

ℜdep
agg(i, j, k)h = Fh(i, j, k)

n1−i∑
i1=1

n2−j∑
j1=1

n3−k∑
k1=1

βh(i1, j1, k1, i, j, k)Fh(i1, j1, k1)

= Fh(i, j, k)

r∑
α=1

( n1−i∑
i1=1

n2−j∑
j1=1

n3−k∑
k1=1

Φα(i1, j1, k1)Φα(i, j, k)Fh(i1, j1, k1)
)

= Fh(i, j, k)

r∑
α=1

ψα(i, j, k).

(3.14)

where

ψα(i, j, k) =

n1−i∑
i1=1

n2−j∑
j1=1

n3−k∑
k1=1

Φα(i1, j1, k1)Φα(i, j, k)Fh(i1, j1, k1). (3.15)

We introduce

F̂α(i1, j1, k1) = Fh(i1, j1, k1)Φα(i1, j1, k1), (3.16)

therefore

ψα(i, j, k) =

n1−i∑
i1=1

n2−i∑
j1=1

n3−i∑
k1=1

Φα(i, j, k)F̂α(i1, j1, k1), (3.17)

which can be computed in O(n3 log n) operations using the FFT.

It is reduced to

V (i, j, k) =

n1−i∑
i1=1

n2−j∑
j1=1

n3−k∑
k1=1

V1(i1, j1, k1) (3.18)
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where V1(i1, j1, k1) = Φα(i, j, k)F̂α(i1, j1, k1)

V (i, j, k) =

n1∑
i1=1

n2∑
j1=1

n3∑
k1=1

V1(i1, j1, k1)|[i1<=n1−i][j1<=n2−j][k1<=n3−k] (3.19)

=

n1∑
i1=1

n2∑
j1=1

n3∑
k1=1

ĉ(i1, i)ĉ(j1, j)ĉ(k1, k)V1(i1, j1, k1)

,

V (i, j, k)− V (i+ 1, j, k) =

n2−j∑
j1=1

n3−k∑
k1=1

V1(n1 − i, j1, k1)

The total complexity of the evaluation of the sum is then O(n3 log nr), and the

constant in O(·) is not too high, around 5. The question thus posed is the extent of

the rank r (how high it is), and how can we compute the decomposition of β.

3.2.4 Approximation of the breakage term

Similar to the aggregation terms, the breakage of particles can also be expressed as a

function of the formation and depletion terms. The breakage term does not have mul-

tiple integrals, however, due to the existence of the 6-D breakage distribution, multiple

loops (6 nested loops) are required for the calculations which adds to the computational

overheads. For our simulations, a simple model for addressing the breakage distribution

has been considered, such that as a particle breaks, all the grids where the fragments

could fall into have an equal probability of receiving the fragmented daughter particle.

For breakage, the formation of particles happen in the smaller bin, (s, l, g), while the

bigger particle is represented by (s′, l′, g′). For our convenience, we would express the

smaller particle (s, l, g) as (i, j, k) and the bigger particle as (i1, j1, k1). In the

original/unreduced problem, the breakage distribution function could be written as

b(i, j, k, i1, j1, k1) = 1/Ni,j,k,i1,j1,k1 (3.20)

where Ni,j,k,i1,j1,k1 represents the number of instances in which a bigger particle

represented by the grid (i1, j1, k1) could break into a smaller bin, (i, j, k). This
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function could be separated as a product of three variables of lower dimensions and

could be expressed as

b(i, j, k, i1, j1, k1) = c(i, i1)c(j, j1)c(k, k1) (3.21)

such that

c(i, i1) =


0 if i >= i1,

d(i) if i < i1

(3.22)

where

d(i) =
1

i− 1
, i = 2, . . . , n (3.23)

This could also be extended for the other dimensions (j, k). After employing the

separation of variables for the breakage distribution term, the formation term has been

rewritten as

ℜbreak
h (i1, j1, k1) =

∑
i,j,k

Fh(i, j, k)Kbreak(i, j, k)c(i, i1)c(j, j1)c(k, k1) (3.24)

We introduce a new variable F̃h(i1, j1, k1) as

F̃h(i, j, k) = Fh(i, j, k)Kbreak(i, j, k) (3.25)

Substituting Eq. (3.25) into Eq. (3.26), we obtain

ℜbreak
h (i1, j1, k1) =

∑
i,j,k

F̃h(i, j, k)c(i, i1)c(j, j1)c(k, k1) (3.26)

This simplifies the calculation and the breakage term can be evaluated in O(n4)

operations. The following steps show the method by which the sum is evaluated.

1. Summing over i, F ′
h(i1, j, k) =

∑
i F̃h(i, j, k)c(i, i1),

2. Summing over j, F ′′
h (i1, j1, k) =

∑
j F

′
h(i1, j, k)c(j, j1),
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3. Summing over k, F ′′′
h (i1, j1, k1) =

∑
k F

′′
h (i1, j1, k)c(k, k1),

This way a reduced order model has been obtained based on the principles of separation

of variables, tensor representations, low rank approximation and fast fourier transforms.

These techniques are individually applied or a combination of these methods are utilized

to obtain the computationally fast, reduced memory requiring ROM.

Besides using a ROM for easing the calculation procedure, using a nonlinear grid for

the discretization can also significantly aid at speeding the computation of the PBM.

Using a nonlinear grid can span the entire particle size domain by using fewer grids in

the discretized domain. This can significantly reduce the time required for the solution

as the computational complexity increases polynomially with increasing grid size. Since

we are considering a non linear grid to formulate the population balance equation, the

new-born particle from aggregation might not exactly lie on the grid, therefore the

need to use this technique comes into play. Similarly, for breakage, a larger particle

fragments into two smaller particles. Of the two daughter particles, one is considered

to lie on the grid point whereas the other is considered to lie anywhere which may or

may not be coinciding with the representative point. Therefore, this particle needs to

be reallocated, in certain fractions, to the neighboring grids.



57

3.3 Discretization of PBM using a nonlinear grid

Figure 3.1: Three-dimensional non-linear grid showing bins of varying sizes in each

dimension

The approach similar to that of Kumar (2006) has been utilized, where primarily the

third moment, total volume/mass of particles is conserved. We have denoted each

representative point of the grid as si, lj , gk and the upper and lower bounds for each

grid with sb,i and sb,i+1, lb,j and lb,j+1, gb,k ans gb,k+1. The representative point of

each grid is the mid point between the upper and lower bounds. For n grid points

with respect to each individual volume, there are n3 ODE’s representing the number of

particles in each bin (i,j,k). The discrete number density Nijk in a single cell, can be

described as follows:

Nijk =

∫ sb,i+1

sb,i

∫ lb,j+1

lb,j

∫ gb,k+1

gb,k

F (s, l, g, t)dsdldg (3.27)

Substituting F (s, l, g, t) into the aggregation and breakage PBM, the following equation

is obtained after differentiating with respect to time:
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dNijk

dt
=

1

2

∫ sb,i+1

sb,i

∫ lb,j+1

lb,j

∫ gb,k+1

gb,k

∫ smax

0

∫ lmax

0

∫ gmax

0
β(s′, l′, g′, s− s′, l − l′, g − g′)F (s′, l′, g′, t)

F (s− s′, l − l′, g − g′, t)ds′dl′dg′dsdldg +

∫ sb,i+1

sb,i

∫ lb,j+1

lb,j

∫ gb,k+1

gb,k

∫ smax

s

∫ lmax

l

∫ gmax

g
Kbreak(s

′, l′, g′)

b(s′, l′, g′, s− s′, l − l′, g − g′)F (s′, l′, g′, t)ds′dl′dg′dsdldg −

F (s, l, g, t)

∫ sb,i+1

sb,i

∫ lb,j+1

lb,j

∫ gb,k+1

gb,k

∫ smax

0

∫ lmax

0

∫ gmax

0
β(s′, l′, g′, s, l, g)F (s, l, g, t)ds′dl′dg′dsdldg −∫ sb,i+1

sb,i

∫ lb,j+1

lb,j

∫ gb,k+1

gb,k

Kbreak(s, l, g)b(s
′, l′, g′, s− s′, l − l′, g − g′)F (s, l, g, t)dsdldg(3.28)

Essentially, this equation shows that the change in number density per time is equal to:

Nijk = Bijk −Dijk (3.29)

where Bijk is particle birth and Dijk is particle death. Furthermore, a discretized

expression for F (s, l, g, t) can be written in terms of the dirac delta function, assuming

all the particles in a single cell are concentrated at the representative node as

F (s, l, g, t) =

Is∑
i=1

Il∑
j=1

Ig∑
k=1

Nijkδ(s− si)δ(l − lj)δ(g − gk) (3.30)

Here, Is, Il, and Ig represent the total number of cells in the s, l and g directions,

respectively. For aggregation, this technique can be employed to reassign only the one

new-born particle formed from the coalescence of two particles. In case of breakage, two

daughter particles are formed, out of which, we have assumed one particle to lie exactly

on the representative point, hence allocating it is straightforward. The other new-born

particle from breakage, was then reassigned to the adjoining bins using this technique of

local averaging followed by fractionation. The birth and death terms can be rewritten

in discrete form, using the dirac delta function to discretize the aggregation birth term,

as follows:
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Bijk =

i∑
a,b=1

j∑
c,d=1

k∑
e,f=1

[(1− 0.5δa,bδc,dδe,f )βabcdefNaceNbdf ] |(sa+sb)∈si, (lc+ld)∈lj , (ge+gf )∈gk

+

Is∑
i′=i

Il∑
j′=j

Ig∑
k′=k

Ni′j′k′Kbreak−i′,j′,k′

∫ p′il

sb,i

∫ p′jm

lb,j

∫ p′kn

gb,k

b(s, sl′ , l, lm′ , g, gn′)dsdldg

(3.31)

and

Dijk =

Is∑
p=1

Il∑
q=1

Ig∑
r=1

βipjqkrNijkNpqr +Kbreak−i,j,kNijk (3.32)

The limits pil′ is defined as

pil =


si if l = i,

sb,i+1 otherwise

(3.33)

pjm =


lj if m = j,

lb,j+1 otherwise

(3.34)

pkn =


gk if n = k,

gb,k+1 otherwise

(3.35)

AB is the set of agglomerates for which sb,i < (sa + sb) < sb,i+1. CD is the set of

agglomerates for which lb,j < (lc + ld) < lb,j+1. EF is the set of agglomerates for which

gb,k < (ge+ gf ) < gb,k+1. b(s, sl, l, lm, g, gn) is the breakage distribution function (Pinto

et al., 2007). The flux of the properties s,l and g (Vs,i,j,k, Vl,i,j,k and Vg,i,j,k) into each

representative cell has been shown in the published paper (Chaudhury et al., 2013a).

From this information, the average value of each property in cell Cijk can be calculated,

as follows:
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Vs,i,j,k =

i∑
a,b=1

j∑
c,d=1

k∑
e,f=1

(1− 0.5δa,bδc,dδe,f )βabcdefNaceNbdf (sa + sb)|(sa+sb)∈AB,(lc+ld)∈CD,(ge+gf )∈EF

+
∑∑∑

Ni,j,kKbreak−i,j,k

∫ pil

sb,i

∫ pjm

lb,j

∫ pkn

gb,k

(sa1 − sb1)b(s, sl, l, lm, g, gn)dsdldg

(3.36)

Vl,i,j,k =

i∑
a,b=1

j∑
c,d=1

k∑
e,f=1

(1− 0.5δa,bδc,dδe,f )βabcdefNaceNbdf (lc + ld)|(sa+sb)∈AB,(lc+ld)∈CD,(ge+gf )∈EF

+
∑∑∑

Ni,j,kKbreak−i,j,k

∫ pil

sb,i

∫ pjm

lb,j

∫ pkn

gb,k

(lc1 − ld1)b(s, sl, l, lm, g, gn)dsdldg

(3.37)

Vg,i,j,k =
i∑

a,b=1

j∑
c,d=1

k∑
e,f=1

(1− 0.5δa,bδc,dδe,f )βabcdefNaceNbdf (sa + sb)|(ge+gf )∈AB,(lc+ld)∈CD,(ge+gf )∈EF

+
∑∑∑

Ni,j,kKbreak−i,j,k

∫ pil

sb,i

∫ pjm

lb,j

∫ pkn

gb,k

(ge1 − gf1)b(s, sl, l, lm, g, gn)dsdldg

(3.38)

Here, sa, lc, ge and sb, ld, gf are the two aggregating particles, whereas, sa1, lc1, ge1 is

the bigger particle that breaks and sb1, ld1, gf1 is the daughter particle from breakage

that falls exactly on the representative point of the grid.

s̄i,j,k =
Vs,i,j,k
Bijk

(3.39)

l̄i,j,k =
Vl,i,j,k
Bijk

(3.40)

ḡi,j,k =
Vg,i,j,k
Bijk

(3.41)

These average values, in each cell, represent the total birth due to aggregation and

breakage. For sake of conciseness, si,j,k, li,j,k and gi,j,k is expressed as si, lj and gk.
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This is the birth which is distributed to the neighboring nodes when the birth does not

fall exactly on a representative node (the usual case). The number of nodes to which

birth is distributed depends on the number of moments being preserved and the num-

ber of dimensions present. In this study, we seek to preserve the two moments, particle

number and mass (or volume, since particle density is constant). Hence, with a three-

dimensional grid, distribution would occur to eight neighboring nodes. Let us suppose

that the particle fractions a1, a2, a3, a4, a5, a6, a7, and a8 are distributed to the neigh-

bouring nodes Pi,j,k, Pi+1,j,k, Pi+1,j+1,k, Pi,j+1,k, Pi,j,k+1, Pi+1,j,k+1, Pi+1,j+1,k+1, andPi,j+1,k+1,

respectively. Then, the particle fractions must satisfy the thirteen conservation equa-

tions (can be found in the paper (Chaudhury et al., 2013a)), to conserve the total

volume as well as the particle number.

