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ABSTRACT OF THE DISSERTATION

Discrete Local Central Limit Theorems and Boolean

Function Complexity Measures

by JUSTIN GILMER

Dissertation Director: Michael Saks

This thesis consists of 6 chapters (the first being an introduction). Two chapters

relate to local central limit theorems, and three chapters relate to various boolean

function complexity measures. Although the problems studied in this work originate

from different areas of mathematics, the methods used to attack these problems are

unified in their probabilistic and combinatorial nature.

In Chapter 2 we prove a local central limit theorem for the number of triangles in

the Erdos-Renyi random graph G(n, p) for fixed p ∈ (0, 1). In Chapter 6 we apply an

existing local limit theorem for sums of independent random variables to estimate the

density of a certain set of integers called happy numbers.

In Chapters 3, 4, and 5 we will investigate the general question of how large one

complexity measure of boolean functions can be relative to another. In one case we

present a probabilistic construction of family of boolean functions which show tight

(in the sense that there is a matching upper bound) separation between two measures,

namely block sensitivity and certificate complexity. We also give partial results for upper

bounding one measure in terms of another. This includes a new approach to the well

known sensitivity conjecture which asserts that the degree of any boolean function is

bounded above by some fixed power of its sensitivity.
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Chapter 1

Introduction

Here we provide a bit more detail on what is covered in each chapter. Each also

begins with an even more detailed introduction as well as historical background on

each problem.

In Chapter 2 we study the random variable Sn which counts the number of triangles

which appear in the random graph G(n, p) where p ∈ (0, 1) is a fixed constant. We

prove a local central limit theorem for Sn, that is we estimate P[Sn = k] to a 1 + o(1)

multiplicative factor when k is close to the mean of Sn. This was a joint work with

Swastik Kopparty.

In Chapter 3 we study the relationship between three complexity measures of

Boolean functions, namely block sensitivity, certificate complexity, and degree. The

main result in the chapter is a construction of an infinite sequence of functions for

which the certificate complexity grows as a constant multiple of the square of the block

sensitivity. This separation is tight up to a multiplicative factor. We also discuss at-

tempts to separate degree from the other two measures. This was a joint work with

Michael Saks and Srikanth Srinivasan.

Chapter 4 investigates the relationship between two randomized variants of the

decision tree model of computation, namely zero-error and two-sided error randomized

decision tree complexity, denoted respectively as R(f) and R2(f). A natural approach

for separating two such complexity measures is to start with a Boolean function f and

iteratively compose the function with itself to generate an infinite sequence of functions

where one complexity measure grows much faster relative to the second. The main

result in this chapter shows that one cannot compose a monotone function to achieve

polynomial separation between R(f) and R2(f). Furthermore, if a certain conjecture
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about Boolean functions holds, then composing any boolean function will not separate

these measures.

Chapter 5 regards a novel approach to the well known sensitivity conjecture for

Boolean functions. We study a certain cooperative two player communication game,

and prove that a strong enough lower bound on the cost of this game implies the

sensitivity conjecture. We establish such a lower bound for certain subset of protocols

for this game. We also study two natural variations of the cost of this game. This was

a joint work with Michael Saks and Michal Koucky.

In Chapter 6 we investigate the density of a sequence of integers called happy num-

bers. We use a probabilistic argument with an application of a local central limit

theorem for sums of iid random variables to show that the asymptotic density of the

set of happy numbers does not exist. In particular we show that the upper density of

this set is at least .18 and the lower density is at most .12.
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Chapter 2

A Local Central Limit Theorem for Triangles in a

Random Graph

Acknowledgement of Journal Publication:

A large part of this chapter contains overlap with the journal version which has been

submitted to Randomized Structures and Algorithms under the same title and (as of

this writing) is under referee review. In some chapters we include more detail or extra

proofs that do not appear in the journal version. It should be noted that the proof

in Section 2.8 is due to Swastik Kopparty. However, the proof was adapted from an

earlier idea of the author.

2.1 Introduction

We will work with the Erdos-Renyi random graph G(n, p). Recall that G(n, p) is the

random undirected graph G on n vertices sampled by including each of the
(
n
2

)
possible

edges into G independently with probability p. Let Sn be the random variable equal

to the number of triangles in G(n, p). Let µn = E[Sn] = p3
(
n
3

)
and σn =

√
Var[Sn] =

Θ(n2) (see the chapter Appendix for an exact calculation of σn). Our main result

(Theorem 2.2) states that if p is a fixed constant in (0, 1), then the distribution of Sn

is pointwise approximated by a discrete Gaussian distribution:

Pr[Sn = k] =
1√

2πσn
e−((k−µn)/σn)2/2 ± o(1/n2). (2.1)

Thus, for every k ∈ µn ±O(n2), we determine the probability that G(n, p) has exactly

k triangles, up to a (1 + o(1)) multiplicative factor.
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2.1.1 Central Limit Theorems

The study of random graphs has over 50 years of history, and understanding the dis-

tribution of subgraph counts has long been a central question in the theory. When the

edge probability p is a fixed constant in (0, 1), there is a classical central limit theorem

for the triangle count Sn (as well as for other connected subgraphs). This theorem says

that for fixed constants a, b:∣∣∣∣∣∣Pr [a ≤ (Sn − µn)/σn ≤ b]−
b∫
a

1√
2π
e−t

2/2 dt

∣∣∣∣∣∣ = o(1),

(in other words, (Sn − µn)/σn converges in distribution to the standard Gaussian dis-

tribution). There are several proofs of the central limit theorem for subgraph counts,

as well as some vast generalizations, known today.

The original proofs of the central limit theorem for triangle counts (and general

subgraph counts) used the method of moments. This method is based on the fact for

all distributions that are uniquely determined by their moments, the convergence of the

moments of a sequence of random variables to the moments of the distribution implies

convergence in distribution. Application of the moment method to subgraph statistics

goes back to Erdos and Renyi’s original paper [Erd60]. There were several papers in

the 1980’s (see [KR83] and [Kar84]) that used the moment method to understand,

under increasingly general assumptions, when normalized subgraph counts converge in

distribution to the Gaussian distribution. This line of work culminated with a paper

by Ruciński [Ruc88] who completely characterized when normalized subgraph counts

converge in distribution to the Gaussian distribution.

There are several other approaches to the central limit theorem for triangle counts

(and general subgraph counts). Using Stein’s method [Ste71], Barbour, Karoński and

Ruciński [BKR89] obtained strong quantitative bounds on the error in the central limit

theorem for subgraph counts. A technique from the asymptotic theory of statistics,

known as U -statistics, was applied by Nowicki and Wierman [NW88] to obtain a central

limit theorem for subgraph counts, although, in a slightly less general setting than the

theorem of Ruciński. Janson [Jan92] used a similar method with several applications,

including central limit theorems for the joint distribution of various graph statistics.
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None of these techniques, however, seem to be quantitatively strong enough to estimate

the point probability mass of the triangle/subgraph counts when the edge probability

p is a constant.

2.1.2 Poisson Convergence

When the edge probability p is small enough (for example, p ≈ c/n for triangles), then

there are classical results that give good estimates for Pr[Sn = k]. In this regime, the

distribution of the subgraph count Sn itself (i.e., without normalization) converges in

distribution (and hence pointwise) to a Poisson random variable. Some of the work

dedicated to understanding this probability regime goes back to the original paper

of Erdos and Renyi [Erd60] who studied the distribution of counts of trees and cycles

using the method of moments. Using Chen’s [Che75] generalization of Stein’s method to

the Poisson setting, Barbour [Bar82] showed Poisson convergence for general subgraph

counts. In the Poisson setting, the probability mass is concentrated in an interval of

constant size and thus all results are “local” in the sense that they bound the point

probability mass of these random variables.

For slightly larger p ∈ [n−1, O(n−(1/2))] (this is the range of p where σn = Θ(µn)),

Röllin and Ross [RR10] showed that the probability mass function for triangle counts

(Sn) is close in the `∞ and total variation metrics to the probability mass function of a

translated Poisson distribution (and hence a discrete Gaussian distribution), and asked

whether a similar local limit law holds for larger p (See Remark 4.5 of that paper). Our

result gives such a law for constant p ∈ (0, 1) for the `∞ metric.

2.1.3 Subgraph counts mod q

Some more recent works studied the distribution of subgraph counts mod q. For ex-

ample, Loebl, Matousek and Pangrac [LMP04] studied the distribution of Sn mod q in

G(n, 1/2). They showed that when q ∈ (ω(1), O(log1/3 n)), then for every a ∈ Zq, the

probability that Sn ≡ a mod q equals (1 + o(1)) · 1
q . Kolaitis and Kopparty [KK13] also

studied this problem in G(n, p) for fixed p ∈ (0, 1). They showed that for every constant

q, and every a ∈ Zq, the probability that Sn ≡ a mod q equals (1 + exp(−n)) · 1
q . This
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latter result also generalizes to all connected subgraph counts, and to multidimensional

versions for the joint distribution of all connected subgraph counts simultaneously. De-

Marco, Kahn and Redlich [DKR14] extended these results of [KK13] to determine the

distribution of subgraph counts mod q in G(n, p) for all p. Many of these works use

conditioning arguments that are similar to those used here.

2.1.4 Our result

The above lines of work:

1. the central limit theorem for triangle counts in G(n, p) with p constant,

2. the Poisson local limit theorem for triangle counts in G(n, p) with p close to n−1,

3. the uniform distribution of triangle counts mod q in G(n, p) with p constant,

all strongly suggest the truth of our main theorem (Theorem 2.2): there is a local

discrete Gaussian limit law for triangle counts in G(n, p) with p constant.

The high level structure of our proof follows the basic Fourier analytic strategy

behind the classical local limit theorem for the sums of i.i.d. integer valued random

variables. To show that the distribution of (Sn−µn)/σn is close pointwise to the discrete

Gaussian distribution (as in equation (2.1)), it suffices to show that their characteristic

functions (Fourier transforms) are close in L1 distance. Specifically, if we define ψn(t) =

E[eit(Sn−µn)/σn ], we need to show that:∫ πσn

−πσn
|ψn(t)− e−t2/2| dt = o(1).

The central limit theorem for triangle counts can be used to bound the above integral in

the range (−A,A) for any large constant A. By choosing A large enough, we can bound∫
A<|t|<πσn |e

−t2/2| dt by an arbitrarily small constant. We are thus reduced to showing

that
∫
A<|t|<πσn |ψn(t)| dt = o(1). We achieve this using two different arguments. For

A < |t| < n0.55, we show that |ψn(t)| < 1
t1+δ

using a conditioning argument, where we

first reveal the edges in a set F ⊆
(

[n]
2

)
, and count triangles according to how many

edges they have in F . For n0.55 < |t| < πσn, we show that |ψn(t)| is superpolynomially
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small in t by another conditioning argument, where we partition the vertex set [n] into

two sets U and V , first expose all the edges within V , and then consider the increase

to the total number of triangles that occurs when we expose the remaining edges.

We conjecture that a similar local discrete Gaussian limit law should hold for the

number of copies of any fixed connected graph H in G(n, p), for any p that lies above the

threshold probability for appearance of H. It would also be interesting to understand

the joint distribution of subgraph counts in G(n, p) for several fixed connected graphs.

It seems like there are many interesting questions here and much to be investigated.

2.2 Notation and Preliminaries

Let [n] denote the set {1, 2, . . . , n}. For each positive integer n let Kn be the complete

graph on the vertex set [n]. The Erdos-Renyi random graph G(n, p) is the graph G

with vertex set [n], where for each e ∈
(

[n]
2

)
, the edge e is present in G independently

with probability p. For e ∈
(

[n]
2

)
, let Xe denote the indicator for the event that edge

e is present in G. For E ⊆
(

[n]
2

)
, we will let {0, 1}E denote the set of {0, 1}-vectors

indexed by E. Likewise XE ∈ {0, 1}E will be the random vector for which the value on

coordinate e is the random variable Xe.

For the rest of this chapter p ∈ (0, 1) will be a universal fixed constant. All asymp-

totic notation will hide constants which may depend on p. We will use Sn to denote

the number of triangles in G(n, p) (thus Sn ∈ [0,
(
n
3

)
]). The mean of Sn is p3

(
n
3

)
and

the variance (see Appendix) is σ2
n = Θ(n4). We let Rn denote the normalized triangle

count, Rn
def
=

Sn−p3(n3)
σn

.

Fourier inversion formula for lattices: Let Y be a random variable that has

support contained in the (shifted) discrete lattice L def
= 1

b (Z − a) for real numbers a, b.

Let ψ(t)
def
= E[eitY ] be the characteristic function of Y . Then for all y ∈ L it holds that

Pr(Y = y) =
1

2πb

πb∫
−πb

e−ityψ(t) dt. (2.2)

Throughout the chapter, for real numbers x we will use ‖x‖ to denote the distance

from x to the nearest integer. We will often apply the following easy bound.
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Lemma 2.1. Let B be a Bernoulli random variable that is 1 with probability p. Then:

|E
B

[eiθB]| ≤ 1− 8p(1− p) · ‖θ/2π‖2 .

Proof. Without loss of generality, we may assume that θ ∈ [−π, π]. We first state two

elementary inequalities:

cos(t) ≤ 1− 8 · ‖t/2π‖2 (for t ∈ [−π, π]) (2.3)

and
√

1− t ≤ 1− t/2 (for t ≤ 1). (2.4)

Then we have the following,

|E[eiθb]| = |p+ (1− p)eiθ|

=
√
p2 + (1− p)2 + 2p(1− p) cos(θ)

≤
√
p2 + (1− p)2 + 2p(1− p) (1− 8 · ‖θ/2π‖2) (applying (2.3))

=
√

1− 16p(1− p)‖θ/2π‖2

≤ 1− 8p(1− p)‖θ/2π‖2 (applying (2.4)).

2.3 Main Result

We now give a formal statement of our main result.

Theorem 2.2 (Local limit law for triangles in G(n, p)). Let

pn(x) = Pr(Rn = x) for x ∈ Ln =

{
k − p3

(
n
3

)
σn

: k ∈ Z

}

and

N (x) =
1√
2π
e−x

2/2 for x ∈ (−∞,∞).

Then as n→∞,

sup
x∈Ln

|σnpn(x)−N (x)| → 0.



9

Equivalently, we have that for all n, for all k ∈ Z,

Pr[Sn = k] =
1

σn
· N

(
k − p3 ·

(
n
3

)
σn

)
+ o

(
1

n2

)
,

(where the o(1) term goes to 0 as n→∞, uniformly in k).

Proof. Let ψn(t) = E[eitRn ]. Then the Fourier inversion formula for lattices (equation

2.2) gives us

σnpn(x) =
1

2π

πσn∫
−πσn

e−itxψn(t) dt.

The standard Fourier inversion formula (for R), along with the well known formula for

the Fourier transform of N , gives us:

N (x) =
1

2π

∞∫
−∞

e−itxe−t
2/2 dt.

Therefore,

|σnpn(x)−N (x)| ≤
πσn∫
−πσn

|ψn(t)− e−t2/2| dt+ 2

∞∫
πσn

e−t
2/2 dt (2.5)

The second term goes to zero as n tends to infinity. Thus, it suffices to show that

πσn∫
−πσn

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt (2.6)

tends to 0.

Let A > 0 be a large constant to be determined later. We divide the integral into

three regions:

• R1 = (−A,A)

• R2 = (−n0.55,−A) ∪ (A,n0.55)

• R3 = (−πσn,−n0.55) ∪ (n0.55, πσn)

The following three lemmas will help us bound the integral of
∣∣∣ψn(t)− e−t2/2

∣∣∣ in these

three regions.
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Lemma 2.3. Let A be a fixed positive real number. Then

A∫
−A

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt→ 0

as n→∞.

Lemma 2.4. There exists a sufficiently large constant D = D(p) and δ > 0 such that,

for all t with |t| ∈ (0, n0.55],

|ψn(t)| ≤ D/|t|1+δ.

Lemma 2.5. There exists a sufficiently large constant D = D(p) such that, for all t

with |t| ∈ [n0.55, πσn], it holds that

|ψn(t)| ≤ D/|t|50.

We now proceed to bound (2.6).

By Lemma 2.3, ∫
R1

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt→ 0,

for any fixed constant A.

For R2 and R3 we have the following,∫
R2∪R3

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt ≤ ∫

R2∪R3

|ψn(t)| dt+

∫
R2∪R3

∣∣∣e−t2/2∣∣∣ dt
By Lemma 2.4 and Lemma 2.5, there exists constants D = D(p), δ > 0 such that,

|ψn(t)| ≤ D
t1+δ

for all n and all t with |t| ∈ (0, πσn]. Therefore,∫
R2∪R3

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt ≤ ∫

R2∪R3

∣∣∣∣ Dt1+δ

∣∣∣∣ dt+

∫
R2∪R3

∣∣∣e−t2/2∣∣∣ dt.
Since D/|t|1+δ and e−t

2/2 both have finite integral over (−∞,−1)∪ (1,∞), the last line

above can be made smaller than any ε for large enough constant A = A(ε, p).

2.4 Proof Sketch for Bounding |ψn(t)|

In this section we sketch with some more detail the strategy used to bound the charac-

teristic function

ψn(t)
def
= E[eitRn ].
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As a warm up, suppose that Rn was the sum of n i.i.d random variables Xi. Then, by

independence,

ψn(t) = E

[
e
it

n∑
i=1

Xi

]
=

n∏
i=1

E
[
eitXi

]
= E

[
eitX1

]n
.

Thus if
∣∣E[eitX1 ]

∣∣ is bounded sufficiently far from 1, it would follow that |ψn(t)| is small.

Of course in our case Rn is the sum of dependent random variables, and one does not

immediately have the expression decompose as a product. The idea that gets around

this issue is to first reveal a subset F of the edges and then, conditioning on the values of

the edges in F (assuming some nice event Λ occurs), show that the expectation is small.

For certain choices of F the conditional expectation does decompose as a product, and

thus the estimation becomes easier. If the good event Λ happens with high enough

probability, then one has successfully bounded ψn(t).

We now show an argument that bounds the ψn(t) when n1/2 � |t| � n. For starters,

suppose F was all the edges of
(

[n]
2

)
except for a perfect matching M , and let XF denote

the indicator vector for the edges in F that appear in G. For e = {u, v} ∈ M let Ce

denote the number of paths of length 2 from u to v that appear in G (note any such

path must consist of edges in F ). Then conditioned on the value of XF , the expectation

becomes

E
[
e
it(C+

∑
e∈M

CeXe)/σn
]

where C denotes the number of triangles that appear consisting only of edges in F .

Note that C and the Ce are all constants conditioned on the value of XF . Also, each

Ce = Ce(XF ) is a binomial random variable, and thus each is concentrated around np2.
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Thus for a “typical” value of XF one has (roughly)

∣∣E[eitRn | XF ]
∣∣ =

∣∣∣∣E[e
it(
∑
e∈M

CeXe)/σn
]

∣∣∣∣
≈

∣∣∣∣∣∏
e∈M

E[eitnp
2Xe/σn]

∣∣∣∣∣
≤

(
1− 8p(1− p)

∥∥∥∥ tnp2

2πσn

∥∥∥∥2
)n/2

(applying Lemma 2.1)

≈

(
1− 8p(1− p)

(
tnp2

2πσn

)2
)n/2

(since σn = Θ(n2) and |t| � n)

≈
(
1−Θ(t2/n2)

)n/2
≈ e−Θ(t2/n).

Thus if |t| � n1/2 the above will be small.

In Section 2.6 we push the above analysis to cover the range where t ≤ n.55. There

we instead let M be a bipartite subgraph obtained by taking a disjoint union of k

perfect matchings, where k is chosen to depend on t. As above we first reveal all edges in

F
def
=
(

[n]
2

)
−M and then condition on the value ofXF . We then count triangles according

to how many edges are in M , letting C, Y , and Z denote the number of triangles with

0,1, and 2 edges in M respectively. As before C will be a constant conditioned on XF ,

and Y =
∑
e∈M

CeXe is the sum of nk/2 independent random variables.

For k large enough, E[eitY/σn ] will be small conditioned on a “typical” XF , and

the analysis follows just as above because the expectation decomposes as a product.

The difficulty now is Z is a degree 2 polynomial in the variables {Xe : e ∈ M},

and thus E[eit(Y+Z)/σn ] does not decompose as a product even after conditioning on

XF . However, by estimating the variance of Z we will find that tZ/σn will be tightly

concentrated in an interval of size o(1), whereas tY/σn will be roughly uniform mod 2π.

Therefore, although Z has a complicated dependence on Y , t(Y + Z)/σn will still be

roughly uniform mod 2π and |ψn(t)| will be small. It should be noted that we currently

do not know how to prove a stronger bound than |ψn(t)| ≤ 1/t1+δ in this range (for

contrast, the argument with a single perfect matching implies an exponentially small

bound). This seems to be a major obstacle for obtaining a stronger quantitative local
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limit law.

The above argument is not delicate enough to deal with arbitrary t with |t| � n.

In Section 2.8, we use a different conditioning argument to bound ψn(t) for all t with

|t| ∈ [n.55, πσn]. This argument is based on partitioning
(

[n]
2

)
into two sets E and F , and

then studying the difference between the number of triangles in the two random graphs

(XE , XF ) and (X ′E , XF ) (where X ′E is an independent copy of the random variable

XE).

2.5 Small |t|

In this section we prove Lemma 2.3.

Lemma 2.3 (restated). Let A be a fixed positive real number. Then

A∫
−A

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt→ 0

as n→∞.

The proof essentially follows from the central limit theorem for triangle counts. We

provide some of the details by applying a few standard results from probability theory

regarding the method of moments. We begin with some additional preliminaries that

we borrow (with minor changes) from Durrett’s textbook “Probability: Theory and

Examples” [Dur10].

For a random variable X, its distribution function is the function F (x)
def
= Pr[X ≤ x].

A sequence of distribution functions is said to converge weakly to a limit F if Fn(x)→

F (x) for all x that are continuity points of F . A sequence of random variables Xn is

said to converge in distribution to a limit X∞ (written Xn
d−→ X∞) if their distribution

functions converge weakly.

The moment method gives a useful sufficient condition for when a sequence of ran-

dom variables converge in distribution.

Theorem 2.6. Let Xn be a sequence of random variables. Suppose that E[Xk] has a

limit µk for each k and

lim sup
k→∞

µ
1/2k
2k /2k <∞;
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then Xn
d−→ X∞ where X∞ is the unique distribution with the moments µk.

In the Appendix we provide the standard calculation that E[Rkn] → µk for all k,

where

µk
def
=

 (k − 1)!! if k is even

0 if k is odd

are the moments of N(0, 1). It is easy to check that these moments do not grow too

quickly and thus the theorem implies the well known central limit theorem for triangle

counts:

Rn
d−→ N(0, 1). (2.7)

Durrett also provides a theorem that relates convergence in distribution to pointwise

convergence of characteristic functions.

Theorem 2.7. Continuity Theorem. Let Xn, 1 ≤ n ≤ ∞, be random variables with

characteristic functions φn. If Xn
d−→ X∞, then φn(t)→ φ∞(t) for all t.

Applying this with (2.7), we conclude that ψn(t) → e−t
2/2 for all t. To finish the

proof of Lemma 2.3 we apply the dominated convergence theorem to conclude, for any

fixed A, that

A∫
−A

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt→ 0

as n→∞.

2.6 Intermediate |t|

In this section, we prove Lemma 2.4.

Lemma 2.4 (restated). There exists a sufficiently large constant D = D(p) and δ > 0

such that, for all t with |t| ∈ (0, n0.55],

|ψn(t)| = |E[eitRn ]| = |E[eitSn/σn ]| ≤ D/|t|1+δ.
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Note that trivially |ψn(t)| ≤ 1, and thus the lemma already holds for constant sized

t. Thus we will assume that t and n are both bigger than a sufficiently large constant

D(p). To make the exposition simpler, we will assume n is even (however, the same

argument can be easily seen to apply when n is odd).

