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ABSTRACT OF THE DISSERTATION

Ventricular Blood Flow Simulation and Analysis for

Cardiovascular Diagnostics

by Scott Andrew Kulp

Dissertation Director: Dimitris Metaxas

The heart has long been seen as a symbol of life, due to its critical function of pumping

blood throughout the body. However, despite its importance, we still do not fully

understand how the heart works, due to its complex motion and structure. In particular,

doctors today are very interested in learning how the heart geometry may affect cardiac

blood flow. However, current imaging techniques, such as MRI or Ultrasound, provide

only low-resolution views of blood flow, which do not provide the desired level of detail.

In this dissertation, We will be presenting how we are using images from high-

resolution CT scans to build accurate, animated 3D models of a patient’s heart, which

are then used as boundary conditions in solving the Navier-Stokes equations to simulate

ventricular blood flow. This way, we can visualize how the complex structures within

the heart interact with the flow in both healthy and diseased hearts, which has never

been seen before. We can also use similar simulation techniques with high-detail aortic

valve reconstructions, to better understand how diseased-induced alterations in the

blood flow pattern may promote chronic remodeling of the aortic root. Finally, we

have modified the Smoothed Particle Hydrodynamics algorithm to allow for fast and

effective boundary collision management to greatly speed up our simulations.
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Chapter 1

Introduction

In patients who experience a heart attack, or in those who suffer from other various

cardiovascular diseases, the motion of the heart walls and valves can become disturbed,

leading to an abnormal blood flow pattern. If the blood is not being fully circulated

within the heart and becomes stagnant, these patients are at high risk of thrombus,

leading to stroke. Thus, it is very important for doctors to be able to visualize and

understand a patient’s cardiac blood flow. While it is possible to acquire flow data from

MRI or Doppler ultrasound imaging, the relatively low quality and resolution of this

data severely limits its usefulness to doctors. In particular, these imaging techniques

lose nearly all detail in the apex regions of the left ventricle, where there is heavy

trabeculation. Therefore, along with the rapid development of high-resolution cardiac

CT, patient-specific blood flow simulation is quickly becoming one of the central goals

in the study of cardiac blood flow.

However, there are very difficult problems faced when simulating blood flow through

the left ventricle. Most notably, the endocardium of the LV are of extraordinary ge-

ometric complexity, due to the papillary muscles and the aforementioned heavy tra-

beculation. Since this complicated geometry makes simulation much more difficult, LV

models are typically simplified and smoothed, such as in [1] and [2].

While simplifying these models greatly reduces computation cost, we believe that

the geometry and motion of these complex structures may be critical to function and

efficiency of the left ventricle. The function of the trabeculae is currently not well-

understood, but we hypothesize that healthy trabeculae helps move blood within the

trabeculae, preventing stagnant blood and potential thrombus. Additionally, diseased
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trabeculae likely might prevent blood from fully circulating, increasing the risk of clot-

ting. Therefore, in this thesis, we seek answers to the following questions:

• Can we simulate, visualize, and analyze full Navier-Stokes fluid simulations of

the left ventricle with highly detailed models, including papillary muscles and

trabeculae, and can our visualizations and analysis of these simulations be used

in clinically useful discrimination between healthy and diseased hearts?

• Does there exist interaction between trabeculae motion and fluid flow?

• Are there clinically useful reasons to use and prefer the more complex models and

simulations of the left ventricle over the more traditional smoothed-wall simula-

tions?

Another, related problem is in understanding the flow through the aortic valve

and aortic root. We believe that aortic valve disease-induced alterations in the blood

flow pattern may promote chronic remodeling of the aortic root and the left ventricle.

Although the mechanism of the aortic root remodeling is not fully understood, the

hemodynamic pattern in the aortic valve vicinity is believed to play an important role.

As mentioned, however, MRI and ultrasound images of the blood flow produce very

low resolution image, and to our knowledge, no one has performed high-resolution flow

simulations across diseased aortic root models to understand this phenomenon. So, we

also propose the following question:

• Can we use blood flow simulations to understand how the blood flow pattern in

the aortic valve may play an important role in the remodeling of the aortic root?