Bijk = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 (3.42)

a1si + a2si+1 = (a1 + a2)s̄i (3.43)

a3si+1 + a4si = (a3 + a4)s̄i (3.44)

a5si + a6si+1 = (a5 + a6)s̄i (3.45)

a7si+1 + a8si = (a7 + a8)s̄i (3.46)

a1lj + a4lj+1 = (a1 + a4)l̄j (3.47)

a2lj + a3lj+1 = (a2 + a3)l̄j (3.48)
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a5lj + a8lj+1 = (a5 + a8)l̄j (3.49)

a6lj + a7lj+1 = (a6 + a7)l̄j (3.50)

a1gk + a5gk+1 = (a1 + a5)ḡk (3.51)

a2gk + a6gk+1 = (a2 + a6)ḡk (3.52)

a3gk + a7gk+1 = (a3 + a7)ḡk (3.53)

a4gk + a8gk+1 = (a4 + a8)ḡk (3.54)

This system of equations has eight unknowns and thirteen equations and has a unique

solution. Similarly, in Kumar (2006), a system of five equations with four unknowns

had a unique solution. The fractions for the three-dimensional case are given in details

in the paper (Chaudhury et al., 2013a).

a1 =
(si+1 − s̄i)(lj+1 − l̄j)(gk+1 − ḡk)

(si+1 − si)(lj+1 − lj)(gk+1 − gk)
Bijk (3.55)

a2 =
(s̄i − si)(lj+1 − l̄j)(gk+1 − ḡk)

(si+1 − si)(lj+1 − lj)(gk+1 − gk)
Bijk (3.56)

a3 =
(s̄i − si)(l̄j − lj)(gk+1 − ḡk)

(si+1 − si)(lj+1 − lj)(gk+1 − gk)
Bijk (3.57)

a4 =
(si+1 − s̄i)(l̄j − lj)(gk+1 − ḡk)

(si+1 − si)(lj+1 − lj)(gk+1 − gk)
Bijk (3.58)
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a5 =
(si+1 − s̄i)(lj+1 − l̄j)(ḡk − gk)

(si+1 − si)(lj+1 − lj)(gk+1 − gk)
Bijk (3.59)

a6 =
(s̄i − si)(lj+1 − l̄j)(ḡk − gk)

(si+1 − si)(lj+1 − lj)(gk+1 − gk)
Bijk (3.60)

a7 =
(s̄i − si)(l̄j − lj)(ḡk − gk)

(si+1 − si)(lj+1 − lj)(gk+1 − gk)
Bijk (3.61)

a8 =
(si+1 − s̄i)(l̄j − lj)(ḡk − gk)

(si+1 − si)(lj+1 − lj)(gk+1 − gk)
Bijk (3.62)

This fractionation can cause many births to occur on a single representative point.

These births need to be added together, as follows, to obtain the cell average birth.

This cell average birth is used in lieu of the birth term in the PBM. No redistribution

occurs to obtain a death term, as death is just the disappearance of particles from

a representative point. From the method of mathematical induction, it can be noted

that for an N-dimensional population balance equation, a particle would distribute

into 2N fractions into its adjacent grid points. The 2N fractions corresponding to the

2N neighboring grids can be obtained in a similar way as the 23 fractions for the 3-

dimensional population balance was obtained.

3.4 Results and discussion

The ROM can improve the solution of the PBM by not only overcoming memory lim-

itations but also speeding the calculations and providing an accurate representation

of the original model. It can capture the shape of the various bulk and distributed

properties as per the original model. However, the computational savings and accuracy

of the reduced framework are showcased in the following paragraphs.

Reduced order models (ROMs) help in alleviating the issues faced due to the curse of dimensionality.

Using the tensor decomposition approach for model reduction, there is not only the
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scope of using larger number of grids but also there is a significant savings in the com-

putational time. A comparison between the computational times between the original

and reduced models have been reported in Table 3.1. It can be seen that the time

required by the reduced framework is much less (as also shown in Table 3.1). It should

also be noted that for larger number of grids in the discretized domain, the tensor

decomposition approach is significantly beneficial.

Table 3.1: Computational time of the original and the reduced model for 500 seconds
(simulation)

Number of grids Original model (secs) Reduced model (secs)

6 22.617 3.8
9 96.772 13
12 299 30
16 1274 58
19 2414 77
22 4756 130
26 9959 200

Table 3.2: Computational time (in seconds) for the individual terms within the original
model for one time step calculation

Original model Reduced model

Grids β Agg Breakage β Agg Breakage

form+dep break form+dep break
dist dist

6 0.67 2.5e−2 7e−5 0.0484 0.26 2.1e−3 5.2e−4 0.002548
9 6.4 9e−2 9.5e−5 0.3505 0.29 7.7e−3 1.5e−3 0.002393
12 36 0.25 1e−4 1.944 0.31 2.2e−2 3.8e−3 0.002447
16 200 0.91 1.6e−4 13.181 0.34 3.3e−2 1.5e−2 0.002496
19 570 1.9 1.6e−4 36.023 0.34 5.2e−2 2e−2 0.002571
22 1300 3.5 1.8e−4 96.462 0.35 7.8e−2 2.2e−2 0.002583
26 4200 9.3 3e−4 278.2950 0.46 1.1e−1 5.8e−2 0.002573

Table 3.2 shows the time required for calculation of the individual aggregation and

breakage terms for 1 time step. It can be seen that the computation of the aggregation

kernel and the breakage distribution (calculated offline) can be significantly reduced
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using the reduced framework. The time recorded during the calculation of the breakage

distribution indicates almost no influence with respect to the increasing grid size. The

variations in the computational times could be interpreted as an artifact of time repro-

ducibility with MATLAB. The computation of the aggregation (formation+depletion)

terms have a huge improvement using the reduced framework, considering the fact that

these calculations repeat and occur dynamically over the time domain. The calculation

of the breakage (formation+depletion) terms indicate lower computational time require-

ment for the original 3-D PBM. However, combining the calculation of the breakage

distribution and the formation+depletion terms might add up to higher computational

load for larger grid sizes. Thus, for larger grid sizes, the reduced framework will prove

to be more efficient compared to the original multi-dimensional model even for the

computation of breakage.

3.4.1 Error analysis

The ROM enables us to overcome the limitations faced with solving large sized prob-

lems. Not only does it allow the solution to the PBM with large number of grids, but

also requires much less time for the calculations. The optimal scenario would require

the ROM to also be as accurate as the original PBM. The partial differential equation

(PDE) representing the PBM has been solved using the hierarchical two tier technique

proposed by Immanuel et al (Immanuel and Doyle III, 2003) and utilized in our previ-

ous works (Chaudhury and Ramachandran, 2013). The various terms that have been

approximated in the calculations are the 6-D aggregation kernel (β), the formation of

particles due to aggregation (ℜform
agg ), the depletion/loss of particles due to aggregation

(ℜdep
agg) and the formation of particles due to breakage (ℜform

break). The terms directly affect

the number density of particles, F (s, l, g, t) and hence influence the bulk and distributed

properties of the granules.
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Figure 3.2: Relative error for the aggregation kernel obtained from lower rank approx-

imation and the original model

The error between the original and the reduced model can be obtained using Equation

(3.64). Although the simulation could be run in the reduced and the original form for

26 grids with respect to each individual internal coordinate, the results could not be

saved for the original model (memory limitations) thus disabling us from comparing

the errors.

The aggregation kernel, β is reduced using a lower order approximation. Thus, while

comparing the reduced and the original β, it is required that the lower rank tensor

approximation is converted to the full size 6-D array (using the full command in MAT-

LAB that is available with the tensor transform toolbox) for the purpose of correct

error calculation. The error in the β obtained from the lower rank approximation and

the original model can be expressed as in Equation (3.63) and has been shown in Figure

3.2.

Relative errorβ =
|| βoriginal model(:) || − || full(βreduced model)(:) ||

|| βoriginal model(:) ||
(3.63)
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Relative errorvariable =
|| V ariableoriginal model || − || V ariablereduced model ||

|| V ariableoriginal model ||
(3.64)
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(a) Relative error of formation due to aggregation
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(b) Relative error of depletion due to aggregation
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(c) Relative error of formation due to breakage
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(d) Relative error of the overall number density

Figure 3.3: Variation of relative errors for the various terms averaged over time with

respect to number of grids

The relative error is calculated for the various terms involved in aggregation and

breakage and the overall number density using Equation (3.64). Figures 3.4 a,b,c reveal

that the error reduces over time, however for the overall number density, the error

seems higher as time proceeds. This could be a by product of the varying signs for the

individual terms. Even though the individual mechanisms have smaller error (absolute

value) at a later stage, the error could get cancelled or added up thus revealing this
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disparity. It should be noted that the error increases or decreases with the progression

of time but the values are so small, that the ROM can be considered to be a very good

approximation of the original model with minimal compromise in accuracy.
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(a) Relative error of formation due to aggregation
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(b) Relative error of depletion due to aggregation
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(c) Relative error of formation due to breakage
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(d) Relative error of the overall number density

Figure 3.4: Variation of the evolution of relative errors over time for the various terms

Using larger number of finer grids (without violating the CFL conditions) for span-

ning the overall domain show more accurate results for the PBM. The discretization

error which is a function of the discretization width (h) typically increases with in-

creasing h. In this work, the bulk and distributed properties could not be analysed for

the discretization error since varying the width of the discretized grid would result in

changing the start and end span of the domain and the comparison would be erroneous

due to the fact that the systems would be different. The original model without the

reduction could not be run for greater than 29 grids with respect to each individual
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internal coordinate. The model in the TT format could however accommodate 250

grids with respect to each internal coordinate.

It can clearly be seen that the ROM significantly alleviates the issues with the

large computational time required for the solution of PBMs. As mentioned before,

discretizing the grid using a nonlinear grid can also aid in fast computation of the PBM

as it can span the entire particle property domain with fewer grids. The simulations

were ran using the parameters mentioned in the paper (Chaudhury et al., 2013a).

Table 3.3: Parametric values for the simulations

Parameter name Value

Simulation time 900secs
Number of grids in solid, liquid and gas volume 8

Width of ith Grid (same in each volume) 10−13 × 4(i−1)m3

Initial distribution 1× 10−12 in (s, l, g) = (1, 1, 1)
Binder Spray rate, u 5× 10−3m3/sec

cbinder 0.1
ϵmin 0.2

Consolidation constant, c 1× 10−9

Aggregation Constant for the kernel, β0 2× 1019

α for Madec’s aggregation kernel 1
δ for Madec’s aggregation kernel 1

P1 for breakage 0.7
Gshear for Pandya’s breakage kernel 6× 10−7

P2 for Pandya’s breakage kernel 1.3

The results from the extended cell average technique, reveal conservation in terms

of particle number and total volume (Figure 2 and 3 in (Chaudhury et al., 2013a).



70

0 100 200 300 400 500 600 700 800 900 1000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Time (sec)

R
at

io
 o

f f
or

m
at

io
n 

ov
er

 d
ep

le
tio

n

 

 

Form
agg

/Death
agg

Form
break

/Death
break

Figure 3.5: Ratio of the rate of birth by death for aggregation and breakage, where,

Ratio ≡ ℜbirth
ℜdeath
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(a) No growth
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(b) Liquid addition stops at t=500 seconds

Figure 3.6: Conservation of total volume: (a) No growth term considered, hence vol-

ume held constant, (b)Source terms and liquid addition considered till time=500 secs,

thereafter liquid addition stopped

The primary advantage of using the nonlinear grid for simulating granulation process

is the reduced computational expense. The range for the discretization has been kept

constant, but the discretization was performed using a linear and a nonlinear grid

(which used the CAT for reassignment). Thus, the property can be tracked exactly

using a nonlinear grid as a linear grid. The grid sizes and the initial distribution have
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been kept same as mentioned in the parametric table in the paper (Chaudhury et al.,

2013a).
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Figure 3.7: Comparison between the predicted average diameter of particles from a

linear grid, and a nonlinear grid using the cell average technique

It was observed that the linear grid requires much more time as compared to the

nonlinear grid in order to cover the same range (Chaudhury et al., 2013a). For covering

a certain range of particle size, the linear grid required 15 number of grids in each

individual volume coordinate whereas the non-linear grid spanned the same range using

only 8 grids in each volume coordinate thus reducing the computational expense to a

great extent. The simulations were carried out for 300 seconds (model time). Both

simulations were run on the same computer and the time recorded for the simulation to

finish running using the nonlinear grid was 45.0 seconds whereas the simulation using

a linear grid took 551 seconds to run. Thus, we can see that a speed-up of around 12

times can be observed. Thus, an increase in grid size would result in a greater difference

in computation time between the linear and nonlinear grids.
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3.5 Chapter conclusions

Two approaches have been presented in order to speed up and ease the computations

for obtaining a solution to the PBMs. The ROM developed using tensor decompo-

sitions and separation of variables enable us to overcome the obstacles faced due to

memory limitations. The accuracy obtained from the ROM solution shows promising

results. The nonlinear grid also enables the realization of wide size distributions (as

seen in the industry) with minimal number of grids. The need to capture the process

using accurate models is a crucial task, however the effective solution of the equation

cannot be overlooked, either. There have been multiple solution techniques proposed

by multiple research groups in the past, however there is a dearth of solution techniques

that can accommodate the solution for high-dimensional PBMs. There is a continuing

need for developing efficient numerical techniques that can preserve the accuracy while

also requiring minimal computational overheads. PBMs are almost inevitably utilized

for parameter estimation techniques, which requires multiple iterations of solving the

model. In order to obtain results within reasonable time frames and also obtain a so-

lution for varying parametric values, there is a need for stable reduced order modeling

techniques which can not only solve the model quickly, but is also independent of the

parametric values that are considered within the model.

