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Currently, quantifiable investigations of the epigenome regugell lysis and are
population based, prohibiting direct investigations of intact intranuclear structural
organization and introducing noise into data obtained from inherently heterogeneous
stem cell populations. To address this, we have developed andoget a singleell
high-content image informatics framework to capture organizational signatures of
epigenetic signaling components from images of cellular nuclei obtained via
superresolution nanoscopy. High dimensional quantitative texture descriptortheof
organizational dynamics of key posttranslational modifications to core histone proteins
were imaged in different human stem cell systems using 4jaeed stimulated emission
depletion confocal nanoscopy. Influential texture descriptors were identifiedidated
at the nanoscale using immurgpld electron microscopy, and organizational sub
classifiers were generated from this bioimage informatics data representing a range of
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differentiation of human mesenchymal stem cells, the organizational classfierged a
clear evolution with temporal cell state, which was more sensitive than the conventional
mass spectrometrpased quantitation of the relative abundance of these PTMs. When a
range of stem cell phenotypes sharing common DNA sequences were imbagedsub
classifiers emerged correlating with the divergent phenotypes for undifferentiated,
adipogenic, and osteogenic hMSCs, as well as for human foreskin fibroblasts, induced
pluripotent stem cells, neural stem cells, and reprogrammed neurons. Thirsctingent
bioimage informatics reflective of chromatin organization yields a higher order
2NBFYATFTGAZ2YFE aA3ylFidz2NE O2NNBaLRYRAYy3a (2
To elucidate the influence of biophysical factors on stem cell epigenetic states,
these ima@ingbased organizational classifiers were tested on human mesenchymal stem
cells exposed to physically constraining cues, and successfully predicted the early
differentiation toward adipogenic hMSCs on hydrogel substrates with spatially graded
mechanical stiffness, as well as osteogenic hMSCs on -lgbtigraphed, graded
nanotopographies. In summary, in contrast to the traditional reductionist, population
level readouts in epigenomics, the approach outlined in this thesis offers a more
integrated, singlecell, organizational index of emergent stem cell activity in response to
defined environmental cues, and can be applied for the screening of discrete
microenvironmental properties for the enhancement of stem cell behavioral control and

facilitated integraton in regenerative medicine applications.
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CHAPTER INTRODUCTION

1.1 Regenerative Medicine

The acceleration of research on stem cells has revolutionized clinical strategies for
treating damaged tissues/organs and cellular degeneratiorthe United States, the first
research projecinvestigating humamembryonic stem cells (hRESCs) wineded by the
NIH over a decade ada, 2]. Since then, significant interest and investment has been
poured into the use oktem cells in regenerative medicine, with over 2,000 research
reports being published in peer reviewed scientific journals every[yabince 2008, the
NIH has continually supported the field of regenerative medicine with approximately $1.5
billion allocated to research involving human stem ddlls This federal funding, coupled
with state funding, has continued to increase over the past several years, along with
increasing public support due to the realization of the potential of stem cell therapy to
treat a wide range of debilitating diseas¢d]® ¢ KA & LI SR GKS g1 &
establishment of theCenter forRegenerative Medicine 2010, which is dedicated to
accelerating the pace of stem cell therapy, as well as overcoming the many scientific and
political hurdles to its ultimate clinical translation. Outside of the US, the worldwide
market value for regenerative medicine in ZDWvas estimated to be in excess of $500
billion [5]. Thus, it is quite clear that both intellectual and financial investment into
regenerative medicine using stem cells is quite large, steddily rising, as it harbors
massive potential to \&ly revolutionize cell replacement strategies andstie

engineering of the future.



1.1.1 Cell Replacement Therapy

The foundational principle of cell replacement therapy lies in the restoration of
the normal function of tissues/organs by replacing danthglying, or diseased cells with
fresh, functional one§6]. There are numerous degenerative diseases that are caused by
the loss of functional cells due to disease (both acquired and genetic), injury and aging.
Perhaps the most promising potential solution for treating such diseases is employing cell
replacement herapy after generating desired cell phenotypes through the directed
differentiation of stem cells. In the US, many clinical trials using both pluripotent and
multipotent stem cells for cell replacement therapy are actively being conducted to treat
a widevariety of degenerative diseasgq.