We simplify notation by denoting Rn by R, Sn by S, and σn by σ. Partition [n]

into sets U, V both of size n/2 and let P ⊆
(

[n]
2

)
be the complete bipartite graph

between vertex sets U, V . Let k < n
1010

be a positive integer to be determined later.

Let M1, · · · ,Mk ⊆ P be pairwise disjoint perfect matchings between U and V . Let

E = M1 ∪M2 ∪ · · · ∪Mk, and let F =
(

[n]
2

)
\ E.

Recall that for the random graph G ∈ G(n, p), we use Xe to denote the indicator

for whether edge e appears in G. We also use XE and XF to denote the {0, 1}E-valued

random variable (Xe)e∈E and the {0, 1}F -valued random variable (Xe)e∈F respectively.

Let C(XF ), Y (XE , XF ) and Z(XE , XF ) be random variables that count the number

of triangles in G(n, p) which have 0,1, and 2 edges in E respectively (note that, by

construction of E, no triangle may have all 3 edges in E). Thus we have S = C(XF ) +

Y (XE , XF ) + Z(XE , XF ).

We define:

ζ = E
XE ,XF

[Z(XE , XF )].

We now work towards bounding
∣∣E[eitS/σ|]

∣∣:∣∣∣E[eitS/σ]
∣∣∣ =

∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+Z(XE ,XF ))/σ]

∣∣∣∣ .
By adding and subtracting the term eit(C(XF )+Y (XE ,XF )+ζ) and applying the triangle

inequality, the above is

≤
∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣+ E
XE ,XF

[∣∣∣eit(Z(XE ,XF ))/σ − eitζ/σ
∣∣∣] .

We bound each of the two terms separately in the following two lemmas. We will

then use these lemmas to conclude the proof of Lemma 2.4.

Lemma 2.8. ∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣ ≤ e−Θ(t2k/n).
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Proof. We bound the above expectation by revealing the edges in two stages. We first

reveal XF , and show that with high probability over the choice of XF , some good event

occurs. We then show that whenever this good event occurs, the value of the above

expectation over the random choice of XE is small.

Formally, using the triangle inequality we get:∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣ =

∣∣∣∣ EXF
[
eit(C(XF )+ζ)/σ · E

XE
[eit(Y (XE ,XF ))/σ]

]∣∣∣∣ (2.8)

≤ E
XF

[∣∣∣∣ EXE[eit(Y (XE ,XF ))/σ]

∣∣∣∣] . (2.9)

For e = {u, v} ∈ E and a vector xF ∈ {0, 1}F , we let Ye(xF ) denote the number of

paths of length 2 from u to v consisting entirely of edges f ∈ F for which (xF )f = 1 1.

In this way, for a given xF , the random variable Y (XE , xF ) equals
∑
e∈E

Ye(xF )Xe.

Define

L = {xF ∈ {0, 1}F | for some e ∈ E, Ye(xF ) < np2/2}.

Let Λ denote the (bad) event that XF ∈ L.

Claim 2.9.

Pr
XF

[Λ] ≤ e−Θ(n).

Proof. Observe that for any given e ∈ E, the distribution of Ye(XF ) equals Bin(me, p
2),

where me equals the number of paths of length 2 joining the endpoints of e, and con-

sisting entirely of edges in F . Also note that we have me ≥ n− 2k ≥ n(1− 1/109).

By the Chernoff bound, we have:

Pr[Bin(me, p
2) < np2/2] ≤ e−np2(1−p2)/200.

Taking a union bound over all e ∈ E, we get the claim.

Next, we show that if we condition on Λ not occurring, then the desired expectation

is small.

1This differs from the exposition in Section 2.4 (where E is a single perfect matching), in that some
length-2 paths between u and v here may contain edges in E. We do not want to count those paths in
Ye(xF ).
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Claim 2.10. For every xF ∈ {0, 1}F \ L,∣∣∣∣ E
XE∈{0,1}E

[
eitY (XE ,xF )/σ

]∣∣∣∣ ≤ e−Θ(t2k/n).

Proof. Recall that Y (XE , xF ) =
∑
e∈E

Ye(xF )Xe. Thus we have:

∣∣∣∣ EXE
[
eitY (XE ,xF )/σ

]∣∣∣∣ =

∣∣∣∣ EXE
[
e
it(
∑
e∈E

Ye(xF )Xe)/σ
]∣∣∣∣

=

∣∣∣∣∣∏
e∈E

E
[
eitYe(xF )Xe/σ

]∣∣∣∣∣ by the mutual independence of (Xe)e∈E

≤
∏
e∈E

(
1− 8p(1− p)

∥∥∥∥ tYe(xF )

2πσ

∥∥∥∥2
)

(applying Lemma 2.1)

=
∏
e∈E

(
1− 8p(1− p) ·

(
tYe(xF )

2πσ

)2
)

≤

(
1− 8p(1− p) ·

(
tnp2

4πσ

)2
)nk/2

(since xF ∈ L).

Recall that σ =

√
n(n−1)(n−2)(n−3)D

2 for some constant D ≤ 1. Thus tnp2

4πσ ≥
tp2

4πn .

Therefore we may further bound the above expression by:

≤

(
1− 8p(1− p)

(
tp2

4πn

)2
)nk/2

≤ e−
t2p5(1−p)k

π2n

= e−Θ(t2k/n)

Going back to equation (6.5) we have∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣ ≤ E
XF

[∣∣∣∣ EXE[eit(Y (XE ,XF ))/σ]

∣∣∣∣]
≤ Pr

XF
[XF ∈ L] + max

xF∈{0,1}F \L

∣∣∣∣ EXE[eit(Y (XE ,xF ))/σ]

∣∣∣∣
≤ e−Θ(n) + e−Θ(t2k/n) (applying claims 2.9 and 2.10)

≤ e−Θ(t2k/n).
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Lemma 2.11.

E
XE ,XF

[∣∣∣eit(Z(XE ,XF ))/σ − eitζ/σ
∣∣∣] ≤ O(t3/2+δ/2

(
k

n

)3/2
)

+O
(

1/t1+δ
)

Proof. Simplifying the expression we want to bound, we get:

E
XE ,XF

[∣∣∣eit(Z(XE ,XF ))/σ − eitζ/σ
∣∣∣] = E

XE ,XF

[∣∣∣eit(Z(XE ,XF )−ζ)/σ − 1
∣∣∣] .

Thus proving the lemma reduces to proving a concentration bound: namely that

Z(XE , XF ) is close to ζ with high probability. We will bound VarXE ,XF [Z(XE , XF )]

and apply the Chebyshev inequality. This will give the desired concentration.

Let ∆′ denote the set of triangles in Kn that have exactly 2 edges in E. For each

r ∈ ∆′, let Tr(XE , XF ) be the indicator for the triangle r appearing in G. For two

triangles r, s ∈ ∆′, write r ∼ s if r and s share an edge. Note for any r ∈ ∆′ there are

at most 6k triangles s ∈ ∆′ for which r ∼ s.

We have:

VarXE ,XF [Z(XE , XF )] =
∑
r∈∆′

∑
s∈∆′

CovXE ,XF [Tr(XE , XF ), Ts(XE , XF )]

=
∑
r∈∆′

∑
s∼r

CovXE ,XF [Tr(XE , XF ), Ts(XE , XF )]

≤ |∆′| · |6k|

≤ 6nk3 (since |∆′| = n
(
k
2

)
)

Applying Chebyshev’s inequality with λ =
√

6 · n1/2 · t1/2+δ/2 · k3/2 we have

Pr
XE ,XF

[|Z(XE , XF )− ζ| > λ] <
VarXE ,XF [Z(XE , XF )]

λ2

< 1/t1+δ

Recall that ‖x‖ denotes the distance from real number x to the nearest integer. Let Λ

be the (bad) event that |Z(XE , XF )− ζ| ≥ λ. Using the fact that for any real number
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θ, |eiθ − 1| ≤ 2π · ‖ θ2π‖, we have

E
XE ,XF

[∣∣∣eit(Z(XE ,XF )−ζ)/σ − 1
∣∣∣] ≤ 2π E

XE ,XF

[∥∥∥∥ t(Z(XE , XF )− ζ)

2πσ

∥∥∥∥]
≤ 2π · Pr[Λc] · tλ

2πσ
+ 2π · Pr[Λ] · 1

2

≤ tλ

σ
+ π · Pr[Λ]

≤
√

6 · t3/2+δ/2 · k
3/2 · n1/2

σ
+

π

t1+δ

≤ O

(
t3/2+δ/2 ·

(
k

n

)3/2
)

+O

(
1

t1+δ

)
. (since σ = Θ(n2))

This concludes the proof of Lemma 2.11.

To conclude the proof of Lemma 2.4, we apply Lemma 2.8 and Lemma 2.11 to get

the bound

|E[eitS/σ]| ≤ e−Θ(t2k/1000n) +O

(
t3/2+δ/2 ·

(
k

n

)3/2
)

+O
(

1/t1+δ
)

(2.10)

It only remains to check that k may be chosen as to make the right hand side of

equation (6.13) bounded by O(1/t1+δ). Set δ = 0.01, and observe that for Ω(1) < t <

n0.55, we have the following two relations:

n log2(t)

t2
= O

( n

t5/3+δ

)
,

n

t5/3+δ
= ω(1).

Thus we may choose k to be an integer satisfying:

k = Ω(n log2(t)/t2) and k = O(n/t5/3+δ).

For such a k we have

e−Θ(t2k/n) ≤ O(1/t1+δ)

and

t3/2+δ/2

(
k

n

)3/2

= O(1/t1+δ).

This concludes the proof of Lemma 2.4.
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2.7 A Motivating Argument

Recall that the proof sketch where we first reveal all but a single perfect matching does

not work for all t � n1/2. This was a technical difficulty which forced us to consider

a new approach. Here we present a simpler argument which motivated the proof for

large t contained in Section 2.8. We will sketch a proof that the random variable Sn

is uniform mod k where k = o(n). To make the argument simpler we will assume

p = 1/2. Showing Sn is uniform mod k relates to bounding the characteristic function

when t/σn = 2π/k because for such t, eitSnσn is supported over the k’th roots of unity.

Viewing [n] as the set of vertices, let E be the set of edges which have both vertices

in the set {1, 2, · · · , n − 1}. We first reveal all edges in E, and then study how many

additional triangles appear when we reveal Ec. Let T be the number of triangles which

appear containing an edge in Ec. Equivalently, T is the number of triangles which

contain vertex n. We will show that with high probability over the randomness in XE ,

the distribution of T conditioned on XE is close to uniform mod k.

Note that T is equal to the number of edges which appear which have both vertices

in the neighborhood of vertex n. Let

~V = ~V (XE)
def
= (V∅, V{1}, · · · , VS , · · · , V[n−1])

be the vector whose entries are indexed by subsets of [n − 1], where entry VS is the

number of edges which appear containing both vertices in the set S. Then the ran-

dom variable T = T (XE , XEc) can be viewed as the following: First reveal XE , this

determines the vector ~V . Then reveal XEc , this chooses a random set S which is the

neighborhood of vertex n. Then T is exactly the entry VS in the vector ~V . Note that

the random set S chosen is a uniform subset of [n− 1] (since p = 1/2).

Thus to argue that T is uniform mod k it suffices to show, for each j < k, that w.h.p

after we reveal XE the fraction of entries VS which are ≡ j mod k is 1/k + o(1/k)).

We will use a second moment calculation to show this. Note that each entry VS =

VS(XE) = Bin(
(|S|

2

)
, 1/2). It is easy to show that when |S| = Ω(n) then VS is close

to uniform mod k = o(n) (one can apply the local limit theorem for the Binomial

random variable, or estimate these probabilities directly). Of course the entries VS
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are not mutually independent, however, most pairs VS , VS′ are approximately pairwise

independent in the sense that

E[VSVS′ ] ≈ E[VS ]E[VS′ ].

Fix j ∈ {0, 1, · · · , k−1} and for each S ⊆ [n−1] let ZS denote the indicator random

variable that VS ≡ j mod k. Let

Z = 1/2n−1
∑

S⊆[n−1]

ZS .

Then E[Z] ≈ 1/k. This follows because each VS is a binomial random variable and

most sets S ⊂ [n− 1] have size Θ(n). Thus is remains to bound the variance of Z and

apply Chebyshev’s inequality. We say an ordered pair (S, S′) is good if |S − S′| ≥ n/8,

otherwise the pair is bad. Note the fraction of pairs which are bad is exponentially

small. Then,

E[(Z − E[Z])2] = 1/4n−1
∑

S⊆[n−1]

∑
S′⊆[n−1]

E[(ZS − E[ZS ])(ZS′ − E[ZS′)]

≤ covariance of a good pair + fraction of bad pairs.

To finish this sketch, we will argue that the covariance E[(ZS −E[ZS ])(ZS′ −E[ZS′)] is

exponentially small for a fixed good pair S, S′. First reveal all edges with both vertices

in S′, this determines the value of ZS′ . Conditioned on this first reveal, note that VS is

still Bin(m, 1/2) where m ≥
(
n/8
2

)
(because the pair S, S′ is good). Thus the conditional

distribution of VS will still be close to uniform mod k (in fact, exponentially close). This

means that P[ZS = 1] ≈ 1/k. This finishes the proof sketch, the variance of Z using

this argument can be seen to be exponentially small.

The above idea does not work to bound the characteristic function for all t� n1/2

because it only applies when t/σn is a rational multiple of 2π and when t/σn = ω(1/n)

(that is when t = ω(n)). The argument presented in the next Section uses a similar

conditioning on the edges, but requires a more delicate analysis of the error.
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2.8 Big |t|

In this section we prove Lemma 2.5.

Lemma 2.5 (restated). There exists a sufficiently large constant D = D(p) such that,

for all t with |t| ∈ [n0.55, πσn], it holds that

|E[eitRn ]| = |E[eitSn/σn ]| ≤ D/|t|50.

The choice of 50 here is arbitrary, in fact the lemma will hold for any fixed constant

in place of 50 (as long as D(p) is chosen large enough). We only choose a large number

here to remind the reader that the obstacle to a better quantitative local limit law lies

in bounding ψn(t) for |t| in the range (0, n.55].

As in the previous section, since n is fixed we simplify notation by denoting Sn as

S and σn as σ.

We will break down the proof into two different cases. Both cases will use a common

framework, which we now set up.

Let [n] = U ∪ V be a partition of the vertices. Define XU = (Xe)e∈(U2). For every

xU ∈ {0, 1}(
U
2), we will show that:

E[eitS/σ|XU = xU ] ≤ O
(

1

t50

)
.

This will imply the desired bound.

From now on, we condition on XU = xU .

Let EU ⊆
(
U
2

)
be the induced graph on U :

EU =

{
{u, u∗} ∈

(
U

2

)
| x{u,u∗} = 1

}
.

Note that EU is determined by xU and is thus fixed.

For u ∈ U , let Au ∈ {0, 1}V denote the vector indicating the neighbors of u in V .

Thus Au = (X{u,v})v∈V .

Let B ∈ {0, 1}(
V
2) denote the adjacency vector of G|V . Thus B = {Xe}e∈(V2).
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Note that all the entries of the Au’s and B are independent p-biased Bernoulli

random variables. We will now express the number of triangles in G in terms of the

Au’s and B (here 〈·, ·〉 denotes the standard inner product over R) :

• Let SU denote the number of triangles in G with all three vertices in U (note that

SU is determined by xU and is thus fixed).

• The expression
∑

{u,u∗}∈EU
〈Au, Au∗〉 counts the number of triangles in G that have

exactly two vertices in U .

• Let P : {0, 1}V → {0, 1}(
V
2) denote the map defined by:

P (r){u,v} = ru · rv.

Then
∑
u∈U
〈P (Au), B〉 counts the number of triangles in G that have exactly two

vertices in V .

• Let Q : {0, 1}(
V
2) → N denote the map that sends an adjacency vector b to the

number of triangles in the graph represented by b (that is the triangles whose

vertices are contained in V ).

Thus Q(B) counts the number of triangles in G with all three vertices in V .

Then we have the following expression for S in terms of the Au’s and B.

S = SU +
∑
u∈U
〈P (Au), B〉+

∑
{u,u∗}∈EU

〈Au, Au∗〉+Q(B).

We now bound E[eitS/σ].

|E[eitS/σ]|2 =

∣∣∣∣ E
(Au)u∈U ,B

[
e
it(SU+

∑
u∈U 〈P (Au),B〉+

∑
{u,u∗}∈EU

〈Au,Au∗ 〉+Q(B))/σ
]∣∣∣∣2

≤ E
B

[∣∣∣∣eitQ(B)/σ · E
(Au)u∈U

[
e
it(〈
∑
u∈U P (Au),B〉+

∑
{u,u∗}∈EU

〈Au,Au∗ 〉)/σ
]∣∣∣∣2
]

≤ E
B

[∣∣∣∣ E
(Au)u∈U

[
e
it(〈
∑
u P (Au),B〉+

∑
{u,u∗}∈EU

〈Au,Au∗ 〉)/σ
]∣∣∣∣2
]

= E
B

E
(Au)u∈U

E
(A′u)u∈U

[
e
it(〈
∑
u P (Au)−P (A′u),B〉+

∑
{u,u∗}∈EU

〈Au,Au∗ 〉−
∑
{u,u∗}∈EU

〈A′u,A′u∗ 〉)/σ
]
.
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(Where for each u ∈ U , A′u is an independent copy of Au).

= E
(Au)u∈U

E
(A′u)u∈U

[
e
it(
∑
{u,u∗}∈EU

〈Au,Au∗ 〉−
∑
{u,u∗}∈EU

〈A′u,A′u∗ 〉)/σ · E
B

[
eit〈

∑
u P (Au)−P (A′u),B〉/σ

]]

= E
(Au)u∈U

E
(A′u)u∈U

[
e
it(
∑
{u,u∗}∈EU

〈Au,Au∗ 〉−
∑
{u,u∗}∈EU

〈A′u,A′u∗ 〉)/σ · E
B

[
eit〈hA,A′ ,B〉/σ

]]
where A = (Au)u∈U , A′ = (A′u)u∈U , and where hA,A′ ∈ Z(V2) is given by:

hA,A′ =
∑
u∈U

(P (Au)− P (A′u)).

Observe that for each e ∈
(
V
2

)
, (hA,A′)e is distributed as the difference of two binomials

of the form B(|U |, p2) (but the different coordinates of hA,A′ are not independent).

Our goal is to show that with high probability over the choice of A,A′, we have

that:

C
def
=

∣∣∣∣EB [eit〈hA,A′ ,B〉/σ]
∣∣∣∣

is small in absolute value. This will imply that E[eitS/σ] is small, as desired.

We now achieve this goal for |t| > n0.55 using two different arguments (to cover two

different ranges of |t|), instantiating the above framework with different settings of |U |.

2.8.1 Case 1: n1.001 ≤ |t| < πσ

Suppose n1.001 < |t| < πσ. For this argument, we choose |U | = 1.

In this case, the coordinates of hA,A′ have the following joint distribution: Let

J ⊆ V be a random subset where each v ∈ V appears independently with probability

p. Let J ′ be an independent copy of J (think of J and J ′ as two independently chosen

neighborhoods of the vertex u). Then the e coordinate of hA,A′ is 1 if e ⊆ J − J ′,

0 if e ⊆ J ∩ J ′ or e ⊆ Jc ∩ (J ′)c, and −1 if e ⊆ J ′ − J . A Chernoff bound implies

that with probability at least 1− e−Θ(n) the symmetric difference of J and J ′ will have

size at least np(1 − p)/2. In such a case hA,A′ will have
(
np(1−p)/2

2

)
= Θ(n2) non-zero

coordinates. From now on we assume that A,A′ are such that this event occurs (and

we call such an A,A′ “good”).
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Then we have:

C =

∣∣∣∣EB [eit〈∑u hA,A′ ,B〉/σ
]∣∣∣∣

=

∣∣∣∣∣∣∣EB
 ∏
e∈(V2)

eit(hA,A′ )eBe/σ


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣EB
 ∏
e∈(V2),(hA,A′ )e 6=0

eit(hA,A′ )eBe/σ


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∏

e∈(V2),(hA,A′ )e 6=0

E
Be

[
eit(hA,A′ )eBe/σ

]∣∣∣∣∣∣∣
≤

∏
e∈(V2),(hA,A′ )e 6=0

(
1− 8p(1− p) ·

∥∥∥∥ t · |(hA,A′)e|2πσ

∥∥∥∥2
)

(by Lemma 2.1)

≤
∏

e∈(V2),(hA,A′ )e 6=0

(
1− 8p(1− p) ·

(
t

2πσ

)2
)

(since |(hA,A′)e| ∈ {0,±1} and |t| < πσ)

≤ e−
2p(1−p)t2

π2σ2
·Θ(n2) since A,A′ is good

≤ e−Θ(t2/n2) (since σ = Θ(n2)).

Now we use the fact that t ≥ n1.001 to conclude that D ≤ exp(−Θ(n0.002)).

Taking into account the probability of A,A′ being good, we get:

|E[eitS/σ]|2 < e−Θ(n) + e−Θ(n0.002) � 1

t100
,

as desired.

2.8.2 Case 2: n0.55 ≤ t < n1.01

Suppose n0.55 < t < n1.01. For this argument, we choose |U | = n/2.

As before, we have:

C =

∣∣∣∣∣∣∣EB
 ∏
e∈(V2)

eit(hA,A′ )eBe/σ


∣∣∣∣∣∣∣

Now for each e ∈
(
V
2

)
, the distribution of (hA,A′)e is the difference of two binomials of

the form Bin(|U |, p2). Thus, we will typically have (hA,A′)e around
√
|U | in magnitude.
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For each e ∈
(
V
2

)
, let Λe be the following bad event (depending on A,A′): |(hA,A′)e| 6∈

(|U |0.49, |U |0.51). Let γ = Pr[Λe]. By standard concentration and anti-concentration es-

timates for Binomial distributions, we have that γ ≤ 0.1 (provided n is sufficiently

large, depending on p).

Let Λ be the bad event that for more than |V |2/4 choices of e ∈
(
V
2

)
, the event Λe

occurs.

Lemma 2.12. There is a constant A such that for every k:

Pr[Λ] <
kAk

|V |k
.

Proof. Let Ze be the indicator variable for the event Λe. For each e, we have E[Ze] =

γ ≤ 0.1.

Note that if e1, . . . , ek are pairwise disjoint, then Ze1 , . . . , Zek are mutually indepen-

dent.

Let Z =
∑

e∈(V2)(Ze − γ). Note that E[Z] = 0. We will show that E[Z2k] ≤

kO(k) · |V |3k. This implies that

Pr[Λ] ≤ Pr[Z > |V |2/8] ≤ Pr[Z2k > (|V |2/8)2k] ≤ E[Z2k]

(|V |2/8)2k
≤ kO(k) 1

|V |k
,

as desired.

It remains to show the claimed bound on E[Z2k]. We have:

E[Z2k] =
∑

e1,...,e2k∈(V2)

E[

2k∏
j=1

(Zej − γ)].