The application of tensor decomposition for obtain an ROM is a very powerful tool,

which if extended further, can mitigate a lot of issues associated with computational

limitations. The tensor-decomposition enables the minimization of discretization error

(by accommodating large number of grids) while also preserving the accuracy of the

solution. The non-linear discretization approach can significantly reduce the computa-

tion overheads by reducing the need for large number of grids in order to span a size

domain. The solution framework can be and has been further sped up by introducing

the concepts of parallel computing. Parallel computing can prove to be a very powerful

tool when running the simulations on a multi-core computer.



73

Chapter 4

Specific Aim III: Mechanistic modeling of granulation

process

The details of the discussions provided in this section can be obtained in the publication:

• Chaudhury, A., Wu, H., Khan, M., Ramachandran, R., 2014, A mechanistic pop-

ulation balance model for granulation processes: Effect of process and formulation

parameters, Chemical Engineering Science, 107, 76-92

In the previous sections, a detailed discussion has been provided on the current state of

developments that have emerged in the broad field of modeling granulation processes

and its numerical solution. It is important to model and solve granulation processes with

more predictive approaches, however the employment of non-empirical kernels/rates to

describe the various mechanisms is yet another crucial task for obtaining predictive

models that can be furthered for control and optimization. It is very common to imple-

ment size dependant, empirical aggregation kernels for the description of the aggregation

process. A review has been provided by Cameron et al. (2005) on the various aggre-

gation and breakage kernels while describing granulation. Initially, constant kernels

were used for describing aggregation, which was then replaced by more size dependant

kernels. The EKE (equipartition of kinetic energy) kernel based on the kinetic theory

of granular flow was proposed by Hounslow (1998). Later, Madec et al. (2003) pro-

posed an empirical aggregation kernel which also takes into account the liquid fraction

(volume based) in the agglomerating particles. This kernel, although empirical in na-

ture, takes into account the presence/amount of liquid in the particles. Eventually a

mechanistic kernel was proposed by Immanuel and Doyle III (2005) which was based

on the physics of the problem. The aggregation kernel is represented as a Fuch stability

ratio, W for the two types of coalescence mechanisms outlined by Liu et al. (2000); Liu
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and Litster (2002) earlier. The calculations are very intensive and require large time

for computing the mechanistic kernel. The mechanistic aggregation kernel observed in

literature (Immanuel and Doyle III, 2005) does not demarcate the liquid volume that

exists on the surface as opposed to the volume that percolates into the pore volume.

The consideration of the contact angle of the liquid binder is also missing in the ex-

isting mechanistic kernel. This suggests the need for a semi-mechanistic kernel which

adequately relates the granule properties with the microscopic/processing attributes,

yet requires relatively simpler calculations. The semi-mechanistic kernel proposed in

this work tactfully demarcates the internal vs external liquid and also accommodates

the effect of contact angle on the kernel describing the aggregation event.

The description of the breakage mechanism has similar shortcomings as the aggre-

gation of particles. Researchers mostly use empirical kernels to quantify the breakage

mechanism. Earlier, Pandya and Spielman (1983) had proposed an empirical kernel

which quantified breakage as a function of the shear and particle size. However, Soos

et al. (2006) proposed a semi-empirical breakage kernel that expressed the breakage of

particles as an exponential function of the shear and the particle size.

4.1 Aggregation kernel development

Dry porous particle 

As consolidation proceeds, pores get compacted and liquid appears on surface 

Agglomeration event with 

liquid bridge formation as 

two wet particles collide

Figure 4.1: Schematic showing the effect of consolidation on agglomeration event
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Figure 4.1 shows a schematic of how the agglomeration mechanism proceeds as a coupled

effect of consolidation and aggregation. From literature, it has been observed that some

of the crucial parameters affecting aggregation are the impeller speed (Nursin, 2010),

binder viscosity (Iveson et al., 2001a), contact angle and the amount of surface liquid

(Immanuel and Doyle III, 2005). The impeller speed and binder viscosity influences

the Stoke’s criterion that has been previously used for various works that has studied

the aggregation of powder (Stepanek et al., 2009). The contact angle of the binder

liquid influences the wetting of the particle surface by the liquid and hence gives an

idea about the amount of wetted area and liquid depth available on the particle surface.

The wetted area and the liquid depth are crucial parameters that affect the aggregation

of particles.

The amount of liquid on the surface of the particle is dictated by the granule satura-

tion fraction, x∗. It can be said that at the initial time point, the amount of total liquid

can be demarcated as internal and external based on the granule saturation fraction.

Thus we can express the initial surface liquid, V0 as

V0(j) = l(j)× x∗ (4.1)

where l(j) is the volume of the total liquid in the jth liquid bin. With the progression

of time, the liquid on the surface of the particles vary due to the effect of liquid addition

and consolidation. As consolidation occurs, liquid binder is squeezed on to the surface

due to the compaction of the particles and reduction in pore volume. The partial

derivative in terms of liquid volume, l takes care of defining the liquid content of the

particles owing to the addition of external liquid. However, once particles have a certain

liquid content and begin to appear in the corresponding higher liquid bins, surface liquid

starts to appear based on the granule saturation coefficient. As particles start appearing

in a certain bin, consolidation also progresses. Thus, at a certain time instant, the

amount of surface liquid on the particle can be expressed as

Vext(s, l, g, t) = max

(
Vext(s, l, g, t− 1) +

dg

dt
× x∗, 0

) ∣∣∣∣∣
F (s,l,g)>0

(4.2)
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In this study, a constant contact angle has been used, although in real scenario, the

contact angle varies over time and is dynamic in nature following the Young-Dupre’s

equation. The dynamic contact angle could be expressed as a function of the surface

tension and the friction coefficient (Seveno et al., 2002). The drop penetration time

described in previous works by Hapgood et al. (2003) also gives an idea on the amount of

time required by a droplet to completely sink into a particle pore. It is assumed that the

liquid present on the surface is in the form of a single droplet. As time progresses, liquid

begins to get squeezed out to the surface (for a particular bin) owing to consolidation.

It is assumed to occur in the form of a single big droplet whose radius and thickness

increases as more liquid keeps accumulating on the surface. This can be represented as

a function of a constant contact angle, θ and has been shown in Equation (4.3)

Rwet =
3V

π
Φ(θ) (4.3)

where,

Φ(θ) =
sin3(θ)

2− 3cos(θ) + cos3(θ)
(4.4)

The area of the particle surface wetted by the liquid can be calculated by evaluating

the area of a circle having a radius of Rwet (assuming the surface to be flat and ignoring

the curvature).

With the progression of time, the total and surface liquid in case of wet particles

keep increasing. In case of a dry particle without enough liquid content, the liquid

hitting the particle sinks into the particles as long as the pores are not filled. Once

the pores get filled to its saturation point, the excess liquid remains on the surface

and contribute to higher aggregation of particles. The depth of the surface liquid, h0

present can be expressed as a function of the volume and the wetted area (based on the

dimensionless spray flux principle (Litster et al., 2001)) as

h0(s, l, g) = 1.5× V (t, s, l, g)

Awet(s, l, g)
(4.5)

The surface asperity, ha is considered to be 2 % of the particle diameter upto a
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maximum value of 3 µm. Using these information, the aggregation kernel is considered

to be a product of a size dependant part and a size independent part. The aggregation

kernel can be represented as

Kagg(s, l, g, s− s′, l − l′, g − g′) = B0Ψ(s, l, g, s− s′, l − l′, g − g′)×A(s, l, g, s− s′, l − l′, g − g′)(4.6)

Where, Ψ(s, l, g, s−s′, l−l′, g−g′) is a binary variable depicting the Stoke’s criterion

and can be written as expressed in Equation (4.7) while A(s, l, g, s− s′, l− l′, g − g′) is

obtained from the fractional wetted area of the two aggregating particles. Ψ(s, l, g, s−

s′, l − l′, g − g′) can be calculated from the Stoke’s criterion as

Ψ(s, l, g, s− s′, l − l′, g − g′) =


1, if St ≤ St∗

0, if St ≥ St∗
(4.7)

where, the Stokes number, St and the critical Stokes number, St∗ can be written as

St =
8m̃u0

3πµd̃2

St∗ = 2ln
λ12
ha

(4.8)

where, m̃ is the harmonic mean of the mass of the two particles, u0 is the velocity

of the particles, µ is the viscosity of the binder, d̃ is the harmonic mean of the diameter

of the aggregating particles and λ12 is the depth of the surface liquid on the particle.

The factor A(s, l, g, s− s′, l − l′, g − g′) represents the product of the fractional wetted

area of the two aggregating particles and can be written as
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A(s, l, g, s− s′, l − l′, g − g′) =
Awet(s, l, g)

Atotal(s, l, g)
× Awet(s− s′, l − l′, g − g′)

Atotal(s− s′, l − l′, g − g′)
(4.9)

The final aggregation kernel is taken to be a product of all these variables (Equation

(4.6)) which focus on the various aspects that influence the possibility of a successful

collision.

4.2 Results and discussions

Intuitively we have identified a few parameters that could be easily manipulated while

running experiments in order to see the variations in the output properties of the pro-

posed integrated model that is expressed as a function of the key operating parameters.

This study will enable us to have a more vivid idea of which quantities are needed to

be manipulated and to what extent, in order to define the final granule properties (e.g

particle size and porosity)). The integrated model relates the various mechanisms to

the fundamental operating parameters in a way such that the model is not completely

decoupled, yet the solution technique is not very complicated. Some of the crucial

operating parameters that affect the final outcome of the process are the number of

rotations per minute of the impeller (rpm), the viscosity of the binder (µ), the contact

angle (θ) of the binder liquid onto the surface of the particle and the liquid spray rate.

The aggregation kernel proposed in this work is also novel and takes into consideration

the various crucial operating parameters such as the viscosity of binder, contact angle

and impeller speed.
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4.2.1 Comparison between the semi-mechanistic aggregation kernel

and the empirical kernels from literature

0 1 2 3 4 5 6 7 8 9

x 10
−11

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

15

Internal coordinate (m3)

A
gg

re
ga

tio
n 

ke
rn

el

 

 

Solid Volume
Liquid Volume
Gas volume

(a) Semi-mechanistic kernel
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(b) Empirical kernel

Figure 4.2: Comparison of the behavior of the semi-mechanistic kernel and the empirical

kernels with respect to the individual volumes (β(1, 1, 1, 1, 1, :) for gas, β(1, 1, 1, 1, :

, 5) for liquid and β(1, 1, 1, :, 1, 1) for solid in both cases)

The aggregation kernel proposed in this paper is dynamic in nature and accounts for the

changes in the system behavior as granulation progresses. The aggregation kernel takes

into account the appearance of surface liquid for porous particles as liquid is sprayed

over the particles and also attributes the occurrence of consolidation with the progress of

the granulation process. The overall aggregation kernel is expressed as a product of the

fractional wetted area, the factor owing to the Stoke’s criterion and the constant value

for scaling the kernel. In contrast to the empirical kernels more commonly used, this

kernel shows remarkable variations with respect to the different internal coordinates,

such as solid, liquid and gas volumes. Also, at the initial time, the particles that are

more porous and dry are considered to not have any aggregation tendency. These trends

cannot be captured using the empirical kernels. Figure 4.2 shows a comparison between

the empirical kernels and the kernel proposed in this work.

From Fig 4.2, we can see that for the empirical kernel, the individual volumes are just

lumped as the size and hence there is no realistic variation with respect to the individual

volumes. The semi-mechanistic kernel instead, shows more realistic variation with
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respect to the solid, liquid and gas volumes. For a constant solid and gas volume, as the

liquid increases, the fractional wetted area also increases suggesting higher aggregation,

which is in agreement with the figure. On the other hand, for a constant solid and liquid

volume, the wetted area decreases as the porosity increases. As the porosity increases,

a significant amount of liquid is used up to fill in the pores of the particle and after a

certain point, surface liquid seems to emerge. Thus the amount of surface liquid and

thus the wetted area is reduced for highly porous particles. For a constant liquid and

gas volume, the fractional wetted area decreases as the solid volume increases. Due to

increased solid volume, the overall size of the particle increases, but the liquid amount

is still constant hence the amount of wetted area is same, but the total surface area

present in the denominator is increased and hence the fractional wetted area is reduced.

