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ABSTRACT OF THE DISSERTATION

Algorithmic and Complexity Results for Boolean and

Pseudo-Boolean Functions

by Aritanan G. Gruber

Dissertation Director: Endre Boros

This dissertation presents our contributions to two problems.

In the first problem, we study the hardness of approximation of clause minimum

and literal minimum representations of pure Horn functions in n Boolean variables. We

show that unless P = NP, it is not possible to approximate in polynomial time the

minimum number of clauses and the minimum number of literals of pure Horn CNF

representations to within a factor of 2log1−o(1) n. This is the case even when the inputs are

restricted to pure Horn 3-CNFs with O(n1+ε) clauses, for some small positive constant

ε. Furthermore, we show that even allowing sub-exponential time computation, it is

still not possible to obtain constant factor approximations for such problems unless the

Exponential Time Hypothesis is false.

In the second problem, we study quadratizations of pseudo-Boolean functions, that

is, transformations that given a pseudo-Boolean function f(x) in n variables, pro-

duce a quadratic pseudo-Boolean function g(x, y) in n+m variables such that f(x) =

miny∈{0,1}m g(x, y) for all x ∈ {0, 1}n. We present some new termwise procedures, lead-

ing to improved experimental results, and then take a global perspective and start a

systematic investigation of some structural properties of the class of all quadratizations

of a given function.
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We show that all pseudo-Boolean functions in n variables can be quadratized and

y-linear quadratized (no quadratic products involving solely auxiliary variables) with at

most O(2n/2) and O
(

2n

n log n
)

auxiliary variables, respectively, and that almost all those

functions require Ω(2n/2) and Ω(2n/n) auxiliary variables in any quadratization and

any y-linear quadratization, respectively. We obtain the bounds O(nd/2) and Ω(nd/2)

for quadratizations of degree-d pseudo-Boolean functions, and bounds of n − 2 and

Ω(n/ log n) for y-linear quadratizations (and Ω(
√
n) for quadratizations) of symmetric

pseudo-Boolean functions. All our upper bounds are constructive, so they provide new

(y-linear) quadratization algorithms.

We then finish with a characterization of the set of all quadratizations of negative

monomials with one auxiliary variable, a result that was surprisingly difficult to obtain,

and whose proof at the moment is rather long and intricate.
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1

Introduction

“Go to the roots of calculations! Group the operations. Classify them ac-
cording to their complexities rather than their appearances! This, I believe, is the
mission of future mathematicians.” – Évariste Galois, 1832

Boolean and pseudo-Boolean functions, i.e., mappings of finite binary vectors (strings)

of {0, 1}n to binary and real values, respectively, are two of the most fundamental

mathematical objects and occur widely in fields as diverse as artificial intelligence [3, 99],

combinatorics [95], computational complexity [8, 96, 122], operations research [79, 50,

51], social choice theory [122], among many others. This omnipresence may be partially

explained by the fact that they are extremely versatile in modeling and expressing both

structured and unstructured discrete properties, as those can be seen as subsets (also

called classes) of the set of Boolean or pseudo-Boolean functions whose elements satisfy

some logical relations.

Given a Boolean or pseudo-Boolean function f in n variables, on a first level, one

is typically interested in answering questions as whether f has some specific property

(i.e., belongs to a certain class), or what is the value of f(x) for some x ∈ {0, 1}n, or

what is the smallest/largest value attained by f over {0, 1}n. On a second level, one

gets concerned about the necessary amount of computational resources to provide those

answers, where a resource may mean sequential or parallel time, space, communication

between two or more parties, random tosses of a coin, etc. The computation of any of

these quantities depends on the problem whose solution is being sought and on the form

of accessing the function f , which can be implicit through the use of an oracle (that

is, an algorithm accessed in a black-box fashion), or explicit through the availability of

some table with the function’s values, or an algebraic expression or circuit succinctly

encoding f — and these last two options open a wide array of questions about the
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representations of f themselves. Most times, that precise computation is difficult, and

one settles for lower and upper bounds on the amount of those resources. Naturally,

the smaller the gap between such bounds, the better.

In this dissertation, we contribute in finding and improving lower and upper bounds

on time and other more specific resources for two problems: one involving a class

of Boolean functions, called Horn functions, and the other involving pseudo-Boolean

functions. In both problems, we assume that the functions are specified through some

explicit (and problem dependent) algebraic expression.

In the first, the expressions are called Conjunctive Normal Forms (CNFs) — logical

conjunctions of logical disjunctions of positive or negated Boolean variables — and

are not unique, in the sense that a Horn function may admit many different CNF

representations. Finding the shortest possible CNF representation of a Horn function

is known to be an NP-hard problem (that is, a given candidate solution can be tested

to be correct in time polynomially bounded in the size of the problem’s input, but

finding such a candidate might not be an easy task as it may require exponential time

in the input’s size — settling the last statement either in a positive or a negative

way is the famous P versus NP problem (see Arora and Barak [8])). In fact, even

finding approximate short representations is known to be NP-hard beyond a certain

approximation factor. We improve that approximation factor under milder complexity-

theoretic hypothesis, and also address some more and some less stringent variants:

restricting the input to CNFs with at most three positive or negative variables in each

disjunction, and allowing sub-exponential time to perform the necessary computations.

The net message is that the problem is way harder than what was known and initially

thought: no constant factor approximation is possible, even having access to a sub-

exponential amount of computational time and dealing with very sparse CNFs, unless

a widely believed complexity-theoretic hypothesis, the Exponential Time Hypothesis,

turns out to be false. A more informative picture is given below, in Subsection 1.1.

The second problem is related to pseudo-Boolean optimization, or more specifically

to minimization of pseudo-Boolean functions represented by multilinear polynomials.

It is known that this representation is unique and it is also known that the optimization
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problem is NP-hard. In recent years, an influx of new activity has been seen, most of it

originating from researchers inside the computer vision community. They realized that

the results of Hammer, Hansen, and Simeone [78] (roof duality, persistencies) and of

Boros and Hammer [28], and Boros, Hammer, Sun, and Tavares [30] (max-flow/min-cut

reduction) were specially tailored to handle the very large instances of unconstrained,

quadratic binary optimization problems originating from applications such as image

restoration, stereo reconstructions, and picture segmentation. As they moved towards

more complex models, resulting in higher-degree polynomials, they started experiment-

ing in an ad-hoc fashion with variations of an idea proposed by Rosenberg [127], namely,

to introduce auxiliary variables and represent the desired function as a quadratic multi-

linear polynomial in this higher-dimensional space, so that both forms attain the same

values when the minimization targets those auxiliary variables. The literature then

saw the addition of a collection of specific “quadratization” procedures, mostly try-

ing to make the resulting quadratized function as close to submodular as possible, for

submodular pseudo-Boolean functions are solved exactly by the flow-based algorithm

mentioned above. Also, many experimental results, typically testing the quadratic op-

timization models produced by various quadratization procedures, were published. In

spite of all that activity, the understanding of quadratizations and of their structural

properties remained extremely limited.

We make some progress towards determining the strengths and weaknesses of quad-

ratizations by exhibiting lower and upper bounds on the number of auxiliary variables

necessary to quadratize general and symmetric pseudo-Boolean functions (the latter

being dependent only on the number of ones in the input). Our upper bounds are con-

structive, that is, they generate new quadratization procedures, but they take a global

standpoint: they are valid among all possible quadratizations of a given function, and

not related to some specific technique. Nonetheless, we also propose some new specific

quadratization schemes that proved themselves to be very efficient when experimentally

evaluated in some computer vision applications. Our lower bounds are in some cases

almost, in some cases essentially tight, and are the first ones ever introduced in the
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quadratization realm. Combining our lower and upper bounds, it is possible to con-

clude that short quadratizations, with respect to the number of auxiliary variables, are

rare objects in general, but that they can also be easily found in some smaller niches.

Similarly, a more informative picture is given below, in Subsection 1.2.

1.1 Hardness of Approximation of Pure Horn CNF Minimization

A Boolean function in n binary variables is a mapping from {0, 1}n to {0, 1}. Tra-

ditionally, the elements 0 and 1 are associated with the logical concepts of falseness

and trueness, as Boolean functions have a long history in modeling logical propositions;

see Crama and Hammer [51] for a brief picture, or a book in mathematical logic as

Mendelson [114] for a deeper treatment, or even a book in computational complexity

theory as Papadimitriou [123] for a coverage with a different viewpoint.

It is not hard to see that for each natural value n, there are 22n different Boolean

functions in n variables, and that each of those Boolean functions can be completely

specified through its true table, i.e., the list of values attained by the function in each of

its 2n possible inputs. Despite being useful in some cases and having some applications,

the list quickly becomes too long as n grows and more succinct forms of representation

are preferred. One such form, widely used, is the Conjunctive Normal Form (CNF):

logical conjunctions of logical disjunctions of literals, where the latter is simply a binary

variable or its negation. The satisfiability problem (SAT) of Boolean functions, the

first “natural” problem to be proven NP-complete [45, 73] and most likely, the most

famous one in this complexity class, can be stated as: given a CNF representing a

Boolean function f , decide whether there is a (binary) valuation to its variables such

that the formula evaluates to one, that is, it is satisfiable in the logical sense. In spite

of its tremendous importance, its complexity status propelled researchers to investigate

simpler classes of Boolean functions in which knowledge representation was still possible,

at least in a partial way, and logical inference could be performed in polynomial time

in the representation size. One such class is the set of Horn functions.

Horn functions constitute a rich and important class of Boolean functions and have
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many applications in artificial intelligence, combinatorics, computer science, and oper-

ations research. Furthermore, they possess some nice structural and algorithmic prop-

erties. An example of this claim resides in the fact that the satisfiability for Horn

functions can be solved in linear time in the number of variables plus the length of the

Horn CNF formula being considered (Dowling and Gallier [56], Itai and Makowsky [93],

and Minoux [117]), where length in this context means the number of literal occurrences

in the formula (i.e., multiplicities are taken into account).

As mentioned before, CNF representations are usually not unique and that claim is

also applicable in the Horn domain. The problem of finding short Horn CNF represen-

tations of Horn functions specified through Horn CNFs has received some considerable

attention in the literature since it has an intrinsic appeal stemming from both theoreti-

cal and practical standpoints. The same can be said about some special cases, including

Horn 3-CNFs, i.e., the ones in which each clause has at most three literals.

Two of the common measures considered are the number of clauses and the number

of literal occurrences (henceforth, number of literals). The NP-hardness of minimizing

the number of clauses in Horn CNFs was first proved in a slightly different context

of directed hypergraphs by Ausiello, D’Atri, and Saccà [13]. Their reduction however,

produces clauses in which all variables appear (i.e., clauses of very high degree). The

NP-hardness was later shown by Boros, Čepek, and Kučera [23] to also hold for the

case of pure Horn 3-CNFs. Regarding the minimization of the number of literals, it

was shown to be NP-hard for Horn CNFs by Maier [113] (strictly speaking, he used

a slightly different measure, but his proof can be easily modified to work also for the

number of literals). A simpler proof, this time really considering the number of literals,

was later found by Hammer and Kogan [82]. Both Maier’s and Hammer and Kogan’s

reductions introduce high degree clauses (equal to the number of variables). Čepek [39]

improved this result to Horn 7-CNFs and Čepek and Kučera [41] improved it to Horn

5-CNFs. Boros, Čepek, and Kučera [23] later showed that the NP-hardnes status still

applies to Horn 3-CNFs.

It is worth to mention that both clause and literal minimization of general 2-CNFs

can be accomplished in polynomial time as shown by Hammer and Kogan [83]. This,
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of course, includes Horn 2-CNFs, implying that the NP-hardness of clause and literal

minimization for Horn CNFs is completely solved. It is of independent interest to

mention the existence of other subclasses of Horn functions where CNF minimization

can be accomplished in polynomial time: the subclasses of bi-dual, acyclic, and quasi-

acyclic Horn functions; see Crama and Hammer [51] for details.

The attention then shifted to trying to approximate those values. Hammer and

Kogan [82] showed that for a pure Horn function in n variables, it is possible to ap-

proximate the minimum number of clauses and the minimum number of literals of a

pure Horn CNF formula representing it to within factors of n− 1 and
(
n
2

)
, respectively.

For many years, this was the only result regarding approximations. Recently, a super-

logarithmic hardness of approximation factor was shown by Bhattacharya, DasGupta,

Mubayi, and Turán [18] for the case of minimizing the number of clauses for general

Horn CNFs. We provide more details on this shortly.

Another measure for minimum representations of Horn functions concerns mini-

mizing the number of source sides, grouping together all clauses with the same source

set. Maier [113] and Ausiello, D’Atri, and Saccá [13] showed that such a minimization

can be accomplished in polynomial time (see also Crama and Hammer [51]). While

this measure is sometimes used in practice, providing reasonably good results, we con-

sider it an important intelectual quest, following Bhattacharya, DasGupta, Mubayi,

and Turán [18], to try to precisely understand the hardness of the other two measures.

Our contribution focus on the hardness of approximating short pure Horn CNF/3-

CNF representations of pure Horn functions, where pure means that each clause has

exactly one positive literal (definitions are provided in Section 2.1). More specifically,

we study the hardness of approximating

1. the minimum number of clauses of pure Horn functions specified through pure

Horn CNFs,

2. the minimum number of clauses and the minimum number literals of pure Horn

functions specified through pure Horn 3-CNFs,

when either polinomial or sub-exponential computational time is available.
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In what follows, we present pointers to previous work on the subject, discuss our

results in more details, and mention the main ideas behind them.

1.1.1 Previous Work

The first result on hardness of approximation of shortest pure Horn CNF representations

was provided in Bhattacharya et al. [18]. Specifically, it was shown that unless NP ⊆

QP = DTIME(npolylog(n)), that is, unless every problem in NP can be solved in quasi-

polynomial deterministic time in the size of the input’s representation, the minimum

number of clauses of a pure Horn function in n variables specified through a pure Horn

CNF formula cannot be approximated in polynomial (depending on n) time to within

a factor of 2log1−ε n, for any constant ε > 0 small enough.

This result is based on a gap-preserving reduction from a fairly well known net-

work design problem introduced by Kortsarz [105], namely, MinRep and has two main

components: a gadget that associates to every MinRep instance M a pure Horn CNF

formula h such that the size of an optimal solution to M is related to the size of a

clause minimum pure Horn CNF representation of h, and a gap amplification device

that provides the referred gap. Despite being both necessary to accomplish the result,

each component works in a rather independent way.

Inspired by the novelty of their result and by some characteristics of their reduction,

we are able to further advance the understanding of hardness of approximation of pure

Horn functions. We discuss how we strength their result below.

1.1.2 Our Results and Techniques

Our strengthening of the result of Bhattacharya et al. [18] can be summarized as follows:

the hardness of approximation factor we present is stronger, the complexity theoretic

assumption we use for polynomial time solvability is weaker, and the class of CNF

formulae to which our hardness results apply is smaller. We are also able to derive

further non-approximability results for sub-exponential time solvability using a different

complexity theoretic hypothesis.

In more details, for a pure Horn function h in n variables, we show that unless
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P = NP, the minimum number of clauses in a prime pure Horn CNF representation

of h and the minimum number of clauses and literals in a prime pure Horn 3-CNF

representation of h cannot be approximated in polynomial (depending on n) time to

within factors of 2log1−o(1) n even when the inputs are restricted to pure Horn CNFs and

pure Horn 3-CNFs with O(n1+ε) clauses, for some small constant ε > 0. It is worth

mentioning that o(1) ≈ (log log n)−c for some constant c ∈ (0, 1/2) in this case. Notice

that because these results are conditional on the P 6= NP hypothesis, they also provide

new and different proofs for the NP-hardness of clause minimization of pure Horn CNFs

and of clause and literal minimization of pure Horn 3-CNFs.

After that, we show that unless the Exponential Time Hypothesis introduced by

Impagliazzo and Paturi [89] is false, it is not possible to approximate the minimum

number of clauses and the minimum number of literals of a prime pure Horn 3-CNF

representation of h in time exp(nδ), for some δ ∈ (0, 1), to within factors of O(logβ n)

for some small constant β > 0. Such results hold even when the inputs are restricted to

pure Horn 3-CNFs with O(n1+ε) clauses, for some small constant ε > 0. Furthermore,

we also obtain a hardness of approximation factor of O(log n) under slightly more

stringent, but still sub-exponential time constraints. We would like to point out that

our techniques leave open the problem of determining hardness of approximation factors

when exp(o(n)) computational time is available. We conjecture, however, that constant

factor approximations are still not possible in that case.

The main technical component of our work is a new gap-preserving reduction1 from

a graph theoretical problem called Label-Cover (see Section 2.2 for its definition) to

the problem of determining the minimum number of clauses in a pure Horn CNF rep-

resentation of a pure Horn function. We show that our reduction has two independent

parts: a core piece that forms an exclusive component (Boros et al. [22]) of the function

in question and therefore, can be minimized separately; and a gap amplification device

which is used to obtain the hardness of approximation factor. It becomes clear that

the same principle underlies Bhattacharya et al. [18]. The hardness of approximation

1Our reduction is actually approximation-preserving, but we do not need or rely on such character-
istic. See Vazirani [146] or Williamson and Shmoys [149] for appropriate definitions.
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factor comes (after calculations) from a result of Dinur and Safra [55] on the hardness

of approximating certain Label-Cover instances.

We then introduce some local changes into our reduction that allow us to address

the case in which the representation is restricted to be a pure Horn 3-CNF. Namely, we

introduce extra variables in order to cubify clauses whose degree is larger than three,

that is, to replace each of these clauses by a collection of degree two or degree three

clauses that provide the same logical implications. This is done for two families of high

degree clauses and for each family we use a different technique: a linked-list inspired

transformation that is used on the classical reduction from SAT to 3-SAT instances

(Garey and Johnson [73]), and a complete binary tree type transformation. The latter

type is necessary to prevent certain shapes of prime implicates in minimum clause repre-

sentations that would render the gap-amplification device innocuos. From this modified

reduction, we are also able to derive in a straight-forward fashion a hardness result for

determining the minimum number of literals of pure Horn functions represented by

pure Horn 3-CNFs.

At this point we should mention that our reduction is somewhat more complicated

than the one given in Bhattacharya et al. [18]. While we could adapt their reduction

and obtain the same hardness of approximation factor we present in the case of pure

Horn CNF representations (as based in our Lemma 2.15 we can argue that the Label-

Cover and the MinRep problems are equivalent), the more involved gadget we use

is paramount in extending the hardness result for the pure Horn 3-CNF case. Loosely

speaking, the simple form of their reduction does not provide enough room to correctly

shape those prime implicates in minimum pure Horn 3-CNF representations that we

mentioned addressing in ours. In this way, the extra complications are justified.

Finally, using newer and slightly different results on the hardness of approximation of

certain Label-Cover instances (Moshkovitz and Raz [119], Dinur and Harsha [54]) in

conjunction with the Exponential Time Hypothesis [89], we are able to show (also after

calculations) that it might not be possible to obtain constant factor approximations for

the minimum number of clauses and literals in pure Horn 3-CNF representations.

The results above appeared in Boros and Gruber [25, 27] and will be presented in
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Chapter 2.

1.1.3 Other Related Work

Boros, Čepek, Kogan, and Kučera [22] introduced the concept of essential sets of

Boolean functions and defined a measure upon it that lower bounds the number of

clauses in a clause minimum CNF representation of any Boolean function. As stated

by Čepek, Kučera, and Savick [40], for any Boolean function f , thus including Horn

functions, let ess(f) be the largest set of assignments that falsify f , no two of which

falsify a common implicate of f .

Čepek, Kučera, and Savick [40] then exhibited a Horn function f in n variables

such that the multiplicative gap between ess(f) and cnf-size(f), the minimum number

of clauses in a CNF representation of f , is

cnf-size(f)

ess(f)
= Θ(log n).

Hellerstein and Kletenik [86] later showed a Horn function f in n variables such that

the gap is Θ(
√
n), and showed that no gap larger that Θ(n) is possible. If expressed in

terms of cnf-size(f), the gap becomes

cnf-size(f)

ess(f)
≥ cnf-size(f)1/3,

and no gap larger than cnf-size(f) is possible. Furthermore, based on Bhattacharya et

al. [18] they showed that unless NP ⊆ co-NTIME(npolylog(n)), i.e., unless every problem

in NP can be solved in quasi-polynomial co-nondeterministic time in the size of the

input’s representation, there is a constant 0 < ε < 1 such that there exists an infinite

family of pure Horn functions in which f is a member, and such that

cnf-size(f)

ess(f)
≥ 2log1−ε n,

where n is the number of variables of f .

It turns out that we can replace the result of Bhattacharya et al. [18] in Hellerstein

and Kletenik [86]’s proof by our result on hardness of approximating the minimum

number of clauses in pure Horn CNF representations and obtain that unless NP =
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co-NP, there exists a family of pure Horn functions such that

cnf-size(f)

ess(f)
≥ 2log1−o(1) n,

where f is a member of such family and n its number of variables.

1.2 Quadratizations of Pseudo-Boolean Functions

A pseudo-Boolean function in n variables is a mapping from the set {0, 1}n of n-

dimensional binary vectors to the set R of real numbers. It is well known that every

pseudo-Boolean function can be represented as a multilinear polynomial of its variables,

and that such representation is unique (see Section 3.1.1 for details). This algebraic

closed form allows interaction with the function in broader way when compared to a

black-box/oracle regime of access, in which the sole operation available is a query of

the function’s value on its input vectors. Besides also providing queries, the multilinear

representation can be used to discover further details of the function as its monomial

structure, the spectra of its coefficients, and its degree (all concepts related to polyno-

mial forms, but which are very helpful in understanding and classifying the function as

a “simple” or “complex” one), and also to perform some transformations as lifting it

to some higher dimensional space through the introduction of new, auxiliary variables,

or as projecting it down via removal thereof. So, in a nutshell, multilinear representa-

tions can be seen as a white-box type of access and offer a collection of advantages. In

this dissertation, we shall benefit from this white-box access fashion and therefore, we

shall assume that each and every pseudo-Boolean function f : {0, 1}n → R is specified

through its unique multilinear polynomial:

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi, (1.1)

where [n] := {1, 2, . . . , n}, and the cS ∈ R for all S ⊆ [n]. Sometimes, for convenience,

we shall also consider some expressions involving the Boolean complement x = 1−x of

a binary variable x.

The problem of optimizing the multilinear polynomial of a pseudo-Boolean function

subject to no constraints is called Unconstrained nonlinear binary optimization problem
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or simply, Pseudo-Boolean Optimization (PBO) problem. PBO problems exist in both

minimization or maximization flavors, and in this dissertation we shall concern ourselves

with the former kind. Hence, a PBO problem will have the form:

min
{
f(x) : x ∈ {0, 1}n

}
, (1.2)

where f is a pseudo-Boolean function in n variables. In case the multilinear polynomial

representing f is quadratic, we say that Problem (1.2) is a Quadratic Pseudo-Boolean

Optimization (QPBO) problem — and it is also possible to find it under the name of

Quadratic Unconstrained Binary Optimization (QUBO) problem in the literature.

Pseudo-Boolean optimization problems are notoriously difficult, even in the quad-

ratic case, as they naturally encompass a broad variety of NP-hard problems such as

maximum satisfiability, maximum cut, graph coloring, simple plant location, and so on

(see the survey of Boros and Hammer [29] for pseudo-Boolean formulations of some of

these problems and the book of Garey and Johnson [73] for concepts and results on

NP-hardness). Because of such pervasiveness, and also because solving PBO problems

is a fundamental question itself, many researchers have devoted them a considerable

amount of attention over the past half a century or so.

The first attempts of solving PBO problems can be traced back to the early papers

by Fortet [66, 67] and Maghout [111, 112], among others, but it was the monograph

of Hammer and Rudeanu [79] that properly establish and popularized pseudo-Boolean

optimization as a field — overviews can be found in Boros and Hammer [29], and in

Crama and Hammer [49, 51]. In the 60’s and 70’s, several authors proposed to handle

the PBO Problem (1.2) by reformulating it as an integer linear programming problem,

as follows:

1. in the objective function (1.1), replace each nonlinear monomial
∏
i∈S xi by a new

variable yS , and

2. set up linear constraints forcing yS =
∏
i∈S xi in all optimal solutions of the

resulting 0/1 LP.

Such linearization techniques have given rise to an enormous amount of literature.
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For a (partial) overview see, e.g., Burer and Letchford [37], Hansen, Jaumard and

Mathon [84], Sherali and Adams [136, 137], and the references therein.

A different approach was proposed by Rosenberg [127], in which he showed that the

general PBO Problem (1.2) can also be efficiently reduced to an “equivalent” quadratic

case (QBPO). More precisely, Rosenberg’s procedure works as follows:

1. select two variables, say xi, xj such that the product xixj appears in a monomial

of degree at least 3 in the objective function f ;

2. let hij be the function obtained upon replacing each occurence of the product

xixj by a new variable yij in f ;

3. let gij = hij +M(xixj−2xiyij−2xjyij +3yij), where M is a large enough positive

number.

It is not hard to verify that for each value of x, the minimum of gij over the auxiliary

variable yij is exactly equal to f(x): indeed, the minimizer is y∗ij = xixj , and the penalty

term vanishes for this value. The same step can be repeated until the degree of the

resulting polynomial is equal to 2, that is, until a quadratization of f is obtained.

Rosenberg’s result establishes that every pseudo-Boolean function has a quadrati-

zation that can be computed in polynomial time. Perhaps for lack of efficient quadratic

optimization algorithms, his approach, however, did not lead to practical applications

for about 30 years. Meanwhile, much progress has been done on solving QPBO prob-

lems: depending on the structure of the objective function (e.g., on its density), in-

stances of QPBO involving about 100–200 variables are now frequently solved to opti-

mality, whereas heuristic algorithms provide solutions of excellent quality for instances

with up to a few thousand variables. Among recent contributions on QPBO, we can

mention for example the experimental work with exact algorithms by Billionnet and El-

loumi [19], Boros, Hammer, Sun and Tavares [30], Hansen and Meyer [85], Helmberg and

Rendl [87], and with heuristic algorithms by Boros, Hammer and Tavares [31], Glover,

Alidaee, Rego and Kochenberger [74], Glover and Hao [75], Merz and Freisleben [115].

Interestingly, much algorithmic progress on QPBO has been due to the computer

vision research community, where quadratic pseudo-Boolean functions (often dubbed
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“energy functions” in this framework) have proved successful in modeling specific ap-

plications such as image restoration or scene reconstruction; see, e.g., Boykov, Veksler

and Zabih [33], Kolmogorov and Rother [102], Kolmogorov and Zabik [103], Rother,

Kolmogorov, Lempitsky and Szummer [130]. Fast QPBO heuristics building on the

roof-duality framework initially introduced by Hammer, Hansen and Simeone [78] have

been developed by these researchers (see also Boros et al. [30]) and can efficiently handle

the very large-scale, specially structured, sparse instances arising in computer vision

applications. Furthermore, these heuristics (often based on maximum-flow/minimum-

cut techniques) result in a good quantity of autarkies or persistencies, i.e., they are able

to fix some binary variables to the values they would attain at a certain local minimum

point or at every minimum point, respectively, and this is particularly valuable for the

computer vision community.

In recent years, the same community has shifted its attention to more complex mod-

els, where the “energy function” to be minimized is a higher-degree pseudo-Boolean

function. As their binary optimization problems are very large-scale, frequently having

105 to 106 variables and about 107 terms in their polynomial representation, the tradi-

tional approach based on integer linear formulations (linearization) described before is

not satisfactory, as it would require a similarly high number of variables and constraints,

making them practically intractable at today’s computing technology. Researchers then

tried to extend the roof duality ideas to these higher settings, but only partial success

was attained for the cubic case by Wang and Kleinberg [148], and combinatorial meth-

ods for higher degrees remains largely elusive.

The computer vision community then turned its focus into Rosenberg’s method,

but the high number of large, positive coefficients resulting from the penalty-term ap-

proach proved to be unsuccessful, and few autarkies and/or persistencies are found as

reported, for instance, by Ishikawa [91, 92]. However, the idea that different quadrati-

zation techniques could lead to improved results remained and several authors started

to investigate it. A convenient and precise definition of quadratization is as follows.

Definition 1.1. Let f(x) = f(x1, x2, . . . , xn) be a pseudo-Boolean function on {0, 1}n.

We say that a pseudo-Boolean function g(x, y) is a quadratization of f(x) if g(x, y) is
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a quadratic multilinear polynomial depending on x and on m auxiliary binary variables

y1, y2, . . . , ym, such that

f(x) = min
{
g(x, y) : y ∈ {0, 1}m

}
for all x ∈ {0, 1}n. (1.3)

Clearly, if g(x, y) is a quadratization of f(x), then

min
{
f(x) : x ∈ {0, 1}n

}
= min

{
g(x, y) : x ∈ {0, 1}n, y ∈ {0, 1}m

}
,

so that the minimization of f(x) is reduced through this transformation to the QPBO

problem of minimizing g(x, y). Of course this QPBO problem remains NP-hard, but as

mentioned above, much progress has been made in solving large instances of QPBO,

either exactly or heuristically.

Several researchers have met considerable success with approaches based on generat-

ing a quadratization g(x, y) of the objective function f(x), and on minimizing g instead

of f ; see, e.g., Boros and Gruber [26], Boykov, Veksler and Zabih [33], Fix, Gruber,

Boros and Zabih [63, 64], Freedman and Drineas [69], Ishikawa [91, 92], Kolmogorov

and Zabih [103], Ramalingam, Russell, Ladický and Torr [126], Rother, Kohli, Feng and

Jia [129], etc. In particular, quadratization has emerged as one of the most successful

approaches to the solution of very large-scale PBO models arising in computer vision

applications.

Many quadratization procedures proposed in the above literature (in particular, the

procedures of Freedman and Drineas, and of Ishikawa) yield special types of quadrati-

zations, namely, quadratizations without products of auxiliary variables.

Definition 1.2. A quadratic pseudo-Boolean function g(x, y) on {0, 1}n+m is called

y-linear if its polynomial representation does not contain monomials of the form yiyj

for i, j ∈ [m], i 6= j.

When g(x, y) is y-linear, it can be written as g(x, y) = q(x) +
∑m

i=1 `i(x)yi, where

q(x) is quadratic in x and each `i is a linear function of x. Then, when minimizing g

over y, each product `i(x)yi simply takes the value min{0, `i(x)}, that is,

f(x) = min
y∈{0,1}m

g(x, y) = q(x) +
m∑
i=1

min{0, `i(x)}. (1.4)
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Hence, a y-linear quadratization of f(x) produces an alternative representation of f

in the x-variables only. It is also worth noticing that y-linear quadratizations can be

viewed as piecewise linear functions of the x-variables, apart from the q part.

Below, we present pointers to previous work on the subject, discuss our results in

more details, and mention the main ideas behind them.

1.2.1 Previous Work

After Rosenberg’s original approach, the quadratizations that followed can be described

as termwise quadratization procedures and are based on the following scheme. For a

real number c, let sgn(c) = +1 (resp., −1) if c ≥ 0 (resp., c < 0). Then, given f(x) as

in Equation (1.1),

1. for each S⊆ [n], let gS(x, yS) be a quadratization of the monomial sgn(aS)
∏
i∈S xi,

where yS (for S ⊆ [n]) are disjoint vectors of auxiliary variables (one vector for

each S);

2. let g(x, y) =
∑

S⊆[n] |aS | gS(x, yS).

Then, g(x, y) is a quadratization of f(x). Various choices of the subfunctions gS(x, yS)

can be found in the literature. When aS is negative, Kolmogorov and Zabih [103] for

cubic monomials, and later Freedman and Drineas [69] for the general degree case,

suggest using what we should call the standard quadratization

gS(x, y) = (|S| − 1)y −
∑
i∈S

xiy, (1.5)

where y is a single auxiliary variable.

When aS is positive, the choice of an appropriate function gS is less obvious. The

first possibility is through complementation, that is, if j ∈ S, let Sj := S \ {j} in order

to obtain ∏
i∈S

xi =
∏
i∈Sj

xi − xj
∏
i∈Sj

xi. (1.6)

The second term of this decomposition can be quadratized by the standard quadra-

tization just noticing that both symbols xj and xj are placeholders for binary values,
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and the first term can be handled recursively. This results in a quadratization gS(x, y)

using |S| − 2 auxiliary variables for each positive monomial. This trick along with

some variations was also realized by Boros and Gruber [26], Rother, Kohli, Feng and

Jia [129], and others.

Ishikawa[91, 92] then introduced a new transformation, dubbed Higher-Order Clique

Reduction (HOCR), and showed that positive monomials can actually be quadratized

using b(|S| − 1)/2c auxiliary variables, and this is currently the best available bound

for positive monomials.

Fix [62] was the first to study quadratizations of pseudo-Boolean functions other

than monomials. Specifically, he studied quadratizations of symmetric pseudo-Boolean

functions, whose output values deppend only on the number of ones present in the input.

Using some simple, but clever local constructions, Fix showed that every symmetric

pseudo-Boolean function in n variables can quadratized with at most n − 1 auxiliary

variables.

1.2.2 Our Results and Techniques

In a nutshell, our contributions start with a scheme that generalizes some existing

termwise quadratizations and also introduces some new ones; then it moves to the first

aggregative approach in which collections of terms sharing a common part are quadra-

tized together, resulting in a new algorithm of increased quality for some computer

vision problems; it then advances to the study of quadratizations of symmetric pseudo-

Boolean functions, where we obtain some new lower and upper bounds on the number of

auxiliary variables necessary to quadratize arbitrary and some specific functions of this

class, the latter being constructive, i.e., producing new effective quadratizations; after-

wards, we investigate quadratizations of a pseudo-Boolean function from a global per-

spective, showing non termwise procedures that provide sub-exponential upper bounds

on the number of auxiliary variables necessary to quadratize any pseudo-Boolean func-

tion, and also showing lower bounds that essentially match those upper bounds, thus

implying that almost all pseudo-Boolean functions require a large number of auxiliary

variables to be quadratized; and as an epilogue, we introduce a polyhedral cone, the
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quadratization cone, that can be used to generate quadratizations of a specific pseudo-

Boolean function, and use the information acquired for negative monomials to complete

characterize all their quadratizations. We briefly elaborate about these contributions

below.

Some termwise quadratizations appearing in the literature works out by comple-

menting one or more of the term’s variables, then splitting it into two or more sub-

terms, and afterwards recurring in such idea, or applying a different technique, or both.

That is the case of Equation (1.6) in the previous subsection. As it turns out, comple-

mentation is not the only operation that can be used to split terms. In fact, inspired

by the consensus operation between terms of a Boolean function in Disjunctive Nor-

mal Form (DNF) — see Crama and Hammer [51] for definitions, and notice that they

are just dual concepts of resolution between clauses in a CNF formula, which we use

and define in Chapter 2 — we show that any minimal set of Boolean functions (seen

as pseudo-Boolean functions) whose summation when minimized evaluates to one can

be used to split a term in as many parts as the cardinality of the set plus one. In

spite of not being an earthshaking result, it shed an interesting light in the myriad of

possible ways of quadratizing single monomials. This result was published Boros and

Gruber [26] and will be presented in Section 3.3.

The more terms the multilinear polynomial representation of a pseudo-Boolean func-

tion has, the more likely it is for some of these terms to share a subset of their variables.

A simple, yet considerable good idea consists in factoring those terms and replacing the

common part by a single auxiliary variable, while taking care of the uncommon parts

recursively or through different techniques, depending whether they are positive or

negative. Clearly, a multitude of possibilities exist regarding which parts to factor

and how to deal with the remainders. It turns out that the simple strategy of listing

the variables of the function, factoring the positive terms accordingly to that order,

one variable at a time, recurring on that idea for the positive remainders and using

Freedman and Drineas’ standard quadratization (1.5) for the negative ones produces

very good results for a class of pseudo-Boolean functions occurring in some computer
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vision applications: the number of persistencies found by the QPBO algorithm imple-

mented by Kolmogorov and Rother [102] after this transformation reached 96% versus

80% resulted by Ishikawa’s HOCR method. This splitting of common parts scheme

was introduced in Boros and Gruber [26], applied to computer vision problems in Fix,

Gruber, Boros, and Zabih [63, 64], and will be described in Section 3.4.

Symmetric pseudo-Boolean functions are the ones whose value depends solely on

the number of ones in the input. Despite being a small class of functions, it is an

important class as it includes monomials and some famous Boolean functions as parity,

majority, mod-k, among others. Moreover, it is a natural logical step to investigate

quadratizations in such a small and rich class in order to acquire better intuition and

understanding of quadratizations, before aiming at larger goals. We improve upon

the result of Fix [62] and show that for any symmetric pseudo-Boolean function f :

{0, 1}n → R, there are 0 < εi ≤ 1 with i ∈ [n] such that f can be represented uniquely

in the form

f(x) =
n∑
i=0

αi

[
i− εi −

n∑
r=1

xr

]−
,

where the notation [a]− means min{0, a}, for any real value a. This representation

theorem, together with a shifting argument, allows us to show that every symmetric

pseudo-Boolean function in n variables admits a y-linear quadratization with at most

n− 2 auxiliary variables. By specializing this result, we are able to show that specific

functions like the positive monomial, t-out-of-n, exact-t, parity, and co-parity, admit y-

linear quadratizations with at most b(n− 1)/2c, dn/2e, bn/2c, bn/2c, and b(n− 1)/2c,

respectively. Notice we are able to match Ishikawa’s [91, 92] upper bound for the positive

monomial. We then show that there are symmetric pseudo-Boolean functions whose

quadratizations must involve at least Ω(
√
n) auxiliary variables and whose y-linear

quadratizations must involve at least Ω(n/ log n) auxiliary variables. Using different

techniques, we show that every y-linear quadratization for the parity function in n vari-

ables requires at least Ω(
√
n) auxiliary variables. These results appeared in Anthony,

Boros, Crama, and Gruber [5] and will be described in Sections 3.5 and 3.7.

We then initiate a systematic study of quadratizations of pseudo-Boolean functions,
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adopting a more global perspective and investigating some of the properties of the class

of all quadratizations of a given function. Through the use of some dimension-based

linear algebraic arguments, we are able to show that for almost all pseudo-Boolean

functions in n variables, any quadratization and any y-linear quadratization must use

at least Ω(2n/2) and Ω(2n/n) auxiliary variables, respectively. For bounded degree, we

show that for almost all pseudo-Boolean functions of degree d, any quadratization must

involve at least Ω(nd/2) auxiliary variables. These lower bounds are of considerable

importance since the complexity of minimizing the quadratic function g(x, y) heavily

depends on the number of binary variables (x, y) — some other factors as number of

terms influence it as well. We also show that these bounds are almost or essentially

tight, providing algorithms based on extremal combinatorics constructions over the set

{0, 1}n, also known as Boolean hypercube of dimension n, that produce, for any pseudo-

Boolean function in n variables, a quadratization and a y-linear quadratization with at

most O(2n/2) and O
(

2n

n · log n
)

auxiliary variables, respectively — and O(nd/2) extra

variables for the bounded degree case. The combinatorial construction of the regular

quadratization case, in which products of auxiliary variables are allowed, is related to

that of 2-bases of a set system; in the y-linear case, it is based on Turán systems. Both

these lower and upper bounds rely on a concept we introduce and call it universal sets,

which are sets of Boolean functions that allow every pseudo-Boolean function to be

expressed as linear combinations of quadratic products of them. Universal sets play a

pivotal role in our developments and we believe their properties and applicability to go

beyond the quadratization realm, thus potentially spawning new research in the future.

These results appeared in Anthony, Boros, Crama, and Gruber [4] and will be presented

in Sections 3.6 and 3.7.

Finally, we introduce a family of polyhedral cones of quadratizations of pseudo-

Boolean functions. While our understanding of these objects is still at an introductory

level, we were able to acquire some good intuition of quadratizations of negative mono-

mials, which led us to complete characterize all quadratizations of them. Although this

result may appear to be rather narrow, it turns out to be more complex than one may

expect at first sight: the proof is very long. It appeared in Anthony, Boros, Crama,
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and Gruber [4], and will also be presented in Section 3.9.

All the aforementioned results along with some extra explanations will be presented

in Chapter 3.

1.2.3 Other Related Work

Buchheim and Rinaldi [35, 36] have developed a very different type of reduction of

nonlinear binary optimization problems to the quadratic case. Their approach is poly-

hedral: essentially, they show that the separation problem for the polyhedron defined

by the classic linearization of a PBO can be reduced to a separation problem for the

quadratic case. The authors use a transformation which replaces each monomial of

a pseudo-Boolean function by a product of two lower-degree monomials. They also

mention in [35] some connections between their approach and Rosenberg’s substitu-

tion technique, but the relation to more general quadratization schemes is unclear and

remains to be explored.

Kahl and Strandmark [97, 98] have also devised a very different approach to reduce

high-degree polynomials to the quadratic case, which they called Generalized Roof Du-

ality (GRD). It relies on the characterization of submodular functions expressible as

quadratic polynomials of Živný, Cohen and Jeavons [151], and finds the best submod-

ular relaxation of the given function. Hence, it can be partly seen as another global

approach to quadratizations (as it does not focus on rewriting individual monomials).

In order to find such relaxation, the authors have to solve a linear programming prob-

lem, which turns out to be expensive in the setting of computer vision computations

— despite the number of persistencies attained being very high. A drawback of this

approach is that it can only be used for cubic or degree 4 polynomials, and is doubtful

that the method can be generalized, for reasons related to being NP-hard to recognize

if a multilinear polynomial of degree 4 or higher represents a submodular function (see

Nemhauser, Wolsey, and Fisher [121], Gallo and Simeone [72], and Crama [48]). The

authors propose yet some heuristics to be used instead of solving the linear program-

ming problem that also find a good rate of persistencies. Nevertheless, experimental

results have shown (cf. Fix, Gruber, Boros, and Zabih [63, 64]) that these heuristics are
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several times slower than either Ishikawa’s HOCR [91, 92] or our splitting of common

parts technique (cf. Section 3.4). An experimental comparison with our global meth-

ods of Section 3.6, specially in the bounded degree case presents itself as an interesting

direction to be addressed in the future.

Quadratizations have also been independently investigated in the constraint satis-

faction literature. A pseudo-Boolean function f : {0, 1}n → R is submodular if

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y) for all x, y ∈ {0, 1}n,

where (x∨ y)j = xj ∨ yj and (x∧ y)j = xj ∧ yj for all indices j ∈ [n]. Živný, Cohen and

Jeavons [151] proved, among other results, that there are submodular pseudo-Boolean

function of degree 4 (and in 4 variables) that do not admit submodular quadratizations.

It is worth mentioning that a key step in their proof was obtained through computerized

search. Related questions are also investigated in Kolmogorov [101] and in Živný and

Jeavons [153].

Another line of research that makes use of the concept of auxiliary variables is that

of convex hierarchies of relaxations of polyhedra and spectrahedra. These hierarchies,

now commonly referred to as “extended formulations” are routinely applied to combina-

torial optimization problems. Its start can be traced back to the work of Balas [15], and

the prominent families of hierarchies are those of Lovász and Schrijver [110], Balas, Ce-

ria, and Cornuéjols [16], Sherali and Adams [135], Lasserre [107, 108], and Parrilo [124]

(see Laurent [109] and Conforti, Cornuéjols and Zambelli [44] for some comparisons).

Also, their strengths and limits have been thoroughly investigated inside the theoreti-

cal computer science community; see e.g., Arora, Bollobás, Lovász, and Tourlakis [9],

Charikar, Makarychev, and Makarychev [42], Chlamtac and Tulsiani [43], Fiorini, Mas-

sar, Pokutta, Tiwary, and de Wolf [61], and Braum, Fiorini, Pokutta, and Steurer [34].

At the moment, despite some superficial resemblance between the ideas behind those

formulations and that of quadratization, no formal link has been established and we

believe more investigation is needed.
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1.3 Prerequisites, Conventions, and Some Definitions

We make an effort and try to introduce all concepts that we use, either directly or

indirectly, to obtain our results. Nevertheless, those introductions are usually brief,

and sometimes even a bit terse. We opted in favor of such strategy mainly for two

reasons:

1. there are very good accounts in the literature about such topics, many of which

we cite whenever appropriate; and

2. having decided otherwise, the size of this dissertation could (and most likely

would) easily become unmanageable.

In any way, we apologize in advance for any discomfort that this may cause to the

reader. That being said, we expect the reader to be somewhat familiar with the fields

of algorithm analysis and design, combinatorics, computational complexity, linear al-

gebra, linear programming, and the theory of Boolean and pseudo-Boolean functions.

Good references are the books of Cormen, Leiserson, Rivest, and Stein [47] (also, to a

certain extent, Vazirani [146], Williamson and Shmoys [149]); Jukna [95], van Lint and

Wilson [145]; Arora and Barak [8], Garey and Johnson [73]; Anthony and Harvey [6],

Strang [141]; Korte and Vygen [104], Schrijver [132]; Crama and Hammer [51], the sur-

vey of Boros and Hammer [29] and the Ph.D. dissertation of Tavares [143], respectively.

Besides mentioning authorship along the text, we provide the names of the authors

of a theorem, lemma, proposition, etc., between parenthesis right before the result’s

statement, every time. Therefore, any unclaimed result is to be considered as part of

our contribution.

We decided to use only two sequential counters to number the objects inside each

chapter: one for equations, and one for definitions, propositions, lemmas, theorems,

corollaries, facts, notations, and remarks. So, for instance, Theorem 2.38 means that

such theorem is the 38th named object inside Chapter 2, and not that there are other

37 theorems before. Our decision was made in order to facilitate navigation through

the text. As mentioned, equations are numbered independently, but as their references
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always appear inside parenthesis, that should not create confusion.

We now provide some definitions and notations that will be useful, or that provide

some extra insights in what we will do later on.

We denote the set of real numbers by R and its restriction to the nonnegative side

of the real line by R≥0. The set of binary or Boolean values is denoted simply by {0, 1}.

Depending on the context, the symbols 0 and 1 may be interpreted as the numbers zero

and one, or as the logical values false and true. These interpretations can sometimes be

intermixed, and no confusion will arise in our usage. We denote other sets by capital

letters and sometimes call them collections. A collection of sets (or subsets of a ground

set) is also called a family and sometimes is denoted by a calligraphic or a capital greek

letter. For a positive integer n, we denote by [n] := {1, 2, . . . , n} the set of positive

integers up to n. Given a set S, its power set is defined as 2S := {T : T ⊆ S}. The size

or cardinality of a finite set S is denoted by |S| and defined as the number of elements

it contains. The set of positive integers (or natural numbers) is denoted by N. We

assume familiarity with set operations as containment, intersection, union, and so on.

A graph G is a pair (V,E), where V is a finite set of elements called vertices and

E =
{
{u, v} : u, v ∈ V and u 6= v

}
is a family of pairs of vertices, each pair called an

edge. For convenience, we denote {u, v} by (u, v), keeping in mind that (u, v) = (v, u).

That is, our graphs are undirected. For an edge e = (u, v), we say that the vertices u

and v are the end-points of e, that e is incident to both u and v, and that u and v are

neighbors. For a vertex u ∈ V , its neighborhood is the set N(u) := {v ∈ V : (u, v) ∈ E},

and its degree is given by deg(u) := |N(u)|. The graph G is bipartite with bipartition

A ∪̇B = V , denoted by G = (A,B,E), if E =
{
{u, v} : u ∈ A and v ∈ B

}
, i.e., no edge

has both its end-points in the same element of the bipartition. A graph H = (W,F ) is a

subgraph ofG ifW ⊆ V and F ⊆ E; H is a spanning subgraph ofG ifW = V and F ⊆ E.

Let D = 〈v0, v1, . . . , vk〉 be a sequence of vertices of G such that (vj−1, vj) = ej ∈ E for

all j ∈ [k], and vi 6= vj for all i, j ∈ [k] with i 6= j. Notice that D together with edges

ej is a subgraph of G. If v0 = vk, we call D a cycle. If v0 6= vj for all j ∈ [k], we call C

a path. In both cases, the length of D is equal to k. The graph G is connected if for all

distinct vertices u, v ∈ V there is a path between them. The graph G is a forest if it
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does not contain any cycles, and is a tree if in addition it is connected.

