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ABSTRACT OF THE THESIS

Pilot based frameworks for Weather Research Forecasting

by Dinesh Prasanth Ganapathi

Thesis Director: Dr. Shantenu Jha

The Weather Research Forecasting (WRF) domain consists of complex workflows that

demand the use of Distributed Computing Infrastructure (DCI). Weather forecasting

requires that weather researchers use different set of initial conditions and one or a

combination of physics models on the same set of input data. For these type of simu-

lations an ensemble based computing approach becomes imperative. Most DCIs have

local job-schedulers that have no smart way of dealing with the execution of an en-

semble type of computational problem as the job-schedulers are built to cater to the

bare essentials of resource allocation. This means the weather scientists have to sub-

mit multiple jobs to the job-scheduler. In this dissertation we use Pilot-Job based

tools to decouple work-load submission and resource allocation therefore streamlining

the complex workflows in Weather Research and Forecasting domain and reduce their

overall time to completion. We also achieve location independent job execution, data

movement, placement and processing. Next, we create the necessary enablers to run an

ensemble of tasks bearing the capability to run on multiple heterogeneous distributed

computing resources there by creating the opportunity to minimize the overall time con-

sumed in running the models. Our experiments show that the tools developed exhibit

very good, strong and weak scaling characteristics. These results bear the potential

to change the way weather researchers are submitting traditional WRF jobs to the
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DCIs by giving them a powerful weapon in their arsenal that can exploit the combined

power of various heterogeneous DCIs that could otherwise be difficult to harness owing

to interoperability issues.
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Chapter 1

Introduction

A plethora of modern day scientific research applications that are data and compute

intensive require the use of Distributed Computing Infrastructure (DCI). Some of these

applications consist of complex workflows but are confined to the use of a single resource;

which owing to many constraints do not reach their peak efficiency in terms of their

overall time to completion. Weather Research and Forecasting (WRF simulations) is

one such domain where it becomes imperative to use High Performance Distributed

Computing Systems to support the large scale computationally heavy simulations. The

WRF(Weather Research Forecasting) requires many jobs to be executed in a chain

of events to produce useful output (forecast) data. At most times these sequence of

jobs have the same executables that needs to be coupled with same/different input

data set and executed. Traditionally the weather scientists submit these sequence

of jobs individually using traditional jobs scripts for a specific computing resource.

For instance, scientists running WRF simulations on TACC Stampede System[4]

would have login to Stampede and locally submit a SLURM job script and scientists

who wish to use Yellowstone Computing Resources will have to login to Yellowstone

and locally submit an LSF job script. This scenario changes if the scientists want

run multiple simulation in an ensemble mode; Now they will have to submit multiple

jobs to the job-scheduler. Once this is achieved and the jobs are launched, they wait

in the batch queuing system and may not become active at the same time. Load and

scheduling variations may add unnecessary hours to a job’s total time to completion due

to inefficiencies in scheduling many individual jobs. These problems discussed above

serve as the motivation for this dissertation. The weather researchers could benefit

largely from tools that encapsulate the following:
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• Automate a lot of this cumbersome process and decouple work load submission

and resource assignment.

• Support running the simulations in an ensemble mode.

• Able to work on a variety of heterogeneous systems with little or no change is

manner in which job-submissions are made.

• Possessing the capability to be launched remotely from a laptop.

Being involved in the field of High Performance and Distributed Computing it is easy

to look at the problem with the the bird’s eye view and think about Pilot-Jobs. Pilot-

Jobs can provide the much needed decoupling between job-submission and resource

assignment. Also if a Pilot-Job framework that is easy to use has the capability to

seamlessly work on heterogeneous distributed computing resources; could be a solution

to weather researchers problem. We talk more about Pilot-Jobs in the subsequent

sections.

1.1 Objectives

The main objective of this dissertation is to understand the pre-processing and process-

ing stages of the WRF and WRF-Hydro Coupled workflows ; Analyze and develop

an appropriate production grade software for weather researchers with the following

capabilities:

• Enable remote job submission to Yellowstone High Performance System and re-

taining the look and feel of traditional job scripts that Weather scientists are used

to.

• Support the run of an ensemble of tasks using Pilot-Job frameworks and enable

location-independent job execution.

• Develop tools that are interoperable (with minimal modifications) across Hetero-

geneous Distributed Computing Infrastructures.
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• Analyze the performance and scalability characteristics of the Pilot-based frame-

works we develop.

While working towards accomplishing these goals we encountered we performed the

following set of tasks:

• Take stock how things are being done traditionally by the weather researchers on

the HPDCs.

• Run the WPS (WRF-Preprocessing System) and WRF/ WRF-Hydro (cou-

pled) on Yellowstone, natively as the weather scientists would run it.

• Understand the workflow and identify what parts of the workflow that need au-

tomation, identify execution pattern (if any).

• Install and test RADICAL-Pilot on Yellowstone High-performance computing

resource.

• Enable remote login capability for RADICAL-Pilot scripts to Yellowstone.

• Integrate current pipeline with RADICAL-Pilot.

1.2 Structure of the Dissertation

After discussing the motivation and objectives for this dissertation in Chapter 1 we

discuss the background and nuances involved in WRF(Weather Research Forecasting)

workflows in Chapter 2. In Chapter 3, we introduce and discuss the concept of Pilot-

Jobs and the internals of RADICAL-Pilot- A SAGA(Simple API for Grid Applica-

tion) based Pilot-Job framework that we extensively deploy in streamlining the WRF

workflows. In Chapter 4, we analyze the WRF workflows and execution patterns and

also discuss the implementation of the production-grade tools we have developed. In

Chapter 5, we focus on experiments and results by extensively testing the developed

frameworks. In Chapter 6, we arrive at the conclusion and discuss the foundations this

dissertation lays for future work.
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Chapter 2

Background

We start by discussing the Weather Forecasting Models in section 2.1 and go on to

discuss WRF-Only and WRF-Hydro workflows in sections 2.2 -2.3.