These physical events can be well captured in the proposed aggregation kernel.

4.2.2 Effect of the various model inputs/operating parameters on the

final granulation outcome

The integrated model which takes into account the various fundamental operating pa-

rameters, can capture the steady growth and induction behavior under the conditions

as also mentioned in the works of Walker (2007). The impeller speed affects both the

aggregation and the consolidation of the particles, the viscosity and contact angle af-

fects the aggregation mechanism, the liquid added affects the aggregation and the liquid

distribution. The DOE used for this analysis was adopted from Pandey et al. (2011).

Effect of aggregation only

The aggregation kernel proposed in this work is a function of the liquid viscosity, im-

peller speed and the contact angle. This case involves studying the dynamics of the

the aggregation mechanism (with no consolidation) on the final granule properties. It

can be seen that for the highly porous particles, the overall porosity increases as ag-

gregation occurs, however for less porous initial particles, the granule porosity reduces

over time suggesting the resulting system to be more densely packed (Gluba et al.,

2004). As anticipated, the average diameter of the particles increases with increasing
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liquid spray rate due to higher availability of surface liquid (as also shown in Figure

4.3). With increasing binder viscosity, the liquid bridges formed between the parti-

cles are stronger thus indicating the formation of larger granules. The binder viscosity

can be manipulated by changing the concentration of the binder solid in the liquid.

Traditionally the empirical kernel is unable to address such effects, however the semi

mechanistic kernel is capable of capturing such trends, as also shown in Figure 4.4. In

case of the highly porous particles, there is a reduction in the availability of surface

liquid (as consolidation is not considered), hence aggregation does not predominantly

occur. However in the case of less porous particles, there is a steady growth pattern

with a higher increase in the particle size owing to the stronger liquid bridges formed

by more viscous fluid. In case of less porous particles, there is availability of surface

liquid which aids in the occurrence of aggregation, thus the effect of viscosity is more

pronounced. The change in binder liquid viscosity can be brought about by changing

the concentration of solid binder in the liquid/water. For this work, we have assumed

the three variations in the viscosity to be representative of binder concentrations of 0.5

%, 2.5 % and 5 % as was used in the work of Poon et al. (2009). The case showing

the effect of impeller speed (Figure 4.5, no significant impact could be observed for the

highly porous particles. This is also due to the unavailability of surface liquid which

discourages the occurrence of aggregation. In case of less porous initial particles, there

is enough surface liquid thus enabling the agglomeration of powder. With an increase

in the velocity, the kinetic energy of the particles increases. Thus the agglomeration

tendency of the particles reduces. This effect is controlled by the binary coefficient

representing the Stoke’s criterion that comprises of an integral part of the aggregation

constant.
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Figure 4.3: Comparative study showing the variation of liquid spray rate for the aggre-

gation only case for highly porous and less porous particles
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Figure 4.4: Comparative study showing the variation of binder liquid viscosity for the

aggregation only case for highly porous and less porous particles

Figure 4.6 shows the effect of the contact angle/wettability of the particle and the

binder liquid on the bulk and distributed properties. The contact angle depicts the

wettability of the particle for a certain binder liquid. The aggregation kernel is a

function of the fractional surface area and the Stoke’s criterion takes the depth of surface

liquid into consideration. Thus, the effect of the contact angle is not monotonic. In

the case of a lower contact angle (hydrophilic), the fractional surface area is higher,

however due to the reduced depth of surface liquid, many aggregation events are not

possible due to the violation of the Stoke’s criterion. However, for higher contact angles

(depicting hydrophobic), the available surface area for aggregation is less. This also

reduces the chances of agglomeration to occur. Therefore, as also shown in the figure,
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an intermediate contact angle is best suited for increased aggregation of particles.

0 50 100 150 200 250 300 350 400
135

140

145

150

155

160

165

170

175

180

Time (secs)

A
ve

ra
ge

 d
ia

m
et

er
 (µ

 m
)

 

 

tip speed=3.75 m/s
tip speed=4.75 m/s
tip speed=5.5 m/s

(a) Average diameter for highly porous particles

0 50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

Time (secs)

A
ve

ra
ge

 d
ia

m
et

er
 (µ

 m
)

 

 

tip speed=3.75 m/s
tip speed=4.75 m/s
tip speed=5.5 m/s

(b) Average diameter for less porous particles

0 50 100 150 200 250 300 350 400
0.745

0.75

0.755

0.76

0.765

0.77

0.775

Time (secs)

A
ve

ra
ge

 P
or

os
ity

 (
−

)

 

 
tip speed=3.75 m/s
tip speed=4.75 m/s
tip speed=5.5 m/s

(c) Average porosity for highly porous particles

0 50 100 150 200 250 300 350 400
0.25

0.252

0.254

0.256

0.258

0.26

0.262

0.264

0.266

Time (secs)

A
ve

ra
ge

 P
or

os
ity

 (
−

)

 

 
tip speed=3.75 m/s
tip speed=4.75 m/s
tip speed=5.5 m/s

(d) Average porosity for less porous particles

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Size (µ m)

N
or

m
al

iz
ed

 n
um

be
r 

fr
eq

ue
nc

y 
(−

)

 

 
tip speed=3.75 m/s
tip speed=4.75 m/s
tip speed=5.5 m/s

(e) PSD at the end of the wet massing time for

highly porous particles

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Size (µ m)

N
or

m
al

iz
ed

 n
um

be
r 

fr
eq

ue
nc

y 
(−

)

 

 
tip speed=3.75 m/s
tip speed=4.75 m/s
tip speed=5.5 m/s

(f) PSD at the end of the wet massing time for

less porous particles

Figure 4.5: Comparative study showing the variation of impeller speed for the aggre-

gation only case for highly porous and less porous particles
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Figure 4.6: Comparative study showing the variation of contact angle for the aggrega-

tion only case for highly porous and less porous particles
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Effect of the operating and formulation parameters on the final granule

properties for the overall model

Two cases have been considered wherein the system is differentiated based on the poros-

ity of the particles subjected to granulation. The initial porosity of the highly porous

particles is 0.74 while that for the less porous particles is 0.263. Initially the particles

are relatively dry, but as liquid is added, an increased amount of aggregation begins to

occur thus resulting in the average diameter to increase. Consolidation plays a signifi-

cant role in case of the highly porous particles. In case of highly porous initial particles,

a prominent induction behavior can be captured owing to the lag in the availability of

surface liquid aiding in aggregation. Therefore, the aggregation of particles is inhibited

initially, however with the appearance of surface liquid, the growth is promoted rapidly.

In the case of less porous particles, the growth observed is steady in nature due to the

presence of liquid on the surface from the start.

Liquid amount variation

From Figures 4.7 and 4.8, the effect of liquid to solid ratio (brought about by adding

liquid at different rates for a fixed time) on the various bulk and distributed properties

can be noted. It can be seen that with increasing liquid spray rate, the particle diameter

increases (Figures 4.7a, 4.8a). In the case of highly porous particles, an induction

behavior is observed. With increasing liquid to solid ratio (liquid spray rate), the

porosity of granules increases as the liquid occupies more space in the pores. With

increasing liquid to solid ratio the porosity decreases in reality and that is driven by

the increase in the consolidation of particles (Iveson and Litster, 1998; Hagrasy et al.,

2013). The consolidation rate used in this work is not expressed as a function of the

liquid to solid ratio (due to the lack of mechanistic knowledge) and hence the decrease

in the porosity with increasing liquid spray rate cannot be observed. The effects of

liquid spray rate are well established in the scientific community and can be very well

captured using this model proposed in this work. The additional benefit is the ability

to capture the steady and induction growth behavior, which are key abilities to capture
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the observations as noted by Hapgood et al. (2003) in their regime-map analysis of the

granulation process.
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Figure 4.7: Variation of liquid spray rate for highly porous particles showing the effect

on the bulk and distributed properties
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Figure 4.8: Variation of liquid spray rate for less porous particles showing the effect on

the bulk and distributed properties

Viscosity variation

It can be seen that with increasing binder viscosity, the agglomeration of particles

increases due to the stronger liquid bridge formed between the particles (Liu et al.,

2000). However, the empirical aggregation kernels are unable to track such an effect as

a function of the viscosity as they typically are not a function of liquid binder viscosity.

Figures 4.9a and 4.10a clearly reveal the increase in the particle size as a function

of the binder viscosity. It was also seen in the works of Iveson and Litster (1998),

that as binder viscosity increases, the consolidation decreases. This suggests a reduced

decrease in the granule porosity. The observations from Figures 4.9b and 4.10b are in

accordance with the results expected in theory and experimentation. The aggregation

kernel proposed in this work is thus capable of capturing the expected trends in the

granule properties as a function of the binder viscosity (Figures 4.9 and 4.10).
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Figure 4.9: Variation of binder viscosity for highly porous particles showing the effect

on the bulk and distributed properties
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Figure 4.10: Variation of binder viscosity for less porous particles showing the effect on

the bulk and distributed properties

Impeller speed variation

In this work, we have used a simplified expression to quantify the effect of the impeller

speed on the consolidation by expressing it as a linear function of the rpm. The speed

of the impeller directly affects the Stoke’s criterion as shown in Equation (4.7) and

(4.8). This suggests that for higher impeller speed, many aggregation instances are not

viable, thus the aggregation is reduced. Physically, this can also be explained by the

increased kinetic energy of the particles which is not dissipated by the collision forces for

aggregation to occur. The impeller speed also affects the consolidation of particles and

speeds the appearance of liquid on the surface. In case of highly porous particles it can

be seen that the increase in the particle size is delayed for lower impeller speed. However,

once there is sufficient liquid for aggregation to occur, the particle size increases and is
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higher for lower impeller speed. The average porosity of the granules is also lower for

higher impeller speed. This is brought about by the increased consolidation of particles

resulting in a lower final porosity of the granules. Figures 4.11 and 4.12 shows the effect

of the impeller speed on the bulk and distributed properties of the particles.
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Figure 4.11: Variation of impeller speed for highly porous particles showing the effect

on the bulk and distributed properties
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Figure 4.12: Variation of impeller speed for less porous particles showing the effect on

the bulk and distributed properties

Contact angle variation

A major influence of the contact angle is on the fractional wetted area of the particles

and the Stoke’s criterion (indirectly). A contact angle of less than 900 indicates a more

hydrophilic binder liquid on the surface whereas a contact angle of greater than 900

suggests a more hydrophobic binder liquid on the particle surface. The contact angle of

the liquid on the solid surface determines the wettability of the particle with the binder

liquid used. A smaller contact angles suggest higher wettability and the converse is

true for higher contact angles. In our study, we have considered the contact angle to

be such that the entire range of low and high wettability can be covered (hydrophilic

as well as hydrophobic binder). For low contact angles, the wetted surface area of the
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particles is larger which also suggests a fractional wetted area of the particle closer

to 1. However, in this case, the depth of surface liquid is less, which does not allow

enough thickness of liquid for the formation of a liquid bridge which could enable the

coalescence mechanism to occur. This explains the increase in the particle size with an

intermediate contact angle between the binder liquid and the particle surface as also

seen in Figure 4.13 and 4.14. The PSD of the granules at the end of the wet massing

period show good agreement with the expected qualitative bulk property plots. The

average particle size plots also suggest a reduced delay with the onset of the aggregation

mechanism for the more hydrophilic case compared to the hydrophobic case.
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(b) Average porosity
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(c) PSD at the end of the wet massing time

Figure 4.13: Variation of contact angle for highly porous particles showing the effect

on the bulk and distributed properties
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(b) PSD at the end of the wet massing time

Figure 4.14: Variation of contact angle for less porous particles showing the effect on

the bulk and distributed properties

The final time upto which the granulation process is ran or the wet massing time is

yet another crucial variable that can affect the final granule properties. It is however

quite straightforward and would not involve making significant changes in the model

itself. Thus, detailed discussions in the granule properties with respect to changing wet

massing time has not been provided in this work.

4.3 Chapter conclusions

This work deals with developing a semi-mechanistic aggregation kernel that is represen-

tative of the influence of the input parameters on the output quantities for a high-shear

wet granulation process. The model can effectively capture the steady and induction

growth behaviors as expected in experimental observations. Due to the capability to

track real scenarios with minimal computational complexity, this model can be consid-

ered ideal to be furthered for control, optimization or process scheduling work. The

ability of the model to be able to capture the intricate behavioral attributes observed

during the practical granulation process makes this work novel and this model different

from the pre-existing models noticed in literature. This model can be effectively utilized

for open loop control and optimization of the granulation process. As the aggregation

kernel can relate the final granule properties with the operating parameters, based on

a sensitivity analysis, the contribution of the variation of each operating parameter to
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the granule property can be realized. Therefore, this work provides an example how

to utilize mechanistic modeling approach to reduce the uncertainty surrounding the

high-shear wet granulation process design space development. Furthermore, it will sig-

nificantly aid in optimally scheduling the granulation process such that the operating

conditions are predetermined based on the final needs of the operator. Another signif-

icant benefit of this kernel is the reduced number of empirical parameters involved in

the formulation which suggests reduced reliance on the estimation of multiple empir-

ical parameters. The ability of this kernel to be able to capture the steady state and

induction growth behaviors makes it a more practical kernel for modeling the complex

particulate process such as granulation.
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Chapter 5

Specific Aim IV: Compartment based model identification

and open loop optimization of granulation processes

The details of the discussions provided in this section can be obtained in the publication:

• Chaudhury, A., Armenante, M., Ramachandran, R., 2014, Compartment based

population balance modeling of a high shear wet granulation process using data

analytics, Chemical Engineering Research & Design, Accepted for publication

Granulation is a not so well understood process that is commonly carried out in the

industry with high recycle ratios. This chapter aims at obtaining a more systematic

approach for optimally scheduling a granulation process in order to obtain the desirable

final granule properties. This approach involves utilizing a detailed and mechanistic

model, which can not only relate the process outcome to the operating conditions, but

can also adequately account for the inhomogeneities existent within the system. The

model can further be used to optimize the process and obtain operating parameters

that can result in a desired output CQA.