Pluripotent hESCs have been differentiated into retinal pigment epithelium cells
YR adzomaSlidsSyidte KIFIZS 0SSy Aya2SOGSR Ayidz L
[8]. hESCs have also been used to derive oligodendrocyte preamei®ito inject into
patients suffering from traumatic spinal cord injy8}. However, despite the numerous
advantages of hESCs, they will always maintain a politically controversial profile due to
ethical concerns regarding their source. Furthermore, they will always be allogeneic to
any patient receiving cell replacement therapy using hESCs, thus immunological rejection
will always remain an issue.

A less controversial and potentially autologous source of pluripotent stem cells
are induced pluripotent stem cells (iPSCs). These are gendrardsomatic cells and

"reprogrammed" into a pluripotent state by transfecting them with a viral vector which

causes the upregulated expression of a set of key developmental §Hije$he practical



logistics iwvolved in the clinical translation of iPSCs involves obtaining a skin biopsy (or
similarly easily obtainable cell sample) from a patient with a degenerative disease,
reprogramming the patient's cells to a pluripotent state and subsequently directing the
differentiation of these cells towards the desired cell phenotyperitro, and injecting
these differentiated autologous cells into the degenerated tissue/organ to facilitate
normal function. The realization of this approach will have a large impact on mode
medicine and greatly facilitate the progression of personalized medicine. However, the
current methods of iPSC generation using viral vectors limits their ugevitvo settings,
for drug/material screening or disease modeling in basic science résearc

Thus, due to these current limitations of human pluripotent stem cells,
multipotent adult stem cells are much more commonly used in the clinic. The bone
marrow is a particularly abundant source for selhewing stem cells, harboring
hematopoietic, endothkal and mesenchymadtem cells[11]. Both hematopoietic and
endothelial stem cells are quite limited in their differentiation ability, with the former
shownto give rise to all blood cell typg%2], and the latter shown to differentiate into
endothelial cell§13]. Mesenchymal stem cells, on the other hand, have been reported to
give rise to a large range of different cell phenotypes, by having the ability to
transdifferentiate into cells of ectoderm§l4, 15 and endoderma[16, 17] lineages, in
addition to its native mesagfm [18, 19]. Thushuman mesenchymal stem cellgSC}
are a particularly attractive source of cells to usecéll replacement therapyas they
avoid many of the issues that accompany using pluripotent steiths@ehile maintaining

a wide range of differentiation ability. Furthermore, their inherent ability to migrate



chemotactically to tissues exhibiting inflammation and injury enables their dirfaadtian

into the damaged tissuer into the blood circulatior{20]. Moreover, he beneficial

effects of cell replacement therapy using hMSCs have already been demonstrated in

humans in several clinical cagds 21-30]. Thus, it is quite clear that cell replacement

therapy has enormous potential to treat a variety of diseases and injuries, and the efficacy

and safety of future cell replacement therapy treatments is largely dependent on

continually increasing an acute cpnehension of the behavior of different stem cells.

Cell 1.9 Tissue
Replacement 9 Engineering

Figure 1.1 Regenerative medicine using stem cells in the clinic currently consists of two main stra
cell replacement therapy and tissue engineering. Both strategies beginlbging stem cells from eithe
the patient (autologous) or from a donaal(ogeneig. These stem cells can subsequently be injected
a site of interest in the patient (cell replacement therapy). Alternatively, stem cells can be seeded
dimensioné& scaffolds that mimic the properties of an organ of interest, where they can be
differentiated into desired cell types. After the appropriate vascularization of this cell seeded ma
this can be implanted into the patient (tissue engineerifure modified from{31]




1.1.2 Tissue Engineering

Of the many diseases and injuries thagienerative medicine seeks to treat, many
cannot be addressed with merely cell replacement therapy. Oftentimes, entire
debilitating tissues and organs need to be completely removed and replaced with new
tissues/organs. This can be accomplished when fanati organs are donated to be
transplanted into the patient, but the demand for such organs often greatly outweighs
their supply.