2.1 Weather Forecasting Models

The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale

numerical weather prediction system designed to serve atmospheric research and op-

erational forecasting needs. The model is built to service a plethora of meteorological

applications across scales (from tens of meters to thousands of kilometers). Serious

efforts to develop WRF began in the latter part of the 90’s decade. It was a collab-

orative partnership principally among the National Center for Atmospheric Research

(NCAR), the National Oceanic and Atmospheric Administration (represented by the

National Centers for Environmental Prediction (NCEP) and the (then) Forecast Sys-

tems Laboratory (FSL)), the Air Force Weather Agency (AFWA), the Naval Research

Laboratory, the University of Oklahoma, and the Federal Aviation Administration

(FAA).[5][6]. WRF allows researchers to generate atmospheric simulations based on

real data (observations, analyses). WRF offers operational forecasting a flexible and

computationally-efficient platform, while providing advances in physics, numerics, and

data assimilation contributed by developers in the broader research community. WRF

is currently in operational use at NCEP, AFWA, and other centers[5]. In this disserta-

tion we focus our efforts on building tools that are capable of supporting two kinds of

simulation models, WRF-Only (hereafter synonymous with WRF) and WRF-Hydro

simulation models. The essential control flow of both WRF and WRF-Hydro mod-

els share a common pre-processing stage, the WPS (WRF Preprocessing System). The
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Figure 2.1: WPS and WRF Control Flow Diagram

control flow diagram for the two modeling systems are depicted in figure 2.1. The

two boxes (WPS.tar and WRF.tar ) represent the literal manner in which the software

is distributed. The WPS contains goegrid.exe and ungrib.exe which generate in-

put files needed for the execution of metgrid.exe. The execution of metgrid.exe

generates input files need for the WRF/WRF-Hydro modeling stage which consists of

Real.exe and wrf.exe/wrf-hydro.exe. The following sections contain detailed infor-

mation about the WPS and WRF/WRF-Hydro stages. First we explain the WPS stage

and then delve into the aspects of the WRF and WRF-Hydro workflows.

2.2 WPS -WRF Preprocessing System

The WRF modeling system consists of two main stages the WRF Preprocessing Sys-

tem (WPS) and the WRF modeling stage. The purpose of the WPS is to prepare the

necessary input for WRF in order to perform real-data simulations. The pre-processing

stage or the WPS stage is run offline as it is not computationally expensive. Though

some of the executable/programs in the WPS package are parallelized, in most cases

they are rarely submitted to the job-scheduler and are run on the login node or run

offline. The WPS is common to the both, the WRF and the WRF-Hydro workflows.

The WPS performs the following functions in order to prepare the initial data for the
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Figure 2.2: Flowchart of the WRF Pre-Processing System

WRF/WRF-Hydro modeling systems[7]:

• Defines the simulation coarse domain/nested domains (region of earth).

• Computes the latitude, longitude, map scale factors, and Coriolis parameters at

every grid point.

• Performs the interpolation of time-invariant terrestrial data to simulation grids

(e.g. terrain height and soil type).

• Performs the interpolation of time-varying meteorological fields onto simulation

domains.

The steps involved in the WPS are depicted in figure 2.2. The yellow diamonds in the

figure represent executables and white ovals represent data files.



7

2.2.1 Geogrid

Geogrid defines the following for the WRF model:

• The map projection (The real earth is (roughly) an ellipsoid but the WRF com-

putational domains are defined by rectangles in the plane ).

• Geographic location of domains(region of the earth).

• Dimensions of domains.

Apart from the above geogrid also interprets time-invariant Global data sets called

the WPS Static Terrain data as shown in figure 2.2. Several of the data sets are available

in only one resolution, but others are made available in resolutions of 30 arc seconds, 2,

5, and 10 arc minutes. This facilitates users who expect to work with domains having

grid spacings that cover a large range. Once this is done; it does the following:

• Computes the latitude, longitude, and map scale factors at every grid point.

• Interpolates soil categories, land use category, terrain height, annual mean deep

soil temperature, monthly vegetation fraction, monthly albedo, maximum snow

albedo, and slope category to the model grids by default.

Output from geogrid is written in the WRF I/O API format, and thus, by selecting

the NetCDF I/O format, geogrid can be made to write its output in NetCDF for easy

visualization using external software packages, including ncview and NCL[8].

2.2.2 Ungrib

ungrib extracts meteorological fields from GRIB-formatted files. The ungrib program

reads GRIB (GRIdded Binary or General Regularly-distributed Information in Binary

form) files, ”degribs” the data, and writes the data in a simple format called the in-

termediate format which can be used as input by metgrid.exe. The GRIB files contain

time-varying meteorological fields and are typically from another regional or global

model, such as NCEP’s NAM or GFS models. The ungrib program can read both,
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GRIB Edition 1 and GRIB Edition 2 files. GRIB files typically contain more fields than

are needed to initialize WRF. Both versions of the GRIB format use various codes to

identify the variables and levels in the GRIB file. Ungrib uses tables of these codes

called Vtables, for ”variable tables” to define which fields to extract from the GRIB

file and write to the intermediate format. Ungrib can write intermediate data files in

any one of three user-selectable formats: WPS a new format containing additional

information useful for the downstream programs, SI the previous intermediate format

of the WRF system; and MM5 format, which is included here so that ungrib can be

used to provide GRIB2 input to the MM5 modeling system. Any of these formats may

be used by WPS to initialize WRF, although the WPS format is recommended.

2.2.3 Metgrid

The metgrid program performs a horizontal interpolation on the intermediate-format

meteorological data that is extracted by the ungrib program onto the simulation do-

mains defined by the geogrid program. The interpolated metgrid output can then be

used by the Real.exe program. The range of dates that are interpolated by metgrid

are defined in a file called the WPS namelist file. The work of metgrid program is

time-dependent so it is run every time a new simulation is initialized. Output from

metgrid is written in the WRF I/O API format, and thus, by selecting the NetCDF

I/O format, metgrid can be made to write its output in NetCDF for easy visualization

using external software packages, including the new version of RIP4[8].