We call a tuple (e1, . . . , e2k) ∈
(
V
2

)2k
intersecting if for every i ∈ [2k], there exists j 6= i

with ej∩ei 6= ∅. The key observation is the following: if (e1, . . . , e2k) is not intersecting,

then E[
∏2k
j=1(Zej−γ)] = 0. To see this, suppose (e1, . . . , e2k) is not intersecting because

ei does not intersect any other ej . Then we have:

E[

2k∏
j=1

(Zej − γ)] = E[Zei − γ] · E[
∏
j 6=i

(Zej − γ)] = 0,

where the first equality follows from the independence property of the Ze mentioned

above.
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Thus, E[Z2k] ≤
∑

(e1,...,e2k) intersecting 1. We conclude the proof by counting the

number of intersecting tuples (e1, . . . , e2k). Note that for every intersecting tuple

(e1, . . . , e2k), we have
∣∣∣⋃2k

j=1 ej

∣∣∣ ≤ 3k. The number of intersecting tuples where ev-

ery edge intersects exactly one other edge is kΘ(k)n3k. Notice that every intersecting

tuple that is not of this form has
∣∣∣⋃2k

j=1 ej

∣∣∣ ≤ 3k−1. Thus the number of such intersect-

ing tuples is at most
((3k)2

k

)
· n3k−1 = kO(k) · n3k−1. Thus E[Z2k] is at most kO(k) · n3k,

as desired.

Now suppose Λ does not occur. Then we can bound C as follows:

C =

∣∣∣∣∣∣∣EB
 ∏
e∈(V2)

eit(hA,A′ )eBe/σ


∣∣∣∣∣∣∣

=
∏
e∈(V2)

∣∣∣∣EBe
[
eit(hA,A′ )eBe/σ

]∣∣∣∣
≤
∏
e∈(V2)

∣∣∣∣∣
(

1− 8p(1− p) ·
∥∥∥∥ t(hA,A′)e2πσ

∥∥∥∥2
)∣∣∣∣∣ (by Lemma 2.1)

≤
∏

e∈(V2)|¬Λe

∣∣∣∣∣
(

1− 8p(1− p) ·
∥∥∥∥ t(hA,A′)e2πσ

∥∥∥∥2
)∣∣∣∣∣

=
∏

e∈(V2)|¬Λe

∣∣∣∣∣
(

1− 8p(1− p) ·
(
t(hA,A′)e

2πσ

)2
)∣∣∣∣∣

≤
∏

e∈(V2)|¬Λe

∣∣∣∣∣
(

1− 8p(1− p) ·
(
t|U |0.49

2πσ

)2
)∣∣∣∣∣ (since |(hA,A′)e| ≥ |U |0.49)

≤ e
− |V |

2

8
·8p(1−p)·

(
t|U|0.49

2πσ

)2

. (since Λ did not occur)

Now we use the fact that |U | = |V | = n/2, that σ = Θ(n2) and that n0.55 < t.

Thus C ≤ e−Θ(n0.08).

Thus, taking into account the probability of the bad event Λ, we get:

|E[eitS/σ]|2 ≤ O

(
kO(k)

nk

)
+ e−Θ(n0.08) � 1

t100
,

(choosing k = 200), as desired.
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2.9 Chapter Appendix

In this section we compute the moments of the random variable Zn
def
= Sn − p3

(
n
3

)
.

Let ∆ denote the set of
(
n
3

)
triangles in Kn. For each t ∈ ∆ denote Xt to be the

indicator of the event that all edges in t appear. We write t ∼ t′ if triangles t and

t′ share an edge. Note that if triangles t and t′ do not share any edges, the random

variables Xt and Xt′ are independent and

E[(Xt − p3)(Xt′ − p3)] = 0.

Lemma 2.13. Let k be a positive integer. Let C = C(p) be the constant C(p)
def
=

E[(Xt − p3)(Xt′ − p3)] where t and t′ are any two triangles that share exactly one edge.

Then if k is odd

E[Zkn] = O(n2k−1)

and if k is even

E[Zkn] =
(n)2kC

k/2(k − 1)!!

2k/2
+O(n2k−1).

Proof. We start with

E[Zkn] =
∑
t1∈∆

· · ·
∑
tk∈∆

E

[
k∏
i=1

(Xti − p3)

]
.

We say an ordered tuple (t1, · · · , tk) of triangles is intersecting if for every i there is a

j 6= i for which ti ∼ tj . Note that if (t1, · · · , tk) is not intersecting then there is an i for

which the random variable Xti is independent with Xtj for all j 6= i. Furthermore, for

such a tuple

E

[
k∏
i=i

(Xti − p3)

]
= 0.

We now split into cases based on the parity of k.

Case k is even:

Given an intersecting tuple we define its skeleton to be the subgraph of Kn obtained

by taking the union of the triangles ti. Let H be a graph on 2k vertices that consists of

k/2 connected components, each component being the union of two triangles sharing a
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single edge (although there are many such graphs H, note they are all isomorphic). We

say a tuple (t1, · · · , tk) is fully paired if its skeleton is isomorphic to H. We first count

the number of fully paired tuples by counting the number of copies of H that appear

in Kn times the number of fully paired tuples whose skeleton is H.

To count the copies of H, first note that(
n

4

)(
n− 4

4

)
· · ·
(
n− 2k + 4

4

)
· 1

(k/2)!
=

(n)2k

24k/2(k/2)!

counts the number of ways to choose the k/2 connected components. Within each

component there are 6 choices of the shared edge of the two triangles, after which the

two triangles are determined. Thus there are

(n)2k6
k/2

24k/2(k/2)!
=

(n)2k

2k(k/2)!

copies. For each copy there are k! tuples whose skeleton is that copy. Thus the number

of fully paired tuples is

(n)2kk!

2k(k/2)!
=

(n)2k(k − 1)!!

2k/2
.

For a fully paired tuples, the expression E
[
k∏
i=1

(Xti − p3)

]
splits as a product of the

expectation of each connected component (which are pairwise independent). Thus,

E

[
k∏
i=1

(Xti − p3)

]
= Ck/2. (2.11)

We now quickly argue that the number of intersecting tuples that are not fully paired

is O(n2k−1). This follows because if a tuple is intersecting but not fully paired, than

its skeleton consists of at most 2k− 1 vertices. There are O(1) graphs on a given set of

vertices, and given such a graph, there are O(1) tuples whose skeleton is isomorphic to

it (k is a constant). Thus there are

2k−1∑
i=3

O(1)

(
n

i

)
= O(n2k−1) (2.12)

such intersecting graphs.
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We then have the following calculation. Let P denote the set of fully paired tuples

and Q denote the set of tuples that are intersecting but not fully paired.

E(Zkn) =
∑

(t1,··· ,tk)

E

[
k∏
i=1

(Xti − p3)

]

=
∑

(t1,··· ,tk)∈P

E

[
k∏
i=1

(Xti − p3)

]
+

∑
(t1,··· ,tk)∈Q

E

[
k∏
i=1

(Xti − p3)

]

=
(n)2kC

k/2(k − 1)!!

2k/2
+O(n2k−1).

Case k is odd:

Let Q denote the set of intersecting tuples. Note that if k is odd then there are no

fully paired tuples of k triangles. Therefore |Q| = O(n2k−1) and we have the following:

E(Zkn) =
∑

(t1,··· ,tk)

E

[
k∏
i=1

(Xti − p3)

]

=
∑

(t1,··· ,tk)∈Q

E

[
k∏
i=1

(Xti − p3)

]

= O(n2k−1).

Corollary 2.14. Let σ2
n

def
= Var[Sn] and let Rn

def
= (Sn− p3

(
n
3

)
)/σn. Then E[Rkn]→ µk

for all k fixed, where

µk =

 (k − 1)!! if k is even

0 if k is odd
.
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Chapter 3

Relationships between Block Sensitivity, Degree, and

Certificate Complexity

Acknowledgment of a Journal Publication: Some parts of this chapter are closely

related to work which is due (as of this writing) to appear in Combinatorica [GSS].

3.1 Overview of Complexity Measures

A Boolean function is a function f : {0, 1}n → {0, 1}. Throughout this chapter, we will

study three complexity measures of boolean functions, namely block sensitivity, degree,

and certificate complexity. We present the definitions of these measures as given in

[BdW02], for these definitions let f : {0, 1}n → {0, 1} be a boolean function.

3.1.1 Sensitivity and Block Sensitivity

Sensitivity and block sensitivity both measure how sensitive f is to changes in the input

x.

Given an input x and a set B ⊆ [n] we use xB to denote the input y where yi = xi

for i /∈ B and yi = xi ⊕ 1 for i ∈ B (where ⊕ indicates the mod-2 sum). A block for f

at x is a set B for which f(x) 6= f(xB).

The sensitivity of f at x, sx(f) is the number of variables for which f(x) 6= f(x{i}).

Equivalently the sensitivity of f at x is the number of blocks of size 1. The sensitivity

of f is max
x

sx(f).

The block sensitivity of f at x, denoted bsx(f) is the maximum number b for which

there exists non-empty disjoint sets B1, B2, · · · , Bb which are blocks for f at x. The

block sensitivity of f , bs(f), is max
x

bsx(f). The 1-block sensitivity of f , bs1(f), is
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max
x:f(x)=1

bsx(f). The 0-block sensitivity is defined similarly.

It is useful to have the notion of the block hypergraph of f at x, which is the hyper-

graph H consisting of all blocks for f at x. In this way the block sensitivity of f at x

is the packing number of the hypergraph H, denoted as ν(H).

3.1.2 Certificate Complexity

Certificate complexity intuitively measures, in the worst case, how many bits of an

input x to a function must be given in order to fix the value of that function.

Let C be an assignment C : S → 0, 1 of values to some subset S of the n variables

of f . We say C is consistent with an input x ∈ {0, 1}n if xi = C(i) for all i ∈ S.

For b ∈ {0, 1} a b-certificate for f is an assignment C for which f(x) = b whenever

x is consistent with C. The size of a certificate C is the cardinality of the set S.

The certificate complexity of f at x, denoted Cx(f), is the size of the smallest

certificate for f which is consistent with x. The certificate complexity of f is C(f)
def
=

max
x

Cx(f). The 1-certificate complexity of f is C1(f)
def
= max

x:f(x)=1
Cx(f), the 0-certificate

complexity of f , denoted C0(f), is defined similarly.

In terms of the block hypergraph H of f at x, the certificate complexity of f at x

is exactly the vertex cover number of H, which is denoted τ(H). Along these lines it is

useful to define a witness of f at x which is a subset W of the variables for which, if

we fix the input x on W then f becomes a constant function. Equivalently, a witness

is a set W for which W ∩ B 6= ∅ for all blocks B (otherwise known as a hitting set for

the block hypergraph).

3.1.3 Degree

A multilinear polynomial is a polynomial p : {0, 1}n → {0, 1} of the form p(x) =∑
S⊆[n]

aS
∏
i∈S

xi. It is well known that every boolean function f has a unique repre-

sentation as a multilinear polynomial, the degree of f , deg(f), is the degree of this

polynomial.
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3.1.4 Decision Tree Complexity

A decision tree is a rooted binary tree T where each internal node is labelled with a

variable xi and every leaf is labelled with a 0 or 1. One evaluates a tree T on an input

x as follows: Start at the root. If the root is a leaf then stop and output the binary

label on the leaf. Otherwise take the variable labelled on the root and query the bit xi

in the input, if it is 0 then recursively evaluate the left subtree, if it is 1 then evaluate

the right subtree.

We say a decision tree computes f is its output equals f(x) for all x ∈ {0, 1}n. There

are many possible decision trees which compute a given function f . The decision tree

complexity of f , D(f), is the smallest depth of any tree T which computes f .

3.1.5 Boolean Function Composition and the Critical Exponent

There is a large body of work dedicated to proving bounds relating one complexity

measure in terms of another. For example, Nisan showed that for every boolean function

f , C(f) ≤ bs2(f). Given an ordered pair of complexity measures (m1,m2) we define the

critical exponent of the pair (m1,m2) to be the infimum of all r for which there exists

constants a, b such that m1(f) ≤ am2(f)r + b for all Boolean functions f . For example,

Nisan’s result implies that the critical exponent for the pair (C, bs) is at most 2. Later

in this chapter we will give two different constructions which show that Nisan’s bound

is tight, the critical exponent for (C, bs) is exactly 2.

In order to lower bound the critical exponent for a pair of measures (m1,m2), one

must construct and infinite sequence of functions (fn)∞1 for whichm1(fn) = Ω(m2(fn)r).

A natural way to construct such a sequence of functions is to use boolean function

composition. Given boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}

their composition f ◦ g : {0, 1}nm → {0, 1} is defined as f ◦ g def
= f(g, g, g, · · · , g) where

there are n copies of g, each evaluating a separate input of m variables. To show

separation between two measures one often starts with base function f and iteratively

composes it to obtain a sequence of functions (fk)∞1 , where fk
def
= f ◦ fk−1. If one can

show that m1(fk) grows significantly faster than m2(fk), then one has shown separation
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between two measures m1 and m2. One of the constructions given later in this chapter

uses boolean function composition.

In order to analyze the growth rate of a sequence m(fk) it helps to define the

following limit: For a Boolean function complexity measure m let

mlim(f)
def
= lim supm(fk)1/k.

Note that if mlim
1 (f) = a and mlim

2 (f) = b with a > b then there exists a sequence

of functions for which m1(f) = Ω̃(m2(f)a/b), where Ω̃(·) hides logarithmic factors. In

particular, such a sequence implies the critical exponent for the pair (m1,m2) is at least

a/b.

3.1.6 Known Relationships Between Complexity Measures and Out-

line for the Chapter

Table 3.1.6 gives the best known bounds relating the complexity measures discussed

so far. Each entry of the table gives the known bounds on the critical exponent for

the pair (m1,m2) where m1 is the measure on the row and m2 is the measure on the

column. For example, the entry [log3(6), 2] on row bs(f) and column deg(f) indicates

that it is known that bs(f) = O(deg(f)2) for all functions, and there exists an infinite

sequence of functions for which bs(f) = Ω(deg(f)log3(6)). Although our definition of

critical exponent ignores logarithmic factors, it turns out that for all pairs of measures

given in the table, there is an upper bound (or lower bound) which determines a, b and

r such that m1(f) ≤ am2(f)r + b for all f (or m1(f) ≥ am2(f)r + b).

Table 3.1: Best known bounds for the smallest r s.t. m1(f) = O(m2(f)r) for all f .
bs(f) C(f) D(f) deg(f)

bs(f) 1 1 1 [log3(6), 2]

C(f) 2∗ 1 1 [log3(6), 3]

D(f) [2, 3] 2 1 [log3(6), 3]

deg(f) [2, 3] 2 1 1

The rest of this chapter involves improving some of the bounds in this table. In Sec-

tion 3.2 we investigate a potential construction of a family of functions which show sep-

aration between degree and other complexity measures (hoping to improve the log3(6)
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lower bounds in the table). We will prove that this construction cannot be used to

separate deg(f) and bs(f). The question on whether or not it can separate C(f) or

D(f) reduces to a question on weakly intersecting set systems due to Furedi which we

were unable to solve.

In the last section we will construct an infinite family of functions for which C(f) =

Ω(bs(f)2). This gives a tight bound on the best exponent, and improves on the previous

best known construction, due to Aaronson [Aar08], which gave C(f) = Ω(bs(f)log4.5(5)).

This was a joint work with Michael Saks and Srikanth Srinivasan.

3.2 Investigating a Certain Family of Functions with Low Degree

In this section we explore a potential way of constructing functions which have low

degree but m(f) is large for some measure m(·) ∈ {bs(·), C(·), D(·)}. To do this we

construct a large family of functions which all have low degree, and then hope to

show that there is some function in this family for which another complexity measure

is large. Unfortunately, it turns out that for all functions f in this particular family,

bs(f) ≤ 2deg(f), and thus the construction cannot separate block sensitivity and degree.

The question on whether or not functions in this family show large separation between

C(f) and deg(f) reduces to a question due to Furedi on sets of weakly intersecting set

systems. Now to define the family of functions. Given a sequence S of pairs of subsets

of [n],

S = (A1, B1), (A2, B2), · · · , (Am, Bm),

we say that S is weakly intersecting if the following hold:

• For all i 6= j, either Ai ∩Bj 6= ∅ or Aj ∩Bi 6= ∅.

• For all i, Ai ∩Bi = ∅.

• For all i, Ai 6= ∅.

Given a weakly intersecting sequence S define fS to be the boolean function

fS =
∑
i

∏
j∈Ai

xj
∏
k∈Bi

(1− xk).
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Note that the weakly intersecting property guarantees that fS is boolean valued, since

at most one of the summands
∏
j∈Ai

xj
∏
k∈Bi

x̄k can evaluate to 1 on any input. The

assumption that Ai 6= ∅ for all i only added to make fS(~0) = 0 (but is otherwise not

required).

Proposition 3.1. Let S = (A1, B1), · · · , (Am, Bm) be weakly intersecting. Let HA be

the hypergraph consisting of the sets A1, · · · , Am. Then the boolean function f
def
= fS

satisfies:

1. deg(f) ≤ max
i

(|Ai|+ |Bi|)

2. bs(f) ≥ ν(HA)

3. C(f) ≥ τ(HA)

where ν(H) and τ(H) respectively denote the packing number and vertex cover number

of H.

Proof. The first part is trivial.

For the second part for each index i let x(i) be the input which is set to 1 on the

indices in Ai and set to 0 on the indices in Aci . Then f(x(i)) = 1 for all i. Since f(~0) = 0

this means that the sets Ai are all blocks for f at the all zero input. Thus the block

sensitivity of f at ~0 is the packing number of the hypergraph HA.

For the third part, since each set Ai is a block for f at ~0, any witness W for f at

~0 must intersect Ai for all i. In particular W must be a hitting set for the hypergraph

HA. Thus τ(HA) ≤ |W | which proves the proposition.

Thus to separate degree with block sensitivity or certificate complexity, its enough

to find a weakly intersecting system S = (A1, B1), · · · , (Am, Bm) for which |Ai| and

|Bi| are all small relative to ν(HA) or τ(HA).

Remark: The above proposition focuses on the all zero input. One may wonder

whether or not there could be another input x for which bsx(f) or Cx(f) is large,

however in such a case we can complement some variables to obtain a function g for

which deg(g) = deg(f) and bs~0(g) = bsx(f). It is easy to see as well that such a g = gS′
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for another weakly intersecting set system S′. In particular, we can separate degree and

block sensitivity (or certificate complexity) for such a function if and only if one can

find a weakly intersecting system S which separates |Ai|+ |Bi| and ν(HA) (or τ(HA)).

Lemma 3.2. Let f = fS for any weakly intersecting system S = (A1, B1), · · · , (Am, Bm).

Then bs(f) ≤ 2deg(f).

Proof. Assume without loss of generality that the sets Ai are pairwise disjoint, (one

can throw away all pairs (Aj , Bj) where Aj is not in the maximum sized packing of HA

and arrive a smaller sequence S′ which is weakly intersecting and ν(HA′) = ν(HA)).

Consider the digraph on vertex set [m], where vertex i points to j if Ai∩Bj . Since S is

weakly intersecting, this digraph is a tournament, possibly with edges that point both

directions. In particular, there must be a vertex (call it j) with indegree at least m/2.

Then Bj ∩Ai 6= ∅ for at least m/2 sets Ai. Since the Ai are all disjoint, it follows that

Bj ≥ m/2. Thus bs(f) = m and deg(f) ≥ m/2.

I was unable to determine whether or not such a function exists which separates

degree and certificate complexity, the corresponding question for weakly intersecting

set systems appeared in [Für88].

3.3 Achieving Quadratic Separation Between C(f) and bs(f)

In this section we prove the following

Theorem 3.3. For infinitely many n ∈ N there is a function f : {0, 1}n2 → {0, 1} such

that bs(f) ≤ bs∗(f) = O(n) and C(f) = Ω(n2).

We do this first with a probabilistic construction and second with a construction

using Boolean function composition. The latter construction is slightly weaker in that

the bound it implies ignores logarithmic factors.

3.3.1 A Probabilistic Construction

We start with the following
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Proposition 3.4. Let g be a non-constant boolean function and f = ORn ◦ g. Then

for either complexity measure m ∈ {C, bs} we have:

m1(f) = m1(g)

m0(f) = n ·m0(g).

Proof. Let I be the index set for the variables of g, so J = [n]× I is the index set for

the variables of f . For i ∈ [n], write Ji for the index subset {i} × I.

First we show m1(f) = m1(g). The function g is a subfunction of f (i.e., can be

obtained from f by restricting some variables) so m1(f) ≥ m1(g) for each of the above

complexity measures m. For the reverse inequality, we argue that C1(f) ≤ C1(g), the

argument for block sensitivity is similar. Let α ∈ g−1(1) be an input for which Cα(g)

is maximum. Construct an input β for f by fixing the variables in Jn according to α

and for each i ∈ [n− 1] fix the variables in Ji to some input y for g such that g(y) = 0.

It is easy to check that C1(f) ≤ Cβ(f) = Cα(g) = C1(g).

Next we show that m0(f) = n ·m0(g). For this, write an assignment to the variables

of f as α1, . . . , αn where each αi is an assignment to the variables of g. We have

f(α1, . . . , αn) = 0 if and only if g(α1) = · · · = g(αn) = 0. It is easy to check that for each

of the measures m under consideration, if g(α1) = · · · = g(αn) = 0 then mα1,...,αn(f) =

mα1(g) + · · · + mαn(g). Thus an input in f−1(0) that maximizes mα1,...,αn(f) is one

for which α1 = · · · = αn = α, where α satisfies m0(g) = mα(g). This gives m0(f) =

n ·m0(g).

We will now construct a sequence of n-variate functions gn (for n sufficiently large)

such that C0(gn) = Ω(n) and bs0(gn) = O(1). If we then define fn = ORn ◦ gn we may

apply Proposition 3.4 to conclude that

C(fn) ≥ C0(fn) = n · C0(gn) = Ω(n2),

while

bs(fn) ≤ max(bs0(fn), bs1(fn)) ≤ max(nbs0(gn), bs1(gn)) = O(n).
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This will imply Theorem 3.3.

Let us write δ(x, y) to denote the Hamming distance between x, y ∈ {0, 1}n. We

define g = gn : {0, 1}n → {0, 1} as follows (we view n as being sufficiently large).

Choose x1, . . . , xN ∈ {0, 1}n uniformly at random (with replacement) with N = 2n/50.

We set g(xi) = 1 for each i, and g(x) = 0 otherwise.

Claim 3.5. With high probability, for all i, j distinct δ(xi, xj) ≥ n
100 .

Proof. Let Ai,j denote the event δ(xi, xj) <
n

100 . Let x be a fixed point in {0, 1}n and

B(x, r) denote the Hamming ball of radius r and center x. Then |B(x, r)| =
r∑
i=0

(
n
i

)
.

Thus we have

B
(
x,

n

100

)
< 2

(
n

n/100

)
≤ 2(100e)n/100 < 2n/10.

These inequalities imply that

P(Ai,j) =
B
(
x, n

100

)
2n

< 2−9n/10.

By the union bound the hypothesis fails with probability at most

2−9n/10

(
N

2

)
= o(1).

If the hypothesis of the claim holds and g(x) = 0, then all but possibly one of the

blocks for g at x will have size at least n
200 . Thus, at most 200 blocks can be packed

and bs0(g) ≤ 200. Likewise, this bound on the size of blocks implies that bs∗0(g) ≤ 200.

We now argue that all sufficiently large subcubes of {0, 1}n will contain a 1 of g

almost surely.

Claim 3.6. With high probability, C0(g) ≥ n
100 .

Proof. It is enough to show that every subcube of co-dimension n
100 will contain a y

such that g(y) = 1. For each S which is a subcube of co-dimension n
100 , denote AS as

the event g(x) = 0 for all x ∈ S. Then

P(AS) ≤ (1− 2−n/100)N < exp(− N

2n/100
) = exp(−2n/100)
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There are
(

n
n/100

)
2n/100 < 22n subcubes of co-dimension n

100 . Thus by union bound the

hypothesis fails with probability at most

exp(−2n/100)22n = o(1).