Given a finite (ground) set H, a set system H is a family of subsets of H, that is,

H ⊆ 2H . The set system H is sometimes also referred as the hypergraph H = (H,H),

in which the elements of H are its vertices and the sets of H its hyperedges. It is clear

that graphs are hypergraphs whose hyperedges have cardinality 2.

The n-fold product of the binary set {0, 1}, namely, {0, 1}n is the set of binary n-

tuples and can also be seen as a vector of dimension n (with n entries or coordinates).

The set {0, 1}n is also called Boolean hypercube of dimension n as it can be interpreted

as the following graph:

B =
(
{0, 1}n,

{
(x, y) : x, y ∈ {0, 1}n and

∣∣|x| − |y|∣∣ = 1
})
,

where |z| :=
∑n

i=1 zi is the Hamming weight of the vector z ∈ {0, 1}n, the number of

ones in z. That is, B is a graph on 2n vertices and whose edges are between pairs of

vertices differing in exactly one coordinate. A subgraph of B obtained by fixing the

value of some coordinates of its vertices together with all the existing edges between

those vertices is a subcube of B. By convention, B is a subcube of itself.

We make use of the standard asymptotic notations: O(·), Θ(·), Ω(·), o(·), and ω(·).

Namely, big-oh, big-theta, big-omega, little-oh or omicron, and little-omega, respectively.

For definitions and examples of use, consult e.g. the book by Cormen et al. [47].

We say a function f : N → N (or f : N → R) is quasi-linear if f ∈ O
(
n1+o(1)

)
and it is nearly linear if f ∈ O

(
n1+ε

)
for some constant ε > 0 small enough; it is

quasi-polynomial or super-polynomial if f ∈ O
(
npolylog(n)

)
; and it is sub-exponential if

f ∈ O
(
2o(n)

)
.

Following tradition (and literature), we denote by DTIME(f(n)) and NTIME(f(n))

the classes of decision problems, i.e., problems whose yes-or-no solutions can be com-

puted in deterministic and nondeterministic time, respectively, upper bounded by

O(f(n)), where n is the length of the input’s description and f : N → N (or f :

N → R) is some constructible function. The standard complexity classes of deter-

ministic and nondeterministic polynomial time are then P := DTIME(poly(n)) and

NP := NTIME(poly(n)), the complement of NP is co-NP := co-NTIME(poly(n)), and
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quasi-polynomial deterministic time is QP := DTIME(npolylog(n)). A multitude of other

complexity classes can be defined in a similar way.

The class NP has a nice alternative interpretation: it is the class of decision problems

in which every instance whose answer is yes has a polynomial sized certificate (also

called witness) that can be verified in polynomial time and confirm the correctness of

the claim, i.e., that the answer for such instance is indeed a yes. Clearly P ⊆ NP as one

can just compute the solution in polynomial time and in case of a yes answer, use an

empty certificate. Notice that it can be very hard, computationally speaking, to find

a certificate. In other words, it may be the case that more than polynomial time is

needed to find certificates to problems in NP. This is just one way of stating the most

famous open question in computational complexity: is P
?
= NP.

Given two decision problems Π and Λ, a polynomial (time) reduction from Π to Λ

is an algorithm that receives an instance IΠ to the former, runs in polynomial time in

the length of IΠ’s description (size of IΠ), and outputs an instance IΛ to the latter

such that IΠ has a yes answer in Π if and only if IΛ has a yes answer in Λ.

A decision problem is NP-hard if every problem in NP can be polynomially reduced

to it, and it is NP-complete if in addition it belongs to NP itself.

Finally, for a problem Π ∈ NP, a Probabilistic Checkable Proof (PCP) system for Π

is a polynomial time randomized algorithm, called verifier, that receives an input IΠ

for Π of size n, has access to O(log n) random bits, and has a constant number of oracle

access to a proof π (a relaxed notion of witness, in a different encoding scheme). That

is, the verifier does not have complete access to π, but can query it a constant number

of times, using the random bits to decide which positions of π to query. The crucial

issue is that the proof might not be trustworthy, in the sense that the answer to IΠ

may be a yes and π is correctly certifying it, or the answer to IΠ may be a no and π

is maliciously trying to fool the verifier in believing the answer is a yes. The verifier is

required to accept correct proofs and rejects incorrect proofs with probability at least

2/3. Perhaps surprisingly, such verifiers do exist for every Π ∈ NP, as stated by the

celebrated PCP Theorem (cf. Arora and Safra [12]), and they have many applications

in proving hardness of approximation results for NP-hard optimization problems.
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2

Hardness of Approximation of Pure Horn CNF

Minimization

In this chapter, we study the hardness of approximation of clause minimum and literal

minimum representations of pure Horn functions in n Boolean variables. We show that

unless P = NP, it is not possible to approximate in polynomial time the minimum num-

ber of clauses and the minimum number of literals of pure Horn CNF representations to

within a factor of 2log1−o(1) n. This is the case even when the inputs are restricted to pure

Horn 3-CNFs with O(n1+ε) clauses, for some small positive constant ε. Furthermore,

we show that even allowing sub-exponential time computation, it is still not possible to

obtain constant factor approximations for such problems unless the Exponential Time

Hypothesis is false.

The chapter is organized as follows. We introduce some basic concepts about pure

Horn functions, mostly to fix notation and nomenclature, together with some recent

theoretical tools regarding Boolean functions that we shall use in Section 2.1. We then

present the problem on which our reduction is based, the Label-Cover problem, in

Section 2.2. The reduction to pure Horn CNFs, its proof of correctness, and the poly-

nomial time hardness of approximation result are shown in Section 2.3. In Section 2.4,

we extend that result to pure Horn 3-CNF formulae and address the case of minimizing

the number of literals. In Section 2.5 we show that sub-exponential time availability

gives smaller but still super-constant hardness of approximation factors. We then offer

some final thoughts in Section 2.6.

The results of this chapter have appeared in Boros and Gruber [25, 27].
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2.1 Preliminaries

In this section we succinctly define the main concepts and notations we shall use later

on. For an almost comprehensive exposition, consult the book on Boolean Functions

by Crama and Hammer [51].

Definition 2.1. A Boolean function h(x) = h(x1, x2, . . . , xn) in n propositional vari-

ables is a mapping {0, 1}n 7→ {0, 1}, that is, it is a mapping that associates n-dimen-

sional binary vectors in {0, 1}n to binary values. In this context, the values 0 and 1 are

often interpreted as the logical concepts of falsity and truth.

The set of variables of h is denoted by Vh := {v1, . . . , vn}. It is not hard to see that

there are 22n different Boolean functions in n variables, and that each Boolean function

can be specified by a table with 2n entries, called its true table. In some (most, actually)

circumstances however, more succinct representations are preferable, and specific kinds

of formulae or expressions are used.

A literal is a propositional variable vi (positive literal) or its negation v̄i (negative

literal). An elementary disjunction of literals

C =
∨
i∈I

v̄i ∨
∨
j∈J

vj , (2.1)

with I, J ⊆ Vh is a clause if I ∩ J = ∅. The set of variables it depends upon is

Vars(C) := I ∪ J and its degree or size is given by deg(C) := |I ∪ J |. It is customary to

identify a clause C with its set of literals.

Definition 2.2. A clause C as in (2.1) is called pure or definite Horn if |J | = 1. For

a pure Horn clause C, the positive literal v ∈ J is called its head and S = C \ J is

called its subgoal or body. To simplify notation, we sometimes write C simply as S̄∨v

or as the implication S −→ v.

Definition 2.3. A conjunction Φ of pure Horn clauses is a pure Horn formula in

Conjunctive Normal Form (for short, pure Horn CNF). In case every clause in Φ has

degree at most three, the CNF is a 3-CNF. A Boolean function h is called pure Horn

if there is a pure Horn CNF formula Φ ≡ h, that is, if Φ(v) = h(v) for all v ∈ {0, 1}n.
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Let Φ =
∧m
i=1Ci be a pure Horn CNF representing a pure Horn function h. We

denote by

|Φ|c := m and |Φ|l :=

m∑
i=1

deg(C)

the numbers of clauses and literals of Φ, respectively. We say that Φ is a clause (literal)

minimum representation of h if |Φ|c ≤ |Ψ|c (|Φ|l ≤ |Ψ|l) for every other pure Horn CNF

representation Ψ of h. With this in mind, we define

τ(h) := min{|Φ|c : Φ is a pure Horn CNF representing h}, and

λ(h) := min{|Φ|l : Φ is a pure Horn CNF representing h}.

Problem 2.4. The clause (literal) pure Horn CNF minimization problem consists in

determining τ(h) (λ(h)) when h is given as a pure Horn CNF. Similar definitions hold

for the pure Horn 3-CNF case.

A clause C as in (2.1) is an implicate of a Boolean function h if for all v ∈ {0, 1}n

it holds that h(v) = 0 implies C(v) = 0. An implicate is prime if it is inclusion-wise

minimal with respect to its set of literals. The set of prime implicates of h is denoted

by Ip(h). It is known (cf. Hammer and Kogan [81]) that prime implicates of pure

Horn functions are pure Horn clauses. A pure Horn CNF Φ representing h is prime if

its clauses are prime and is irredundant if the pure Horn CNF obtained after removing

any of its clauses does not represent h anymore. Let us note that a clause minimun

representation may involve non prime implicates, though it is always irredundant. As

Hammer and Kogan [81] pointed out any Horn CNF can be reduced in polynomial time

to an equivalent prime and irredundant CNF. In the sequel we shall assume all CNFs

considered, including the clause minimum ones, to be prime and irredundant.

Let C1 and C2 be two clauses and v be a variable such that v ∈ C1, v̄ ∈ C2, and C1

and C2 have no other complemented literals. The resolvent of C1 and C2 is the clause

R(C1, C2) := (C1 \ {v}) ∪ (C2 \ {v̄})

and C1 and C2 are said to be resolvable. It is known (e.g. Crama and Hammer [51])

that if C1 and C2 are resolvable implicates of a Boolean function h, then R(C1, C2) is

also an implicate of h. Naturally, the resolvent of pure Horn clauses is also pure Horn.
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A set of clauses C is closed under resolution if for all C1, C2 ∈ C, R(C1, C2) ∈ C. The

resolution closure of C, R(C), is the smallest set X ⊇ C closed under resolution. Clearly,

for two sets of clauses C1 ⊆ C2 it holds that R(C1) ⊆ R(C2) and that R(R(C1)) = R(C1).

Also, it is not hard to see that if R(C1) = R(C2), then C1 ≡ C2, that is, if two sets have

the same resolution closure, then they represent the same function.

For a Boolean function h, let I(h) := R(Ip(h)). Let us note that the set of all

implicates of a Horn function h may, in principle, contain clauses involving arbitrary

other variables, not relevant for h. To formulate proper statements one would need to

make sure that such redundancies are also handled, which complicates the formulations.

To avoid such complications, we focus on I(h) in the sequel, which is completely enough

to describe all relevant representations of h.

Definition 2.5. Let Φ be a pure Horn CNF representing a pure Horn function h and

let Q ⊆ Vh. The Forward Chaining of Q in Φ, denoted by FΦ(Q), is defined by the

following algorithm. Initially, FΦ(Q) = Q. As long as there is a pure Horn clause S̄∨v

in Φ such that S ⊆ FΦ(Q) and v 6∈ FΦ(Q), add v to FΦ(Q). Whenever a variable v is

added to FΦ(Q), we say that the corresponding clause S̄ ∨ v was triggered.

The result below is pivotal in our work. It tells us that we can make inferences

about a pure Horn function h using any of its pure Horn CNF representations.

Lemma 2.6 (Hammer and Kogan [82]). Two distinct pure Horn CNFs Φ and Ψ rep-

resent the same pure Horn function h if and only if FΦ(U) = FΨ(U), for all U ⊆ Vh.

Consequently, we can do Forward Chaining in h, which we denote by Fh(·), through the

use of any of h’s representations.

The following definitions and lemma concerning exclusive sets of clauses are useful

when decomposing and studying structural properties of Boolean functions.

Definition 2.7 (Boros et al. [22]). Let h be a Boolean function and X ⊆ I(h) be a set of

clauses. X is an exclusive set of clauses of h if for all resolvable clauses C1, C2 ∈ I(h)

it holds that: R(C1, C2) ∈ X implies C1 ∈ X and C2 ∈ X .

An example of an exclusive set of clauses is given by the set of pure Horn implicates
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of a Horn function: it is not hard to see that if a resolvent is a pure Horn clause, then

both the resolvable clauses must also be pure Horn.

Definition 2.8 (Boros et al. [22]). Let X ⊆ I(h) be an exclusive set of clauses for

a Boolean function h and let C ⊆ I(h) be such that C ≡ h. The Boolean function

hX = C ∩ X is called the X -component of h.

The following claim justifies the use of “the” in the previous definition.

Lemma 2.9 (Boros et al. [22]). Let C1, C2 ⊆ I(h), C1 6= C2, such that C1 ≡ C2 ≡ h and

let X ⊆ I(h) be an exclusive set of clauses. Then C1 ∩ X ≡ C2 ∩ X and in particular

(C1 \ X ) ∪ (C2 ∩ X ) also represents h.

Proof. First, notice that since Ci represents h for i ∈ [2], we have that Ip(h) ⊆ R(Ci).

Hence, assuming Ci ⊆ I(h), gives

I(h) = R(Ip(h)) ⊆ R(R(Ci)) = R(Ci) ⊆ R(I(h)) = I(h),

which then implies that X ⊆ R(C1) = R(C2). These relations plus the fact that X is

exclusive, i.e., no clause in Ci \ X can appear as a parent clause in a resolution leading

to a resolvent in X , leads to X ⊆ R(Ci\(Ci\X )) = R(Ci∩X ), which in turn implies that

R(X ) ⊆ R(R(Ci ∩ X )) = R(Ci ∩ X ). As Ci ∩ X ⊆ X , we have that R(X ) = R(Ci ∩ X )

and therefore, it holds that X ≡ C1 ∩ X ≡ C2 ∩ X .

The above lemma is a particularly useful and important tool in our work. Loosely

speaking, it means that once we are able to identify an exclusive component g of a

function h, we can separately study g. Moreover, we can draw conclusions about g

using any of its representations (even alternate between distinct representations as

convenient) and then reintegrate the acquired knowledge into the analysis of h.

The Forward Chaining procedure provides us with a convenient way of identifying

exclusive families for pure Horn functions, as stated in the next lemma. This result

appeared recently in Boros et al. [23]. As we make explicit use of it in the analysis of

our construction, its proof is included for completeness.



32

Lemma 2.10 (Boros et al. [23]). Let Φ be a prime pure Horn CNF representing the

function h, let W ⊆ Vh be such that FΦ(W ) = W , and define the set

X (W ) := {C ∈ I(h) : Vars(C) ⊆W}.

Then X (W ) is an exclusive family for h.

Proof. Let W be as specified in the lemma’s statement and suppose there are clauses

C1, C2 ∈ I(h) such that R(C1, C2) ∈ X (W ) but {C1, C2} 6⊆ X (W ). By the definitions

of X (W ) and of resolution, all but one of the variables in C = C1 ∪ C2 must belong to

W and that variable, say v ∈ C \W , is precisely the variable upon which C1 and C2

are resolvable, that is, v occurs as head in one of those clauses. Now, since for the same

input the forward chaining outcome is independent of the pure Horn representation of

h, it follows that v ∈ FΦ(W ) 6= W , a contradiction.

2.2 The Label-Cover Problem

The Label-Cover problem is a graph labeling promise problem formally introduced in

Arora et al. [7] as a combinatorial abstraction of interactive proof systems (two-prover

one-round in Feige et al. [58] and Feige and Lovász [60], and probabilistically checkable

in Arora and Motwani [11] and Arora and Safra [12]). It comes in maximization and

minimization flavors (linked by a “weak duality” relation) and is probably the most

popular starting point for hardness of approximation reductions. In this section, we

introduce a minimization version that is best suited for our polynomial time results.

Later in Section 2.5, when dealing with sub-exponential time results, we shall mention

its maximization counterpart.

Definition 2.11. A Label-Cover instance is a quadruple L0 = (G,L0, L
′
0,Π0), where

G = (X,Y,E) is a bipartite graph, L0 and L′0 are disjoint sets of labels for the vertices in

X and Y , respectively, and Π0 = (Π0
e)e∈E is a set of constraints with each Π0

e ⊆ L0×L′0

being a non-empty relation of admissible pairs of labels for the edge e. The size of L0

is equal to |X|+ |Y |+ |E|+ |L0|+ |L′0|+ |Π0|.
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Definition 2.12. A labeling for L0 is any function f0 : X → 2L0 , Y → 2L
′
0 \ {∅}

assigning subsets of labels to vertices. A labeling f0 covers an edge (x, y) if for every

label `′0 ∈ f0(y) there is a label `0 ∈ f0(x) such that (`0, `
′
0) ∈ Π0

(x,y). A total-cover for

L0 is a labeling that covers every edge in E. L0 is said to be feasible if it admits a

total-cover.

Following Arora and Lund [10], a way to guarantee that a Label-Cover instance

is feasible is by imposing an extra condition on it, namely, that there is a label `′0 ∈ L′0

such that for each edge e ∈ E, there is a label `0 ∈ L0 with (`0, `
′
0) ∈ Π0

e. In this

way, a labeling assigning `′0 to each vertex in Y and the set L0 to each vertex in X is

clearly a total-cover. However, all Label-Cover instances that we shall use are, by

construction, guaranteed to be feasible. Therefore, we shall not dwell on such imposition

and shall consider only feasible Label-Cover instances in the sequel.

Definition 2.13. For a total-cover f0 of L0, let f0(Z) :=
∑

z∈Z |f0(z)| with Z ⊆ X∪Y .

The cost of f0 is given by κ(f0) := f0(X)/|X| and f0 is said to be optimal if κ(f0) is

minimum among the costs of all total-covers for L0. This minimum value we denote

by κ(L0).

Observe that the feasibility of L0 implies that 1 ≤ κ(f0) ≤ |L0|, for any total-cover

f0. Also, without loss of generality, we can assume that G has no isolated vertices as

they do not influence the cost of any labeling.

We now give an example of a Label-Cover instance L0. Let U := {u1, . . . , un}

be a set of Boolean variables and let Φ :=
∧s
i=1 φi be a formula in CNF such that each

clause of Φ depends on k variables of U (as in a variation of the satisfiability problem

in which each clause has exactly k literals). For a clause φ ∈ Φ and a variable u ∈ U ,

we write u ∈ φ whenever φ depends on u.

The bipartite graph G = (X,Y,E) is constructed from Φ as follows. Let X :=

{x1, . . . , xks} have a vertex for every occurrence of a variable in Φ, and let Y :=

{1, . . . , s} have a vertex for every clause φ ∈ Φ. Let X(u) ⊆ X denotes the set of

vertices corresponding to the variable u, and define

E :=
{

(x, j) ∈ X × Y : x ∈ X(u) and u ∈ φj
}
,
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that is, each vertex j ∈ Y is connected to all occurrences of all variables in the clause

φj .

Define the label-sets as L0 := {0, 1} and L′0 := {0, 1}k. For an edge (x, j) ∈ E,

assume that x ∈ X(u) and that u is the i-th variable in φj , and define

Π0
(x,j) :=

{
(ai, (a1, . . . , ak)) : φj(a1, . . . , ak) = True

}
,

where ai ∈ L0 and (a1, . . . , ak) ∈ L′0.

Now, it is not hard to see that in this case, there is a total-cover f0 with κ(f0) = 1 if

and only if Φ is satisfiable. Notice that choosing k ≥ 3 establishes the NP-completeness

of the problem of deciding if an optimal total-cover for a given Label-Cover instance

has cost equal to one.

The above example was adapted from Dinur and Safra [55]. Their original version

is used in the proof of Theorem 2.18. In that context however, Φ is a non-Boolean

satisfiability instance produced by a probabilistic checkable proof system and the label-

sets involved are larger (see Remark 2.19 below).

Definition 2.14. A total-cover f0 is tight if f0(Y ) :=
∑

y∈Y |f0(y)| = |Y |, i.e., if for

every y ∈ Y , it holds that |f0(y)| = 1.

Lemma 2.15. Every Label-Cover instance L0 admits a tight, optimal total-cover.

Proof. Suppose f0 as in Definition 2.12 is a minimally non-tight, optimal total-cover

for L0. Hence, there is a y ∈ Y such that |f0(y)| > 1. Let `′0 ∈ f0(y) and define a

new labeling g where g(z) = f0(z) for all z ∈ X ∪ (Y \ {y}) and g(y) = f0(y) \ {`′0}.

Note that g(y) 6= ∅ and that every edge (x, y) for x ∈ N(y) := {z ∈ X : (z, y) ∈ E} is

covered (for f0 is a total-cover). Moreover, clearly κ(f0) = κ(g). Hence, g is an optimal

total-cover for L0 in which g(Y ) =
∑

y∈Y |g(y)| < f0(Y ), contradicting the minimality

of f0. The result thus follows.

Notation 2.16. For L0 being a Label-Cover instance as in Definition 2.11, define

r := |X|, s := |Y |, m := |E|, λ := |L0|, λ′ := |L′0|, πe := |Π0
e| for e ∈ E, and set

π :=
∑

e∈E πe.
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Problem 2.17. For any ρ > 1, a Label-Cover instance L0 has covering promise ρ

if it falls in one of two cases: either there is a tight, optimal total-cover for L0 of cost

1, or every tight, optimal total-cover for L0 has cost at least ρ. The Label-Coverρ

problem is a promise problem which receives a Label-Cover instance with covering

promise ρ (also known as a ρ-promise instance) as input and correctly classify it in one

of those two cases.

Notice the behavior of Label-Coverρ is left unspecified for non-promise instances.

Therefore, any answer is acceptable in such case. Due to this characteristic, the

Label-Coverρ problem is also referred as a gap-problem with gap ρ in the literature.

The result below is the basis for the polynomial time hardness we shall exhibit.

Theorem 2.18 (Dinur and Safra [55]). Let c be any constant in (0, 1/2) and ρc(s) :=

2(log s)1−1/δc(s)
with δc(s) := (log log s)c. There are Label-Cover instances L0 with

covering-promise ρc(s) such that it is NP-hard to distinguish between the cases in which

κ(L0) is equal to 1 or at least ρc(s).

The closer to 1/2 the above constant c gets, the larger the hardness of approximation

factor becomes. Therefore, from now on we shall consider that c is fixed to a value close

to 1/2.

Remark 2.19. Every Label-Cover instance produced by Dinur and Safra’s reduc-

tion is feasible, has covering-promise ρc(s), and satisfies the following relations: r =

sbδc(s)c, λ = Θ(ρc(s)), λ
′ = Θ(ρc(s)

δc(s)) = o(s), sbδc(s)c ≤ m ≤ s2bδc(s)c, and

π ≤ mλλ′ = O(s2δc(s)ρc(s)
δc(s)+1) = o(s3), for s as specified in Notation 2.16. It is

then immediate that each such instance has size o(s3).

We now introduce a refined version of the Label-Cover definitions, in which the

vertices in the sets X and Y have their own copies of the label-sets L0 and L′0, respec-

tively. We then show that all structural and approximation properties are preserved in

this new version.

Definition 2.20. Let L0 = (G,L0, L
′
0,Π0) be a feasible Label-Cover instance and

consider the sets Lx := {(x, `0) : `0 ∈ L0} for each vertex x ∈ X, and L′y := {(y, `′0) :
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`′0 ∈ L′0} for each vertex y ∈ Y . Also, define the sets L :=
⋃
x∈X Lx, L′ := ∪y∈Y L′y,

and Π :=
⋃

(x,y)∈E Π(x,y), with

Π(x,y) :=
{(

(x, `0), (y, `′0)
)

: (`0, `
′
0) ∈ Π0

(x,y)

}
.

The quadruple L = (G,L,L′,Π) is called a refinement of L0.

It is clear that |Lx| = λ for each vertex x ∈ X, |Ly| = λ′ for each vertex y ∈ Y ,

|Πe| = πe for each edge e ∈ E, |Π| = π, and that a labeling for L is a mapping f such

that x 7→ f(x) ⊆ Lx for each vertex x ∈ X, and y 7→ f(y) ⊆ L′y, f(y) 6= ∅ for each

vertex y ∈ Y . Furthermore, the remaining definitions and concepts can be adapted in

a straight forward fashion, and the size of a refined instance is also o(s3).

Lemma 2.21. For any ρ > 0, there is a one-to-one cost preserving correspondence

between solutions to the Label-Coverρ problem and to its refined version.

Proof. It is easy to see that f0 is a (tight) total-cover for the Label-Coverρ problem

if and only if f is a (tight) total-cover for its refinement, where f(x) = {(x, `0) : `0 ∈

f0(x)} for every x ∈ X, and f(y) = {(y, `′0) ∈ L′y : `′0 ∈ f0(y)} for every y ∈ Y (or

f(y) = (y, f0(y)) if the total-covers are tight). Furthermore it is clear that κ(f0) = κ(f),

in any case.

Henceforth, all the Label-Cover instances used are assumed to be of the refined

kind. For more information on the Label-Cover problem and its applications, consult

the survey by Arora and Lund [10], the article by Moshkovitz and Raz [119], and the

book by Arora and Barak [8].

2.3 Reduction to pure Horn CNFs and a Polynomial Time Hardness

Result

Our first reduction starts with a Label-Cover instance L as input and produces a

pure Horn CNF formula Φ, which defines a pure Horn function h. The driving idea

behind this reduction is that of tying the cost of tight, optimal total-covers of L to the

size of clause minimum prime pure Horn CNF representations of h.
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With this in mind, let L = (G = (X,Y,E), L, L′,Π) be a Label-Cover instance

(in compliance with Theorem 2.18 and Definition 2.20), and let d and t be positive

integers to be specified later. Both d and t will be used as (gap) amplification devices.

For nonnegative integers n, define [n] := {1, . . . , n}.

Associate propositional variables u(`) with every label ` ∈ L ∪ L′, e(x, y, i) and

e(x, y, `′, i) with every edge (x, y) ∈ E, every label `′ ∈ L′y and every index i ∈ [d].

Let v(j), for indices j ∈ [t], be extra variables, and consider the following families of

clauses:

(a) u(`) ∧ u(`′) −→ e(x, y, `′, i) ∀ (x, y) ∈ E, (`, `′) ∈ Π(x,y), i ∈ [d];

(b)
∧

z∈N(y)

e(z, y, `′, i) −→ e(x, y, i) ∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d];

(c) e(x, y, i) −→ e(x, y, `′, i) ∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d];

(d)
∧
i∈[d]

∧
(x,y)∈E

e(x, y, i) −→ u(`) ∀ ` ∈ L ∪ L′;

(e) v(j) −→ u(`) ∀ j ∈ [t], ` ∈ L ∪ L′;

where as before, N(y) := {x ∈ X : (x, y) ∈ E} is the open neighborhood of the vertex

y ∈ Y .

Definition 2.22. Let us call Ψ and Φ the canonical pure Horn CNF formulae defined,

respectively, by the families of clauses (a) through (d) and by all the families of clauses

above. Let g and h be, in that order, the pure Horn functions they represent.

The construction presented above can be divided into two parts. The families of

clauses appearing in Ψ, namely, clauses of type (a) through (d), form an independent

core since the function g is an exclusive component of the function h (as we shall show).

This core can be analysed and minimized separately from the remainder, and its role is

to reproduce the structural properties of the Label-Cover instance. In more details,

clauses of type

(a) correspond to the constraints on the pairs of labels that can be assigned to each

edge;
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(b) will assure that edges (x, y) ∈ E are covered, enforcing the matching of the labels

assigned to all the neighbors of vertex y;

(c) assure that if an edge can be covered in a certain way, then it can be covered in

all legal ways — thus implying that it is not necessary to keep track of more than

one covering possibility for each edge in clause minimum prime representations;

(d) translate the total-cover requirement and reintroduce all the labels available en-

suring that if a total-cover is achievable, so are all the others; this reintroduction

of labels is paramount to the proper functioning of the reduction as explained

below.

The family of clauses occurring in Φ\Ψ, namely, the clauses of type (e), constitutes

the second part of the construction. These clauses have the role of introducing an

initial collection of labels, which sole purpose is to help achieve the claimed hardness

of approximation result. The intended behavior is as follows.

Consider initially that d = t = 1. It is known that given any subset of the variables

of h as input, the Forward Chaining procedure in any pure Horn CNF representation

of h will produce the same output (cf. Lemma 2.6). In particular, for the singleton

{v(1)}, the output in Φ will be the set with all the variables of h, and so will be the

output obtained in any clause minimum prime pure Horn CNF representing h.

The reintroduction of labels performed by the family of clauses (d) may allow for

some clauses of type (e) to be dropped without incurring in any loss. In slightly more

details, as long as a subset of the family of clauses (e) introduces enough labels so that

the Forward Chaining procedure in Φ is able to eventually trigger the family of clauses

(d), the remaining clauses of type (e) can be dismissed. All the missing labels will be

available by the end of the procedure’s execution. It is not hard to see at this point that

subsets of retained clauses of type (e) and total-covers of the Label-Cover instance

in which the reduction is based are in one-to-one correspondence.

Now, supposing that a clause minimum prime pure Horn CNF representation of h

resembles the canonical form Φ, we just have to compensate for the number of clauses in
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Ψ to obtain a distinguishable gap that mimics the one exhibited by the Label-Cover

(as a promise) problem. This is achieved by making the gap amplification parameter t

which the clauses of type (e) depend upon large enough.

However, in principle, there is no guarantee that a clause minimum prime pure

Horn CNF representation of h, say Υ, resembles Φ or that Υ has any clause of type

(e) whatsoever. It may be advantageous to Υ to have prime implicates where v(j),

for j ∈ [t], occurs in their subgoals or prime implicates with variables other than u(`),

for ` ∈ L ∪ L′, occurring as heads. Furthermore, the number of prime implicates in Υ

involving v(j) might simply not depend on the number of labels. Indeed, if d = 1 as

we are supposing, whenever the number of edges |E| turns out to be strictly smaller

than κ(L), the cost of an optimal total-cover for L, it would be advantageous for Υ

to have prime implicates of the form v(j) −→ e(x, y, 1), for (x, y) ∈ E. This not only

breaks the correspondence mentioned above, but it renders the gap amplification device

t innocuous and the whole construction useless.

We manage to overcome the above difficulty throughout a second amplification

device, the parameter d which the clauses of type (a) through (d) depend upon. As we

shall prove in Lemma 2.28, setting d = 1 + rλ + sλ′ (which is strictly larger than the

total number of labels available in L — cf. Notation 2.16 and Definition 2.20) allows

us to control the shape of the prime implicates involving variables v(j) in prime pure

Horn clause minimum representations of h: they will be precisely some of the clauses

of type (e). Moreover, after showing that the function g is an exclusive component of

the function h, we shall see that we do not need to concern ourselves with the actual

form of clause minimum prime pure Horn CNF representations of g. Therefore, in a

sense, the canonical form Φ has indeed a good resemblance to a clause minimum prime

pure Horn CNF representing h, and the intended behavior is achieved in the end.

2.3.1 Correctness of the CNF Reduction

In this subsection, we formalize the discussion presented above. We will constantly use

the canonical representations Φ and Ψ to make inferences about the functions h and g

they respectively define, and such inferences will most of the time be made throughout
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Forward Chaining. We start with some basic facts about Φ and Ψ.

Lemma 2.23. Let d and t be as above and let r, s, m, λ, λ′, and π be as in Nota-

tion 2.16. It holds that the number of clauses and variables in Φ are, respectively,

|Φ|c = (t+ 1)(rλ+ sλ′) + d(π + 2mλ′) and |Φ|v = t+ dm(λ′ + 1) + rλ+ sλ′.

In Ψ, those numbers are, respectively,

|Ψ|c = rλ+ sλ′ + d(π + 2mλ′) and |Ψ|v = dm(λ′ + 1) + rλ+ sλ′.

Proof. For #(α) denoting the number of clauses of type (α) in Φ, simple counting

arguments show that the equalities

#(a) = dπ #(c) = dmλ′ #(e) = t(rλ+ sλ′)

#(b) = dmλ′ #(d) = rλ+ sλ′

hold. For the number of variables, just notice there are rλ + sλ′ variables u(`), dm

variables e(x, y, i), dmλ′ variables e(x, y, `′, i), and t variables v(j). To conclude the

proof, just remember that the only difference between Φ and Ψ is the absence of the

family of clauses of type (e) in the latter.

Considering the bounds for r, m, λ, λ′, and π provided in Remark 2.19, the above

result immediately implies that as long as the quantities d and t are polynomial in s,

namely, the number of vertices in Y , the construction of Φ from L can be carried out

in polynomial time in s. More meaningfully, it can be carried out in polynomial time

in n = |Φ|v, the number of variables of h.

We now establish the pure Horn function g as an exclusive component of h. This

structural result allows us to handle g in a somewhat black-box fashion. Specifically,

as we shall see briefly, it is not required of us to precisely know all the properties and

details of a clause minimum representation of g. We can mainly concentrate on the

study of the prime implicates that might involve the variables in h that are not in g,

namely, the variables v(j), for j ∈ [d].

Lemma 2.24. The function g is an exclusive component of the function h. Conse-

quently, g can be analysed and minimized separately.
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Proof. Let Vg be the set of variables occurring in Ψ. By definition, these are the

variables the function g depends upon. Since no clause in Ψ has head outside Vg,

it is immediate that Vg is closed under Forward Chaining in Φ. As Φ represents h,

Lemma 2.10 then implies that X (Vg) := {C ∈ I(h) : Vars(C) ⊆ Vg} is an exclusive

family for h. This gives that Ψ = Φ ∩ X (Vg) is an X (Vg)-exclusive component of h

(cf. Definition 2.8) and therefore, that g is an exclusive component of h. Now, using

Lemma 2.9, we obtain a proof of the second claim as wished.

With some effort, it is possible to prove that Ψ is a clause minimum prime pure

Horn CNF representation of g. For our proofs however, a weaker result suffices.

Lemma 2.25. Let Θ be a clause minimum prime pure Horn CNF representation of g.

We have |Ψ|c/(λ+ λ′) ≤ |Θ|c ≤ |Ψ|c.

Proof. The upper bound is by construction. For the lower bound, observe that each

variable of Ψ appears no more than λ+ λ′ times as a head. As in any clause minimum

representation of g they must appear as head at least once, the claim follows.

The next lemma is a useful tool in showing whether two different representations of

the pure Horn function h are equivalent.

Lemma 2.26. For all indices j ∈ [t], it holds that Fh({v(j)}) = Vg ∪ {v(j)}.

Proof. It is enough to show that {e(x, y, i) : (x, y) ∈ E, i ∈ [d]} ⊆ FΦ({v(j)}), for a

fixed j ∈ [t]. The inclusion would be false if there existed a label `′′ ∈ L ∪ L′ such that

u(`′′) 6∈ FΦ({v(j)}). As for every label ` ∈ L ∪ L′, v(j) −→ u(`) is a clause in Φ, this

cannot happen. Hence, the inclusion holds, implying the claim.

The next couple of lemmas deal with the structure of prime implicates involving the

variables v(j), for j ∈ [t]. The first states a simple, but useful fact which is valid in any

representation of h. The second proves how the amplification device depending on the

parameter d shapes those prime implicates in clause minimum representations of h to

the desired form: v(j) −→ u(`), with ` ∈ L ∪ L′.
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Lemma 2.27. A variable v(j), for some index j ∈ [t], is never the head of an implicate

of h. Moreover, every prime implicate of h involving v(j) is quadratic.

Proof. The first claim is straight forward as all implicates of h can be derived from Φ

by resolution, and v(j) is not the head of any clause of Φ. By Lemma 2.26, v(j) −→ z is

an implicate of h for all z ∈ Vg. Since h is a pure Horn function, the claim follows.

Lemma 2.28. Let d = 1 + rλ + sλ′. In any clause minimum prime pure Horn CNF

representation of h, the prime implicates involving the variables v(j) have the form

v(j) −→ u(`), for all indices j ∈ [t], and for some labels ` ∈ L ∪ L′.

Proof. Let Υ = Θ ∧ Γ be a clause minimum prime pure Horn CNF representation of

h, with Θ being a clause minimum pure Horn CNF representation of g. According to

Lemma 2.27, all prime implicates of h involving the variables v(j) are quadratic. So,

for all indices j ∈ [t] and all indices i ∈ [d] define the sets

Γj0 := Γ ∩ {v(j) −→ u(`) : ` ∈ L ∪ L′},

Γji := Γ ∩ {v(j) −→ e(x, y, i), v(j) −→ e(x, y, `′, i) : (x, y) ∈ E, `′ ∈ L′y}.

Our goal is to show that the chosen value for the parameter d forces all the sets Γji

to be simultaneously empty and consequently, that all the prime implicates involving

the variables v(j) in clause minimum pure Horn CNF representations of h have the

claimed form. We shall accomplish this in two steps.

Let j ∈ [t]. We first show that if a set Γji 6= ∅ for some index i ∈ [d], then Γji 6= ∅

for all indices i ∈ [d], simultaneously.

Claim 1. All clauses of type (d) have the same body. Therefore, during the execution

of the Forward Chaining procedure from {v(j)}, either they all trigger simultaneously

or none of them do. The reason for them not to trigger is the absence of some variable

e(x, y, i), with (x, y) ∈ E and i ∈ [d], in the Forward Chaining closure from {v(j)}, i.e,

e(x, y, i) 6∈ FΥ({v(j)}).

Proof. A simple inspection of the families of clauses shows that Claim (1) holds.
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Now, for each index i ∈ [d], let Ξi be the collection of clauses of types (a), (b), and

(c) that depend on i.

Claim 2. It holds that

e(x, y, i) ∈ F
Γj0∪Ξi

({v(j)}) if and only if e(x, y, i′) ∈ F
Γj0∪Ξ

i′
({v(j)}),

for all indices i, i′ ∈ [d], with i 6= i′.

Proof. Notice that the families of clauses (a), (b), and (c) are completely symmetric

with respect to the indexing variable i. Moreover, for i1 6= i2, the clauses indexed by

i1 do not interfere with the clauses indexed by i2 during an execution of the Forward

Chaining procedure. In other words, variables depending upon i1 do not trigger clauses

indexed by i2, and vice-versa. These two properties, symmetry and non interference,

proves Claim (2).

Claim 3. If there is a variable e(x, y, i), with (x, y) ∈ E and i ∈ [d], such that

e(x, y, i) 6∈ F
Γj0∪(

⋃
i∈[d] Ξi)

({v(j)})

then

e(x, y, i) 6∈ F
Γj0∪(

⋃
i∈[d] Ξi)∪(

⋃
i′ 6=i Γj

i′)
({v(j)}).

Moreover, this implies that Γji 6= ∅.

Proof. The symmetry and non interference properties of families of clauses (a), (b),

and (c) also justifies the first part of Claim (3). To see it, just notice that were the

claim to be false, the prime implicates in Γji′ would be trigging clauses involving the

variable e(x, y, i) in an execution of the Forward Chaining procedure. Since i′ 6= i, this

cannot happen. The second part follows immediately from the validity of the first part

together with the fact that Υ represents h.

To finish the first step, notice that since Claim (3) is valid for any i ∈ [d], Claim

(2) implies that if Γji 6= ∅ for some index i ∈ [d], then Γji 6= ∅ for all indices i ∈ [d],

simultaneously.
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For the second step, suppose that Γji 6= ∅ for all indices i ∈ [d]. We then have that

γ :=
∑
i∈[d]

|Γji | ≥ d = 1 + rλ+ sλ′ = 1 + |L ∪ L′|,

that is, γ is strictly larger than the number of all available labels in L. This implies

that the following pure Horn CNF

∆j :=

(
Υ \

⋃
i∈d

Γji

)
∪
{
v(j) −→ u(`) : ` ∈ L ∪ L′

}
= Θ ∪

((
Γ \

⋃
i∈d

Γji

)
∪
{
v(j) −→ u(`) : ` ∈ L ∪ L′

})
,

has fewer clauses than Υ (or more precisely, it implies that |∆j |c <= |Υ|c − 1).

Now, since Θ is a (clause minimum) representation of the exclusive component g, and

since the set of clauses {v(j) −→ u(`) : ` ∈ L∪L′}makes all available labels reachable by

Forward Chaining from {v(j)}, it follows that F∆j ({v(j)}) = Vg∪{v(j)}. Furthermore,

the change in clauses did not influence the Forward Chaining procedure from any other

variable (other than v(j)), and thus F∆j ({w}) = FΥ({w}) for all variables w 6= v(j).

Thus, Lemma 2.26 implies that ∆j is a representation of h.

We then have that ∆j is a shorter representation for h, contradicting the optimality

of Υ. Therefore, the sets Γji = ∅ for all indices i ∈ [d]. As the above arguments do not

depend on any particular value of j, they can be repeated for all of them.

The next property we can show more generally for any prime and irredundant CNF

of h.

Definition 2.29. Let d = 1+rλ+sλ′ and let Υ be a prime and irredundant pure Horn

CNF representation of h. For each j ∈ [t], consider the set

Sj =
{
` ∈ L ∪ L′ : v(j) −→ u(`) ∈ Υ

}
and define the function fj : X → L, Y → L′ given by fj(x) = Sj ∩Lx for vertices x ∈ X

and fj(y) = Sj ∩ L′y for vertices y ∈ Y .

The next three lemmas provide important properties of the functions fj above.
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Lemma 2.30. Let Υ be as in the above Definition. For all indices j ∈ [t] and vertices

y ∈ Y , it holds that |fj(y)| ≤ 1.

Proof. Let Υ be as in Definition 2.29 and suppose indirectly that the claim is false, that

is, there is an index j ∈ [t] and a vertex y ∈ Y such that |fj(y)| > 1.

During the proof, recall that the chosen value for the parameter d implies, according

to Lemma 2.28, that all prime implicates of Υ involving the variable v(j) must have

the form v(j) −→ u(`), with ` ∈ L ∪ L′.

Let `′ ∈ fj(y) and define the expression

Υ′ := Υ \ {v(j) −→ u(`′)}.

It is enough to show that FΥ′({v(j)}) = Vg ∪ {v(j)}, that is, that Υ′ is also a

representation of h (cf. Lemma 2.26). Suppose that is not the case. Since Υ and Υ′

differ only in the clause v(j) −→ u(`′), it must be the case that u(`′) 6∈ FΥ′({v(j)}). This

happens if the clause of type (d) associated to u(`′) is not triggered. For this to occur,

there must be an edge (x, y) ∈ E and an index i ∈ [d] such that e(x, y, i) 6∈ FΥ′({v(j)}).

Now, for y and i as above, notice that: (i) variable e(x, y, i) would be included

in FΥ′({v(j)}) as long as there were a label in L′y such that the corresponding clause

of type (b) were triggered; and (ii) once such clause of type (b) were triggered, the

appropriated clauses of type (c) would trigger, thus making the other clauses of type

(b) associated to y and i to also trigger.

Therefore, for e(x, y, i) to not belong to FΥ′({v(j)}), it must be the case that for

every label `′′ ∈ fj(y) \ {`′} there exists a vertex z(`′′) ∈ N(y) for which

e(z(`′′), y, `′′, i) 6∈ FΥ′({v(j)}).

For this latter relation to be true, we must have that the clauses

u(`) ∧ u(`′′) −→ e(z(`′′), y, `′′, i) (2.2)

are not triggered in the Forward Chaining procedure on Υ′ starting with {v(j)}, for

every label ` ∈ fj(z(`′′)) with (`, `′′) ∈ Π(z(`′′),y).
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However, according to Definition 2.29, for each label `′′ ∈ fj(y)\{`′} and each label

` ∈ fj(z(`′′)), there are clauses v(j) −→ u(`′′) and v(j) −→ u(`), respectively, in Υ and,

consequently, in Υ′. This implies that the clauses (2.2) are triggered, which implies

that u(`′) ∈ FΥ′({v(j)}), which then implies that Υ′ is also a representation of h. Since

this contradicts the irredundancy of Υ, it follows that |fj(y)| ≤ 1, thus concluding the

proof.

Lemma 2.31. Let Υ be a clause minimum prime pure Horn CNF of h. Then it is

prime and irredundant, so Definition 2.29 applies. We claim that for all indices j ∈ [t]

and vertices y ∈ Y , it holds that |fj(y)| ≥ 1.

Proof. Suppose that the claim is false, that is, there is an index j ∈ [t] and a vertex

y ∈ Y such that |fj(y)| = 0.

Then clauses v(j) −→ u(`′), for all labels `′ ∈ L′y, are absent from Υ. Recall that

the chosen value for the parameter d implies that all prime implicates of Υ involving

v(j) are quadratic (Lemma 2.28).

Thus, no clause of type (a) dependent on the vertex y is triggered during a Forward

Chaining from {v(j)} and hence, no clauses of type (b) and of type (c) dependent on

y are triggered either. This gives that the variables e(x, y, i), for all vertices x ∈ N(y)

and all indices i ∈ [d], do not belong to the Forward Chaining closure (from {v(j)}).

Therefore, no clause of type (d) is triggered and no label `′ ∈ L′y is reintroduced. In other

words, it is the case that u(`′) 6∈ FΥ({v(j)}) and hence, that FΥ({v(j)}) 6= Fh({v(j)}).

By Lemma 2.26, Υ does not represent h, a contradiction. So, it must be the case that

|fj(y)| ≥ 1.

Combining the two lemmas above, we have the following tight result.

Corollary 2.32. Let Υ be a clause minimum prime pure Horn CNF of h. Then, for

all indices j ∈ [t] and vertices y ∈ Y , it holds that |fj(y)| = 1.

The next lemma shows that the functions fj are indeed tight total-covers.

Lemma 2.33. Let Υ be a clause minimum prime pure Horn CNF of h. For each index

j ∈ [t], the function fj is a tight total-cover for L.
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Proof. Let j ∈ [t]. By construction (cf. Definition 2.29), fj is a labeling for L. Suppose

however, that fj is not a total-cover. Hence, there exists an edge (x, y) ∈ E and a label

`′ ∈ fj(y) such that for all labels ` ∈ fj(x), it holds that (`, `′) 6∈ Π(x,y). Since Υ is

clause minimum, no variable e(x, y, `′, i) belongs to FΥ({v(j)}), for any index i ∈ [d].

This is so because the variables e(x, y, `′, i) do not occur as heads in any clause of Υ

(cf. Lemma 2.28). Now, using Lemma 2.26, we obtain that Υ does not represent h, a

contradiction. To conclude the proof, just notice that Corollary 2.32 implies that fj is

tight.

In order to relate the size of a clause minimum representation of h to the cost of an

optimal solution to L, we need a comparison object. Let f be a tight total-cover for L

and consider the following subfamily of clauses:

(e’) v(j) −→ u(`) ∀ j ∈ [t], x ∈ X, y ∈ Y, ` ∈ f(x) ∪ f(y),

with f(x) ⊆ Lx and f(y) ⊆ L′y. Let Φf be the refined canonical (with respect to f)

pure Horn CNF formula resulting from the conjunction of Ψ with the clauses of type

(e’).

Lemma 2.34. Φf represents h.

Proof. Suppose the opposite. As g is also an exclusive component of Φf , that means

u(`′′) 6∈ FΦf ({v(j)}) for some label `′′ ∈ L ∪ L′ and index j ∈ [t]. For that to happen,

for any index i ∈ [d] there must be an edge (x, y) ∈ E such that e(x, y, i) 6∈ FΦf ({v(j)})

and for every `′ ∈ L′y there is a vertex z ∈ N(y) such that e(z, y, `′, i) 6∈ FΦf ({v(j)}) as

well. But since f is a tight total-cover, there is a pair of labels (`z, `
′
y) ∈ Π(z,y) triggering

the clause u(`z)∧ u(`′y) −→ e(z, y, `′y, i) as both u(`z) and u(`′y) belong to FΦf ({v(j)}),

contradicting e(z, y, `′y, i) 6∈ FΦf ({v(j)}). Therefore, FΦf ({v(j)}) = Vg ∪{v(j)} and the

claim follows by Lemma 2.26.