2.3 WRF-Only Workflow

The WRF or WRF-Only workflow is designed to provide a suite of physics that can

be used for the modeling and forecasting but does not include any hydrological models.

WRF is fully-parallelized and can be run on cluster and HPDC (High Performance

and Distributed Computing) systems. WRF also offers a multitude of physics models

which can be selected before running the simulations. Figure 2.3 shows the workflow

for WRF-Only simulation model.
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2.3.1 Real.exe

The Real.exe program uses the intermediate metgrid output files. Real.exe is par-

allelized and can be submitted to the job-scheduler. Real.exe is not computationally

expensive compared to wrf.exe or wrf-hydro.exe. The Real.exe is responsible for

the following:

• Create initial (WRF-input) and boundary condition (WRF-boundary) files for

real-data cases

• Does vertical interpolation to model levels (when using WPS)

• Does vertical dynamic (hydrostatic) balance

• Does soil vertical interpolations and land-use mask checks

The output files generated by the real.exe are then used by wrf.exe to produce the

WRF-out files that can be used to generate figures and graphs.

2.3.2 WRF.exe

The core of the computation problem that we try to solve in this dissertation is the

execution of wrf.exe in ensemble mode. wrf.exe is parallelized an computationally

expensive to run depending on what domain has been chosen and for how long / the

range of dates for which the model is run. wrf.exe uses the (WRF-input) and bound-

ary condition (WRF-boundary) files generated by the Real.exe and runs the model

simulation with variety of selected namelist switches (such as physics choices, timestep,

length of simulation,etc.). The output of the WRF.exe are WRF-out files that can be

used to generate figures and graphs.

2.4 WRF-Hydro(Coupled) Workflow

The WRF-Hydro system was originally designed as a model coupling framework de-

signed to facilitate easier coupling between the WRF (Weather Research and Fore-

casting) model and components of terrestrial hydrological models. WRF-Hydro is
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both a stand-alone hydrological modeling architecture as well as a coupling architec-

ture for coupling of hydrological models with atmospheric models. WRF-Hydro is

fully-parallelized as a result of which it can be run on clusters and high performance

computing systems alike. Like the WRF model it does not attempt to prescribe a

particular or singular suite of physics but, instead, is designed to be extensible to new

hydrological parameterizations. WRF-Hydro also possesses a multi-scale function-

ality to permit modeling of atmospheric, land surface and hydrological processes on

different spatial grids[9]. Figure 2.4 shows the workflow for WRF-Hydro simulation

model. The function Real.exe in this workflow is exactly the same as the WRF-Only

workflow. The Real.exe produces the WRF-input files and the WRF-boundary files.

These files and the geogrid file generated during the WPS stage can then be ingested

by the WRF-Hydro.exe to produce the the WRF-out files that can be used to generate

figures and graphs.
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Figure 2.3: Flowchart of WRF-Only Modeling System
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Figure 2.4: Flowchart of WRF-Hydro Modeling System
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Chapter 3

Software Design Aspects

In this chapter we discuss Pilot-job frame works we use to implement location indepen-

dent tools to execute WRF and WRF-Hydro in an ensemble mode in sections. First

we introduce the concept of Pilot-Jobs and in the further sections we talk about the

technical aspects of RADICAL-SAGA and RADICAL-Pilot.

3.1 Pilot-Jobs

Pilot-Job is a well known term in the field of High Performance and Distributed Com-

puting. A Pilot-Job is a container job that encloses an array of smaller jobs (possibly

idependent or coupled) within itself. The Pilot-jobs possess sophisticated workflow

management capabilities to coordinate the launch and interaction of actual computa-

tional tasks (of interest to the application users) within the container. A Pilot-Job is

treated as a single job by the computing resource’s job-scheduler. Essentially by doing

this the Pilot-Jobs decouple the resource assignment (reserving the processors/cores

for a job) from the actual workload (the computational task). This flexible nature of

this execution strategy promotes the distributed scaling-out of applications on multi-

ple and possibly heterogeneous resources[10]. When a specific application needs to be

executed in an ensemble mode or has a complex workflow where many jobs need to be

executed, the application users have to submit these as individual tasks, there by not

only accumulating individual queue wait times per task but also not promoting effective

utilization of the available resources. In simple words, Pilot-Job provides an effective

alternative approach. It can be pictured of as a container job for many sub-jobs. A

Pilot-Job acquires the resources necessary to execute the sub-jobs (it requests for all of

the resources required to run the sub-jobs, rather than just one sub-job at a time). For
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example, if a system has a LSF-job scheduler, the Pilot-Job is submitted to one of its

queues. Once it becomes active, it can run the sub-jobs directly, instead of having to

wait for each sub-job to queue. This eliminates the need to submit a different job to

the scheduler for every executable and significantly reduces the time-to-completion. In

the last few years the concept of Pilot-Job has become increasingly popular, leading to

a number of implementations. Some of the most widely known Pilot-Job frame-works

are RADICAL-Pilot (formerly known as BigJob) [11], DIANE [12], Falkon [13],

DIRAC [14] and Condor-G [15]. In this dissertation we focus our efforts on provid-

ing a Pilot-Job based solution to weather researchers running WRF and WRF-Hydro

in a location independent ensemble mode with support for scaling-out on various dis-

tributed computing infrastructures.