To address this imbalance, scientists have worked towards engineering artificial
tissues and organis vitro for their ultimate transplantation into patientsn viva Since
the conception of the field of tissue engineerif@}, scientists have strived to engineer
tissues and organs from virtually every part of the human body over the past few decades.
Some more prevalent examples include the development of an engineered[3iger
kidney[33], pancrea$34], corneg35], heart component$36-39], blood vesselpt0, 41],
bone tissue[42, 43], cartilage[44] and tendong[45], amongst many other tises and
organs. Despite the abundant progress made in the generation of functiondissees,

their clinical translation is often impeded due to several limitations.

1.1.3 CurrentChallengedo Overcome in Regenerative Medicine

Regenerativemedicine halls promise to treat a wide range of degenerative
diseases and injuries in the future, and virtually eliminate many of the problems which
arise from such diseases/injuries. However, prior to its practical and effective clinical

realization, severatritical challenges to the field must be addressed. First and perhaps



foremost, the safety of any regenerative medical procedure must be ensured. This entails
the employment of xendree culture conditions, the removal of any residual pluripotent
stem cells remaiimg after directed differentiation to prevent tumor formation, and the
appropriate immunomodulation of transplanted cells, as well as the patient, in allogeneic
clinical setting$46).

Aside from these safety considerations, reliable cell sourcing is quite important
since all cells used in regenerativeedicine are the building blocks for successful
regeneration. As previously mentioned, different stem cells have varied differentiation
and selfrenewal capacities. For regenerative medical applications involving autologous
cells, their thorough characteration and purification is vital for successful integration,
and this must be closely monitored on a cdsecase basis. However, not all degenerating
tissues harbor a readily available source for primary cell expansion, which may prompt
allogeneic cell thrapy as a more viable optigd7]. In these cases, a movement toward
the creation of universal donor cells that would not be immunologically rejected would
be particularly advantageougl8]. One particularly clever studysed F(ab')Zantibody
fragments to effectively mask the histocompatibility proteins on the surface of donor cells
and prevent their immunorejection upon their transplantatip#9]. Regardless of the
source, all cells used for regenerative medical treatments incalirsettings require a
meticulously comprehensive characterization.

This detailed characterization is also crucial for efficiently controlling the hehav
of stem cells, whether iis for maintaining their selfenewal and facilitating their

expansion o efficiently directing their differentiatior{50]. It is well established that



different gene trascription patterns, particularly involving transcription factors, are a
hallmark of establishing a phenotypic identity in stem cells. However, correlating gene
expression changes to environmental stimuli merely sheds some light on the downstream
changes tht occur in response to varied stimuli (i.e. growth factors, drugs/small
molecules, materials). The underlying "cause" of these gene transcription change
"effects” is believed to be epigenetic modifications that are constantly occurring in
chromatin. Thesemodifications are at the root of orchestrating the precise gene
expression patterns necessary for the normal development, or maintenance ef self
renewal, of stem cells. Thus, a rather large gap currently exists in our ability to have
precise control ovestem cell behavior; we have correlated many environmental changes
to important developmental gene transcription changes, but the causative epigenetic
modifications driving these gene transcription changes are still largely obscure. Therefore,
it is important to work towards bridging this gap by increasing our comprehension of the

dynamic epigenome in response to different environmental stimuli.

1.2 Epigenetic Control of Gene Transcription Regulation

In eukaryotic organisns, the precise spatiotemporal orchestration of gene
activation and silencing from a common primary DNA sequence is largely governed by
chemical modifications to chromatin, which yield dynamic chromatin structures which
regulate accessibility to specifgarts of their DNA[51-53]. These modifications are
referred to as epigenetic, to the extent that they regulate patteofigene transcription

without actually altering the primary DNA sequence itsg#, 55. The key to



understanding how epigenetic modifications control gene transcription patterns lies in
understanding how chromatin is structured, and how changes to this structure is

accomplished to caesdownstream changes in gene transcription.