Lemma 2.35. Let Υ be a clause minimum prime pure Horn CNF of h, and let us

define fj, for all indices j ∈ [t], as in Definition 2.29. It holds that each fj is a tight,

minimum cost total-cover for L.
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Proof. Let Υ = Θ∧Γ where Θ is an optimal representation of g and Γ consists of clauses

of type (e) (cf. Lemma 2.28). As assured by Lemma 2.33, fj are tight total-covers for

L, for each and every index j ∈ [t]. Notice that since Υ is clause minimum, it follows

that all these tight total-covers have the same cost, i.e., κ(fj) = κ(fk) for all j, k ∈ [t].

We then have that

∑
j∈[t]

(κ(fj)r + s) = t(κ(fj)r + s) = |Γ|c ≤ |Φf \Ψ|c = t(κ(f)r + s), (2.3)

where f is any tight total-cover for L and Φf is the refined canonical (w.r.t. f) formula

as in Lemma 2.34. In particular, Equation (2.3) holds even when f is a tight, minimum

cost total-cover, thus implying that fj is optimal as claimed.

Remark 2.36. The tight, optimal total-covers fj and fk, for j, k ∈ [t] and j 6= k, might

be different. As they have the same optimal cost, any one of them can be exhibited as

solution to L.

The following corollary summarizes the work done so far.

Corollary 2.37. Let Ψ be as in Definitions 2.22 and Υ be a clause minimum prime

pure Horn CNF of h. It holds that

|Ψ|c/(λ+ λ′) ≤ |Υ|c − t(κ(f)r + s) ≤ |Ψ|c,

where κ(f)r+ s is the total number of labels in a tight optimal total-cover f for L.

2.3.2 The CNF Hardness Result

We are now able to prove the main result of this section.

Theorem 2.38. Let c be a fixed constant close to 1/2. Unless P = NP, the minimum

number of clauses of a pure Horn function on n variables cannot be approximated in

polynomial time (depending on n) to within a factor of

ρc(n
ε) ≥ 2ε(logn)1−1/δc(n)

= 2log1−o(1) n,

where δc(n) = (log log n)c, even when the input is restricted to CNFs with O(n1+2ε)

clauses, for some ε ∈ (0, 1/4].
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Proof. Let L0 be a Dinur and Safra’s Label-Cover promise instance (cf. Theo-

rem 2.18) and let L be its equivalent refined version (cf. Definition 2.20).

Let Φ be the canonical formula constructed from L with the parameter d set to

d = 1 + rλ + sλ′ (cf. Lemma 2.28), and let h be the pure Horn function defined by

Φ. Let Υ be a pure Horn CNF representation of h obtained by some exact clause

minimization algorithm when Φ is given as input.

Recall Notation 2.16 and for convenience, let δ = δc(s) and ρ = ρc(s). Substituting

the quantities established in Lemma 2.23 into the bounds given by Corollary 2.37, and

applying the values given in Remark 2.19, we have that

|Υ|c ≥ t(κ(f)r + s) +
d(π + 2mλ′) + rλ+ sλ′

λ+ λ′

≥ st(κ(f)(δ − 1) + 1) + Ω(s2δρδ)

≥ st(κ(f)(δ − 1) + 1) + ω(s2),

and

|Υ|c ≤ t(κ(f)r + s) + d(π + 2mλ′) + rλ+ sλ′

≤ st(κ(f)δ + 1) +O(s3δρ2δ+1)

≤ st(κ(f)δ + 1) + o(s4).

Similarly, for the number of variables we have that

t ≤ |Υ|v = t+ dm(λ′ + 1) + rλ+ sλ′

≤ t+O(s3δρ2δ)

≤ t+ o(s4).

Now, choosing ε > 0 such that t = s1/ε = Ω(s4) and supposing that s −→ ∞, we

obtain the asymptotic expressions

|Υ|c = s(1+1/ε)δc(s)κ(f)(1 + o(1)) and |Υ|v = s1/ε(1 + o(1)).

Bringing the existing gaps of the Label-Cover promise instances into play, we
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then obtain the following dichotomy

κ(L) = 1 =⇒ |Υ|c ≤ s(1+1/ε)δc(s)(1 + o(1)),

κ(L) ≥ ρc(s) =⇒ |Υ|c ≥ s(1+1/ε)δc(s)ρc(s)(1 + o(1)).

Letting n = |Υ|v and relating |Υ|c to the number of variables of h, the above

dichotomy reads as

κ(L) = 1 =⇒ |Υ|c ≤ n(1+ε)δc(n
ε)(1 + o(1)),

κ(L) ≥ ρc(s) =⇒ |Υ|c ≥ n(1+ε)δc(n
ε)ρc(n

ε)(1 + o(1)),

giving a hardness of approximation factor of ρc(n
ε) for the pure Horn CNF minimization

problem (cf. Theorem 2.18). That is, any polynomial time algorithm that approximates

the number of clauses of a pure Horn CNF representation of h to within a factor better

than ρc(n
ε) can be used to solve the Label-Cover promise problem for L. This in

turn would show that P = NP.

To conclude the proof, notice that since log ε < 0 and n −→∞, the gap

ρc(n
ε) = 2(ε logn)1−1/δc(n

ε)

≥ 2ε(logn)1−1/δc(n)

= 2(logn)1−1/δc(n)+log ε/ log logn

= 2(logn)1−o(1) ,

where the log ε/ log logn in the exponent is negligible compared to 1/δc(n) as δc(n) =

o(log log n), and also notice that the number of clauses is

n(1+ε)δc(n
ε) ≤ n1+2ε.

2.4 Pure Horn 3-CNFs and Minimizing the Number of Literals

In this section, we extend our hardness result in two ways. First, we prove that it still

holds when the pure Horn function h is represented through a pure Horn 3-CNF, that
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is, in which each clause has at most three literals (and at least two, since h is pure

Horn). Second, we build upon this first extension and prove that a similar bound holds

when trying to determine a literal minimum pure Horn 3-CNF representation of h.

Let again d = 1 + rλ + sλ′ and t be a positive integer to be specified later. As in

the previous section, both d and t will be used as (gap) amplification devices.

A brief inspection of our construction in Section 2.3 shows that the clauses of type

(b) and (d) may have arbitrarily long subgoals, with long meaning strictly more than

three literals. The idea is then to modify the construction locally so that each long

clause is replaced by a gadget consisting of a collection of quadratic or cubic new

clauses. Each gadget is designed to preserve the original logic implications of the clause

it replaces.

Specifically, we replace the clauses of type (b) in a similar way to what is done in

the reduction from SAT to 3-SAT (cf. Garey and Johnson [73]), that is, in a linked-list

fashion. For each vertex y ∈ Y , let d(y) := |N(y)| be its degree and let 〈z1
y , z

2
y , . . . , z

d(y)
y 〉

be an arbitrary, but fixed ordering of its neighbors. Associate new propositional vari-

ables e(β, x, y, `′, i) with all edges (x, y) ∈ E, all labels `′ ∈ L′y, all indices i ∈ [d], and

all indices β ∈ [d(y)− 2]. As before, we have that d = 1 + rλ+ sλ′. Replace the clauses

of type (b) by the families of clauses below:

(b1)
∧

z∈N(y)

e(z, y, `′, i) −→ e(x, y, i) ∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d], d(y) ≤ 2;

(b2) e(z1
y , y, `

′, i) ∧ e(z2
y , y, `

′, i) −→ e(1, x, y, `′, i)

∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d], d(y) ≥ 3;

(b3) e(zβ+2
y , y, `′, i) ∧ e(β, x, y, `′, i) −→ e(β + 1, x, y, `′, i)

∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d], β ∈ [d(y)− 3];

(b4) e(zd(y)
y , y, `′, i) ∧ e(d(y)− 2, x, y, `′, i) −→ e(x, y, i)

∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d], d(y) ≥ 3.

The clauses of type (b1) are exactly the quadratic and cubic clauses of type (b) in

the original construction. The clauses of types (b2), (b3), and (b4) rely on the new

variables e(β, x, y, `′, i) to handle the remaining original clauses of type (b) through
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a series of split and link operations. It is not hard to see that these new families of

clauses retain the symmetry and non interference properties possessed by the original

ones they replaced. Furthermore, they will be part of an exclusive component. These

characteristics, as we shall see, contributes to the transference of most of the lemmas

from the previous section in a rather verbatim fashion.

Trying to apply the same technique to the clauses of type (d) generates the following

problem. Recall that m = |E|. All the rλ + sλ′ clauses of type (d) have the same

long subgoal with dm literals; they only differ in their heads. In a first attempt to

emulate what was done above to the clauses of type (b), we may decide to replace this

long subgoal with a single linked list and to replicate its last node once for each label

` ∈ L ∪ L′. After ordering these literals in an arbitrary, but fixed order, introducing

dm−2 new variables, say e(ζ) for ζ ∈ [dm−2], and performing split and link operations,

we obtain the linked list whose last node has subgoal e(x′, y′, i′) ∧ e(dm− 2), for some

edge (x′, y′) ∈ E and some index i′ ∈ [d]. This subgoal is then replicated, thus spanning

the clauses

e(x′, y′, i′) ∧ e(dm− 2) −→ u(`),

for all labels ` ∈ L ∪ L′. Now, it is not hard to see that the prime implicates

v(1) −→ e(x′, y′, i′) and v(1) −→ e(dm− 2) completely bypass the amplification device

dependent on the parameter d, reintroducing all the available labels. Similar to what

was said before, this renders the gap amplification device dependent on parameter t in-

nocuous and the whole construction useless. It is also not hard to see that introducing

a new amplification device and recurring on the whole idea does not solve the problem

as we end up in a similar situation.

In a second attempt to emulate what was done to the clauses of type (b), we may

decide to introduce different linked lists to different clauses of type (d). Notice that

this implies that each of these lists must be indexed by one of the available labels

in L ∪ L′. In order for this new collection of clauses to be reached in an execution

of the Forward Chaining procedure, this indexing scheme must be back propagated

into the clauses of types (a), (b1) through (b4), and (c). That is, every clause of the

exclusive component must now be indexed by a label in L∪L′. With some thought, it is
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possible to realize the following. First, this label indexing of clauses is performing a job

similar to the one played by parameter d, in the sense that the latter could in principle

be dropped — and replacing one scheme by the other leaves the number of clauses

in the exclusive component in the same order of magnitude. Second, this operation

significantly changes the meaning of the clauses being used as the labels would then be

reintroduced in a somewhat independent fashion. While the high degree of symmetry

guarantees that all labels would be reintroduced, the new core is not an extension of

the old one: we are not extending the original function by the introduction of auxiliary

variables to reduce clause degrees through new local gadgets; we are changing the

function being represented, and that qualifies the process as a new construction instead

of a cubification of the old one. This immediately leads us to our third point: it is not

clear how or whether the proofs we presented in Section 2.3 would extend to this new

environment. Again with some thought, it is possible to see that the use of the label

indexing scheme alone does not guarantee that the prime implicates involving variables

v(j) can have forms other than v(j) −→ u(`), for j ∈ [t] and ` ∈ L ∪ L′. Moreover,

the shape of these prime implicates might depend on the ordering chosen for the edges

of the graph and reintroducing the amplification device based on parameter d, playing

the same role as before, does not ameliorate the situation (actually, it is completely

useless). The difficulty in controlling the shape of those prime implicates tarnishes the

tie established between clause minimum prime pure Horn representations and tight,

optimal total-covers. It might still be possible to replace the clauses of type (d) in a

linked-list fashion, but at this point is still not clear how to use such approach in a

correct and not overly complicated way.

We shall circumvent the above problem through the use of a different structure: we

shall replace the clauses of type (d) by new clauses arranged as complete binary trees,

i.e., trees in which every level has all the nodes with the possible exception of the last

level, where its nodes are flushed to the left; and we shall then link these trees together

by their roots. The idea is as follows. For each index i ∈ [d], we will introduce m−1 new

variables and will arrange them as internal nodes in a complete binary tree, where the

variables e(x, y, i) will appear as tree leaves. Notice that we will have exactly d trees.
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We will then associate each label from L∪L′ with the roots of two of those trees, in an

orderly fashion: the roots (namely, the variables e(1, i)) will be seen as nodes and the

labels will be seen as edges of a path of length d. The path will be well defined (i.e., all

labels will be reintroduced) if all nodes (root variables) are reachable through Forward

Chaining from a variable v(j). It is worth noticing that since d = 1+rλ+sλ′ > |L∪L′|,

all prime implicates involving the variables v(j) will have the form v(j) −→ u(`), for

some label ` ∈ L∪L′ — similarly to what happend in the pure Horn CNF case, we shall

show that it is simply not advantageous for these prime implicates to have any other

form in clause minimum prime pure Horn 3-CNF representations. We now formalize

this idea.

Let us rename the labels in L ∪ L′ as `α, α ∈ [d − 1]. Let us also index the m

edges in E as ek, k ∈ [m]. Let us further introduce new propositional variables e(k, i),

k ∈ [m−1], i ∈ [d], and introduce e(k, i) for k ∈ {m,m+1, . . . , 2m−1} to be an alias to

the variable e(x, y, i), where (x, y) = ek−m+1 is an edge in E according to the indexing

above. We then create d complete binary trees through the family of clauses:

(d1) e(2k, i) ∧ e(2k + 1, i) −→ e(k, i) ∀ k ∈ [m− 1], i ∈ [d];

(d2) e(1, α) ∧ e(1, α+ 1) −→ u(`α) ∀ α ∈ [d− 1].

Notice that clauses of type (d1) index the nodes of the tree in a similar way a

complete binary tree is stored inside an array (cf. Cormen et al. [47]) and that the

clauses of type (d2) do define the path we mentioned.

We shall illustrate the complete binary tree transformation through the following toy

example. We start with a Label-Cover instance whose constraint graph is a claw, that

is, G = ({x1, x2, x3}, {y}, {(x1, y), (x2, y), (x3, y)}), whose label sets are L0 = {`1, `2}

and L′0 = {`′1, `′2}, and whose constraint set is the union of

Π0
(x1,y) = {(`1, `′1), (`1, `

′
2)}, Π0

(x2,y) = {(`1, `′2)}, and Π0
(x3,y) = {(`2, `′1), (`2, `

′
2)}.

The refined Label-Cover instance will then have 8 labels in total (L = {`11, `12,

`21, `
2
2, `

3
1, `

3
2} and L′ = {`′1, `′2})1 and our CNF construction will introduce 8 × 9 = 72

1The refined label (xi, `j) ∈ L, with xi ∈ X and `j ∈ L0, is depicted by `ij in this example.
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e(x2, y, 1) = e(4, 1)

e(x3, y, 1) = e(5, 1)

e(x1, y, 1) = e(3, 1)

e(2, 1)

e(1, 1)

e(x2, y, 2) = e(4, 2)

e(x3, y, 2) = e(5, 2)

e(x1, y, 2) = e(3, 2)

e(2, 2)

e(1, 2)

e(x2, y, 3) = e(4, 3)

e(x3, y, 3) = e(5, 3)

e(x1, y, 3) = e(3, 3)

e(2, 3)

e(1, 3)

u(`11)

u(`12)

Figure 2.1: Partial depiction of the complete binary tree chain, which is responsible
for reintroducing all the available labels of a Label-Cover instance in our 3-CNF con-
struction, of a toy example where the constraint graph is a claw. In such example, the
whole chain has nine trees and reintroduces eight different labels. Notice the complete
symmetry between each pair of trees.

clause of type (d), nine of which have the following form

e(x1, y, i) ∧ e(x2, y, i) ∧ e(x3, y, i) −→ u(`11),

as i ∈ [d] = [9]. Clauses of type (d1) replace those subgoals above by

e(4, i) ∧ e(5, i) −→ e(2, i) and e(2, i) ∧ e(3, i) −→ e(1, i), (2.4)

where in this case, e(x1, y, i) = e(3, i), e(x2, y, i) = e(4, i), and e(x3, y, i) = e(5, i).

Finally, clauses of type (d2) link the trees in (2.4) together, as e.g.

e(1, 1) ∧ e(1, 2) −→ u(`11), e(1, 2) ∧ e(1, 3) −→ u(`12), and so on.

A graphical illustration of part of the above transformation is provided in Figure 2.1.

Now, for clarity purposes, we present this new construction for the pure Horn 3-CNF
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case in full form below:

(a) u(`) ∧ u(`′) −→ e(x, y, `′, i) ∀ (x, y) ∈ E, (`, `′) ∈ Π(x,y), i ∈ [d];

(b1)
∧

z∈N(y)

e(z, y, `′, i) −→ e(x, y, i) ∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d], d(y) ≤ 2;

(b2) e(z1
y , y, `

′, i) ∧ e(z2
y , y, `

′, i) −→ e(1, x, y, `′, i)

∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d], d(y) ≥ 3;

(b3) e(zβ+2
y , y, `′, i) ∧ e(β, x, y, `′, i) −→ e(β + 1, x, y, `′, i)

∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d], β ∈ [d(y)− 3];

(b4) e(zd(y)
y , y, `′, i) ∧ e(d(y)− 2, x, y, `′, i) −→ e(x, y, i)

∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d], d(y) ≥ 3;

(c) e(x, y, i) −→ e(x, y, `′, i) ∀ (x, y) ∈ E, `′ ∈ L′y, i ∈ [d];

(d1) e(2k, i) ∧ e(2k + 1, i) −→ e(k, i) ∀ k ∈ [m− 1], i ∈ [d];

(d2) e(1, α) ∧ e(1, α+ 1) −→ u(`α) ∀ α ∈ [d− 1];

(e) v(j) −→ u(`) ∀ j ∈ [t], ` ∈ L ∪ L′;

where as before, N(y) := {x ∈ X : (x, y) ∈ E} is the open neighborhood of the vertex

y ∈ Y . Recall that e(k, i) is an alias to a variable e(x, y, i), (x, y) = ek−m+1 being an

edge in E, if k ∈ {m,m+ 1, . . . , 2m− 1} and that it is a new variable used to build the

i-th tree if k ∈ [m− 1].

Definition 2.39. Let us call Ψ and Φ the canonical pure Horn 3-CNF formulae defined,

respectively, by the families of clauses (a) through (d2) and by all the families of clauses

above. Let g and h be, in that order, the pure Horn functions they represent.

2.4.1 Correctness of the 3-CNF Reduction

We now proceed to show the correctness of the ideas discussed above. Once again, we

will constantly rely on the canonical representations Φ and Ψ to make inferences about

the functions h and g they respectively define. And these inferences will most of the
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time be made throughout Forward Chaining. First, we present the new estimations for

the number of clauses and variables in Φ and Ψ.

Lemma 2.40. Let d and t be positive integers (amplification parameters) and let r, s,

m, λ, λ′, and π be as in Notation 2.16. We have the following relations for the number

of clauses and variables in Φ, respectively:

d(π + 2mλ′ + 2m− 1)− 1 ≤ |Φ|c − t(rλ+ sλ′) ≤ d(π +m2λ′ + 4m)

and

t ≤ |Φ|v ≤ t+ dm(λ′ + 2) +m2λ′,

In Ψ, those numbers are, respectively,

d(π + 2mλ′ + 2m− 1)− 1 ≤ |Ψ|c ≤ d(π +m2λ′ + 4m)

and

0 ≤ |Ψ|v ≤ dm(λ′ + 2) +m2λ′.

Proof. Let #(b̃) :=
∑

i∈[4] #(bi) and #(d̃) :=
∑

i∈[2] #(di), where #(α) denotes the

number of clauses of type (α) in Φ.

For each edge (x, y) ∈ E, there was a clause of type (b) whose subgoal had size

equal to d(y). Each of those clauses was either maintained in case d(y) ≤ 2 (originating

the new clauses (b1)) or replaced by the d(y)− 1 new clauses (b2), (b3), and (b4) in a

linked-list fashion. This procedure results in

dmλ′ ≤ #(b̃) = dλ′
∑

(x,y)∈E

(d(y)− 1) ≤ dm(m− 1)λ′.

The clauses of type (d) were replaced by clauses of type (d1) and (d2). The new

clauses of type (d1) describe d complete binary trees, each of which having 2m−1 nodes

and hence, height η = 1 + blog(2m− 1)c ≤ blog 4mc. Considering also the d − 1 new

clauses of type (d2), we then obtain that

d(2m− 1)− 1 ≤ #(d̃) = d− 1 + d

η−1∑
l=1

2l = d− 1 + d(2η − 1) ≤ 4dm.
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The new gadgets introduces d(m−1) new variables e(k, i) (notice the aliases are not

new variables) and at most dm(m− 1)λ′ new variables e(β, x, y, `′, i). Now, the results

follow by using the remaining estimates of Lemma 2.23 and by recalling that Φ and Ψ

differ only on the clauses of type (e).

Similarly to the pure Horn CNF case, as long as the quantities d and t are polynomial

in s, namely, the number of vertices in Y , the new construction of Φ from L can also

be carried out in polynomial time in s or, in another way, in polynomial time in the

number of variables of h (cf. Remark 2.19).

The same arguments used to prove Lemma 2.24 apply in this new setting as the

differences introduced by the new clauses are of a local nature. Specifically, it is still

immediate that no clause in Ψ has head outside Vg, the set of variables occurring in

Ψ, and hence, that Vg is closed under Forward Chaining in Φ. Thus, the set X (Vg) :=

{C ∈ I(h) : Vars(C) ⊆ Vg} is still an exclusive family for h (cf. Lemma 2.10) and

g ≡ Ψ = Φ ∩ X (Vg) is an X (Vg)-exclusive component of h. We have just proved the

following.

Lemma 2.41. The new function g is an exclusive component of the new function h.

Consequently, g can be analysed and minimized separately.

It is not hard to see that the bounds provided by Lemma 2.25 are still valid in this

new setting.

Lemma 2.42 (Analogue of Lemma 2.25). Let Θ be a clause minimum prime pure Horn

CNF representation of g. We have |Ψ|c/(λ+ λ′) ≤ |Θ|c ≤ |Ψ|c.

Proof. The upper bound is by construction. For the lower bound, observe that each

variable of Ψ appears no more than λ+ λ′ times as a head. As in any clause minimum

representation of g they must appear as head at least once, the claim follows.

Furthermore, Lemmas 2.26 and 2.27 transfer in a rather verbatim fashion: the new

clauses and variables do not disrupt any of the conclusions obtained. For convenience,

we include them below.
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Lemma 2.43 (Analogue of Lemma 2.26). Fh({v(j)}) = Vg ∪ {v(j)} for all indices

j ∈ [t].

Proof. It is enough to show that {e(1, α) : α ∈ [d]} ⊆ FΦ({v(j)}), for a fixed j ∈ [t]. The

inclusion would be false if there existed a label `′′ ∈ L∪L′ such that u(`′′) 6∈ FΦ({v(j)}).

As for every label ` ∈ L∪L′, v(j) −→ u(`) is a clause in Φ, this cannot happen. Hence,

the inclusion holds, implying the claim.

Lemma 2.44 (Analogue of Lemma 2.27). A variable v(j), for some index j ∈ [t], is

never the head of an implicate of h. Moreover, every prime implicate of h involving

v(j) is quadratic.

Proof. The first claim is straight forward as all implicates of h can be derived from Φ

by resolution, and v(j) is not the head of any clause of Φ. By Lemma 2.43, v(j) −→ z is

an implicate of h for all z ∈ Vg. Since h is a pure Horn function, the claim follows.

In the CNF construction presented in the previous section, all clauses of type (d) had

the same subgoal. As explained in the beginning of this section, those clauses’ subgoals

were potentially long and we had to replace them by d gadgets whose structure mimics

those of complete binary trees. It is still true that if one label in L∪L′ is reintroduced by

a clause of type (d2), then so are all the remaining others. Like before, the reason is the

high degree of symmetry occurring inside the exclusive component of g. Nevertheless,

as the 3-CNF construction is more involved, we shall still present below complete proofs

for the analogues of Lemmas 2.28, 2.30, and 2.31.

Lemma 2.45 (Analogue of Lemma 2.28). Let d = 1+rλ+sλ′. In any clause minimum

prime pure Horn 3-CNF representation of h, the prime implicates involving the variables

v(j) have the form v(j) −→ u(`), for all indices j ∈ [t], and for some labels ` ∈ L ∪L′.

Proof. Let Υ = Θ ∧ Γ be a clause minimum prime pure Horn 3-CNF representation of

h, with Θ being a clause minimum pure Horn 3-CNF representation of g. According to

an analogue of Lemma 2.27, all prime implicates of h involving the variables v(j) are
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quadratic. So, for all indices j ∈ [t] and all indices i ∈ [d] define the sets

Γj0 := Γ ∩ {v(j) −→ u(`) : ` ∈ L ∪ L′},

Γji := Γ ∩ {v(j) −→ e(k, i),

v(j) −→ e(x, y, `′, i),

v(j) −→ e(β, x, y, `′, i) : k ∈ [2m− 1], (x, y) ∈ E, `′ ∈ L′y, β ∈ [d(y)− 2]}.

Recall that e(k, i) is an alias to e(x, y, i) if (x, y) = ek−m+1 and k ∈ {m,m +

1, . . . , 2m− 1}. Our goal is to show that the chosen value for the parameter d forces all

the sets Γji to be simultaneously empty and consequently, that all the prime implicates

involving the variables v(j) in clause minimum pure Horn CNF representations of h

have the claimed form. We shall accomplish this in two steps.

Let j ∈ [t]. We first show that if a set Γji 6= ∅ for some index i ∈ [d], then Γji 6= ∅

for all indices i ∈ [d], simultaneously.

Claim 0. It holds that

e(k, i) ∈ FΥ({v(j)}) if and only if e(k, i′) ∈ FΥ({v(j)}),

for all indices i, i′ ∈ [d], with i 6= i′.

Proof. The families of clauses (a), (b1), (b2), (b3), (b4), and (c) are completely sym-

metric with respect to the indexing variable i and do not interfere with each other.

That is, for i1 6= i2, variables depending upon i1 do not trigger clauses indexed by i2

during Forward Chaining, and vice-versa.

Claim 1. All clauses of type (d2) have two variables in their subgoals which are roots of

different, but completely symmetric trees (the trees specified by the clauses of type (d1)).

Therefore, because of this symmetry and Claim (0), during the execution of the Forward

Chaining procedure from {v(j)}, either all clauses of type (d2) trigger simultaneously or

none of them do. The reason for them not to trigger is the absence of variables e(k, i),

for some k ∈ [2m− 1] and all i ∈ [d], in the Forward Chaining closure from {v(j)}, i.e,

e(k, i) 6∈ FΥ({v(j)}).
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Proof. A simple inspection of the families of clauses shows that Claim (1) holds.

Now, for each index i ∈ [d], let Ξi be the collection of clauses of types (a), (b1),

(b2), (b3), (b4), and (c) that depend on i.

Claim 2. It holds that

e(k, i) ∈ F
Γj0∪Ξi

({v(j)}) if and only if e(k, i′) ∈ F
Γj0∪Ξ

i′
({v(j)}),

for all indices i, i′ ∈ [d], with i 6= i′.

Proof. Notice that the families of clauses (a), (b1), (b2), (b3), (b4), and (c) are com-

pletely symmetric with respect to the indexing variable i. Moreover, for i1 6= i2, the

clauses indexed by i1 do not interfere with the clauses indexed by i2 during an execution

of the Forward Chaining procedure. In other words, variables depending upon i1 do

not trigger clauses indexed by i2, and vice-versa. These two properties, symmetry and

non interference, proves Claim (2).

Claim 3. If there is a variable e(k, i), with k ∈ [2m− 1] and i ∈ [d], such that

e(k, i) 6∈ F
Γj0∪(

⋃
i∈[d] Ξi)

({v(j)})

then

e(k, i) 6∈ F
Γj0∪(

⋃
i∈[d] Ξi)∪(

⋃
i′ 6=i Γj

i′)
({v(j)}).

Moreover, this implies that Γji 6= ∅.

Proof. The symmetry and non interference properties of families of clauses (a), (b),

and (c) also justifies the first part of Claim (3). To see it, just notice that were the

claim to be false, the prime implicates in Γji′ would be trigging clauses involving the

variable e(k, i) in an execution of the Forward Chaining procedure. Since i′ 6= i, this

cannot happen. The second part follows immediately from the validity of the first part

together with the fact that Υ represents h.

To finish the first step, notice that since Claim (3) is valid for any i ∈ [d], Claim

(2) implies that if Γji 6= ∅ for some index i ∈ [d], then Γji 6= ∅ for all indices i ∈ [d],

simultaneously.
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For the second step, suppose that Γji 6= ∅ for all indices i ∈ [d]. We then have that

γ :=
∑
i∈[d]

|Γji | ≥ d = 1 + rλ+ sλ′ = 1 + |L ∪ L′|,

that is, γ is strictly larger than the number of all available labels in L. This implies

that the following pure Horn CNF

∆j :=

(
Υ \

⋃
i∈d

Γji

)
∪
{
v(j) −→ u(`) : ` ∈ L ∪ L′

}
= Θ ∪

((
Γ \

⋃
i∈d

Γji

)
∪
{
v(j) −→ u(`) : ` ∈ L ∪ L′

})
,

has fewer clauses than Υ (or more precisely, it implies that |∆j |c <= |Υ|c − 1).

Now, since Θ is a (clause minimum) representation of the exclusive component g, and

since the set of clauses {v(j) −→ u(`) : ` ∈ L∪L′}makes all available labels reachable by

Forward Chaining from {v(j)}, it follows that F∆j ({v(j)}) = Vg∪{v(j)}. Furthermore,

the change in clauses did not influence the Forward Chaining procedure from any other

variable (other than v(j)), and thus F∆j ({w}) = FΥ({w}) for all variables w 6= v(j).

Thus, an analogue of Lemma 2.26 implies that ∆j is a representation of h.

We then have that ∆j is a shorter representation for h, contradicting the optimality

of Υ. Therefore, the sets Γji = ∅ for all indices i ∈ [d]. As the above arguments do not

depend on any particular value of j, they can be repeated for all of them.

Definition 2.46. Let d = 1+rλ+sλ′ and let Υ be a prime and irredundant pure Horn

3-CNF representation of h. For each j ∈ [t], consider the set

Sj =
{
` ∈ L ∪ L′ : v(j) −→ u(`) ∈ Υ

}
and define the function fj : X → L, Y → L′ given by fj(x) = Sj ∩Lx for vertices x ∈ X

and fj(y) = Sj ∩ L′y for vertices y ∈ Y .

Lemma 2.47 (Analogue of Lemma 2.30). Let Υ be as in the above Definition. For all

indices j ∈ [t] and vertices y ∈ Y , it holds that |fj(y)| ≤ 1.

Proof. Let Υ be as in Definition 2.46 and suppose indirectly that the claim is false, that

is, there is an index j ∈ [t] and a vertex y ∈ Y such that |fj(y)| > 1.
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During the proof, recall that the chosen value for the parameter d implies, according

to Lemma 2.45, that all prime implicates of Υ involving the variable v(j) must have

the form v(j) −→ u(`), with ` ∈ L ∪ L′.

Let `′ ∈ fj(y) and define the expression

Υ′ := Υ \ {v(j) −→ u(`′)}.

It is enough to show that FΥ′({v(j)}) = Vg ∪ {v(j)}, that is, that Υ′ is also a

representation of h (by an analogue of Lemma 2.26). Suppose that is not the case.

Since Υ and Υ′ differ only in the clause v(j) −→ u(`′), it must be the case that

u(`′) 6∈ FΥ′({v(j)}). This happens if the clause of type (d2) associated to u(`′) is not

triggered. For this to occur, there must be an index k ∈ [2m− 1] and an index i ∈ [d]

such that e(k, i) 6∈ FΥ′({v(j)}).

Now, for y and i as above, notice that: (i) the variable e(k, i) would be included

in FΥ′({v(j)}) as long as there were a label in L′y such that the corresponding clause

of type (b1) or clauses of types (b2), (b3), and (b4) were triggered; and (ii) once such

clauses of type (b1)–(b4) were triggered, the appropriated clauses of type (c) would

trigger, thus making the other clauses of type (b1)–(b4) associated to y and i to also

trigger.

Therefore, for e(k, i) = e(x, y, i) to not belong to FΥ′({v(j)}), it must be the case

that for every label `′′ ∈ fj(y) \ {`′} there exists a vertex z(`′′) ∈ N(y) for which

e(z(`′′), y, `′′, i) 6∈ FΥ′({v(j)}).

For this latter relation to be true, we must have that the clauses

u(`) ∧ u(`′′) −→ e(z(`′′), y, `′′, i) (2.5)

are not triggered in the Forward Chaining procedure on Υ′ starting with {v(j)}, for

every label ` ∈ fj(z(`′′)) with (`, `′′) ∈ Π(z(`′′),y).

However, according to Definition 2.46, for each label `′′ ∈ fj(y)\{`′} and each label

` ∈ fj(z(`′′)), there are clauses v(j) −→ u(`′′) and v(j) −→ u(`), respectively, in Υ and,

consequently, in Υ′. This implies that the clauses (2.5) are triggered, which implies
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that u(`′) ∈ FΥ′({v(j)}), which then implies that Υ′ is also a representation of h. Since

this contradicts the irredundancy of Υ, it follows that |fj(y)| ≤ 1, thus concluding the

proof.

Lemma 2.48 (Analogue of Lemma 2.31). Let Υ be a clause minimum prime pure Horn

3-CNF of h. Then it is prime and irredundant, so Definition 2.46 applies. We claim

that for all indices j ∈ [t] and vertices y ∈ Y , it holds that |fj(y)| ≥ 1.

Proof. Suppose that the claim is false, that is, there is an index j ∈ [t] and a vertex

y ∈ Y such that |fj(y)| = 0.

Then clauses v(j) −→ u(`′), for all labels `′ ∈ L′y, are absent from Υ. Recall that

the chosen value for the parameter d implies that all prime implicates of Υ involving

v(j) are quadratic (Lemma 2.45).

Thus, no clause of type (a) dependent on the vertex y is triggered during a Forward

Chaining from {v(j)} and hence, no clauses of type (b1), (b2), (b3), (b4), and (c)

dependent on y are triggered either. This gives that the variables e(k, i), for all indices

k ∈ {m,m+1, . . . , 2m−1} such that ek−m+1 = (x, y) (recall the indexing of the edges in

E) and x ∈ N(y), and all indices i ∈ [d], do not belong to the Forward Chaining closure

(from {v(j)}). This implies further that no variables e(1, i) belong to the Forward

Chaining closure. Therefore, no clause of type (d2) is triggered and no label `′ ∈ L′y

is reintroduced. In other words, it is the case that u(`′) 6∈ FΥ({v(j)}) and hence, that

FΥ({v(j)}) 6= Fh({v(j)}). By an analogue of Lemma 2.26, Υ does not represent h, a

contradiction. So, it must be the case that |fj(y)| ≥ 1.

Once again, combining the two lemmas above, gives the following tight result.

Corollary 2.49. Let Υ be a clause minimum prime pure Horn 3-CNF of h. Then, for

all indices j ∈ [t] and vertices y ∈ Y , it holds that |fj(y)| = 1.

Analogues of Lemmas 2.33, 2.34, and 2.35 can also be obtained in the same semi-

verbatim fashion, and Remark 2.36 remains valid in this context. Hence, we still obtain

the following.
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Corollary 2.50. Let Ψ be as in Definitions 2.39 and Υ be a clause minimum prime

pure Horn 3-CNF of h. It holds that

|Ψ|c/(λ+ λ′) ≤ |Υ|c − t(κ(f)r + s) ≤ |Ψ|c,

where κ(f)r+ s is the total number of labels in a tight optimal total-cover f for L.

We are also able to claim the following result.

Theorem 2.51. Let c be a fixed constant close to 1/2. Unless P = NP, the minimum

number of clauses of a pure Horn function on n variables cannot be approximated in

polynomial time (dependent on n) to within a factor of

ρc(n
ε) ≥ 2ε(logn)1−1/δc(n)

= 2log1−o(1) n,

where δc(n) = (log log n)c, even when the input is restricted to 3-CNFs with O(n1+2ε)

clauses, for some ε ∈ (0, 1/6].

Proof. The proof follows closely the one given for Theorem 2.38, just using the estimates

provided by Lemma 2.40 instead of the ones in Lemma 2.23.

2.4.2 Number of Literals

With the exception of the variables v(j), with j ∈ [t], that only appear as subgoals

in quadratic prime implicates, every other variable appears in subgoals and heads of

mostly cubic pure Horn clauses. The functions we are dealing with are pure Horn and

therefore, have no unit clauses. So, it is the case that 2|Φ|c ≤ |Φ|l ≤ 3|Φ|c or in other

words, that |Φ|l = Θ(|Φ|c), where Φ is a pure Horn 3-CNF formula obtained from our

3-CNF construction above. We then have the following result.

Corollary 2.52. Unless P = NP, the minimum number of literals of a pure Horn

function on n variables cannot be approximated in polynomial time (in n) to within a

factor of 2log1−o(1) n, even when the input is restricted to 3-CNFs with O(n1+2ε) clauses,

for some ε ∈ (0, 1/6].
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2.5 Sub-exponential Time Hardness Results

The hardness of approximation results of Sections 2.3 and 2.4 apply to the scenario

where the amount of available computational power is polynomial in n, the number of

variables of a pure Horn function. In this section, we extend those results by showing

that even when the computational power available is sub-exponential in n, it still not

likely to be possible to obtain a constant factor approximation for such problems. The

main ingredients of this section are: a stronger complexity theoretic hypothesis, a new

Label-Cover result, and our pure Horn 3-CNF construction.

Recall that k-SAT is the problem of determining if a k-CNF formula, that is, one

in which each and every clause has at most k literals, has a satisfying assignment of

Boolean values to it variables. The following conjecture, called Exponential Time Hy-

pothesis (ETH), concerns the time solvability of the k-SAT problem and was introduced

by Impagliazzo and Paturi [89].

Conjecture 2.53 (Impagliazzo and Paturi [89]). For k ≥ 3, define sk to be the infimum

of the set{
δ : there exists an O

(
2δn
)

time algorithm for solving the k-SAT problem
}
,

with n being the number of variables of the k-SAT instance. The Exponential Time

Hypothesis (ETH) states that sk > 0 for k ≥ 3.

In other words, if true, the ETH implies that there is no sub-exponential time

algorithm for k-SAT with k ≥ 3, what in turn implies that P 6= NP. The converse

of this last implication however, does not hold and this establish ETH as a stronger

hypothesis. It has many implications beyond search and optimization problems, e.g. in

communication, proof, and structural complexity, and it is widely believed to be true.

In Section 2.2, we adressed the minimization flavor of the Label-Cover problem

and briefly mentioned the existence of a maximization counterpart. Since the Label-

Cover results we shall use in this section were originally obtained in the maximization

setting, we introduce it below together with a “weak duality” type of result that binds

both flavors.
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Definition 2.54. Let L0 = (G,L0, L
′
0,Π0) be a Label-Cover instance and f0 be a

labeling for it, as in Definitions 2.11 and 2.12, respectively. Let us call f0 packing if it

assigns exactly one label per vertex of G. A packing labeling is optimal if it maximizes

the fraction of covered edges of G. We denote this maximum fraction by µ(L0).

Notice that differently from a total-cover, a packing labeling does not necessarily

covers all the edges of the graph G and thus, 0 < µ(L0) ≤ 1. The strict lower bound

is due to non-empty relations of admissible pair of labels in Π0 — in the maximiza-

tion setting, these relations are also called projections as they can be interpreted (or

redefined) as mappings L0 7−→ L′0.

In this section, we shall assume that the connected bipartite graph G = (X,Y,E) is

regular, that is, each vertex x ∈ X has degree dX ≥ 1 and each vertex y ∈ Y has degree

dY ≥ 1. This assumption is without loss of generality since Label-Cover instances

can be regularized without significantly altering their sizes and promises (cf. Dinur and

Harsha [54]). Moreover, the instances occurring in the hardness theorem we shall use

in this section are regular.

Problem 2.55. Let 0 < ξ < 1 be any fixed constant. A Label-Cover instance L0

has packing-promise ξ if either µ(L0) = 1 or µ(L0) ≤ ξ. That is, either all edges of L0

can be covered or at most a ξ fraction of them can. The Label-Cover-Maxξ problem

is a promise problem which receives a Label-Cover instance with packing-promise ξ

as input and correctly classify it in one of those two cases.

The behavior of Label-Cover-Maxξ is left unspecified for non-promise instances

and any answer is acceptable in that case. As before, the definitions above can be easily

extended to refined Label-Cover instances.

The following result appears in Arora and Lund [10] and provides a link between the

two flavors of the Label-Cover problem. In a nutshell, it implies that gap producing

reductions from NP-complete problems like 3-SAT to the maximization flavor can be

viewed as reductions to the minimization flavor as well. Hence, hardness of approxima-

tion results can be transfered from one flavor to the other. We decided to include its

proof below for clarity reasons.
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Lemma 2.56 (Arora and Lund [10]). “Weak Duality:” for any (refined) Label-Cover

instance L, we have that

µ(L) ≥ 1

κ(L)
.

That is, the reciprocal of the value of an optimal packing labeling lower bounds the cost

of an optimal (tight) total-cover. Furthermore, if L has packing-promise ξ, then it has

covering-promise ρ ≥ 1/ξ.

Proof. Let f be an optimal total-cover for L of cost κ(L). That is, f covers all the

edges of the graph G = (X,Y,E) assigning |f(z)| labels to each vertex of z ∈ X ∪ Y .

For simplicity reasons and without loss of generality, suppose that f is tight. Recall

that by definition, κ(L) is the average number of labels assigned by f to the vertices in

X, namely, ∑
x∈X
|f(x)| = κ(L) · |X|. (2.6)

Consider the following randomized procedure: for each vertex x ∈ X, pick a label

at random in f(x) and delete the remaining ones. Let f ′ be the resulting labeling. As

|f ′(z)| = 1 for all vertices z ∈ X ∪ Y , f ′ is a packing labeling for L and the expected

fraction of edges covered in f ′ is a lower bound for µ(L).

Let ` ∈ f(x) be a label used in f to cover an edge (x, y). The probability that

` ∈ f ′(x), namely, that it survived the deletion process and ended up in f ′ is 1/|f(x)|.

The expected number of edges of G still covered in f ′ is then at least∑
(x,y)∈E

1

|f(x)|
=
∑
x∈X

dX
|f(x)|

≥ dX
|X|2∑

x∈X
|f(x)|

= dX
|X|2

κ(L) · |X|
=
|E|
κ(L)

, (2.7)

where in the first and last equalities, we used the assumption that G is regular and

thus, has |E| = dX · |X| edges; in the inequality, we used the fact that
∑

x 1/|f(x)| is

minimized when the values |f(x)| are all equal; and in the second to last equality we

used Equation (2.6).

The above randomized procedure thus gives a packing labeling whose expected

fraction of edges covered is at least 1/κ(L). So, there must exist a packing labeling

attaining at least this fraction of edges covered and therefore, µ(L) ≥ 1/κ(L) as claimed.

The relation on the promise bounds follows in a similar way from Equation (2.7).
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Moshkovitz and Raz [119], in a celebrated breakthrough, introduced a new two-query

projection test Probabilistically Checkable Proof system with sub-constant error and

quasi-linear size. Essentially, they started with a 3-SAT CNF instance φ of size (number

of clauses) equal to σ and showed that it is NP-hard to solve Label-Cover-Max1/ρ,

for some ρ = ρ(σ). Moreover, their reduction produces a graph of size at most σ1+o(1)

and uses fixed label sets L and L′ whose sizes depend on the value of the promise ρ. A

simpler proof was later found by Dinur and Harsha [54] who started their reduction from

a related but slightly different problem (satisfiability of circuits instead of formulas),

brought different techniques to the mix, and formally stated the result as follows.

Theorem 2.57 (Moshkovitz and Raz [119], Dinur and Harsha [54]). There exist con-

stants c > 0 and 0 < β < 1 such that for every function 1 < ρ(σ) ≤ 2O(logβ σ), the

following statement holds:

There exists label sets L and L′ of sizes exp(ρ(σ)c) and O(ρ(σ)c), respectively, such

that it is NP-hard to solve Label-Cover-Max1/ρ(σ) over these label sets. Furthermore,

the size of the constraint graph of the Label-Cover instance produced by this reduction

is at most σ · 2O(logβ σ) · (ρ(σ))c = σ1+o(1).

Notice that differently to what happens in the reduction of Theorem 2.18 where the

label sets are instance dependent, in the above theorem the label sets are fixed and their

sizes depend on the promise value (also called soundness value in this context). Also,

the size of label set L is polynomial if 1 < ρ(σ) ≤ polylog(σ) and super-polynomial

if polylog(σ) < ρ(σ) ≤ 2O(logβ σ). It is worth mentioning that these differences do not

affect our constructions (as they scale up appropriately), but do require changes in the

calculations when showing our hardness results.

Using Lemma 2.56, we can apply the above hardness result to the minimization

flavor of the Label-Cover problem with promise ρ(σ). While the resulting hardness

factor is smaller than the one given by Dinur and Safra [55] in Theorem 2.18, the quasi-

linear size of the constraint graph (and hence of the instance, as the label sets are fixed)

allows the following:
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Corollary 2.58 (Moshkovitz and Raz [119]). Assuming the Exponential Time Hypoth-

esis (cf. Conjecture 2.53, i.e., 3-SAT requires exp(Ω(σ)) time to be solved), quasi-

polynomially sized instances of Label-Cover-Max1/ρ(σ) and of Label-Coverρ(σ)

cannot be solved in less than exp
(
σ1−o(1)

)
time.

This can be used to rule out better approximations in sub-exponential time for other

problems by further reductions from the Label-Cover problem.

Remark 2.59. The new hardness result above brings along a new parametrization,

which is slightly different from the one given in Remark 2.19. We now have that: s =

σ1+o(1) with o(1) ≈ (log log σ)−Ω(1), r = σ2O(logβ σ) = σ1+o(1), m = rρ(σ)c = σ1+o(1),

λ = O
(
2ρ(σ)c

)
, and λ′ = O(ρ(σ)c).

Let ϑ > 0 be such that cϑ ≤ 1 and take ρ(σ) = logϑ σ. We then have that

λ = O
(
2(logϑ σ)c

)
= O(σ) and λ′ = O

(
(logϑ σ)c

)
= O(log σ),

and since m ≤ π ≤ mλλ′, we also have that

2O(logβ σ)σ logcϑ σ ≤ π = O
(

2O(logβ σ)σ2 log2 σ
)
.

Furthermore, it follows that

d = 1 + rλ+ sλ′ = Θ
(

2O(logβ σ)σ2 + σ1+o(1) logcϑ σ
)
. (2.8)

Combining all the above, we obtain that as long as the (gap) amplification device t

is polynomial in the number of variables of the canonical pure Horn 3-CNF Φ, the

construction of Φ can still be carried out in polynomial time in this setting.

We are now ready to show a hardness of approximation result for the case when

sub-exponential time is allowed. The proof closely follows the one presented for the

polynomial time setting.

Theorem 2.60. Assuming the ETH, the minimum number of clauses and literals of

pure Horn functions in n variables cannot be approximated in exp(nδ) time, for some

δ ∈ (0, 1), to within factors of O(logϑ n) for some ϑ > 0, even when the input is

restricted to 3-CNFs with O(n1+ε) clauses and ε > 0 some small constant.
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Proof. Let L0 be a Label-Cover promise instances in compliance to Theorem 2.57

and let L be its refinement. Let d be as in Equation (2.8), Φ be the canonical pure Horn

3-CNF formula constructed from L, and h be the pure Horn function it defines. Let Υ

be a pure Horn 3-CNF representation of h obtained by some exact clause minimization

algorithm when Φ is given as input.

For convenience, let ρ = ρ(σ) and ζ = ζ(σ) = r/s = 2O(logβ σ)/σo(1) and recall

Notation 2.16. Substituting the quantities established in Lemma 2.40 into the bounds

given by Corollary 2.50 and using and the new parametrization above (cf. Remark 2.59),

we obtain that

|Υ|c ≥ t(κ(f)r + s) +
d(π + 2mλ′ + 2m− 1)− 1

λ+ λ′

≥ st(κ(f)r/s+ 1) + Ω
(
σ1+o(1)2logτ σ log2cϑ σ

)
≥ st(κ(f)ζ + 1) + ω(s),

and

|Υ|c ≤ t(κ(f)r + s) + d(π +m2λ′ + 4m)

≤ st(κ(f)r/s+ 1) +O
(
σ42logτ σ log3 σ

)
≤ st(κ(f)ζ + 1) + o(s5),

where τ > 0 is some constant. Similarly, for the number of variables we have that

t ≤ |Υ|v ≤ t+ dm(λ′ + 2) +m2λ′

≤ t+O
(
σ22log2τ σ log2 σ

)
≤ t+ o(s3).