3.2 RADICAL-SAGA

Simple API for Grid and Distributed Applications (SAGA) defines a high-level in-

terface to the most commonly used distributed computing functionality. SAGA pro-

vides an access-layer and mechanisms for distributed infrastructure components like

job schedulers, file transfer and resource provisioning services[?]. Given the hetero-

geneos nature of distributed infrastructure, SAGA addresses the indispensable need

for an interoperability layer that lowers the complexity and brings simplicity to the

use of distributed computing infrastructure. RADICAL-SAGA provides a Python

module (also synonymously referred to as SAGA-Python) that is compliant with the

OGF(Open Grid Forum) GFD.90 SAGA specification. Underneath the API, RADICAL-

SAGA implements a flexible adaptor architecture. Adaptors are dynamically load-

able modules that interface the API(Application Programming Interface) with various

middleware systems and services. Many adaptors are already a part of RADICAL-

SAGA. This facilitates the ease of using DCI for a diverse group of researchers and

scientists. The the flexible architecture of RADICAL-SAGA offers scope to eas-

ily implement a new adaptor in case a backend system is not supported. Figure 3.1

shows the RADICAL-SAGA stack. The following are the list of adaptors that are

supported:
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Figure 3.1: RADICAL-SAGA Stack [2]

• SSH and GSISSH

• Condor and Condor-G

• PBS and Torque

• Sun Grid Engine

• SLURM

• LSF(Load Sharing Facility)

• LoadLeveler

3.3 RADICAL-Pilot: RADICAL-SAGA based Pilot framework

RADICAL-Pilot (formerly BigJob) is a flexible Pilot framework that simplifies job

and data management for clusters, grids and clouds. RADICAL-Pilot is written in
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Figure 3.2: RADICAL-Pilot Architecture[3]

Python. It allows user-level control of Pilots and supports a wide range of diverse

applications. It is built on top of The Simple API for Grid Applications which implies

that RADICAL-Pilot works on a variety of backends such as PBS, LSF, SGE, Amazon

EC2, etc. Apart from this, RADICAL-Pilot natively supports MPI (Message Passing

Interface) jobs unlike many other Pilot-Job systems. This means that RADICAL-

Pilot can be used to run a bag of MPI tasks in an ensemble mode. The architecture

of RADICAL-Pilot and its integration with the SAGA layer are depicted in figure

3.2. In this model, the resource is acquired by a user application and the ’Compute-

Units’ (actual computational task ) are scheduled into the resource directly, rather than

going through the job scheduler(of the system) for each task. In many cases, this

can drastically shorten overall execution time as the individual Compute Units do not

have to wait in the systems scheduler queue. Compute Units are often single-core /

multi-threaded executables, but RADICAL-Pilot also supports the execution of parallel

executables, based on MPI or OpenMP. This forms our basis for using RADICAL-Pilot

to support the WRF workflows.

[referrence for the figure]
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RADICAL-Pilot gives the user a programming library (Pilot-API) that provides

abstractions for accessing the resources and managing the task. With this library,

the user can develop not just simple submission scripts but very complex applications,

higher- level services and tools. We explain the terminologies, APIs and other details

that are paramount in developing application specific RADICAL-Pilot scripts in next

sub-sections, that will help us better understand the implementation section.

3.3.1 Loading the Module and Creating a Session

To use RADICAL-Pilot in a Python application/script, the radical.pilot module

needs to be imported. This can be done using a simple import statement:

import radical.pilot

A radical.pilot.Session is the root object for all other objects in RADICAL- Pilot.It

can be thought as a tree or a directory structure with a Session as root. Each Session

can have zero or more radical.pilot.Context, radical.pilot.PilotManager and

radical.pilot.UnitManager attached to it. A Session also encapsulates the connec-

tion(s) to a back end MongoDB server which is the brain and central nervous system

of RADICAL-Pilot[16].

To create a new Session, the URL of a MongoDB server needs to be provided as

follows:

session = radical.pilot.Session(MogoDB URL)

3.3.2 Creating a Compute Pilot

A radical.pilot.ComputePilot is responsible for Compute Unit (task) execution. Com-

pute Pilots can be launched either locally or remotely, on a single machine or on one

or more HPC clusters. ComputePilots are grouped in radical.pilot.PilotManager

containers, so before you can launch a Compute Pilot, you need to add a Pilot Manager

to your Session[16].

pmgr = radical.pilot.PilotManager(session=session)
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In order to create a new Compute Pilot, first its requirements and properties need to be

described. This is done with the help of aradical.pilot.ComputePilotDescription

object. The mandatory properties that you need to define are:

• resource - The name (hostname) of the target system or localhost to launch a

local ComputePilot.

• runtime - The runtime (in minutes) of the ComputePilot agent.

• cores - The number or cores the ComputePilot agent will try to allocate.

We can define and submit an 8-core local pilot that runs for 5 minutes like this:

pdesc = radical.pilot.ComputePilotDescription()

pdesc.resource = "localhost"

pdesc.runtime = 5 # minutes

pdesc.cores = 8

A Compute Pilot is launched by passing the ComputePilotDescription to the submit pilots()

method of the PilotManager. This adds the Compute Pilot to the Pilot Manager.

pilot = pmgr.submit_pilots(pdesc)

3.3.3 Creating Compute Units

Once a Compute Pilot is launched, we can generate a radical.pilot.ComputeUnit ob-

ject for the Compute Pilot to execute. The Compute Unit can be thought of something

very similar to an operating system process that consists of an executable, a list of argu-

ments, and an environment along with some runtime requirements. Analogous to Com-

pute Pilots, a Compute Unit is described via a radical.pilot.ComputeUnitDescription

object. The mandatory properties that need to be defined are:

• executable - The executable to be launched.

• arguments - The arguments to be passed to the executable.



19

• cores - The number of cores required by the executable.

For example, you can create a workload of 8 /bin/echo Compute Units as follows:

compute_units = []

for unit_count in range(0, 8):

cu = radical.pilot.ComputeUnitDescription()

cu.executable = "/bin/echo"

cu.arguments = ["$Hello"]

cu.cores = 1

compute_units.append(cu)

3.3.4 Input / Output File Transfer

In many applications, a computational task needs some input data. For this reason,

a radical.pilot.ComputeUnitDescription allows the definition of input-data and

output-data as follows:

• input-data defines a list of local files that need to be transferred to the execution

resource before a ComputeUnit can start running.