We have shown, for sufficiently large n, that with high probability a random function

g satisfies bs∗0(g) ≤ 200 and C0(g) ≥ n
100 . Thus for each n sufficiently large, there exists

a function gn with this property.

3.3.2 A Construction Using Iterated Composition

In this section we construct a function f on n variables for which C lim(f) ≥ n
2 and

(bs)lim(f) ≤ 4
√
n. Thus, for any ε > 0, we may choose n large enough to conclude

that the critical exponent is at least 2 − ε (and thus the exponent is 2). It is highly

nontrivial to analyze the growth rate of each complexity measure when we compose the

function f . Luckily, Michael Saks and Srikanth Srinivasan, gave a (somewhat simple)

characterization of bslim(f) and C lim(f) for any f . We will first need some additional

definitions in order to understand their characterization.

Some Additional Preliminaries

We will need to define another complexity measure of Boolean functions. Recall that,

given a function f and input x a witness for f at x is a subset W of the variables for

which, if we fix the input to agree with x then f becomes a constant. The measure

Cx(f) was then defined to be the size of the smallest witness for f at x. Equivalently,

W is a witness if W ∩ B 6= ∅ for all blocks B for f at x. A fractional witness for f at

x is weighting of the input variables W : [n] → [0, 1] such that for each block B for f

at x, ∑
j∈B

W (j) ≥ 1.

The size of a fractional witness W is
∑
j∈[n]

W (j). This is the natural generalization

of witnesses, in that a witness is just a fractional witness where the function W is
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required to be Boolean valued. The fractional certificate complexity of f at x, denoted

C∗x(f), is the size of the smallest fractional witness for f at x. The fractional certificate

complexity of f , denoted C∗(f), is max
x

C∗x(f).

Consider the following definitions:

• An input pair for f is a pair of inputs (α0, α1) where f(α0) = 0 and f(α1) = 1.

Such an α0 is called a 0-input for f and α1 is a 1-input.

• Given an input pair (α0, α1) a witness pair for f at the pair (α0, α1) is a pair

(W0,W1) where W0 is a witness for f at α0 and W1 is a witness for f at α1.

• A fractional witness pair is defined analogously as a witness pair.

• Given a witness W for f at input x, we define its profile ~p(x,W ) to be the vector

~p(x,W )
def
= (p0, p1) where p0 is the number of elements i ∈ W such that xi = 0

and p1 is the number of i ∈W such that xi = 1.

• Given a fractional witness W ∗ for f at input x its profile is the vector ~p(x,W ∗) =

(p0, p1) where p0 =
∑

i:xi=0
W ∗(i) and p1 =

∑
i:xi=1

W ∗(i).

• Given a witness pair (W0,W1) for f at input pair (α0, α1) its profile matrix is the

matrix

M(α0, α1,W0,W1)
def
=

~p(α0,W0)

~p(α1,W1)

 .
Note that profile matrices are 2 by 2 matrices with non-negative entries.

• The profile matrix of a fractional witness pair (W ∗0 ,W
∗
1 ) at input pair (α0, α1) is

defined analogously.

• Given a 2 by 2 matrix M with non-negative entries we define ρ(M) to be its

largest eigenvalue. It follows from Perron-Frobenious theory that for M with

non-negative entries, ρ(M) ≥ 0.

Michael Saks and Srikanth Srinivasan showed that bslim(f) = (C∗)lim(f) for all f

and then gave the following characterizations for (C∗)lim(f) and C lim(f):
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Theorem 3.7. For any boolean function f ,

bslim(f) = (C∗)lim(f) = max
(α0,α1)

min
(W0,W1)

ρ(M(α0, α1,W0,W1),

where the max is over all input pairs (α0, α1) for f and the min is over all witness pairs

(W0,W1) for f at (α0, α1).

Theorem 3.8. For any boolean function f ,

C lim(f) = max
(α0,α1)

min
(W ∗0 ,W

∗
1 )
ρ(M(α0, α1,W

∗
0 ,W

∗
1 ),

where the max is over all input pairs (α0, α1) for f and the min is over all fractional

witness pairs (W ∗0 ,W
∗
1 ) for f at (α0, α1).

The Construction

We will now use the above characterization to analyze (C∗)lim(f) and C lim(f) for the

following function. In what follows we use |x| to denote the hamming weight of an

input x ∈ {0, 1}n.

Let d, k, n be positive integers such that n ≥ k ≥ d, d | k, and k | n. We define

f : {0, 1}n → {0, 1} to be the following boolean function on n variables:

View the n indices of the input x as being divided into n
k disjoint groups, with each

group containing k indices. We set f = 1 if and only if |x| ≥ d and all the 1’s in x can

be found in a single group. Note that f(x) = 1 implies |x| ≤ k.

Although f itself shows no separation between bs(f) and C(f), the key is that both

the zero and one certificate complexity for f are large, while the zero block sensitivity

is small. Also, any 1-assignment for f contains many 0 indices.

In the following analysis, we assume n is an even perfect square and set k := 2
√
n

and d :=
√
n. We wish to bound C lim(f) and (C∗)lim(f) using Theorems 3.7 and 3.8.

Claim 3.9. For the boolean function f : {0, 1}n → {0, 1} defined above we have:

(C∗)lim(f) ≤ 4
√
n.

Proof. We proceed by showing that for any input pair (α0, α1) for f , we can find a pair

of fractional witnesses (W ∗0 ,W
∗
1 ) such that profile matrix M(α0, α1,W

∗
0 ,W

∗
1 ) has both
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eigenvalues less than 4
√
n. For each possible α0 we exhibit a small fractional witness

W ∗0 .

Case 1, α0 = (0, 0, . . . , 0):

Here we choose W ∗0 := (1
d ,

1
d , · · · ,

1
d). It follows that W ∗0 is a fractional witness as

each block for this input has size at least d. The profile vector ~p(α0,W
∗
0 ) = (nd , 0).

Case 2, |α0| = j, and all 1’s in α0 appear in the same group:

Note this means that j < d as α0 is a 0-input. Let X1 be the set of indices for

α0 which are 1’s, let G1 be the group which contains X1. Pick an s ∈ X1, we define

a fractional hitting set W ∗0 to assign weight 1 to s, weight 1 to all indices in G1 \X1,

and weight 0 otherwise. To see that W ∗0 is indeed a hitting set, note that if B is a

block for α0, then either B ⊆ G1 or X1 ⊂ B. If X1 ⊂ B, then s ∈ B and it has been

assigned weight 1. If B ⊆ G1 then B must contain an index in G1 which is labeled 0

as |α0| < d, this index was assigned weight 1 by W ∗0 . Thus W ∗0 is a fractional witness

and the profile vector ~p(α0,W ∗0 ) = (k − j, 1) ≤ (k, 1).

Case 3, At least two different groups in α0 contain 1’s:

Let G1, G2 be two distinct groups containing 1’s. Let X1, X2 be the set of indices

which are assigned 1 by α0 in G1, G2 respectively. Then if B is a block for α0, either

X1 ⊆ B or X2 ⊆ B. We define W ∗0 to assign weight 1 to an index in X1 and in index

in X2. This will be a fractional witness, and the profile vector ~p(α0,W
∗
0 ) = (0, 2). This

concludes the analysis of each possible 0 assignment.

The 1-inputs α1:

If α1 is a 1 assignment then |α1| ≥ d and all the 1’s appear in a single group, call it

G1. In this case we define W ∗1 to assign weight 1 to all indices outside G1, and weight 1

to d indices in G1 which are assigned 1 by α1. This will be a fractional witness as any

block must contain a 0 index outside of G1 or leave less than d 1’s inside of G1 after

flipping the indices in B. Here the profile vector ~p(α1,W
∗
1 ) = (n− k, d).

If M,M ′ are 2 × 2 matrices with non-negative entries, and M ≤ M ′ entry by

entry, then ρ(M) ≤ ρ(M ′). Considering this along with the 3 cases of 0 assignments

above, bounding (C∗)lim(f) reduces to bounding the largest eigenvalues of the following
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matrices:  n
d 0

n− k d

  k 1

n− k d

  0 2

n− k d


We set k = 2

√
n and d =

√
n. For such k, d the second matrix has the largest eigenvalue

of the three and has largest eigenvalue less than 4
√
n.

Claim 3.10.

C lim(f) ≥ n

2
.

Proof. To prove this we choose an input pair (α0, α1) for which all witness pairs

(W0,W1) satisfy ρ (M(α0, α1,W0,W1)) ≥ n
2 . We set α0

def
= (0, 0, · · · , 0) and α1 to

have exactly d 1’s in the first group, and be identically 0 in every other group.

Any witness for α0 must contain k−d+1 indices in each group, thus must have size

at least n
k (k − d+ 1). It follows that any minimum sized witness W0 yields the profile

vector ~p(α0,W0) = (nk (k − d+ 1), 0).

Likewise, any witness W1 for α1 must contain all 1 indices (there are d of them),

and contain all the 0 indices outside the unique group containing the 1’s. Thus any

minimal profile vector ~p(α1,W1) = (d, n− k). The claim then reduces to looking at the

maximum eigenvalue of the matrix

A =

nk (k − d+ 1) 0

n− k d

 .
When k = 2

√
n and d =

√
n this matrix has an eigenvalue larger than n

2 .
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Chapter 4

Bounds for Randomized Decision Tree Complexity

We will consider two natural probabilistic models of computation which extend the

decision tree model of computation discussed in the previous chapter, zero-error and

two-sided-error randomized decision tree complexity.

4.1 Introduction and Definitions

A randomized decision tree is a distribution µ(T ) of decision trees. Given a decision

tree T , its cost on an input x, cost(T, x), is the number of variables which are queried

when T evaluates x. The cost of a randomized decision tree µ(T ) on an input x is

defined as,

cost(µ, x)
def
= E

T∼µ
cost(T, x).

The zero-error randomized decision tree complexity of a boolean function f is defined

as

R(f)
def
= min

µ
max
x

cost(µ, x)

where the minimum is over all distributions which are supported on decision trees that

compute f .

We say a randomized decision tree computes f with two-sided error if for all inputs x

its output is equal to f(x) with probability at least 2/3. The two-sided-error randomized

decision tree complexity of a function f is defined as

R2(f)
def
= min

µ(T )
max
x

cost(µ(T ), x),

where the minimum is over all randomized decision trees which compute f with two-

sided error.
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It is natural to wonder what bounds can be proven relating R(f) and R2(f) for gen-

eral functions f . Clearly R2(f) ≤ R(f) for all f , but how much smaller can R2(f) be?

The following trivial algorithm shows that R2(f) ≤ R(f)/3 for all f : With probability

1/3 output 0, with probability 1/3 output 1, and with probability 1/3 run the optimal

zero-error algorithm A and output the result. So far, we have not been able to find a

two-sided error algorithm for a function f which beats the the above trivial algorithm.

Santha [San95] proved that the trivial algorithm is best possible for a certain class

of boolean functions called “balanced read-once AND-OR trees f”. In Section 4.3, we

mention an approach which could possibly show that R(f) = O(R2(f) log(n)) for all

functions monotone functions f , however we were unable to make much progress in this

direction.

4.2 Using Boolean Function Composition to Separate R(f) and R2(f)

As discussed in Chapter 3, one potential method for constructing an example with large

separation is to use boolean function composition. In this Section however, we prove

a theorem which suggests that boolean function composition cannot be used for this

purpose.

Theorem 4.1. For any boolean function f ,

Rlim(f) ≤ max(Rlim
2 (f), C lim(f)).

It was shown by Nisan [Nis91] that for every boolean function f ,

bs(f) ≤ 3R2(f).

Also it is well known that bs(f) = C(f) for all monotone functions, thus for monotone

functions Rlim
2 (f) ≥ C lim(f). Therefore as a Corollary to (4.1) we get

Corollary 4.2. For every monotone boolean function f it holds that,

Rlim(f) = Rlim
2 (f).

In particular, one cannot achieve polynomial separation between R(f) and R2(f)

by composing a monotone boolean function.
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It is believed that R2(f) = Ω(C(f)) for all functions. If this is true than indeed

Theorem 4.1 implies that boolean function composition cannot be used to obtain poly-

nomial separation between R(f) and R2(f) for any function.

To prove (4.1) we will first prove the following

Lemma 4.3. For any two boolean functions f and g, where f is a function on n

variables, it holds that

R(f ◦ g) ≤ R2(g)n log(R(g)n2) + C(f)R(g) + 1.

Proof. Let k be the number of variables for the function g. Let A be an optimal two-

sided error algorithm for g (so that R2(g) is the worst case cost of A on any input).

Likewise let B be an optimal zero-sided error algorithm for g. We use A and B to

construct a zero error randomized algorithm for f ◦ g. The algorithm is as follows: Let

X = (X1, · · · , Xn) ∈ {0, 1}nk be an arbitrary input to the function f ◦ g, where each

Xi ∈ {0, 1}k. Let y = (g(X1), · · · , g(Xn)) ∈ {0, 1}n. Our algorithm first runs A on

each of the inputs Xi 48 log(R(g)n2) times. Let y′i be the majority of the outputs given

by running A on Xi. By chernoff bound

P(y′i 6= yi) ≤ e−(3/4)48 log(R(g)n2)(2/3−1/2)2 =
1

R(g)n2
.

By a union bound,

P(∃i s.t.yi 6= y′i) ≤
1

nR(g)
.

Let S ⊆ [n] be a set such that fixing y′ on S is a certificate for f . Note we may

choose S such that |S| ≤ C(f). The algorithm then runs B on Xi for each i in S.

In the event that y′ = y, we will find a certificate for f ◦ g. If, after running B

on each Xi for i ∈ S, we still haven’t found a certificate we simply run B on the

remaining Xi. Conditioning on y′ = y, the above algorithm has average cost of at most

R2(g)n log(R(g)n2)+C(f)R(g). Conditioning on y′ 6= y then it may have running time

up to R2(g)n log(R(g)n2) +nR(g). Therefore the worst case expected cost of the above

algorithm is at most R2(g)n log(R(g)n2) + C(f)R(g) + 1

We are now ready to prove the main theorem in this section.



48

Theorem 4.4. For any boolean function f ,

Rlim(f) ≤ max(Rlim
2 (f), C(f)).

Proof. Let L1 = lim supR(fk)1/k and L2 = lim supR2(fk)1/k. If L1 = L2 we are done,

so assume L1 > L2 (note it is trivial that for any f , R(f) ≥ R2(f)). It now suffices to

show that for any ε > 0, L1 ≤ C(f) + ε. Let ε > 0 be fixed and pick ε′ > 0 such that

L2+ε′

L1−ε′ < 1 and ε′ < ε/3, (since L1 > L2 this can be done). Pick K ′ such that k > K ′

implies that (recall n is a constant here)(
L2 + ε′

L1 − ε′

)k−1

(k + 2)n log(n) <
ε

3
.

Recall that the sequence R(fk) is monotone increasing. We may also assume that

R(fk)→∞, as otherwise we would have L1 = 0. Therefore, we may pick K ′′ such that

k > K ′′ implies that 1
R(fk−1)

< ε/3. Finally, let K = max(K ′,K ′′). We first prove the

following

Claim 4.5. There exists k > K such that the following hold:

• R(fk) ≥ (L1 − ε′)R(fk−1)

• R(fk) ≥ (L1 − ε′)k.

Proof. Case 1: For all k > K it holds that R(fk) ≥ (L1 − ε′)k.

Then since lim supR(fk)1/k = L1 it follows that there must exist k > K such that

R(fk) ≥ (L1−ε′)R(fk−1), otherwise the limit would be strictly smaller. This k satisfies

the claim.

Case 2: There exists some k0 > K such that R(fk) < (L1 − ε′)k0 .

In this case let k be the smallest k > k0 such that R(fk) ≥ (L1− ε′)k. Then for this

k, R(fk−1) < (L1 − ε′)k−1 and therefore

R(fk)

R(fk−1)
≥ (L1 − ε′).

This k then satisfies the conditions of the claim.
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Now for the k guaranteed by the claim and applying Lemma (4.3) we have

R(fk−1)(L1 − ε) ≤ R(fk) ≤ R2(fk−1)n log(R(fk−1)n2) + C(f)R(fk−1) + 1.

Note that R(fk−1) ≤ nk−1 trivially (its bounded by the number of variables of f).

Simplifying, the above implies that

L1 − ε′ ≤
R2(fk−1)

R(fk−1)
(k + 2)n log(n) + C(f) +

1

R(fk−1)
.

By the properties of k we have

L1 − ε′ ≤
(
L2 + ε′

L1 − ε′

)k−1

(k + 2)n log(n) + C(f) +
1

R(fk−1)
.

Which implies

L1 ≤ C(f) + ε/3 + ε/3 + ε/3.

This concludes the proof.

Remark: A corollary of the above argument yields the result

Rlim(f) ≤ max(Rlim
2 (f), C lim(f)).

To see this we pick a large k = k(ε) such that C(fk)1/k < C lim(f) + ε. We then set

F = fk and apply the theorem on F to get

Rlim(F ) ≤ max(Rlim
2 (F ), C(F )).

Then since mlim(F ) =
(
mlim(f)

)k
for any complexity measure (which follows from the

definition of mlim(·)), we have

Rlim(f)k ≤ max(Rlim
2 (f)k, (C lim(f) + ε)k).

This implies

Rlim(f) ≤ max(Rlim
2 (f), (C lim(f) + ε)).

This holds for any ε > 0 so the claim follows.



50

4.3 R2(f) for read once AND-OR trees

Santha [San95] showed that R2(f) = R(f)/3 for all balanced read once AND-OR trees

(see their paper for a definition of balanced). In this section we propose an approach

for showing that R(f) ≤ O(log(n)R2(f)) for all read once AND-OR trees. This would

improve the current best known bound which is R(f) ≤ R2(f)2.

Given a boolean function f , we say an input x is critical if it satisfies the following

property: View f as a boolean formula with AND and OR gates all of fan-in 2. An

input x is critical if upon evaluating the formula, no AND gate has both inputs set

to 0, and no OR gate has both inputs set to 1. These inputs seem intuitively harder

than non-critical inputs in that algorithms evaluating f on a non-critical input are

more likely to determine the value of an AND (OR) gate by having one of its sub trees

evaluate to a 0 (1), thus not having to query variables in the other sub tree.

Recall that theR(f) is defined as min
Ã

max
x

where the minimum is over all randomized

algorithms (i.e. distributions over decision trees computing f) and the max is over

all inputs x. We define the critical zero error randomized decision tree complexity,

denoted Rc(f), to be min
Ã

max
x critical

cost(Ã, x). Trivially, Rc(f) ≤ R(f), however it seems

reasonable to believe that the hardest input for the best randomized algorithm should

be critical. If this were true then we would have Rc(f) = R(f). The difficulty in proving

this statement though is that there exist algorithms for which the hardest input is not

critical, however such algorithms seem to be very inefficient and have very high cost.

For a function f and input x a minimal block is a block B for f at x such that there

is no block B′ for f at x which satisfies B′ ⊂ B. Note that critical inputs for read once

AND-OR trees satisfy that their minimal blocks all have size 1.

Remark: A natural generalization for arbitrary boolean functions is to define an

input x to be critical if all of the minimal blocks for f at x have size 1. I believe it

may be possible to show that the hardest input for the best randomized algorithm for

a monotone boolean function should be critical. The intuition is similar in that non-

critical inputs may allow the algorithm to terminate prematurely because there will be

multiple certificates which may be found by the algorithm, whereas critical inputs have
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a unique certificate.

The main result in this section is

Theorem 4.6. For any boolean function f ,

Rc(f) = O(R2(f) log(n).

Remark: We also conjecture that for any read-once AND-OR tree (or possibly

any monotone boolean function), Rc(f) = R(f). In particular the hardest distribution

can be assumed to be supported over critical inputs. If this is true then Theorem 4.6

would imply that R(f) = O(R2(f) log(n) for all read-one AND-OR trees (or monotone

boolean functions). Despite much effort though we were unable to prove this statement.

Proof. Let A be the best randomized two-sided error algorithm. Our randomized zero

error algorithm for f is to independently run A Θ(log(n)) times, and if a certificate

has still not been found, query the remaining variables in some arbitrary order. We

will show that the probability that a certificate has not been found after these repeated

trials is at most 1/n. Thus the cost of our zero error algorithm in the average case is

at most Θ(log(n))R2(f) + n · (1/n).

Let x be any critical input for the function f . Since x is critical, all the min-blocks

for f at x have size 1. Furthermore if our algorithm queries all of the minimal blocks,

then a certificate for f will have been found.

Since A outputs the correct value of f(x) with probably 2/3, the algorithm A must

query each min-block for f at x with probability at least 1/3 (otherwise it would not be

able to distinguish the inputs x and x ⊕ eB. Thus running A k times, the probability

that there is a min-block which is not queried is at most (by a union bound) (2/3)kn.

Thus if k = log2/3(n2) = Θ(log(n)), the probability a certificate is not found is at most

1/n. This concludes the proof.
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Chapter 5

A New Approach To the Sensitivity Conjecture

Acknowledgement of a Journal Publication: This chapter will be very similar

to the journal version of this work [GKS], however it includes an extra section that

discusses “two-stage protocols”. This was a joint work with Michael Saks and Michal

Koucky. Although the entire chapter should be considered as a joint work, some parts

use ideas which are due entirely to Michael Saks or Michal Koucky and we have indicated

when appropriate when this is the case.

5.1 Introduction

In this chapter we discuss a novel approach to the sensitivity conjecture. This conjecture

asserts that there exists a constant k so that deg(f) = O(s(f)k) for all boolean functions

f (the complexity measures deg(f) and s(f) were defined in Chapter 3, however we will

redefine them in Section 5.1.3).

5.1.1 A Communication Game

The focus of this work is a somewhat unusual cooperative two player communication

game. The game is parameterized by a positive integer n and is denoted Gn. Alice

receives a permutation σ = (σ1, . . . , σn) of [n] = {1, . . . , n} and a bit b ∈ {0, 1} and

communicates to Bob in a very restricted way (which will be described momentarily).

Bob receives the message from Alice and then outputs a subset J of [n] that is required

to include σn, the last element of the permutation. The cost to Alice and Bob is the

size of the set |J |.

The communication from Alice to Bob is constrained as follows: Alice has a memory

vector v consisting of n cells which we will refer to as locations, where each location v`
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is either empty, denoted by v` = ∗, or is set to 0 or 1. Initially all locations are empty.

Alice gets the input as a data stream σ1, . . . , σn, b and is required to fill the cells of v

in the order specified by σ. After receiving σi for i < n, Alice fills location σi with 0 or

1. Upon receiving σn and b, Alice writes b in location σn.

Once v is filled, Bob inspects v and outputs the subset J .

Given a protocol Π for this game, the cost of the protocol c(Π) is the maximum of

the output size |J | over all inputs σ1, . . . , σn, b.

For example, consider the following protocol. Let k = d
√
ne. Alice and Bob fix

a partition of the locations of v into k blocks each of size at most k. Alice fills v as

follows: When σi arrives, if σi is the last location of its block to arrive then fill the

entry with 1 otherwise fill it with 0.

Notice that if b = 1 then the final vector v will have a single 1 in each block. If

b = 0 then v will have a unique all 0 block.

Bob chooses J as follows: if there is an all 0 block, then J is set to be that block,

and otherwise J is set to be the set of locations containing 1’s. It is clear that σn ∈ J

and so this is a valid protocol. In all cases the size of J will be at most k and so the

cost of the protocol is d
√
ne. We will refer to this protocol as the AND-OR protocol.

In Section 5.2.1 we remark on this protocol’s connection to the boolean function

AND-OR(x) =

√
n∧

i=1

√
n∨

j=1

xij .