Figure 12. Crystal structure of a single nucleosome unit. The core consists of 2 pé
each of the four histone core proteins [H2A (magenta), H2B (green), H3 (Yellow) &
(Blue)], which are surrounded by D&6)]

The basic repeat unit of chromatin is the nucleosome, which is comprised of
approximately 14Aucleotidebase pairs of DNA wound around a histone octamieictv
consists of two copies of each of the four core histones (H2A, H2B, H3, A5 (Figure
1.1). The charge based interaction between histones and their surrounding DNA allows
for chromatin remodeling talifferent gene transriptional state§60-62]. Thedynamics

of thesechromatin structures argovernedin three main ways: DNA methylation, post



translational modifications (PTMs) to core histones and the activity of chromatin

remodeling complexes.

1.2.1 DNA Methiation

When the DNA strand itself is methylated, tlgauses structural changes to
chromatin conformation and subsequently getranscriptionactivity [63, 64]. Briefly,
DNA methyltransferases (DNMTSs) catalyze the transfer of methyl groups facien®sw
methionine to the & position of cytosines on DNJ&5]. This methylation occurs in
regions of DNA which contain a high frequendycgtosine nucleotides adjacent to

guanine nucleotides,

Euchromatin: Transcriptionally Active

Heterochromatin: Transcriptionally Silent

e -

@ :Acetyl Group ® : Methyl Group
Figure 13. Simplified diagram illustrating the chromatin structural states which occur as a res
histone acetylation and DNA methylation. HAT: Histone AcetyltransfeFH3AC: Histone Deacetylas
DNMT: DNA Methyltransferase, HDACi: HDAC inhibitor

known as CpG islandé4]. Global hypomethylation in Cp@evoid regions has been

shown to promotel y a2 LISy ¢ OKNR Y, dalled/ euchrdmadnB6)lY | G A 2y

Conversely, Cp{Sland hypermethylation at the promoters é&ky developmentajenes
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silencing of these ges[67, 68]. Since DNA methylation causes changes to the charge of
DNA, which impacts the interaction between DNA and the histare, this methylation

is eventually manifested in structural changes to chromga) 70].

1.2.2 Posttranslational Modifications to Histones

Compared to DNA methylation, posttranslationaldifications (PTMs) to the core
histoneproteinsare much more complex. Aside from methylation, there are many other
chemical modifications that occur tlifferent amino acid residues dristones, including
acetylation [71], phosphorylation[72], ubiquitylation [73], sumoylation [74] and
biotinylation [75, 76], amongst other$77, 78]. Different combinations of PTMs occur on
select anmo acid residues in each of the four core histones which make up the core of
the nucleosome, all of which combinatorially contribute to different subtle structural
changes which ihfence the accessibility of theurrounding DNA to transcriptional
machiney [79]. The finding that certaiRTMs influence the addition or removal of other
ALISOATAO tc¢aa KlFa fSR (G2 GUKS KeLRGKSara 27
of PTMs translate to specific combinations of gene activation or silef@th¢~igure 1.4.

This rich PTM language enables a large range of dynamic chromatin structures
largely by causing subttdhanges to the charge interaction between DNA and the histone
core.PTMs to histones can reduce their positive charge, causing a reduction in the force

of attraction between the core histones and their surrounding negatively charged DNA

phosphate backboneThis results in the loosening of the DNA around the histones
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towards euchromatin, which is more accessible to transcriptional machinery and assumes

a transcriptionally active state. In contrast, PTMs can also restore or increase the positive

charge of thecore histones, which promotes a strong attraction with the negatively

charged DNA, restiltg ina closed heterochromatin structure, which is less accessible to

transcriptional machinery and therefore assumes a transcriptionally silent F8f&1]