• output-data defines a list of remote files that need to be transferred back to the

local machine after a ComputeUnit has finished execution.

The following is an example of file1.dat and file2.dat being staged as input files:

cu = radical.pilot.ComputeUnitDescription()

cu.executable = "/bin/cat"

cu.arguments = ["file1.dat", "file2.dat"]

cu.cores = 1

cu.input_data = ["./file1.dat", "./file2.dat"]
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3.3.5 Scheduling Compute Units

In order to execute the ComputeUnits on the ComputePilot, we need to create a

radical.pilot.UnitManager instance. A Unit Manager combines three things-

• The ComputeUnits, added via radical.pilot.UnitManager.submit units()

• One or more Compute Pilots, added via radical.pilot.UnitManager.add pilots()

• A Unit Scheduler.

Once instantiated, a Unit Manager assigns the submitted CUs to one of its Compute

Pilots based on the selected scheduling algorithm. This can be done as follows:

umgr = radical.pilot.UnitManager(session=session,

scheduler=radical.pilot.SCHED_DIRECT_SUBMISSION)

umgr.add_pilots(pilot)

umgr.submit_units(compute_units)

umgr.wait_units()

The radical.pilot.UnitManager.wait units() call blocks until all Compute Units

have been executed by the Unit Manager. Simple control flows / dependencies can be

realized with wait units(), however, for more complex control flows it can become in-

efficient due to its blocking nature. To solve this problem, RADICAL-Pilot also provides

mechanisms for asynchronous notifications and callbacks[16].

3.3.6 Closing and Cleanup

Before the application terminates, we must always call radical.pilot.Session.close() to

ensure that the RADICAL-Pilot session terminates properly. close() will also delete

all traces of the session from the database (control this with the cleanup parameter)[16].

This can be done as follows:

session.close(cleanup=True, terminate=True)
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Chapter 4

Implementation of WRF Workflows Using

RADICAL-Pilot

In the previous sections we discussed the WRF/WRF-Hydro workflows and learned

how Pilot-Job frameworks can be useful in effectively and efficiently utilizing the HPDC

resources available. Further, we delved into RADICAL-Pilot : A SAGA based Pilot-

Job frameworks and its nuances. In this section we discuss the implementation of

WRF/WRF-Hydro workflows using RADICAL-Pilot. In chapter 2 we learned

that the WPS system is the same for both the WRF and WRF Hydro(coupled) work-

flows and it is not a computationally expensive task when compared to the execution of

wrf.exe and wrf-hydro.exe. By changing variables in files called the namelist.wps the

geogrid.exe and ungrib.exe work of different set of external data (different domains

and different simulation intervals) and generate the necessary intermediate data as dis-

cussed on Chapter 2. this intermediate data is then operated upon by the metgrid.exe

to produce horizontally interpolated intermediate data needed by the real.exe. So as

far as the computation problem is concerned we can safely state that the link between

the WPS and WRF /WRF-Hydro stages are the intermediate files (also called

met-em files) generated by metgrid.exe.

4.1 Workflow Analysis

By analysing the workflow we can observe that real.exe can operate on either iden-

tical or different intermediate files depending on what the WPS generates. Once the

real.exe is done with its execution the wrfbdy and wrf-input files are created and

these are essentially used by either WRF or WRF-Hydro application kernel depened-

ing on what model we would like to run. Armed with this insight if we look at the
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present execution strategy that is employed by the weather researchers, we observe the

following:

• Remote Login into a resource.

• Run WPS and generate appropriate data needed for real.exe.

• Submit a local job script to the job-scheduler of the resource with real.exe as

the executable.

• Wait for real.exe to finish executing and the manually submit another local job

script to the job scheduler with wrf.exe or wrf-hydro.exe.

• If many simulations are needed the above steps need to be repeated as many

times.

4.2 Execution Pattern

From our discussion in the previous sections it is evident that if we employ a pilot-

solution to the application kernel of WRF / WRF-Hydro, we can run many simu-

lations in an ensemble mode. Here each simulation would consist of first running the

real.exe and generate the required files and then run a wrf.exe or wrf-hydro.exe.

Essentially, the first task is the application kernel real.exe and the data generated,

drives the next task wrf.exe or wrf-hydro.exe. This sort of task dependency is called

Chained tasks, where the execution of the second task depends on the execution of

the first task. Now when more than one such dependent tasks are run in an ensemble

mode we have what is called a Chained Ensemble. The concept becomes more clear

with an example, if we take Aa1,a2....aN and Bb1,b2....bN as two sets of tasks where

each corresponding task in set B can only begin only once the corresponding task in set

A is complete. For example, b1 can begin only when a1 is complete and b2 can only

begin when a2 is complete but a1 and b2 do not have any such dependencies. Figure

4.1 illustrates a Chained Ensemble of tasks.

Once we understand the concept of Chained Ensemble tasks, it becomes easy to map

the WRF/WRF-Hydro workflow into this execution pattern. Figure 4.2 illustrates
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Figure 4.1: Chained Ensemble Execution Pattern

the mapping of the WRF/WRF-Hydro workflow into a two stage Chained Ensemble

pattern, where the first stage is the execution of real.exe and the next stage is the

execution of WRF.exe/WRF-Hydro.exe.