Let us define C(n) to be the minimum cost of any protocol for Gn. We are interested

in the growth rate of C(n) as a function of n. In particular, we propose:

Question 5.1. Is there a δ > 0 such that C(n) = Ω(nδ)?

5.1.2 Connection to the Sensitivity Conjecture

Why consider such a strange game? The motivation is that the game provides a possible

approach to the well known sensitivity conjecture from boolean function complexity.

Recall that the sensitivity of an n-variate boolean function f at an input x, denoted

sf (x), is the number of locations ` such that if we flip the bit of x in location ` then
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the value of the function changes. (Alternatively, this is the number of neighbors of x

in the hamming graph whose f value is different from f(x).) The sensitivity of f , s(f),

is the maximum of sf (x) over all boolean inputs x.

The degree of a function f , deg(f), is the smallest degree of a (real) polynomial p

in variables x1, . . . , xn that agrees with f on the boolean cube.

Conjecture 5.2. (The Sensitivity Conjecture) There is a δ > 0 such that for any

boolean function f , s(f) ≥ Ω(deg(f)δ).

An easy argument (given in Section 5.2) connects the cost function C(n) of the

game Gn to the sensitivity conjecture:

Proposition 5.3. For any boolean function on n variables, s(f) ≥ C(deg(f)).

In particular, an affirmative answer to Question 5.1 would imply the sensitivity

conjecture.

5.1.3 Background on the Sensitivity Conjecture

Sensitivity and degree belong to a large class of complexity measures for boolean func-

tions that seek to quantify, for each function f , the amount of knowledge about in-

dividual variables needed to evaluate f . Other such measures include decision tree

complexity and its randomized and quantum variants, certificate complexity, and block

sensitivity. The value of such a measure is at most the number of variables. There

is a long line of research aimed at bounding one such measure in terms of another.

For measures a and b let us write a ≤r b if there are constants C1, C2 such that for

every total boolean function f , a(f) ≤ C1b(f)r + C2. For example, the decision tree

complexity of f , D(f), is at least its degree deg(f) and thus deg ≤1 D. It is also known

[Mid04] that D ≤3 deg. We say that a is polynomially bounded by b if a ≤r b for some

r > 0 and that a and b are polynomially equivalent if each is polynomially bounded by

the other.

The measures mentioned above, with the notable exception of sensitivity, are known

to be polynomially equivalent. For example, in relating block sensitivity, bs(f), to
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degree Nisan and Szegedy [NS94] show that bs(f) ≤2 deg(f). In the other direction,

the bound deg(f) ≤3 bs(f) follows from a result in [BBC+01]. For a survey on many of

these results, see [BdW02]. The sensitivity conjecture asserts that s(f) is polynomially

equivalent to all of the measures mentioned in this section, and for this, it suffices to

show that it is polynomially related to deg(f).

There are a number of equivalent formulations of the sensitivity conjecture. For

instance [GL92] give a graph theoretic formulation by exploring a different relationship

between sensitivity and degree than what is presented here. The same graph theoretic

question also appeared somewhat earlier in [CFGS88], however, sensitivity of boolean

functions was only mentioned as a related problem and no direct connection was given.

For a good survey of many other variations of the sensitivity conjecture, see [HKP11].

The sensitivity conjecture perhaps more commonly appears as a question on the

relationship between sensitivity and block sensitivity. For example, Nisan and Szegedy

[NS94] asked specifically if bs(f) = O(s2(f)) for all functions, and as of this writ-

ing no counterexample has been given. The best known bound relating sensitiv-

ity to another measure was given by Kenyon and Kutin [KK04]. They proved that

bs(f) ≤ e
2πe

s(f)
√
s(f) for all boolean functions.

5.1.4 Outline of the Chapter

In Section 5.2 we prove that a positive answer to Question 5.1 would imply the sensitiv-

ity conjecture. We also describe how protocols relate adverserial methods for proving

that boolean functions are evasive (that is have decision tree complexity D(f) = n).

At the end of the section we prove that it suffices to answer Question 5.1 for a special

subset of protocols called order oblivious protocols.

In Section 5.3 we present three stronger variants of Question 5.1. We then show that

for two of these variants, there are protocols that give negative answers to the questions,

and suggest that Question 5.1 has a negative answer as well. However, these protocols

satisfy a property called monotonicity and in Section 5.4 we prove an Ω(n1/2) lower

bound on the cost of any monotone protocol, which shows that any protocol that gives

a negative answer to Question 5.1, must look quite different from the two protocols that
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refuted the strengthenings. In the same section we prove a rather weak lower bound

for a special class of protocols called assignment oblivious protocols. Finally, in Section

5.5 we give the construction of the lowest cost protocol that we know, whose cost is

lower than that of the AND-OR protocol by a constant factor.

5.2 Connection between the Sensitivity Conjecture and the Game

In this section we prove Proposition 5.3, which connects the sensitivity conjecture with

the two player game described in the introduction.

We will use e` to denote the assignment in {0, 1}n that is 1 in location ` and

0 elsewhere. Given two assignments v,w ∈ {0, 1}n we will use v ⊕ w to denote the

assignment for which each coordinate is the mod-2 sum of the corresponding coordinates

in v and w.

Recall that Alice’s strategy gives the mapping from the input permutation σ and bit

b to a boolean vector v and Bob’s strategy maps the vector v to a subset of locations

in v. We first observe that for each strategy for Alice there is a canonical best strategy

for Bob. For a permutation σ, we let ΠA(σ) denote the vector Alice writes down after

receiving σ1, · · · , σn−1 (so the location σn is still labeled with a ∗). Thus ΠA(σ) can

be viewed as an edge in the hamming graph Hn whose vertex set is {0, 1}n, with two

vertices adjacent if they differ in one coordinate. The edge set E(Π) of a protocol Π is

the set of edges ΠA(σ) over all permutations σ. This defines a subgraph of Hn. Given

Alice’s output v, the possible values for σn are precisely those locations ` that satisfy

(v,v ⊕ e`) is an edge in E(Π). Thus the best strategy for Bob is to output this set

of locations. It follows that c(Π) is equal to the maximum vertex degree of the graph

E(Π).

Proposition 5.3 will therefore follow by showing the following: Given a boolean

function with degree n and sensitivity s, there is a strategy Π for Alice for the game

Gn such that the graph E(Π) has maximum degree at most s.

We need a few preliminaries. A subfunction of a boolean function f is a function g

obtained from f by fixing some of the variables of f to 0 or 1. Note it is clear that if
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g is a subfunction of f then s(f) ≥ s(g). We say a function has full degree if deg(f) is

equal to the number of variables of f . We start by recalling some well known facts.

Lemma 5.4. For any boolean function f there exists a subfunction g on deg(f) vari-

ables that has full degree.

Proof. If p is the (unique) multilinear real polynomial that agrees with f on the boolean

cube, then p contains a monomial
∏
`∈S

x` where |S| = deg(f). Let g be the function

obtained by fixing the variables in [n] \S to 0. Then g is a function on deg(f) variables

that has full degree.

Lemma 5.5. Given a function f with full degree and a location `, there exists a bit b

such that the function obtained from f by fixing x` = b is also of full degree.

Proof. The polynomial (viewed as a function from {0, 1}n → {0, 1}) for f may be

written in the form p1(x1, x2, · · · ,��x` , · · · , xn) + x`p2(x1, x2, · · · ,��x` , · · · , xn). Here the

cross-through notation indicates that the variable x` is not an input to the polynomial.

If p1 has a non zero coefficient on the monomial
∏
k 6=`

xk, then we set x` = 0 and the

resulting function will have full degree. For the other case, note p2 must have a non

zero coefficient on
∏
k 6=`

xk because f has full degree. Thus, setting x` = 1 will work.

We remark that the argument in the above lemma is essentially the same as the stan-

dard argument that the decision tree complexity of any function f is at least deg(f).

We are now ready to prove Proposition 5.3.

Proof. Given the function f , let g be a subfunction on deg(f) variables with full degree.

We will construct a protocol Π that satisfies E(Π) ⊆ E(g), where E(g) denotes the set

of sensitive edges for the function g, i.e. the edges of Hn whose endpoints are mapped

to different values by g. This will imply that c(Π) ≤ s(g) ≤ s(f), and thus prove

the proposition. As Alice receives σ1, σ2, · · · , σn, she fills in v in such a way so that

the function f restricted to the partial assignment written on v remains a full degree

function, which is possible by Lemma 5.5.
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Note that after Alice writes a bit in location σn−1, the function g restricted to v

is now a non-constant function of one variable, and thus the edge ΠA(σ) is a sensitive

edge for the function g. This implies that E(Π) ⊆ E(g).

Remark: To summarize, the reduction above shows that a degree n Boolean func-

tion having sensitivity s can be converted into a strategy for Alice for the game Gn of

cost at most s. We don’t know whether this connection goes the other way, i.e., we

can’t rule out the possibility that the answer to Question 5.1 is negative (there is a very

low cost protocol for Gn) but the sensitivity conjecture is still true.

5.2.1 Connection to Decision Tree Complexity

We note the connection between protocols Π for the game Gn and boolean functions

on n variables for which D(f) = n (sometimes referred to as evasive functions). A

common method for showing that a function is evasive is to use an adversary argument.

For example, consider the evasive function

AND-OR(x) =

√
n∧

i=1

√
n∨

j=1

xij .

To show this function is evasive we simulate the computation of some decision tree

on an input x, except when the tree queries a variable xij the adversary will respond

either 0 or 1 in such a way as to keep the value of the function on the input x unknown

until all variables are queried. For the AND-OR function, take the adversary that

always answers 0 as long as some other variable in the corresponding OR block remains

undetermined, otherwise it answers 1. This adversary is exactly Alice’s part of the AND-

OR protocol described in the introduction. For more examples of adversary arguments

see [LY02].

Every evasive function by definition admits an adversary argument which in turn

defines a protocol Π. In fact a function f is evasive if and only if there exists a protocol Π

for which E(Π) ⊆ E(f) (recall E(f) is the set of sensitive edges of the function f). This

work explores the question, can we use the inherent structure of an arbitrary adversary
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(or protocol) to exhibit a lower bound on sensitivity? We provide some limited evidence

that this may be possible by proving lower bounds for restricted classes of protocols Π

(see Section 5.4).

5.2.2 Order Oblivious Protocols

In the game Gn, at each step i < n, the value written by Alice at location σi may

depend on her knowledge up to that step, which includes both the sequence σ1, · · · , σi

and the partial assignment already made to v at locations σ1, . . . , σi−1. A natural way

to restrict Alice’s strategy is to require that the bit she writes in location σi depend

only on σi and the current partial assignment to v but not on the order in which

σ1, . . . , σi−1 arrived. A protocol satisfying this restriction is said to be order oblivious.

The following easy proposition shows that it suffices to answer Question 5.1 for order

oblivious protocols.

Proposition 5.6. Given any protocol Π there exists an order oblivious protocol Π′ such

that E(Π′) ⊆ E(Π). In particular, c(Π′) ≤ c(Π).

Proof. First some notation. Given a permutation σ let σ≤k denote the prefix of the

first k elements of σ. We let ΠA(σ≤k) denote the partial assignment written on v after

Alice has been streamed σ1, · · · , σk.

We give a canonical way of obtaining an order oblivious protocol Π′ from Π. We

define Π′ in steps, where step k refers to what Alice does when she is streamed σk. For

step 1, when σ1 arrives, she writes according to what Π does for that value of σ1. In

order to define step k + 1, assume Π′ is defined for the first k steps. Assume as well

that it satisfies for every permutation σ, there is a permutation τ of σ1, · · · , σk so that

ΠA(τ) = Π′A(σ≤k).

Suppose σk+1 arrives and the current state of the vector is v
def
= Π′(σ≤k). Note

from v Alice can deduce the set of the first k elements of σ (it is the set of locations

not labeled with a *). Alice then considers all permutations τ of σ1, · · · , σk such that

ΠA(τ) = Π′A(σ≤k) and picks the lexicographically smallest permutation (call it τ∗) in

that set and writes on location σk+1 according to what Π does after τ∗. Note that the
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bit written on location σk+1 does not depend on the relative order of σ1, σ2, · · · , σk.

Using this strategy, Alice maintains the invariant that for every permutation σ, there

is a permutation τ of σ1, · · · , σk so that Π(τ) = Π′(σ≤k).

Thus, by construction, Π′ is assignment oblivious. Also for any permutation σ there

is a permutation τ for which ΠA(τ) = Π′A(σ). This implies that E(Π′) ⊆ E(Π).

5.3 Stronger Variants of Question 1

In this section we propose three natural variants of Question 5.1, and refute two of

these variants by exhibiting and analyzing some specific protocols.

The cost function c(Π) of a protocol is defined based on the worst case over all

choices of σ1, . . . , σn, b. Alternatively, it is natural to evaluate a protocol based on

the average size of the set Bob outputs, where the average is taken over a random

permutation σ1, . . . , σn and a random bit b. We call this the expected cost of Π and

denote it by c̃(Π). Let C̃(n) denote the minimum expected cost of a protocol for Gn.

Question 5.7. Is there a δ > 0 such that C̃(n) = Ω(nδ)?

An affirmative answer to this question would give an affirmative answer to Question

5.1.

We point out that it is well known that the natural probabilistic version of the

sensitivity conjecture, where sensitivity is replaced by average sensitivity (where the

average is taken uniformly over {0, 1}n) is trivially false (for example, for the OR

function). For contrast, consider the protocol Π where Alice writes a 0 at each step.

This protocol is closely related to the OR function in that Alice’s part of this protocol is

exactly the adversary argument used to prove that OR is evasive. Note also that E(Π)

is exactly the set of sensitive edges for the OR function. However, the average cost c̃(Π)

is n/2 whereas the average sensitivity of the OR function is o(1). We currently know

of no protocol Π for which c̃(Π) = o(
√
n).

We also remark that an analog of Proposition 5.6 holds for the cost function c̃(Π),

and therefore it suffices to answer the question for order oblivious protocols. (The

proof of the analog is similar to the proof of Proposition 5.6, except when modifying
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the protocol τ∗ is not selected to be the lexicographically smallest permutation in

the indicated set, but rather the permutation in the indicated set that minimizes the

expected cost conditioned on the first k steps. )

There is another natural variant of Question 5.1 based on average case. When we

run a fixed protocol Π on a random permutation σ and bit b, we can view the vector

v produced by Alice as a random variable. Let h̃(Π) be the conditional entropy of

σn given v; intuitively this measures the average number of bits of uncertainty that

Bob has about σn after seeing v. It is easy to show that this is bounded above by

log(c(Π)). Let H̃(n) be the minimum of h̃(Π) over all protocols Π for Gn. The analog

of Question 5.1 in this setting asks whether there is a positive constant δ such that

H̃(n) = Ω(δ log(n))? An affirmative answer to this would imply an affirmative answer

to Question 5.1, however it turns out that the answer to this new question is negative.

The following construction is due to Michal Kocky.

Theorem 5.8. There is an order oblivious protocol Π for Gn such that h̃(Π) = O(log log(n)).

Remark: Earlier we showed one can transform any protocol into an order oblivious

protocol with smaller cost. However, it is not clear whether or not this transformation

can increase h̃. Instead, we directly provide an example of an order oblivious protocol

for which h̃(Π) is small.

Proof. Before defining the protocol Π we need some setup. Let k = dlog(n)e and

associate each integer ` ∈ [n] to its binary expansion, viewed as a vector b(`) ∈ Fk2.

Note that 0 /∈ [n], and thus each vector b(`) is nonzero. Let t > k be an integer (which

we’ll choose to be log2(n)) and for each S ⊆ [n] of size t, let Z(S) be a maximal subset of

S such that
∑

`∈Z(S) b(`) is the 0 vector. Observe that by maximality, Z(S) ≥ |S| − k

(otherwise S \ Z(S) would have a linearly dependent subset which we could add to

Z(S)). Finally let H = {Z(S) : S ∈
(

[n]
t

)
}.

Given T ∈ H and a partial assignment π, we say T is compatible with π if πi ∈ {1, ∗}

for all i ∈ T . The protocol Π is defined as follows. For i 6= n Alice writes a 0 on location

σi unless doing so makes all T ∈ H not compatible with the resulting partial assignment

written on v, otherwise she writes a 1.
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There is a simpler version of this protocol where Alice writes 1 on location i if and

only if i ∈ Z(S) where S is the set of the last t locations of σ. The cost of this protocol

is easier to analyze, but it is not order oblivious. Here we instead analyze the order

oblivious protocol you obtain if Alice writes a 0 as long as she remains consistent with

some partial assignment in the order sensitive protocol.

We note two properties of Π. First, Alice will write a 0 on the first n− t streamed

locations. To see this, let S(σ) denote the set of the last t elements of σ. Then Z(S(σ))

will be compatible with v for the first n− t steps. We also have:

Claim 5.9. There is a unique set F ∈ H that is compatible with the partial assignment

ΠA(σ).

Proof. Recall that ΠA(σ) will have a ∗ in location σn. Suppose that there are two sets

F1, F2 that are compatible with ΠA(σ) and let T be their symmetric difference. First

suppose T − {σn} is non-empty and pick i ∈ T − {σn}. Then when location i arrived,

Alice could have written a 0 since one of F1 or F2 would remain compatible. This

contradicts the construction of the protocol. Now suppose that T = {σn}. In this case,

since
∑
`∈F1

b(`) =
∑
`∈F2

b(`) = ~0, the vector b(σn) must be the zero vector. This is also

impossible because we defined the protocol to have all b(`) non-zero.

We will refer to the set promised by Claim 5.9 as the final set and denote it as F (σ).

We now obtain an upper bound on the conditional entropy of σn given v. Let L be

the random variable that is 1 if σn ∈ F (σ) and 0 otherwise. We have:

H(σn|v) ≤ H(σn, L|v)

= H(L|v) +H(σn|v, L)

≤ 1 +H(σn|v, L)

= 1 +H(σn|v, L = 1)PL = 1

+H(σn|v, L = 0)PL = 0

We first bound the second term. Note that given L = 1 we have that σn is in the

final set F (σ) and that Bob can deduce F (σ) given the vector v. To see this, let W
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be the set of locations ` for which v is set to 1 and let Γ =
∑

`∈W b(`). If Γ is ~0, then

F (σ) must be the set of locations that are set to 1. Otherwise Γ will be equal to b(`∗)

for some unique `∗, and F (σ) is then the set of locations set to 1 union `∗. In either

case, the number of possible values for σn is no more than t and so the second term is

at most H(σn|v, L = 1) ≤ log(t).

To bound the third term we first show the following:

Claim 5.10. The probability that L = 0 is at most k/t.

Remark: This claim is very easy to see for the order sensitive version mentioned

earlier (L = 0 is exactly the event that σn ∈ S −Z(S)). The fact that it still works for

the order oblivious version seems quite intuitive because Alice writing some additional

0’s should only help the probability. For completeness, we provide a rigorous proof of

this below.

Proof. Recall that L = 0 means that σn ∈ S \F (σ). As before let σ≤j denote the prefix

of the first j elements of σ and let T (σ≤j) denote the set of the first j elements of σ.

Given a prefix τ of length n − l we let M(τ) denote max
E
|T (τ)− E| where the max is

over all sets E that are compatible with ΠA(τ). For integers l and m let f(l,m) denote

min
τ

(PL = 0|σ≤n−t = τ) where the minimum is over all prefixes τ of length n − ` for

which M(τ) = m . We will show that f(`,m) ≤ m/` for all `,m. In particular, since

every Z(S) has size at least t− k, showing that f(t, k) ≤ k/t will prove the claim. We

proceed by induction on ` + m. As a base case, it is easy to see that if m = 0 the

probability is 0, and if ` = m then the probability is 1.

Let τ be any prefix of length n−` for whichM(τ) = m and suppose that σ≤(n−`) = τ .

Note that if Alice writes a 0 next, then M(σ≤(n−`+1)) ≤M(σ≤(n−`))− 1. Also if Alice

writes a 1 next, then M(σ≤(n−`+1)) = M(σ≤(n−`)). Let p denote the probability that

Alice will write a 0 on location σn−`+1. Then p ≥ m/` (if there is exactly one set T that

is compatible then p = m/` and with additional sets the probability only increases).
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Thus

f(`,m) ≤ PL = 0|σ≤n−` = τ

≤ pf(`− 1,m) + (1− p)f(`− 1,m− 1).

≤ m

`

m− 1

`− 1
+
`−m
`

m

`− 1
(by the I.H.)

= m/`

Note that trivially H(σn|v, L = 0) ≤ log(n), thus the claim implies that the third

term is at most log(n) · kt . By choosing t = log2(n) the second term is O(log log(n))

and the third term is O(1).

For our last variant, suppose Alice can communicate to Bob with a ternary alphabet

instead of a binary alphabet. We will show that Question 5.1 is false in this setting. The

setup is the same as before: Alice is streamed a permutation σ, only when σi arrives

she may write a 0,1, or 2 on location σi in v. When b ∈ {0, 1, 2} arrives she is forced

to write b at location σn. Bob sees v and has to output a set J which must contain σn.

The cost is the maximum size of J for any σ and b. The following construction is due

to Michal Koucky and Michael Saks.

Theorem 5.11. There is a protocol Π using a ternary alphabet that has cost O(log(n)).

Proof. Let t < n be a parameter to be chosen later (we will end up showing that the

cost is less than t).

Alice begins by writing 0 on the first n − t locations streamed to her. After this,

Alice writes only 1’s and 2’s (as described below). Clearly if the final input b is not 0,

Bob will see exactly t locations that are not labeled a 0 and know the last t elements.

Consider then the case that b = 0. We’ll show that Alice can write the 1’s and 2’s in

such a way that Bob can then determine σn exactly. In what follows, a binary string

will refer to a string of 1’s and 2’s.

Consider the graph defined on t element sets where two sets are joined if they have

symmetric difference 2. The degree of this graph is trivially less than n2 so it has a
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proper coloring with at most n2 colors.

Now let us encode each of these colors by a binary string of length t. Write E(c) for

the encoding of color c. We want our encoding to have the following property: for any

two colors c, d if you delete any single bit from the encoding of E(c) (which leaves a

t− 1 bit string) and delete any single bit from the encoding of E(d) then they are still

different.

Claim 5.12. There is such an encoding for t = 5 log(n).

Proof. Consider the graph defined on binary strings of length t, where two strings s1, s2

are joined if there is a way of deleting a symbol from s1 and a symbol from s2 to arrive

at the same string of length t − 1. The degree of this graph is trivially less than 2t2,

thus there is a proper coloring with at most 2t2 colors. Thus there is a color class of

size at least 2t

2t2
strings. If t > 5 log(n) then there is a color class of size at least n2.

Picking n2 strings in this color class will give us the desired encoding E(c).

After Alice writes the first (n − t) 0’s, she knows the final t positions denoted

j1 < . . . < jt. She determines the color c of that set and the encoding E(c). She then

writes the bits of E(c) in the positions j1, . . . , jt (writing the bits in this order and not

in the σ order of the last t elements).

If b = 0, Bob only sees t− 1 of the bits. However, by the property of the encoding,

this is enough to recover E(c) and therefore c. Furthermore, knowing c and t − 1 out

of the last t elements, the property of the coloring allows Bob to recover the missing

element, which is σn. This concludes the construction.

5.4 Lower Bounds for Restricted Protocols

In the previous section we formulated two stronger variants of Question 5.1 that turned

out to be false. This may suggest that the original question is also false. In this

section however, we will prove a lower bound which implies that any counterexample

to Question 5.1 will need to look quite different from the two protocols provided in the

last section.