5.1 Development of a compartment-based model for high-shear gran-

ulation process

A high-shear granulator is commonly assumed as a well-mixed system, with a single

equation describing the overall vessel. However, there are various heterogeneities (par-

ticle velocity, liquid distribution) existent within the high-shear granulator and a single

PBM might be inadequate to represent the overall system accurately. As discussed in

the previous chapters, a lot of work observed in the literature has been aimed at investi-

gating the system behavior based on regime-map analysis (Iveson et al., 2001a; Litster,
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2003; Emady et al., 2011). Hapgood (2000) proposed the granulation process to fall

into the droplet controlled regime, the intermediate regime or the mechanical dispersion

regime. The droplet control regime is a more ideal scenario, wherein a droplet wets a

single particle. This system is typically devoid of inhomogeneities (in terms of liquid)

and is considered more uniform. The other asymptote-mechanical dispersion regime is

however accompanied by a single droplet wetting multiple particles. This is associated

with a lot of inhomogeneities within the process and also indicates limitations with

respect to mixing. For a droplet controlled regime, the inhomogeneities are not very

prominent, however, in reality, a system seldom corresponds to the droplet-controlled

regime. A compartment-based model is expected to capture these heterogeneities within

the system in terms of binder distribution and velocity.

A compartment based approach has been used for various particulate process in order

to address the inhomogeneities. Maronga and Wnukowski (1997) used a compartment

based approach for modeling a fluid bed coating process where they differentiated the

coater into three distinct compartments (active spray zone, active drying zone and non-

active domain). These observations (within a coater) were extended for a PBM based

approach by Freireich et al. (2011); Li et al. (2011) where discrete element modeling

(DEM) simulations were used to identify the particle flow information and residence

time distribution (RTD) within each compartment. A compartment based approach

has also been implemented to account for the inhomogeneities within a crystallization

process (Kulikov et al., 2006; Ma et al., 2002). Börner et al. (2013) have also modeled a

Wurster fluid bed granulator using a bi-compartment based model. Ramachandran and

Chaudhury (2012) have previously modeled a continuous drum granulator using sepa-

rate compartments. The high-shear granulator is conventionally treated as well mixed

and is modeled using a single PBM, however this assumption could lead to oversim-

plification. Bouffard et al. (2012, 2013) have used DEM simulations to identify the

various compartments existing within a rotor-based equipment. The information about

the various compartments are then extended to develop a PBM along with a Markov-

chain approach in order to quantify the motion of particles in each compartment. This

approach however does not address the variations in the velocity of the particles as



98

result of the impeller rotating within the granulator. The approach adopted in the

works of Bouffard et al. is stochastic in nature and has been tackled using Monte Carlo

simulations.

The development of the compartments tracking the heterogeneity within the granulator

requires multiple steps. The experiment is mimicked using Discrete Element Modeling

(DEM) simulations that are operated under the same experimental conditions. The

data extracted from the DEM simulations are further analyzed to demarcate the regions

of homogeneity within the heterogeneous system. In the following subsections, details

are provided regarding the step-by-step approach adopted for this exercise.

5.1.1 Model Calibration of a PBM to generate intermediate data

Experimental data was obtained for the high-shear granulation process, and the mea-

surements included the final particle size distributions (PSDs) from the experiments

described in our previous works (Pandey et al., 2013; Chaudhury et al., 2014a). In

order to account for the change in the number and size of the particles, obtaining the

PSDs at intermediate time points was required which lead to the need to calibrate the

PBM in order to generate additional data. Thus, the model has been calibrated using

the data for the final PSD presented in Chaudhury et al. (2014a). However, the model

utilized in this work differs from that used in Chaudhury et al. (2014). The aggregation

kernel used in this work (as described in the previous chapter) takes into account the

semi-mechanistic kernel which is capable of tracking the steady and induction growth

behavior and is also a function of process parameters such as liquid content and impeller

speed. The objective function (Φ) for the optimization problem was then formulated

as

Φ(θ) = min
θ

N∑
k=1

(Ok − Ek(θ))
2 (5.1)

θ = [β0 B kcon xsat εmin] (5.2)

where, θ is the set of adjustable parameters, Ok is the k
th measurement value, and Ek(θ)
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is the simulated value of that measurement. N is the total number of measurements

across all experiments used in parameter estimation.
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Figure 5.1: Experimental and simulated end point particle size distributions from high

shear granulator using parameter estimation
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The measurements encompass the end point particle size distribution (PSD) from the

granulation experiments. The simulated PSD is unable to capture the bimodal distribu-

tion as exhibited by the experimental results. A primary reason behind this discrepancy

can be justified by the utilization of a single PBM for the process description. This

also necessitates the need for a compartment based model that can better capture

multimodal distributions. The variables estimated through this approach include the

empirical coefficient for the aggregation kernel (β0) as expressed in our previous works

(Chaudhury et al., 2014b), the empirical coefficient for the breakage kernel (B) as ex-

pressed by Ramachandran et al. (2009), the empirical constant for consolidation (kcon),

the granule saturation (xsat) and the minimum porosity (εmin).

Table 5.1: Set of estimated parameters obtained from model calibration

Parameter name β0 B kcon εmin xsat
Estimated value 7.8434e14 5.2e−3 6.2893e−8 0.1877 0.0314

The model was calibrated using the non-linear simplex method or the Nelder-Mead

approach which is embedded in the fminsearch function found in MATLABr. Typ-

ical granulation experiments involve characterization of the system at the end time,

thus leading to a lack of intermediate particle size data. However, the flow patterns

within a granulator (within DEM) is a strong function of the number and size of the

particles. Thus, it is important to run multiple DEM simulations using different PSDs.

Using the model, intermediate PSDs were generated for the granulating system. This

information is later used for setting up the DEM simulations. The results from the

model calibration are shown in Figure 5.1 demonstrating good agreement between ex-

perimental and simulated data. The simulated results, however, show a unimodal size

distribution whereas the experimental results suggest a bimodal distribution with a

significant fraction of large particles. Typically, in the industrial granulation processes,

while calibrating the model, it is essential to fit the model to the product range in the

experimental data (which is well matched in this case). The mismatch with captur-

ing the bimodal distribution is an artifact of the incapability of a single compartment
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to capture the mechanical-dispersion regime (which is generally responsible for such

multimodal distributions).

5.1.2 DEM simulations
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Figure 5.2: Evolution of average velocity over time for varying conditions described by

the DOE for the test runs (the runs 1-9 are described in Table 5.3)

In order to better represent the experimental observations, DEM simulations (EDEMr,

DEM solutions) were run to enable better particle-scale analysis of the data. DEM

simulations are very efficient with mechanistically modeling the motion of particles

in a system based on a force-balance approach. The forces acting on a particle are

of two types, namely contact forces and body forces. The contact forces arise from

particle-particle or particle-boundary collisions. The overall force can be shown as

−→
F =

−→
Fc +

−→
Fb (5.3)

where,
−→
F is the overall force exerted on a particle due to all its interactions with
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other solid entities (particles and boundaries),
−→
Fc represents all the normal and tangen-

tial contact forces and
−→
Fb denotes all the body forces acting on the particle. Newton’s

laws of motion are solved along with the Euler’s equations for rotational motion in order

to numerically obtain the new position of the particles over a small time-step (in the

order of 10−6). The default body force component within DEM (i.e. gravity) has been

considered for the simulations while the damped Hertzian normal contact force and

the Mindlin-Deresiewicz/Coulomb friction tangential force model comprise the contact

forces acting on the particle (Dubey et al., 2011). Liquid addition has been captured

in EDEMr by creating particles which get deleted from the system upon contact (Sen

et al., 2014; Barrasso and Ramachandran, 2014). A separate factory of particles (repre-

senting the liquid particles) is created within the DEM simulations which are dropped

on the solid particles within the granulator using a nozzle at the top. As the liquid

particles hit the solid particles, they are deleted, however they impart a change in the

liquid content property of the particle (as it gets deleted). This liquid content property

is calculated based on the volume of the particle and the volume of the liquid parti-

cle that hit the particle and eventually gets deleted. The parametric settings used for

setting up and running the DEM simulations are shown in Table 5.2.

Table 5.2: Settings used for the DEM simulations

Parameter name Value Units

Particle properties Shear modulus 2× 106 Pa
Poisson’s ratio 0.25 −

Density 1500 kg/m−3

Particle-Particle interactions Coefficient of static friction 0.5 −
Coefficient of rolling friction 0.01 −
Coefficient of restitution 0.1 −

Granulator vessel and blades Material Steel
Shear Modulus 80 GPa
Poisson’s ratio 0.29 −

Density 7800 kg/m−3

Particle-blade/ Coefficient of static friction 0.5 −
particle-wall interactions Coefficient of rolling friction 0.01 −

Coefficient of restitution 0.1 −

A study was performed to identify the crucial quantities that affect the velocity and
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position of the particles. The study involved keeping the total particle volume constant

while varying the 1) size of each particle, 2) number of particles, 3) density of particles,

and 4) fill level within the granulator. Monodisperse distributions were used for these

test simulations. Table 5.3 shows the DOE used for the test runs. The simulations were

run for 10 seconds and the average velocity of particles within the vessel was extracted

every 2 seconds for the purpose of comparison. Figure 5.2 shows the variation in the

average velocity over time and aids with the identification of the crucial conditions

within the DEM framework that affect the output properties (e.g. velocity). It reveals

that the number of particles (comparing run 2 to 3 where the number of particles are

significantly different) and the size of the particles (considering runs 3, 4, 6 which utilize

large particles) influences the average velocity of particles most. Also, it confirms the

minimal effect of density variation of particles (as they get wetted or agglomerated) on

the flow pattern (comparing the average velocity results in Figure 5.2 for experiment

1 and 2 in Table 5.3). This result enabled us to ignore the variation in the density

of particles during the granulation process. Hence, it is necessary to account for the

change in the number of particles and their size with the progression of time. This test

study performed a sensitivity analysis for identifying the crucial operating parameters

that affect the flow pattern of the particles within the granulator.

From the above test study, it is clear that the change in the number and size of particles

within the granulator have to be taken into account. DEM lacks the ability to accom-

modate the change in particle number and size automatically within the simulation.

This is overcome by spanning the entire time domain through short DEM simulations

which start with the intermediate PSDs and run for a short period of time. The lack

of intermediate PSD data is fulfilled by obtaining the intermediate PSDs from the cali-

brated model (as described in section 5.1.1) using the end point PSD. It can be assumed

that the dynamic trajectory of particle agglomeration and growth can be tracked by

fitting the end point PSD. Multiple DEM simulations were run with varying set of

polydisperse particles (based on the intermediate PSD information obtained from the

model) and varying total number of particles. Since DEM has limitations in terms of

the number of particles it can accommodate, the number of particles have been scaled
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(such that the starting number of particles is 20000 and the rest follow the scaling

factor accordingly) in order to run the simulation reasonably. The purpose of running

the multiple discrete simulations is to address the variation in the system behavior as

a function of the varying particle properties (and number). Each DEM simulation was

run for a time segment of 6 seconds over the liquid addition period and for 12 seconds

during the wet massing period. The DEM simulations allow the detailed analysis of

data and capture the occurrences within the granulator from a mechanistic point of

view.

5.1.3 Clustering for compartment identification
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Figure 5.3: Sum-of-squares of variance for the clustering algorithm applied to experi-

ment 11

Clustering methods are a set of popular tools using for data mining and machine learning

purposes. It enables the grouping of datapoints that have similar attributes and also

demarcates the group of points/clusters that behave differently. It can be successfully

used to identify the compartments, which tend to group the points that behave similarly

while isolating those groups from each other. For this purpose a simple unsupervised
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learning technique-k means clustering algorithm has been utilized (Hartigan and Wong,

1979). It involves defining k centroids (each representing a cluster) that are placed in a

systematic way within the dataset with the common choice being its placement farthest

from each other. The next step involves associating all the points within the dataset to

the nearest centroid that is a representative of the cluster. This leads to the formation

of an initial set of clusters. The centroids (and hence the clusters) thus obtained are

further revised and the step involving the association of the datapoints to the centroids

is repeated. This happens iteratively until there is no change in the revised values of

the centroids. The association step for identifying a cluster grouping for each points

can be carried out using various criteria. The identification of the clusters is done based

on the minimization of the sum of square error within the cluster (objective) function

given by

SSE =
k∑

j=1

n∑
i=1

||x(j)i − cj ||22 (5.4)

where, x
(j)
i represent the ith point within the dataset belonging to the jth cluster and

cj represents the centroid of the jth cluster. The distance between the points and the

centroids are minimized in order to identify the clusters and the points lying within it.