4.3 Implementation

4.3.1 Transition

While developing the RADICAL-Pilot scripts we have given thought to the fact that

the weather researchers are very used to submitting job scripts on local resources. In

oder to ease their transition from traditional job scripts to RADICAL-pilot scripts

we have tried to maintain the same look and feel of a job script and we mention the

variables (that are traditionally a part of the job submission script) at the beginning of

the RADICAL-Pilot script in the Pilot-setup section. Here is an example of how this

is accomplished:
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Figure 4.2: Mapping WRF/WRF-Hydro Workflows to Chained Ensemble Execution Pattern

# Sandbox directory on the resource

WORKDIR = "*****"

# NUMBER_JOBS is the Number of Ensembles of wrf.exe or wrf_hydro.exe you

would like to run

NUMBER_JOBS =16

# TOTAL NUMBER OF CORES to be reserved. (number of cores for 1 ensemble *

number of ensembles)

TOTAL_NUMBER_CORES_RESERVED =256

# NUMBER of cores needed for wrf.exe / wrf_hydro.exe in one ensemble

CORES_FOR_WRF =16

# NUMBER of cores needed for real.exe in one ensemble

CORES_FOR_REAL =16

# USER_ID for yellowstone

user_id_yellowstone= "****"
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# WALL TIME REQUESTED

walltime_requested=50

# PROJECT ID

project_id_for_yellowstone ="****"

# QUEUE

queue_on_yellowstone ="****"

# Name of the executable, can be ./wrf.exe or ./wrf_hydro.exe

application_kernel_name=’./wrf.exe’

4.3.2 Structure

In the ensemble mode for WRF/WRF-Hydro simulations, the RADICAL-Pilot script

creates twice the number of Compute Units (discussed in Chapter2) as the number of

Ensembles required. So if a user wishes to run N ensembles then the RADICAL-Pilot

creates 2N number of Compute Units. N of these Compute Units are reserved to run N

instances of real.exe and the rest N Compute Units are reserved for WRF/WRF-

Hydro executables. Since we are implementing a 2-Stage Chained Ensemble execution

pattern we need to make sure that the compute units containing the WRF/WRF-

Hydro executables start their execution only when the Compute Units containing their

corresponding real.exe are done executing. This is accomplished by keeping track of

the compute units associated with the instances of real.exe in a Python list and

constantly polling to check if they are done using the wait() function. If a Compute

Unit associated with one of the instances is complete then it will be removed from the

list and the Compute Unit attached to its corresponding WRF/WRF-Hydro executable

will automatically become active. This enforces the execution of real.exe before the

execution of the wrf/wrf-Hydro.exe. Once all the Compute Units finish their execution

the script gracefully exits.
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Chapter 5

Experiments and Results

5.1 Hardware Resources

The RADICAL-Pilot frameworks for WRF are very flexible and can utilize a number

of heterogeneous resources. At the time of this dissertation initially three such resources

were considered, namely, Yellowstone High Perfomance Computing Resource, TACC

Stampede and SuperMUC Petascale Systems. RADICAL-Pilot has successfully run

and enabled many applications on all of these three systems, but at the time of this

dissertation WRF and WRF-Hydro (Coupled) were compiled and running only

on Yellowstone High Performance Computing Resource. Work is in progress to compile

and have WRF run on both Stampede and SuperMUC. Once this is done, it will

be a matter of changing a few parameters in the existing frameworks to have WRF

and WRF-Hydro (Coupled) run on all these resources in ensemble mode. Due to

this reason we confine our experiments and tests to Yellowstone. Yellowstone is a 1.5-

petaflops high-performance IBM iDataPlex cluster, which features 72,576 Intel Sandy

Bridge processors and 144.6 TB of memory. Yellowstone’s hardware is described in

table 5.1

5.2 Test Criteria and Parameters

As a part of our experimental setup we execute a RADIACL-Pilot script from a

laptop and run WRF in an ensemble mode on Yellowstone. For our experiments we

use the GFS data (Global Forecasting System) for the floods in Colorado (end of April

2014). At the last stage of the WPS, Metgrid.exe finishes its execution to produce 24

intermediate met-em files of average size 145MB. As for the input data, we repeat the
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Table 5.1: Yellowstone High Performance Computing Resource Specifications [1]

72,576 processor cores 2.6-GHz Intel Xeon E5-2670 (Sandy Bridge)

processors with Advanced Vector Extensions

(AVX)8 flops per clock

4,536 computation nodes IBM dx360 M4,dual socket, 8 cores per socket

6 login nodes IBM x3650 M4, dual socket, 8 cores per socket

144.58 TB total system memory 2 GB/core,32 GB/node (25 GB usable)

FDR Mellanox InfiniBand interconnect 2.6-GHz Intel Xeon E5-2670 (Sandy Bridge)

processors with Advanced Vector

Extensions (AVX), 8 flops per clock

1.504 petaflops peak 1.26 petaflops HPL, 28.9 Bluefire-equivalents

experiment for two sets of data as mentioned below:

• Prepare and use small input data set; We use a single met-em file corresponding

to a single GRIB file containing 3 hours worth of weather data (starting from

12:00am to 3:am on 28 April, 2014). The resolution of the source data while

interpolating the static terrain data is set to less than 0.9km. We use the single

met-em files as the input file for all the Real.exe executables.

• Prepare and use a large input data set; We use 24 met-em files corresponding to a

24 GRIB files containing 72 hours worth of weather data (starting from 12:00am

on 28 April, 2014 to 12:am on 1 May, 2014). The resolution of the source data

while interpolating the static terrain data is set to less than 0.9km. We use the

24 met-em as the input for all the Real.exe executables.

For the ease of understanding the differences between the large and small data sets are

tabulated in table 5.2.

Before we proceed further, let us pause for a moment and discuss the concept of strong

and weak scaling as we will be applying them to our use case.

In strong scaling, a program is considered to scale linearly if the speedup (in terms of

work units completed per unit time) is equal to the number of processing elements used
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Table 5.2: Comparison Between Small and Large Input Data Sets

Input Data Type Number of

met-em files

Avg size of 1 file Input data description

Small 1 145 MB Input data includes weather

data starting from 12:00am to

3:am on 28 April, 2014

Large 24 145 MB Input data includes weather

data starting from 12:00am to

12:00 am on 28 April to 1 May,

2014

( N ). In general, it is harder to achieve good strong-scaling at larger processor counts

since the communication overhead for many/most algorithms increases in proportion

to the number of processes used. In order to see the strong scaling behavior of an

application the problem size is fixed and number of processing units are varied[17].