66

An order oblivious protocol can be specified by a sequence of maps A1, · · · , An

where each Ai maps partial assignments on the set [n] to a single bit. When location σi

arrives, the bit Alice writes is Aσi(v). For partial assignments α and β, we say that β

is an extension of α, denoted as β ≥ α, if β is obtained by starting from α and possibly

fixing more variables. An order oblivious protocol is monotone if each of the maps

A1, · · · , An are monotone with respect to the extension partial order. That is, if β ≥ α

are partial assignments, then Ai(β) ≥ Ai(α) for each i. As a remark, when running the

protocol there may be assignments that are never written on v, however defining each

Ai to have domain all partial assignments is still valid and simplifies notation.

Both the AND-OR protocol described in the introduction and the protocol con-

structed in Theorem 5.8 are examples of monotone protocols. This definition easily

generalizes to protocols on alphabets of size k, in which case the ternary protocol given

in the previous section can be seen to be monotone. Our main result in this section is

that monotone protocols on binary alphabets have cost Ω(
√
n). In particular, Question

5.1 is true for such protocols. For the rest of the chapter, all protocols will be on binary

alphabets.

Before proving the theorem we’ll need some new definitions. Recall that an edge

e ∈ Hn may be written as a vector in {0, 1, ∗}n for which e` = ∗ on exactly one location

`. We call this location ` the free location of that edge. We say two edges e, e′ collide

if e` = e′` for all ` that is not a free location of either edge. Equivalently, two edges

collide if they share at least one vertex (each edge collides with itself). Both of the

lower bounds in this section will follow by finding an edge e ∈ E(Π) that collides with

m other edges in E(Π). This implies at least one of the vertices in e has degree at least

m/2 in the graph E(Π), which in turn lower bounds the cost of the protocol.

Finally, given a permutation σ we will use ` <σ k to denote that the element `

comes before the element k in σ.

Theorem 5.13. All monotone protocols have cost Ω(
√
n).

Proof. Let Π be a monotone protocol.

For a permutation σ denote by bumpk(σ) the permutation obtained from σ by
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“bumping” the element k to the end of σ and maintaining the same relative order for

the rest of σ. For example, bump1(321654) = 326541.

We let w(σ) denote the vector ΠA(σ) with the entries sorted in σ order. In other

words, w(σ) is the vector defined by w(σ)i = (ΠA)σi . Our proof follows by repeated

application of the following:

Claim 5.14. Let σ be any permutation and let τ be obtained from σ by performing

some sequence of bumps on σ. Suppose that τ and m < n satisfies the following:

• The elements τ1, τ2, · · · , τm were never bumped.

• Alice originally wrote a 0 on the locations τ1, · · · , τm, that is ΠA(σ)τi = 0 for all

i ≤ m.

Then ΠA(τ)τi = 0 for all i ≤ m. Equivalently, w(τ) begins with m 0’s.

Proof. The claim follows easily by induction on i. Suppose we have already shown that

w(τ) begins with (i − 1) 0’s. Let v(σ, k) denote the partial assignment written on v

just before Alice receives the index k (here the reader should take care to distinguish

this from the partial assignment just before Alice receives σk). Consider the partial

assignment v(τ, τi). It follows from the first assumption and the inductive hypothesis

that v(σ, τi) is an extension of v(τ, τi). Thus, since Alice originally wrote a 0 on location

τi, by monotonicity she continues to write a 0 on that location when being streamed τ

(that is ΠA(τ)τi = 0).

Let σ be the permutation for which w(σ) is lexicographically smallest.

Claim 5.15. w(σ) consists of a string of 0’s followed by a string of 1’s, followed by a

single *.

Proof. Suppose for contradiction that there is a a 0 that comes after a 1, and let k be

the least index such that w(σ)k = 1 and w(σ)k+1 = 0. Let τ be obtained from σ by

bumping all of the locations ` for which ` <σ k and ΠA(σ)` = 1. Let m denote the

number of locations ` for which ` <σ k and ΠA(σ)` = 0. Then by Claim 5.14, w(τ)

begins with (m+ 1) 0’s. This contradicts the choice of σ
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Let n− t be the number of initial 0’s in w(σ) and t− 1 be the number of 1’s. For k

between 1 and n, let τ (k) = bumpk(σ). Let x be the assignment obtained from ΠA(σ)

by setting location σn (which is a *) to 1.

Claim 5.16. The edges ΠA(τ (k)) and ΠA(σ) intersect at the input x for all k among

the last t elements of σ. In particular x has degree at least t in the graph E(Π).

Proof. Fix k among the last t elements of σ. Clearly w(τ (k)) has the first n − t bits

0, and so by the choice of σ all other locations in w(τ (k)) must be labeled 1. Thus

w(τ (k)) = w(σ). This means that the edges ΠA(σ) and ΠA(τ (k)) agree at all locations

except for σn and σk (which are the free location of the edges respectively). Since

ΠA(σ)σk = ΠA(τ (k))σn = 1, the two edges meet at x.

To conclude the proof of the theorem we will find an assignment y that has degree

at least (n− t)/(t+ 1) in the graph E(Π).

Claim 5.17. For k among the first n− t elements of σ, w(τ (k)) has the first n− t− 1

bits equal to 0, and has at most one 0 among the next t bits (and last bit *).

Proof. The fact that the first n− t− 1 bits of w(τ (k)) are labeled 0 follows by directly

by Claim 5.14.

Suppose for contradiction that there are at least 2 0’s among the next t locations and

denote the locations of the first and second 0 to be `1 and `2 respectively. Take all of

the locations that are labeled 1 in ΠA(τ (k)) and bump them to the end and let this new

permutation be ρ. Once again by applying Claim 5.14 we have ΠA(ρ)`1 = ΠA(ρ)`2 = 0.

Thus w(ρ) has the first n− t+1 locations set to 0 which contradicts the choice of σ.

Now classify each of the first n−t elements of σ into t+1 types n−t, . . . , n. Element

k is of type n if w(τ (k)) has t 1’s. Otherwise w(τ (k)) has (t− 1) 1’s, and the type of k

is equal to the index j between n− t and n− 1 such that w(τ (k))j = 0.

Some type occurs at least m
def
= (n− t)/(t+1) times, call it j∗, and let k1, k2, · · · , km

be the m elements that are type j∗. For 1 ≤ i ≤ m let y(i) be the assignment obtained

by taking the edge ΠA(τ (ki)) and assigning the ∗ to 0.
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Claim 5.18. The assignments y(i) are all equal.

Proof. By the definition of the bump operation the permutations τ (ki) all have the same

elements at positions n − t, n − t + 1, · · · , n − 1 (they have the same suffix with the

exception of the last element). Since they are all of the same type it follows that the

y(i) all agree on locations in the set {τ (k1)(j) | j ∈ n − t, · · · , n − 1}. For all other

locations, each y(i) is set to 0, thus they are the same assignment.

Therefore there are m distinct edges in the graph E(Π) that are incident with the

assignment y
def
= y(1). Thus y has degree at least m = (n− t)/(t+ 1). This implies that

cost of Π is at least max(t, (n− t)/(t+ 1)) = Ω(
√
n).

As demonstrated by the AND-OR protocol, Theorem 5.13 is tight up to a constant

factor. We remark that the monotone protocols we consider here seem to have no general

connection to the class of monotone boolean functions, and our result for monotone

protocols seems to be unrelated to the easy and well known fact that the sensitivity

conjecture is true for monotone functions.

We conclude this section with a lower bound for a second class of protocols. Al-

though the lower bound is only logarithmic, we point out that proving a logarithmic

lower bound for all protocols with a strong enough constant would imply new bounds

relating degree and sensitivity.

For a permutation σ let Sk(σ) denote the set of elements ` that satisfy ` <σ k. For

example, if σ = 321654 then S1(σ) = {2, 3}. We say a protocol is assignment oblivious

if the bit written by Alice in location k only depends on the set Sk(σ). Such protocols

can be described by a collection of n hypergraphs H1, H2, · · · , Hn, where each H` is a

hypergraph with vertex set [n] \ {`}. When k arrives, Alice writes a 1 if and only if the

set Sk(σ) is in Hk.

Theorem 5.19. Every assignment oblivious protocol Π has c(Π) ≥ log2(n)/2.

Proof. Let Π be an assignment oblivious protocol.

Given a permutation σ = σ1σ2 · · ·σn and k ∈ [n] we define swapk(σ) to be the

permutation obtained by swapping the positions of the elements k and σn within σ and
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keeping every other element in the same place. For example, swap3(654321) = 654123.

The lemma will follow by constructing a permutation σ such that that ΠA(σ) and

ΠA(swapk(σ)) collide for each k ∈ {σn−1, · · · , σn−dlog2(n)e}

We build up such a σ in a greedy manner. We start with setting σn−1 = 1. With

σn−1 fixed, the bit Alice writes in location 1 is completely determined by σn (and

does not depend on the values we later choose for σ1, · · · , σn−2). This holds by the

assignment oblivious property and because S1(σ) = {` : ` 6= 1, σn}. Let R1 be the

locations ` for which setting σn = ` results in Alice writing a 1 in location 1. At least

one of |R1|, |Rc1| are bigger than d(n− 1)/2e, let T1 be that set. Now we fix σn−2 to be

any element in T1.

Having fixed σn−1 and σn−2, the bit Alice writes on location σn−2 also only depends

on the value of σn. Now let R2 be the subset of indices j in T1 such that setting σn = j

would cause Alice to write a 1 in location σn−2. At least one of |R2|, |Rc2| are bigger

than d(|T1|−1)/2e, let T2 ⊆ T1 be that set. This process is iteratively repeated. At step

i we set σn−i to be an arbitrary element of Ti−1. With σn−1, · · · , σn−i now fixed, the

value written in location σn−i depends only on the value of σn. The set Ri is defined to

be all such values of σn that result in Alice writing a 1 in location σn−i and Ti ⊆ Ti−1

is defined to be the larger of |Ri| and |Rci |. We proceed until the set Ti has only one

element in it, in this case we assign σn to be that element. This process will take at

least dlog2(n)e steps. We then assign the remaining elements to σ1, · · · , σn−i−1 in an

arbitrary order.

We now claim that ΠA(σ) and ΠA(swapk(σ)) collide for k = σn, σn−1, · · · , σn−dlog2(n)e.

Claim 5.20. Let i < dlog2(n)e, and let k = σn−i. Then ΠA(σ)` = ΠA(swapk(σ))` for

all ` 6= k, σn.

Proof. Let σ′ = swapk(σ). If ` <σ k then S`(σ) = S`(σ
′) and so Alice writes the same

bit to location ` under both permutations.

Suppose that ` >σ k. Let j be such that σn−j = `. Note that σn−1 = σ′n−1, · · · , σn−j =

σ′n−j . Recall that holding σn−1, · · · , σn−j fixed, the bit Alice writes at location `

depends only on the value of σn, and furthermore that bit is the same as for all
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settings of σn ∈ Tj . Since both σn and σ′n = k are in the set Tj , it follows that

ΠA(σ)` = ΠA(σ′)`.

By the above claim, σ collides with swapk(σ) for at least dlog2(n)e values of k.

Furthermore, at least one of the vertices in ΠA(σ) has degree more than dlog2(n)/2e.

This concludes the proof.

Two Stage Protocols

Here we include a lower bound for another class of protocols (which does not appear

in the journal version of this work). We include it here because the method of proof

differs significantly from the lower bound methods used so far, however the result turns

out to be implied by the monotone lower bound.

We say a protocol Π is a two stage protocol if it satisfies the following: For an integer

t < n and each set S ∈
(

[n]
t

)
fix an assignment xS ∈ {0, 1}n for which xS is 0 at the

locations in S. Alice writes 0 in the first n − t locations of σ. Alice then defines S to

be the remaining t locations, and as the remaining elements of σ arrive, she fills in the

locations so that they agree with the assignment xS (she is still forced to label σn with

the bit b).

Theorem 5.21. For any two stage protocol Π, c(Π) = Ω(
√
n).

Remark: Two stage protocols are not order oblivious in general, thus one can apply

the reduction from Section 5.6 to make a two stage protocol order oblivious. It turns

out that after the reduction, the protocol obtained is monotone, and thus this result

is implied by our monotone lower bound. However, we include this bound because

the method of proof uses a double counting argument that is very different from the

monotone lower bound.

Proof. Recall that an edge e ∈ Hn may be written as a vector in {0, 1, ∗}n for which

e` = ∗ on exactly one location `. We call this location ` to be the free location of that

edge, and denote it as φ(e).
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For t < n fixed, let Π be a two stage protocol which is defined by a set of assignments

xS ∈ {0, 1}n indexed by the sets S ∈
(

[n]
t

)
. Recall by definition each xS is 0 at the

locations outside of S. For such a protocol it holds that E(Π) is the union over all

S ∈
(

[n]
t

)
and ` ∈ S of the edges (xS ,xS ⊕ e`). Our goal is to show a lower bound on

the maximum degree of such a graph.

Let r be the max over all edges e ∈ E(Π) of the number of edges e′ ∈ E(Π) which

collide with e. Then c(Π) ≥ r/2 because one of the vertices in e will have degree at

least r/2. Let Ft(σ) be the set of t elements at the end of σ. For each S ∈
(

[n]
t

)
and

e ∈ E(Π) we say that the edge e is a descendant of S if e is of the form (xS ,xS ⊕ e`)

for some ` ∈ S. Equivalently, e is a descendant of S means that ΠA(σ) = e for every

permutation σ for which Ft(σ) = S and σn = φ(e) (recall that ΠA(σ) is the state of the

vector v after Alice has been streamed σ1, · · · , σn−1).

For e a descendant of a set S we refer to the pair (e, S) as a descendant pair. The

proof proceeds by first finding an exact expression for the number of pairs (e, S). We

will then upper bound this quantity in terms of r which will then imply our desired

lower bound on r.

Claim 5.22. There are t
(
n
t

)
descendant pairs (e, S).

Proof. For each set S there are t pairs (e, S); they are the t edges of the form (xS ,xS⊕e`)

for ` in S. Since there are
(
n
t

)
sets S, the claim follows.

To give an upper bound on the number of such pairs, we count the number of pairs

that contain a particular edge e. For this we need to classify the edges e. Define J(e)

to be the set of locations that are nonzero for the edge (which includes φ(e)) and define

the weight of an edge, w(e), to be the size of J(e).

Claim 5.23. An edge e of weight w belongs to at most
(
r−w
t−w
)

descendant pairs.

Proof. Let e be a fixed edge of weight w which is a descendant of a set S. By definition

of a two stage protocol, Alice always writes 0 on the first n− t indices of σ. It follows

that J(e) ⊆ S, because J(e) contains all of the locations labeled a 1 as well as the free

location of the edge, which is σn. If e′ is another descendant of S, then both e and
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e′ are equal to the assignment xS except on their respective free locations; thus they

collide. As a result, for each ` ∈ S there is an edge e′ with φ(e′) = ` which collides with

e. Let U be the union of all sets T for which (e, T ) is a descendant pair, then |U | ≤ r.

Since for each such T it holds that J(e) ⊆ T ⊆ U , there are at most
(
r−w
t−w
)

sets T for

which (e, T ) is a descendant pair.

Let Mk denote the set of edges e ∈ E(Π) for which w(e) = k.

Claim 5.24. The size of Mk is at most r
(
n
k−1

)
.

Proof. Let Vk denote the set of vertices in Hn which have hamming weight k − 1. For

each v ∈ Vk let dv be the number of edges of weight k which appear in E(Π) and are

incident with v. Note each dv ≤ r by the definition of r. Then

|Mk| =
∑
v∈Vk

dv ≤ r|V | = r

(
n

k − 1

)
.

For each edge e ∈ E(Π) let p(e) denote the number of sets T which are paired with

e. Then the number of descendant pairs may be counted as

t∑
k=1

∑
e∈Mk

p(e).

By applying Claims 5.23 and 5.24 the above is at most

t∑
k=1

r

(
n

k − 1

)(
r − k
t− k

)
.

Comparing with the count from Claim 5.22 we have the inequality

t∑
k=1

r

(
n

k − 1

)(
r − k
t− k

)
≥
(
n

t

)
t.

Let Tk be the k’th term in the above sum, looking at the ratio of consecutive terms we

get

Tk+1

Tk
=
n− k + 1

k

t− k
r − k

.
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We may assume r ≤
√
n (otherwise the theorem holds trivially), also it is clear that

k ≤ t ≤ s. Under these conditions the above ratio is greater than 1, thus the biggest

term in the sum is when k = t. We can then bound the sum above by

tr

(
n

t− 1

)(
r − t

0

)
.

And thus we have

tr

(
n

t− 1

)
≥
(
n

t

)
t.

This implies

r ≥ n− t+ 1

t
.

To conclude the proof, note that r ≥ t because all t descendants of a set S collide. Thus

r = Ω(n1/2).

5.5 A Protocol with Lower Cost than the AND-OR Protocol

In this section we present a construction of a protocol with c(Π) ≤
√

999
1000

√
n which

is the lowest cost protocol we know. The construction is a variant of the AND-OR

protocol defined in the introduction.

Assume n and k are integers where n− k is a perfect square. A set of assignments

{xS ∈ {0, 1}n|S ∈
([n]
k

)
} is an (n, k)-proper code if the hamming distance between any

xS ,xS′ is at least 2
√
n and each xS is 0 on the locations i ∈ S. Let {xS |S ∈

([n]
k

)
} be

an (n, k)-proper code. We construct a protocol Π as follows: Alice writes 0 at locations

σ1, · · · , σk. Alice then takes the set S = {σ1, · · · , σk} and splits [n] \ S into
√
n− k

disjoint blocks of size
√
n− k. When Alice continues and receives σj (for k < j < n)

she writes the mod-2 sum of the bit bj and the bit in location σj of xS , where bj is 1 if

σj is the last element in its block, and 0 otherwise.

We claim that upon receiving vector v, Bob knows that the value of σn is one of
√
n− k possible locations. First note that the vector v is within distance

√
n− k of

the vector xS , and thus Bob may decode v to learn the assignment xS (and thus the

set S as well). Consider the assignment v ⊕ xS restricted to the locations outside of

S. If the final bit b is 0, then exactly one of the
√
n− k blocks will be all 0’s. Bob can
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output J to be that block. If the final bit b is 1, then every block will have exactly a

single 1 in it. Bob can output J to be the set of locations that are set to 1. In each

case |J | =
√
n− k.

To conclude the construction of this protocol we prove the existence of an (n, n/1000)-

proper code. Consider the following random code indexed by the sets S ∈
([n]
k

)
: Each

xS is set to 0 on locations in S, and set to an independently and uniformly chosen

random bit on locations outside of S. We claim that with nonzero probability this set

is a proper code. The second property holds by definition, it only remains to check

the pairwise distances of the code words. Given sets S, S′ let ES,S′ be the event that

d(xS ,xS′) < 2
√
n. This may be upper bounded by the probability that xS ,xS′ differ

on less than 2
√
n locations in the set [n] \ (S ∪ S′). This probability is exactly the

probability that two random n − |S ∪ S′| bit strings are within distance 2
√
n. Since

n−|S∪S′| ≥ n/2 this probability is at most exp(−n/32) by a standard Chernoff bound.

By a union bound the probability of any event ES,S′ occurring is at most(
n

n/1000

)2

exp(−n/32) < 1.

Thus with nonzero probability this is a proper code.

Corollary 5.25. There is an ε > 0 and a protocol Π for which c(Π) ≤ (1− ε)
√
n.
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Chapter 6

The Density of Happy Numbers

Acknowledgment of a Journal Publication:

This chapter contains large overlap with the journal version of this work (see [Gil13]).

6.1 Introduction

Consider the map H : N→ N which sends a positive integer to the sums of the squares

of its digits. We are interested in the trajectory of integers under this map. For example

the trajectory of 7 eventually ends up at 1 which maps to itself

7→ 49→ 97→ 130→ 10→ 1→ 1 · · ·

If instead we start at 4 we have the following

4→ 16→ 37→ 58→ 89→ 145→ 42→ 20→ 4→ · · · .

It is not too hard to show that every number eventually ends up at either 1 or the

above cycle starting with 4. Notice that the image of a 4 digit number H(a1a2a3a4) ≤

4 · 81 < a1a2a3a4, likewise for any number x with at least 4 digits, H(x) < x. So every

number eventually reaches a number less than 1000, and if we check the trajectories of

all numbers less than 1000 we see that there are only two possible cycles.

A number is happy if it eventually reaches 1. In this chapter we will show that the

asymptotic density of happy numbers does not exist. In particular we show that the

upper density is at least .18 and the lower density is at most .12. Our methods also

apply to many generalizations of this map.

If we change the map, instead sending an integer to the sum of the cubes of its digits,

then there are 9 different possible cycles (see Section 6.5.2). Many generalizations of
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these kinds of maps have been studied. For instance, [GT07] considered the map which

sends an integer n to the sum of the e’th power of its base-b digits. In this chapter, we

study a more general class of functions.

Definition 6.1. Let b > 1 be an integer, and let h be a sequence of b non-negative

integers such that h(0) = 0 and h(1) = 1. Define H : Z+ → Z+ to be the following

function: for n ∈ Z+, with base-b representation n =
k∑
i=0

aib
i, H(n) :=

k∑
i=0

h(ai). We

say H is the b-happy function with digit sequence h.

As a special case, the b-happy function with digit sequence {0, 1, 2e, . . . , (b− 1)e} is

called the (e, b)-function.

Definition 6.2. Let H be any b-happy function and let C ⊆ N. We say n ∈ N is

type-C if there exists k such that Hk(n) ∈ C.

For example, for the (2, 10)-function, happy numbers are type-{1}. Numbers which

are not happy are type-{4, 16, 37, 58, 89, 145, 42, 20}.

Fix a b-happy function H and let α := max
i=0,...,b−1

(
H(i)

)
. If n is a d-digit integer in

base-b, then H(n) ≤ αd. If d∗ is the smallest d ∈ N such that αd < bd−1, then for all n

with d ≥ d∗ digits, H(n) ≤ αd < bd−1 ≤ n. This implies the following

Fact 6.3. For all n ∈ N, there exists an integer i such that H i(n) < bd
∗ − 1.

Moreover, to find all possible cycles for a b-happy function, it suffices to perform a

computer search on the trajectories of the integers in the interval [0, bd
∗ − 1].

Richard Guy asks a number of questions regarding (2, 10)-happy numbers and their

generalizations, including the existence (or not) of arbitrarily long sequences of consec-

utive happy numbers and whether or not the asymptotic density exists [Guy04]. To

date, there have been a number of papers in the literature addressing the former ques-

tion ([ESS+00],[GT07],[Pan08]). This work addresses the latter question. Informally,

our main result says that if the asymptotic density exists, then the density function

must quickly approach this limit.
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Theorem 6.4. Fix a b-happy function H. Let I be a sufficiently large interval and let

S ⊆ I be a set of type-C integers. If |S||I| = d, then the upper density of type-C integers

is at least d (1− o(1)).

Note as a corollary we can get an upper bound on the lower density by taking C

to be the union of all cycles except the one in which we are interested. In Sections 3

and 4 we will define explicitly what constitutes a sufficiently large interval and provide

an expression for the o(1) term. Using Theorem 6.4, one can prove the asymptotic

density of (e, b)-happy numbers (or more generally type-{C} numbers) does not exist

by finding two large intervals I1, I2 for which the density in I1 is large and in I2 is

small. In the case of (2, 10)-happy numbers, taking I1 = [10403, 10404 − 1] and I2 =

[102367, 102368 − 1], we show that the upper density d̄ ≥ .185773(1 − 10−49) and lower

density d ≤ .11379(1 + 10−100) respectively.

We also show that the asymptotic density does not exist for 8 of the cycles for the

(3, 10)-function (see Section 5). It should be noted that our methods only give one sided

bounds. In an earlier version of this manuscript, we asked if d̄ < 1 for (2, 10)-happy

numbers. Recently, David Moews has announced a proof of this (see his homepage

at http://djm.cc/dmoews.html). Specifically, he proves that .1962 < d̄ < .38, and

0.002937 < d < .1217.