(Figurel.2).
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Figurel.4. Extensive combinatorial range of posttranslational modifications to histones. (A) Diff
amino acids are subject to different posttranslational modifications, with many PTMs associate
multiple amino acids. (B) Different PTMs modify differentirsonacids in specific locations on the
terminal tails of different core histones (i.e. H2A, H2B, H3 and H4). (C) Most PTMs affect the adq
NBY2@If 2F 20KSNJ tc¢aas 3IAPGAYy3I NRaS (2 | 02
regulate sultieties in gene transcription. As an example, the c#adls between lysine methylation an
lysine acetylation is summarized on histones H3 and H4 here. Dotted lines indicate possibtalkrg
ac: acetylation, bio: biotinylation, cit: citrullination, meethylation, su: SUMOylation. Figure modifi
from [82]

1.2.3 ATPDependent Chromatin Remodeling Complexes

In addition to covalent modifications to amino acid residues on core histones,
nucleosome structre is actively altered by specialized mytbtein complexes referred

to as chromatin remodelerg83, 84]. These complexes are able to nRoovakntly
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manipulate chromatin structure by mobilizing and expelling histones to regulate access
to the DNA[85]. All identified chromatin remodeling complexes are powered by ATP
hydrolysis, as they contain a catalytic ATPase subunit which is similar to known DNA
translocating motor proteins, which implicates DNA translocation to be a part of their
mechanism ofction[86]. To date, five families of chromatin remodeling complexes have
been identified and classified based on their protein composition and functiabes:r

SWI/SNH87], ISWI[88, 89], NuRL}90] and INO80[91] (Figure 1.5.

SWI/SNF ISWI

- e N ( BrTE
_{_ Brg1/Bii) BAF60alblc A B

“BAF1 55/4%F179>
BAﬁi' nit 'BAF50

‘NuRD INO80

N

__ Hpaci MBDIN RUVBL1/2)les2/6)
i-2 MTA1/2/3 JNOSRg
M — BAF53d p5/8

\ ~
N 4 RbA \‘,‘ =

Figurel.5. Components of known ATdRependent chromatin remodeling complexdsigure modified
from [92)].
Each of these complexes have been shown to participate in a wide range of biological

activities, including DNA elongatioj®3], double strand break repaif94], cellular
development and differentiation[95], transcriptional activation[96] and tumor
suppression[97], amongst many other role$98-103]. Thus, in combination with
posttranslational modifications to histonesd DNA methylation, chromatin remodeling
contributes to directing the dynamic nucleosome which specifies and regulates desired

patterns of gene transcriptiofor the navigation of cellular behaviors
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1.2.4Chromatin Structural Dynamics Navigate Cellular Differentiation

It is clear that epigenetic modifications which produce dynamic chromatin
structures are at the heart of gene transcription regulation. One theory posits that this
chromatin structure may & part of a heritable epigenetic memory thetfluencesthe
promotion or silencing of key developmental genes in descendant&6Usl06]. Indeed,
evidence has been found for the residual retention of DNA methylation signatures from
somatic cell types of different germ lineage origins reprogrammed to a pluripotent state
[105. The notion that various epigenetic marks are inherited as naive stem cells develop
and differentiate down specific lineages suggests that these very marks are vital for their
proper development. In support of this theory, several studies have investigated and
reported on the link between chromatin structural dynamics and cellular differentiation
[107-112].

Embryonic stem cells have been demonstrated to undergo both global and gene
specific remodeling of chromatin structure in order to cease-iiewal and iitiate
differentiation [113]. For example, key regulator genes for the neural induction of ESCs
exhibit high levels of the PTMs H3K9ac and H3K4ac at ttoairgter regiong114]. Once
ESCs commit to a germ lineage, their histones are further posttranslationally modified to
direct them towards specific cell subtypes, as histone deacetylation was reported to be
critical for the timing of myeliforming oligodendrocyte differentiation from ES[245.
EZH2, a critical component of the polycomb repressor complex and the enzyme