When the problem size (workload) assigned to each processing element stays constant

and additional elements are used to solve a larger total problem; it becomes the case

of weak scaling. Here linear scaling is achieved if the run time stays constant while the

workload is increased in direct proportion to the number of processors[17]. The next

set of steps we execute are common to both the sets of data and are as follows:

• We run real.exe at a fixed core count of 16 cores per ensemble. We do this

because running Real is not a computationally challenging task but we encapsulate

it in our framework for efficient automation of the workflow.

• Next, we run wrf.exe by varying the core count from 16 to 256 cores per ex-

ecutable. This demonstrates the strong scaling of the application-kernel as we

increase the the processor count for the same executable (wrf.exe). In other

words strong scaling refers to keeping the ensemble members fixed and varying

the resources (number of cores) used per ensemble member.

• Next we test the weak scaling of the application kernels by running them in
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Figure 5.1: The figure depicts the strong scaling characteristics for the small input data set by plotting

number of cores used vs Total time to Completion. Here each line represents a configuration where

the ensemble size is fixed and ranges over 1 to 64; for each of these configurations the number of cores

per ensemble member is varied from 16 through 256. Each configuration shows a linear decrease in the

total time consumed when the number of cores per ensemble member is increased from 16 through 256.

ensemble mode. Weak scaling refers to keeping the resources (number of cores)

per ensemble member constant and increasing the ensemble size (more ensembles).

In order to do this we first, we fix the core count per ensemble (running wrf.exe

to 16 and vary the number of ensembles from 1 to 64. Next, we increase the core

count per executable in steps to 32,64,128 and 256 and observe the behavior by

varying the number of ensembles from 1 to 64.

• Finally, we benchmark the performance of RADICAL-Pilot.
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Figure 5.2: The graphs shows the total time taken to run WRF ensembles while fixing the number of

cores per ensemble member for the small input set. This figure depicts the weak scaling of the WRF

application kernel. As we increase the ensemble size keeping the number of cores per ensemble member

fixed we observe excellent weak scaling. When we increase the ensemble size from 1 through 32 the

total time consumed remains constant as long as the number of cores per ensemble member is fixed.

5.3 Analysis and Discussion

After designing and carrying out the experiment we assimilate the data and analyze it

in this section. First we discuss the small input data WRF simulations and then we

discuss the large input data set. In order to do this, we fix the ensemble size (number

of ensemble members) at 1,2,4,8,16,32 and 64. For each of the ensemble size, we plot

total time taken when the number of cores per ensemble member is varied from 16

through 256 and capture the strong scaling characteristics. In figure 5.1 the blue line

represents the runs made for 1 ensemble; each successive data point marked on this

line are the time taken 16-256 cores are used to run 1 ensemble member. We observe

that each ensemble run shows a linear decrease in the total time consumed when the

number of cores per ensemble member is increased from 16 through 256. This pattern
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Figure 5.3: Graph depicts the number of ensembles vs total time to completion in log scale for the small

input data set. For each core count (varying from 128 cores to 2048 cores) the time to completion of 1

to 64 ensembles is shown. If we fix the resources (cores); lesser the ensemble members (more cores per

ensemble member) lesser the time to completion.

is identical for 1,2,4,8,16 and 32 ensembles as the lines have the same slope and shape.

The error bars on the runs for 1,2,4,8,16 and 32 ensemble members are 5,5,10,10,20 and

30 seconds respectively. Due to shortage of allocation hours on the HPC resource we

did not make multiple runs for 64 ensemble members to determine the error bars. If

we look at the error bars they are consistently well within 5 percent.

The patterns observed in figure 5.1 urge us to use the data gathered and plot/study

how the total time taken changes when we fix the number of cores used per ensemble

member and increase the ensemble size (run more number of ensembles members) from

1 through 64. This data is plotted in figure 5.2. Here it becomes very clear that the

time taken to run ensemble size of 32 members is identical to the time taken by 1

ensemble member as long as the number of cores used per ensemble member is same.
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Looking at the numbers this is great for task level parallelism. 32 ensembles using

256 cores per ensembles ( a total of 8192 cores) takes the same time (within 5 percent

error margin) as a single ensemble running on 256 cores. This augurs very well for the

weather researchers. They will be able to run 32 tasks (of WRF simulations) in the

time can run 1 (WRF simulation). Figure 5.2 also demonstrates the excellent weak

scaling characteristics of WRF simulations with RADICAL-Pilot.

When we increase the number of ensemble members from 32 to 64 we observe a deviation

from the expected flat line nature as seen in figure 5.2. The reason for this highlighted

in figure 5.4 and 5.5. In these figures it is evident that RADICAL-Pilot takes about

a 1 second (sometimes seen to be more sometimes) to assign a compute unit. Here

though we see that the average time taken for one WRF ensemble to complete is when

using 128 cores is around 137 seconds and found to be 402 seconds when using 32 cores

per ensemble member it is observed that the net time to completion of all the WRF

compute units are 306 seconds and 804 seconds respectively. This can be explained

by the delayed execution of one or more compute units as shown in figure 5.4 and

5.5. The reason for this anomaly when go from 32 to 64 ensemble members is under

investigation.

Next, for the small input data set we fix the amount of resources (cores) and vary

the ensemble size (number of ensemble members) and plot the total time taken. For

example if we have 128 cores at our disposal we could run 8 ensemble with 16 cores

per ensemble member, 4 ensembles with 32 cores per ensemble, 2 ensembles with 64

cores per ensemble member or 1 ensemble member with 128 cores. We know from the

discussion above that figure 5.1 that have good strong scaling characteristics for the

application kernel and that we can expect a linear increase in total time completion

when reduce the number of cores per ensemble member. This is confirmed by figure

5.3.