In this study, the euclidean distance has been considered as the criterion for obtaining

the distance between the points and the centroids. Choosing an optimal value for k is

also a crucial task. A lower value of k might lead to inadequacy with the clustering

while a larger value of k can lead to overfitting. There are various approaches available

for determining the optimal value of k e.g. Bayesian information criteria (BIC) (Kass

and Wasserman, 1995) and various other well-established techniques. In this work,

plotting the sum-of-squares of the variance as a function of the value of k followed by

identifying the “elbow” of the plot (Yu et al., 2011) is utilized for fixing the value of

k (compartments) within the framework. The partitioned dataset using the optimal

k groups is then taken for further analysis of the data in order to obtain information

about the isolated well-mixed compartments (clusters).
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5.1.4 Data analysis and Analysis of Variance (ANOVA)

Regression analysis is performed on the grouped dataset obtained from the clustering

analysis in order to obtain the relationship between the output properties as a function

of the operating parameters. The clustering algorithm provides information about

the number of clusters, the size of the clusters and the value of the centroids. This

information is then taken to obtain the variation in the size of the clusters and the

value of the centroids as a function of time, impeller speed and liquid to solids ratio.

It is later discussed in the results section, how the number of clusters is found to

be constant overall. The analysis of variance provides information with obtaining the

significant operating conditions that affect the variation in the parameters for generating

the compartments. This analysis leads to a compartment based model which is further

utilized for the open-loop control as discussed in the following section.

5.2 Open loop control

Open loop control has been previously explored for certain particulate processes such

as emulsion polymerization (Immanuel and Doyle III, 2003; Immanuel, 2002; Immanuel

et al., 2007, 2008), however there has been no related work for improvement of the

granulation process. Optimal control approach can lead to obtaining an optimal sched-

ule for granulation operation such that the final granule properties match the desirable

outcome. For implementing open loop control on the granulation process, a mecha-

nistic model is required with detailed first principle based understanding of the effect

of each operating parameter on the output properties. This kind of a study would

enable us to identify the extent of manipulation needed for each operating condition

such that the output properties would tend to match the desired value. The approach

implemented in the works of Immanuel and Doyle III (2003) has been extended for a

granulation process. One of the biggest gaps preventing this kind of a study from mate-

rializing is the lack of kernels that are not solely empirical, are a function of measurable

operating parameters and are computationally inexpensive. The first two criteria for

the kernels were satisfied, however the mechanistic kernel proposed by Immanuel and
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Doyle III (2005) was associated with high computational overheads. This gap could be

significantly bridged with the proposition of the semi-empirical, computationally inex-

pensive aggregation kernel (described in previous chapter) that takes into account the

key parameters affecting the granulation outcome.

The problem statement involves obtaining an optimal recipe for operation of the gran-

ulation process based on detailed mechanistic knowledge and utilizing a compartment-

based model. The crucial output quantities to be controlled during a granulation pro-

cess are the particle size distribution and the particle porosity (Pandey et al., 2013).

It should be noted that these multiple output quantities need to be simultaneously

controlled for improved operation of the process. The overall optimization problem

involving multiple objective functions can be solved using various gradient-based or

metaheuristic optimization techniques. Immanuel (2002) had solved a similar problem

for the emulsion polymerization process using a non-dominated sorting genetic algo-

rithm (NSGA). This evolutionary algorithm was initially presented in the works of

Deb et al. (2000) and was successfully implemented for obtaining the pareto optimal

solutions of multi-objective optimization problems. The implementation of the NSGA

method is however not strict and can be substituted by other equivalent algorithms

that would serve the same purpose. It is however not a rigid choice for the optimization

algorithm and can be substituted by various other optimization algorithm observed in

the literature.

The multiple objectives involved in the optimization problem can also be dealt with

in various ways. The optimization problem can be solved by formulating the objective

function as a sum of the individual errors (weighted or non-weighted) in the quantities

as shown in Equation (5.5)-(5.6). Another approach that can be used for developing the

objective function could be considering the maximum of the multiple errors and then

minimizing the maximum of those. This is also known as the min-max approach and has

been shown in Equation (5.7). Yet another approach that can be used for the multiple

objective functions is formulating the problem in an ε−constraint form which involves

minimizing a primary error/objective function and treating the other errors/objective

functions as constraint applied to the system. This involves solving a multi-objective
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system with a feasibility check based on the constraints applied to the system. The net

result provides an optimal solution to the optimization problem which represents the

best tradeoff solution considering both the objectives simultaneously (Equation (5.9).

Minimize θ = θ1 + θ2 (5.5)

Minimize θ = w1θ1 + (1− w1)θ2 (5.6)

Minimize θ = max(θ1, θ2) (5.7)

Minimize θ = θ1 (5.8)

s.t θ2 < ε

where, ε is the tolerance value for the optimizer. The individual θ’s can be given by

θ1 = Σ(PSDdesired − PSDcomputed)
2 (5.9)

θ2 = (Porositydesired − Porositycomputed)
2 (5.10)

Here, PSD represents the particle size distribution for the granules and porosity

represents the porosity of the product class. A similar investigation can be found

in the work by Bianco (2008), where multiple representations for the multi-objective

optimization have been analysed along with the utilization of various optimization

algorithms. This approach for obtaining an optimal schedule for running a granulation

process can also be termed as a hierarchical control approach, where, the measurable

quantities/process parameters influence the various mechanisms which in turn affect

the final granule attributes (PSD, porosity). A schematic for this approach can be

shown in Figure 5.4.
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Figure 5.4: Schematic showing the hierarchy to be controlled while obtaining the opti-

mal recipe for granulation

5.2.1 Model utilized for the open-loop control approach

The modeling framework utilized for the open-loop control approach involves consid-

ering a compartment based model along with various rate processes described using

mechanistic information. The compartment model as described above has been utilized

for this work. In addition to the mechanistic submodels as described above, the consol-

idation rate has also been expressed as a function of process parameters. Gantt et al.

(2006) had earlier utilized the model proposed by Litster and Ennis (2004) which ex-

pressed the consolidation rate as a function of the impeller speed and the yield strength,

Yd. Similarly, the consolidation rate utilized in this work can be written as

dg

dt
= a1exp

(a2Stdef )
(s+ l + g)(1− ϵmin)

s
× [l − ϵmins

1− ϵmin
+ g] (5.11)
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where, a1 represents the rate of collision (considered an empirical quanitity in

this case), a2 is an empirical constant and Stdef is the Stoke’s deformation number

(Stdef =
mu2

0
2D3Yd

). It is a function of the particle mass, m, particle velocity, u0, particle

diameter, D and yield strength, Yd. The yield strength of granules is a function of the

moisture content, however there is no concrete information relating the moisture con-

tent of particles to the yield strength. Thus, we have considered the yield strength to

be constant (irrespective of the moisture content or porosity of granules). The crucial

operation conditions affecting the final granule attributes include the liquid to solid

ratio, impeller speed, wet massing time, viscosity of the binder and the contact angle.

The liquid to solid ratio can be manipulated by changing the flowrate of the liquid to

the system. Changing the impeller speed for the high-shear granulator is also quite

straight-forward. The viscosity and contact angle of the binder can be manipulated by

changing the concentration of the dissolved solid in the binder. Considering the system

to consist of microcrystalline cellulose (MCC) granulated using polyvinylpyrrolidone

(PVP), the information relating the concentration to the viscosity and contact angle

of the binder solution is obtained from literature (Benali et al., 2009). Based on the

data for pure water, 2 %, 3 % and 5 % solutions of PVP, a regression approach is used

to obtain an expression describing the variation in the viscosity and contact angle as a

function of the binder solid concentration in the solution. These correlations have been

fed into the model in order to accommodate the variation in the viscosity and contact

angle of the binder as a function of its concentration in the solution.
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Figure 5.5: Regression for relating the contact angle and viscosity with the binder

concentration

As discussed before, various optimization algorithms can be used to solve this problem

in order to decide on the operating conditions to get a target distribution. However,

since there are multiple CQAs involved, the optimization algorithm is expected to yield

solutions belonging to the pareto front. The optimal solutions can be obtained by

treating the multiple objective functions in various ways (Equations (5.5)-(5.9)). The

ε-constraint approach can be accommodated using a metaheuristic technique or by

scripting the optimization algorithm. However, the metaheuristic techniques are more

computationally expensive and thus the best choice would be to utilize a gradient-based

or simplex approach for the optimization. The objective function can be treated as a

weighted sum of the multiple objective functions. It should be ensured that an optimal

solution is existent for a specific pair of weighting factors and the model is also capable.

The detailed analysis for the existence of optimal solution is discussed in section 5.3.
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5.3 Results and discussions

5.3.1 Data analysis results for compartment model formulation
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(b) Batch 3
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(c) Batch 7
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(d) Batch 8
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Figure 5.6: Time evolution of the sum-of-squares of variance for varying choice of k
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Figure 5.7: Clusters within the granulator at different time instances (· −

compartment 1, ◦−compartment 2, �−compartment 3, ⋆−compartment 4). The X, Y

and Z axis depicts the gridbingroups in the DEM simulation replicating the granulator

The analysis of the data has been performed in multiple steps and involved the uti-

lization of various statistical tools. The intermediate PSDs for running the DEM sim-

ulations have been obtained from model calibration using experimental data. Table

5.1 lists the estimated values of the empirical parameters obtained from the model

calibration study. From there on, the results have been analyzed statistically to gain

more insight towards the occurrences within a high-shear granulator operating in batch

mode. The granulator geometry within the DEM framework has been discretized into

15, 7 and 15 grids (gridbingroup) in the x, y and z directions respectively in order

to accommodate enough particles within a gridbingroup while not considering excess
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number of particles such that the resolution gets bad. This choice of the number of

grids is used to ensure stability of the results. The average velocity values have been

exported from the DEM simulations at each second (averaged over a time period of

0.2 seconds) for each of the grids and have been utilized further for the analysis. The

k-means clustering algorithm was run on the exported velocity data and based on iden-

tifying the elbow of the sum-of-squares of variance, the optimal number of clusters was

4. This is also shown in Figure 5.3.
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Figure 5.8: Validation results from the regression analysis
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The time evolution of the sum-of-squares was also performed from the clustering al-

gorithm applied to the different experimental datasets. The time evolution of the

sum-of-squares is shown in Figure 5.6. It should be noted that for all the experiments,

the distance between the time evolution for k = 4 onwards gets significantly densified.

This confirms the choice of k = 4 for the optimal number of clusters to adequately

address the inhomogeneities within the granulator in terms of the average velocity. The

four clusters/compartments within the granulator indicate-the region of zero velocities

(due to absence of particles), the region of high velocity, region of low velocity and the

shear zone. Figure 5.7 reveals the variation in the cluster sizes as a function of time

for experiment 3. The clustered datapoints comprise of the grids which have similar

average velocity values within the granulator. Also each cluster is assigned with a rep-

resentative average velocity value (centroid). The size of a cluster indicates the number

of grids within the DEM discretization of the granulator that have similar velocity char-

acteristics. The size of the cluster can thus enable to depict the volume fraction within

the granulator volume that have a certain average velocity. This information is needed

for the formulation of the compartment model.

The results from identifying the compartments with respect to velocity have been fur-

ther analyzed using ANOVA and regression analysis in order to obtain the relationship

between the output quantities (centroids and sizes of each compartment) as a function

of time, impeller speed and liquid to solid ratio. The software Design-Expertr (by

Stat-Ease, Inc) was used for obtaining the ANOVA results from the data. To begin the

analysis, the initial models were assumed to have a quadratic form for the centroid out-

put and a cubic form for the size output. Insignificant terms not needed for preserving

the hierarchy of the model were then dropped from the regression equations. Tables

5.4 and 5.5 summarize the results from the analysis of variance study. It can be seen

that time and the impeller speed have a prominent influence on the variation in the

size (volume boundary) and centroids of the various compartments. The liquid to solid

ratio does not affect the compartments (across experiments) with respect to velocity

variation due to the fact that the contact model used within the DEM simulation did
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not take cohesion into account. Thus, the change in the velocity patterns (across ex-

periments) due to cohesion within the system could not be identified. However, it is

expected that a contact model that takes into account the cohesion within the system,

should be able to account for the variation in the size and centroids of the compart-

ments (across experiments when the operating conditions are varied) as a function of

the liquid to solid ratio. It should be noted that the first cluster within the granulator

represents the empty space that is devoid of particles and hence is neglected in this

study.