Now, choosing ε′ > 0 such that t = s1/ε′ = Ω(s4) and supposing that s −→ ∞, we

obtain the asymptotic expressions

|Υ|c = s(1+1/ε′)ζ(σ)κ(f)(1 + o(1)) and |Υ|v = s1/ε′(1 + o(1)).

Bringing the existing gaps of the Label-Cover promise instances into play, we
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then obtain the following dichotomy

κ(L) = 1 =⇒ |Υ|c ≤ s(1+1/ε′)ζ(σ)(1 + o(1)),

κ(L) ≥ ρ(σ) =⇒ |Υ|c ≥ s(1+1/ε′)ζ(σ)ρ(σ)(1 + o(1)),

with ρ(σ) = logϑ σ in this case. Let n = |Υ|v and let ε = ε′/(1 + o(1)). Relating the

number of clauses of Υ to the number of variables of h, the above dichotomy reads as

κ(L) = 1 =⇒ |Υ|c ≤ n(1+ε′)ζ(nε)(1 + o(1)),

κ(L) ≥ ρ(σ) =⇒ |Υ|c ≥ n(1+ε′)ζ(nε)ρ(nε)(1 + o(1)),

giving a hardness of approximation factor of ρ(nε) for the pure Horn 3-CNF clause

minimization problem (cf. Theorem 2.57). As εϑ is a constant, it follows that the gap

ρ(nε) = logϑ nε = O(logϑ n).

Also, the number of clauses n(1+ε′)ζ(nε) ≤ n1+2ε′ .

To conclude the clause minimization part, observe that sub-exponential time in σ,

namely, 2o(σ) is equivalent to 2o
(
n1/4−o(1)

)
time in n and since |Υ|c = O(n1+2ε′), the

time bound follows for δ < (1− 2ε′)/4.

Regarding literal minimization, the structure of Φ implies its numbers of clauses

and literals differ by only a constant (cf. Section 2.4) and therefore, similar results hold

in this case as well.

A natural next step consists in trying to push the hardness of approximation factor

further by allowing super-polynomially sized constructions, that is, canonical formulae

Φ whose number of clauses is super-polynomial in σ.

So let b > 1 be such that α = bc > 1 and take ρ(σ) = logα σ. We then have that

λ = O
(
2logα σ

)
= O

(
σlogα−1 σ

)
and λ′ = O(logα σ).

Also, we have that

π = O
(

2logα σ+O(logβ σ)σ logα σ
)
,

and that we should choose the value of the parameter d such that

d = Θ
(
σ2logα σ+O(logβ σ)

)
.
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Notice the above values imply that Φ is now super-polynomially sized in σ.

Following the steps of the proof of Theorem 2.60, we obtain that

ω(s2) ≤ |Υ′|c − t(κ(f)r + s) ≤ o
(
σ4+logα−1 σ

)
and that

t ≤ |Υ′|v ≤ t+ o
(
σ3+logα−1 σ

)
.

Now, choosing t = (8σ)logα−1 8σ gives a hardness of approximation factor for pure

Horn clause minimization equal to ρ(σ). Writing σ as a function of n, we obtain that

σ = (2log1/α n)/8 and hence, a hardness of approximation factor

ρ(n) = logα

(
2
α√logn

8

)
=
(
α
√

log n− 3
)α

= O(log n).

As |Υ′|c = O(n2), sub-exponential time 2o(σ) means

µ(n) := 2
o

(
(2

α√logn/8)
1/2
)

= o

(
2n

1/(log logn)C
)

time, for any (possibly large) constant C ≥ 1. We then just proved the following

theorem.

Theorem 2.61. Assuming the ETH, the minimum number of clauses and literals of

pure Horn functions in n variables cannot be approximated in µ(n) time to within factors

of O(log n), even when the input is restricted to 3-CNFs with O(n2) clauses.

Pushing the approach further, if we take ρ(σ) = 2O(logβ σ) for some 0 < β < 1, we

have that

λ = 22O(logβ σ)
and λ′ = 2O(logβ σ),

that m = σ2O(logβ σ), and that

π = d = σ2O(logβ σ)22O(logβ σ)
,

implying that Φ is now sub-exponentially sized in σ. We then have that

Ω
(

22O(logβ σ)
)
≤ |Υ

′|c − t(κ(f)r + s)

σ2
≤ O

(
σ22O(logβ σ)

)
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and that

t ≤ |Υ′|v ≤ t+O
(
σ222O(logβ σ)

)
.

Now, letting n := |Υ′|v = t = 221+γ logβ σ
, for some constant γ, it gives

σ = 2

(
1
γ

log logn
2

)1/β

and a hardness of approximation factor ρ(n) = (log n)/2, i.e., a similar O(log n) hard-

ness factor under far more stringent time constraints. This last result is then rendered

obsolete by Theorems 2.51 and 2.61.

2.6 Concluding Remarks

In the last three sections, we showed improved hardness of approximation results for

the problems of determining the minimum number of clauses and the minimum number

of literals in prime pure Horn CNF and 3-CNF representations of pure Horn functions.

In the polynomial time setting, we obtained a hardness of approximation factor of

2log1−o(1) n and when sub-exponential computational time is available, we showed a factor

of O(logβ n), where β > 0 is some small constant and n is the number of variables of the

pure Horn function. All these results hold even when the input CNF or 3-CNF formula

is nearly linear, namely, when its size is O(n1+ε) for some small constant ε > 0. We also

managed to obtain a factor of O(log n) under more stringent, albeit sub-exponential,

time constraints even when the input formula has size O(n2). In the polynomial time

setting, our results are conditional on the P 6= NP hypothesis, and are conditional on

the Exponential Time Hypothesis (ETH) in the sub-exponential time scenario.

A natural question at this point concerns the tightness of our results. As mentioned

in the introduction, Hammer and Kogan [82] showed that for a pure Horn function

in n variables, it is possible to approximate the minimum number of clauses and the

minimum number of literals of a prime pure Horn CNF formula representing it to within

factors of n− 1 and
(
n
2

)
, respectively.

Our results then leave a sub-exponential gap in the polynomial time setting, and

we are not aware of the existence of any sub-exponential time approximation algorithm
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for those problems. Naturally, narrowing or closing these gaps is highly desirable. One

direction consists in designing new approximation algorithms with improved approxi-

mation guarantees. This does not seem to be an easy task to accomplish, nevertheless.

Another direction consists in further strengthening our hardness results. Replacing

our constructions by smaller (e.g. quasi-linear) ones will allow us to extend our sub-

exponential hardness result to the scenario where exp(o(n)) computational time is avail-

able — recall that our result is valid for exp(nδ) time, for some constant 0 < δ < 1, and

that we conjecture that no constant approximation factor is possible in the exp(o(n))

time scenario. Besides barely improving the constants in our polynomial time proofs,

we believe this option has little, if anything else, to offer.

Improvements on two-query projection test, sub-constant error Probabilistically

Checkable Proof (PCP) systems (cf. Arora and Safra [12], Dinur and Safra [55],

Moshkovitz and Raz [119], and Dinur and Harsha [54]) might lead to larger gaps for

the Label-Cover (as a promise) problem, and as long as the Label-Cover instances

are polynomially sized, our constructions would immediately imply larger hardness of

approximation results for those problem. Moreover, improvements on Label-Cover

might also allow one to obtain hardness results when super-polynomial time is allowed,

a case we left untreated.

As a third possibility, notice that it might be possible to start from a different

(promise) problem and provide different constructions and different proofs. At the mo-

ment, it is not clear how to pursue this venue. However, we conjecture that it is possible

to improve the hardness of approximation factor for clause and literal minimization of

a Horn function in n variables to at least O(nε), for some small ε > 0. This conjec-

ture concerns the polynomial time setting. In favor of it, we point out the fact that

Umans [144] showed that for general Boolean functions, the decision versions of clause

and literal minimization problems are Σp
2-complete (namely, NPNP-complete) and that

it is Σp
2-hard to approximate such quantities to within factors of N ε, where N is the

size of the input (a low-degree polynomial in the number of variables of the function in

question) and ε > 0 is some small constant.
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3

Quadratizations of Pseudo-Boolean Functions

In this chapter, we study quadratizations of pseudo-Boolean functions: given two

pseudo-Boolean functions f : {0, 1}n → R and g : {0, 1}n+m → R in n and n + m

variables, respectively, we say that g is a quadratization of f in m auxiliary variables if

f(x) = min
y∈{0,1}m

g(x, y) for all x ∈ {0, 1}n, and g is quadratic.

In addition, in case all quadratic terms of g involves at most one auxiliary variable, we

say that the quadratization g is y-linear. Our main interest is in understanding some

local and global properties of quadratizations, and in doing so, we shall exhibit some

new procedures to quadratize a pseudo-Boolean function, lower and upper bounds on

the number of auxiliary variables, and some preliminary characterizations of quadrati-

zations of negative monomials.

In the recent past, several exact and heuristic techniques have been developed to

address and solve very large unconstrained quadratic binary optimization problems,

techniques which have proven themselves quite successful (see Section 1.2 for references

and more details). However, no similarly efficient methods are available for the higher

degree case, and the increasing usage and demand for solutions for these more complex

models (for instance, researcher from the computer vision community have been exper-

imenting with very large high-degree formulations of nonlinear unconstrained binary

problems) makes quadratization a very attractive alternative, thus more than justify-

ing the efforts in understanding the strengths, limits, and applicability of this class of

transformations.

The chapter is organized as follows. We introduce some basic concepts and facts

about pseudo-Boolean functions, pseudo-Boolean optimization, and quadratizations in

Section 3.1. The main intuit being that of fixing notation and nomenclature. We then
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review the existing quadratization techniques in Section 3.2, while also providing some

extra comments and consequences of our own. In Section 3.3, we provide a multiple

split scheme, thus generalizing some of the termwise quadratizations presented in the

previous section. In Section 3.4, we introduce the first aggregative approach in which

common parts of multiple terms are quadratized together, all at once. We also describe a

practical algorithm based on this technique and mention some good experimental results

obtained in some computer vision problems. Section 3.5 deals with quadratizations of

symmetric pseudo-Boolean functions, where we introduce our representation theorems

and show upper bounds on the number of auxiliary variables to quadratize first any

symmetric pseudo-Boolean function, and then some specific (and particularly) popular

ones.

In Section 3.6, we keep in track with the global approach of previous section, study-

ing procedures that quadratize the whole pseudo-Boolean function instead of doing it by

pieces. We first present two approaches based on the minterm structure of the function

that are able to improve the upper bound on the number of auxiliary variables needed

from O(n 2n) to at most 2n and 3
82n, respectively. Then, we introduce the concept

of universal sets, which are sets of Boolean functions such that every pseudo-Boolean

function can be expressed in terms of quadratic products of such Boolean functions.

We then show the existence of universal sets such that every pseudo-Boolean function

f : {0, 1}n → R in n variables can be quadratized with at most O(2n/2) auxiliary vari-

ables, and if f is a degree-d function, i.e., its multilinear polynomial representation has

degree equal to d, then it can be quadratized with at most O(nd/2) auxiliary variables.

Afterwards, we introduce another combinatorial structure, based on Turán systems,

that allow us to produce a y-linear quadratization of any pseudo-Boolean function in n

variables with at most O
(

2n

n · log n
)

auxiliary variables.

In Section 3.7, we take the opposite approach and concern ourselves with the ques-

tion: how many auxiliary variables are necessary to quadratize a pseudo-Boolean func-

tion in n variables, if we consider all possible quadratization schemes? In other words,

we study lower bounds on the number of auxiliary variables. We are able to show

that our upper bounds of the previous section based on universal sets are essentially
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tight, as we obtain Ω(2n/2) and Ω(nd/2) for general and degree-d pseudo-Boolean func-

tions, respectively. We also show a lower bound of Ω
(

2n

n

)
for y-linear quadratizations,

leaving a small gap of O(log n) to our upper bound. We close this section presenting

lower bounds for symmetric pseudo-Boolean functions. Specifically, we show that there

exists symmetric pseudo-Boolean functions whose quadratizations and y-linear quadra-

tizations require Ω(
√
n) and Ω(n/ log n) auxiliary variables, respectively, and through

different techniques, we also show a lower bound of Ω(
√
n) for the parity function.

Section 3.8 introduces the polyhedral cone of quadratizations, a combinatorial / ge-

ometric object that we use to generate and study quadratizations of monomials. While

our understanding of its structure (vertices, extremal rays, faces, and facets) is still

limited at the present, we present arguments that hints on its central importance in

better understanding quadratizations. In Section 3.9, we build upon the knowledge

amassed by the experiments of the previous section and present a full characterization

of quadratizations of negative monomials involving only one auxiliary variable. While,

at first sight, this might seen slightly disappointing, a cautious inspection of the rather

long proof reveals the full intricacy one must face in order to fully understand the

operation of quadratizing pseudo-Boolean functions.

We present some final considerations and some open problems in Section 3.10, and a

list of quadratizations for low-degree monomials, obtained through computer generation

is presented in Section 3.11 as an appendix.

The results of this chapter have appeared in publications by Boros and Gruber [26],

Fix, Gruber, Boros, and Zabih [63, 64], and in a pair of papers by Anthony, Boros,

Crama, and Gruber [4, 5].

3.1 Preliminaries

The goal of this section is to briefly introduce some of the main concepts and notations

we shall use latter on. More thorough coverage can be found in Boros and Hammer [29],

Crama and Hammer [50], and in the references given along the way.
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3.1.1 Pseudo-Boolean Functions

Let S be a finite set and let 2S := {T : T ⊆ S} be the family of subsets of S. A

set function is a mapping of the form 2S 7→ R, i.e., a mapping that associates a real

number to each and every subset of S. The set S is called ground set in this context. Set

functions have been present in the mathematical literature for more than a century, and

in particular have attracted substantial attention and experienced great development

in the last 60 years. A related class of mappings was introduced in the works of Peter

L. Hammer in the 1960s (see the seminal book of Hammer and Rudeanu [79]).

Definition 3.1. A pseudo-Boolean function f(x) = f(x1, x2, . . . , xn) in n binary vari-

ables is a mapping {0, 1}n 7→ R, that is, it is a mapping that associates n-dimensional

binary vectors in {0, 1}n to real numbers.

It is not hard to see that if |S| = n (the set S has n elements) and one replaces

the subsets of S by their characteristic vectors, then the set function on 2S can be

interpreted as a pseudo-Boolean function on {0, 1}n, where the characteristic vector of

a subset T ⊆ S is the vector 1T ∈ {0, 1}n defined as 1Ti = 1 if i ∈ T , and 1Ti = 0

otherwise.

Set functions are often considered as being specified by an oracle, or more specifically,

by an algorithm capable of delivering their values for any subset of the given finite

ground set. As is well known (see for instance, Hammer and Rudeanu [79], Boros

and Hammer [29], and Crama and Hammer [51]), pseudo-Boolean functions can be

represented as polynomials over their variables, and since x2
i = xi whenever xi ∈ {0, 1},

such polynomial is multilinear, i.e., all occurrences of variable xi have exponent equal to

one. Moreover, this representation is unique. Therefore, in contrast, pseudo-Boolean

functions are frequently (in our case, always) specified through this closed algebraic

representation, and our work will take advantage of such.

To see the existence of the representation, let f : {0, 1}n → R be a pseudo-Boolean

function in n variables and for each binary vector a ∈ {0, 1}n, define the characteristic
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function of a as

χa(x) :=
∏
i:ai=1

xi
∏

j:aj=0

xj =
∏
i:ai=1

xi
∏

j:aj=0

(1− xj),

where x = 1−x. It is not hard to see that χa(x) = 1 if x = a and χa(x) = 0 otherwise.

Hence, f can be written as

f(x) =
∑

a∈{0,1}n
f(a)χa(x)

=
∑

a∈{0,1}n
f(a)

 ∏
i:ai=1

xi
∏

j:aj=0

xj

 (3.1)

=
∑

a∈{0,1}n
f(a)

 ∏
i:ai=1

xi
∏

j:aj=0

(1− xj)

 . (3.2)

Equation (3.1) is called the minterm normal form of f (cf. Crama and Hammer [51]).

Applying distributivity in Equation (3.2) and aggregating common terms, we obtain

the multilinear representation of f :

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi, (3.3)

where [n] := {1, 2, . . . , n},
∏
i∈∅ xi = 1 as usual, and the coefficients cS ∈ R can also

be computed through the Möbius inversion formula (cf. Jukna [95, 96], van Lint and

Wilson [145]):

cS =
∑
T⊆S

(−1)|S|−|T |f
(
1T
)
,

where as before, 1T ∈ {0, 1}n is the characteristic vector of T .

In order to show the uniqueness, let R2n denote de vector space over R of functions

from {0, 1}n to R, i.e., of all pseudo-Boolean functions, and notice that for each S ⊆ [n],

the multilinear monomial PS(x) :=
∏
i∈S xi can be associated in a one-to-one and onto

fashion to an element of R2n : there are 2n multilinear monomials and R2n has dimension

2n. Now, Equation (3.3) gives us that any pseudo-Boolean function can be expressed

as a linear combination of those monomials or, in other words, they span the whole

vector space. Hence, the set of all multilinear monomials
{
PS(x) : S ⊆ [n]

}
is a basis

for R2n , and every f ∈ R2n has a unique representation over such basis (precisely the

one given by Equation (3.3)).
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The degree of a pseudo-Boolean function f is defined as the size of the largest set

S with a nonzero coefficient in it multilinear polynomial representation (3.3):

deg(f) := min
{
|S| : S ⊆ V, aS 6= 0

}
.

Clearly, the degree of a constant function is zero. We say that f is a quadratic (respec-

tively linear) pseudo-Boolean function if deg(f) ≤ 2 (respectively deg(f) ≤ 1).

The set of Boolean functions, i.e., mappings from {0, 1}n 7→ {0, 1} (as in Defini-

tion 2.1) form a subclass of pseudo-Boolean functions whose range is {0, 1} instead of

R. It will be convenient to denote by Fn and Bn the sets of pseudo-Boolean functions

and Boolean functions (viewed as pseudo-Boolean functions) in n variables, respectively;

Bn ⊂ Fn.

Sometimes it is convenient to interpret a pseudo-Boolean function as a hypergraph,

i.e., a family of subsets of a common ground set. More specifically, if f : {0, 1}n → R

is a pseudo-Boolean function in n variables, we can associate to f the hypergraph

Hf = ([n],H) in which

H =

{
H ⊆ [n] :

∏
i∈H

xi is a term of f with a nonzero coefficient

}
.

That is, the hyperedges H of Hf are the indices of the variables that appear on terms

of f . When clear from context and no confusion arises, we will refer to Hf simply by

its family of hyperedges H.

3.1.2 Symmetric Pseudo-Boolean Functions

We will now introduce basic algebraic concepts since symmetric functions and its nu-

merous generalizations and extensions are naturally defined using them. A thorough

coverage of these concepts can be found, for instance, in the book of Cameron [38].

Let G be a set and ? : G × G → G be a binary operation closed over G, that is,

an operation that maps pairs of elements of G to an element of G. The pair (G, ?) is

called an algebraic group (or simply group) if: (i) the operation ? is associative; (ii)

there is a (unique) element e of G that works as identify for ?, that is, e ? a = a ? e = a

for all a ∈ G; and (iii) each element of G has an inverse under ?, i.e., for each a ∈ G
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there is an b ∈ G such that a ? b = e, with a and b not necessarily distinct. Notice that

the operation ? does not need to be commutative. A group (H, ?H) is a subgroup of a

group (G, ?G) if H ⊆ G and ?H is the restriction of ?G to the elements of H. When the

operation is clear from context and there is no room for confusion, the group is usually

identified with its set of elements.

A permutation over a (finite) set Ω is a bijective mapping from Ω to itself. Clearly,

the composition of two permutations over Ω is also a permutation over it, the identity

permutation, which takes an element of Ω to itself, is well defined, and each permutation

has an inverse. Therefore, the set of permutations over Ω endowed with composition

as binary operation forms a group called the (finite) symmetric group of Ω. When

Ω = [n] := {1, 2, . . . , n} for some integer n > 0, this gives rise to a group called the

symmetric group of degree n, with n! elements and denoted by:

Sn :=
({
π : [n]→ [n] : π is a permutation

}
, ◦
)
, (3.4)

where ◦ denotes the composition of permutations over [n].

Each permutation π ∈ Sn can be interpreted as a permutation of the input coordi-

nates of a binary vector x = (x1, x2, . . . , xn) ∈ {0, 1}n. More formally, each permutation

π ∈ Sn induces a permutation π̂ : {0, 1}n → {0, 1}n on the set of possible binary vectors

and is given by

π̂(x) :=
(
xπ(1), xπ(2), . . . , xπ(n)

)
.

This gives us the ability, for each pseudo-Boolean function f : {0, 1}n → R and each

permutation π ∈ Sn, to define the permutation of f according to π as fπ(x) := f(π̂(x)),

for all x ∈ {0, 1}n.

Let f : {0, 1}n → R be a pseudo-Boolean function and let Aut(f) ⊆ Sn be the set

permutations that leave the value of f unchanged, i.e.,

Aut(f) :=
{
π ∈ Sn : fπ(x) = f(x) for all x ∈ {0, 1}n

}
. (3.5)

It is not hard to verify that Aut(f) is also a group. Indeed it is a subgroup of Sn and

is called the automorphism group of f .
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Definition 3.2. A pseudo-Boolean function f : {0, 1}n → R is symmetric if

Aut(f) = Sn.

In other words, a pseudo-Boolean function is symmetric if it is invariant under

any permutation of the coordinates of its variables. This implies that the value of a

symmetric pseudo-Boolean function depends only on the Hamming weigh (number of

ones) of its input and hence, can have only n + 1 different outputs. Therefore, each

symmetric pseudo-Boolean function is a vector in a real-valued linear space of dimension

n + 1 — which is exponentially smaller than the 2n dimensional space of all pseudo-

Boolean functions. This observation can be used to provide a nice characterization of

symmetric pseudo-Boolean functions.

Theorem 3.3 (Minsky and Papert [118]; see also Jukna [96]). Let f : {0, 1}n → R be a

symmetric pseudo-Boolean function in n variables. There exists a univariate polynomial

p : R→ R of degree at most deg(f) such that

f(x1, x2, . . . , xn) = p(x1 + x2 + · · ·+ xn) for all x ∈ {0, 1}n.

Proof. Let d = deg(f) be the degree of f and for k = 0, 1, . . . , d, let

Pk :=
∑

S∈([n]k )

∏
i∈S

xi,

that is, Pk denotes the sum of all
(
n
k

)
products of |S| = k different variables.

Since f is symmetric, it can be show by induction on d that f can be written as

f(x) = c0 + c1P1(x) + c2P2(x) + · · ·+ cdPd(x),

with the coefficients ci being real numbers.

Now, observe that for x ∈ {0, 1}n with z := x1 + x2 + · · ·+ xn ones, Pk is equal to

Pk(x) =

(
z

k

)
=
z(z − 1) · · · (z − k + 1)

k!
,

which is a polynomial in z of degree k. Therefore, the univariate polynomial p given by

p(z) := c0 + c1

(
z

1

)
+ c2

(
z

2

)
+ · · ·+ cd

(
z

d

)
has the desired property.
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Despite being a more economical representation of symmetric pseudo-Boolean func-

tions (consider for instance the parity Boolean function, which is one if and only if the

Hamming weight of its input is odd: it has only n+1 terms in the representation above,

while it has 2n − 1 terms in

⊕
n(x) =

∑
∅6=S⊆[n]

(−2)|S|−1
∏
i∈S

xi, (3.6)

the multilinear polynomial provided by Equation (3.3)), it can still be of degree higher

than 2. Nevertheless, we shall base upon this characterization in Section 3.5.1, where we

will prove a quadratic representation theorem of symmetric pseudo-Boolean functions

(albeit in slightly more variables).

The notion of symmetric pseudo-Boolean functions can be generalized to that of

d-part symmetric, where d is a nonnegative integer.

Definition 3.4. A pseudo-Boolean function f : {0, 1}n → R in n variables is d-part

symmetric, with d ∈ [n], if there are nonnegative integers n1 + n2 + · · ·+ nd = n such

that

Aut(f) ∼= Sn1 ×Sn2 × · · · ×Snd .

Equivalently, f is a d-part symmetric pseudo-Boolean function if there is a partition

[n] = V1 ∪̇V2 ∪̇ · · · ∪̇Vd such that f is invariant under any permutation of the coordinates

in any part Vi (with |Vi| = ni). Following Theorem 3.3, we still can say that f is d-part

symmetric if there are d functions ki : {0, 1}n →
(
{0} ∪ [ni]

)
, each ki depending only

on the coordinates in Vi and returning the Hamming weight of those coordinates, i.e.

ki(x) :=
∑
j∈Vi

xj ,

and a function f̃ :
(
{0} ∪ [ni]

)d → R such that

f(x) = f̃
(
k1(x), k2(x), . . . , kd(x)

)
for all x ∈ {0, 1}n.

Notice that every symmetric pseudo-Boolean function is 1-part symmetric, and that

every pseudo-Boolean function can be seen as n-part symmetric.
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3.1.3 Pseudo-Boolean Optimization and Quadratizations

As mentioned in the introduction, the problem of optimizing a pseudo-Boolean function

f : {0, 1}n → R in n variables, specified as a multilinear polynomial, and subject

to no constraints is called Pseudo-Boolean Optimization (PBO) problem. Both its

maximization and minimization flavors have been the focus of researchers along the

years (see Section 1.2 for a (partial) historical account). In this dissertation, we are

particularly interested in the latter, i.e.,

min
x∈{0,1}n

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi

 . (3.7)

Various exact and heuristic techniques for solving Problem (3.7) were proposed in the

literature, specially for the case in which the multilinear polynomial of f is quadratic:

ρ(f) := min
x∈{0,1}n

f(x) = c0 +

n∑
i=1

cixi +
∑

1≤i<j≤n
cijxixj

 . (3.8)

Possible reasons for the popularity of the quadratic case are that numerous optimization

problems, including the well-known MAX-SAT and MAX-CUT problems, have natural

formulations as quadratic pseudo-Boolean (QPBO) problems; Rosenberg’s [127] result

that the general Problem (3.7) can be recast into Problem (3.8)’s form at the expense

of some additional, auxiliary variables (more about it in the next section, hereunder)

— in spite of the fact QPBO problems are still NP-hard; and the fact that it has many

applications in areas ranging from physics through chip design to computer vision; see

e.g., the surveys of Boros and Hammer [29], of Kolmogorov and Rother [103], and of

Roth and Black [128].

A pseudo-Boolean function f : {0, 1}n → R in n variables is called submodular if

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y) for all x, y ∈ {0, 1}n,

where (x ∨ y)j = xj ∨ yj and (x ∧ y)j = xj ∧ yj for all indices j ∈ [n]. Submodular

functions play an important role in optimization, since Problem (3.7) which is NP-hard

in general, is known to be polynomially solvable if f is submodular; see Grötschel,

Lovász, and Schrijver [76], Iwata, Fleisher, and Fujishige [94], and Schrijver [133].
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It is known (cf. Nemhauser, Wolsey, and Fischer [121]) that if f is a quadratic

pseudo-Boolean function, then it is submodular if and only if all quadratic terms have

nonpositive coefficients. Hammer [80] proposed a very simple, network flow based min-

imization algorithm that optimizes quadratic, submodular pseudo-Boolean functions.

A similarly efficient characterization of submodularity for cubic pseudo-Boolean func-

tions was also shown to exist by Billionnet and Minoux [20]. However, Crama [48]

and Gallo and Simeone [72] independently showed that the problem of recognizing if

a pseudo-Boolean function of degree 4 or higher has the submodularity property is

co-NP-complete.

For the case in which f is not submodular, various relaxation schemes were pro-

posed. Among those, for the quadratic case, figured complementation, linearization,

and minorization, which were shown by Hammer, Hansen, and Simeone [78] to yield

the same lower bound to ρ(f). Such lower bound is since then known as the roof dual

of f . We briefly describe those approaches below.

Let f : {0, 1}n → R be a quadratic pseudo-Boolean function in n variables as in

Problem (3.8), and let L := {xi, xi : i ∈ [n]} be the set of 2n literals associated to the

x-variables of f . A quadratic posiform representation of f is given by

φf = a0 +
∑
u∈L

auu+
∑
u,v∈L
u6=v

auvuv, (3.9)

where au ≥ 0 and auv ≥ 0 for all u, v ∈ L . The name posiform comes from the fact that

every coefficient of φf , except the constant term a0 is nonnegative. It is well known

that contrary to multilinear polynomial representations, posiform representations of

pseudo-Boolean functions are not unique. In fact, a quadratic pseudo-Boolean function

may admit posiform representations whose degree is larger than 2 (cf. Boros and

Hammer [29]).

It is not hard to see that the constant term of a posiform φf for f , say C(φf ) is a

lower bound on minx∈{0,1}n f(x). The complementation approach seeks, among all the

quadratic posiform representations of f , for the best lower bound on the minimum of
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f , a problem that can be formulated as

C2(f) := max
{
C(φf ) : φf is a quadratic posiform representing f

}
,

and can be solved by the following linear programming problem:

C2(f) = max c0 −
n∑
j=1

axj −
∑

1≤i<j≤n
axixj

subject to

axj − axj +
∑

1≤i≤n
i 6=j

(axixj − axixj ) = cj for j = 1, 2, . . . , n, (3.10)

axjxj + axjxj − axixj − axixj = cij for 1 ≤ i < j ≤ n,

au, auv ≥ 0 for u, v ∈ L , u 6= v.

The linearization approach was already discussed in the introduction (cf. Sec-

tion 1.2) and consists in replacing quadratic products xixj by new, auxiliary variables

yij , and enforcing equality yij = xixj for binary values through the use of linear con-

straints 0 ≤ yij ≤ x1, x2 and yij ≥ x1 + x2 − 1. Relaxing the binary constraints on

the x-variables, we obtain the linearization bound L2(f) for f . In slightly more details,

L2(f) can be computed by the linear program below:

L2(f) = min c0 +
n∑
j=1

cjxj +
∑

1≤i<j≤n
cijyij

subject to

yij ≥ xi + xj − 1

yij ≥ 0

 for 1 ≤ i < j ≤ n, cij > 0, (3.11)

yij ≤ xi

yij ≤ xj

 for 1 ≤ i < j ≤ n, cij < 0,

0 ≤ xj ≤ 1 for j = 1, 2, . . . , n.

The minorization approach seeks for “best `1-norm” linear minorants for each and

every quadratic term of the pseudo-Boolean function f . The approach is termwise, that

is, for each quadratic product xixj it looks for a linear function of the form α+βxi+γxj
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which lower bounds xixj and minimizes the sum of the gaps for all four possible binary

substitutions of xi and xj . In other words, it looks for the solution of the problem (in

variables α, β, and γ):

min
∑

(xi,xj)∈{0,1}2
(xixj − α− βxi − γxj)

subject to

xixj ≥ α+ βxi + γxj for all (xi, xj) ∈ {0, 1}2,

which can be seen to be of the form −α = β = γ = λ, for any 0 ≤ λ ≤ 1. Similarly,

the best `1-norm linear minorants of −xixj are of the form −λxi − (1 − λ)xj , for any

0 ≤ λ ≤ 1.

Taking the weighted sum of the best `1-norm linear minorants of the terms of f ,

using the coefficients of the terms as weights give us the minorization lower bound,

M2(f), which can be computed by the linear program:

M2(f) = max c0 −
∑

1≤i<j≤n
cij>0

λijcij +
n∑
j=1

zj

subject to

cj +
∑
i 6=j
cij>0

λijcij +
∑

1≤i<j
cij<0

cij(1− λij) +
∑
j<i≤n
cij<0

cijλij ≥ zj , (3.12)

0 ≥ zj for j = 1, 2, . . . , n,

0 ≤ λij ≤ 1 for 1 ≤ i < j ≤ n, cij 6= 0.

Theorem 3.5 (Hammer, Hansen, and Simeone [78]). For any quadratic pseudo-Boolean

function f ∈ F2, it holds that

C2(f) = L2(f) = M2(f) ≤ min
x∈{0,1}n

f(x).

Moreover, the equality of these lower bounds with the minimum of f(x) can be tested

in linear time by solving a 2-SAT problem.

The proof of the above theorem is based on showing that formulations (3.10)

and (3.12) are both equivalent with the dual of (3.11).
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Perhaps more important than roof duality per se, is the second result of Hammer,

Hansen, and Simeone [78], which provides persistence properties for quadratic pseudo-

Boolean functions. There are two types of persistence: weak and strong.

Let S ⊆ [n] be a subset of indices of variables, that is, S = {i1, i2, . . . , is} with

i1 < i2 < · · · < is and s = |S|. The projection of x ∈ {0, 1}n into S is given by

xS = (xi1 , xi2 , . . . , xis), and for y = (yi1 , yi2 , . . . , yis) ∈ {0, 1}s, the partial assignment

of y to x, denoted by x⊗y, is the vector given by

x⊗yi =


xi if i 6∈ S,

yi otherwise,

for all i ∈ [n].

Definition 3.6. Let f : {0, 1}n → R be a pseudo-Boolean function in n variables, let

S ⊆ [n] be a subset of indices, and let y ∈ {0, 1}|S| be a binary vector. We say that the

strong persistence property holds for f at y if

for all x ∈ argmin(f), we have that xS = y.

We say that the weak persistence property holds for f at y if

for all x ∈ argmin(f), we have that x⊗y ∈ argmin(f).

In other words, in strong persistence, the restriction of all minimizing vectors of f

to S coincide with y; in weak persistence, switching the entries in S of any minimum

vector of f by y results in a minimum vector of f .

The concept of persistence, weak and strong, has been studied in the literature

by Nemhauser and Trotter [120], Picard and Queyranne [125], Adams, Lassiter, and

Sherali [1], Bertsimas, Natarajan, and Teo [17], among others. Hammer, Hansen, Sime-

one [78] showed the following results.

Theorem 3.7 (Strong Persistence; Hammer, Hansen, Simeone [78]). Let f : {0, 1}n →

R be a pseudo-Boolean function and let φf be a posiform representing it, such that

C2(f) = C(φf ). Then, φf has the property that if au > 0 for some literal u ∈ L , then

u = 0 in all binary vectors x ∈ argmin(f) minimizing f .
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Theorem 3.8 (Weak Persistence; Hammer, Hansen, Simeone [78]). Let f : {0, 1}n → R

be a pseudo-Boolean function and let x̃ be an optimal solution of the Linear Pro-

gram (3.11), for which x̃j = 1 if j ∈ O, and x̃j = 0 if j ∈ Z, where O and Z are two

disjoint subsets of indices. Then, for any minimizing vector x∗ ∈ argmin(f) switching

the components to x∗j = 1 for j ∈ O and x∗j = 0 for j ∈ Z will also yield a minimum of

f .

Besides fixing some of the variables at their provably optimum value, persistency

allows for decomposing the residual problem into variable disjoint smaller subprob-

lems, and that makes those properties even more attractive in very large scale QPBO

problems.

Boros and Hammer [28], and Boros, Hammer, Sun, and Tavares [30] proposed a

maximum-flow based approach, christened as the QUBO algorithm, to compute the roof

dual of Problem (3.8), and obtain all the strong persistences guaranteed by Theorem 3.7.

A multitude of experimental evaluations were conducted by Tavares [143], who then

claimed a good performance of QUBO on sparse instances: it managed to fix the

astonishing number of 100% of the variables through strong persistence in various planar

MAX-2-SAT instances, a still NP-hard variation of the MAX-2-SAT problem in which

the associated graph is planar.

The same approach was later recoded inside the computer vision community by

Boykov and Kolmogorov [32] — among other changes, they used a bidirectional variant

of Dinic’s algorithm (see Ahuja, Magnanti, and Orlin [2], Cook, Cunningham, Pul-

leyblank, and Schrijver[46], Korte and Vygen [104]) for computing maximum flows,

thus obtaining good speed ups. Boykov and Kolmogorov’s implementation is called

the QPBO algorithm and is freely available for download. Further details regarding

applicability and performance can be obtained in Kolmogorov and Rother [102] and in

Blake, Kohli, and Rother [21]. It is worth mentioning here that both versions of the

flow-based algorithm were found very effective in computer vision problems, where they

can frequently fix up to 80-90% of the variables at their provably optimum value, and

both versions also returns automatically a minimizing solution for submodular inputs.

It is worth mentioning that in general, it is a hard task, even in the approximative
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sense to maximize the number of variables fixed by persistence. Following on the foot-

steps of Kumar and Sivakumar [106], Feige, Langberg and Nissim [59] showed that for

many of the well known NP-complete problems (like 3-SAT, CLIQUE, 3-COLORING,

SET COVER, MAX-CUT) it is NP-hard to produce a solution whose Hamming dis-

tance from an optimal solution is substantially closer than the one obtained by just

taking a random solution. For instance, they showed that for an instance Ψ of 3-SAT,

it is NP-hard to compute an assignment x for Ψ that agrees with any satisfying assign-

ment x∗ of Ψ in at least n/2 + n1−ε of the n variables, for some small,fixed constant

ε > 0. Guruswami and Rudra [77] improved that bound to n/2 + n2/3+ε, and Sheldon

and Young [134] showed that the bound can be pushed down to n/2 + nε, that is, no

deterministic polynomial-time algorithm achieve Hamming distance less that n/2 + nε

unless P = NP. Their bound also holds in the randomized setting: for any positive ε

and c, no randomized polynomial-time algorithm achieves Hamming distance less that

n/2 − nε with probability 1/2 + 1/nc unless RP = NP. Sheldon and Young [134] also

showed the existence of a “universal” problem inside NP such that the deterministic

bound is hard to approximate to within n/2 +O(
√
n log n).

The result of Theorem 3.5 was extended to higher degrees by Boros, Crama, and

Hammer [24], who showed:

Theorem 3.9 (Boros, Crama, and Hammer [24]). Given a quadratic pseudo-Boolean

function f in n variables, the equalities

Ck(f) = Lk(f) = Mk(f)

hold for all k = 2, 3, . . . , n, providing increasingly tighter lower bounds on f , with

min
x∈{0,1}n

f(x) = Cn(f) = Ln(f) = Mn(f).

Contrary to the relative easiness of testing the sharpness of the C2(f) bound, testing

if C3(f) is sharp turns out to be NP-complete, and the linear programming formulations

associated to the bounds of Theorem 3.9 do not provide any persistences: neither weak

nor strong. See [24] for details and more info.
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Also, extending the flow-based technique to compute these higher degree bounds

turned out to be much harder than initially thought. Only recently, Wang and Klein-

berg [148] proposed a multi-commodity flow based algorithm to compute C3(f). Un-

fortunately, however, their approach also does not provide any persistences.

Many researchers, specially inside the computer vision community decided then

to revisit an approach initially proposed by Rosenberg [127]: to quadratize pseudo-

Boolean functions. We have already encountered this concept in the introduction (cf.

Section 1.2) and at the opening of this chapter. Nevertheless, for convenience, we shall

repeat its definition below.

Definition 3.10. Let f(x) = f(x1, x2, . . . , xn) be a pseudo-Boolean function on {0, 1}n.

We say that a pseudo-Boolean function g(x, y) is a quadratization of f(x) if g(x, y) is

a quadratic multilinear polynomial depending on x and on m auxiliary binary variables

y1, y2, . . . , ym, such that

f(x) = min
{
g(x, y) : y ∈ {0, 1}m

}
for all x ∈ {0, 1}n. (3.13)

Clearly, if g(x, y) is a quadratization of f(x), then

min
{
f(x) : x ∈ {0, 1}n

}
= min

{
g(x, y) : x ∈ {0, 1}n, y ∈ {0, 1}m

}
,

so that the minimization of f(x) is reduced through this transformation to the QPBO

problem of minimizing g(x, y).

Definition 3.11. A quadratic pseudo-Boolean function g(x, y) on {0, 1}n+m is called

y-linear if its polynomial representation does not contain monomials of the form yiyj

for i, j ∈ [m], i 6= j.

When g(x, y) is y-linear, it can be written as g(x, y) = q(x) +
∑m

i=1 `i(x)yi, where

q(x) is quadratic in x and each `i is a linear function of x. Then, when minimizing g

over y, each product `i(x)yi simply takes the value min{0, `i(x)}, that is,

f(x) = min
y∈{0,1}m

g(x, y) = q(x) +

m∑
i=1

min{0, `i(x)}. (3.14)
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Hence, a y-linear quadratization of f(x) produces an alternative representation of f

in the x-variables only. It is also worth noticing that y-linear quadratizations can be

viewed as piecewise linear functions of the x-variables, apart from the q part.

While Rosenberg’s original method did not quite work in practice, due to the pres-

ence of very high penalty-terms in the quadratized function, many different techniques

have been developed in the past 10 years, with some of those (including some of ours)

meeting considerable success: the fraction of variables fixed by persistence in some very

large high-degree problems, originating from computer vision applications reaches an

astonishing value of 96% (cf. Fix, Gruber, Boros, and Zabih [63, 64]). We shall cover

this story in the next section.

3.2 A Review of Existing Quadratization Techniques

In this section, we recall some quadratization techniques that have appeared in the

literature previous to our work. This is due to their historical significance and the

influence they have exerted in some of our results. While knitting this historical account,

we shall also mention some observations and minor results of our own that would not

properly fit elsewhere.

3.2.1 Rosenberg’s Substitution

The first quadratization technique was introduced by Rosenberg [127] in 1975, and is

based on the traditional idea of penalty functions. This method replaces a product xz

of two binary variables by a new binary variable y (and hence decreases the degree by

one of all terms involving both x and z) such that

p(x, z, y)


= 0 if y = xz,

≥ 1 otherwise.

(3.15)

Let f : {0, 1}n → R be a pseudo-Boolean function. Since f is multilinear, it can

be written as f = xzA+B, where A is a multilinear polynomial not involving x and

z, and where B is a multilinear polynomial not involving the product xz. Assume now

that p is a quadratic function satisfying Equation (3.15), and that M is a positive real



94

with M > max |A|, where the maximization is taken over all binary assignments of the

variables of A. Then, the function f̃ = yA+ B +Mp on n+ 1 variables has the same

minima as f .

Theorem 3.12 (Rosenberg [127]). The quadratic function p : {0, 1}3 → {0, 1, 3} given

by

p(x, z, y) = xz − 2xz − 2zy + 3y (3.16)

satisfies Equation (3.15).

Proof. If y = xz, replacing y in Equation (3.16) gives p(x, z, y) = xz−2xz−2xz+3xz =

0. If y < xz, then y = 0 and xz = 1, which readily implies that p(x, z, y) = 1. Finally, if

y > xz, we have that y = 1 and xz = 0, thus leading to p(x, z, y) = −2x−2z+3 ≥ 1.

The above idea can be applied recursively until the resulting function f̃ becomes

quadratic. It is not hard to see that this is a polynomial transformation in the size of

the representation of f , that is, its number of variables plus number of terms. If one

wants a measure of the number of auxiliary variables in terms of the number of original

ones, we have that no more than O(nd) new, auxiliary variables are needed, where d is

the degree of f . Clearly, such quantity is O(nn) in the worst case. It easily comes to

mind the idea of trying to find an appropriate order of substitution of variables so that

the multiple applications of Theorem 3.12 resulted in the minimum number of auxiliary

variables. Rosenberg [127] also showed that this problem, of finding a quadratization

with the minimum number of auxiliary variables with his approach is itself an NP-hard

problem. To see this let us consider the cubic pseudo-Boolean function

f(x0, x1, ..., xn) =
∑

(i,j)∈E

x0xixj

where E is the edge set of a graph G on vertex set V = [n]. It is not hard to verify

that for any quadratization of f , there is one with no more auxiliary variables, in which

we substitute by auxiliary variables only products of the form x0xi, i ∈ C for a subset

C ⊆ V and the “optimal” quadratization corresponds to a minimum size vertex cover C

of G. As the vertex cover problem on non-bipartite graphs is a classic NP-hard problem
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(cf. Garey and Johnson [73]), this completes the argument. In a nutshell, we can say

that a sharp, general upper bound on the number of auxiliary variables in Rosenberg’s

approach will remains elusive, unless P = NP (but of course, it can be computed exactly

for specific functions or even particular classes).

From a practical standpoint, the drawback in Rosenbergs’ approach is that the re-

sulting quadratic function has many “large” coefficients, due to the recursive application

of the “big M” substitution. It also introduces many positive quadratic terms, even if

the input f is a nice submodular function. These two effects make the minimization of

the resulting f̃ a hard problem, even in approximative sense. Some experiments were

conducted by Ishikawa [91, 92], who reported that Rosenberg’s reduction performs very

poorly on the functions appearing in some computer vision applications, as the QBPO

method finds almost no persistencies.

In trying to address these drawbacks, one could try to replace the product x1x2 · · ·xk

of several variables by a new variable y and enforce the equality x1x2 · · ·xk = y by a

quadratic penalty function. Unfortunately, it is not hard to see that we have the

following:

Remark 3.13. There is no quadratic pseudo-Boolean function p(x, z, w, y) in four

binary variables such that p(x, z, w, y) = 0 if y = xzw, and p(x, z, w, y) ≥ 1 whenever

y 6= xzw.

In other words, Rosenberg’s approach is not possible with more than two variables.

Before closing this subsection, let us mention that while investigating quadratizations

of monomials, we discovered the following simple, Rosenberg-like transformation.

Proposition 3.14. Let f(x) = A(x)x1x2 be a pseudo-Boolean function, where A(x) =

A(x3, . . . , xn) does not depend on x1, x2, and for some M1 ≥ 0, M2 ≥ 0, assume that

−M1 ≤ A(x) ≤M2 for all x ∈ {0, 1}n. If

g(x, y) = (A+M1)y + (M1 +M2)(x1 − y)(x2 − y)−M1x1x2,

then f(x) = miny g(x, y) for all x ∈ {0, 1}n.
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Proof. It is not hard to check, by enumerating the values of x1, x2, that the minimum of

g is always attained when y = x1x2. Hence, we have that g(x, y) = g(x, x1x2) = f(x),

which in turn implies that f(x) = miny g(x, y) for all x ∈ {0, 1}n.

As in Rosenberg’s original substitution, this transformation introduces only one

additional variable and decreases the degree of f by one unit, as long as f is at least

cubic, and it can be used recursively to quadratize any pseudo-Boolean function. Notice

that when A(x) is nonnegative or nonpositive, the formula simplifies accordingly by

setting either M1 or M2 to 0. A nice feature of this transformation is that when A(x)

is negative, we get a submodular quadratization of f — and we already observed that

this never happens with Rosenberg’s substitution.

We can then use this transformation to provide upper bounds in the number of

auxiliary variables for the very special cases in which the pseudo-Boolean function has

only three or four variables, as we show below.

Proposition 3.15. Every pseudo-Boolean function in F3 can be quadratized using at

most one additional variable.

Proof. Write f(x) = ax1x2x3+q(x), where q(x) is quadratic, and apply Proposition 3.14

to the cubic term.

Proposition 3.16. Every pseudo-Boolean function in F4 can be quadratized using at

most two additional variables.

Proof. Write f(x) = Ax1x2 + Bx1 + Cx2 + D, where the functions A,B,C,D do not

depend on x1, x2. Apply Proposition 3.14 to Ax1x2. The resulting function g(x, y) has

no terms of degree higher than 3, and every cubic term of g necessarily contains the

product x3x4. Hence, applying again Proposition 3.14 to the terms containing x3x4

results in a quadratization of f .

Notice that similar results can be obtained with Rosenberg’s original substitution.
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3.2.2 Freedman and Drineas’ Higher-Degree Substitution

Kolmogorov and Zabih [103] introduced a simple quadratization for degree-3 negative

monomials, which was extended by Freedman and Drineas [69] for arbitrary degree.