Furthermore, another problem that currently limits the practicality of patient-

specific blood flow simulations is computation time. Current state-of-the-art simulators

take days to run, which is impractical for use in a clinical setting. However, in recent

years, there has been increasing interest in meshless methods, such as Smoothed Particle

Hydrodynamics (SPH), due to their improved running times. However, we know that

while SPH is much faster than more traditional fluid solvers, they also lose accuracy.
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Additionally, working with complex boundary conditions is a notoriously difficult un-

solved problem, and even the most recent methods of SPH boundary management are

certainly incapable of handling the geometry and deforming motion of the left ventricle.

So, we present two more major questions to be answered in this manuscript:

• Can we find a new method of SPH boundary management that can handle the

complex geometry and motion of the left ventricular walls?

• Does SPH perform at a high enough accuracy that could still remain useful for

clinical applications?

Finally, another problem remains on the topic of SPH boundary management. All

boundary handling algorithms, to our knowledge, requires exceptionally thick walls.

Without thick walls, nodes on one side of a wall may interact with nodes on the other

side of the wall, leading to inevitable instability. If we find that SPH can perform at

clinically useful levels of accuracy, we still would lose a large amount of detail. Therefore,

we propose a final major question, which will be discussed later in this thesis:

• Can we derive a new algorithm to allow for Thin-Wall Smoothed Particle Hydro-

dynamics?

This thesis is structured as follows: Chapter 1 provides an introduction to the fields

of Computation Fluid Dynamics, how fluid fields can be solved through the Navier-

Stokes Equations and Smoothed Particle Hydrodynamics, and a literature review on

previous work in cardiac blood flow simulations. Chapter 2 (published [3]) describes how

high-resolution 4D CT imagery of the left ventricle can be used to accurately simulate

and visualize blood flow through the heart, including features such as the papillary

muscles. Chapter 3 (published [4]) builds upon this work by incorporating heart models

built from much more sophisticated reconstruction techniques, so that we can actually

see the complex interactions between ventricular trabeculae and blood flow. In Chapter

4, we seek to prove the clinical importance of using these high-detail meshes over the

more standard smoothed left ventricle models. In Chapter 5 (published [5]), we use

these simulation and visualization techniques on CT-reconstructed models of the aortic



4

valve and root. In Chapter 6 (published [6]), we seek a much faster way to perform

cardiac blood flow simulations by modifying the Smoothed Particle Hydrodynamics to

allow for effective and accurate complex-boundary handling. In Chapter 6, we introduce

a new algorithm for Thin-Wall Smoothed Particle Hydrodynamics, which allows SPH

to handle arbitrarily thin, curved boundaries, which has never been possible before.

1.1 Navier-Stokes

For the purposes of most problems in Computational Fluid Dynamics, we disregard the

molecular composition of fluids and assume that all fluid volumes are a continuum. In

the 1840’s, Claude-Louis Navier and George Gabriel Stokes applied Newton’s Second

Law to the fluid continuum assumption to derive the classical Navier-Stokes (NS) equa-

tions, which describe the motion of fluid flow [7]. The first equation, which enforces

conservation of momentum, was found to be as follows:

ρ(
∂u

∂t
+ u · ∇u) = −∇P +∇ ·T + f (1.1)

Here, ρ is the fluid density, u is the 3D velocity vector field, P is the pressure field,

T is the shear stress tensor, and f is the body force, such as gravity. The ∂u
∂t term

corresponds to the temporal acceleration of the fluid at a given moment, while the

u · ∇u corresponds to the spatial (convective) acceleration at a given point in space.

The convective acceleration component is an important, but somewhat unique, term in

fluid flow, not normally seen in classical rigid-body dynamics. As an example, this term

accounts for the pressure drop seen in steady flow through a narrowing pipe, causing

the fluid to accelerate in space, though remaining unchanging in time.

The Navier-Stokes equations is often written in terms of the material derivative,

D
Dt = ∂

∂t + u · ∇:

ρ
Du

Dt
= −∇P +∇ ·T + f , (1.2)

more clearly showing its relation to Newton’s Second Law, F = ma.