6.2 Preliminaries

Throughout the chapter we regard an interval I = [a, b] as a set of integers {n ∈ Z+ :

a ≤ n ≤ b} where, in general, a, b ∈ R. We denote |I| to be the cardinality of this set.

We also denote the set {0, 1, . . . , n} by [n]. Throughout this section let H denote an

arbitrary b-happy function with digit sequence h.

Definition 6.5. Let I be an interval and Y the random variable uniformly distributed

amongst the set of integers in I. Then we say the random variable Y is induced by the

interval I.
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Definition 6.6. The type-C density of an integer interval I is defined to be the quantity

dC(I) :=
|{n ∈ I : n is type-C}|

|I|
.

Observation 6.7. If Y is the random variable induced by an interval I, then

dC(I) = P
(
H(Y ) is type-C

)
.

Usually, we take C to be one of the cycles arising from a b-happy function H.

However, if we wish to upper bound the lower density of type-C integers, then we

study the density of type-C ′ integers, where C ′ is the union of all cycles except C.

6.2.1 The Random Variable H(Ym)

Consider the random variable Ym induced by the interval [0, bm−1], i.e., Ym is a random

m-digit number. If Xi is the random variable corresponding to the coefficient of bi in

the base-b expansion of Ym, then

H(Ym) =

m−1∑
i=0

h(Xi). (6.1)

We will be interested in the mean and variance of the h(Xi) (i.e., the image of a random

digit) which we refer to as the digit mean (µ) and digit variance (σ2) of H. The random

variables h(Xi) in (6.1) are all independent and identically distributed (i.i.d.), thus,

E[H(Ym)] = µm Var[H(Ym)] = σ2m. (6.2)

The random variable H(Ym) is equivalent to rolling m times a b-sided die with faces

0, 1, h(2), . . . , h(b−1) and taking the sum. Since it is a sum of m i.i.d. random variables,

it approaches a normal distribution as m gets large. Also, the distribution of H(Ym) is

concentrated near the mean. This observation leads to the following key insight which

underlies the proofs in this work: For a sufficiently large integer m, the density

of type-C integers among m digit integers is approximately determined by

the set of type-C integers near µm.
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6.2.2 Computing Densities

In order to apply Theorem 6.4 it is necessary to compute the number of m-digit integers

which are type-C for m large. In this section we discuss how this can be done efficiently

(even for m ≥ 1000).

Let Pm,i := P
(
H(Ym) = i

)
. Then

Pm,i =

∣∣∣{(a1, a2, . . . , am) : ak ∈ h and
m∑
k=1

ak = i}
∣∣∣

bm
.

For fixed m, the sequence {Pm,i}∞i=1 has generating function

fm(x) =

∞∑
i=0

Pm,ix
i =

(
1 + x+ xh(2) + · · ·+ xh(b−1)

b

)m
. (6.3)

This implies the following recurrence relation with initial conditions P0,0 = 1, and

P0,i = 0 for i ∈ Z− {0}.

Pm,i =
Pm−1,i + Pm−1,i−1 + Pm−1,i−h(2) + · · ·+ Pm−1,i−h(b−1)

b
. (6.4)

To see this, write fm(x) =
(

1+x+xh(2)+···+xh(b−1)

b

)m−1 (
1+x+xh(2)+···+xh(b−1)

b

)
and

consider the coefficient of xi.

If α = max
i=0,...,b−1

(
h(i)

)
, then H(Ym) ⊆ [0,mα]. In particular, Pm,i = 0 if i > mα.

Using this fact combined with (6.4), we can implement the following simple algorithm

for quickly calculating the type-C density of the interval [0, bm − 1].

1. First, using the recurrence (6.4), calculate Pm,i for i = 0, . . . ,mα.

2. Using brute force, find the type-C integers in the interval [0,mα].

3. Output
∑

i∈[0,mα]
i type-C

Pm,i.

Using this algorithm, calculating the density for large m becomes computationally

feasible. Figure 1 graphs the density of (2, 10)-happy numbers < 10m for m up to 8000.

The peak near 10400 and valley near 102350 will be used to imply the bounds obtained

in this work.
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Figure 6.1: Relative Density of (2, 10)-Happy Numbers < 10m

6.2.3 A Local Limit Law

The random variable H(Ym) approaches a normal distribution as m becomes large. The

following theorem1, presented in [FS09], gives a bound.

Theorem 6.8. (Local limit law for sums). Let X1, . . . , Xn be i.i.d. integer-valued

variables with probability generating function (PGF) B(z), mean µ, and variance σ2,

where it is assumed that the Xi are supported on Z+. Assume that B(z) is analytic

in some disc that contains the unit disc in its interior and that B(z) is aperiodic with

B(0) 6= 0. Then the sum,

Sn := X1 +X2 + · · ·+Xn

satisfies a local limit law of the Gaussian type: for t in any finite interval, one has

P(Sn = bµn+ tσ
√
nc) =

e−t
2/2

√
2πnσ

(
1 +O(n−1/2)

)
.

.

Here aperiodic means that the gcd{j : bj > 0, j > 0} = 1, where B(z) =
∞∑
j=0

bjz
j (or

more informally, the digit sequence for H cannot all be divisible by some integer larger

than 1). In our case, the PGF of the H(Xi) is the polynomial

p(x) =
xH(0) + xH(1) + · · ·+ xH(b−1)

b
.

1We quote a simpler version, with a minor typo corrected
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It is important in our definition of b-happy functions that we assume that H(0) = 0,

and H(1) = 1. This guarantees that p(x) is aperiodic and in particular that the above

theorem applies for the sum H(Ym). As a consequence, for a fixed interval [−T, T ], if

i = µm+ tσ
√
m for some t ∈ [−T, T ], then

Pm,i =
e−t

2/2

√
2πmσ

(
1 +O

(
m−1/2

))
.

The above error term, O
(
m−1/2

)
, will prove to be a technical difficulty which will

be discussed later.

6.2.4 Overview of the Proof

The following heuristic will provide the general motivation for the proofs. Recall that

the random variable Ym is concentrated near its mean µm.

Primary motivation for the proofs: Suppose I is a large interval with type-C

density d. Consider the choices of m such that the mean of H(Ym) is in the interval I,

then for some choices of m we likely have

P
(
H(Ym) is type-C

)
≥ d.

Thus if there is an interval I with high type-C density and midpoint a, we should be

able to find a much larger interval I ′ ≈ [0, ba/µ] (where b is the base we are working

in) also with high type-C density. We can apply this reasoning iteratively to conclude

the upper density of type-C numbers is large.

The key idea to turn this heuristic into a proof is to average over all reasonable

choices of m in order to imply there is an m with the desired property.

We will use Theorem 6.8 to show that, for small k, H(Ym) and H(Ym+k) have

essentially the same distribution only shifted by a factor of µk. Thus, as k varies, the

distributions H(Ym+k) should uniformly cover the interval I. It is crucial here to use

the fact that H(Ym) is approximately locally normal, otherwise the proof will fail. For

example, suppose all the happy numbers in I are odd. In this case, if H(Ym) is not

locally normal and instead is supported on the even numbers for all m, then every shift

H(Ym+k) will miss all of the happy numbers in I.
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Unfortunately, the fuzzy term in the local limit law prevents us from obtaining

explicit bounds on the error (and any explicit bounds seem unsatisfactory for our

purposes). Section 3 adds a necessary step, which is to construct an interval within

[bn−1, bn] with high type-C density for n arbitrarily large. The trick is to consider inter-

vals of the form Ik := [1k0n−k, 1k0m(b − 1)n−k−m] (here 1k denotes k consecutive 1’s).

This solves the issue where H(Ym) and H(Ym+k) are not exact shifts of each other,

as the distributions induced by the Ik are exact shifts under the image of H. These

distributions will uniformly cover the base interval I with much better provable bounds.

The main result is presented in Section 4, the proof uses the local limit law with the

result from Section 3.

6.3 Constructing Intervals

Throughout this section, if Y is a random variable and k is an integer, let τk(Y ) denote

the random variable Y + k.

Definition 6.9. We say an integer interval I is n-strict if I ⊆ [bn−1, bn − 1] and

|I| = b3n/4.

The primary goal of this section is to construct n-strict intervals of high type-C

density for arbitrarily large n.

Our choice of the definition of n-strict is only for the purpose of simplifying calcu-

lations, there is nothing special about the value 3
4 . In fact, any ratio > 1

2 would work.

Note if 4 does not divide n, then no n-strict intervals exist.

For the entirety of this section we will make the following assumptions:

• H is a b-happy function with digit mean µ and digit variance σ2.

• We wish to lower bound the upper density of type-C integers for some C ⊂ N.

• We have found, by computer search, an appropriate starting interval I1, which is

n1-strict and has suitably large type-C density dC(I1).
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The results in this section apply only if this n1 is sufficiently large, so we state

here exactly how large n1 must be so one knows where to look for the interval I1. In

particular, we say an integer n satisfies the bounds (B) if

B1: 4
(
1 + 3µ+

√
2σb5n/8

)
≤ bn−1,

B2:
√

3µbσ ≤ b3n/8,

B3: 4µ
(
3µ+ 1 + b3n/4 + 2σµ−1/2b5n/8

)
≤ bn−1.

Generally, n need not be too large to satisfy these bounds. For example, if H is a

(2, 10)-happy function, assuming n > 13 is enough to guarantee that it satisfies bounds

(B). This is well within the scope of the average computer as it is possible to compute

the density of type-C integers in [0, bn − 1] for n up to (and beyond) 1000 using the

algorithm in Section 2. These bounds are necessary in the proof of Theorem 6.13.

Our first goal is to use an arbitrary n-strict interval I to construct a second interval,

I2, which is n2-strict for some n2 much larger than n and contains a similar density of

type-C integers as I. The next lemma will be a helpful tool.

Lemma 6.10. Let I := [i1, i2], J := [j1, j2] be integer intervals. Let S ⊆ I and Y be an

integer-valued random variable whose support is in J . For k ∈ Z, denote the random

variable Y + k as τk(Y ). Then there exists an integer k ∈ [i1 − j2, i2 − j1] such that

P
(
τk(Y ) ∈ S

)
≥ |S|
|I|+|J |−1 .

Proof. The idea of the proof is that by averaging over all appropriate k, the distributions

of τk(Y ) should uniformly cover I. More formally, let k1 := i1 − j2, k2 := i2 − j1, and

let K be the set of integers in the interval [k1, k2]. Note that |K| = |I|+ |J | − 1. Pick

k uniformly at random from K and consider the random variable Z := P
(
τk(Y ) ∈ S

)
.

Then

E[Z] =
1

|K|

k2∑
k=k1

P
(
τk(Y ) ∈ S

)

=
1

|I|+ |J | − 1

k2∑
k=k1

∑
i∈S

P
(
τk(Y ) = i

)
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=
1

|I|+ |J | − 1

∑
i∈S

k2∑
k=k1

P(τk(Y ) = i). (6.5)

Note that P
(
τk(Y ) = i

)
= P

(
Y = i− k

)
and for i ∈ S ⊆ I we have,

J ⊆ [i− k2, i− k1].

Thus, for all i ∈ S,

k2∑
k=k1

P
(
τk(Y ) = i

)
= P(Y ∈ [i− k2, i− k1]) = 1.

Therefore,

(6.5) =
|S|

|I|+ |J | − 1
.

So there exists k such that P
(
τk(Y ) ∈ S

)
≥ E[Z] = |S|

|I|+|J |−1 .

Using Lemma 6.10, we will not lose much density assuming that |I| is much larger

than |J |. However, if Ym is induced by the interval [0, bm−1], then the random variable

H(Ym) will be supported on a set J that is much too large. As a result, it will be more

useful to consider a smaller interval where the bulk of the distribution lies.

Lemma 6.11. Let Y be an integer-valued random variable with mean µY and variance

σ2
Y , and let λ > 0. Let S ⊆ [i1, i2] = I be a set of integers where |S|/|I| = d. Then

there exists an integer k ∈ [i1 − (µY + σY λ), i2 − (µY − σY λ)] such that

P
(
τk(Y ) ∈ S

)
≥
(

1− 1

λ2

)( d

1 + 2σY λ
|I|

)
.

Proof. By Chebyshev’s Inequality2 we have P(|Y − µY | < σY λ) > 1− 1
λ2

. Let Y ′ be Y

conditioned on being in the interval J := [µY − σY λ, µY + σY λ]. Note that

|J | ≤ 2σY λ+ 1.

Then, by Lemma 6.10, there exists k ∈ [i1 − (µY + σY λ), i2 − (µY − σY λ)] such that

P
(
τk(Y

′) ∈ S
)
≥ |S|
|I|+|J |−1 = d

1+
2σY λ

|I|
. Therefore, we have

P
(
τk(Y ) ∈ S

)
≥ P(Y ∈ J)P

(
τk(Y

′) ∈ S
)
≥
(

1− 1

λ2

)(
d

1 + 2σY λ
|I|

)
.

2We certainly could do better than Chebyshev’s Inequality here. However, the bounds it gives will
suit our purposes fine.
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It is possible to construct sets of intervals which, under the image of H, act as

shifts of each other. For example, in base-10 (recall H(0) = 0, H(1) = 1) if the random

variable X1 is induced by [1100, 1199] and X2 is induced by [0, 99], then H(X1) =

H(X2) + 2.

We will now further expand on the example above. Let n ∈ N be divisible by 4. Let

B0 := [0, b3n/4 − 1] and, for k = 1, . . . , n4 , consider the interval

Bk := [bn−1 + bn−2 + · · ·+ bn−k, bn−1 + bn−2 + · · ·+ bn−k + b3n/4 − 1].

Then the intervals Bk will all be n-strict (with exception of B0), and a random integer

x ∈ Bk will have the following base-b expansion:

x = 11 . . . 1︸ ︷︷ ︸
k digits

00 . . . 0︸ ︷︷ ︸
n
4
−k digits

XiXi−1 . . . X1︸ ︷︷ ︸
3n
4

digits

.

That is, x will have its first k digits equal to 1, the next n
4 − k digits equal to 0, and

the remaining 3n
4 digits will be i.i.d. random variables Xi taking values uniformly in

the set {0, 1, . . . , b− 1}.

For k = 0, · · · , n4 let Yk be the random variable which is uniform in Bk. Note that

H(Yk) = H(Y0) + k = τk (H(Y0)) .

Recall H(Y0) has mean 3n
4 µ, and variance 3n

4 σ
2. Consider an interval I = [i1, i2]

containing a set of type-C integers S, and let λ > 0. By Lemma 6.11, there exists

k′ ∈
[
i1 −

(
3n
4 µ+

√
3n
4 λσ

)
, i2 −

(
3n
4 µ−

√
3n
4 λσ

)]
such that

P
(
τk′
(
H(Y0)

)
∈ S

)
≥
(

1− 1

λ2

)( dC(I)

1 +
√

3nλσ
|I|

)
. (6.6)

Thus, if I ⊆
[
1+ 3

4nµ+λσ
√

3
4n,

1
4n+ 3

4nµ−λσ
√

3
4n
]
, then 1 ≤ k′ ≤ n

4 . Setting k := k′

produces the interval Bk, which will be n-strict with

dC(Bk) ≥
(

1− 1

λ2

)( d

1 +
√

3nλσ
|I|

)
.

In fact, we have proven the following
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Theorem 6.12. Let n ∈ N be divisible by 4 and let C ⊂ N. For λ > 0, define

Jn,λ :=
[
1 + 3

4nµ+λσ
√

3
4n,

1
4n+ 3

4nµ−λσ
√

3
4n
]
. Fix an interval I ⊆ Jn,λ. Then there

exists an n-strict interval, I2, such that dC(I2) ≥ dC(I)
(

1− 1
λ2

)(
1

1+
√

3nσλ
|I|

)
.

The goal for the rest of the section is to use the previous theorem iteratively to

construct a sequence of intervals {Ii}∞i=1, each with high type-C density, such that each

Ii is ni-strict and the sequence {ni}∞i=1 grows quickly. One technical issue to worry

about is that dC(Ii+1) < dC(Ii) for all i. How much smaller dC(Ii+1) is depends on how

large we choose λi to be in each step. We wish to choose λi as large as possible, but

choose λi too large and two bad things can happen: First, Ii will not be contained in

Jni+1,λi for any choice of ni+1. Second,
√

3nσλi
|I| will not be small. We are helped by the

fact that the sequence {ni}∞i=1 will grow super exponentially (in fact, ni+1 = Ω(bni)).

Choosing λi = bni/8 in each step will work well; however, we will need the initial n1

to be sufficiently large. The next theorem gives precise calculations. The proof follows

from a number of routine calculations and estimations, some of which we have left for

the appendix.

Theorem 6.13. Suppose I is n-strict, where n satisfies bounds (B). Then there exists

n2 ≥ bn−1

µ , and an n2-strict interval I2 such that

dC(I2) ≥ dC(I)
(

1− b−n/4
)(

1− 2σ
√
µ
b−n/8

)
.

Proof. As before, let Jm,λ :=
[
1 + 3

4mµ+ λσ
√

3
4m,

1
4m+ 3

4mµ− λσ
√

3
4m
]
. We as-

sumed that I is n-strict, so |I| = b3n/4. Write I as [a, a+ b3n/4 − 1]. Setting λ := bn/8,

we attempt to find an n2 divisible by 4 such that I ⊆ Jn2,λ. It would be prudent to

consider f(m) := 1 + 3
4mµ + λσ

√
3
4m, which is the left endpoint of Jm,λ. We first

find an integer n2 such that f(n2) ≤ a and a − f(n2) is small. By Lemma 6.22 in the

Appendix, assuming n satisfies bounds (B), it follows that there exists n2 such that:

• 4 | n2,

• bn−1

µ ≤ n2 ≤ 4
3µb

n,

• 0 ≤ a− f(n2) ≤ 3µ+ 1.



88

We now check that I ⊆ Jn2,λ in order to invoke Theorem 6.12. We already have

that the left endpoint f(n2) ≤ a. It remains to check the right endpoints of I and Jn2 .

We need to show that

a− 1 + b3n/4 ≤ n2

4
+

3n2

4
µ− λσ

√
3n2

4
. (6.7)

The above is equivalent to

a−

(
3n2

4
µ+ λσ

√
3n2

4
+ 1

)
+ b3n/4 ≤ n2

4
− 2λσ

√
3n2

4
.

Simplifying, the above follows from showing that

a− f(n2) + b3n/4 + 2λσ

√
3n2

4
≤ n2

4
.

Now let

LHS := a− f(n2) + b3n/4 + 2λσ

√
3n2

4
.

Then

LHS ≤ 3µ+ 1 + b3n/4 + λσ
√

3n2.

Using the facts that λ = bn/8 and n2 ≤ 4bn

3µ , we get that

LHS ≤ 3µ+ 1 + b3n/4 + 2
σ
√
µ
b5n/8.

Now consider RHS := n2
4 . By the assumptions on n2, we have

RHS ≥ bn

4bµ
.

So (6.7) follows from showing that

3µ+ 1 + b3n/4 + 2
σ
√
µ
b5n/8 ≤ bn

4bµ
.

The above is exactly the bound (B3). Therefore, I ⊆ Jn2,λ. Thus, by applying Theorem

6.12 with λ = bn/8, there exists an n2-strict interval I2 such that

dC(I2) ≥ dC(I)
(

1− 1

bn/4

)( 1

1 +
√

3n2σbn/8

b3n/4

)
.

Since n2 ≤ 4
3µb

n, it follows that

1

1 +
√

3n2σbn/8

b3n/4

≥ 1

1 + 2σ√
µb
−n/8 ≥ 1− 2σ

√
µ
b−n/8.

Thus, we conclude that dC(I2) ≥ dC(I)
(
1− b−n/4

) (
1− 2σ√

µb
−n/8

)
.
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Apply the previous theorem to our starting n1-strict interval I1 to get an n2-strict

interval I2. Since n2 > n1, we can apply Theorem 6.13 again on I2. Continuing in

this manner produces a sequence of integers {ni}∞i=1 and ni-strict intervals {Ii}∞i=1 such

that, for all i:

• ni+1 ≥ bni−1

µ ,

• dC(Ii+1) ≥ dC(Ii)
(
1− b−ni/4

) (
1− 2σ√

µb
−ni/8

)
.

The second condition implies that, for all i,

dC(Ii) ≥ dC(I1)
∞∏
i=1

((
1− b−ni/4

)(
1− 2σ
√
µ
b−ni/8

))
. (6.8)

The following fact will help simplify the above expression. For positive real numbers

x and α, if x ≥ 2α > 0, then

1− αx−1 ≥ 1

1 + 2αx−1
≥ e−2αx−1

.

Therefore, (6.8) implies that

dC(Ii) ≥ dC(I1) · exp

( ∞∑
i=1

−2b−ni/4 − 4σ
√
µ
b−ni/8

)
.

For all i ∈ N, it holds that ni ≥ in1 (it may happen that n2 < 2n1 if µ is very large,

but assuming the bounds (B) this will not be the case). The sum in the previous

inequality is the sum of two geometric series, one with ratio r = b−n1/4 and first term

a = −2b−n1/4. The second has r = b−n1/8 and a = −4σ√
µ b
−n1/8. Recall that an infinite

geometric series with |r| < 1, and first term a sums to

a

1− r
.

Therefore, the first series sums to −2b−n1/4

1−b−n1/4 , the second sums to −4σb−n1/8√
µ(1−b−n1/8)

. After

simplifying we conclude that, for all i,

dC(Ii) ≥ dC(I1) · exp

(
−2

bn1/4 − 1
+

−4σ
√
µ(bn1/8 − 1)

)
.

Thus, we have proven the following
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Theorem 6.14. Assume there exists n1 satisfying the bounds (B) and an n1-strict

interval I1. Then, for all N ∈ N, there exists n > N and an n-strict interval I such

that

dC(I) ≥ dC(I1) · exp

(
2

1− bn1/4
+

4σ
√
µ(1− bn1/8)

)
.

6.4 Main Result

As in the previous section we continue to assume that H is a b-happy function with

digit mean µ and digit variance σ2. Also, we assume that we have experimentally found

a suitable starting n1-strict interval, I1, with large type-C density for some C ⊂ N. As

in Section 2, for positive integers m, let Ym denote the random variable induced by the

interval [0, bm − 1].

In this section we give a proof of the following

Theorem 6.15. Suppose I1 is n1-strict, where n1 satisfies bounds (B). Let d̄ denote

the upper density of the set of type-C integers. Then

d̄ ≥ dC(I1) · exp

(
2

1− bn1/4
+

4σ
√
µ(1− bn1/8)

)
.

The digit mean and digit variance for the case (e, b) = (2, 10) are 28.5 and 721.05

respectively. In this case, if n > 13, then it satisfies bounds (B). After performing a

computer search we find that the density of happy numbers in the interval [10403, 10404−

1] is at least .185773; thus, there exists a 404-strict interval containing at least this

density of happy numbers as a subset. Consider

δ(n) :=
( 2

1− bn/4
+

4σ
√
µ(1− bn/8)

)
.

Plugging in the value for n, we find that eδ(404) > 1 − 10−49. Thus, by Theorem 6.15,

the upper density of type-{1} integers is at least .1857729. For the lower density, the

type-{1} density of [102367, 102368 − 1] is at most .11379. This implies that there is a

2368-strict interval with type-{4, 16, 37, 58, 89, 145, 42, 20} density at least 1 − .11379

(recall that there are only two cycles for the (2, 10)-function). We can then apply

the main result to conclude that the upper density of type-{4, 16, 37, 58, 89, 145, 42, 20}

integers is at least 1− .1138. This gives the following
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Corollary 6.16. Let d and d̄ be the lower and upper density of (2, 10)-happy numbers

respectively. Then d < .1138 and d̄ > .18577.