Theorem 3.17 (Freedman and Drineas [69]). For binary variables x1, x2, . . . , xd and

y, it holds that

− x1x2 · · ·xd = min
y∈{0,1}

y

(d− 1)−
d∑
j=1

xj

 . (3.17)

Proof. We claim that y =
∏d
j=1 xj at a minimum, in which case the left and right hand

sides are identical. To see this claim, observe that we have the inequalities

−x1x2 · · ·xd ≤ 0,

and

−x1x2 · · ·xd ≤ (d− 1)−
d∑
j=1

xj .

Furthermore, these two right hand sides are the values of the right hand side of (3.17)

corresponding to y = 0 and y = 1, respectively. Thus, y =
∏d
j=1 xj indeed achieves a

value not larger than any of those.

The above proof also shows that such transformation can also be viewed as a substi-

tution of a higher degree product, namely, y = x1x2 · · ·xd. It does, however, work in a

rather different way than Rosenberg’s method and so, does not contradict Remark 3.13.

A remarkable point is that it requires only one auxiliary variable to quadratize

a negative monomial, i.e., the minimum amount possible. In fact, for reasons that

we shall mention in Section 3.9, we also refer to this transformation as the standard

quadratization, sd(x1, x2, . . . , xd, y), of negative monomials. Moreover, all quadratic

terms in the right hand side of Equation (3.17) have negative coefficients. In particu-

lar, if f : {0, 1}n → R is a degree-d pseudo-Boolean function involving only negative

terms, then the application of this transformation to each of the t terms of f yields a

submodular quadratization of it in t auxiliary variables with O(td) negative quadratic

terms (and of course no positive quadratic term).
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Observe that the equality in Equation (3.17) is based only on the fact that the

symbols xi stand for a binary value. Hence, by introducing negated literals xi = 1−xi,

the above transformation can be easily extended for positive monomials as well.

Proposition 3.18. For binary variables x1, x2, . . . , xd and y1, y2, . . . , yd−2, it holds that

x1x2 · · ·xd − xd−1xd = −
d−2∑
i=1

xi

d∏
j=i+1

xj

= min
y∈{0,1}d−2

d−2∑
i=1

yi

d− i− xi − d∑
j=i+1

xj

 . (3.18)

Proof. Similar to that of Theorem 3.17.

Hence Equation (3.17) also implies a quadratization of positive monomials, in which

a degree-d positive monomial can be quadratized with d − 2 auxiliary variables and

results in d − 1 positive (non-submodular) quadratic terms (and whose coefficients do

not suffer from any increasing effect as in Rosenberg’s method).

Let us add that if a subset of the variables are negated on the left in Equation (3.17)

then the corresponding quadratic terms will have positive coefficients on the right hand

side. In particular, if all variables are negated, then all quadratic terms have positive

coefficients. Since the new variable y does not appear elsewhere we can replace it with

its negation y = 1 − y, not changing the minimization in this way, and get again a

submodular quadratization.

Proposition 3.19. For binary variables x1, x2, . . . , xd and y, it holds that

−x1x2 · · ·xd = min
y∈{0,1}

y

(d− 1)−
d∑
j=1

xj


= −1 +

d∑
j=1

xj + min
y∈{0,1}

y

1−
d∑
j=1

xj

 . (3.19)

Proof. Again, similar to that of Theorem 3.17.

Rother et al. [129] also observed that the transformation given in Equation (3.17)

can be extended by using negated variables, and called it type-II transformation. They

also noticed that one can apply Equation (3.17) to a subproduct (of a monomial), under
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some conditions. In particular, they quadratized separately the negated and unnegated

variables in a monomial and derived a new transformation, which they called it type-I.

Theorem 3.20. (Rother et al. [129]) Let S0, S1 be disjoint index sets. For binary

variables xj ∈ S0 ∪ S1 and y1, y2, it holds that

−
∏
j∈S0

xj
∏
j∈S1

xj = min
y1,y2∈{0,1}

−y1y2 + y1

∑
j∈S0

xj + y2

∑
j∈S1

xj , (3.20)

Proof. See Section 4 of Rother et al. [129].

Notice that no matter which variation from above techniques we use to quadratize a

degree-d positive monomial, we always need at least d− 2 new variables. The situation

will be improved to
⌊
d−1

2

⌋
in the next subsection.

Before closing this subsection, let us mention an interesting consequence of The-

orem 3.17 and Proposition 3.19. Let us call a pseudo-Boolean function f a unary

negaform if it can be represented as a negative combination of terms involving either

only unnegated variables, or only negated ones. It is easy to show that unary ne-

gaforms are submodular, and in fact Equations (3.17) and (3.19) provide a submodular

quadratization for such functions.

Unary negaforms (more precisely, their negations) were considered by Billionnet and

Minoux [20] and they showed that all cubic submodular functions can be represented by

unary negaforms. They also provided a network flow model for the minimization of a

unary negaform. The above submodular quadratizations given by Equations (3.17) and

(3.19) also lead to a network flow based minimization by the results of Hammer [80] and

these two network flow models are of very similar size (though they are not identical).

Thus, the above observations can be viewed as a new simple proof for the results of

Billionnet and Minoux [20].

Let us remark finally that higher degree submodular functions cannot typically be

represented as unary negaforms. This is implied e.g., by the results of Živný et al. [151,

152] — which state that there are degree-4 submodular pseudo-Boolean functions that

do not admit submodular quadratizations — since we just proved that a unary negaform

always has a submodular quadratization.
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3.2.3 Ishikawa’s Higher-Order Clique Reduction

The Higher-Order Clique Reduction (HOCR) was introduced by Ishikawa [91, 92] and

was the first practical transformation for high degree pseudo-Boolean functions. No-

tably, he provided a more compact quadratization for positive monomials, which uses

only about half as many auxiliary variables as previous methods.

Theorem 3.21 (Ishikawa [91, 92]). Consider the degree-d positive monomial x1x2· · ·xd,

set k :=
⌊
d−1

2

⌋
, and consider new (auxiliary) binary variables y = (y1, y2, ..., yk). Define

S1 :=
d∑
i=1

xi, S2 :=
∑

1≤i<j≤d
xixj , A :=

k∑
j=1

yj and B :=
k∑
j=1

(4j − 1)yj .

Then the following equalities hold:

d∏
i=1

xi = S2 + min
y∈{0,1}k

B − 2AS1 (3.21)

if d = 2k + 2, and

d∏
i=1

xi = S2 + min
y∈{0,1}k

B − 2AS1 + yk (S1 − d+ 1) (3.22)

if d = 2k + 1.

Proof. Ishikawa’s original proof can be found in [91, 92]. We shall provide an alternative

proof in Section 3.5.3, Theorem 3.34.

Let us note that S1 and S2 are symmetric functions of x, while A is a symmetric

function of y. However, B is not a symmetric function of y. It is an interesting question

on its own if one could find a quadratization of
∏d
i=1 xi which is symmetric in both x

and y, and needs substantially fewer new variables than d.

In Fix et al. [63], we introduced a slight variation of the above equations:

d∏
i=1

xi =
∑

1≤i<j≤d
xixj + min

y∈{0,1}k

k∑
j=1

yj

(
cj,d

(
−

d∑
i=1

xi + 2j

)
− 1

)
, (3.23)

where cj,d = 1 if d = j is odd, and cj,d = 2 otherwise.

It follows from Equations (3.21) and (3.22), and also from Equation (3.23) that

each degree-d positive monomial can be quadratized by these transformations with
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⌊
d−1

2

⌋
= O(d) auxiliary variables. In spite of having linear asymptotic behavior, it

is a practical improvement when compared to the methods of quadratizing positive

monomials of the previous subsection: it requires roughly half the auxiliary variables.

They also introduce dk = O(d2) negative quadratic terms.

Equations (3.21) and (3.22) introduce
(
d
2

)
or
(
d+1

2

)
positive quadratic terms, de-

pending if d is even or odd, respectively, while Equation (3.23) is a bit more economical

introducing always
(
d
2

)
quadratic positive terms. Nevertheless, these quantities are all

O(d2), implying that if W is the total weight of positive terms before the transfor-

mation, the quadratized function has a positive total weight of O(d2W ). To finish the

analysis, it is important to notice that the same quadratic positive term can result from

applying these transformations to different monomials. As they can be combined with-

out loss (by summing their coefficients), it follows that if each variable occurs in positive

monomials with at most ` variables, then the number of quadratic negative terms is

O(n`). This high number of positive quadratic terms makes the resulting quadratiza-

tion highly non-submodular. According to Szeliski et al. [142], this is problematic as

it can result is poor performance for graph-cut based methods like QPBO. However,

despite of this negative feature, Ishikawa [91, 92] reported very good computational

results, in particular when compared to the quadratization of Rosenberg [127].

3.3 Multiple Splits of Terms

We now show a generalization of some of the results presented in the previous section,

introducing a general scheme to split a term into several fragments in order to decrease

its maximum degree.

Let p, q be positive integers and assume that φi : {0, 1}p → {0, 1} are Boolean

functions, for i ∈ [q], satisfying the following conditions:

min
y∈{0,1}p

q∑
i=1

φi(y) = 1, and

∀I ⊂ [q], ∃yI ∈ {0, 1}p such that
∑
i∈I

φi(yI) = 0.

(3.24)

In other words, the sum of the φ functions have a positive minimum, but if we leave
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out any of the summands, the minimum becomes zero. For instance, for p = 2, q = 3

the functions φ1 = y1, φ2 = y2 and φ3 = y1y2 form such a set.

Theorem 3.22. Let φi be Boolean functions satisfying condition (3.24), and Pi ⊆ [d]

be subsets for i ∈ [q] covering [d]. Then we have

d∏
j=1

xj = min
y∈{0,1}p

q∑
i=1

φi(y)
∏
j∈Pi

xj . (3.25)

Proof. If
∏
j∈Pi xj = 1 for all i ∈ [q] then we have

1 = min
y∈{0,1}p

q∑
i=1

φi(y) = 1

by (3.24). If there is an index k ∈ [q] for which
∏
j∈Pk xj = 0, then by (3.24) there exists

a y∗ ∈ {0, 1}p such that φi(y
∗) = 0 for all i 6= k, and consequently we have φk(y

∗) = 1.

Thus,

0 ≤ min
y∈{0,1}p

q∑
i=1

φi(y)
∏
j∈Pi

xj

≤
q∑
i=1

φi(y
∗)
∏
j∈Pi

xj =
∏
j∈Pk

xj = 0

follows, proving the claim.

We now provide some remarks and examples:

• φ1 = y1 and φ2 = y1 = 1− y1 provides a 2-split;

• φ1 = y1, φ2 = y2, and φ3 = y1y2 provides a 3-split;

• any binary tree of depth p with q leaves defines an appropriate system of φi

functions, however not all systems correspond to such a tree (see e.g., the above

3-split);

• p variables can in general provide a q ≤ 2p-split transforming a degree d term to

q terms of maximum degree p+ ddq e.
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• a 2-split combined with Freedman and Drineas (3.17) yields the following quadra-

tization of a cubic term

xyz = min
u∈{0,1}

xu+ uyz

= min
u∈{0,1}

xu+ yz − uyz

= min
u,v∈{0,1}

xu+ yz + (2− y − u− z)v;

• combining the above with a 2-split yields the following quadratization of a quartic

term

txyz = min
u∈{0,1}

txu+ uyz

= min
u,v,w,s∈{0,1}

tv + xu+ (2− v − x− u)w + yz + (2− u− y − z)s;

another way of doing this is

txyz = min
u∈{0,1}

tu+ xyz − uxyz

= min
u,v,w,s∈{0,1}

tu+ xv + yz + (2− v − y − z)w + (3− u− x− y − z)s.

It is worth noticing that in all of the above attempts to quadratize a positive degree

d term, we had to include at least d−1 positive quadratic terms. We in fact conjecture

that this is necessary.

3.4 Splitting of Common Parts

In this section, we introduce a new substitution scheme that has its roots in the idea

of factorization of polynomials. Given a pseudo-Boolean function f : {0, 1}n → R, a

subset of f ’s monomials may share a collection of variables whose indices belong to a

set C ⊆ [n]. Instead of quadratizing or reducing the degree of each of those monomials

individually, we replace the subproduct
∏
i∈C xi by a new binary variable y in all of

them, altogether. The net effect is a simultaneous reduction on the degree of those

monomials at the cost of only one auxiliary variable.
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We show below how to apply this idea in groups of all-positive and all-negative

monomials, as they behave differently. In describing these transformations, it will be

convenient to interpret f as a hypergraph H over [n] as described in Section 3.1.1.

For positive monomials, we have the following:

Theorem 3.23. Let C ⊆ [n], H ⊆ 2[n]\C , and consider a fragment of a pseudo-Boolean

function of the form

φ =
∑
H∈H

αH
∏

j∈H∪C
xj ,

where αH ≥ 0 for all H ∈ H. Then we have

φ = min
y∈{0,1}

(∑
H∈H

αH

)
y
∏
j∈C

xj +
∑
H∈H

αH y
∏
j∈H

xj . (3.26)

Proof. We claim that y =
∏
j∈C xj at a minimum, in which case the left and right hand

sides are identical. To see this claim, observe that we have the inequalities

φ ≤
∑
H∈H

αH
∏
j∈H

xj ,

and

φ ≤
∑
H∈H

αH
∏
j∈C

xj .

Furthermore, these two right hand sides are the values of the right hand side of (3.26)

corresponding to y = 0 and y = 1, respectively. Thus, y =
∏
j∈C xj indeed achieves a

value not larger than any of those.

As y = 1 − y, the right hand side of Equation (3.26) is a multilinear polynomial

replacing each positive monomial H ∈ H of degree |H ∪ C| by a positive monomial

of degree |H| and a negative monomial of degree |H|+ 1, which involves the auxiliary

variable y, and an additional positive monomial of degree |C| + 1, also involving y. It

is easy to see that we have a decrease in degrees of positive monomials in φ whenever

0 < |C| < n− 1. Also, notice that with exception of the additional positive monomial,

whose coefficient is the sum of the coefficients in φ, all positive and negative monomials

inherit in absolute value the coefficient of the monomial they are replacing, i.e., no large

collection of “large” coefficients is created.
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An interesting consequence of the above theorem is the following: using it recur-

sively, we can find a quadratization g(x, y) of any pseudo-Boolean function f (even if

f is already quadratic) in which we have at most n− 1 positive quadratic monomials,

where n is the number of variables of f . This shows that the difficulty of minimizing f

does not come from an excessive number of non-submodular terms. In fact if we restrict

our input to quadratic pseudo-Boolean functions in n variables and with at most n− 1

positive monomials, the minimization problems remains as hard as general quadratic

minimization.

For negative monomials, we have the following:

Theorem 3.24. Let C ⊆ [n], H ⊆ 2[n]\C , and consider a fragment of a pseudo-Boolean

function of the form

φ = −
∑
H∈H

αH
∏

j∈H∪C
xj ,

where αH ≥ 0 for all H ∈ H. Then we have

φ = min
y∈{0,1}

∑
H∈H

αH y

1−
∏
j∈C

xj −
∏
j∈H

xj

 . (3.27)

Proof. We can prove, similarly to the previous proof that y =
∏
j∈C xj at a minimum.

For this let us note that if y =
∏
j∈C xj , then the right hand side in (3.27) is identical

with φ, since
∏
j∈C xj

(
1−

∏
j∈C xj

)
= 0 for all assignments x ∈ {0, 1}n. Furthermore,

we have the inequalities

φ ≤ 0,

and

φ ≤
∑
H∈H

αH

1−
∏
j∈C

xj −
∏
j∈H

xj

 ,

where the right hand side values are the right hand side values of (3.27) corresponding

to y = 0 and y = 1, respectively. Thus, again y =
∏
j∈C xj achieves the smallest

possible value.

Observe that all monomials in the right hand side of Equation (3.27) are also neg-

ative and have the same coefficient in absolute value of the negative monomial they

are replacing. It is not hard to see that in order for this transformation to result in
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monomials of smaller degrees than the ones being replaced we must have the common

part C satisfying 1 < |C| < n− 1. That is, if C is a singleton, Equation (3.27) replaces

a negative monomial of degree |H| by a slightly different one — involving the auxiliary

variable y and not involving the variable in C — of same degree. Despite correct, this

replacement would be of little usability. If |C| > 1, then a decrease of degrees is attained

as desired.

Theorems 3.23 and 3.24 can be used together or separately (in this case, in con-

junction with other quadratization techniques) to quadratize pseudo-Boolean functions

in a recursive fashion. The possibilities abound, as in each step one has to decide the

size of the common set C, which variables belong to C, and in what order should the

theorems be applied.

3.4.1 Application: An Algorithm for Computer Vision Problems

In Fix et al. [63, 64], we propose an algorithm to reduce high-degree multilinear poly-

nomials to quadratic ones through sequential application of Theorem 3.23 with |C| = 1

on positive monomials, and then using Freedman and Drineas’ Theorem 3.17 to take

care of negative monomials. More specifically, for k = 1, 2, . . . , xn we let Ck = {xk}

and let Hk be the subset of positive monomials that contain variable xk. We then use

Equation (3.26) specialized to this setting, i.e.,

∑
H∈Hk

αH
∏

j∈H∪{xk}

xj = min
y∈{0,1}

{ ∑
H∈Hk

αH

xky (3.28a)

+
∑
H∈Hk

αH
∏
j∈H

xj (3.28b)

−
∑
H∈Hk

αH y
∏
j∈H

xj

}
, (3.28c)

which gives that each positive monomial H in the left hand side of Equation (3.28) is

replaced by: a quadratic positive monomial (3.28a) in xk and y, an auxiliary variable;

a positive monomial (3.28b) whose degree is one unit smaller than that of H, as it

involves the same variables of H except xk and does not involve y; and a negative

monomial (3.28c) also not involving xk, but involving y. This implies that at the end
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of the loop not only all positive monomials are quadratic but they are all y-linear. We

then use Freedman and Drineas’ transformation (3.17) to reduce one by one, in an

arbitrary order, all the remaining high-degree negative monomials, thus obtaining the

desired quadratization – however, the end product is not y-linear anymore.

The worst case of our algorithm happens when none of the positive monomials

introduced by (3.28b) are already present in the original/current multilinear polynomial.

That is, they are not being combined with previous monomials through the addition of

their respective coefficients (what corresponds to a “pruning effect”), but are strictly

growing the number of monomials in the polynomial in each step. When the pruning

effect is observed, its performance improves considerably. We shall analyse its worst

case first.

For a single degree-d positive monomial, we have that its complete quadratization

through d− 1 recursive applications of Equation (3.28), is similar to d− 1 applications

of the 2-split procedure (cf. Section 3.3) followed by the usage of d− 2 Freedman and

Drineas (3.17) technique to deal with the negative monomials. In more details, the

recursive application of Equation (3.28) generates d− 1 positive quadratic monomials,

one linear positive monomial, d−1 negative monomials of degrees 2, 3, . . . , d, and intro-

duces d−1 auxiliary variables along the way. Then, using Freedman and Drineas (3.17)

we replace the d − 2 of those negative monomials whose degrees are larger than 2 by(
d
2

)
−3 = O(d2) new negative quadratic monomials, while introducing d−2 new auxiliary

variables in doing so. Summarizing, we end up with d positive sub-cubic monomials,

O(d2) negative monomials, and 2d− 3 = O(d) required auxiliary variables.

For the case in which we have t degree-d positive monomials in n variables, the

factorization of the common parts Ck shows some improvements, in the sense that we

do not just multiply the quantities above by t. Specifically, the overall quadratization

of t positive monomials requires n + O(td) auxiliary variables, introduces O(td2) new

quadratic negative monomials and at most n positive sub-cubic monomials.

Regarding the weights of the coefficients of the positive monomials (the non-submod-

ular edge-weight), each positive monomial contributes αH (in Equation (3.28a)) each

time it is reduced, resulting in a total of αH(d − 1) non-submodular edge-weight. So,
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if the total weight of positive monomials is W before the transformation, we obtain

O(dW ) after it.

When compared to Ishikawa’s HORC method of Section 3.2.3, the worst case of our

algorithm requires slightly more auxiliary variables (n + O(td) instead of O(td)), in-

troduces roughly the same amount of quadratic negative monomials (O(td2) for both),

introduces less quadratic positive terms (n instead of O(nk)), and has a factor d im-

provement for non-submodular total edge-weigh (O(dW ) instead of O(d2W )).

It was noticed by Alex Fix, one of our coauthors in Fix et al. [63, 64], that the

pseudo-Boolean functions occurring in some common computer vision problems (cf.

Woodford et al. [150], Roth and Black [128]) have the special structure in which “most”

of the positive monomials introduced by (3.28b) were already present in the original

multilinear polynomial, because the pseudo-Boolean functions of such problems are

likely to have all monomials on all subsets of d variables, thus making the representation

of the function essentially large. As it turns out, our algorithm (unlike Ishikawa’s HORC

or Kahl and Strandmark’s Generalized Roof Duality (GRD)) performs asymptotically

better on such instances.

The key idea behind the specialized analysis is that of local completeness.

Definition 3.25. Let H be the hypergraph of a pseudo-Boolean function f , and let H↓

be its ideal, i.e., H↓ :=
⋃
H∈H 2H . We say that f is c-locally complete if there exists a

constant 0 < c ≤ 1 such that |H| ≥ c|H↓|.

It is easy to see that local completeness provides a lower bound on the size of

the representation of the pseudo-Boolean function in question. The larger this lower

bound is, more positive monomials introduced by (3.28b) are combined with existent

monomials, and less negative monomials will be introduced by (3.28c) in subsequent

steps of the loop, thus requiring less auxiliary variables in the second phase of our

algorithm. In more details, it is possible to show the following.

Theorem 3.26 (Fix et al. [63, 64]). Let f be a c-locally complete pseudo-Boolean

function, and let H be its hypergraph interpretation. The first phase (reduction of

positive monomials) of our algorithm generates at most 1
c |H| negative monomials.
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Proof. See Fix et al. [63, 64].

Therefore, if f is a degree-d, c-locally complete pseudo-Boolean function in n vari-

ables and with t terms, our algorithm results in a quadratized pseudo-Boolean function

with at most n+ 1
c t auxiliary variables, 1

c td negative quadratic monomials, and n pos-

itive quadratic monomials.

A detailed description of the experimental results of the above algorithm can be

checked in Fix et al. [63, 64]. In the larger context where its output was optimized by

the QPBO algorithm of Kolmogorov and Rother [102], and the whole process was run

a considerable number of times (depending on the computer vision problem and the

image being processed), some remarkable observations are: (i) our algorithm runs faster

than both HOCR and GRD methods; (ii) it produces more compact representations

of the pseudo-Boolean functions; (iii) it finds more persistencies; and (iv) altering the

ordering of the variables in the first phase loop does not produce significant different

results, that is, the algorithm is robust.

Below, we reproduce two tables from our aforementioned paper that illustrates some

of these comments. The first shows a comparison of Ishikawa’s, Kahl and Strandmark’s,

and our methods, on benchmarks introduced by Ishikawa [91, 92], and averaged over 30

iterations of “fusion move” (a technique used to solve some computer vision problems).

Relative performance is showed inside parenthesis.

Energy improvement Percent labeled by QPBO Time (seconds)

HORC 1, 302 (−45%) 59.4% (−22%) 14.1 (+150%)

GRD-heur 3, 183 (+35%) 86.3% (+13%) 40.2 (+620%)

Our algorithm 2, 351 76.1% 5.6

The second compares the total size of Ishikawa’s transformation versus ours, on

Ishikawa’s benchmark as given in [91, 92]. The relative performance of our method
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appears inside parenthesis.

Auxiliary variables Positive terms Total terms

HORC 224, 346 421, 897 1, 133, 811

Our algorithm 236, 806 (+6%) 38, 343 (−90%) 677, 183 (−40%)

3.5 Quadratizations of Symmetric Pseudo-Boolean Functions

In this section we investigate quadratizations of a certain prominent family of pseudo-

Boolean functions: the class of symmetric pseudo-Boolean functions. Recall from Sec-

tion 3.1.2 that symmetric pseudo-Boolean functions are the ones which are invariant

under renaming of its variables or, in an equivalent way (cf. Theorem 3.3) depend

exclusively on the Hamming weight (number of ones) of their inputs.

For most, but not all, complexity measures over Boolean and pseudo-Boolean func-

tions one can find in the literature (see e.g. Junka [96]), symmetric functions are usually

presented as objects having low complexity values for those measures. We show in this

section that the same principle applies to quadratizations.

3.5.1 A Representation Theorem

Let a be any real number and let [a]− := min(a, 0) denote the smaller of a and 0. In

this subsection, we introduce a ‘representation theorem’ that expresses a symmetric

pseudo-Boolean function on variables x1, x2, . . . , xn as a linear combination of terms of

the form [a−
∑n

r=1 xr]
−, for a suitable range of values a. This result will be key in our

approach to obtain quadratizations of symmetric pseudo-Boolean functions.

Our representation result, in its most general form, is as follows.

Theorem 3.27. Let 0 < εi ≤ 1, for i = 0, 1, . . . , n. Then every symmetric pseudo-

Boolean function f : {0, 1}n → R can be represented uniquely in the form

f(x) =

n∑
i=0

αi

[
i− εi −

n∑
r=1

xr

]−
.
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Proof. When
∑n

r=1 xr = j, we should have f(x) = kj . So, to find a coefficient vector

α = (α0, α1, . . . , αn)T ∈ Rn+1 which establishes the required representation, we need to

find a solution to the following system of n+ 1 linear equations:

kj =
n∑
i=0

αi [i− εi − j]− =

j∑
i=0

αi (i− εi − j), for j = 0, 1, . . . , n. (3.29)

The matrix underlying this system is the lower-triangular matrix

A =
(
[q − εq − p]−

)
p,q=1,2,...,n+1

=



−ε0 0 0 0 · · · 0

−1− ε0 −ε1 0 0 · · · 0

−2− ε0 −1− ε1 −ε2 0 · · · 0

...
...

...
...

. . .
...

−n− ε0 −n+ 1− ε1 −n+ 2− ε2 −n+ 3− ε3 · · · −εn



Because A is lower-triangular with nonzero diagonal entries −εq, for q = 0, 1, . . . , n,

A is non-singular and this system does indeed have a unique solution. Therefore the

representation exists and is unique.

In case all the εi are equal, we can be more explicit about the coefficients in the

representation. Recall that kl = k(l) is the value of f(x) in any point x with Hamming

weight equal to l. We set k−1 = 0 by convention.

Theorem 3.28. Let 0 < ε ≤ 1. Then every symmetric pseudo-Boolean function f :

{0, 1}n → R can be represented uniquely in the form

f(x) =

n∑
i=0

αi

[
i− ε−

n∑
r=1

xr

]−
where, for j = 0, 1, . . . , n, the value of αj is

αj = −
j−2∑
i=0

(ε− 1)j−i−2

εj−i+1
ki +

(
1

ε
+

1

ε2

)
kj−1 −

1

ε
kj . (3.30)

As usual, the first sum above is equal to 0 if j < 2.
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Proof. We show that Equation (3.30) is a solution (and hence the solution) of the

System (3.29) whenever εi = ε, for all i = 0, 1, . . . , n. The proof is by induction on j.

The case j = 0 is easily verified, since the first equation in (3.29) immediately yields

α0 = −1
εk0, in agreement with (3.30). Assume now that (3.30) is satisfied by the values

of αi up to i = j − 1. Then, from (3.29) and from the induction hypothesis,

−εαj = kj +

j−1∑
i=0

αi (ε+ j − i)

= kj +

j−1∑
i=0

αi (ε+ j − 1− i) +

j−1∑
l=0

αl

= kj − kj−1 +

j−1∑
l=0

αl. (3.31)

Substituting (3.30) in the last term of (3.31) yields

j−1∑
l=0

αl =

j−1∑
l=0

[
−

l−2∑
i=0

(ε− 1)l−i−2

εl−i+1
ki +

(
1

ε
+

1

ε2

)
kl−1 −

1

ε
kl

]

= −
j−3∑
i=0

ki

j−1∑
l=i+2

(ε− 1)l−i−2

εl−i+1
+

(
1

ε
+

1

ε2

) j−1∑
l=0

kl−1 −
1

ε

j−1∑
l=0

kl

= −
j−3∑
i=0

ki

j−i−3∑
t=0

(ε− 1)t

εt+3
− 1

ε
kj−1 +

1

ε2

j−1∑
l=0

kl−1 (3.32)

=

j−3∑
i=0

(ε− 1)j−i−2

εj−i
ki −

1

ε
kj−1 +

1

ε2
kj−2 (3.33)

where the last equality is obtained by summing the geometric series which appears in

the first sum of equation (3.32).

Combining (3.31) and (3.33), we find

αj = −
j−3∑
i=0

(ε− 1)j−i−2

εj−i+1
ki −

1

ε3
kj−2 +

(
1

ε
+

1

ε2

)
kj−1 −

1

ε
kj ,

which is equivalent to (3.30).

Two special cases of Theorem 3.28 deserve special attention, as we shall use them

often. When ε = 1/2, Theorem 3.28 yields:
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Corollary 3.29. Every symmetric pseudo-Boolean function f : {0, 1}n → R can be

represented uniquely in the form

f(x) =

n∑
i=0

αi

[
i− 1

2
−

n∑
r=1

xr

]−
where

αi = −8
i∑

j=0

(−1)i−jkj − 2ki−1 + 6ki

for i = 0, 1, . . . , n, and k−1 = 0.

Taking ε = 1 in Theorem 3.28, we obtain the following.

Corollary 3.30. Every symmetric pseudo-Boolean function f : {0, 1}n → R can be

represented in the form

f(x) = k0 + (k1 − k0)
n∑
r=1

xr +
n−1∑
i=1

(−ki−1 + 2ki − ki+1)

[
i−

n∑
r=1

xr

]−
.

A simpler, more direct proof of Corollary 3.30 follows from work of Fix [62]. We

include it here as it helps furthering understanding on the subject. As Fix observed, if∑n
r=1 xr = l, then

f(x) = k(l) =
n∑
i=0

k(i)δi(l)

where δi(l) = 1 if i = l and δi(l) = 0 otherwise. Then, it can be seen that

δi(l) = − [i− 1− l]− + 2 [i− l]− − [i+ 1− l]− .

From this, it follows that

f(x) =
n∑
i=0

k(i)
(
− [i− 1− l]− + 2 [i− l]− − [i+ 1− l]−

)
.

On simplification, this gives

f(x) = k0 + l(k1 − k0) +
n−1∑
i=1

(−ki−1 + 2ki − ki+1) [i− l]− ,

as required.
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3.5.2 From Representations to Quadratizations

In this subsection we explain how a representation of the type presented in the previous

section can be used to construct quadratizations of pseudo-Boolean functions. One

useful observation is that when a coefficient αi is non-negative, the corresponding term

αi [i− εi −
∑n

r=1 xr]
− in the representation of Theorem 3.27 of f can be quadratized as

minyi αiyi(i−εi−
∑n

r=1 xr). But this translation simply does not work if αi is negative.

The strategy described in this section is to take an expression as given in Theorem 3.27

(or one of its special cases) and add a quantity that is identically-0 and which will result

in a final expression that has no terms with negative coefficients. The following Lemma

describes three possible such quantities. The first is going to be useful when working

with representations of the form given in Corollary 3.30, and the second and third will

be useful when working with the representations from Corollary 3.29.

Lemma 3.31. Let

E(l) = l(l − 1) + 2
n−1∑
i=1

[i− l]− ,

E′(l) =
l(l − 1)

2
+ 2

n∑
i=2:
i even

[
i− 1

2
− l
]−

,

and

E′′(l) =
l(l + 1)

2
+ 2

n∑
i=1:
i odd

[
i− 1

2
− l
]−

.

Then, for all l = 0, 1, . . . , n, E(l) = E′(l) = E′′(l) = 0.

Proof. First we show that E(l) is identically-0. We have

E(l) = l(l − 1) + 2

n−1∑
i=1

[i− l]−

= l(l − 1) + 2
l−1∑
i=1

(i− l)

= l(l − 1)− 2

l−1∑
j=1

j

= l(l − 1)− l(l − 1) = 0.
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We next show that E′(l) = 0 for all values of l. Fix l and note that i− 1
2 − l ≤ 0 if and

only if i ≤ l. Hence,

n∑
i=2:
i even

[
i− 1

2
− l
]−

=

l∑
i=2:
i even

(
i− 1

2
− l
)

=

l∑
i=2:
i even

i−
(

1

2
+ l

)⌊
l

2

⌋
. (3.34)

By considering separately the cases where l is respectively even or odd, one can conclude

that E′(l) = 0 for all l = 0, . . . , n. For, if l = 2r, then the expression on the right in

equation (3.34) is r/2−r2 = −l(l−1)/4 and, if l = 2r+1, it is −r/2−r2 = −l(l−1)/4.

The identity E′′(l) = 0 (for all l) can be proved similarly, or can be deduced from the

previous one by observing that, for all l = 0, 1, . . . , n,

n∑
i=1

[
i− 1

2
− l
]−

=
l∑

i=1

(
i− 1

2
− l
)

= −1

2
l2.

We then can note that

E′(l) + E′′(l) = l2 + 2
n∑
i=1

[
i− 1

2
− l
]−

= l2 − l2 = 0,

so that E′′ = −E′ = 0.

We gave a direct, self-contained, proof of Lemma 3.31, but in fact these three iden-

tities follow from Corollary 3.29 and Corollary 3.30. For, if we apply Corollary 3.30 to

the function

f(x) =

n∑
r=1

xr

(
n∑
r=1

xr − 1

)
,

we see that

f(x) = −2
n−1∑
i=1

[
i−

n∑
r=1

xi

]−
,

which implies the first identity of Lemma 3.31. Applying Corollary 3.29 to f(x) shows

(after some calculation) that

f(x) = −4

n∑
i=2:
i even

[
i− 1

2
− l
]−

,

giving the second identity (that E′ is identically-0). Applying Corollary 3.29 to the

function

g(x) =

n∑
r=1

xr

(
n∑
r=1

xr + 1

)
yields the third identity.
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3.5.3 Upper Bounds on Number of Auxiliary Variables

We now use the results of the two previous subsections and show an explicit construction

assuring that any symmetric pseudo-Boolean function admits a quadratization using

no more than n − 2 auxiliary variables. We then show that some popular symmetric

pseudo-Boolean functions admit even more economical quadratizations.

Arbitrary Symmetric Pseudo-Boolean Functions

Theorem 3.32. Every symmetric function of n variables can be quadratized using n−2

auxiliary variables.

Proof. Using Corollary 3.29, we can write any symmetric function f as

f(x) = −α0

1

2
+

n∑
j=1

xj

+
n∑
i=1

αi

i− 1

2
−

n∑
j=1

xj

− .
Let αr = min{αi : i even, i ≥ 2} and αs = min{αi : i odd}. Now add to f the

expression

−αr
2
E′

 n∑
j=1

xj

− αs
2
E′′

 n∑
j=1

xj

 ,

which is identically-0. This results in an expression for f of the form

f(x) = a0 + a1

n∑
j=1

xj + a2

∑
1≤i<j≤n

xixj +

n∑
i=1

βi

i− 1

2
−

n∑
j=1

xj

− ,
where, for each i, if i is even, βi = αi − αr ≥ 0, and if i is odd, βi = αi − αs ≥ 0.

So all the coefficients βi are non-negative. Furthermore, βr = βs = 0, so we have an

expression for f involving no more than n− 2 positive coefficients βi. Then,

g(x, y) = a0 + a1

n∑
j=1

xj + a2

∑
1≤i<j≤n

xixj +
n∑
i=1:
i 6=r,s

βiyi

i− 1

2
−

n∑
j=1

xj


is a quadratization of f involving at most n− 2 auxiliary variables.

A construction in [62] shows an upper bound of n− 1. This is obtained by adding

a multiple of E(
∑n

r=1 xr) to each term in the expression from Corollary 3.30, rather

than to the expression as a whole, resulting in more complex quadratizations.
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Notice that the quadratization in the proof of Theorem 3.32 is y-linear, so we have

in fact shown:

Theorem 3.33. Every symmetric function of n variables has a y-linear quadratization

involving at most n− 2 auxiliary variables.

Furthermore, these quadratizations are also symmetric in the x-variables. Not ev-

ery quadratization of a symmetric function must itself be symmetric in the original

variables. For example, consider the negative monomial

−
n∏
i=1

xi = −x1x2 · · ·xn.

As we have seen, this has the quadratization y
(
n− 1−

∑n
j=1 xj

)
, which is symmetric.

However, it also has the quadratization

(n− 2)xny −
n−1∑
i=1

xi(y − xn),

where xn = 1− xn, which is not symmetric in the x-variables.

Monomials

The quadratization of monomials (positive and negative) has been fairly well-studied

(cf. Sections 3.2.2 and 3.2.3). The standard quadratization of the negative monomial

f(x) = −
n∏
i=1

xi = −x1x2 · · ·xn,

is

sn(x1, x2, . . . , xn, y) = y

n− 1−
n∑
j=1

xj

 .

If we apply Corollary 3.29 to the negative monomial, noting that ki = 0 for i < n

and kn = −1, we obtain the representation

f(x) = 2

[
n− 1

2
−

n∑
r=1

xr

]−
,

which immediately leads to the quadratization

h = 2y

(
n− 1

2
−

n∑
r=1

xr

)
,
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only slightly different from the standard one. We could, instead, apply Corollary 3.30,

which would show that f(x) = [n− 1−
∑n

r=1 xr]
− , from which we immediately obtain

the standard quadratization.

As we noted earlier, the best known result (smallest number of auxiliary variables)

for positive monomials is that they can be quadratized using
⌊
n−1

2

⌋
auxiliary variables.

This was shown by Ishikawa [91, 92]. We can see that this many auxiliary variables

suffice by using our representation theorem, Corollary 3.29, together with the argument

given in the proof of Theorem 3.32.

Theorem 3.34. The positive monomial P =
∏n
i=1 xi can be quadratized using

⌊
n−1

2

⌋
auxiliary variables.

Proof. Consider first the case where n is even. By Corollary 3.29, noting that ki = 0 for

i < n and kn = 1, we have P = −2
[
n− 1

2 − l
]−

where l =
∑n

r=1 xr. By Lemma 3.31,

P = −2

[
n− 1

2
− l
]−

+ E′(l)

=
l(l − 1)

2
+

n−2∑
i=2:
i even

2

[
i− 1

2
− l
]−

=
∑

1≤i<j≤n
xixj + min

y

n−2∑
i=2:
i even

2yi

(
i− 1

2
− l
)
.

This provides the required quadratization using n
2 − 1 =

⌊
n−1

2

⌋
new variables.

When n is odd, one similarly derives the following from Lemma 3.31:

P = −2

[
n− 1

2
− l
]−

+ E′′(l)

=
n∑
i=1

xi +
∑

1≤i<j≤n
xixj + min

y

n−2∑
i=1:
i odd

2yi

(
i− 1

2
− l
)
.

This quadratization of P requires the same number of auxiliary variables as the

construction of Ishikawa. Both quadratizations are, in fact, identical when n is even,

but appear to be different when n is odd.
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Note that an alternative approach to the case of odd n would be as follows. Write

P =
n−1∏
i=1

xi −
n−1∏
i=1

xixn,

where xn = 1−xn. The first term can now be quadratized using n−1
2 − 1 new variables

(since it contains an even number of variables), and the second term, viewed as a

negative monomial in x1, . . . , xn−1, xn, has a standard quadratization requiring one

further auxiliary variable. Thus, this leads again to a quadratization of P with n−1
2 =⌊

n−1
2

⌋
new variables. This quadratization is also different from Ishikawa’s.

t-out of n and exact-t Functions

Consider now the t-out-of-n function defined by:

ft,n(x) = 1 if and only if

n∑
i=1

xi ≥ t.

The basic Boolean functions

Andn(x) :=
n∏
i=1

xi and Orn(x) := 1−
n∏
i=1

(1− xi)

are examples of t-out of n functions with t = n and t = 1, respectively. Notice that Andn

is also a positive monomial in n variables. Another popular example is the majority

function given by:

Majn(x) :=


1 if

∑n
i=1 xi ≥ dn/2e ,

0 otherwise,

which breaks ties in favor of ones when n is even. In this case, t = dn/2e.

Corollary 3.35. The t-out-of-n function ft,n can be quadratized using dn/2e auxiliary

variables.

Proof. From Corollary 3.29, ft,n can be represented in the form

ft,n(x) =
n∑
i=0

αi

i− 1

2
−

n∑
j=1

xj

− (3.35)

where αi = 0 when i < t, αt = −2, and αi = 4(−1)i−t−1 when i > t.
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Since the terms of ft,n alternate in sign when i ≥ t, we can again use Lemma 3.31

to make all coefficients non-negative by adding either 2E′(l) or 2E′′(l) to (3.35), de-

pending on the parity of t. The resulting expression has dn/2e positive coefficients, and

its remaining coefficients are zero. Thus, it can be quadratized with dn/2e auxiliary

variables.

A related function is the exact-t (out of n) function, defined as f=
t,n(x) = 1 if and

only if the Hamming weight of x equals t. Using Corollary 3.29 again, we have that

f=
t,n can be represented in the form given in (3.35) with αi = 0 when i < t, αt = −2,

αt+1 = 6, and αi = 0 when i > t + 1. Depending on the parity of t, we add E′(l) or

E′′(l) to (3.35) to obtain an expression with bn/2c positive coefficients, which can then

be quadratized with bn/2c auxiliary variables. We have just proved the following:

Corollary 3.36. The exact-t function f=
t,n can be quadratized using bn/2c auxiliary

variables.

The positive monomial and the Andn Boolean function are also special cases of exact-

t functions, both with t = n. It is apparent from the argument leading to Corollary 3.36

that the reason the positive monomial (and hence, the Andn function) requires
⌊
n−1

2

⌋
auxiliary variables instead of bn/2c is precisely because t = n.

Parity and its Complement

The parity function is the (pseudo-)Boolean function
⊕

n(x) such that

⊕
n(x) =


1 if

∑n
i=1 xi, the Hamming weight of x, is odd,

0 otherwise.

To derive a quadratization of this function, we will use Corollary 3.30 rather than

Corollary 3.29, and will make use of a variant of the argument given to establish The-

orem 3.32. By Corollary 3.30, we can see that
⊕

n has the representation

⊕
n(x) =

n∑
j=1

xj + 2

n−1∑
i=1

(−1)i−1

i− n∑
j=1

xj

− . (3.36)
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Let E(l) be as in Lemma 3.31. By adding E(
∑n

j=1 xj) to this representation of
⊕

n,

we obtain a representation with non-negative coefficients, which leads to a quadratiza-

tion with m = bn/2c auxiliary variables:
⊕

n(x) = miny∈{0,1}m g(x, y) where

g(x, y) = 2
∑
i<j

xixj +
n∑
j=1

xj + 4
n−1∑
i=1:
i odd

yi

i− n∑
j=1

xj

 .

Notice that the terms with coefficient −2 in the expansion (3.36) disappear on the

addition of E.

The complement of parity,
⊕

n, can be represented as

⊕
n(x) = 1−

n∑
j=1

xj + 2

n−1∑
i=1

(−1)i

i− n∑
j=1

xj

− ,
so, by adding E(

∑n
j=1 xj), to eliminate negative coefficients, we arrive at the following

quadratization involving m =
⌊
n−1

2

⌋
auxiliary variables:

g′(x, y) = 1 + 2
∑
i<j

xixj −
n∑
j=1

xj + 4
n−1∑
i=2:
i even

yi

i− n∑
j=1

xj

 .

So we conclude the following:

Theorem 3.37. The parity function of n variables has a y-linear quadratization involv-

ing bn/2c auxiliary variables, and its complement has a y-linear quadratization involving⌊
n−1

2

⌋
auxiliary variables.

3.5.4 Lower Bounds on Number of Auxiliary Variables

We have two types of lower bounds on the number of auxiliary variables for quadrati-

zations of symmetric pseudo-Boolean functions to present: an existence result, estab-

lishing that there are symmetric functions needing a rather large number of auxiliary

variables; and a concrete lower bound on the number of auxiliary variables in any

y-linear quadratization of the parity function. For improved clarity and also for orga-

nizational reasons, we shall defer the presentation of these results to Section 3.7, right

after the exposition of our lower bounds for general pseudo-Boolean functions.
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3.5.5 d-part Symmetric Pseudo-Boolean Functions

A natural question at this point is whether we can extend (some of) the results to the

d-part symmetric setting. While this line of research is still ongoing, we show below

how to extend Theorem 3.27 to 2-part symmetric pseudo-Boolean functions.

Theorem 3.38. Let f : {0, 1}n → R be a 2-part symmetric pseudo-Boolean function in

n variables, with symmetric parts V1 ∪̇V2 = [n] of sizes n1+n2 = n, and let 0 < εi,j ≤ 1,

for i = 0, 1, . . . , n1 and j = 0, 1, . . . , n2. Then, f can be uniquely represented in the form

f(x) =

n1∑
i=0

n2∑
j=0

αi,j

[(
(n2 + 1)i+ j

)
− εi,j −

(
(n2 + 1)

n1∑
r1=1

xr1 +

n2∑
r2=1

xr2

)]−
.

Proof. When
∑

r1∈V1 xr1 = p1 and
∑

r2∈V2 xr2 = p2, we should have f(x) = kp1,p2 . So,

to find a coefficient vector

α = (α0,0, α0,1, . . . , α0,n2 , α1,0, α1,1, . . . , α1,n2 , . . . , αn1,0, αn1,2, . . . , αn1,n2)T ∈ Rγ

with γ = (n1 + 1)(n2 + 1), which establishes the required representation, we need to

find a solution to the following system of γ linear equations:

kp1,p2 =

n1∑
i=0

n2∑
j=0

αi,j
[(

(n2 + 1)i+ j
)
− εi,j −

(
(n2 + 1)p1 + p2

)]−
=

p1∑
i=0

p2∑
j=0

αi,j

((
(n2 + 1)i+ j

)
− εi,j −

(
(n2 + 1)p1 + p2

))
, (3.37)

for p1 = 0, 1, . . . , n1 and p2 = 0, 1, . . . , n2.

The matrix underlying this system is

A =
([(

(n2 + 1)i+ j
)
− εi,j −

(
(n2 + 1)r + s

)]−)j,s=0,1,...,n2

i,r=0,1,...,n1

.

Iterating the pair (r, s) for the rows and the pair (i, j) for the columns, both in

lexicographical order, it is possible to see that A is the lower-triangular matrix

A =



−ε0,0 0 0 0 · · · 0

−1− ε0,0 −ε0,1 0 0 · · · 0

−2− ε0,0 −1− ε0,1 −ε0,2 0 · · · 0

...
...

...
...

. . .
...

−β − ε0,0 −β + 1− ε0,1 −β + 2− ε0,2 −β + 2− ε0,3 · · · −εn1,n2
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where β = n1 + n2 + n1n2.

Because A is lower-triangular with nonzero diagonal entries, A is non-singular and

this system does indeed have a unique solution. Therefore the representation exists and

is unique.

The above proof also shows that such cylindrical mapping can also be done for larger

values of d and therefore, it is possible to uniquely represent any d-part symmetric

pseudo-Boolean function in a different, but similar way to that of Equation (3.38).

In order to quadratize Equation (3.38), we need to repeat the process of shifting the

negative coefficients αi,j . That is, we need similar relations to those of Lemma 3.31.

It is not hard to see that the larger the value of d gets, more involved those relations

become. We are currently looking for different ways of accomplishing that goal.

3.6 Upper Bounds on the Number of Auxiliary Variables

Ishikawa [91, 92] observed that, by relying on his procedure for positive monomials (cf.

Theorem 3.21) and on Freedman and Drineas’ procedure for negative monomials (cf.

Theorem 3.17), any pseudo-Boolean function can be quadratized using at most t
⌊
d−1

2

⌋
auxiliary variables, where d is the degree of the multilinear polynomial (3.3) and t is

the number of terms with nonzero coefficients. Since t can be as large as
(
n
d

)
, this yields

a (tight) upper bound of O(nd) on the number of auxiliary variables introduced by

Ishikawa’s procedure for a polynomial of fixed degree d, and O(n 2n) variables for an

arbitrary function. Note that these bounds depict worst case scenarios, being attained

for functions containing all possible positive monomials of degree d or smaller, for each

d ≤ n.