Table 5.4: Summary of the centroid and size fits developed with ANOVA

Property DF Mean SD F Value R-Squared

Centroid for Shear Zone 3 0.30 m/s 0.036 m/s 8745.44 0.9522

Centroid for Low Velocity Bulk 2 0.40 m/s 0.026 m/s 32649.43 0.9802

Centroid for High Velocity Bulk 5 0.51 m/s 0.025 m/s 21881.67 0.9881

Size for Shear Zone 10 526.5 grids 133.55 grids 82.68 0.3871

Size for Low Velocity Bulk Zone 5 1125.3 grids 137.85 grids 2213.76 0.8939

Size for High Velocity Bulk Zone 6 739.1 grids 93.5 grids 701.20 0.7621

In order to address the heterogeneity in terms of liquid, a unique spray zone has been

identified within the granulator which is depicted by the volume which contain wet

particles as soon as the liquid drop hits the particle bed. In order to avoid complexity,

the number of clusters with respect to the liquid distribution is considered to be 2 which

can differentiate between the bulk and the spray zone. For each discrete (6 second of

simulation) simulation, the liquid content of the particles is exported at the time value

when the liquid particles just hit the particle bed and wets a particles lying in the

spray zone. The number of cells within the granulator is identified from the clustering

algorithm and was found to lie between a value of 1-4. The variation in the number

of cells was observed to be randomly oscillating between the above-mentioned range,

hence an average value for the number of volume grids and centroids have been adopted

for each experimental dataset.

The polynomial expressions (Table 5.5) obtained from the regression analysis have

been validated using DEM results for experiments modeled under different operating
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conditions. Two sets of DEM simulations were run for L/S content of 25 %, impeller

speed of 4.75 m/s and LS content 30 % and impeller speed of 5.05 m/s which were used

for validation purposes. The cluster sizes and centroids were identified from the DEM

simulations for these two sets of operating conditions and were validated against the

values obtained from the regression polynomials. Figure 5.8 reveals that the regression

analysis lead to predictive results and can thus be extended for further interpolation.

5.3.2 Formulation of the compartment model

Spray zone 

Bulk zone      High velocity 

Bulk zone    Low velocity 

Shear zone 

Fine particles in Granules out 

Figure 5.9: Schematic showing the formulation of the compartments within the granu-

lator
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Figure 5.10: Algorithm used for formulating and solving the compartment model

The compartment model is expected to sufficiently track the inhomogeneities within

the granulator. The various compartments that have been identified from the above

analysis leads to the demarcation of four distinct regions within the granulator in terms

of velocity and liquid distribution. The spray region, the shear region, and high and

low velocity region within the bulk can address the heterogeneities in a lumped manner.

The spray region is characterized by the wetting mechanism, the shear zone comprises

of breakage while the bulk (high and low velocity) comprise of primarily aggregation

and consolidation along with some breakage. The overall granulator can be modeled

using four compartments that contribute to a particular mechanism and which also
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exchange particles between each other in an arrangement similar to parallel electrical

circuits. Figure 5.9 shows a schematic describing the formulation used for the compart-

ment based framework. The various compartments within the granulator are marked

by a specific mechanism that is dominant in that region. The spray compartment is

characteristic of the wetting of particles while the bulk region (both high and low ve-

locity region) comprises of the consolidation, aggregation and breakage mechanisms.

The shear compartment is marked by the dominance of the breakage mechanism due to

the high amount of shear within the region because of the large velocity gradient. This

framework can be represented in the form of a system of partial differential equations

as shown in Equation (5.12)-(5.15).

∂

∂t
F1(s, l, g, t) +

∂

∂l

[
F1(s, l, g, t)

dl

dt

]
= Flux1,∆α(s, l, g, t) + Flux1,wet(s, l, g, t) (5.12)

∂

∂t
F2(s, l, g, t) +

∂

∂g

[
F2(s, l, g, t)

dg

dt

]
= ℜagg,2(s, l, g, t) + ℜbreak,2(s, l, g, t) (5.13)

+Flux2,∆α + Flux2,wet(s, l, g, t)

∂

∂t
F3(s, l, g, t) +

∂

∂g

[
F3(s, l, g, t)

dg

dt

]
= ℜagg,3(s, l, g, t) + ℜbreak,3(s, l, g, t) (5.14)

+Flux3,∆α(s, l, g, t) + Flux3,wet(s, l, g, t)

∂

∂t
F4(s, l, g, t) = ℜbreak,4(s, l, g, t) + Flux4,∆α(s, l, g, t) + Flux4,wet(s, l, g, t) (5.15)

where, Fi represents the number of particles enclosed within the ith compartment.

The number of particles in the ith compartment is obtained by multiplying the initial

size fraction of the ith compartment (size of the ith compartment/sum of sizes of all

compartments) to the total number of particles present within the granulator. For the

granulation process, since there is an overall change in the particle size and the num-

ber of particles involved, mechanistically tracking the fluxes (Fluxi,∆α and Fluxi,wet)

between the particles becomes complicated. The compartment model presented in this

section first isolates the number of particles enclosed within each compartment followed

by updating the PBM for the particular compartment which modifies the evolution of a

particular property amongst a number of particles that are present in the compartment.
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The fluxes (Fluxi,∆α) entering or leaving a compartment is calculated based on the size

change of each compartment while Fluxi,wet enables the distribution of wet particles

from the spray zone to the various compartments and vice-versa. The variable αi rep-

resents the normalized size of the compartment or the size fraction of a compartment

(αi = size of compartment i/cumulative size of all compartments = Vi/ΣiVi).

The fluxes between the compartments are a function of the change in their respective

α’s over time and also due to the distribution of wet particles from the spray zone. In

order to conserve the total volume of the spray compartment, the fluxes owing to the

circulation of wet particles are calculated as

Flux1,wet = −0.6× F1(s, l, g, t) + 0.6× V1
3V2

F2(s, l, g, t) + 0.6× V1
3V3

F3(s, l, g, t)(5.16)

+0.6× V1
3V4

F4(s, l, g, t)

Flux2,wet = 0.6× F1(s,l,g,t)
3 − 0.6× V1

3V2
F2(s, l, g, t) (5.17)

Flux3,wet = 0.6× F1(s,l,g,t)
3 − 0.6× V1

3V3
F3(s, l, g, t) (5.18)

Flux4,wet = 0.6× F1(s,l,g,t)
3 − 0.6× V1

3V4
F4(s, l, g, t) (5.19)

It is assumed that when the size of a compartment at the t + 1th time instant is less

than the tth time instant, particles leave that compartment. This way the F arrays are

accumulated for each compartment where the size of the compartment shrinks. This F

distribution is then redistributed amongst the particles which have an increase in the

size of the compartment at the t + 1th time instant compared to the tth instant. The

redistribution of the particles leaving certain compartments into other compartments

are done in proportion to the increase in their sizes. The fluxes (Fluxi,wet) is however

calculated based on the the circulation of the wet particles from the spray zone into the

other compartments. A schematic of the compartment model formulation and solution

is shown in Figure 5.10. The identification of the compartment sizes and then isolating

the mechanisms on particles belonging to a certain number of particles and thereby

introducing the fluxes between compartments can represent the inhomogeneities ob-

served in the granulator. The semi-mechanistic aggregation kernel utilized to represent
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the aggregation mechanism within compartments 2 and 3 is a function of the velocity

and liquid content. Thus the agglomeration behavior in compartments 2 and 3 will be

different owing to their difference in liquid content (due to the fluxes) and their velocity

(imparted by the agitation). The breakage mechanism considered in compartments 2,

3, and 4 are also a function of the shear present within the compartment (and hence

an artifact of the velocity variation). Thus the breakage pattern within these compart-

ments vary based on the velocity variation in these compartments. This work does

not consider the mechanistic breakage kernel proposed by Ramachandran et al. (2009),

however including the mechanistic breakage kernel within the model can also enable

to account for the breakage behavior as a function of the liquid content present within

the compartment. This suggests the ability of the compartment model to capture the

varied behavior of the various mechanisms within each compartment as a function of

its velocity and liquid attributes.

It should be noted that for this modeling framework, an accurate model for the surface

renewal theory based approach has not been implemented for the spray zone. All

particles are added or removed from a compartment based on the net change in their α’s.

The implementation of a surface renewal based approach to the spray zone is expected

to be a more accurate representation, however it is beyond the current scope of the

model presented in this thesis. However, in order to account for the renewal of the wet

surface in the spray zone, 60 % of particles within the spray zone are circulated to other

compartments in order to allow distribution of the liquid. Another assumption with

the distribution of particles amongst compartments involve reassigning same volume

(based on 60% of the particles in the spray zone) of wet particles within each of the

other three compartments. This is however an arbitrary choice for circulating the wet

particles and a more accurate modeling approach would be to implement the principles

of surface renewal theory (Sherony, 1981).

The primary objective behind formulating a compartment-based model is to be able to

successfully track the inhomogeneities within the “well-mixed” high-shear granulator.

Some consequences of considering a well mixed homogeneous model includes the inca-

pability in tracking the mechanical-dispersion regime (Hapgood et al., 2003). A wider
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PSD is expected when the system is not well-mixed or the binder is not distributed prop-

erly across the granulator. Hapgood et al. (2003) correlated the mechanical-dispersion

regime as a function of the spray flux. The spray flux can be attributed to the various

process parameters such as the viscosity of the binder, the mode of binder addition,

the amount of binder added. Using the compartment model presented in this work, not

only can these conditions be effectively captured, but the variation in the mechanisms

due to changing average velocity can also be accounted for. It is expected that the

PSD would be wider for a more heterogeneous case. It can be seen in figure 5.11 that

the evolution of the particle properties are different in each compartment owing to the

mechanism that is predominant in the compartment. Thus, the liquid content is very

different in each of those regions initially, however with time, the liquid homogenizes

between the compartments and attain the same value. As expected, there is a larger

amount of fines at earlier time points, however with the progress of time, the number

of fines decrease while the number of coarse particles increase. Compartment 1 is dom-

inated by the wetting mechanism (spray zone) and hence suggests large particles (or

nuclei) that are also significantly moist compared to the particles in the other compart-

ments. Compartment 4 (shear region) on the other hand is predominated by breakage

and hence suggests the existence of a large amount of fines (as also shown in Figure

5.11). As a consequence of this approach, the overall PSD within the granulator is also

wider in case of the compartment model (as shown in Figure 5.12). However, as time

progresses, the system homogenizes and as expected intuitively, the PSD gets narrower.

This suggests the capability of the compartment model to be able to capture the me-

chanical dispersion regime. The utilization of a compartment model can thus enable

better representation of the granulation process taking place in a high-shear granulator.
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(c) Evolution of the distribution width over time
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ment

Figure 5.11: Comparison of the evolution of size distribution within the single and

multi-comparment model. Evolution of liquid content within each compartment (multi-

compartment model) over time
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time (single=dashed line, compartment=solid

line)
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cles) over time (single=dashed line, compart-

ment=solid line)

Figure 5.12: Comparison between the single and multi-compartment model (time men-

tioned in the legend is after the onset of liquid addition)

5.3.3 Existence of optimal solutions for open loop control

It is crucial to check the possibility of obtaining an optimal solution for the open-

loop control problem based on implementing the optimization as a weighted sum of

the multiple objective functions. The granulation process that is represented using a

compartment model (as discussed above) and considering mechanistic submodels for

the various mechanisms is utilized for this analysis. The description of the model is
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provided above. In order to test the applicability of a weighted sum for the multiple

objectives, the model is run with varying values for the different variables that are

optimized using the open-loop control approach. The different variables were varied at

different levels and the individual errors (PSD and porosity) were plotted for a combi-

nation of these different variable values. From Figure 5.13 (a) it can be seen that for

certain combination of variables, both the errors can be reasonably minimized. There-

after, using varying levels of the weighting factor, w1, the optimization was run (using

the same initial guess). The optimization algorithm utilized for this purpose includes

the Nelder-Mead simplex approach which is implemented using the fminsearch solver

provided byMATLABr 2013b. Figure 5.13 (b) shows the optimized solution based on

varying weights for summing the multiple objective functions. It can be seen that for a

few set of w1 values, the overall error can be significantly minimized. These studies have

been used to further the appropriate choice for the weighting factors for the objective

functions. Based on this figure, a w1 value of 0.65 has been chosen to weigh the error

with respect to the PSD while 1 − w1 equaling 0.35 has been used to weigh the error

with respect to the porosity.
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Figure 5.13: Analysis for testing the existence of optimal solutions using a weighted

sum of errors
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5.3.4 Optimal solutions

Based on the discussion provided in the previous sub-section, the optimization problem

thus posed and solved can be written as

Minimize θ = 0.65θ1 + 0.35θ2 (5.20)

where,

θ1 = Σ(PSDdesired − PSDcomputed)
2 (5.21)

θ2 = (Porositydesired − Porositycomputed)
2 (5.22)

The optimal values for the various operating parameters that are aimed to be obtained

include the liquid amount/liquid flowrate/liquid to solid ratio, speed of the impeller,

concentration of the binder and the end point for running the process. For this study, the

liquid addition has been fixed, thus the end point of the granulation is decided based on

the wet massing time. The desired PSD and porosity are obtained from the simulation

itself, using certain values for the operating conditions. The study is formulated in

the form of an inverse problem, whereby the optimal values for the variables in order

to achieve a specific CQA is a known quantity. In order to mimic a more flexible

process, the liquid addition has been varied as a piecewise constant function over time

with the rate being fixed over four intervals. The simulated process spans over a time

duration of 4 minutes plus the wet massing time. The wet massing time was fixed at

30 seconds in order to simulate the target distributions. The model has been run for a

dry mixing time of 2 minutes, followed by the addition of liquid over 2 minutes. Within

the 2 minute duration for adding liquid, the liquid rate was held constant over a period

of 30 seconds (thus suggesting four varying flowrates held constant over 30 seconds).