Now let us discuss the ensemble runs of WRF simulations using the large input

data set. What would be an interesting question to ask is if RADICAL-Pilot does an

equally good job when the WRF simulations crunch the large input data set we have

defined earlier. We follow identical steps as we did with the small input data set. First
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Figure 5.4: Compute unit activity time-line(64 Ensembles with each wrf.exe using 32 cores for smaller

data set). This graph shows how the compute units become active on a time line and when they finish

their execution. The Red lines are the real.exe executing on 16 cores per ensemble and the blue lines

are wrf.exe compute units executing in succession on 64 cores per ensemble.

we fix the ensemble size at 1,2,8,32 and 64. For each of the these fixed ensemble sizes,

we plot total time taken when the number of cores per ensemble member is varied from

16 through 256 and capture the strong scaling characteristics. We have not performed

exhaustive runs (like we did for the small input data set) for the larger data sets as we

ran out of allocation and these jobs typically run for about 5 hours on each core, but we

made enough runs (higher end and lower end consisting of 64 ensemble members and

128 cores each and 1 ensemble with 16 cores respectively) and took enough data points

to deduce the behavior of ensemble based approach for running wrf.exe for large input

data sets. Figure 5.6 captures the strong scaling characteristics for the large input data

set and when we compare this with figure 5.1 we see clear symmetry. Armed with this

information we next plot the total time taken while we fix the number of cores used

per ensembles and run more number of ensembles (from 1 -64). This data is plotted

in figure 5.7. Here it becomes very clear that the time taken to run 32 ensembles is

identical to the time taken by 1 ensemble member as long as the number of cores used

per ensemble member is same; the behavior is identical to what we observe for the
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Figure 5.5: Compute unit activity time-line(64 Ensembles with each wrf.exe using 128 cores for smaller

data set). This graph shows how the compute units become active on a time line and when they finish

their execution. The Red lines are the real.exe executing on 16 cores per ensemble and the blue lines

are wrf.exe compute units executing in succession on 64 cores per ensemble.

small data set. 32 ensemble members using 256 cores per ensemble member ( a total of

8192 cores) takes the same time (within 5 percent error margin) as a single ensemble

member running on 256 cores. The figures 5.2 and 5.7 are very symmetrical. From all

this we can now say that the weather researchers can run at least 32 ensemble members

using RADICAL-Pilot and expect a total time to completion that they would for a

single ensemble member without having to worry about large or small input data sets.
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Figure 5.6: The figure depicts the strong scaling characteristics for the large input data set by plotting

number of cores used vs total time to completion in linear scale. Here the number of ensemble members

are fixed at 1,2,4,8,16,32 and 64; number of cores per ensemble member is varied from 16 through 256.

The strong scaling behavior of the WRF application kernel for the large input data sets is very good.
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Figure 5.7: The graphs shows the total time taken to run WRF ensembles while fixing the number of

cores per ensemble member for the large input set. As we increase the number of ensemble members

keeping the number of cores per ensemble member fixed we observe excellent weak scaling. When we

increase the number of ensemble members from 1 through 32 the total time consumed remains constant

as long as the number of cores per ensemble member is fixed. This behavior is identical to that seen for

small input data set. By symmetry this implies that WRF application kernels using RADICAL-Pilot

scale well for both small as well as large input data sets.
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Chapter 6

Conclusion and Future Work

The weather researchers use complex workflows using Distributed Computing Infras-

tructure (DCI) to generate forecast data. The heterogeneous nature of these distributed

computing resources require the use of a local job-scheduler which becomes impeding

to the researchers, as they have to invest significant amount of time on getting to know

the underlying hardware resources which could otherwise be invested on their research.

During the course of this dissertation we have developed Pilot-Job based tools which

decouple work-load submission and resource allocation there by giving the weather sci-

entists the flexibility work with a multitude of heterogeneous resources without having

to really worry about how to manage them. Another important limitation of most

local job-schedulers is that they have no smart way of executing a series of executa-

bles and moving data as these steps can be very specific to the application. Hence,

job-schedulers are built to cater to the bare essentials of resources allocation as per

user request. We have successfully designed, developed and tested tools that encapsu-

late the (WRF) workflow as an execution pattern that automates much of the WRF

workflow. While developing these tools we have ensured that their migration from the

traditional scripts is seamless and very easy for the weather researchers to adopt. The

Pilot based frameworks for WRF developed as a part of this dissertation can easily

be run on multiple distributed computing resources with minor changes and accomplish

location independent job execution, data movement, placement and processing. During

the course of our experiments we observe that streamlining the complex workflows by

the Pilot-Job based tools reduces their overall time to completion. The tools devloped

can run an Ensemble of tasks bearing the capability to run on multiple heterogeneous

distributed computing resources. Our experiments and analysis show that the tools
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developed exhibit very good, strong and weak scaling characteristics. These results not

only portend that the weather researchers will save a lot of time that they can invest in

their research instead of getting comfortable with the computing resource which could

be tedious but also can potentially impact the way weather researchers are submitting

traditional WRF jobs to the DCIs. The Pilot based frameworks for WRF gives

the scientists a powerful weapon in their arsenal that can exploit the combined power of

various heterogeneous DCIs which would have otherwise been difficult to harness owing

to interoperability issues.

RADICAL-Pilot has successfully enabled many applications on all of three these

systems, but at the time of this dissertation WRF and WRF-Hydro (Coupled)

were compiled only on Yellowstone High Performance Computing Resource. Work

is in currently in progress to compile and have WRF run on both Stampede and

SuperMUC[18]. We anticipate the emergence of similar strong and weak scaling char-

acteristics on Stampede and SuperMUC. The foundation for There is immense scope for

future work in breaking down the workflow and running different parts of workflow on

different Distributed Computing Infrastructures. A glimpse of the future( definitely not

very distant) would be a weather researcher initiating a script from his or her personal

laptop and different parts of the workflow simultaneously kicked off on different com-

puting resources and data being moved seamlessly between these heterogeneous systems

there by completely exploiting their combined capability. The weather researchers will

not have to worry about how all this is accomplished while they wait for a units suc-

cessfully completed message they can focus their efforts into their own research instead

of nitty-gritty of the computing world.
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