responsible for the trimethylation of lysine 27 on histone 3, was shown to be
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downregulated as ESCs stop proliferating and begin tterdiitiate [116. During
hematopoiesis, hematopoietic progenitor cells have been reported to exhibit specific
patterns of hyperacetylation and methylation on histone 3 which trigger the activation of
human globin promoters during their developmefitl7]. In the development of the
heart, distinct epigenetic patterns were found to be correlated with stagecific
expression of genes associated with heart development and cardiac functicsh.
Furthermore, aberrant patterns of histone lysine methylation have been linked to
perturbed development in ESCk19], further confirming the vital role of appropriate
epigenetic modifications for normal development.

Not only is chromatimemodeling important for the appropriate directed differentiation

of stem cells, but it is also critical forghmaintenance of their stemnes®ne study
reports that acomponent of the NURD chromatin remodeling complex was found to be
required for the maitenance of pluripotency in ES{A20]. The acetylation patterns on
histones was atsfound to be critical foproperproliferation and stemness maintenance,
with a decease in global acetylaticand an increased activity of the histone deacetylases
1&2 (HDAC1&2pading to increased proliferation and pluripotency maintenaft21].

The trithorax group protein, Ash2l, was reported to contribimbryonic stem cell
stemnessnaintenancevia the trimethylation of specific locations on histone 3 lysine tails,
which isgenerally a trait of gene activation and open chromatin strucfa&?]. However,
thef I y 3 dzI 3 KistofAetfcodi i& it ad simple as the presence/absencadiivating
marks leading to one behavioral outcome, and the presence/absence of silencing marks

leading to an opposing outcome. Some recent investigations into the role of dysine
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specific demethylase 1 (LSD1)vlashown its role in navigatingmbryonic stem cell
developmentvia the demethylation of lysine tail residues bistone 3[123, 124]. And
aside from these specific examples, there have been a plethora of other studies
investigating diférent histone modifications, chromatin remodeling factors and DNA
methylation regulation that influence this balance between s$etiewal and
differentiation in pluripotent stem cellgl25-134).

Thus, it is quite clear that the epigenome plays a vital, complex role in navigating
cellularbehaviorthroughout development. Therefore, there are tremendous insights that
can be gained from not only investigating how this epigenetic plasticity drivedacel
differentiation, but also from understanding how the immediate microenvironment of a
naive stem cell influences this epigenome, and subsequently the resultant gene

transcription patterns and behavior of the cell.
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Figurel.6. Epigenetic mechanisnase at the root of navigating the balance between pluripotency ¢
differentiation. (A) Schematic of some key PTMs and protein complexes that regulate chrg
structure and subsequent gene transcription. Polycomb repressive complexes (PR&3galdtes
differentiation associated CBX proteins and represses developmental regulators. Desired gen¢
specific lineage are largely turned on via H3K4me3 activation, while other undesired genes are
turned off via PRCs and H3K27m®@8.the other handpluripotency is largely maintained via tgpecific
demethylasel (LSD1) and NuRD chromatin remodeling complex, which work together to demet
H3K4 and inactivate enhancers of undesired differentiation gerféigure modified fron{131]. (B)
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Figure from{135
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1.2.5Environmental Influences to Chromatin Structure

It is well established thahere are ideal physical and chemical peaties of a cell's
substrate hat are optimal formaintainng its health and functionality. From a broad
perspective, every tissue and organ in all mammalian organisms rely on thigtiace
are a wide range of different attributesf these substratethat contribute to influencing
cellular behavior, and they can be grouped in a general sense into mechanical,
topographical and chemical properties.