Intermediate distributions were also considered in the optimization in order to account

for the dynamic parametric values. The initial settings used for generating the target

distribution are shown in table 5.6
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Table 5.6: Settings used for the operating conditions in order to obtain the desired
distributions

Parameter name Set value time duration

Dry mixing time 120 seconds

Liquid rate 10 % 120-150 seconds

Liquid rate 15 % 150-180 seconds

Liquid rate 20 % 180-210 seconds

Liquid rate 40 % 210-240 seconds

Concentration of binder 2 % entire time

Impeller speed 350 rpm entire time

Wet massing time 30 seconds

The target distribution generated using these parametric settings are shown in Fig-

ure 5.14
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(b) Target porosity distribution for the optimiza-

tion

Figure 5.14: Target distributions used for the optimization over time

This data is fed into the Nelder-Mead simplex algorithm and the optimization is

thus run. The optimal values and outcome distributions obtained from the optimization

are shown in Figure 5.15.
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Figure 5.15: Comparison of the optimized results against the target distributions at

final time instance

It should be noted that the results have also been plotted at intermediate time instances,

and there is a good agreement between the experimental and simulated results. The

operating settings obtained from the optimization is presented in Table 5.7. Additional

analysis is also performed in order to gain insight on the extent of error from the

optimization.

Table 5.7: Optimized values for the operating conditions and the error analysis

Parameter name Optimization prediction Relative error %

Liquid rate 10.0138 % 0.14

Liquid rate 15.0068 % 0.05

Liquid rate 19.9779 % 0.11

Liquid rate 40.072 % 0.18

Concentration of binder 1.98 % 0.04

Impeller speed 350.154 rpm 0.77

Wet massing time 16.106 46.33

The above table indicates the error between the target and the optimized operating

conditions to be minimal. The optimal solutions can be obtained based on the approach

suggested above. There is a significant mismatch between the wet massing time for

granulation, however, the error between the simulated and target PSD are very low. A

dynamic sensitivity analysis might facilitate the identification of the crucial parameters

for efficient particle design of the granules.
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5.4 Chapter Conclusions

A high-shear granulator is typically modeled as a single well-mixed compartment. How-

ever from this analysis it can be seen that there exists heterogeneities within the gran-

ulator with respect to liquid content and particle velocity. The high-shear granulator

generally operates under the mechanical dispersion regime which is a heterogeneous

system. Our hypothesis suggests that a single well mixed compartment representation

of the high shear granulator is inaccurate. A multi-scale approach using a coupled

model can provide an improved description of the granulation process, however, de-

marcating fewer compartments within the high-shear granulator and using the model

presented in this work is less time consuming and can also address the variations within

a granulation. The compartment model can account for these heterogeneities within the

granulator and can successfully capture the mechanical dispersion regime. The results

from this study can also be extended for different operating conditions within the design

space in order to identify the number, size and centroid value of the compartments. A

multi-compartment approach to model the high-shear granulator is better owing to its

capabilities to address the inhomogeneities within the system. Another advantage of

utilizing the compartment model is it capability of capturing the mechanical dispersion

regime. The conventional approach of modeling a high-shear granulator is by assuming

it to be a single well-mixed compartment, however the powerful statistical tools reveal

the existence of heterogeneities within the vessel. Using the regression analysis, this

compartment model can not only be developed for the present system, but can also be

interpolated for different experimental systems by varying the impeller speed and the

liquid content.

The figures suggest different distribution for the particle sizes and the liquid content

within the different compartments. The aggregation and breakage kernel are a func-

tion of the velocity which imparts to the varied behavior of the particles within each

compartment. This approach accounts for the heterogeneities within the granulator.

This is the classical observation of the behavior under mechanical dispersion regime.

With the progression of time, the compartments within the granulator homogenize thus
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leading to the narrowing in the PSD over time. The compartment model is expected to

make improved predictions to experimental observations due to its capability to capture

the mechanical dispersion regime which is the more common observation in high-shear

granulation processes.

The open loop control approach involves considering a mechanistic model which has

also been compartmentalized in order to obtain the most accurate representation of

the high-shear granulation system. The open loop control can make good predictions

for the operating condition based on the simultaneous consideration of the PSD and

porosity. The methodology presented in this dissertation focuses on a purely theoretical,

inverse problem approach, however this methodology can also be extended for real,

experimental systems. A mechanistic, compartment-based model can be calibrated

against experimental results within a certain design space. Thereafter, the model can

be utilized for generating estimates for the operating conditions for a different target

distribution. This approach can provide deeper insights towards the efficient operation

of a high-shear granulation process for obtaining target CQAs and can significantly

alleviate the need for multiple experimental trials for process optimization.
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Chapter 6

Thesis conclusions and future directions

This dissertation is primarily aimed at utilizing PBMs for improving the operation of

wet granulation processes. For this purpose, a multi-dimensional PBM has been formu-

lated, which is thereby used to study the behavior of the highly complex granulation

process. Chapter 2 primarily focuses on the development of a multi-dimensional PBM

describing the granulation process. A novel coupled mass and energy balance frame-

work has also been proposed for the inclusion of drying into a fluid-bed granulation

system. This framework can significantly improve the understanding of the effect of

operating parameters on the outcome of a fluid-bed granulator. This can be used to

optimize the process operation for fluid bed granulation. One of the biggest disadvan-

tages of implementing PBMs for process understanding is the large number of empirical

parameters that are associated with the framework. For this purpose, it is very crucial

to be able to come up with mechanistic submodels/kernels for the various mechanisms,

so that number of empirically fitted parameters can be minimized.

Due to the large number of empirical parameters within a PBM, the applicability of

the PBM becomes obsolete beyond the design space within which the model has been

calibrated. This urges the need for obtaining more mechanistic information introduced

into the model, such that, the model is capable of making predictions beyond the de-

sign space. For model calibrations, parameter estimation has to be considered, which

requires minimizing the error between the model output and the experimental results.

Various optimization algorithms can be utilized for this purpose, however it is more de-

sirable to use algorithms that suggest the global optima as opposed to the local optima.

Another approach would involve convexification of the objective function, or tweaking
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the objective function, such that the algorithm points towards a somewhat global op-

tima. In this work, the metaheuristic algorithm-particle swarm optimization has been

employed for the estimation, which is expected to provide a global minima. The results

showed reasonable predictions, however the mismatches can be attributed to the mod-

eling framework that was utilized for the process representation. This motivated the

formulation for a mechanistic PBM which can capture the effect of process conditions.

A semi-mechanistic kernel has also been proposed in this work, which relates the input

parameters (e.g. liquid to solid ratio, impeller speed, viscosity, contact angle) to the

aggregation propensity. The biggest highlight of this aggregation kernel lies in the fact

that it demarcates the internal vs external liquid and is also capable of capturing the

steady and induction growth behavior. This kernel can be implemented in the PBM

for getting deeper insights into the system dynamics. It is expected that this kernel

will successfully make predictions beyond the design space used for model calibration.

In order to efficiently and accurately solve the PBMs, development of sohpisticated

numerical techniques is mandatory. In this work, various numerical techniques have

been proposed that can solve the PBMs with minimal computational overheads and

high accuracy. While the cell average technique enables the discretization of the spa-

tial domain using nonlinear grids (fewer number of grids), the tensor decomposition

approach involves developing a reduced order framework which can accommodate large

number of grids for the linear discretization. In both cases, the accuracy of the solu-

tion has not been compromised. The biggest strength of developing an ROM using the

tensor decomposition approach lies in the fact that it can not only break the “curse

of dimensionality” but can also significantly reduce the discretization error that is as-

sociated with large grid widths. The most ideal situation would be to combine these

two approaches and propose a numerical technique that can compress the data from

the cell average approach using tensor decomposition. This is expected to significantly

reduce the computational time and memory requirements. Research on the develop-

ment of numerical techniques for solution of PBMs can be a very promising field, as it

would facilitate the possibility of employing efficient parameter estimation techniques
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for model calibration.

In the last specific aim of this dissertation, the focus has shifted to developing a com-

partment based model and implementing it for open loop control. The common as-

sumption of the high-shear granulator as a well-mixed vessel is an over-simplification.

For this purpose, it is crucial to identify the various compartments within a high-shear

where inhomogeneities exist in terms of the particle velocity and the liquid content.

Each compartment is however considered as a well-mixed zone that exchanges mate-

rial/information with each other. This work exploits the power of data analytics to

identify the size and centroid values for the velocity in each compartment. A regres-

sion approach is implemented which provides information regarding the varying sizes

of each compartment and the representative centroid value of a quantity in that com-

partment. The regression yields polynomial expressions which are a function of time,

liquid to solid ratio and impeller speed. A spray zone is additionally included into the

compartment framework which addresses the inhomogeneities with respect to binder

distribution. Since this is preliminary work, it has not included a very mechanistic

representation for the depletion of the spray zone and the renewal of the wet surface.

The implementation of surface renewal theory should provide better insights on the

occurrences within the spray zone. The compartment based model can better represent

the high-shear granulation system and is thus a strong framework that can be used for

open-loop control.

The open-loop control approach can only work successfully when the model utilized

for the systems approach is accurate and mechanistic in nature. Therefore, the mod-

eling framework proposed in the initial chapters of this dissertation can form a solid

foundation to implement the open-loop control approach. The analysis provided in

Chapter 5 is crucial to understand the convergence of the optimization algorithm to

yield pareto-optimal solutions. Using this, optimal weights were identified, that can

minimize the error between the model output and the desired distribution, and provide

insights about the optimal scheduling scheme for the granulation process. Although

the open-loop control directs more emphasis to the optimization algorithm utilized for

the work, considering a mechanistic model is equally important. It is very crucial to
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relate the operating conditions to the various submodels within the PBM. For this rea-

son, the consolidation rate has been related to the impeller speed using dimensionless

numbers such as Stdef . The Stoke’s deformation number is however a function of the

yield Stress as well. There is limited information available in literature that relates the

yield Stress to the liquid content in the system. Obtaining a deeper understanding with

regard to relating the various mechanisms to the different operating conditions would

provide a great platform for utilizing the mechanistic models to gain insight about the

improved operation of the process. This thesis does propose a few steps towards mov-

ing to first-principle driven approach, however there is still substantial work needed

before the models are entirely predictive. There is a huge need to shift towards mech-

anistic models, such that the number of empirical parameters within the PBM can be

significantly reduced and the model is capable of making predictions and other useful

information beyond the design space. The tools developed as part of this dissertation

is not specific to wet granulation processes. Similar concepts can be applied for vari-

ous other unit operations such as mixing, crystallization and so on. With additional

information regarding the powder properties, these approaches can be easily applicable

to systems containing different solid materials. Overall, due to the discrete nature of

PBMs, it can be easily utilized to describe various particulate processes and processes

involving the handling of solids.

6.0.1 Future directions

Investigations involving efficient parameter estimation techniques for accommodating

multiple objective functions for model calibration of PBM would significantly benefit

the predictive ability of the framework. Additionally, the ROM as proposed in chapter

3 can be furthered in order to be applicable for the non-linear discretization of PBMs.

It should significantly reduce the computational overheads associated with the solution

to PBMs. Further mechanistic understanding of the granulation process can improve

the predictive ability of the PBMs. It can successfully make predictions outside the

design space used for the model calibration. The semi-mechanistic kernel proposed

in chapter 4 utilizes the viscous Stoke’s number, however incorporating the Stoke’s
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deformation number can provide a better representation of the wet granulation process.

There is a lack of understanding on the effect of liquid to solid ratio on the yield stress

of the granules. The liquid binder added to the system is also distributed uniformly

across all particles, however incorporating the principles of surface renewal theory into

the compartment-based model can provide a more fundamental representation of the

process.

The work described in this dissertation is mostly focused on pharmaceutical applica-

tions, however these methods can be easily extended for other applications, e.g. de-

tergents, food. The detergent industry primarily uses reactive granulation processes,

whereby there is a simultaneous occurrence of reaction and granulation. In the wet

granulation description provided in this thesis, there is no overall change in the chemi-

cal properties of the solid. The granulation process relevant to the detergent industry

is however associated with a modification in the chemical properties of the powder as

well. The PBM can be used for describing the granulation process, however additional

kinetic equations are required for updating the physical and chemical behavior of the

system as a function of the progress of reaction. Wet granulation processes can also be

utilized in the food industry to granulate milk powder. The powder properties differ

from that used in the pharmaceutical industry, however these models can be extended

for varying applications by modifying the material properties of the system. This also

re-emphasizes the need for predictive models, such that the models can be extrapolated

for different systems with minimum effort.

This dissertation aims to answer a lot of questions that were posed in the past, however

it also raises additional questions which can pave way for substantial future work. This

dissertation addresses multiple issues that acted as obstacles for obtaining a predictive

model, however due to the partial alleviation of the various obstacles, there is still some

future work required in terms of mechanistic understanding of granulation processes

and efficient numerical techniques for PBMs for formulating a predictive model for

improving the inefficient operation of granulation processes.
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