5

In the case of modeling liquids, such as water or blood, we assume incompressibility,

meaning that the density throughout the flow field is constant. With this assumption,

the shear stress term becomes ∇ · T = µ∇2u, where µ is the fluid’s coefficient of

viscosity. Additionally, in this work, we note that gravity is the only body force,

so f = ρg, where g is the acceleration due to gravity. Since there will be no open

surfaces the hydrostatic pressure gradient at any point would be ∇Phydrostatic = ρg,

and so −∇Phydrostatic + f = 0, so we can disregard both terms. Therefore, the final

conservation of momentum equation of fluids reduces to

ρ
Du

Dt
= −∇P + µ∇2u. (1.3)

Since, in 3D Cartesian coordinates, there are 3 components of velocity, this produces

three equations (one for each ux,uy,uz). This is an underdetermined system, as we

seek to solve for the three velocity components, as well as pressure. Therefore, the final

equation of fluid motion enforces conservation of mass:

Dρ

Dt
+ ρ(∇ · u) = 0, (1.4)

or, assuming the fluid is incompressible, and ρ is constant:

∇ · u = 0. (1.5)

Expanded, this equation reads:

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0. (1.6)

This equation can be interpreted as saying, that given any volume within a fluid,

the amount of fluid entering the volume must be exactly equal to the amount of fluid

exiting the volume. That is, there exist no sources or sinks within any volume of the

fluid, and thus the mass of fluid remains constant.

A variety of boundary conditions exist for the NS equations. For solid boundaries,

the most common approach is the no-slip condition, which states that at the interface

between the fluid and a solid, the velocity of the fluid is exactly equal to the velocity of
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the wall (that is, both the normal and tangential components of fluid velocity are equal

to the wall velocity). Less commonly used is the free-slip conditions, which allows fluid

to freely flow tangential to the wall, but the normal component of the fluid velocity is

still exactly equal to the normal component of the solid velocity. For viscous fluids, the

no-slip condition models the true behavior of fluid at a boundary.

At the inlet and outlets, more options exist. At the most basic, inlet/outlet velocities

can be set to known values. At a free surface, a pressure boundary condition is used,

such that the fluid pressure at the air/liquid interface is equal the the air (atmospheric)

pressure. Finally, we may use periodic boundary conditions, enforcing that fluid velocity

and pressure at the outlet is exactly equal to the velocity/pressure at the inlet. For the

applications described in this manuscript, periodic boundary conditions are most-often

used, unless described otherwise.

1.1.1 Numerical Methods for Solving Fluid Flow

Even though the Navier-Stokes equations are among the most important and widely-

used equations in existence, there currently exists no general way to solve these equa-

tions analytically, or even any proof that it is possible to find a solution to a general NS

problem. While some closed-form solutions exist for very basic problems, such as flow

between parallel plates, or across a cylinder [8]. For the much more complex problems

described in this manuscript, there certainly exists no known exact solutions, and so

we must use numerical methods for solving the Navier-Stokes equations.

Time Discretization

In most Navier-Stokes solvers, there are two major steps to time discretization. The

first is the velocity prediction step, where we use the momentum equation to solve for an

intermediate solution to velocity, temporarily ignoring the pressure term. Rearranging

the terms in the momentum equation and removing the pressure term, we can get

∂u

∂t
= −u · ∇u +

µ

ρ
∇2u. (1.7)
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There are many options for solving this equation. For example, using the Euler

method:

v = un − un · ∇un +
µ

ρ
∇2un, (1.8)

where v is the intermediate velocity solution. The Euler method is very straightforward,

but is only over order 1, leading to lower accuracy and greater chance of instability. An

alternative is the explicit Runge-Kutta method, which is of order 2, but slightly more

difficult ot implement. For the momentum equation, the Runge Kutta solution is as

follows [9]:

k1 = −un · ∇un +
µ

ρ
∇2un (1.9)

u∗ = un + ∆t · k1 (1.10)

k2 = −u∗ · ∇u∗ +
µ

ρ
∇2u∗ (1.11)

v = un +
k1 + 2k

2
∆t. (1.12)

After acquiring the intermediate velocity v, we must find the updated pressure field,

and then the final velocity field. To do this, we use the pressure projection method [10]

to solve for the pressure gradient. First, Helmholtz-Hodge Decomposition states that

v can be decomposed into a divergence-free part vd and the pressure gradient:

v = vd +∇P. (1.13)

By taking the divergence on both sides, we get

∇2P = ∇ · v, (1.14)

which is the Pressure Poisson equation. We can solve for pressure with a variety of tech-

niques, most commonly with some variation of the Preconditioned Conjugate Gradient

method. A summary of such techniques can be found in [11].