We present some improvements below, by showing that for any pseudo-Boolean

function f in n variables, it is possible to find a general quadratization and a y-linear

quadratization with at most O(2n/2) and O
(

2n

n · log n
)

auxiliary variables, respectively.

Similarly to what we accomplished to symmetric pseudo-Boolean functions, our meth-

ods in this section take a global standpoint in quadratizing f , that is, they do not act

over the terms of the multilinear polynomial representing f . This time, however, our
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methods are based on more complicated extremal combinatorics constructions instead

of the linear algebraic argument we used before.

3.6.1 Minterm Quadratizations

We start first with providing a somewhat simple argument that yields a sort of canonical

quadratization for every pseudo-Boolean function. We call it minterm quadratization

since there is an auxiliary variable associated to each and every non-null value in the

function’s domain.

Theorem 3.39. Let f : {0, 1}n → R be a pseudo-Boolean function in n variables and

let M be an upper bound on f , that is, f(x) ≤M for all x ∈ {0, 1}n. Then,

g(x, y) = M +
∑

α∈{0,1}n

(
M − f(α)

) ∑
i:αi=1

xi +
∑
j:αj=0

xj − 1

 yα

is a quadratization of f .

Proof. Let x be some fixed value in {0, 1}n and notice that the term
∑

i:αi=1 xi +∑
j:αj=0 xj − 1 is negative if and only if α = x. Therefore, the minimum of g(x, y) is

attained by yα = 0 if α 6= x, and by yα = 1 if α = x. Hence, miny g(x, y) = f(x).

The above theorem shows in particular that every pseudo-Boolean function f ∈ Fn

has a quadratization involving at most 2n auxiliary variables, an improvement when

compared to Ishikawa’s O(n 2n). Moreover, it also shows that minterm quadratizations

are not only y-linear, but y-full : all terms involve an auxiliary variable.

Notice that g(x, y) is in reality the quadratization of M+(f−M), where f−M only

takes negative values. We can use this fact to provide an alternative and also instructive

proof of Theorem 3.39. Consider the “minterm normal form” (cf. Section 3.1) of

M + (f −M), given by

f(x) = M +
∑

α∈{0,1}n

(
f(α)−M

)( ∏
i:αi=1

xi

)( ∏
j:αj=0

xj

)
.

It is not hard to see that all the coefficients of f(α)−M in this expression are negative

or null. Therefore, all monomials can be quadratized by the extension of Freedman and
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Drineas’ transformation given in Equation (3.17), and this yields the expression g(x, y)

in the statement of the proposition, concluding the proof.

An easy generalization goes as follows.

Theorem 3.40. For each k = 1, 2, . . . ,m, let (Pk, Nk) be a partition of [n] and assume

that the subcubes

Bk =
{
x ∈ {0, 1}n : xi = 1 for i ∈ Pk, xj = 0 for j ∈ Nk

}
define a partition of {0, 1}n into m subcubes such that f takes constant value fk on each

Bk. Then,

g(x, y) = M +

m∑
k=1

(M − fk)

∑
i∈Pk

xi +
∑
j∈Nk

xj − 1

 yk

is a quadratization of f .

Proof. Immediate by mimicking the minterm normal form based argument provided

above.

3.6.2 y-full Quadratizations

We now present a quadratization procedure that offers a constant improvement in the

number of auxiliary variables in the worst case to that of minterm quadratizations,

from 2n to 3
82n. While the improvement is modest, the techniques used may be of

(independent) interest in further developments.

Definition 3.41. Let f : {0, 1}n → R be a pseudo-Boolean function and let g :

{0, 1}n+m → R be a quadratization of f . We say that g is y-full if every term of

the multilinear polynomial expression of g contains an auxiliary y-variable.

As mentioned in the previous subsection, minterm quadratizations are y-full and

that implies that every pseudo-Boolean function f admits a y-full quadratization (ac-

tually, f −M admits such a quadratization, for M large enough). In the sequel, for

convenience, we will refer to a quadratization with m auxiliary variables as an m-

quadratization.
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We start by showing that when a pseudo-Boolean function has a y-full quadratiza-

tion, then a related quadratization involving the same y-variables can be derived for

certain extensions of the function to higher-dimensional subcubes.

Lemma 3.42. Let f : {0, 1}k → R be a pseudo-Boolean function in k variables, let

g : {0, 1}k+` → R be a y-full, `-quadratization of f , and let M be any strict majorant

of g, that is, M > maxx,y g(x, y). The pseudo-Boolean function

p(x1, . . . , xn, y) = g(x1, . . . , xk, y) +M

(
n∑

i=k+1

xi

)(∑̀
j=1

yj

)
in n+ ` variables is a y-full, `-quadratization of the extension of f to n variables:

f̃(x1, . . . , xn) = f(x1, . . . , xk)

n∏
i=k+1

xi.

Proof. Let x ∈ {0, 1}n. There are two cases to inspect. First, whenever xk+1 = · · · =

xn = 0, we immediately have that miny p(x, y) = miny g(x, y) = f(x) = f̃(x). Second,

if at least one of the variables xk+1, . . . , xn is equal to 1, then f̃(x) = 0; also, since M

is an strict majorant of g, we have that y1 = · · · = y` = 0 in every minimizer p, and

hence since g is y-full, miny p(x, y) = p(x, 0) = g(x, 0) = 0, concluding the proof.

Lemma 3.42 allows us to strengthen the construction used for the minterm quadra-

tization by decomposing the pseudo-Boolean function f into subfunctions defined on

subcubes of {0, 1}n. Notice that the difference of it to Theorem 3.40 is that in the latter

the pseudo-Boolean function must be constant inside the subcubes.

Proposition 3.43. Assume that r and ` are constants such that for every pseudo-

Boolean function h : {0, 1}r → R in r variables, there exists a constant Ch such that

for all C ≥ Ch, the function h−C has a y-full, `-quadratization. Then, for every n ≥ r

and for every pseudo-Boolean function f : {0, 1}n → R in n variables, there exists a

constant Cf such that f − Cf has a y-full, (2n−r`)-quadratization.

Proof. The idea of the proof is to expand f with respect to all 2n−r complete monomials

(“minterms”) on the last n− r variables, and then to quadratize the coefficient of each

monomial using ` additional variables per monomial. More precisely, write f as

f(x) =
∑

α∈{0,1}n−r
hα(x1, . . . , xr)

( ∏
i>r:αi=1

xi

)( ∏
j>r:αj=0

xj

)
,
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where hα(x1, . . . , xr) = f(x1, . . . , xr, α) for all x ∈ {0, 1}r and α ∈ {0, 1}n−r. Note that

each hα is a function of r variables, and let Cf = maxαChα . Then, by hypothesis, each

function hα − Cf has a y-full, `-quadratization, say gα(x, yα).

By Lemma 3.42, there is an Mα large enough such that

(hα(x1, . . . , xr)− Cf )

( ∏
i>r:αi=1

xi

)( ∏
j>r:αj=0

xj

)
= min

yα∈{0,1}`
p(x, yα)

with

p(x, yα) = gα(x, yα) +Mα

(∑
αi=0

xi +
∑
αi=1

xi

)(∑̀
j=1

yαj

)
.

It then follows that

f(x)− Cf =
∑

α∈{0,1}n−r
(hα(x1, . . . , xr)− Cf )

( ∏
i>r:αi=1

xi

)( ∏
j>r:αj=0

xj

)
(3.38)

=
∑

α∈{0,1}n−r
min

yα∈{0,1}`
p(x, yα) (3.39)

= min
y

∑
α∈{0,1}n−r

p(x, yα) (3.40)

where the last equality results from the fact that all vectors yα of additional variables

are distinct, for all α ∈ {0, 1}n−r. Thus, the function

∑
α∈{0,1}n−r

p(x, yα)

is a y-full quadratization of f −Cf using (2n−r`) additional variables yα, α ∈ {0, 1}n−r.

It is worth noticing that Theorem 3.39 implies that the main assumption of Propo-

sition 3.43 is satisfied for all r by choosing ` = 2r. This, however, does not lead to an

improved bound. Therefore, we will now show that in some sense, y-full quadratizations

do not require many more additional variables than arbitrary quadratizations.

Lemma 3.44. If a pseudo-Boolean function f : {0, 1}n → R in n variables has a k-

quadratization, then there is a constant Cf such that for all C ≥ Cf , the pseudo-Boolean

function f − C has a y-full, (n+ k)-quadratization.
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Proof. Let g(x, y) be a k-quadratization of f . If g is not y-full, then consider all its

terms involving the variable x1 and no y-variable, and write the sum of these terms as

p(x) = x1

 n∑
j=1

ajxj + b

 = x1

 n∑
j=1

ajxj + b+K

−Kx1,

where K is such that
∣∣∑n

j=1 ajxj + b
∣∣ ≤ K for all x ∈ {0, 1}n.

The function p(x) can be quadratized as

p(x) = min
v1

2Kx1v1 + v1

 n∑
j=1

ajxj + b+K

−Kx1

 ,

where v1 is a new, auxiliary binary variable. Replacing p(x) by this quadratization in

g yields a quadratization g1(x, y, v1) of f without quadratic terms of the form x1xj , for

j ∈ [n].

Repeating the same procedure for x2, x3, . . . , xn−1, introduces in total n − 1 new

additional variables v1, v2, . . . , vn−1 and results in a quadratization h(x, y, v) of f in

which every term involves a y-variable or v-variable, except for linear terms in x. Now,

write h as

h(x, y, v) = Q(x, y, v) +

n∑
j=1

a′jxj + b′,

where Q is (y, v)-full, and let Cf = maxx∈{0,1}n
∑n

j=1 a
′
jxj + b′. Then for all C ≥ Cf ,

f(x)− C = min
y,v
{h(x, y, v)− C} = min

y,v,u

Q(x, y, v) + u

 n∑
j=1

a′jxj + b′ − C


where u is a new binary variable (which can be set to 1 in every minimizer). The

last equation defines a (y, v, u)-full quadratization of f − C involving at most n + k

additional variables.

We are now able to establish the main result of this subsection.

Theorem 3.45. Every pseudo-Boolean function f : {0, 1}n → R in n variables has a

quadratization involving at most 3
82n auxiliary variables.

Proof. Recall that Proposition 3.16 states that every pseudo-Boolean function in 4

variables can be quadratized using at most two additional variables. Together with
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Lemma 3.44, they imply that for every pseudo-Boolean function h in 4 variables, there

is a constant Ch such that for all C ≥ Ch, the pseudo-Boolean function h − C has

a y-full, 6-quadratization. Thus, we can set r = 4 and ` = 6 in Proposition 3.43

to obtain the required conclusion when n ≥ 4. For n = 3, the bound follows from

Proposition 3.15.

Let us close this subsection by mention that using Proposition 3.15 instead of Propo-

sition 3.16 in the previous proof would lead to p = 3 and ` = 4, and hence to the weaker

bound 1
22n.

3.6.3 Universal Sets and Pairwise Cover Quadratizations

In order to improve the 3
82n upper bound established above on the number of auxiliary

variables required in a quadratization, we need to make some observations and introduce

some definitions.

Let f : {0, 1}n → R be a pseudo-Boolean function in n variables and let g :

{0, 1}n+m → R be a quadratization of f using m auxiliary variables, that is, g(x, y) is

such that

f(x) = min
{
g(x, y) : y ∈ {0, 1}m

}
for all x ∈ {0, 1}n.

A slight change in focus allow us to notice that equivalently, we can write f(x) =

g(x, y∗(x)), where

y∗(x) = argmin
{
g(x, y) : y ∈ {0, 1}m

}
, (3.41)

thus enabling us to view each component y∗i of y∗ as a Boolean function of x: y∗i (x) =

hi(x).

This (apparent simple) change in perspective turns out to significantly open some

good venues.

Definition 3.46. Let F ⊆ Fn be a subset of pseudo-Boolean functions and let U ⊆ Bn

be a subset of Boolean functions, both in n variables. We say that U is a universal set

for F if

(i) for every function f ∈ F , there is a quadratization g(x, y) of f requiring m ≤ |U|

auxiliary variables y1, y2, . . . , ym, and
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(ii) there is a subset {y∗1, y∗2, . . . , y∗m} ⊆ U such that y∗(x) = (y∗1(x), y∗2(x), . . . , y∗m(x))

is a minimizer of g(x, y) for all x ∈ {0, 1}n, as in Equation (3.41) above.

The main clause in Definition 3.46 tells us that when U is a universal set, then all

minimizers (y∗1(x), y∗2(x), . . . , y∗m(x)) can be chosen in U , for all functions in F . Clearly,

Bn itself is a universal set for every set of functions F , and it is not entirely obvious that

there should be smaller ones for F = Fn. We are going to show, however, that rather

small universal sets for Fn can be constructed by relying on the concept of pairwise

covers.

Definition 3.47. Let F ,H ⊆ 2[n] be two hypergraphs. We say that H is a pairwise

cover of F if, for every set S ∈ F ∪H with |S| ≥ 3, there are two sets A(S), B(S) ∈ H

such that |A(S)| < |S|, |B(S)| < |S|, and A(S) ∪B(S) = S.

The motivation behind the above definition is that a pairwise cover H can be used

to partition each monomial of the form
∏
j∈S xj into a product of two monomials(∏

j∈A(S) xj

)(∏
j∈B(S) xj

)
, which can subsequently be replaced by a product of two

auxiliary variables yA(S) yB(S).

Pairwise covers are closely related to hypergraphs called 2-bases by Füredi and

Katona [71], Frein, Lévêque and Sebö [70], and Ellis and Sudakov [57]. The only

difference to between them resides on the fact that the subsets A(S), B(S) are not

required to be strict subsets of S in a 2-base.

As an example of a pairwise cover, consider the following hypergraph H∗ defined as

H∗ :=

{
S ⊆ [n] : |S| ≤

⌈
1

3
n

⌉}
∪
{
S ⊆ [n] : |S| =

⌈
2

3
n

⌉}
. (3.42)

It is not hard to see that H∗ is a pairwise cover for F = 2[n] of size

|H∗| =
b 13nc∑
i=0

(
n

i

)
+

(
n⌈
1
3n
⌉) ≤ 2H(1/3)·n = 2(log 3− 2

3
)n ≤ 20.92n,

where the function H(p) := −p log p − (1 − p) log(1 − p) is the binary entropy of p,

for 0 < p ≤ 1/2. (For a proof of the entropy bound, see Lemma 16.19 in Flum and

Grohe [65].)

We are now ready to show the existence of universal sets.
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Proposition 3.48. If F ,H ⊆ 2[n] are two hypergraphs such that H ⊆ F and H is a

pairwise cover of F , then

U(H) =

∏
j∈H

xj : H ∈ H


is a universal set for the set of functions of the form f(x) =

∑
S∈F aS

∏
j∈S xj.

Proof. Let |H| = m and consider a function f(x) =
∑

S∈F aS
∏
j∈S xj . Note that for

every choice of nonnegative coefficients bS , S ∈ F , we have

f(x) = min
y∈{0,1}m

∑
S∈F

aS
∏
j∈S

xj +
∑
H∈H

bH

yH
|H| − 1

2
−
∑
j∈H

xj

+
1

2

∏
j∈H

xj

 (3.43)

for all x ∈ {0, 1}n. This is because y∗H =
∏
j∈H xj minimizes the right-hand side

of (3.43) for all x, and for this value the second summation in the right-hand side is

identically zero. This reflects the fact that yH

(
|H| − 1

2 −
∑

j∈H xj

)
is nothing but a

variant of Freedman and Drineas’ quadratization in Equation (3.17) for the negative

monomial −1
2

∏
j∈H xj .

We now specify the coefficients bS as follows: for S ∈ F , S 6∈ H, we let bS = 0; for

H ∈ H, we let

1

2
bH =

∑
S∈F :

H∈{A(S),B(S)}

(
|aS |+

1

2
bS

)
. (3.44)

Note that for each H ∈ H, the right-hand side of Equation (3.44) only involves subsets

S with |S| > |H|. Thus the system of equations (3.44), for H ∈ H, is triangular and

has a nonnegative feasible solution bS ≥ 0 for all S ∈ F .

Let us substitute this solution in Equation (3.43), and let us finally replace every

occurence of a term
∏
j∈T xj in Equation (3.43) by yA(T )yB(T ). Note that this construc-

tion is well defined since H ⊆ F . It yields a quadratic function g(x, y). We claim that

g(x, y) is a quadratization of f(x).

More precisely, consider a point x ∈ {0, 1}n. We are going to show that, here

again, y∗H =
∏
j∈H xj , for all H ∈ H, minimizes g(x, y), which entails that f(x) =

miny∈{0,1}m g(x, y) and that U(H) is a universal set.
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To see this, consider an arbitrary set H ∈ H and write g(x, y) = c(x, y)yH +d(x, y),

where c(x, y) and d(x, y) do not depend on yH . More precisely, when H ∈ {A(S), B(S)},

define R(S) to be such that {H,R(S)} = {A(S), B(S)}. Then,

c(x, y) =
∑
S∈F :

H∈{A(S),B(S)}

aS yR(S) + bH

|H| − 1

2
−
∑
j∈H

xj

+
1

2

∑
S∈H:

H∈{A(S),B(S)}

bS yR(S)

=
∑
S∈F :

H∈{A(S),B(S)}

(
aS +

1

2
bS

)
yR(S) + bH

|H| − 1

2
−
∑
j∈H

xj

 . (3.45)

If
∏
j∈H xj = 1, then we get

c(x, y) =
∑
S∈F :

H∈{A(S),B(S)}

(
aS +

1

2
bS

)
yR(S) −

1

2
bH (3.46)

≤
∑
S∈F :

H∈{A(S),B(S)}

(
|aS |+

1

2
bS

)
− 1

2
bH (3.47)

= 0,

where the last equality is implied by Equation (3.44). Thus, c(x, y) ≤ 0 and hence

y∗H = 1 minimizes g(x, y).

If
∏
j∈H xj = 0, then

∑
j∈H xj ≤ |H| − 1, and thus we get by (3.45)

c(x, y) ≥
∑
S∈F :

H∈{A(S),B(S)}

(
aS +

1

2
bS

)
yR(S) +

1

2
bH (3.48)

≥ 1

2
bH −

∑
S∈F :

H∈{A(S),B(S)}

(
|aS |+

1

2
bS

)
(3.49)

= 0.

Here the first inequality is implied by bH ≥ 0, the second follows from the inequalities(
aS +

1

2
bS

)
yR(S) ≥

(
−|aS | −

1

2
bS

)
,

while the last equality follows by (3.44). Thus, c(x, y) ≥ 0 implies that y∗H = 0 mini-

mizes g(x, y).

Using Proposition 3.48 with the pairwise cover given in Equation (3.42) immediately

establishes that every pseudo-Boolean function in n variables can be quadratized with
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at most 20.92n auxiliary variables. It turns out that we can improve on that by choosing

a different pairwise cover for F = 2[n].

Theorem 3.49. Every pseudo-Boolean function in n variables has a quadratization

involving at most

2dn/2e + 2bn/2c − 2 = O(2n/2)

auxiliary variables.

Proof. LetHoe contain all nonempty subsets of [n] consisting either only of odd integers,

or only of even integers. Then, Hoe is a pairwise cover of F = 2[n] with size 2dn/2e +

2bn/2c − 2. Hence, Proposition 3.48 implies that every pseudo-Boolean function on

{0, 1}n has a quadratization using at most |Hoe| auxiliary variables.

In particular, it is also not hard to see that Hoe is a 2-base of 2[n]. The role of odd

and even integers in its construction could be replaced by any partition of [n] into two

sets V1, V2 of nearly-equal sizes
⌈
n
2

⌉
and bn2 c. According to Füredi and Katona [71],

Erdös has conjectured that this generic construction yields the smallest possible 2-bases

of 2[n]. This conjecture hints that it may be hard to further improve the upper bound

given in Theorem 3.49. In fact, we shall revisit this question in Section 3.7 and show

that such upper bound is essentially tight — i.e., tight up to constants.

We now establish an upper bound for the case where F contains all subsets of size

at most d and f is a degree-d pseudo-Boolean function, that is, f can be expressed by

a degree-d multilinear polynomial in n variables.

Theorem 3.50. For every fixed d ≤ n, every degree-d pseudo-Boolean function in n

variables has a quadratization involving at most O(nd/2) auxiliary variables.

Proof. Fix d and let F = [n]d := {S ⊆ [n] : |S| ≤ d}. In order to establish the

theorem, we just need to produce a small pairwise cover of [n]d. For simplicity of the

presentation, assume that d is a power of 2, and let Hd contain all subsets of [n] of sizes

d/2, d/4, d/8, . . . , 1. Then, it is easy to see that Hd is a pairwise cover of [n]d with size

O(nd/2).
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3.6.4 Attractive Partitions and y-linear Quadratizations

In this section, we show that every pseudo-Boolean function in n variables admits a

y-linear quadratization involving at most O
(

2n

n · log n
)

auxiliary variables. Similarly

to what happened in the previous section, we start by introducing some intuition and

needed definitions.

Let us first recall that the auxiliary variables in a y-linear quadratization ap-

pear in terms like `i(x)yi, where `i(x) is a linear function of the original variables

x = {x1, x2, . . . , xn}. When minimizing over yi, this term contributes the nonpositive

quantity min{0, `i(x)}.

Given a pseudo-Boolean function f : {0, 1}n → R, our plan is to start with a

symmetric majorant of f and to use a series of y-linear adjustments to push its values

down to those of f , layer by layer (where a layer is a subset of vectors of {0, 1}n

that share the same Hamming weight). More specifically, we will construct a sequence

of y-linear quadratic pseudo-Boolean functions g0, g1, . . . , gn : {0, 1}n+m → R (m to

be estimated) such that gk+1 results from an “adjustment” of gk. Each function gk,

when minimized on the auxiliary variables y ∈ {0, 1}m, produces a function σk(x) =

miny∈{0,1}m gk(x, y) that bounds f in the following way:

σk(x) = f(x) for all x ∈ {0, 1}n such that |x| ≤ k, and

σk(x) ≥ f(x) whenever |x| > k,

where |x| :=
∑n

i=1 xi is the Hamming weight of x. In particular, gn is a y-linear

quadratization of f . In order to understand our construction, it helps noticing that

when we introduce the new variables to adjust to the values of f in layer k, we may

decrease the values of our new approximation for vectors with |x| > k by much more

than intended. To make sure that the sequence remains above f , we will start with

a symmetric majorant of f , which is increasingly larger than f on higher layers, to

preventively compensate for later “accidental” decreases.

Let us denote by Qk := {a ∈ {0, 1}n : |a| = k}, for k = 0, 1, . . . , n, the set of(
n
k

)
elements that constitutes the k-th layer of {0, 1}n, that is, those elements having

Hamming weight k. For a ∈ Qk and k = 0, 1, . . . , n− 1, let us call the set N(a) := {b ∈
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Qk+1 : |b− a| = 1} as the upper neighborhood of a, with each element in N(a) being an

upper neighbor of a.

Definition 3.51. Let An := {A0, A1, . . . , An−1} be a family of sets such that ∅ 6= Ak ⊆

Qk for all k, and let A =
{
0
}
∪
{

∆(a) : a ∈
⋃n−1
k=0 Ak

}
be a family of sets such that

∅ 6= ∆(a) ⊆ N(a) for all a. We say that A is an attractive partition of {0, 1}n induced

by An if ⋃
a∈Ak

∆(a) = Qk+1 and ∆(a) ∩∆(a′) = ∅,

for all k = 0, 1, . . . , n − 1 and for all a, a′ ∈ Ak with a 6= a′. We say that An is an

inductor of the partition. Its size is defined as |An| :=
∑n−1

k=0 |Ak|.

Even though An does not uniquely defines A , we frequently find it convenient to

identify the partition with its inductor when this does not create confusion. Also, notice

that A0 = {0} by definition, i.e., A0 is the set whose only element is the all-zero vector.

For each element a ∈
⋃n−1
k=0 Ak of an inductor, let us define the set

δ(a) :=
{
i ∈ [n] : ai = 0 and ai + ei ∈ ∆(a)

}
.

Let also ã denote the binary vector

ãi :=


ai if i 6∈ δ(a),

1 otherwise,

and define the subcube of {0, 1}n induced by a and ∆(a) as

[a, ã] := {b ∈ {0, 1}n : a ≤ b ≤ ã}.

We will now show how to use an attractive partition An to construct a y-linear

quadratization of a pseudo-Boolean function f : {0, 1}n → R. Our first ingredients

in the construction of a y-linear quadratization for f are symmetric pseudo-Boolean

functions sk : {0, 1}n → R, for k = 0, 1, . . . , n+ 1, in the same variables as f :

sk(x) :=


0 if |x| < k

Dk if |x| ≥ k,
(3.50)
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where Dk ≥ 0 are constants to be specified later.

As shown in Section 3.5.3, the k-out-of-n function sk has a y-linear quadratization,

say ŝk(x, y), requiring only
⌈
n
2

⌉
auxiliary variables. Let us denote by ykj , j = 1, 2, . . . , n2

the auxiliary variables appearing in ŝk, k = 0, 1, . . . , n. We emphasize that for k 6= `

the functions ŝk and ŝ` depend on disjoint sets of auxiliary variables, and hence

min
y

(ŝk(x, y) + ŝ`(x, y)) = sk(x) + s`(x) (3.51)

for all x ∈ {0, 1}n.

We next define the following sequence of quadratic pseudo-Boolean functions: for

k = 0, 1, . . . , n− 1,

g0(x, y) := ŝ0(x, y) + ŝ1(x, y), (3.52)

gk+1(x, y) := ŝk+2(x, y) + gk(x, y) +
∑
a∈Ak

yaha(x), (3.53)

where ya ∈ {0, 1} is an auxiliary variable for each a ∈ Ak, and

ha(x) := αa

( ∑
i:ai=1

xi +
∑
i:ai=0,
i 6∈δ(a)

xi

)
−
∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi, (3.54)

with αa = 1 +
∑

i∈δ(a) |σk(a+ ei)− f(a+ ei)|,

σk(x) := min
y∈{0,1}m

gk(x, y) for all k = 0, 1, . . . , n, (3.55)

and where ei denotes the unit vector with i-th entry equal to 1 and all other entries

equal to 0.

At this point, we are ready to specify the constants Dk involved in definition (3.50)

of the functions sk(x). We set

D0 := f(0), D1 := max
x∈{0,1}n

f(x)− f(0), (3.56)

and recursively, for k = 0, 1, . . . , n− 1,

Dk+2 := (n− k) |Ak| max
x∈Qk+1

(σk(x)− f(x)). (3.57)

Note that σk only depends on D0, D1, . . . , Dk+1 (through g0, g1, . . . , gk), and hence Dk+2

is well-defined.

We note some simple consequences of the previous definitions.
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Fact 3.52. For each a ∈
⋃n−1
k=0 Ak,

(i) ha(x) = −
∑

i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi when x ∈ [a, ã];

(ii) ha(a) = 0;

(iii) ha(x) > 0 for x 6∈ [a, ã];

(iv) minya yaha(x) = 0 for all x 6∈ [a, ã] and for x = a.

Proof. If x ∈ [a, ã], then by definition of δ, we have that xi = ai for all i 6∈ δ(a). Hence

the summation ∑
i:ai=1

xi +
∑
i:ai=0,
i 6∈δ(a)

xi (3.58)

vanishes in the definition of ha(x), and (i) follows. If x = a, then all terms of of ha(x)

vanish since ai = 0 when i ∈ δ(a), thus implying (ii). If x 6∈ [a, ã], then Equation (3.58)

is positive, and thus (iii) follows by definition of αa. Finally, (iv) is a direct consequence

of (ii) and (iii).

Fact 3.53. For each k = 0, 1, . . . , n, the function gk only depends on the original vari-

ables x1, . . . , xn, on the (k+2)n2 auxiliary variables y`j, ` = 0, 1, . . . , k+1, j = 1, 2, . . . , n2

occurring in ŝ0,ŝ1,. . . , ŝk+1, and on the auxiliary variables ya for a ∈
⋃k−1
j=0 Aj.

Proof. Immediately follows from Equations (3.52)–(3.55), by induction.

In view of Fact 3.53, the three main terms in (3.53) depend on disjoint sets of

auxiliary variables. Thus,

σk+1(x) = min
y
gk+1(x, y)

=

(
min
y
ŝk+2(x, y)

)
+

(
min
y
gk(x, y)

)
+

(
min
y

∑
a∈Ak

yaha(x)

)

= sk+2(x) + σk(x) +

min
y

∑
a∈Ak

yaha(x)

 . (3.59)

We will repeatedly rely on equality (3.59) in the sequel.

We are now ready to establish the main properties of the above construction.
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Proposition 3.54. Let A be an attractive partition induced by An. Then, for all

x ∈ {0, 1}n and all k = 0, 1, . . . , n, we have that

f(x) = σk(x) if |x| ≤ k, (3.60)

f(x) ≤ σk(x) if |x| > k. (3.61)

In particular, f(x) = σn(x), and thus gn(x, y) is a y-linear quadratization of f(x)

involving m = O(n2) + |An| auxiliary variables.

Proof. Let x ∈ {0, 1}n be arbitrary. The proof is by induction on k. In case k = 0,

(3.50) and (3.56) easily imply that, for all x ∈ {0, 1}n,
s0(x) = f(0), and

s0(x) + s1(x) ≥ f(x).

(3.62)

In view of (3.51), (3.52) and (3.55), it follows that

σ0(x) = f(0) if |x| = 0,

σ0(x) ≥ f(x) if |x| > 0.

Now suppose the statement is valid for k < n and let us show that it is also valid

for k + 1. We divide the analysis into three cases:

Case 1: |x| ≤ k.

Either x 6∈ [a, ã] for all a ∈ Ak, or x = a′ ∈ Ak. In both cases we have

miny
∑

a∈Ak yaha(x) = 0 by Fact 3.52. Furthermore, sk+2(x) = 0 by definition,

since |x| < k + 2. Thus, by (3.59) we get

σk+1(x) = σk(x) = f(x),

where the last equality follows by the induction hypothesis.

Case 2: |x| = k + 1.

Since An is an attractive partition, there are unique a′ ∈ Ak and i ∈ δ(a′) such

that x = a′ + ei. Note that for all a 6= a′, a ∈ Ak we have x 6∈ [a, ã], and hence

minya yaha(x) = 0 by Fact 3.52.
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Moreover, ya′ha′(x) = ya′(−σk(x) + f(x)) as xi′ = 0 for all i′ ∈ δ(a′) with i′ 6= i.

Therefore, since sk+2(x) = 0 by definition for vectors with |x| < k + 2, and since

σk(x) ≥ f(x) by our inductive hypothesis, we get

σk+1(x) = σk(x) + min
ya′∈{0,1}

ya′(−σk(x) + f(x)) = σk(x)− σk(x) + f(x) = f(x).

Case 3: |x| > k + 1.

If, for some a ∈ Ak, x 6∈ [a, ã], then by Fact 3.52 again

min
y
yaha(x) = 0.

Thus, we get

min
y

∑
a∈Ak

yaha(x) = min
y

∑
a∈Ak
x∈[a,ã]

ya

− ∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi

 .

Note that the coefficient of each variable xi in the parenthesis is nonpositive by

our induction hypothesis, and hence

min
y

∑
a∈Ak

yaha(x) = −
∑
a∈Ak
x∈[a,ã]

∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi.

Furthermore sk+2(x) = Dk+2, since |x| ≥ k + 2. Consequently, (3.59) and the

induction hypothesis imply that

σk+1(x) = Dk+2 + σk(x)−
∑
a∈Ak
x∈[a,ã]

∑
i∈δ(a)

(σk(a+ ei)− f(a+ ei))xi

≥ Dk+2 + f(x)−
∑
a∈Ak
x∈[a,ã]

∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi.

Note that the double summation in this last expression contains at most (n −

k)|Ak| terms, each not larger than maxx∈Qk+1
(σk(x)− f(x)). Hence

σk+1(x) ≥ Dk+2 + f(x)− (n− k) |Ak| max
x∈Qk+1

(σk(x)− f(x)) ,

and by (3.57), σk+1(x) ≥ f(x) holds for all x ∈ {0, 1}n, concluding the induction.

The last assertion of the proposition follows now immediately from Fact 3.53.
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We now need to show that there exists a small enough inductor. We shall derive

this from classical extremal combinatorial results related to Turán’s problem.

Definition 3.55. A family T = T (n, r, k) of k-element subsets of [n] is a Turán

(n, r, k)-system if every r-element subset of [n] contains at least one element of T .

The minimum size of such a family is the Turán number T (n, r, k).

Turán systems are interesting in our context because they can be used to obtain

attractive partitions of {0, 1}n by identifying each subset of [n] with its characteristic

vector. More specifically, for each k, consider a Turán (n, k + 1, k)-system Tk and let

Ak be the corresponding subset of Qk. By Definition 3.55, for each vector x ∈ Qk+1

(i.e., subset of [n] of size k+ 1), there is a vector a(x) ∈ Ak such that a(x) ≤ x (if there

are several possible choices for a(x), just pick one arbitrarily). Then, for each a ∈ Ak,

we can define

∆(a) =
{
x ∈ Qk+1 : a = a(x)

}
and this yields an attractive partition induced by An = {A0, A1, . . . , An−1}.

Kim and Roush [100], Frankl and Rödl [68], and Sidorenko [139] (see also the survey

by Sidorenko [138]), presented a chain of improved bounds on Turán T (n, k + 1, k)-

numbers alongside with procedures to construct Turán T (n, k+1, k)-systems satisfying

those bounds. For our purposes, either one suffices.

Theorem 3.56 (Frankl and Rödl [68]). It holds that

T (n, k + 1, k) ≤ ln k +O(1)

k

(
n

k

)
for all k = 0, 1, . . . , n− 1.

We can then establish the main result of this subsection.

Theorem 3.57. Every pseudo-Boolean function in n variables has a y-linear quadra-

tization involving at most O
(

2n

n · log n
)

auxiliary variables.

Proof. Let f : {0, 1}n → R be a pseudo-Boolean function in n variables, and let An be
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an inductor of an attractive partition for f . Since |A0| = 1, we can estimate |An| as

|An| =
n−1∑
k=0

|Ak| ≤ 1 +
n−1∑
k=1

ln k +O(1)

k

(
n

k

)

≤ 1 + 2
lnn+O(1)

n+ 1

n−1∑
k=1

n+ 1

k + 1

(
n

k

)
≤ 1 +

lnn+O(1)

n+ 1
2n+2.

Now combining the above with Proposition 3.54, we have that the number of aux-

iliary variables of gn can be upper bounded as

m = O

(
2n

n
log n

)
.

Before closing this section, let us remark that the attractive partition constructed

above depends only on the dimension n, and not on the actual pseudo-Boolean func-

tion f . Hence, a deeper analysis of the proof of Theorem 3.57 actually reveals the

existence of a universal set of Boolean functions of cardinality O
(

2n

n · log n
)

such that

any pseudo-Boolean function in n variables has a y-linear quadratization using a subset

of this universal set as new variables, in the sense of Definition 3.46. This claim holds

notwithstanding the fact that all functions sk, ha, gk, depend to some extent on f : the

claim is only that the optimal value assumed by the y-variables is independent of f .

3.7 Lower Bounds on the Number of Auxiliary Variables

In the previous section, we showed some global, semi-oblivious procedures that can

obtain general quadratizations and y-linear quadratizations with at most O(2n/2) and

O
(

2n

n · log n
)

auxiliary variables, respectively, for a pseudo-Boolean function in n vari-

ables. The global qualification being due to non termwise character of the quadra-

tizations, and the semi-oblivious to the fact that any specific structure the functions

might present is ignored; only their values are taken into account to compute the right

coefficients in the quadratized forms. Comparing those bounds with the previous one

available of O(n 2n) (cf. Ishikawa’s [91, 92]), they are clearly good improvements.
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A natural question at this point then is whether we can further improve those

bounds, through the use of different, novel, or more involved combinatorial construc-

tions, or whether we can exhibit a barrier that prevents such advancements. Notice that

here we are still interested in global, semi-oblivious procedures: we already showed a

specific class of pseudo-Boolean functions, the symmetric ones, where availability of

differentiated structural information allowed us to do better.

Below, we provide an answer to that question that favors the second possibility.

We show lower bounds (via linear algebraic arguments) matching those upper bounds

of Theorems 3.49 and 3.50 up to constant factors, and that of Theorem 3.57 up to

a logarithmic factor. Moreover, our proofs reveal that this is the case for almost all

pseudo-Boolean functions, thus providing evidence for the strength of the aforemen-

tioned theorems and constructions of the previous section.

Afterwards, through a set of different techniques, we also provide some lower bounds

for symmetric pseudo-Boolean functions. Contrary to the global, semi-oblivious setting,

there are gaps (quadratic and to within a logarithmic factor) between the upper bounds

of Section 3.5.3 and the lower bounds presented here.

We start with the general case.

Theorem 3.58. There are pseudo-Boolean functions in n variables for which every

quadratization must involve at least Ω(2n/2) auxiliary variables.

Proof. Let f(x) = f(x1, x2, . . . , xn) be a pseudo-Boolean function in n variables and

suppose that f can be quadratized using m auxiliary variables: y1, y2, . . . , ym. Hence,

there is a quadratic pseudo-Boolean function g(x, y) : {0, 1}n+m → R of the form

g(x, y) = a+
n∑

i,j=1

bijxixj +
n∑
i=1

m∑
j=1

cijxiyj +

m∑
i,j=1

dijyiyj

such that

f(x) = min
{
g(x, y) : y ∈ {0, 1}m

}
for all x ∈ {0, 1}n.

Recall from Equation (3.41) that we can write f(x) = g(x, y∗(x)), where

y∗(x) = argmin
{
g(x, y) : y ∈ {0, 1}m

}
, (3.63)
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thus viewing each y∗i as a Boolean function of x, say, y∗i (x) = hi(x). Then,

f(x) = a+

n∑
i,j=1

bijxixj +

n∑
i=1

m∑
j=1

cijxihj(x) +

m∑
i,j=1

cijhi(x)hj(x).

This shows that f is a linear combination of the following set of pseudo-Boolean func-

tions defined on {0, 1}n, where h denotes (h1, . . . , hm):

Lh = {1, xixj , xihr, hrhs : 1 ≤ i, j ≤ n; 1 ≤ r, s ≤ m}. (3.64)

Note that

|Lh| = `(n,m) = 1 + n+

(
n

2

)
+mn+m+

(
m

2

)
.

The set Fn of pseudo-Boolean functions in n variables forms a vector space of

dimension 2n and is isomorphic to R2n . Indeed, any function in Fn can be regarded

as a vector in R2n , and any such vector corresponds to a pseudo-Boolean function: the

components of the vector give the values of the pseudo-Boolean function at each of the

2n points of the domain, in some fixed order.

Let Vm be the set of pseudo-Boolean functions which can be quadratized using at

most m auxiliary variables, and regard Vm as a subset of R2n . The discussion above

shows that for any f ∈ Vm, there exists some choice of Boolean functions h1, h2, . . . , hm,

such that f is contained in the subspace span(Lh) of R2n spanned by the functions in Lh.

It follows that Vm is contained in the union
⋃
h span(Lh), where the union is over all

possible choices of m Boolean functions (h1, h2, . . . , hm) of n variables. But there is

only a finite number, 22n , of possibilities for each of the Boolean functions hi. So Vm

is contained in a finite union of subspaces, each of dimension at most `(n,m). If all

pseudo-Boolean functions can be quadratized using m auxiliary variables, then Vm —

and hence this union — must be the whole of the space Fn
∼= R2n . That cannot be the

case if `(n,m) < 2n. In other words, if m auxiliary variables suffice to quadratize any

pseudo-Boolean function, then `(n,m) ≥ 2n, which implies that

2n − 2− n ≤ m2 + 2nm+m+ n2 ≤ m2 + 3nm+
9

4
n2 =

(
m+

3

2
n

)2

,

which in turn gives that

m ≥ 2n/2
√

2− n+ 1

2n
− 3

2
n.

Therefore, m = Ω(2n/2) and this concludes the proof.
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Similarly to what was done in Section 3.6.3, we can specialize the above proof for

the class of pseudo-Boolean functions of bounded degree d, i.e., functions expressed by

polynomials of degree d.

Theorem 3.59. For every fixed d, there are pseudo-Boolean functions in n variables

and of degree d for which every quadratization must involve at least Ω(nd/2) auxiliary

variables.

Proof. Let Fn,d denotes the set of pseudo-Boolean functions in n variables and of degree

d. We have that Fn,d is a linear subspace of the space Fn,n = Fn, and its dimension

is dim(Fn,d) = φ(n, d) :=
∑d

k=0

(
n
k

)
.

If all functions in Fn,d can be quadratized using m auxiliary variables, then each of

the subspaces span(Lh) introduced in the proof of Theorem 3.58 must be of dimension

at least dim(Fn,d), that is, it must be the case that `(n,m) ≥ φ(n, d), which implies

that

φ(n, d)− 2− n ≤ m2 + 2nm+m+ n2 ≤ m2 + 3nm+
9

4
n2 =

(
m+

3

2
n

)2

,

which in turn gives that

m ≥
√

2φ(n, d)− 2− n − 3

2
n.

As φ(n, d) ≥
(
n
d

)
= Θ(nd), it follows that m = Ω(nd/2).

Notice that Theorems 3.58 and 3.59 match the upper bounds given by Theorems 3.49

and 3.50, respectively, up to constant factors.

We now restrict the class of quadratizations that we consider and show that y-linear

quadratizations must in a similar way, necessarily contain many auxiliary variables.

Theorem 3.60. There are pseudo-Boolean functions in n variables for which every

y-linear quadratization must involve at least Ω(2n/n) auxiliary variables.

Proof. Let Wm be the set of pseudo-Boolean functions for which there is a quadratiza-

tion involving at most m auxiliary variables, and not including any terms of the form

yiyj with i 6= j.
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Then we can repeat the argument given in the proof of Theorem 3.58, omitting the

products hihj from Lh when i 6= j, to obtain a set L′h, of size

|L′h| = `′(n,m) = 1 + n+

(
n

2

)
+mn+m.

We conclude as before that for all pseudo-Boolean functions to be quadratizable in this

way, we would need Wm = R2n and so `′(n,m) ≥ 2n, implying that

m ≥ 2n − n2 − n− 1

n+ 1
,

from which it follows that m = Ω(2n/n).

Theorem 3.61. For every fixed d, there are pseudo-Boolean functions in n variables

and of degree d for which every y-linear quadratization must involve at least Ω(nd−1)

auxiliary variables.

Proof. Combining the proofs of Theorems 3.59 and 3.60, it follows that in order for

all degree-d pseudo-Boolean functions in n variables to admit a y-linear quadratization

involving at most m auxiliary variables, we must have that `′(n,m) ≥ φ(n, d), which

implies that

m ≥ φ(n, d)

n+ 1
− n2 + n+ 2

2n+ 2
.

As φ(n, d) ≥
(
n
d

)
= Θ(nd), it follows that m = Ω(nd−1).

Notice that Theorem 3.60 matches the upper bound given by Theorem 3.57 up to an

O(log n) factor, and we believe the key to close this gap lies in better constructions for

Turán systems. While we do not yet have a counterpart upper bound to Theorem 3.61,

we believe it not only to be possible, but to come from a non immediately obvious

adaptation of attractive partitions.

Let us formulate some comments about the theorems we presented above. We start

by pointing out the obvious fact all the proofs above hinges on the same dimension-

based argument. More specifically, they stand upon the fact that for any Euclidean

space Rk, the union of any finite collection of subspaces of dimension less than k cannot

be Rk; in fact, such union would be a set of Lebesgue measure zero. This in turn implies

that the set of pseudo-Boolean functions, regarded as a subset of R2n , which can be
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quadratized with fewer variables than the bounds established on the theorem’s state-

ments has Lebesgue measure zero. In other words, the proofs reveal that not only there

exists certain pseudo-Boolean functions satisfying those claims, but that for almost

all pseudo-Boolean functions within those hypothesis must use the stated number of

auxiliary variables. For instance, for almost all pseudo-Boolean functions, any quadra-

tization must use at least Ω(2n/2) auxiliary variables and any y-linear quadratization

must use at least Ω(2n/n) auxiliary variables.

It is also worth noticing that another crucial ingredient of these lower bound proofs is

the interpretation of auxiliary variables as Boolean functions and that pseudo-Boolean

functions can be written in terms of them, without explicitly referring to quadratiza-

tions. This fact suggests that universal sets (cf. Definition 3.46) may be indeed ubiqui-

tous in studying and representing pseudo-Boolean functions as low degree multilinear

polynomials in higher dimensional spaces.

We now turn out attention to symmetric pseudo-Boolean functions.

3.7.1 Lower Bounds for Symmetric Pseudo-Boolean Functions

As we already mentioned before (and it is also easy to see), there are only 2n+1 differ-

ent symmetric Boolean functions in n variables. This implies that the dimension-based

argument used in the proof of Theorem 3.58 does not directly provide any useful in-

formation for symmetric pseudo-Boolean functions. In fact, symmetric pseudo-Boolean

functions in R2n form a subspace of dimension equal to n+ 1, giving that

`(n,m) = 1 + n+

(
n

2

)
+mn+m+

(
m

2

)
≥ n+ 1,

which readily implies m ≥ 0. A similar situation happens for y-linear quadratizations.

Fortunately, by using a simple, but very clever base transformation argument, we can

find a way around and exhibit some nontrivial lower bounds for symmetric pseudo-

Boolean functions.

The following result is inspired by (but is different and does not follow from) a trans-

formation given in Siu, Roychowdhury and Kailath [140], in the framework of the repre-

sentation of Boolean functions by threshold circuits. This result relates quadratizations
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of arbitrary (possibly non-symmetric) pseudo-Boolean functions to the quadratization

of symmetric functions on a larger, related, number of variables.

Lemma 3.62. Suppose that n,m are positive integers and suppose that every sym-

metric pseudo-Boolean function F (z) of N = 2n−1 variables (that is, every symmetric

function F : {0, 1}2n−1 → R) has an m-quadratization. Then every (arbitrary) pseudo-

Boolean function f(x) on {0, 1}n also has an m-quadratization.

Proof. Let f(x) be an arbitrary pseudo-Boolean function of n variables. We are going

to construct a sequence of four functions k, F , G, g, such that g is a quadratization of

f . For this purpose, let N = 2n − 1.

1. Let k : {0, 1, . . . , N} → R be defined as follows: k(w) := f(x) where x is the

binary representation of w, that is, w =
∑n

i=1 2i−1xi.

2. Let F be the symmetric pseudo-Boolean function of N variables defined by: for

all z ∈ {0, 1}N , F (z) := k(|z|), where |z| is the Hamming weight of z. (This

defines F completely, given that it is symmetric.)

3. Let G(z, y) be an arbitrary quadratization of F (z) using m auxiliary variables.

(The hypothesis of the theorem is that such quadratizations exist.)

4. Finally, let g(x, y) be the pseudo-Boolean function on {0, 1}n+m that is obtained

by identifying each of the variables z2j−1 , z2j−1+1, . . . , z2j−1 with xj in G(z, y), for

j = 1, 2, . . . , n; that is,

g(x1, x2, x3, . . . , xn, y) := G(x1, x2, x2, x3, x3, x3, x3, . . . , xn, . . . , xn, y).

(The unification makes sense since 2j−1xj = z2j−1 + z2j−1+1 + · · ·+ z2j−1, for all

j = 1, 2, . . . , n.)

We claim that g(x, y) is a quadratization of f . Indeed, g is clearly quadratic, because
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G is. Moreover, for every point x ∈ {0, 1}n,

min
{
g(x, y) : y ∈ {0, 1}m

}
= min

{
G(x1, x2, x2, x3, x3, x3, x3, . . . , xn, y) : y ∈ {0, 1}m

}
(3.65)

= F (x1, x2, x2, x3, x3, x3, x3, . . . , xn) (3.66)

= k

(
n∑
i=1

2i−1xi

)
(3.67)

= f(x), (3.68)

where equality (3.65) is by definition of g, (3.66) is by definition of G, (3.67) is by

definition of F , and (3.68) is by definition of k.