It is evident from nature that there uite a large range of mechanical properties
found in different tissues, each of which is optimal for its respective maintenance and
function. As an example, osteoclasts and osteoblasts maintain proper bone functionality
only in the rigid environmenn which bone thriveg136, 137]. Similarly, neurons and glia
develop and maintain functionality in the softer, higlelastic environment of the brain
[138-140]. This differentiabdevelopment and functionality is possible since cells have the
ability to monitor and respond to the $finess of its microenvironment via sensors that
are studded throughout the cell body. This causes changes to protein signaling cascades
throughout the cell body, which directly affect cytoskeletal organization and indirectly
affect gene transcription patéirns. These facts inspired the work of many scientists to
investigate the quantifiable properties of substrates of varying matrix elasticity and
correlate this with specific lineaggpecification patterns in stem cell$38, 141]. One
ANRdzL) AYy@SadaA3araGSR | GFENRIOGES |, 2dzy3Qa Y2 Rdz

of 0.1-0.5 kPa yielded neurons, whereas stiffer gels-@0kPa yielded glial culturé®m

adult neural stem cellgl42).
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Figure 1.7Mechanical properties largely influence stem cell differentiation. (A) There is a
range of mechanical properties in the environments occupied by the many diffe

functionally distinct cellular phenotypes, ranging fradilf O A 2 y &

elasticity alone influenced naive MSCs to differentiate towards neurogenicl (&Ra),
myogenic (817 kPa) and osteogenic (2B kPa) lineages, as assessed by immunofluoresc

of their corresponding biomarkef43§].
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Another group reported that matriglasticity provides mechanical cues that are vital for
angiogenesi§l43. And aside from these examples, them® have been countless other
reports on the critical f Ay 0SGsSSYy GUKS YSOKLFYyAOLf
microenvironment and itsubsequent behaviof144-153.

Beside mechanical stiffness properties, the geometric / topographic attributes of
a stem cel® microenvironment also largely influence its developm&fany studies have
investigatedgeometridtopographicproperties of differentbiocompatible materialgnd
how they impactcellular behavior. The range of different materials and devices
fabricated for this purpose is wide, from magnetic microposts useah@¢asure traction
forces and focal adhesio$54], to titanium nanopillars of varying heights and patterns
[155], to distinct patterns and shapes carved from PDMS dBbE, to slidesize chips
containing over 2,000 different mathematical algorithm guided random surface features
produced onpoly(lactic acid)157]. However, a common aspect of most of these studies
is the type ofdata that is acquired; a quantitative assessment of how cells respond to
these different materials is usually made jpbing a "downstream” reportemhether
it is protein/gene expression changes, cell viability gondliferation, metabolomicsor
other downstream effects. All of these consequential changes in cell behavior are
ultimately orchestrated by specific instructions indicating which combinations of genes
are activated or silenced spatially and temporally, whidangelyregulated and directed
by epigenetic mechanismdhus, an increasednderstanding of how specific epigenetic
marks orchestrate desired gene transcription programs can allow for an unprecedented

degree of control over cellular behavior.
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1.2.6 Current Approaches ttnterrogatethe Epigenome

Currently, there aretwo main biochemicalapproaches to interrogating the
complexities of the epigenome(l) Gene expression quantifiaati associated with
specific chromatin modifierasing chromatin immunoprecipitatio(ChIP)15§, (2) PTM
identification and distribution assessment based on mass/charge separation using mass
spectrometry[159. While each of these powerful techniques provieetensivedata
relevant to characterizing the epigenome, they are usually conducted independent of
each other and thus are each lacking critical pieces to the puzzigewiystifying
epigenetic gene regulation.

The principle of chromatin immunoprecipitation is based atedmining the relative
amounts of DNA/protein interactions. This is accomplished by isolating chromatin from
cells or tissues, fragmenting this DNA into manageable size lengths suitable for the
application ofinterest (i.e. 206600 bp for gRPPCR amplifation and smaller fragments

for deep sequencing), and then immunoprecipitating these DNA fragments against
antibodies of interestRigurel.3). The integrity of any dat¢hat is produced fronChlIP
relies heavily on the quality of the antibodies usé&dgeneral, most antibodies that are
commercially available are not suitable for ChlIP applications, as most aieitadgeting
PTMs to chromatin arproducedspecifically for ChIP, and are thus categorized asK L t