The proof of Theorem 6.15 is somewhat technical despite having a rather intuitive

motivation. For the sake of clarity we first give a sketch of how to use Theorems 6.14

and 6.8 in order to prove a lower bound on the upper density of type-C numbers.

Given our starting interval I1, apply Theorem 6.14 to construct an n-strict interval

I, where

dC(I) ≥ (1− o(1))dC(I1).

Do this with n large enough as to make all the following error estimations arbitrarily

small. Pick m1 such that µm1 (i.e., the mean of H(Ym1)) lands in the interval I. Since

I ⊆ [bn−1, bn], we have that m1 = Θ(bn). This implies that the standard deviation of

H(Ym1) is roughly bn/2. This will be much less than |I| = b3n/4 and thus the bulk of

the distribution of H(Ym1) will lie in the interval I.

Next, use Lemma 6.11 with a large λ to find an integer k for which

P
(
τk
(
H(Ym1)

)
is type-C

)
≥ (1− o(1))dC(I1).

Note that this k will be smaller than |I| = b3n/4 and that the mean of τk
(
H(Ym1)

)
is

equal to µm1 + k. Clearly, there exists an integer m2 such that

|µm2 − (µm1 + k)| ≤ µ.

Consider the random variable H(Ym2). The means of H(Ym2) and τk (H(Ym1)) are

almost equal. Since k is much smaller relative to m1 and m2, the variance of these two

distributions will be close. Furthermore, the distributions of H(Ym2) and τk
(
H(Ym1)

)
are asymptotically locally normal, so we may apply the local limit law to conclude that

the distributions are point-wise close near the means. Thus,

P
(
H(Ym2) is type-C

)
≥ (1− o(1))dC(I1).

This implies that the interval [0, bm2 − 1] has type-C density at least dC(I1) (1− o(1)).

Note that in the above analysis, we may take n (and therefore m2) to be arbitrarily

large. This lower bounds the upper density of type-C integers by dC(I1)(1− o(1)). In
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fact, the only contribution to the error term is from the application of Theorem 6.14

(the rest of the error tends to 0 as n tends to infinity).

6.4.1 Some Lemmas

We will now begin to prove the main result. We have broken some of the pieces down

for 3 lemmas. The proofs primarily consist of calculations and we leave them for after

the proof of the main result. Note that Lemma 6.19 (part 1) is the only place where

the local limit law is used.

Lemma 6.17. There exists a sufficiently large N such that, if n > N and I is an

n-strict interval, then there exists m ∈ N with the property that

[µm− σm5/8, µm+ σm5/8] ⊆ I.

Lemma 6.18. Let ε > 0 be given (assume as well that ε ≤ 1). Let λ :=
√

6
ε . Then

there exists a sufficiently large N such that, if n,m1, and I all satisfy:

• n > N ,

• m1 ∈ [ b
n−1

µ , b
n

µ ],

• I is n-strict,

then the following hold:

1. λ ≤ m1
1/8,

2.

∣∣∣∣∣1− 1

1+
2λσ
√
m1

b3n/4

∣∣∣∣∣ ≤ ε
6 .

Lemma 6.19. Let ε > 0 be given (assume as well that ε ≤ 1). Let T := 2
√

6√
ε

, and

λ :=
√

6√
ε
. Then there exists a sufficiently large N such that, if n,m1,m2, k, and I all

satisfy:

• n > N ,

• m1 ∈ [ b
n−1

µ , b
n

µ ],m2 ∈ [ b
n−2

µ , b
n+1

µ ],
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• |k| ≤ b3n/4,

• |µm1 + k − µm2| ≤ µ,

• I is n-strict,

then the following hold:

1. For i ∈ {1, 2}, max
|t|≤T

∣∣∣∣∣∣1− P(H(Ymi )=bµmi+tσ
√
mic)

et
2/2√

2πmiσ

∣∣∣∣∣∣ ≤ ε
6 .

2.
∣∣∣1−√m1

m2

∣∣∣ ≤ ε
6 .

3. For any real numbers t1 and t2, where t1 ∈ [−T2 , T2 ] and

µm1 + k + t1σ
√
m1 = µm2 + t2σ

√
m2,

it holds that t2 ∈ [−T, T ] and |1− et12−t22/2| ≤ ε
6 .

6.4.2 Proof of Theorem 4.1

Proof. In order to lower bound the upper density of type-C integers, it suffices to show

that, for all ε > 0 and N1 ∈ N, there exists m > N1 such that

dC([0, bm − 1]) ≥ dC(I1) · exp

(
2

1− bn/4
+

4σ
√
µ(1− bn/8)

)
(1− ε).

Let ε and N1 be arbitrary (with ε ≤ 1). Set T := 2
√

6√
ε

. Also, in anticipation of applying

Lemma 6.11, set λ :=
√

6√
ε
.

First, pick N > N1 large enough to apply Lemmas 6.17, 6.18, and 6.19. By Theorem

6.14, there exists an n-strict interval I, where n > N and

dC(I) ≥ dC(I1) · exp

(
2

1− bn1/4
+

4σ
√
µ(1− bn1/8)

)
. (6.9)

For m ∈ N, let

Jm := [µm− σm5/8, µm+ σm5/8].

Recall that E[H(Ym)] = µm and Var[H(Ym)] = σ2m. Hence, Jm is where the bulk of

the distribution of H(Ym) lands. Pick m1 such that Jm1 ⊆ I (the existence of such m1

is guaranteed by Lemma 6.17). Note that m1 ∈ [ b
n−1

µ , b
n

µ ] since I is n-strict. Let S be
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the set of type-C integers in I. Apply Lemma 6.11 on the random variable H(Ym1) to

find an integer k such that

P
(
τk
(
H(Ym1)

)
∈ S

)
≥ dC(I)

(
1− 1

λ2

)( 1

1 +
2λσ
√
m1

|I|

)
. (6.10)

Since Jm1 ⊆ I and |I| = b3n/4, it follows that k ≤ b3n/4.

Let τk(Jm1) := [a+k, b+k], where Jm1 = [a, b]. Let S′ be the set of type-C integers

in interval τk(Jm1). Recall the proof of Lemma 6.11. In particular, we applied Lemma

6.10 after ignoring the tails of the distribution of H(Ym1) outside of λσ
√
m1 from the

mean. Since λ ≤ m1
1/8 (by Lemma 6.18, part 1), we may replace (6.10) by the stronger

conclusion that

∑
i∈S′

P
(
τk
(
H(Ym1)

)
= i
)
≥ dC(I)

(
1− 1

λ2

)( 1

1 +
2λσ
√
m1

|I|

)
.

Using the assumption that λ =
√

6
ε and part 2 of Lemma 6.18, we simplify the

above as ∑
i∈S′

P
(
τk
(
H(Ym1)

)
= i
)
≥ dC(I)

(
1− ε

6

)2
. (6.11)

Now pick m2 ∈ N such that |m1µ+ k −m2µ| ≤ µ. Since |k| ≤ b3n/4, it follows that

m2 ∈ [ b
n−2

µ , b
n+1

µ ]. In particular m1,m2, n, k, and I now all satisfy the conditions of

Lemma 6.19. It remains to show that near the mean of τk
(
H(Ym1)

)
, the distributions

of τk
(
H(Ym1)

)
and H(Ym2) are similar. This will imply that the interval [0, bm2 − 1]

contains a large density of type-C integers. Making this precise, we prove the following

Claim 6.20. For integers i ∈ τk
(
Jm1

)
,

P
(
H(Ym2) = i

)
P
(
τk
(
H(Ym1)

)
= i
) ≥ (1− ε

6

)4
.

Proof. Let i ∈ τk(Jm1) be fixed and pick t1, t2 such that

i = µm1 + k + t1σ
√
m1 = µm2 + t2σ

√
m2.

It is important now that we had chosen λ = T
2 , this implies that |t2| ≤ T (see Lemma

6.19 part 3). We can use the local limit law to estimate the distributions of τk
(
H(Ym1)

)
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and H(Ym2). By Lemma 6.19 part 1,

P
(
H(Ym2) = i

)
= P

(
H(Ym2) = µm2 + t2σ

√
m2

)
≥ e−t2

2/2

2πσ
√
m2

(
1− ε

6

)
and

P
(
τk
(
H(Ym1)

)
= i
)

= P
(
H(Ym1) = µm1 + t1σ

√
m1

)
≤ e−t1

2/2

2πσ
√
m1

(
1 +

ε

6

)
.

Hence,

P
(
H(Ym2) = i

)
P
(
τk
(
H(Ym1)

)
= i
) ≥ exp

(
(t1

2 − t22)/2
) √m1√

m2

(1− ε
6)

(1 + ε
6)
.

The above, by Lemma 6.19 parts 2 and 3, is at least
(
1− ε

6

)4
.

Putting it all together, we have shown that

dC([0, bm2 − 1]) ≥
∑
i∈S′

P
(
H(Ym2) = i

)
=
∑
i∈S′

P
(
H(Ym2) = i

)
P
(
τk
(
H(Ym1)

)
= i
)P(τk(H(Ym1)

)
= i
)
.

≥
(

1− ε

6

)4 ∑
i∈S′

P
(
τk
(
H(Ym1)

)
= i
)

(Claim 1)

≥ dC(I)
(

1− ε

6

)6
(Equation 6.11)

≥ dC(I)(1− ε).

To conclude the proof, equation (6.9) implies that

dC([0, bm2 − 1]) ≥ dC(I1) · exp

(
2

1− bn1/4
+

4σ
√
µ(1− bn1/8)

)
(1− ε).

We conclude this section with the proofs of the lemmas used in the previous theorem.

Proof of Lemma 6.17

Proof. For m ∈ N, let Jm := [µm − σm5/8, µm + σm5/8]. If I is an n-strict interval,

then I ⊆ [bn−1, bn − 1]. Note that µm ∈ I implies that m = O(bn). This in turn shows

that

|Jm| = O(b5n/8)� |I| = b3n/4.
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Comparing the growth rates of |Jm| and |I| it is clear that we can pick N1 large enough

such that n > N1 implies that there exists m with Jm ⊆ I.

Proof of Lemma 6.18

Proof. We find N1, N2 for the two parts respectively and then choose N = max(N1, N2).

1. λ is a fixed constant here and it is assumed that m1 ≥ bn−1

µ , so the result is

trivial (this gives N1).

2. For x > 0, to show that
∣∣∣1− 1

1+x

∣∣∣ ≤ ε
6 , it is equivalent to prove that

(
1− ε

6

)
(1 + x) ≤ 1 ≤

(
1 +

ε

6

)
(1 + x).

The above follows if x ≤ ε
6 . Thus, the result will follow by finding N large enough such

that
2σλ
√
m1

b3n/4
≤ ε

6 . Using the assumption that m1 ≤ bn

µ , we get

2σλ
√
m1

b3n/4
≤ 2σλ
√
µbn/4

.

This is equivalent to

12σλ
√
µε
≤ bn/4.

Hence, picking N2 ≥ 4 logb(
12σλ√
µε ) suffices.

Proof of Lemma 6.19

Proof. We first find N1, N2, and N3 for the 3 parts respectively, and then define N :=

max(N1, N2, N3).

1. For each m, we have

H(Ym) =
m∑
i=1

H(Xi),

where each Xi is uniform in the set {0, 1, · · · , b − 1}. Recall that it is assumed that

H(0) = 0 and H(1) = 1. In particular, the random variables H(Xi) satisfy the aperiodic

condition required by Theorem 6.8. Thus, the result follows from applying Theorem

6.8 to the sum
m∑
i=1

H(Xi) with finite interval [−T, T ]. Fix M large enough such that

m > M implies that the O(m−1/2) term in Theorem 6.8 is less than ε
6 . By assumption,
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we have that both m1 and m2 are larger than bn−2

µ . Hence, setting N1 = logb (µM) + 2

suffices.

2. Ignoring the square root, it suffices to show that∣∣∣∣1− m1

m2

∣∣∣∣ ≤ ε

6
. (6.12)

By assumption

|µm1 + k − µm2| ≤ µ.

Dividing through by µm2, it follows that∣∣∣∣1− m1

m2
− k

µm2

∣∣∣∣ ≤ 1

m2
.

This implies that

k

µm2
− 1

m2
≤ 1− m1

m2
≤ 1

m2
+

k

µm2
.

Thus, (6.12) follows from showing that 1
m2

+ k
µm2

≤ ε
6 . Using the assumption that

m2 ≥ bn−2

µ and |k| ≤ b3n/4, it follows that

1

m2
+

k

µm2
≤ µb−(n−2) + b2−(n/4).

Therefore, picking N2 := max(logb(
12µ
ε ) + 2, 4 logb(

12
ε ) + 2) suffices.

3. We first find N ′ such that n > N ′ implies that t2 ∈ [−T, T ]. We start with the

assumption that

µm1 + k + t1σ
√
m1 = µm2 + t2σ

√
m2.

Using the facts that |µm1 + k − µm2| ≤ µ and |t1| ≤ T
2 , this implies that

|t2| ≤
µ

σ
√
m2

+
T
√
m1

2
√
m2

.

We assumed that m2 ≥ bn−2

µ . Also, in part (2) we showed that there exists N2 such

that n > N2 implies that
√
m1√
m2
≤
(
1 + ε

6

)
≤ 7

6 . Hence, if we take N ′ > N2, it follows

that

|t2| ≤
µ2

σbn−2/2
+

7T

12
.

Pick N ′ > N2 large enough such that n > N ′ implies that µ2

σbn−2/2 ≤ 5T
12 . This will take

care of the size of t2.
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Now we must show that there exists N ′′ large enough such that n > N ′′ implies

that

∣∣∣1− e(t1
2−t22)/2

∣∣∣ ≤ ε

6
.

For a real number x, if we wish to show that |1− ex| ≤ ε
6 , it is equivalent to prove

that

ln
(

1− ε

6

)
≤ x ≤ ln

(
1 +

ε

6

)
.

Set ε∗ := min
(
ln
(
1 + ε

6

)
,
∣∣ln (1− ε

6

)∣∣). We find N ′′ such that n > N ′′ implies that∣∣∣∣ t22 − t12

2

∣∣∣∣ ≤ ε∗.
It was assumed that

µm1 + k + t1σ
√
m1 = µm2 + t2σ

√
m2.

Equivalently

µm1 + k − µm2 = t2σ
√
m2 − t1σ

√
m1.

Applying the assumption that the left hand side is at most µ and dividing both sides

by σ
√
m2, we get ∣∣∣∣t2 − t1√m1

m2

∣∣∣∣ ≤ µ
√
m2σ

.

Rearranging, this gives ∣∣∣∣t2 − t1 + t1(1−
√
m1

m2
)

∣∣∣∣ ≤ µ
√
m2σ

.

This implies that

|t2 − t1| ≤
µ

√
m2σ

+

∣∣∣∣t1(1−
√
m1

m2
)

∣∣∣∣ .
We assumed that m2 ≥ bn−2

µ and |t1| ≤ T . By part (2), if we chose N ′′ > N2, then∣∣∣∣1−√m1

m2

∣∣∣∣ ≤ µb−(n−2) + b−(n−2)/4.

Putting this together, it follows that∣∣∣∣ t22 − t12

2

∣∣∣∣ =

∣∣∣∣( t2 + t1
2

)
(t2 − t1)

∣∣∣∣ ≤ T(µ3/2b−(n−2)/2

σ
+ T (µb−(n−2) + b−(n−2)/4)

)
.

Now, since T, µ, σ, and b are all constants, it follows that the right hand side tends to

0 as n goes to infinity. Therefore, there exists N ′′ such that n > N ′′ implies that the

right hand side is at most ε∗. Finally, set N3 := max(N ′, N ′′).
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6.5 Experimental Data

The data3 presented in this section is the result of short computer searches, so the

bounds surely can be improved with more computing time. Floating point approxima-

tion with conservative rounding was used.

6.5.1 Finding an Appropriate n-strict Interval

If n is divisible by 4 and the interval [bn−1, bn − 1] has type-C density d, then there

exists an n-strict interval with type-C density at least d which we may apply Theorem

6.15 to. The type-C density of [bn−1, bn − 1] for various n can be quickly calculated by

first computing the densities of intervals of the form [0, bn − 1]; the algorithm which

does this was discussed in Section 2. After an appropriate n-strict interval is found, we

check to see that n satisfies bounds (B), compute the error term, and find the desired

bound. Our results show that in almost all cases, the asymptotic density of type-C

numbers does not exist.

6.5.2 Explanation of Results

The following information is given in tables (in the order of column in which they

appear):

1. The cycle C in which type-C densities are being computed.

2. The lower bound on the upper density (UD) implied by Theorem 6.15.

3. The upper bound on the lower density (LD) implied by Theorem 6.15.

4. The n such that the interval [bn−1, bn − 1] is used to find the bound (denoted as

UD n or LD n).

5. The δ(n) =
(

2
1−bn/4 + 4σ√

µ(1−bn/8)

)
part of the error term for Theorem 6.15 (we

only present an upper bound on |δ(n)|, the true number is always negative). In all

3Data generated by fellow graduate student, Patrick Devlin.
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cases the error is small enough not to affect the bounds as we only give precision

of about 5 or 6 decimal places.

Cubing the Digits in Base-10

In this case, if n > 16, then it satisfies bounds (B). Table 1 shows the results for the

cycles when studying the (3, 10)-happy function. There are 9 possible cycles. Figure 2

graphs the density of type-{1} integers less than 10n. It is easy to prove, in this case,

that 3 | n if an only if n is type-{153}.

Table 6.1: Bounds for the cycles appearing for the (3, 10)-function
Cycle UD LD UD n LD n UD δ(n) LD δ(n)

{1} > .028219 < .0049761 10864 10132 < 10−106 < 10−14

{55,250,133} > .06029 < .0447701 10208 10964 < 10−24 < 10−118

{136,244} > .024909 < .006398 10204 10420 < 10−23 < 10−51

{153} = 1
3 = 1

3 N/A N/A N/A N/A

{160,217,352} > .050917 < .03184 10160 10456 < 10−18 < 10−56

{370} > .19905 < .16065 10276 10560 < 10−32 < 10−68

{371} > .30189 < .288001 10836 10420 < 10−102 < 10−50

{407} > .04532 < .0314401 10420 10836 < 10−50 < 10−103

{919,1459} > .04425 < .01843 10916 10120 < 10−112 < 10−13

Figure 6.2: Density of type-{1} integers in the interval [0, 10n−1] for the (3, 10)-function

A More General Function

In order to emphasize the generality of Theorem 6.15, we consider the function in base-

7 with digit sequence [0, 1, 7, 4, 17, 9, 13]. There are only two cycles for this function,
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both are fixed points. Written in base-10 the cycles are {1} and {20}. Figure 3 graphs

the relative density of type-{1} numbers. Table 2 shows the bounds derived. As there

are only two cycles, we focus on the cycle {1}. In this case, if n > 12, then it satisfies

bounds (B).

Table 6.2: Bounds for the cycles appearing for the function with digit sequence
[0, 1, 7, 4, 17, 9, 13]
Cycle UD LD UD n LD n UD δ(n) LD δ(n)

{1} > .9858 < .94222 7176 7384 < 10−17 < 10−40

Figure 6.3: Density of type-{1} integers in the interval [0, 7n − 1] for Digit Sequence
[0, 1, 7, 4, 17, 9, 13]

6.6 Chapter Appendix

Lemma 6.21. Fix a > 0. Assume that f : R+ → R+ has continuous first and second

derivatives such that, for all x ∈ R+, f ′(x) > 0 and f ′′(x) < 0. Also, assume that

lim
x→∞

f(x) =∞. Furthermore, suppose we have x∗ ∈ R+ such that f(x∗+ 1) ≤ a. Then

there exists n ∈ N such that n ≥ x∗ and 0 ≤ a− f(n) ≤ f ′(x∗).

Proof. This follows from a first order Taylor approximation of the function f . Let x∗

such that f(x∗ + 1) ≤ a be given. Set n := sup{m ∈ N|f(m) ≤ a}. Since f is strictly

increasing and unbounded this n exists. Note that f(n) ≤ a and f(n+ 1) > a. It also

follows that n ≥ x∗ as otherwise dx∗e would be the supremum. By the concavity of f ,
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we have

f(n+ 1)− f(n) ≤ f ′(n) ≤ f ′(x∗).

However, f(n+ 1) > a, so we conclude that 0 ≤ a− f(n) ≤ f ′(x∗).

Lemma 6.22. Let n be a positive integer, λ = bn/8, and a ∈ [bn−1, bn]. Let µ and σ be

the digit mean and variance of some b-happy function H. Also, assume that n satisfies

bounds (B). Let f(n) := 1 + 3
4µn+ λσ

√
3
4n. Then there exists an integer n2 such that:

• bn−1

µ ≤ n2 ≤ 4
3µb

n,

• 4 | n2,

• 0 ≤ a− f(n2) ≤ 3µ+ 1.

Proof. Since we require that 4 | n2, we apply Lemma 6.21 on the function

g(m) = f(4m) = 1 + 3µm+ λσ
√

3m.

Let x∗ := bn−1

4µ . We first check that g(x∗+1) ≤ a. By assumption, a ≥ bn−1. Therefore,

we need to show that

1 + 3µ
(bn−1

4µ
+ 1
)

+ bn/8σ

√
3
(bn−1

4µ
+ 1
)
≤ bn−1.

Simplifying the above, it suffices to show that

1 + 3µ+ b5n/8σ

√
3

4bµ
+ 3b−n ≤ bn−1

4
. (6.13)

To keep the results of this work as general as possible, we only assumed that µ ≥ 1
b

(this would correspond to the quite uninteresting b-happy function H which maps all

digits to 0 except for the digit 1). Also it is clear that bn ≥ 3, and therefore

3

4bµ
+ 3b−n ≤ 3

4
+ 1 ≤ 2.

Plugging this in and rearranging, we see that equation (6.13) follows if

4(1 + 3µ+
√

2σb5n/8) ≤ bn−1.
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This is exactly the bound (B1) and is true by assumption. Therefore, by Lemma 6.21,

there exists m ∈ N such that

0 ≤ a− g(m) ≤ g′(x∗).

Also,

g′(x∗) = 3µ+

√
3σbn/8

2
√

bn−1

4µ

= 3µ+
√

3µbσb−3n/8.

Again, by the assumption (B2) on n, the previous statement is bounded above by 3µ+1.

Set n2 := 4m. Then 4 | n2, n2 ≥ bn−1

µ , and 0 ≤ a − f(n2) ≤ 3µ + 1. Finally, we note

that f( 4
3µb

n) > a and, since f is strictly increasing, we conclude that n2 ≤ 4
3µb

n.
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graphs. Discrete mathematics, 289(1):181–185, 2004.

[LY02] Laszlo Lovasz and Neal E Young. Lecture notes on evasiveness of graph
properties. arXiv preprint cs/0205031, 2002.

[Mid04] G. Midrijanis. Exact quantum query complexity for total boolean functions.
arXiv preprint quant-ph/0403168, 2004.

[Nis91] Noam Nisan. CREW PRAMs and Decision Trees. SIAM J. Comput.,
20(6):999–1007, 1991.

[NS94] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real
polynomials. Computational Complexity, 4:301–313, 1994.



106

[NW88] Krzysztof Nowicki and John C Wierman. Subgraph counts in random graphs
using incomplete u-statistics methods. Annals of Discrete Mathematics,
38:299–310, 1988.

[Pan08] Hao Pan. On consecutive happy numbers. Journal of Number Theory,
128(6):1646–1654, 2008.
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