We now can use the lower bounds for general pseudo-Boolean functions provided at

the beginning of the section in order to obtain lower bound results for symmetric ones.

Theorem 3.63. There exist symmetric pseudo-Boolean functions of n variables for

which any quadratization must involve at least Ω(
√
n) auxiliary variables.

Proof. Lemma 3.62 shows that, if every symmetric function F (z) on {0, 1}N , with

N = 2n − 1, has an m-quadratization, then every (arbitrary) function f(x) on {0, 1}n

also has an m-quadratization. On the other hand, from Theorem 3.58, we know that

some pseudo-Boolean functions on n variables require Ω(2n/2) auxiliary variables. It fol-

lows that some symmetric pseudo-Boolean functions on N variables must need Ω(
√
N)

auxiliary variables in every quadratization.

Theorem 3.64. There exist symmetric pseudo-Boolean functions of n variables for

which any y-linear quadratization must involve at least Ω(n/ log n) auxiliary variables.

Proof. The proof is similar to the previous one: it suffices to observe that when G(z, y)

is y-linear, then so is g(x, y), and to rely on the generic lower bound Ω(2n/n) of Theo-

rem 3.60 for the number of auxiliary variables required in every y-linear quadratization

of certain pseudo-Boolean functions.
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Note that the lower bound in Theorem 3.64 for the number of auxiliary variables

in y-linear quadratizations comes within a factor O(log n) of the upper bound of n− 2

from Theorem 3.33.

A Lower Bound for the Parity Function

The results just obtained prove the existence of symmetric pseudo-Boolean functions

which require a significant number of auxiliary variables to quadratize. Specifically,

there exist functions needing Ω(
√
n) auxiliary variables in any quadratization, and

functions needing Ω(n/ log n) auxiliary variables in any y-linear quadratization. Those

results do not, however, explicitly exhibit particular such functions. We next give a

concrete example of a function which needs a significant number of auxiliary variables

in any y-linear quadratization.

Theorem 3.65. Every y-linear quadratization of the parity function on n variables

must involve at least Ω(
√
n) auxiliary variables.

Proof. Let g(x, y) be an arbitrary y-linear quadratization of the parity function. Then

it can be written as

g(x, y) = q(x) +
m∑
i=1

yi(`i(x)− bi) (3.69)

where q(x) is quadratic, and `1(x), . . . , `m(x) are linear functions of x only.

For each i ∈ [m] = {1, 2, . . . ,m}, consider the regions

R+
i = {x ∈ Rn : `i(x) ≥ bi},

and

R−i = {x ∈ Rn : `i(x) ≤ bi},

which are closed half-spaces defined by the linear functions `i. For each S ⊆ [m], let

RS denote the region

RS =

(⋂
i∈S

R−i

)
∩

(⋂
i 6∈S

R+
i

)
.

This is one of the ‘cells’ into which the m hyperplanes defining the linear functions `i

partition Rn.
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On every cell RS , the function f(x) = min{g(x, y) : y ∈ {0, 1}m} is quadratic.

Indeed, on RS , we have

min
{
g(x, y) : y ∈ {0, 1}m

}
= q(x) +

∑
i∈S

(`i(x)− bi).

We now use a result from Saks [131] and Impagliazzo, Paturi and Saks [90] (which

was used to obtain lower bounds on the size of threshold circuits representing the parity

function). Let us say that a set of hyperplanes slices all r-dimensional subcubes of the

Boolean hypercube {0, 1}n if for each subcube (or face) of {0, 1}n of dimension r, there

are two vertices of the subcube that lie on opposite sides of one of these hyperplanes.

Then (Proposition 3.82 of Saks [131]), if a set of m hyperplanes slices all r-dimensional

subcubes, we have m >
√
n/(r + 1)− 1. In particular, therefore, any set of hyperplanes

that slices every 3-dimensional subcube of {0, 1}n must contain more than
√
n/4− 1

planes.

Suppose the hyperplanes defined by the linear functions `i do not slice all 3-dimen-

sional subcubes. Then there would be some cell RS containing a subcube of dimension

3. The parity function restricted to that subcube would then be equal to the quadratic

expression q(x) +
∑

i∈S(`i(x)− bi).

However, it is well-known (see, for instance Saks [131], Minsky and Papert [118],

Wang and Williams[147]) that the parity function on a subcube of dimension r cannot

be represented as a pseudo-Boolean function of degree less than r (and it cannot even

be represented as the sign of a pseudo-Boolean function of degree less than r). So, we

would then have a quadratic representation of parity on a cube of dimension 3, which

is not possible.

It follows, therefore, that the set of hyperplanes in question must slice all 3-dimen-

sional subcubes and therefore has size m >
√
n/4− 1 = Ω(

√
n).

3.8 A Polyhedral Cone of Quadratizations

We have already seen in Section 3.7 that a pseudo-Boolean function f : {0, 1}n → R can

be represented by a vector in R2n whose entries are the values of f . There is another

interesting vector in R2n that can be associated to f : the vector whose entries are the
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coefficients of its unique multilinear polynomial representation. Let us call this vector

the spectrum of f . Clearly there is an one-to-one and onto correspondence between the

two linear spaces that can be defined, but we shall not dwell on that. Our goal is to

introduce the following object.

Definition 3.66. Let f : {0, 1}n → R be a pseudo-Boolean function in n variables

and let m be an upper bound on the number of auxiliary variables of (some of) the

quadratizations g : {0, 1}n+m → R of f . Then for δ(n,m) = 1 +n+m+
(
n+m

2

)
, the set

Pf (n,m) :=
{
g(x, y) ∈ Rδ(n,m) : g(x, y) is quadratic and

f(x) ≤ g(x, y) for all x ∈ {0, 1}n, y ∈ {0, 1}m
}
, (3.70)

where each vector is the spectrum of a quadratic pseudo-Boolean function that majorates

f , is called the polyhedral cone of quadratizations of f .

Notice that Pf (n,m) is defined by 2n+m linear constraints, and for any two elements

x, y ∈ Pf (n,m) and any λ, µ ∈ R≥0, the conical combination λx + µy also belongs to

Pf (n,m), as quadratic polynomials form an algebraic ring. Hence, Pf (n,m) is indeed

a polyhedral cone.

As an example, if f(x) = x1x2x3, the positive monomial in n = 3 variables, and

we are interested in quadratizations with m = 1 auxiliary variable, g(x, y) can be

generically written as

g(x, y) = c0 + c1x1 + c2x2 + c3x3 + c4y + c12x1x2 + c13x1x3 + c23x2x3

+ c14x1y + c24x2y + c34x3y,

and Pf (3, 1) is then given by the vectors (c0, c1, c2, c3, c4, c12, c13, c23, c14, c24, c34) ∈ R11
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which satisfy the system:

c0 ≥ 0

c0 +c1 ≥ 0

c0 +c2 ≥ 0

c0 +c3 ≥ 0

c0 +c4 ≥ 0

c0 +c1 +c2 +c12 ≥ 0

c0 +c1 +c3 +c13 ≥ 0

c0 +c1 +c4 +c14 ≥ 0

c0 +c2 +c3 +c23 ≥ 0

c0 +c2 +c4 +c24 ≥ 0

c0 +c3 +c4 +c34 ≥ 0

c0 +c1 +c2 +c4 +c12 +c14 +c24 ≥ 0

c0 +c1 +c3 +c4 +c13 +c14 +c34 ≥ 0

c0 +c2 +c3 +c4 +c23 +c24 +c34 ≥ 0

c0 +c1 +c2 +c3 +c12 +c13 +c23 ≥ 1

c0 +c1 +c2 +c3 +c4 +c12 +c13 +c23 +c14 +c24 +c34 ≥ 1



.

We generated polyhedral cones of quadratizations of positive and negative monomi-

als for some small values of n and m (through the development of a simple computer

code) and fed their descriptions, similar to the one presented above, to Avis’ lrs soft-

ware package, which generates the vertices and rays of a polyhedron (see Avis [14], or

visit http://cgm.cs.mcgill.ca/˜avis/C/lrs.html). We present the values obtained for some

pairs (n,m) in the table below.
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n m # vertices (pos) # rays (pos) # vertices (neg) # rays (neg)

2 1 1 16 1 16

2 2 1 56 1 56

3 1 12 109 12 148

3 2 292 2109 292 3808

4 1 328 4807 353 6024

4 2 100824 1677491 74107 1484561

5 1 95954 1448766 52902 1187510

Observe that the number of extreme rays is always larger (by at least one order

of magnitude) than the number of vertices. This suggests, in spite of the availability

of data for very low dimensions only1, that polyhedral cones of quadratizations of

monomials are narrow.

An interesting fact, perhaps, is that not every vertex is a quadratization. In fact,

we obtained the following values, where up to isomorphism in this context means up

to permutation of the x and y variables (inside each group and altogether) and up to

complementation of each variable.

f(x) # quadratizations (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2) (5, 1)

positive total: 1 1 8 288 2 5048 0

monomial up to isomorphism: 1 1 2 28 1 138 0

negative total: 1 1 8 288 10 3504 12

monomial up to isomorphism: 1 1 2 28 2 91 2

We shall list the quadratizations up to isomorphism indicated in the above table

in Section 3.11. For now, we show the two quaratizations with 1 auxiliary variable

1We tried to go beyond 6 variables in total, but two full weeks of computation on a MacBook Pro
equipped with a 2.7 GHz Intel Core i7 processor, 8 GB of DDR3 RAM memory, and running MacOS X
Lion were not sufficient for lrs to output a single vertex. Simple and crude estimations indicated that
at least 3 full moths of dedicated computational time would be necessary for 7 variables.
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obtained to −x1x2x3, the negative monomial in 3 variables:

g−1 (x, y) = 2y1 − x1y1 − x2y1 − x3y1, (3.71)

and

g−2 (x, y) = x2 + x3 − x1x2 − x1x3 + x1y1 − x2y1 − x3y1. (3.72)

Equation (3.71) is the standard quadratization of Freedman and Drineas (3.17).

Equation (3.72) is a non-submodular quadratization of a submodular function, and has

the form of what we have been calling (and shall justify in the next section) by extended

standard quadratization of negative monomials.

For x1x2x3, the positive monomial in 3 variables, the two 1-quadratizations are

g+
1 (x, y) = y1 + x2x3 + x1y1 − x2y1 − x3y1, (3.73)

and

g+
2 (x, y) = y1 + x1x2 + x1x3 + x2x3 − x1y1 − x2y1 − x3y1. (3.74)

The first is obtained from Proposition 3.14, and the second through Ishikawa’s HOCR

method depicted in Equation (3.22).

The fact that permutations of (original and auxiliary) variables, complementation

of auxiliary variables, and that quadratizations added up with extremal rays give rise

to different, but in some sense equivalent quadratizations motivates the following defi-

nitions.

Definition 3.67. Two quadratizations g(x, y) and h(x, y) are called switch-equivalent

if g(x, u, v) = h(x, u, v) for an appropriate partition of y into two subsets of variables

u, v.

Definition 3.68. A quadratization g(x, y) of f(x) is lean if there is no quadratization

of f which involves fewer auxiliary variables than g.

Definition 3.69. A quadratization g(x, y) of f(x) is prime if there is no other quadra-

tization of f , say h(x, y), such that h(x, y) ≤ g(x, y) for all (x, y) ∈ {0, 1}n+m, and

such that h(x∗, y∗) < g(x∗, y∗) for at least one point (x∗, y∗).
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The idea behind the above definitions would be to restrict our attention to “minimal”

or “elementary” quadratizations while studying their properties.

The large number of vertices and extremal rays found for monomials in few variables

and quadratizations with few auxiliary variables, suggests that a complete characteriza-

tion of vertices, extremal rays, faces, and facets of the polyhedral cone of quadratizations

may be difficult to accomplish — even for small classes of pseudo-Boolean functions.

Nevertheless, we are able to prove the following.

Theorem 3.70. Every m-quadratization of a pseudo-Boolean function f : {0, 1}n → R

is on the boundary of Pf (n,m).

Proof. Let g∗ : {0, 1}n+m → R be an m-quadratization of f and let

h(y) =
(
h1(y), h2(y), . . . , hm(y)

)
,

be the Boolean function associated to g∗ as in Equation (3.41), so that g∗(x, y) =

g∗(x, h(y)). That is, each hi : {0, 1}m → {0, 1} is associated to the auxiliary variable yi

of g∗.

Consider the linear programming problem

min

 ∑
x∈{0,1}n

g(x, h(y)) : g ∈Pf (n,m)

 , (3.75)

whose minimum value is lower bounded by
∑

x∈{0,1}n f(x). Since g∗ ∈ Pf (n,m) and

since

f(x) = min
y∈{0,1}m

g∗(x, h(y)) for all x ∈ {0, 1}n,

we have that g∗ is a minimum point for Problem (3.75) of value
∑

x∈{0,1}n f(x).

It is known that if Problem 3.75 admits a minimum, then there is a minimum

point on its boundary (cf. Korte and Vygen [104], Schrijver [132]). Suppose that g∗

belongs to the interior of Pf (n,m). Then, less than δ(n,m) of the constraints defining

Pf (n,m) are satisfied with equality by g∗. That implies there is an x′ ∈ {0, 1}n and an

y′ ∈ {0, 1}m such that f(x′) < g∗(x′, y′) — as some of the coefficients of g∗ are slightly

larger than they would be if the aforementioned constraint were satisfied with equality.
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But this contradicts the facts that g∗ is a quadratization of f and that it is a minimum

of Problem (3.75). Hence, g∗ is on the boundary of Pf (n,m).

Recently, Crama and Rodŕıguez-Heck [52] communicated the following result.

Theorem 3.71 (Crama and Rodŕıguez-Heck [52]). Every prime m-quadratization of a

pseudo-Boolean function f : {0, 1}n → R is a vertex of Pf (n,m).

3.9 A Characterization of 1-Quadratizations of Negative Monomials

Based on the computational experiments we mentioned in the previous section, we were

able to have a better picture of how quadratizations of low-degree monomials look like.

Since there is a plethora of termwise quadratization techniques out there, it is important

to understand what are the best possible quadratizations of a single monomial. In this

section, we are now going to characterize all lean prime quadratizations of the negative

monomials.

Definition 3.72. The standard quadratization of the negative monomial

Mn = −
n∏
i=1

xi

is the quadratic function

sn(x, y) = (n− 1)y −
n∑
i=1

xiy. (3.76)

The extended standard quadratization of Mn is the function

s+
n (x, y) = (n− 2)xny −

n−1∑
i=1

xi(y − xn). (3.77)

Proposition 3.73. For all n ≥ 1, the functions sn = s(x, y) and s+
n = s+(x, y) are

quadratizations of Mn = −
∏n
i=1 xi.

Proof. The standard quadratization sn was already introduced in Section 3.2.2 (Equa-

tion (3.17), Freedman and Drineas [69]). For s+
n , the case n = 1 is trivial. For n ≥ 2,

fix x ∈ {0, 1}n and suppose first that xn = 0. Then, Mn(x) = 0 and

min
y
s+
n (x, y) = min

y
(1− y)

n−1∑
i=1

xi = 0
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is attained for y = 1. On the other hand, if xn = 1, then s+
n (x, y) = sn−1(x, y) for all

y ∈ {0, 1}, and the statement follows from the fact that sn−1(x, y) is a quadratization

of Mn−1.

It is not hard to see that sn and s+
n are lean quadratizations of Mn since they use a

single auxiliary variable. When n ≤ 2, Mn is quadratic and, clearly, it is its own unique

prime quadratization. For n > 2, we intend to prove that sn and s+
n are essentially the

only prime 1-quadratizations of Mn.

Theorem 3.74. For n ≥ 3, assume that g(x, y) is a prime 1-quadratization of Mn.

Then, up to an appropriate permutation of the x-variables and up to a possible switch

of the y-variable, either g(x, y) = sn(x, y) or g(x, y) = s+
n (x, y).

Proof. The proof involves a detailed analysis which turns out to be different according

to whether n = 3 or n ≥ 4. For the sake of brevity, we restrict ourselves here to

the generic case n ≥ 4 and we refer the reader to the technical report of crama and

Rodŕıguez-Heck [53] for the special case n = 3.

So, assume now that n ≥ 4 and that g(x, y) is a 1-quadratization of Mn. Since

Mn(x) = miny∈{0,1} g(x, y) for all binary vectors x, we can assume g(0, 0) = 0 after

substituting y for y if necessary. Thus, without any loss of generality we can write

g(x, y) = ay +
n∑
i=1

bixiy +
n∑
i=1

cixi +
∑

1≤i<j≤n
pijxixj . (3.78)

Let us introduce some useful notations. For any subset S ⊆ N = [n], we write

b(S) =
∑
i∈S

bi, c(S) =
∑
i∈S

ci, and p(S) =
∑

i,j∈S, i<j
pij .

Furthermore, since binary vectors can be viewed as characteristic vectors of subsets, we

simply write

g(S, y) = ay + b(S)y + c(S) + p(S)

instead of Equation (3.78), when x is the characteristic vector of S.
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Then, the fact that g is a quadratization of Mn can be expressed as

0 = min
y∈{0,1}

(a+ b(S))y + c(S) + p(S), for all S ⊂ N, (3.79)

−1 = min
y∈{0,1}

(a+ b(N))y + c(N) + p(N). (3.80)

Let us now note that by Equation (3.79), we have g(0, 1) ≥ 0, and hence

a ≥ 0. (3.81)

Furthermore, we must have g({i}, 0) ≥ 0 for all i ∈ N since n > 1, implying

ci ≥ 0 for all i ∈ N. (3.82)

Let us partition the set of indices as N = N0 ∪N+, where

N0 = {u ∈ N | cu = 0}, (3.83)

N+ = {i ∈ N | ci > 0}. (3.84)

Since g({i}, 0) = ci, relation (3.79) implies

g({i}, 1) = a+ bi + ci = 0 for all i ∈ N+, and (3.85)

g({u}, 1) = a+ bu ≥ 0 for all u ∈ N0. (3.86)

Let us next write Equation (3.79) for subsets of size two. Consider first a pair

u, v ∈ N0, u 6= v. Since cu = cv = 0, we get g({u, v}, y) = (a+ bu+ bv)y+puv, implying

min {puv, a+ bu + bv + puv} = 0. (3.87)

Let us consider next i, j ∈ N+, i 6= j. Then, by Equation (3.85) and by the

definitions we get g({i, j}, 1) = pij−a ≥ 0. This, together with Equation (3.81) implies

that pij ≥ a ≥ 0. Thus, g({i, j}, 0) = ci + cj + pij > 0 implying that g({i, j}, 1) = 0,

that is,

pij = a ≥ 0 for all i, j ∈ N+. (3.88)

This allows us to establish a first property of N0.

Claim 1. N0 6= ∅.
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Proof. If N0 = ∅, then we have g(N, y) = (a + b(N+))y + c(N+) +
(|N+|

2

)
a by Equa-

tion (3.88). Since |N+|a + b(N+) + c(N+) = 0 by Equation (3.85), we get g(N, 1) =(|N+|−1
2

)
a ≥ 0 by Equation (3.81), and g(N, 0) = c(N+) +

(|N+|
2

)
a ≥ 0 by Equa-

tions (3.81) and (3.82). This contradicts Equation (3.80) and proves the claim.

In contrast with Claim 1, the set N+ may be empty or not.

Claim 2. If N+ = ∅ and N = N0, then puv = 0 for all u, v ∈ N . Furthermore,

a+ b(S) ≥ 0 for all subsets S 6= N, and

a+ b(N) = −1.

Proof. Assume that u, v ∈ N are such that puv > 0 (we know by Equation (3.87) that

puv ≥ 0). Then for any subset S ⊆ N such that u, v ∈ S, we have g(S, 0) = p(S) > 0

and hence it must be the case that g(S, 1) = 0 if S 6= N and g(N, 1) = −1.

Introducing the set function d(S) = a+ b(S) + p(S), we can write the above impli-

cations as

d(S) = 0 if u, v ∈ S 6= N, and,

d(N) = −1.

Let us consider now two arbitrary elements w, t ∈ N different from u and v. Let

X = N \ {w}, Y = N \ {t} and Z = X ∩ Y = N \ {w, t}.

Then, by the above equalities, we have −1 = d(N) − d(Y ) = bt +
∑

k 6=t ptk. Simi-

larly, we have 0 = d(X) − d(Z) = bt +
∑

k 6=t,w ptk. Taking the difference of these two

expressions we get −1 = ptw contradicting Equation (3.87).

Thus, we have puv = 0 for all u, v ∈ N . Finally, the claimed inequalities and equality

follow from Equations (3.79)–(3.80).

The previous relations allow us to establish a first case of Theorem 3.74.

Claim 3. The statement of Theorem 3.74 holds when N+ = ∅ and N = N0.
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Proof. If N = N0, then c(S) = 0 for all S ⊆ N by definition and, by Claim 2, p(S) = 0

for all S ⊆ N , and a = −1− b(N). Therefore, we can write

g(x, y) = (−1− b(N))y +
∑
u∈N

buxuy.

Since sn(x, y) = (n− 1)y −
∑

u∈N xuy, we obtain

g(x, y)− sn(x, y) = (−n− b(N))y +
∑
u∈N

(bu + 1)xuy =
∑
u∈N

(−1− bu)yxu. (3.89)

The relations a+ b(N \ {u}) ≥ 0 and a+ b(N) = −1 imply that bu ≤ −1 for all u ∈ N .

Hence, the right-hand side of Equation (3.89) is always nonnegative, and if g is prime,

then it must be the case that g = sn.

From now on, let us assume that |N+| ≥ 1. Consider u ∈ N0 and i ∈ N+. We get

g({u, i}, 0) = ci + pui, and in light of Equation (3.85), g({u, i}, 1) = bu + pui. Thus, we

can write N0 ×N+ = EB ∪ EC , where

EB = {(u, i) : u ∈ N0, i ∈ N+, pui = −bu}, and (3.90)

EC = {(u, i) : u ∈ N0, i ∈ N+, pui = −ci}. (3.91)

We show next some properties of EB, EC , which will be useful to complete the proof

of the main theorem.

We use several times the following identity: when u ∈ N0 and i, j ∈ N+, since

pij = a by Equation (3.88), we have

g({u, i, j}, y) = (a+ bu + bi + bj)y + ci + cj + pui + puj + a. (3.92)

Claim 4. For all u ∈ N0, we have either {u} ×N+ ⊆ EB, or {u} ×N+ ⊆ EC .

Proof. Assume that this is not the case, so that there exist u ∈ N0 and i, j ∈ N+ such

that (u, i) ∈ EB and (u, j) ∈ EC . Then, since |N | > 3, we have 0 ≤ g({u, i, j}, 1). By

Equation (3.85) we have a+ bi + ci = a+ bj + cj = 0, by Equation (3.91) cj + puj = 0,

and by Equation (3.90) bu + pui = 0. Thus, Equation (3.92) yields 0 ≤ g({u, i, j}, 1) =

a+ bj = −cj . But this contradicts j ∈ N+.
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Consider the sets

B = {u ∈ N0 : {u} ×N+ ⊆ EB}, and (3.93)

C = {u ∈ N0 : {u} ×N+ ⊆ EC}. (3.94)

The proof of Claim 4 actually establishes the following statement.

Claim 5. B ∪ C = N0 and, if |N+| ≥ 2, then B ∩ C = ∅.

Thus, (B,C) forms a partition of N0 when |N+| ≥ 2. But this is not necessarily

true when |N+| = 1. Let us now establish some auxiliary properties of the sets B and

C.

Claim 6. If |N+| ≥ 1, then |C| ≤ 1, and either B ∩ C = ∅ or B = N0.

Proof. Assume that i ∈ N+ and u, v ∈ C, u 6= v. Then bu ≥ ci = −pui and bv ≥ ci =

−pvi. Hence, a+ bu + bv + puv ≥ a+ 2ci + puv > puv and by Equation (3.87), we must

have puv = 0. Then, from Equation (3.79), 0 ≤ g({u, v, i}, 0) = ci+puv+pui+pvi = −ci,

which contradicts the definition of N+. This proves that |C| ≤ 1.

If B ∩ C 6= ∅, then C ⊆ B, and hence B = N0.

Claim 7. If |N+| ≥ 1, u ∈ B, v ∈ C \B, and u 6= v, then puv = bu.

Proof. Let i ∈ N+. According to the definitions, g({u, v, i}, y) = (a+ bu + bv + bi)y −

bu + puv. By definition of C, bv − ci = bv + pvi and since v 6∈ B, bv + pvi > 0.

By Equation (3.85) we have a + bi = −ci, and hence we get g({u, v, i}, 1) = bv −

ci + puv. Thus, g({u, v, i}, 1) > 0, since puv ≥ 0 by Equation (3.87). Consequently,

g({u, v, i}, 0) = −bu + puv = 0 proving the claim.

Claim 8. If |N+| ≥ 2, then B = ∅ and C = N0.

Proof. Assume by contradiction that B 6= ∅. Let us consider an arbitrary u ∈ B and

i, j ∈ N+, i 6= j. Then, we have g({u, i, j}, 1) = −bu by Equations (3.92), (3.85),

(3.88) and the definition of B. Thus we have −bu ≥ 0 from which g({u, i, j}, 0) =

ci + cj − 2bu + a > 0 follows, implying that we must have g({u, i, j}, 1) = −bu = 0.
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Hence pui = 0 for all i ∈ N+, by definition of B. Also, for all v ∈ C, Claim 5 implies

that v 6∈ B, and by Claim 7, puv = bu = 0 .

Assume now that |B| = 1, B = {u}. Then, all terms of Equation (3.78) containing

xu vanish, since bu = cu = pui = puv = 0 for all i ∈ N+, v ∈ C. Thus, xu does not

appear in g, a contradiction with the fact that Mn depends on all its variables.

On the other hand, if |B| > 1 and v ∈ B, v 6= u, then g({u, v, i, j}, y) = (a + bi +

bj)y+ ci+ cj +a+puv. Here a and puv are nonnegative by Equations (3.81) and (3.87),

and ci and cj are both positive by the definition of N+, therefore g({u, v, i, j}, 0) > 0.

Thus, g({u, v, i, j}, 1) = puv ≤ 0 follows by Equations (3.79) and (3.80). Since puv ≥ 0

by Equation (3.87), puv = 0 follows. Consequently, bu = puv = 0 follows for all u ∈ N0

and v 6= u, implying again that xu does not play any role in g, which is a contradiction

and proves our claim.

Claim 9. If |N+| ≥ 2, then |C| = 1, |N+| = n − 1, and a = bi + ci = pij = 0 for all

i, j ∈ N+.

Proof. When |N+| ≥ 2, Claim 6 and Claim 8 together imply that B = ∅, C = N0, and

|C| ≤ 1. Since N0 6= ∅ by Claim 1, it follows that |C| = 1 and |N+| = n− 1.

We assumed |N | ≥ 4. So, let i, j, k ∈ N+ be three distinct indices. Then

g({i, j, k}, 0) = ci + cj + ck + 3a > 0

by Equation (3.88), by definition of N+ and by Equation (3.81). Thus, we must have

g({i, j, k}, 1) = 0 by Equation (3.79). By Equation (3.85), this implies a = 0, and the

claim follows by Equation (3.88).

Claim 10. If g(x, y) is a quadratization of Mn with |N+| ≥ 2, then h(x, y) = g(x, y)

is another quadratization of Mn with either |N+| = 1 and |B| = n− 1, or N+ = ∅ and

N = N0.

Proof. This follows from the definitions and from Claim 9.

In view of Claim 3 and Claim 9, up to switching the y-variable, we are left with the

case |N+| = 1.
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Claim 11. If N+ = {i}, then puv = 0 for all u, v ∈ B.

Proof. Let us assume there exist u, v ∈ B such that puv > 0 (we know by Equa-

tion (3.87) that puv ≥ 0.) Then g({u, v, i}, 1) = (a+bu+bv+bi)+ci+puv−bu−bv = puv >

0 by Equation (3.85) and by the definition of B. Thus, g({u, v, i}, 0) = ci+puv−bu−bv =

0 follows by Equation (3.79). On the other hand, we have g({u, v}, 0) = puv > 0 and

thus g({u, v}, 1) = a+ bu+ bv +puv = 0 follows again by Equation (3.79). Adding these

two equalities, we get a + ci + 2puv = 0 which is impossible since a ≥ 0, ci > 0 and

puv > 0.

Claim 12. If N+ = {i}, then |B| = n− 1. Furthermore, we have

ci = b(B)− 1, and (3.95)

ci ≥ b(S) for all subsets S ⊆ B, S 6= B. (3.96)

Proof. Assume first that |B| < n − 1. It follows from Claim 6 that |C| = 1 and

B ∩ C = ∅. Let C = {w}. We obtain

g(N, y) = (a+ b(B) + bw + bi)y + ci + p(B) +
∑
u∈B

puw +
∑
u∈B

pui + pwi. (3.97)

Now, a + bi = −ci by Equation (3.85), p(B) = 0 by Claim 11,
∑

u∈B puw =
∑

u∈B bu

by Claim 7,
∑

u∈B pui = −
∑

u∈B bu by definition of B, and pwi = −ci by definition of

C. Hence,

g(N, y) = (b(B) + bw − ci)y. (3.98)

In view of Claim 7 and of Equation (3.87), bu = puw ≥ 0 for all u ∈ B. Moreover,

g({w, i}, 1) = bw + pwi = bw− ci by definition of C, and hence bw− ci ≥ 0. This implies

that g(N, y) ≥ 0 for all y, contradicting Equation (3.80).

Thus, |B| = n− 1. In this case we obtain g(N, 1) = 0 by definition of B, and thus

we must have g(N, 0) = ci − b(B) = −1. Furthermore, for any subset S ⊆ B, S 6= B

we have g(S, 0) = ci − b(S) ≥ 0.

We are now ready to prove the remaining case of Theorem 3.74.

Claim 13. The statement of Theorem 3.74 holds when |N+| = 1.
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Proof. In view of Claim 12, we can assume that N+ = {n} and that B = {1, 2, ..., n−1}.

By Equation (3.85), by the definition of B and by Claim 11, we have bn = −a − cn,

pnu = −bu for all u ∈ B, and puv = 0 for all u, v ∈ B. Thus,

g(x, y) = ayxn + cnxny +
∑
u∈B

buxu(y − xn).

Since s+
n (x, y) = (n− 2)xny +

∑
u∈B xu(y − xn), we get

g(x, y)− s+
n (x, y) = ayxn + (cn − n+ 2)xny +

∑
u∈B

(bu − 1)xu(y − xn).

By Equation (3.95), we have
∑

u∈B(bu − 1) = cn − n+ 2. Hence, we can write

g(x, y)− s+
n (x, y) = ayxn +

∑
u∈B

(bu − 1)[xu(y − xn) + xny]

= ayxn +
∑
u∈B

(bu − 1)[yxuxn + y xuxn].

The relations (3.95)–(3.96) imply that bu ≥ 1 for all u ∈ B. Hence, g(x, y)− s+
n (x, y) is

always nonnegative, and this completes the proof of the theorem.

3.10 Concluding Remarks

In this chapter, we studied quadratizations of pseudo-Boolean functions, that is, trans-

formations that given a pseudo-Boolean function f : {0, 1}n → R in n variables, pro-

duce a quadratic pseudo-Boolean function g : {0, 1}n+m → R in the original n variables

plus m auxiliary variables such that f(x) = miny∈{0,1}m g(x, y) for all binary vectors

x ∈ {0, 1}n. Our motivation stemmed from the wide attention such technique has re-

ceived in the past decade, being successfully employed to solve very large unconstrained

nonlinear binary optimization problems, specially those originating form some imaging

applications inside the computer vision community. Our goal was to obtain a better

understanding of its strengths and weaknesses.

Upon our arrival, the scenario was dominated by termwise transformations, i.e., by

procedures that quadratize a given pseudo-Boolean function one monomial at a time.

We initially proposed a still termwise technique, inspired by the consensus operation
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used for logical inferences in Boolean functions represented in disjunctive normal forms

(DNFs), that allows for multiple splits of a monomial, thus generalizing some of the

existing techniques and also providing some new ones. We then introduced the first

transformation taking into account common parts of different monomials, in what could

be described as a factoring approach. Quadratizing many monomials together produced

a lot less positive terms than the state of the art at the time and that had a practical

impact. When empirically evaluated in problems as image restauration and stereo

reconstruction, it performed very well: it was able to fix up to 96% of the variables

to their provable optimum values through persistence, and it was a lot faster that its

existing counterparts.

We then started to investigate quadratizations of a pseudo-Boolean function form a

global standpoint, i.e., instead of focusing in quadratizing terms, concentrate on tech-

niques to quadratize the function as a whole. We first studied the class of symmetric

pseudo-Boolean functions, a small but important class of functions that include mono-

mials. We showed a representation theorem and based on it we were able to derive that

every symmetric pseudo-Boolean function in n variables can be quadratized with at

most n− 2 auxiliary variables, and such quadratizations are what we call y-linear, that

is, they do not include products between the original variables. Afterwards, we showed

that some popular symmetric pseudo-Boolean functions like t-out-of-n, exact-t, parity,

and co-parity admit y-linear quadratizations with at most dn/2e, bn/2c, bn/2c, and

b(n− 1)/2c auxiliary variables, respectively. We revisited quadratizations of positive

monomials and were able to give a new proof that they can be quadratized with at

most b(n− 1)/2c auxiliary variables.

Applying the same mindset to general pseudo-Boolean functions, we first showed

that every pseudo-Boolean function in n variables admits a canonical quadratization,

namely, the minterm quadratization, in at most 2n auxiliary variables — thus improving

the previous existing upper bound of O(n 2n) due to Ishikawa [91, 92]. With some nice

results about decomposition and extension of the function with respect to subcubes of

its Boolean hypercube, we slightly improved the above upper bound to 3
82n, in what

we called y-full quadratizations. We progressed introducing what is perhaps the central
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concept behind quadratizations: that of universal sets (which are closely related to

2-bases of hypergraphs). We showed the existence of universal sets and how they can

be used to quadratize pseudo-Boolean functions in at most O(2n/2) auxiliary variables;

and if the function has bounded degree d, the number of auxiliary variables required in

a quadratization is at most O(nd/2). We then introduced attractive partitions, which

can be constructed from Turán systems and showed that every pseudo-Boolean function

in n variables admits a y-linear quadratization with at most O
(

2n

n · log n
)
.

We then addressed the question of how many auxiliary variables are necessary to

quadratize a pseudo-Boolean function if every possible way of doing it is considered.

In other words, we went looking for lower bounds on the number of auxiliary vari-

ables. And we found them! We showed that almost all pseudo-Boolean functions in

n variables require at least Ω(2n/2) and Ω(2n/n) auxiliary variables in any quadratiza-

tion and in any y-linear quadratization, respectively. If the pseudo-Boolean functions

have bounded degree d, the lower bounds become Ω(nd/2) and Ω(nd−1), respectively.

Comparing such bounds to the upper bounds of the previous paragraph, we can say

that they are essentially tight for general quadratizations and almost tight (off by only

a log n factor) for y-linear quadratizations. For symmetric pseudo-Boolean functions,

we showed that there are functions whose quadratizations must involve at least Ω(
√
n)

auxiliary variables and whose y-linear quadratizations must involve at least Ω(n/ log n)

auxiliary variables (leaving a O(log n) gap to our y-linear upper bound of n−2 auxiliary

variables, mentioned two paragraphs above). Using different techniques, we showed a

concrete example: every y-linear quadratization for the parity function in n variables

requires at least Ω(
√
n) auxiliary variables.

Finally, we defined a combinatorial / geometric object that we used to generate and

investigate quadratizations of low-degree monomials: the polyhedral cone of quadra-

tizations. Based upon computer experiments realized over it, we were able present a

full characterization of quadratizations of negative monomials involving only one aux-

iliary variable. The complexity of such proof reveals the richness of details and the full

intricacy behind these so easy to define transformations.
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After all that was described above, our understanding of quadratizations is consid-

erably better than when we first started. Nevertheless, a complete picture is still far

from being fully rendered. We therefore, finish this chapter with a list of open questions

and some extra considerations.

Closing the existing gaps between some of our lower and upper bounds is the first

open question that comes to mind. Specifically, we have an O(log n) gap (mentioned

above) for y-linear quadratizations of general pseudo-Boolean functions, and we believe

closing it to be an interesting theoretical endeavor: our lower bound seems correct, so

we believe improvements on the construction of Turán systems or perhaps, the use of a

different combinatorial structure to be the way to go; the former sounds more plausible,

nonetheless. We also have a logarithmic gap between the bounds for y-linear symmetric

pseudo-Boolean functions and closing this gap does not seem out of reach, but new ideas

will be necessary. Considering particular specimens, improving the lower bound for the

parity function and/or providing a simliar bound for the all-popular majority function

would be highly desirable, as these functions have a long and prominent history in

Boolean circuit complexity (cf. Jukna [96]).

Another open question related to symmetric pseudo-Boolean functions is to deter-

mine whether a similar, or better lower bound can be obtained for non y-linear quadrati-

zations. Notice that all the quadratizations we proposed for symmetric pseudo-Boolean

functions are y-linear; any example of a symmetric function where a non y-linear quadra-

tization needs fewer variables than the y-linear counterpart would be of interest.

An interesting venue of research consists in extending our work on symmetric

pseudo-Boolean functions for larges classes of functions, like the weakly symmetric,

the partially symmetric, and so on. We have already started investigating quadra-

tizations of d-part symmetric pseudo-Boolean functions, and it is rather notable the

relation between symmetry and the number of auxiliary variables: the fewer the former

is available, the more of the latter is needed.

Regarding y-linear quadratizations of general pseudo-Boolean functions again, we

believe it to be possible to tailor our algorithm to the case of bounded degree functions.

This specialization is of interest as it could have good practical implications in solving
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some computer vision applications, where the pseudo-Boolean functions are locally

dense and do have bounded degree. Along the same line, but slightly more general,

a thorough empirical evaluation of our global methods could reveal positive results

for those applications (even with sub-exponential number of auxiliary variables). It

is worth mentioning that before the landing of pseudo-Boolean methods inside the

computer vision community, many of their problems were tackled with variations of the

belief-propagation algorithm. It is just natural to wonder if the combo quadratization

techniques plus the QPBO algorithm can accomplish something similar in different

realms, where belief-propagation reigns.

The number of positive quadratic terms is equal to n − 1 in every known quadra-

tization of the positive monomial in n variables, but no lower bound on such quantity

has been found so far. Settling this question is of great interest, as it is related to the

quality of relaxations based on quadratizations for PBO problems. We conducted pre-

liminary studies on the quality of relaxations based on termwise quadratizations versus

relaxations based on the classical linearization, and the results obtained so far favored

the latter. Notice however that at the moment, we are still a bit far from being able to

settle the score in either one’s favor, and our new algorithms still need to be evaluated,

as previously alluded. Nevertheless, finding classes of functions where (some species of)

quadratizations beat the classical linearization is another highly interesting task, as it

would be showing improvements upon the roof duality bound. Pushing the bar even

further, we wonder if we can find some classes of pseudo-Boolean functions, other than

the submodular ones, such that when quadratized, the QBPO algorithm solves them

exactly, to optimality. Naturally, unless P = NP, a complete characterization of those

classes is out of question, but any insight harvested would be valuable.

A better understanding of the polyhedral cone of quadratizations also figures as a

worthy, open question. Even if a complete description may be out of reach, we might

be able to collect revealing information about the structure of quadratizations for some

specific pseudo-Boolean functions, or even some classes thereof. For instance, we wonder

if we can find a characterization of quadratizations of positive monomials (or find any

non constant lower bound on the number of auxiliary variables required), similarly to
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what was done to negative ones. Moreover, can a better understanding of the facial

structure of the cone provide a simpler proof for the latter? What can be said about the

elements of the polar cone? Can they provide good structural or algorithmic insights?

Another open question consists of determining the computational complexity of

given two pseudo-Boolean functions f : {0, 1}n → R and g : {0, 1}n+m → R, whether g

is a quadratization of f . Related to that, is determining the complexity of minimizing

the number of auxiliary variables for a given pseudo-Boolean function. The latter

problem seems to be very high in the polynomial hierarchy, and we conjecture it to be

Σp
3-complete.

Finally, we see as a next reasonable step to try and extend the notion of quadrati-

zation to approximate settings. For instance, we could define

f(x) ≤ min
y∈{0,1}m

g(x, y) ≤ ρf(x) for all x ∈ {0, 1}n,

for f(x) ≥ 0 and some constant ρ ≥ 1, or∥∥∥∥f(x)− min
y∈{0,1}m

g(x, y)

∥∥∥∥
`

≤ δ,

for ` = 1 or ` = 2 (squaring the LHS in this case) and some constant δ, or still

1

2n

∣∣∣∣∣
{
x ∈ {0, 1}n : f(x) 6= min

y∈{0,1}m
g(x, y)

}∣∣∣∣∣ ≤ ε,
for some constant 0 < ε ≤ 1, preferably bounded away from 1. It is possible that we

might be able to reduce the number of auxiliary variables required in quadratizations

and in y-linear quadratizations in these approximate settings.
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3.11 Appendix: List of Quadratizations of Low-Degree Monomials

Below, we present a list of 1- and 2-quadratizations up to isomorphism of cubic, quartic,

and quintic negative and positive monomials, where isomorphism in this context means

up to permutations of the x-variables, of the y-variables, of both altogether, and up to

complementation of all variables.