3 NJ R183p An additional concern ispitope occlusion, which is the ability of certain
unwanted PTMs to block théentended recognition of a PTM by a si&pecific antibody,

and this may cloud ChIP daparticularly onhistones highly decorated with PTNKG52).
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Despite these concerns, Chlhd assays based on CHRg currently the only wagto

guantifygene expression levels associateith specific PTMs. Wém ChIP
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Figurel.8. Schematic of Chromatin Immunoprecipitation steps. EiX#teins are cross linked, cells a
lysed, nuclei are isolated and fragmented via sonication, and subsequently immunoprecipitated &
antibodies ofinterest. After elution and reverserosslinking of DNAroteins, products can be amplifie
via PCR, viewed on microarrays or sequenced across entire genbigee fron{160]
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is coupledto genomic sequencing (CRIR

one is able to quantitaely

seq),
investigate the relative expression d
genes associated with a PTM at
remarkably high resolutiomcross entire
genomeq164).

On the other hand, mass

spectrometric approaches td

interrogating the epigenome are
unbiased and avoid any issues that ari
from using antibodiesThis @proachfirst

acid

involves isolating chromatin,

extracting whole histoes, separating
histone fractions on a High Performang
Liqguid Chromatography (HPLC) colum
and subsequently separating an
identifying PTMs decorated on thes
histone fractions based on their m/z rati

[16]1] (Figure 1.4). Thistechnique has

been successfully used to discover seve

novel PTMs that have since been strong
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certain geneg$162, 165, 166]. In addition, this approach has revealed the combinatorial
nature of PTMs, whereertain PTMs only occur in the presence of otH&é&/]. However,
certain PTMs are extremekimilar in mass, which maké#seir accurate separation and
identification dificult without highly sensitive and precise staiéthe-art instruments.
For example, the difference between an acetylation and -angthylation is merely 36
millidaltons [168], which canbe quite difficult to discernusing less sensitive mass
spectrometers. Furthermore, mapping PTMs from isolated histones provides no direct
information regarding the genes that these PTMs regulate.

Perhaps the greatest drawback of both of these methods is the fact that both
require the lyss and destruction of a relatively large numlmdrcells. Since chromatin is
NI LARf& ReylFYAO Ay NBIf GAYSY YdzOK 2F AdGa
Moreover, due to the heterogeneous nature of undifferentiated stem cell populations,
these population based approaches produce data that is inevitably cluttered with
artefacts. Thus, the need for and potential benefits from epigenetic investigations is
warranted and has the potential to address many previously unanswered questions

regarding tle subtleties of epigenetically induced stem cell development.

1.2.7 Current Approaches for Glmacterizing Chromatin Structural

Organization

Due to the large spatial organizational implications of chromatin structural
influences on transcriptional regulath and gene expression, there has been much

investment and interest in the development aethploymentof methods to increase our



24

collective comprehension of nuclear architecturd@here have been numerous
investigations to this end, employing a wide randaon-optical, chargebased imaging
techniques to resolve specially preparsdbcellular structures,, fluorescentlabeling
methodologiedo localize specific DNA sequences, and biochemical approaches to probe
long range DNA interactions coupled wétate-of-the-art DNA

sequencingechniques Some of the more prominent efforts to date will be summarized
here.

Over the past centuryhe resolution of structural biology details at the atomistic
and molecular level has been mainly accomplished usnhagy crystallography.@tinual
improvements in resolution since its conception one hundred years ago has led to
increased details in the structural interactions and subtle details in configuration of
numerous DNAprotein interactionsthat have provided contless insights for the
structural basis for transcriptional control (Figure 1.1®ollowing the discovery and
resolution of how DNA is wrapped around core histone proteins to form the core

nucleosome patrticle at 7 angstroms in 1984(Q], this ignited a somewhat exponential

Figure 1.10. A brief history of some of the more landmark crystal structures contributing
understanding of DNA organization, chromatin structure, and transcriptional cqagé.










































































































































































































































































































































































































































































