• Quadratizations of −x1x2x3 with one auxiliary variable y1:

2y1 − x1y1 − x2y1 − x3y1

x2 + x3 − x1x2 − x1x3 + x1y1 − x2y1 − x3y1

• Quadratizations of −x1x2x3 with two auxiliary variables y1, y2:

2y2 − x1y2 − x2y2 − x3y2

2y1 + 2y2 − x1y1 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

x3 + 2y2 − x1x3 + x1y1 − x1y2 − x2y2 − x3y1 − y1y2

x2 + x3 − x1x2 − x1x3 + x1y2 − x2y2 − x3y2

x2 + x3 + y2 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

x1 + x2 + x3 − x1x2 − x1y1 − x2y2 − x3y1 − x3y2 + y1y2

x1 + x2 + x3 − x1y1 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + 2y1y2

2y2 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − y1y2

x3 + y2 − x1x3 + x1y1 + x2y1 − x2y2 − x3y2 − y1y2

x3 + y2 − x1x3 + x1y1 − x2y2 − x3y1 − x3y2 + y1y2

x3 + 2y2 − x1x3 − x2x3 + x1y1 − x1y2 + x2y1 − x2y2 − x3y1 − y1y2

x2 + x3 + y2 − x1x2 − x1x3 − x2x3 + x1y1 − x2y1 + x2y2 − x3y2 − y1y2

x2 + x3 + y2 − x1x2 − x1x3 + x1y1 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

x2 + x3 + y2 − x1x2 − x2x3 + x1y1 − x1y2 − x2y1 + x2y2 − x3y2 − y1y2

2y2 + x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − 2y1y2

2y1 + 2y2 + x1x3 + x2x3 − x1y1 − x1y2 − x2y1 − x2y2 − 2x3y1 − 2x3y2 + y1y2

x3 + 2y2 − x1x3 − x2x3 + x1y1 − x1y2 + x2y1 − x2y2 − x3y1 + x3y2 − 2y1y2

x2 + x3 − x1x2 − x1x3 − x2x3 + x1y1 + x1y2 − x2y1 − x3y2 + y1y2

x2 + x3 − x1x2 − x1x3 + x1y1 + x1y2 − x2y1 − x2y2 − x3y1 + y1y2
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x2 + x3 − x1x2 − x1x3 + x1y1 + x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + 2y1y2

x2 + x3 + y2 − x1x2 − x1x3 + x1y1 − x1y2 − x2y1 + x2y2 − x3y1 + x3y2 − y1y2

x1 + x2 + x3 + y2 − 2x1x2 − 2x1x3 + 2x1y1 − 2x1y2 − x2y1 + x2y2 − x3y1 + x3y2 − y1y2

1− x1 + 2x2 + 2x3 − y1 − y2 − 2x1x2 − 2x1x3 + 2x1y1 + 2x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

1− x1 + 2x2 + 2x3 − y1 − y2 − x1x2 − x1x3 + x1y1 + x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

2− x1 − x2 − x3 − 2y1 + 3y2 + x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − y1y2

x2 + x3 + y2 − x1x2 + x1x3 − 2x2x3 + x1y1 − x1y2 − x2y1 + x2y2 + 2x3y1 − 2x3y2 − y1y2

x2 + 3x3 − x1x2 − 2x1x3 + x2x3 + x1y1 + x1y2 − x2y1 − x2y2 − 2x3y1 − 2x3y2 + y1y2

2− 2x1 − x2 − x3 − 2y1 + 3y2 + x1x2 + x1x3 + 2x1y1 − 2x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − y1y2

• Quadratizations of −x1x2x3x4 with one auxiliary variable y1:

3y1 − x1y1 − x2y1 − x3y1 − x4y1

x2 + x3 + x4 − x1x2 − x1x3 − x1x4 + 2x1y1 − x2y1 − x3y1 − x4y1

• Quadratizations of −x1x2x3x4 with two auxiliary variables y1, y2:

3y2 − x1y2 − x2y2 − x3y2 − x4y2

2y1 + 2y2 − x1y1 − x2y1 − x3y2 − x4y2 − y1y2

3y1 + 3y2 − x1y1 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + y1y2

x4 + 3y2 − x1x4 + x1y1 − x1y2 − x2y2 − x3y2 − x4y1 − y1y2

x3 + x4 + 2y2 − x1x3 − x1x4 + 2x1y1 − x1y2 − x2y2 − x3y1 − x4y1 − y1y2

x3 + x4 + 2y2 − x1y2 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + y1y2

x2 + x3 + x4 − x1x2 − x1x3 − x1x4 + 2x1y2 − x2y2 − x3y2 − x4y2

x2 + x3 + x4 + y2 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + 2y1y2

x1 + x2 + x3 + x4 − x1x2 − x1y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + 2y1y2

x1 + x2 + x3 + x4 − x1y1 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + 3y1y2

3y2 − x1y2 − x2y2 + x3y1 − x3y2 + x4y1 − x4y2 − y1y2

x4 + 2y2 − x1x4 + x1y1 − x2y2 − x3y2 − x4y1 − x4y2 + y1y2

x2 + x3 + x4 + y2 − x1x2 − x1x3 − x1x4 + x1y1 + x1y2 − x2y1 − x3y2 − x4y2 − y1y2

x2 + x3 + x4 + y2 − x1x2 − x1x3 − x2x4 + 2x1y1 − x1y2 − x2y1 + x2y2 − x3y1 − x4y2 − y1y2

x2 + x3 + x4 + y2 − x1x2 − x2x3 − x2x4 + x1y1 − x1y2 − x2y1 + 2x2y2 − x3y2 − x4y2 − y1y2
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x2 + x3 + x4 + 2y2 − x1x2 − x1x3 − x1x4 + 2x1y1 − x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + y1y2

3y2 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 + x4y1 − x4y2 − 2y1y2

2y1 + 3y2 + x2x4 + x3x4 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − 2x4y1 − 2x4y2 + y1y2

x4 + 2y2 − x1x4 + x1y1 + x2y1 − x2y2 + x3y1 − x3y2 − x4y2 − 2y1y2

x4 + 2y2 − x1x4 + x1y1 + x2y1 − x2y2 + x3y1 − x3y2 − x4y1 − x4y2 − y1y2

2x4 + y2 − x1x4 − x2x4 + x1y1 + x2y1 − x3y2 − 2x4y1 − x4y2 + y1y2

2x4 + 3y2 − x1x4 − x2x4 − x3x4 + x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − 2x4y1 − y1y2

x3 + x4 + y2 − x1x3 − x1x4 + 2x1y1 + x1y2 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + 2y1y2

x3 + 2x4 + 2y2 − x1x4 − x2x4 − x3x4 + x1y1 − x1y2 + x2y1 − x2y2 − x3y2 − 2x4y1 + 2x4y2 − 2y1y2

x3 + 2x4 + 2y2 − x1x4 − x2x4 + x1y1 − x1y2 + x2y1 − x2y2 − x3y1 − x3y2 − 2x4y1 + x4y2 − y1y2

x2 + x3 + x4 − x1x2 − x1x3 − x1x4 + x1y1 + 2x1y2 − x2y1 − x2y2 − x3y2 − x4y2 + y1y2

x2 + x3 + x4 − x1x2 − x1x3 − x1x4 + 2x1y1 + 2x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − x4y1 + 2y1y2

x2 + x3 + x4 − x1x2 − x1x3 − x1x4 + 2x1y1 + 2x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + 3y1y2

x2 + x3 + x4 − x1x2 − x2x3 − x2x4 + x1y2 + x2y1 − x2y2 − x3y1 − x4y1 + y1y2

x2 + x3 + x4 + y2 − x1x2 − x1x3 − x1x4 + 2x1y1 − x1y2 − x2y1 − x3y1 + x3y2 − x4y1 + x4y2 − y1y2

x2 + x3 + 2x4 + y2 − x1x2 − x1x3 − x1x4 − x2x4 − x3x4 + 2x1y1 − x2y1 + x2y2 − x3y1 + x3y2 − 2x4y2 − y1y2

1−x1 +x2 +2x3 +2x4−y1−y2−x1x2−x1x3−x1x4 +x1y1 +2x1y2−x2y2−x3y1−x3y2−x4y1−x4y2 +y1y2

1−x1+2x2+2x3+2x4−y1−y2−2x1x2−2x1x3−2x1x4+3x1y1+3x1y2−x2y1−x2y2−x3y1−x3y2−x4y1−x4y2+y1y2

1 + 2x3 + 2x4− y1− y2−x1x2−x1x3−x1x4−x2x3−x2x4 + 2x1y2 + 2x2y1−x3y1−x3y2−x4y1−x4y2 + y1y2

2− 2x1 + 2x2 + 2x3 + 2x4 − 2y1 − 2y2 − x1x2 − x1x3 − x1x4 + 2x1y1 + 2x1y2

− x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + 2y1y2

2− x1 − x2 − 2y1 + y2 + x1y1 + x2y1 − x3y2 − x4y2 + y1y2

3y2 + x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 + x4y1 − x4y2 − 3y1y2

2y1 + 3y2 + x2x3 + x2x4 + x3x4 − x1y1 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + y1y2

3y1 + 3y2 + x1x4 + x2x4 + x3x4 − x1y1 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − 3x4y1 − 3x4y2 + 2y1y2

2x4 + 3y2 − x1x4 − x2x4 − x3x4 + x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − 2x4y1 + 2x4y2 − 3y1y2

x3 + x4 + y2 − x1x3 − x1x4 + 2x1y1 + x1y2 + x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + y1y2

x3 + x4 + y2 + x1x2 − x1x3 − x2x3 − x3x4 + 2x1y1 − x1y2 + 2x2y1 − x2y2 − x3y1 + x3y2 − x4y2 − y1y2

x3 + x4 + 3y2 + x1x2 − x1x3 − x1x4 − x2x3 + 2x1y1 − 2x1y2 + x2y1 − 2x2y2 − x3y1 + x3y2 − x4y1 − 2y1y2

x3 + x4 + 3y2 + x1x2 − x1x3 − x2x3 + x1y1 − 2x1y2 + x2y1 − 2x2y2 − x3y1 + x3y2 − x4y1 − x4y2 − y1y2

x3 + 2x4 − x1x3 − x1x4 − x2x4 + x1y1 + x1y2 + x2y2 − x3y1 − x4y1 − 2x4y2 + y1y2
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x2 + x3 + x4 + 2y2 − x1x2 − x1x3 − x1x4 + 2x1y1 − 2x1y2 − x2y1 + x2y2 − x3y1 + x3y2 − x4y1 + x4y2 − 2y1y2

x2 + 2x3 + 2x4 − x1x2 − x1x3 − x1x4 + x3x4 + x1y1 + x1y2 − x2y1 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + y1y2

x1 +x2 +x3 +2x4 +y2−2x1x4−2x2x4−2x3x4−x1y1 +x1y2−x2y1 +x2y2−x3y1 +x3y2 +3x4y1−3x4y2−y1y2

3− x1 − x2 − x3 − x4 − 3y1 + 4y2 + x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 + x4y1 − x4y2 − y1y2

x3 +x4 +y2 +x1x2−x1x3−x1x4−x2x3−x2x4 +2x1y1−x1y2 +2x2y1−x2y2−x3y1 +x3y2−x4y1 +x4y2−y1y2

x3 + x4 + 2y2 − x1x3 − x1x4 + x3x4 + x1y1 + x1y2 + x2y1 − x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + y1y2

x3+x4+3y2+x1x2−x1x3−x1x4−x2x3−x2x4+2x1y1−2x1y2+2x2y1−2x2y2−x3y1+x3y2−x4y1+x4y2−3y1y2

x3+x4+y1+2y2+x1x2−x1x3−x1x4−x2x3−x2x4−x1y1+3x1y2−x2y1+3x2y2+x3y1−2x3y2+x4y1−2x4y2−3y1y2

x3 + 2x4 + y2 − x1x3 − x1x4 − x2x4 + x3x4 + x1y1 + x1y2 + x2y1 − x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 2y1y2

x2+x3+2x4+y2−x1x2−x1x3−2x1x4+x2x4+x3x4+2x1y1+x1y2−x2y1−x2y2−x3y1−x3y2−2x4y1−2x4y2+y1y2

x2 + x3 + 2x4 + 2y2 − x1x2 − x1x3 − 2x1x4 + x2x4 + x3x4 + 2x1y1 + 3x1y2

− x2y1 − 2x2y2 − x3y1 − 2x3y2 − 2x4y1 − 4x4y2 + 4y1y2

x2+x3+4x4−x1x2−x1x3−3x1x4+x2x4+x3x4+2x1y1+2x1y2−x2y1−x2y2−x3y1−x3y2−3x4y1−3x4y2+2y1y2

2x2+2x3+2x4−x1x2−x1x3−x1x4+x2x4+x3x4+x1y1+x1y2−2x2y1−x2y2−x3y1−2x3y2−2x4y1−2x4y2+2y1y2

1− x1 + 2x2 + 2x3 + 4x4 − y1 − y2 − x1x2 − x1x3 − 2x1x4 + x2x4 + x3x4 + x1y1

+ 3x1y2 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − 2x4y1 − 4x4y2 + 3y1y2

2− 2x1 − x2 − x3 − 2y1 + 4y2 + x1x2 + x1x3 + 2x1y1 − 2x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − x4y2 − y1y2

2y1+6y2+x1x3+x1x4+x2x3+x2x4+2x3x4−x1y1−2x1y2−x2y1−2x2y2−2x3y1−4x3y2−2x4y1−4x4y2+3y1y2

3y1+3y2+x1x3+x1x4+x2x3+x2x4+x3x4−2x1y1−x1y2−x2y1−2x2y2−2x3y1−2x3y2−2x4y1−2x4y2+2y1y2

2x4 +2y2 +x1x3−x1x4 +x2x3−x2x4−2x3x4 +x1y1−x1y2 +x2y1−x2y2 +2x3y1−2x3y2−2x4y1 +x4y2−y1y2

2x4+y1+2y2+x1x3−x1x4+x2x3−x2x4−2x3x4+2x1y1−x1y2+2x2y1−x2y2+4x3y1−2x3y2−3x4y1+x4y2−3y1y2

x3+x4+2y2+x1x2−x1x3−x2x3+x2x4−x3x4+2x1y1−x1y2+2x2y1−2x2y2−x3y1+x3y2+x4y1−2x4y2−2y1y2

x3+2x4+2y2+x1x3−x1x4+x2x3−x2x4−3x3x4+x1y1−x1y2+x2y1−x2y2+3x3y1−3x3y2−2x4y1+2x4y2−2y1y2

x3 + 3x4 + y1 + 3y2 + x1x2 − x1x3 − 2x1x4 − x2x3 − 2x2x4 + x3x4 + 3x1y1

− 2x1y2 + 3x2y1 − 2x2y2 − 2x3y1 + x3y2 − 4x4y1 + 2x4y2 − 4y1y2

2x3 +2x4−x1x3−x1x4−x2x3−x2x4 +x3x4 +x1y1 +x1y2 +x2y1 +x2y2−2x3y1−x3y2−2x4y1−x4y2 +y1y2

2x3+2x4−x1x3−x1x4−x2x3−x2x4+x3x4+x1y1+x1y2+x2y1+x2y2−2x3y1−2x3y2−2x4y1−2x4y2+3y1y2

x2 + x3 + x4 + 2y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 + x1y1

+ x1y2 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + y1y2

x2 + x3 + x4 + 3y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 + x1y1

+ 2x1y2 − x2y1 − 3x2y2 − x3y1 − 3x3y2 − x4y1 − 3x4y2 + 3y1y2
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x2 + 2x3 + 2x4 + y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 + x1y1

+ x1y2 − x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 2y1y2

2x2 + 2x3 + 2x4 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 + x1y1 + x1y2

− 2x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 3y1y2

2x2 + 2x3 + 4x4 + y2 − x1x2 − x1x3 − 2x1x4 + x2x3 + 2x2x4 + 2x3x4 + x1y1

+ 2x1y2 − 2x2y1 − 3x2y2 − 2x3y1 − 3x3y2 − 3x4y1 − 5x4y2 + 4y1y2

1− x1 − x2 + 2x3 + 2x4 − y1 − y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + x1y1

+ 3x1y2 + x2y1 + 3x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + 3y1y2

1− x1 + 3x2 + 3x3 + 3x4 − y1 − y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4

+ x1y1 + 2x1y2 − 2x2y1 − 3x2y2 − 2x3y1 − 3x3y2 − 2x4y1 − 3x4y2 + 4y1y2

3−2x1−2x2−2x3−3y1 +3y2 +x1x2 +x1x3 +x2x3 +2x1y1−x1y2 +2x2y1−x2y2 +2x3y1−x3y2−x4y2−y1y2

3y1 + 3y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − 2x1y1 − 2x1y2

− 2x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 3y1y2

3y1 + 6y2 + x1x2 + x1x3 + 2x1x4 + x2x3 + 2x2x4 + 2x3x4 − 2x1y1 − 3x1y2

− 2x2y1 − 3x2y2 − 2x3y1 − 3x3y2 − 3x4y1 − 5x4y2 + 4y1y2

x4 + 3y2 + x1x2 + x1x3 − x1x4 + x2x3 − x2x4 − x3x4 + 2x1y1 − 2x1y2

+ 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 − x4y1 + x4y2 − 3y1y2

x4+3y2+x1x2+x1x3−x1x4+x2x3−x2x4−x3x4+x1y1−2x1y2+2x2y1−2x2y2+2x3y1−2x3y2−x4y1+x4y2−2y1y2

x4+3y2+x1x2+x1x3−x1x4+x2x3−x2x4−x3x4+x1y1−2x1y2+x2y1−2x2y2+x3y1−2x3y2−x4y1+x4y2−y1y2

x4+6y2+x1x2+x1x3−x1x4+x2x3−x2x4−x3x4+x1y1−3x1y2+x2y1−3x2y2+x3y1−3x3y2−x4y1+2x4y2−3y1y2

x4 + y1 + 3y2 + x1x2 + x1x3 − x1x4 + x2x3 − x2x4 − x3x4 + 3x1y1 − 2x1y2

+ 3x2y1 − 2x2y2 + 3x3y1 − 2x3y2 − 2x4y1 + x4y2 − 4y1y2

x3 + x4 + 5y2 + x1x2 − x1x3 + 2x1x4 − x2x3 + 2x2x4 − 2x3x4 + 2x1y1 − 3x1y2

+ 2x2y1 − 3x2y2 − x3y1 + 2x3y2 + 3x4y1 − 5x4y2 − 4y1y2

1− x1 − x2 + 3x3 + 3x4 − y1 − y2 + x1x2 − 2x1x3 − 2x1x4 − x2x3 − x2x4 + x3x4

+ 2x1y1 + 4x1y2 + x2y1 + 2x2y2 − 2x3y1 − 3x3y2 − 2x4y1 − 3x4y2 + 4y1y2

3−3x1−x2−x3−x4−3y1+5y2+x1x2+x1x3+x1x4+3x1y1−3x1y2+x2y1−x2y2+x3y1−x3y2+x4y1−x4y2−2y1y2

2− 2x1 − 2x2 − x3 − x4 − 2y1 + 9y2 + 2x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + 2x1y1

− 4x1y2 + 2x2y1 − 4x2y2 + x3y1 − 2x3y2 + x4y1 − 2x4y2 − 3y1y2

3− 2x1 − 2x2 − 2x3 − x4 − 3y1 + 5y2 + x1x2 + x1x3 + x2x3 + x2x4 + x3x4 + 2x1y1

− x1y2 + 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 + x4y1 − 2x4y2 − 2y1y2

3− 3x1 − 2x2 − 2x3 − 2x4 − 3y1 + 10y2 + 2x1x2 + 2x1x3 + 2x1x4 + x2x3 + x2x4

+ x3x4 + 3x1y1 − 5x1y2 + 2x2y1 − 3x2y2 + 2x3y1 − 3x3y2 + 2x4y1 − 3x4y2 − 4y1y2

3− 2x1 − 2x2 − 2x3 − 2x4 − 3y1 + 6y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

+ 2x1y1 − 2x1y2 + 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 + 2x4y1 − 2x4y2 − 3y1y2
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• Quadratizations of −x1x2x3x4x5 with one auxiliary variable y1:

4y1 − x1y1 − x2y1 − x3y1 − x4y1 − x5y1

x2 + x3 + x4 + x5 − x1x2 − x1x3 − x1x4 − x1x5 + 3x1y1 − x2y1 − x3y1 − x4y1 − x5y1

• Quadratizations of x1x2x3 with one auxiliary variable y1:

y1 + x2x3 + x1y1 − x2y1 − x3y1

y1 + x1x2 + x1x3 + x2x3 − x1y1 − x2y1 − x3y1

• Quadratizations of x1x2x3 with two auxiliary variables y1, y2:

y2 + x2x3 + x1y2 − x2y2 − x3y2

x3 + y2 + x1y2 + x2y1 − x2y2 − x3y1 − y1y2

y2 + x1x2 + x1x3 + x2x3 − x1y2 − x2y2 − x3y2

y1 + y2 + x2x3 − x1y1 + x1y2 − x2y2 + x3y1 − x3y2 − y1y2

y1 + y2 + x1x3 + x2x3 − x1y1 + x2y1 − x2y2 − x3y2 − y1y2

y1 + y2 + x1x3 + x2x3 − x1y1 − x2y2 − x3y1 − x3y2 + y1y2

x3 + x1y2 + x2y1 − x3y1 − x3y2 + y1y2

x3 + y2 + x1x2 + x1y1 − x1y2 + x2y1 − x2y2 − x3y1 − y1y2

x2 + x3 + x2x3 + x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

y1 + y2 + x2x3 − x1y1 + x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − 2y1y2

y1 + y2 + x2x3 + x1y1 + x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

y1 + y2 + x1x2 + x1x3 + x2x3 − x1y1 − x1y2 − x2y1 − x2y2 − x3y1 + y1y2

y1 + y2 + x1x2 + x1x3 + x2x3 − x1y1 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + 2y1y2

x3 + y1 + y2 − x1x3 + 2x2x3 + x1y1 + x1y2 − x2y1 − x2y2 − 2x3y1 − 2x3y2 + y1y2

x3 + y1 + y2 + x1x2 + 2x1x3 + 2x2x3 − x1y1 − x1y2 − x2y1 − x2y2 − 2x3y1 − 2x3y2 + y1y2

2x3 + y2 + x1x2 − x1x3 − x2x3 + x1y1 − x1y2 + x2y1 − x2y2 − 2x3y1 + 2x3y2 − y1y2

x2 + x3 − x1x2 − x1x3 + x2x3 + 2x1y1 + 2x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

x1 + x2 + x3 + x1x2 + x1x3 + x2x3 − x1y1 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + y1y2

1− x1 − x2 − y1 + 2y2 + x1x2 + x2x3 + x1y1 + x2y1 − x2y2 − x3y2 − y1y2

1− x1 − x2 + x3 − y1 + 2y2 + x1x2 + x1y1 − x1y2 + x2y1 − x2y2 − x3y1 + x3y2 − y1y2

1− x1 − x2 + x3 − y1 + 2y2 + 2x1x2 − x1x3 + 2x1y1 − 2x1y2 + x2y1 − x2y2 − x3y1 + x3y2 − y1y2
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1− x1 + x3 − y1 + x2x3 + x1y1 + x1y2 − x2y2 − x3y1 − x3y2 + y1y2

1− x1 + x3 − y1 + x1x2 + x2x3 + x1y1 − x2y2 − x3y1 − x3y2 + y1y2

1− x1 + x2 + x3 − y1 − y2 + x2x3 + x1y1 + x1y2 − x2y1 − x2y2 − x3y1 − x3y2 + 2y1y2

1− x1 − x2 − y1 + 2y2 + x1x2 + x1x3 + x2x3 + x1y1 − x1y2 + x2y1 − x2y2 − x3y2 − y1y2

y2 + x1x2 + x1x3 + x2x3 + x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − y1y2

1− x1 − x2 − x3 − y1 + 2y2 + x1x2 + 2x1x3 + 2x2x3 + x1y1 − x1y2 + x2y1 − x2y2 + 2x3y1 − 2x3y2 − y1y2

1− x1 − x2 − x3 − y1 + 3y2 + x1x2 + x1x3 + x2x3 + x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 − 2y1y2

• Quadratizations of x1x2x3x4 with one auxiliary variable y1:

3y1 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − 2x1y1 − 2x2y1 − 2x3y1 − 2x4y1

• Quadratizations of x1x2x3x4 with two auxiliary variables y1, y2:

y1 + y2 + x3x4 − x1y1 + x1y2 + x2y1 − x3y2 − x4y2 − y1y2

y1 + y2 + x1x4 + x2x3 − x1y1 − x2y2 − x3y2 − x4y1 + y1y2

y1 + 2y2 + x3x4 + x1y2 + x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2

y1 + y2 + x3x4 + x1y2 + x2y1 − x3y1 − x3y2 − x4y1 − x4y2 + y1y2

y1 + y2 + x1x4 + x2x3 − x1y1 + x2y1 − x2y2 + x3y1 − x3y2 − x4y1 − y1y2

x4 + y1 + y2 − x1x4 + x3x4 + x1y1 + x1y2 − x2y1 + x2y2 − x3y2 − x4y1 − 2x4y2

x3 + x4 + y2 − x1x3 − x1x4 + x3x4 + x1y1 + 2x1y2 + x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2

x3 + x4 + y2 + x1x2 + x3x4 + x1y1 − x1y2 + x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2

x3 + x4 + 3y2 + x1x2 − x1x3 − x2x3 + x1y1 − 2x1y2 + x2y1 − 2x2y2 − x3y1 + 3x3y2 − x4y1 − 2y1y2

x3 + x4 + 3y2 + x1x2 − x1x3 − x2x3 + x1y1 − 2x1y2 + x2y1 − 2x2y2 − x3y1 + 3x3y2 − x4y1 − x4y2 − y1y2

x3 + x4 + y1 + 2y2 + x1x2 − x1x3 − x2x3 − x1y1 + 2x1y2 − x2y1 + 2x2y2 + 2x3y1 − 3x3y2 − x4y1 − 3y1y2

1− x1 − x2 − y1 + 2y2 + x1x2 + x3x4 + x1y1 + x2y1 − x3y2 − x4y2 − y1y2

1− x1 − x2 + x4 − y1 + 2y2 + x1x2 + x1y1 − x1y2 + x2y1 − x2y2 + x3y2 − x4y1 − y1y2

1− x1 + x4 − y1 + x2x3 + x1y1 + x1y2 − x2y2 − x3y2 − x4y1 + y1y2

2−2x1−2x2+x3+2x4−2y1+2y2+2x1x2−x1x4−x2x4+3x1y1−x1y2+3x2y1−x2y2−x3y1−x3y2−2x4y1+x4y2−y1y2

2−2x1+x2+2x3+2x4−2y1−2y2−x1x3−x1x4+x3x4+2x1y1+3x1y2−x2y1−x3y1−2x3y2−x4y1−2x4y2+3y1y2

y1 + y2 + x2x3 + x2x4 + x3x4 + x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − x4y1 − x4y2 + y1y2

y1 + 2y2 + x1x4 + x2x3 + x2x4 + x3x4 + x1y1 − x1y2 − x2y1 − x2y2 − x3y1 − x3y2 − 2x4y2
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y1 + 3y2 + x2x3 + x2x4 + x3x4 + x1y2 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + 2y1y2

2y1 + 3y2 + x1x4 + x2x3 + x2x4 + x3x4 − x1y1 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 3y1y2

x4 + y1 + y2 − x1x4 + x2x4 + x3x4 + x1y1 + x1y2 − x2y1 − x3y2 − 2x4y1 − 2x4y2 + y1y2

x4 + y1 + y2 + x1x4 + x2x3 − x2x4 − x3x4 − x1y1 + x2y1 − x2y2 + x3y1 − x3y2 − 2x4y1 + 2x4y2 − y1y2

x4 + y1 + y2 + x1x4 + x2x3 − x2x4 − x3x4 − x1y1 + x2y1 − x2y2 + x3y1 − x3y2 − 2x4y1 + x4y2

x4 + y1 + 3y2 + x1x4 + x2x3 − x2x4 − x3x4 − x1y1 + x2y1 − 2x2y2 + x3y1 − 2x3y2 − 2x4y1 + 3x4y2 − 2y1y2

x4 + 2y1 + 2y2 + x1x3 − x1x4 + x2x3 − x3x4 − x1y1 + 2x1y2 − x2y1 − 2x3y1 + 2x3y2 + 2x4y1 − 3x4y2 − 3y1y2

x3 + x4 + y2 − x1x3 − x1x4 + x3x4 + x1y1 + 3x1y2 + x2y1 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + 2y1y2

x3 + x4 + 2y2 − x1x3 − x1x4 + x3x4 + x1y1 + 3x1y2 + x2y1 − x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + y1y2

x3 + x4 + y1 + 2y2 − x1x3 − x1x4 + 2x3x4 + x1y1 + 2x1y2 − x2y1 + x2y2 − x3y1 − 3x3y2 − x4y1 − 3x4y2 + y1y2

x3 +x4 + y1 + 2y2−x1x3−x1x4 +x2x4 + 2x3x4 +x1y1 + 2x1y2−x2y1−x3y1− 3x3y2− 2x4y1− 3x4y2 + 2y1y2

x3+3x4+3y2+x1x2−x1x3−x1x4−x2x3−x2x4+2x1y1−2x1y2+2x2y1−2x2y2−x3y1+3x3y2−3x4y1+x4y2−3y1y2

x2 + x3 + x4 + y2 + x2x3 + x2x4 + x3x4 + x1y1 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + 2y1y2

x2 + x3 + x4 + 2y1 + 2y2 − x1x2 − x1x3 − x1x4 + 2x2x4 + 2x3x4 + 2x1y1 + 2x1y2

− 3x2y1 − x2y2 − x3y1 − 3x3y2 − 3x4y1 − 3x4y2 + 3y1y2

1− x1 − x2 + x4 − y1 + 2y2 + x1x2 + x2x3 − x2x4 + x1y1 + 2x2y1 − 2x2y2 − x3y2 − x4y1 + x4y2 − y1y2

1− x1 − x2 + x3 + x4 − y1 + x1x2 + x3x4 + x1y1 + x2y1 − x3y1 − x3y2 − x4y1 − x4y2 + y1y2

2−2x1−2x2+2x4−2y1+3y2+2x1x2−x1x4+x2x3−x2x4+3x1y1−x1y2+3x2y1−2x2y2−x3y2−2x4y1+x4y2−2y1y2

2−2x1+2x3+2x4−2y1−y2−x1x3−x1x4+x2x4+x3x4+3x1y1+2x1y2−x2y2−2x3y1−x3y2−2x4y1−2x4y2+3y1y2

2− 2x1 + 2x2 + 2x3 + 2x4 − 2y1 − 2y2 − x1x2 − x1x3 − x1x4 + x2x4 + x3x4 + 3x1y1

+ 3x1y2 − 2x2y1 − x2y2 − x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 4y1y2

3y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − 2x1y2 − 2x2y2 − 2x3y2 − 2x4y2

y1 + 3y2 + x1x4 + x2x3 + x2x4 + x3x4 − x1y1 + x2y1 − 2x2y2 + x3y1 − 2x3y2 − 2x4y2 − 2y1y2

y1 + 3y2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − x1y1 − x1y2 + x2y1 − 2x2y2 − 2x3y2 − 2x4y2 − y1y2

3y1+3y2+x1x3+x1x4+x2x3+x2x4+x3x4−2x1y1−x1y2−x2y1−2x2y2−2x3y1−2x3y2−2x4y1−2x4y2+4y1y2

x4 + 3y2 + x1x2 + x1x3 + x2x3 + x1y1 − 2x1y2 + x2y1 − 2x2y2 + x3y1 − 2x3y2 − x4y1 − 2y1y2

x4 +y1 + 3y2 +x1x4 +x2x3−x2x4−x3x4−x1y1 +x1y2 +x2y1−2x2y2 +x3y1−2x3y2−2x4y1 + 3x4y2−3y1y2

x3 + x4 + 2y2 + x1x2 + x2x3 + x2x4 + x3x4 + x1y1 − x1y2 − 2x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + y1y2

x3 + x4 + y1 + 2y2 − x1x3 − x1x4 + x2x3 + x2x4 + 2x3x4 + x1y1 + 2x1y2

− x2y1 − x2y2 − 2x3y1 − 3x3y2 − 2x4y1 − 3x4y2 + 3y1y2
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x3 + x4 + y1 + 2y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 − x1y1

+ 2x1y2 − x2y1 + 2x2y2 + 2x3y1 − 3x3y2 + 2x4y1 − 3x4y2 − 3y1y2

x3 + x4 + y1 + 2y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 − x1y1

+ 2x1y2 − x2y1 + 2x2y2 + x3y1 − 3x3y2 + 2x4y1 − 3x4y2 − 2y1y2

x3 + x4 + y1 + 2y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 − x1y1

+ 2x1y2 − x2y1 + 2x2y2 + x3y1 − 3x3y2 + x4y1 − 3x4y2 − y1y2

x3 + x4 + y1 + 4y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 − x1y1

+ 3x1y2 − x2y1 + 3x2y2 + x3y1 − 4x3y2 + x4y1 − 4x4y2 − 3y1y2

x3 + x4 + 2y1 + 2y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 − 2x1y1

+ 2x1y2 − x2y1 + 2x2y2 + 3x3y1 − 3x3y2 + 3x4y1 − 3x4y2 − 4y1y2

x3 + x4 + 2y1 + 2y2 + x1x2 − x1x3 − x2x3 + x2x4 − x3x4 − x1y1 + 2x1y2

− 2x2y1 + 2x2y2 + 3x3y1 − 3x3y2 − 2x4y1 + x4y2 − 4y1y2

x3 + x4 + 2y1 + 3y2 − x1x3 − x1x4 + 2x2x3 + 2x2x4 + 2x3x4 + 2x1y1 + x1y2

− 2x2y1 − 3x2y2 − 3x3y1 − 3x3y2 − 3x4y1 − 3x4y2 + 4y1y2

x3 + x4 + 2y1 + 3y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 + 2x1y1

− 2x1y2 + 2x2y1 − 2x2y2 − 3x3y1 + 3x3y2 − 3x4y1 + 3x4y2 − 5y1y2

x3 + x4 + 2y1 + 3y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 + 2x1y1

− 2x1y2 + 2x2y1 − 2x2y2 − 3x3y1 + x3y2 − 3x4y1 + 3x4y2 − 3y1y2

x3 + x4 + 2y1 + 3y2 + x1x2 − x1x3 − x1x4 − x2x3 + 2x3x4 + 2x1y1 − 2x1y2

+ x2y1 − 2x2y2 − 3x3y1 + 3x3y2 − 3x4y1 + 2x4y2 − 4y1y2

x3 + x4 + 2y1 + 5y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 + 2x1y1

− 3x1y2 + 2x2y1 − 3x2y2 − 3x3y1 + 4x3y2 − 3x4y1 + 4x4y2 − 6y1y2

x3 + 3x4 + 3y1 + 3y2 + x1x2 − x1x3 − 2x1x4 − x2x3 − 2x2x4 + 3x3x4 − 2x1y1

+ 3x1y2 − 2x2y1 + 3x2y2 + 3x3y1 − 4x3y2 + 4x4y1 − 6x4y2 − 6y1y2

2x3+2x4−x1x3−x1x4−x2x3−x2x4+x3x4+x1y1+3x1y2+3x2y1+x2y2−2x3y1−2x3y2−2x4y1−2x4y2+3y1y2

x2 + x3 + x4 + y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 + x1y1 + 3x1y2

− x2y1 − 2x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + 2y1y2

x2 + x3 + x4 + 3y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 + x1y1 + 4x1y2

− x2y1 − 3x2y2 − x3y1 − 3x3y2 − x4y1 − 3x4y2 + 3y1y2

x2 + x3 + x4 + 2y1 + 2y2 − x1x2 − x1x3 − x1x4 + 2x2x3 + 2x2x4 + 2x3x4 + 2x1y1

+ 2x1y2 − 3x2y1 − 3x2y2 − 3x3y1 − 3x3y2 − 3x4y1 − 2x4y2 + 4y1y2

x2 + x3 + x4 + 2y1 + 2y2 − x1x2 − x1x3 − x1x4 + 2x2x3 + 2x2x4 + 2x3x4 + 2x1y1

+ 2x1y2 − 3x2y1 − 3x2y2 − 3x3y1 − 3x3y2 − 3x4y1 − 3x4y2 + 5y1y2
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x2 + x3 + 2x4 + 2y1 + 4y2 − x1x2 − x1x3 − 2x1x4 + 2x2x3 + 3x2x4 + 3x3x4 + 2x1y1

+ 3x1y2 − 3x2y1 − 4x2y2 − 3x3y1 − 4x3y2 − 4x4y1 − 6x4y2 + 6y1y2

2x2 + 2x3 + 2x4 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 + x1y1 + 3x1y2

− 2x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 3y1y2

1−x1−x2−x3 +x4− y1 + 2y2 +x1x2 +x1x3 +x2x3 +x1y1−x1y2 +x2y1−x2y2 +x3y1−x3y2−x4y1− y1y2

1−x1−x2 +x3 +x4−y1 +x1x2−x1x3−x1x4 +x3x4 +2x1y1 +2x1y2 +x2y1−x3y1−x3y2−x4y1−x4y2 +y1y2

1−x1−x2+x3+x4−y1+y2+x1x2−x1x3−x1x4+x3x4+2x1y1+3x1y2+x2y1−x3y1−2x3y2−x4y1−2x4y2+2y1y2

1− x1 + x3 + x4 − y1 + y2 + x1x2 + x2x3 + x2x4 + x3x4 + x1y1 − 2x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + 2y1y2

1−x1+x2+x3+x4−y1+x2x3+x2x4+x3x4+x1y1+x1y2−x2y1−2x2y2−x3y1−2x3y2−x4y1−2x4y2+3y1y2

1− x1 + x2 + x3 + 2x4 − y1 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4

+ 2x1y1 + 3x1y2 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 3y1y2

2− 2x1 − 2x2 + 2x4 − 2y1 + 5y2 + 2x1x2 − x1x4 + 2x2x3 − x2x4 − x3x4 + 3x1y1

− x1y2 + 3x2y1 − 3x2y2 + x3y1 − 3x3y2 − 2x4y1 + 2x4y2 − 3y1y2

2−2x1−x2+2x3+2x4−2y1−y2+x1x2−x1x3−x1x4+x3x4+3x1y1+x1y2+x2y1−2x3y1−x3y2−2x4y1−x4y2+2y1y2

2− 2x1 + x2 + 2x3 + 2x4 − 2y1 − y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4

+ 3x1y1 + 3x1y2 − x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 4y1y2

2− 2x1 + 2x2 + 2x3 + 2x4 − 2y1 − 2y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4

+ 3x1y1 + 3x1y2 − 2x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 5y1y2

2− 2x1 + 2x2 + 2x3 + 4x4 − 2y1 − y2 − x1x2 − x1x3 − 2x1x4 + x2x3 + 2x2x4 + 2x3x4

+ 3x1y1 + 4x1y2 − 2x2y1 − 3x2y2 − 2x3y1 − 3x3y2 − 3x4y1 − 5x4y2 + 6y1y2

3− 3x1 + 3x2 + 3x3 + 3x4 − 3y1 − 3y2 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4

+ 3x1y1 + 4x1y2 − 2x2y1 − 3x2y2 − 2x3y1 − 3x3y2 − 2x4y1 − 3x4y2 + 6y1y2

3−2x1−2x2−2x3+x4−3y1+3y2+x1x2+x1x3+x2x3+2x1y1−x1y2+2x2y1−x2y2+2x3y1−x3y2−x4y1−2y1y2

y1 +y2 +x1x2 +x1x3 +x1x4 +x2x3 +x2x4 +x3x4−x1y1−x1y2−x2y1−x2y2−x3y1−x3y2−x4y1−x4y2 +y1y2

y1 + 3y2 + x2x3 + x2x4 + x3x4 − x1y1 + x1y2 + x2y1 − 2x2y2 + x3y1 − 2x3y2 + x4y1 − 2x4y2 − 3y1y2

y1 + 3y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − x1y1 − 2x1y2 − x2y1 − 2x2y2 − 2x3y2 − 2x4y2 + y1y2

y1 +3y2 +x1x2 +x1x3 +x1x4 +x2x3 +x2x4 +x3x4−x1y1−2x1y2−x2y1−2x2y2−x3y1−2x3y2−2x4y2 +2y1y2

y1+3y2+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4−x1y1−2x1y2−x2y1−2x2y2−x3y1−2x3y2−x4y1−2x4y2+3y1y2

2y1 + 3y2 + x1x2 + x1x3 + 2x1x4 + x2x3 + 2x2x4 + 2x3x4 − x1y1 − 2x1y2

− x2y1 − 2x2y2 − x3y1 − 2x3y2 − 2x4y1 − 3x4y2 + y1y2

3y1+3y2+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4−2x1y1−2x1y2−2x2y1−2x2y2−2x3y1−2x3y2−2x4y1+3y1y2

3y1 + 3y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − 2x1y1 − 2x1y2

− 2x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 5y1y2
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3y1 + 6y2 + x1x2 + x1x3 + 2x1x4 + x2x3 + 2x2x4 + 2x3x4 − 2x1y1

− 3x1y2 − 2x2y1 − 3x2y2 − 2x3y1 − 3x3y2 − 3x4y1 − 5x4y2 + 6y1y2

x4 + 3y2 + x1x2 + x1x3 − x1x4 + x2x3 − x2x4 − x3x4 + 2x1y1 − 2x1y2

+ 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 − x4y1 + 3x4y2 − 3y1y2

x4+6y2+x1x2+x1x3−x1x4+x2x3−x2x4−x3x4+x1y1−3x1y2+x2y1−3x2y2+x3y1−3x3y2−x4y1+4x4y2−3y1y2

x4 + y1 + 3y2 + x1x2 + x1x3 − x1x4 + x2x3 − x2x4 − x3x4 + x1y1

− 2x1y2 + x2y1 − 2x2y2 + 2x3y1 − 2x3y2 − 2x4y1 + 3x4y2 − 3y1y2

x4+y1+3y2+x1x2+x1x3+x1x4+x2x3+2x2x4+2x3x4−2x1y2−x2y1−2x2y2−x3y1−2x3y2−2x4y1−3x4y2+y1y2

x4 + y1 + 3y2 + x1x2 + x1x3 + 2x1x4 + x2x3 + 2x2x4 + 2x3x4 − x1y1

− 2x1y2 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − 2x4y1 − 4x4y2 + 2y1y2

x4 + 2y1 + 3y2 + x1x2 + x1x3 − x1x4 + x2x3 − x2x4 − x3x4 + 2x1y1

− 2x1y2 + 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 − 3x4y1 + 3x4y2 − 5y1y2

x4 + 2y1 + 3y2 + x1x2 + x1x3 − x1x4 + x2x3 − x2x4 − x3x4 + x1y1

− 2x1y2 + 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 − 3x4y1 + 3x4y2 − 4y1y2

x4+2y1+3y2+x1x2+x1x3−x1x4+x2x3−x2x4+x3x4+2x1y1−2x1y2+2x2y1−2x2y2−2x3y2−3x4y1+x4y2−3y1y2

x4 + 3y1 + 3y2 + x1x2 + x1x3 − x1x4 + x2x3 − x2x4 − x3x4 − 2x1y1

+ 3x1y2 − 2x2y1 + 3x2y2 − 2x3y1 + 3x3y2 + 3x4y1 − 4x4y2 − 6y1y2

2x4 + 3y1 + 3y2 + x1x2 + x1x3 + 3x1x4 + x2x3 + 3x2x4 + 3x3x4 − 2x1y1

− 2x1y2 − 2x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 5x4y1 − 5x4y2 + 3y1y2

x3 + x4 + y1 + 5y2 + x1x2 + 2x1x3 + 2x1x4 + 2x2x3 + 2x2x4 + 3x3x4

− x1y1 − 3x1y2 − x2y1 − 3x2y2 − 2x3y1 − 5x3y2 − 2x4y1 − 5x4y2 + 3y1y2

x3 + x4 + 2y1 + 5y2 + x1x2 − x1x3 + 2x1x4 − x2x3 + 2x2x4 − 2x3x4

+ 2x1y1 − 3x1y2 + 2x2y1 − 3x2y2 − 3x3y1 + 4x3y2 + 3x4y1 − 5x4y2 − 6y1y2

x2+x3+x4+2y2+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4−2x1y2−x2y1−2x2y2−x3y1−2x3y2−x4y1−2x4y2+y1y2

x1 + x2 + x3 + x4 + y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

− x1y1 − 2x1y2 − x2y1 − 2x2y2 − x3y1 − 2x3y2 − x4y1 − 2x4y2 + 2y1y2

x1 + x2 + x3 + 2x4 + 3y2 + x1x2 + x1x3 + 2x1x4 + x2x3 + 2x2x4 + 2x3x4

− x1y1 − 3x1y2 − x2y1 − 3x2y2 − x3y1 − 3x3y2 − 2x4y1 − 5x4y2 + 3y1y2

2x1 + 2x2 + 2x3 + 2x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − 2x1y1

− 2x1y2 − 2x2y1 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 3y1y2

1− x1 − x2 − x3 + x4 − y1 + 5y2 + x1x2 + x1x3 + 2x2x3 − x2x4 − x3x4 + x1y1

− x1y2 + 2x2y1 − 3x2y2 + 2x3y1 − 3x3y2 − x4y1 + 2x4y2 − 3y1y2

1−x1−x2+x3+x4−y1+x1x2−x1x3−x1x4+x3x4+2x1y1+3x1y2+x2y1+x2y2−x3y1−2x3y2−x4y1−2x4y2+3y1y2
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1− x1 − x2 + 2x3 + 2x4 − y1 + y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4

+ x1y1 + 2x1y2 + x2y1 + 2x2y2 − x3y1 − 3x3y2 − x4y1 − 3x4y2 + y1y2

1− x1 − x2 + 2x3 + 2x4 − y1 + y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4

+ x1y1 + 3x1y2 + x2y1 + 3x2y2 − x3y1 − 4x3y2 − x4y1 − 4x4y2 + 3y1y2

1− x1 − x2 + 2x3 + 3x4 − y1 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4 + x1y1

+ 2x1y2 + x2y1 + 2x2y2 − x3y1 − 3x3y2 − 2x4y1 − 3x4y2 + 2y1y2

1− x1 − x2 + 3x3 + 3x4 − y1 − y2 + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4

+ x1y1 + 2x1y2 + x2y1 + 2x2y2 − 2x3y1 − 3x3y2 − 2x4y1 − 3x4y2 + 3y1y2

1−x1 +x4− y1 + 2y2 +x1x2 +x1x3 +x2x3 +x2x4 +x3x4 +x1y1−x1y2− 2x2y2− 2x3y2−x4y1− 2x4y2 + y1y2

2− 2x1 − 2x2 − 2x3 + 2x4 − 2y1 + 6y2 + 2x1x2 + 2x1x3 − x1x4 + 2x2x3 − x2x4

− x3x4 + 3x1y1 − 3x1y2 + 3x2y1 − 3x2y2 + 3x3y1 − 2x3y2 − 2x4y1 + 2x4y2 − 4y1y2

2− 2x1 − 2x2 − 2x3 + 2x4 − 2y1 + 7y2 + 2x1x2 + 2x1x3 − x1x4 + 2x2x3 − x2x4

− x3x4 + 3x1y1 − 3x1y2 + 3x2y1 − 3x2y2 + 3x3y1 − 3x3y2 − 2x4y1 + 2x4y2 − 5y1y2

2− 2x1 − 2x2 − 2x3 + 2x4 − 2y1 + 7y2 + 2x1x2 + 2x1x3 − x1x4 + 2x2x3 − x2x4

+ 3x1y1 − 3x1y2 + 3x2y1 − 3x2y2 + 2x3y1 − 3x3y2 − 2x4y1 + x4y2 − 4y1y2

2− 2x1 − 2x2 − 2x3 + 2x4 − 2y1 + 10y2 + 2x1x2 + 3x1x3 − x1x4 + 3x2x3 − x2x4

− 2x3x4 + 3x1y1 − 4x1y2 + 3x2y1 − 4x2y2 + 4x3y1 − 6x3y2 − 2x4y1 + 3x4y2 − 6y1y2

2− 2x1 − 2x2 + x3 + 2x4 − 2y1 − y2 + 2x1x2 − x1x3 − x1x4 − x2x4 + x3x4

+ 3x1y1 + 3x1y2 + 3x2y1 + 2x2y2 − x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 4y1y2

2− 2x1 − 2x2 + 2x3 + 2x4 − 2y1 − 2y2 + 2x1x2 − x1x3 − x1x4 − x2x3 − x2x4

+ x3x4 + 3x1y1 + 3x1y2 + 3x2y1 + 3x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − x4y2 + 4y1y2

2− 2x1 − 2x2 + 2x3 + 2x4 − 2y1 − 2y2 + 2x1x2 − x1x3 − x1x4 − x2x3 − x2x4

+ x3x4 + 3x1y1 + 3x1y2 + 3x2y1 + 3x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 5y1y2

2− 2x1 − 2x2 + 2x3 + 2x4 − 2y1 − y2 + 2x1x2 − x1x3 − x1x4 − x2x3 − x2x4

+ x3x4 + 3x1y1 + 4x1y2 + 3x2y1 + 4x2y2 − 2x3y1 − 3x3y2 − 2x4y1 − 3x4y2 + 6y1y2

2− 2x1 − 2x2 + 2x3 + 2x4 − 2y1 + 2x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + x3x4

+ 3x1y1 + x1y2 + 3x2y1 + 3x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 3y1y2

2− 2x1 + 2x3 + 2x4 − 2y1 + x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 + 3x1y1

+ x1y2 − 2x2y2 − 2x3y1 − 2x3y2 − 2x4y1 − 2x4y2 + 3y1y2

3− 3x1 − 3x2 + 3x3 + 3x4 − 3y1 − 3y2 + 3x1x2 − 2x1x3 − 2x1x4 − x2x3 − x2x4

+ x3x4 + 4x1y1 + 6x1y2 + 3x2y1 + 4x2y2 − 2x3y1 − 3x3y2 − 2x4y1 − 3x4y2 + 6y1y2
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3−2x1−2x2−2x3−3y1+5y2+x1x2+x1x3+x2x3+x3x4+2x1y1−x1y2+2x2y1−x2y2+2x3y1−2x3y2−x4y2−3y1y2

1−x1−x2−y1+4y2+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4+x1y1−2x1y2+x2y1−2x2y2−2x3y2−2x4y2−y1y2

3y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − 2x1y2 + x2y1 − 2x2y2 + x3y1 − 2x3y2 + x4y1 − 2x4y2 − y1y2

1− x1 − x2 − x3 − y1 + 4y2 + x1x2 + 2x1x3 + x1x4 + 2x2x3 + x2x4 + x3x4

+ x1y1 − 2x1y2 + x2y1 − 2x2y2 + 2x3y1 − 3x3y2 − 2x4y2 − y1y2

1− x1 − x2 − x3 − y1 + 5y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1y1

− 2x1y2 + x2y1 − 2x2y2 + x3y1 − 2x3y2 − 2x4y2 − 2y1y2

3− 2x1 − 2x2 − 2x3 − x4 − 3y1 + 7y2 + x1x2 + x1x3 + x2x3 + x2x4 + x3x4 + 2x1y1

− x1y2 + 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 + x4y1 − 2x4y2 − 4y1y2

3− 2x1 − 2x2 − 2x3 − 3y1 + 6y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + 2x1y1

− 2x1y2 + 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 − 2x4y2 − 3y1y2

3y2+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4+2x1y1−2x1y2+2x2y1−2x2y2+2x3y1−2x3y2+2x4y1−2x4y2−3y1y2

3y2+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4+x1y1−2x1y2+x2y1−2x2y2+x3y1−2x3y2+x4y1−2x4y2−2y1y2

6y2+x1x2+x1x3+2x1x4+x2x3+2x2x4+2x3x4+x1y1−3x1y2+x2y1−3x2y2+x3y1−3x3y2+2x4y1−5x4y2−3y1y2

1− x1 − x2 − x3 − x4 − y1 + 2y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

+ x1y1 − x1y2 + x2y1 − x2y2 + x3y1 − x3y2 + x4y1 − x4y2 − y1y2

1− x1 − x2 − x3 − x4 − y1 + 5y2 + x1x2 + x1x3 + 2x1x4 + x2x3 + 2x2x4 + 2x3x4

+ x1y1 − 2x1y2 + x2y1 − 2x2y2 + x3y1 − 2x3y2 + 2x4y1 − 4x4y2 − 2y1y2

1− x1 − x2 − x3 − x4 − y1 + 6y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

+ x1y1 − 2x1y2 + x2y1 − 2x2y2 + x3y1 − 2x3y2 + x4y1 − 2x4y2 − 3y1y2

1− x1 − x2 − x3 − x4 − y1 + 8y2 + x1x2 + 2x1x3 + 2x1x4 + 2x2x3 + 2x2x4 + 3x3x4

+ x1y1 − 3x1y2 + x2y1 − 3x2y2 + 2x3y1 − 5x3y2 + 2x4y1 − 5x4y2 − 3y1y2

2− 2x1 − x2 − x3 − x4 − 2y1 + 4y2 + 2x1x2 + 2x1x3 + 2x1x4 + x2x3 + x2x4 + x3x4

+ 2x1y1 − 3x1y2 + x2y1 − 2x2y2 + x3y1 − 2x3y2 + x4y1 − 2x4y2 − y1y2

3− 3x1 − 2x2 − 2x3 − 2x4 − 3y1 + 6y2 + 3x1x2 + 3x1x3 + 3x1x4 + x2x3 + x2x4 + x3x4

+ 5x1y1 − 5x1y2 + 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 + 2x4y1 − 2x4y2 − 3y1y2

3− 3x1 − 2x2 − 2x3 − 2x4 − 3y1 + 12y2 + 2x1x2 + 2x1x3 + 2x1x4 + x2x3 + x2x4 + x3x4

+ 3x1y1 − 5x1y2 + 2x2y1 − 3x2y2 + 2x3y1 − 3x3y2 + 2x4y1 − 3x4y2 − 6y1y2

3− 2x1 − 2x2 − 2x3 − 2x4 − 3y1 + 8y2 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

+ 2x1y1 − 2x1y2 + 2x2y1 − 2x2y2 + 2x3y1 − 2x3y2 + 2x4y1 − 2x4y2 − 5y1y2

• Quadratizations of x1x2x3x4x5 with one auxiliary variable y1:

none
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[152] Živný, S., Cohen, D. A., and Jeavons, P. G. The expressive power of
binary submodular functions. In MFCS (2009), R. Královic and D. Niwinski,
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