Finally, we can use the new pressure gradient to update the velocity field, where we

will have our final solution for this time step:
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un = v − ∆t

ρ
∇P. (1.15)

Spatial Discretization

Spatial Discretization of the Navier-Stokes equations is an incredibly broad topic that

is still a highly-active field of research. This section summarizes the technique we use

most often in this work, Finite Difference Method.

Finite Difference Method (FDM) is the simplest of the three categories, and is most

often used when computation time is a high priority. Foster and Metaxas [12] were the

first to develop a fast method of solving the NS equations for 3D graphics applications

using Finite Difference Method. In FDM, we split the domain into a grid, and we seek

to solve the NS equations at every cell. Spatial derivatives are discretized by finite

differencing. For example, using central differencing, a velocity derivative at some grid

coordinate (i,j,k) may appear as follows:

∂u

∂x (i,j,k)
=

u(i+1,j,k) − u(i−1,j,k)

2h
, (1.16)

where h is the distance between cells.

An improvement to FDM is the Marker-And-Cell Method [13]. Here, instead of

solving both velocity and pressure at cell centers, velocity is solved at the cell faces,

also known as a staggered grid. This helps prevent pressure-velocity decoupling and

checkerboard errors that often occur in normal FDM. Additionally, particles are seeded

throughout the flow that move with the fluid velocity, which helps track which cells

have fluid and the location/geometry of the fluid-air interface through time.

1.1.2 Boundary Management

Enforcing the no-slip condition on solid boundaries is extremely important for both

accuracy and stability of the solver. While Finite Difference Method is computationally

much simpler than other methods, special consideration is required for solid boundaries.

Unless the solid boundary is exceedingly simple, such as a flat plane or a cube, it is
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highly unlikely for a solid to perfectly coincide with the FDM computational mesh.

Earlier studies, such as [14] and [12], simply rasterized the solid onto the computational

grid, thus boundaries of the new solid match the grid. While this method is quite fast,

depending on grid resolution and boundary motion/complexity, it will certainly lead

to inaccurate flow, or even instability. Another option is to use curvilinear FDM grids

[15], which can exactly fit the solid boundaries, including solving Navier-Stokes in flows

across cylinders [16] or through circular pipes [17]. While highly accurate in certain

situations, these methods can only be applied in cases where the solid boundaries are

nonmoving and of very simple topology.

Foster and Fedkiw [18] improved FDM boundary management (on Cartesian grids)

to allow for much more accurate simulation around solid moving bodies. Here, the

fluid is seeded with massless particles that move by convection. The interface between

a solid/air and the fluid is determined by the particles’ positions. This way, a cell

can easily contain both fluid and solid, rather than either 100% fluid or 100% solid.

At each time step, the incompressible Navier-Stokes equations are solved for the entire

fluid domain. For cells that contain solid, the boundary condition ufluid ·n = usolid ·n is

enforced, so that no fluid particles can intersect the boundary. The no-slip condition is

relaxed to allow particles to flow across the boundary tangentially, which is much easier

to work with in a FDM framework. However, this method also has several limitations.

For one, with this algorithm only one polygon can be used as a solid boundary in a

cell, and it is less clear how to deal with cells with multiple polygons (for example, in

corners). Additionally, since the boundary management is done after the Navier-Stokes

equations are solved, the forces imposed by the solid wall do not guarantee conservation

of mass or momentum, leading to less accurate flow, and possibly loss of fluid mass.

One of the most commonly used methods for boundary management with FDM

is the Immersed Boundary Method. First developed by Peskin in the 1970’s [19, 20]

and refined in 2002 [21], this method allows for arbitrary moving and deforming 3D

solid boundaries with very high accuracy and stability. With this algorithm, the solid

boundary is modeled with massless fibers, denoted by Γ. These fibers are defined by

massless points that move with the fluid velocity, and are used to compute the fibers’
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parametric curves X(s, t), where s is the parameter. Additionally, the forces along the

fiber are defined as F (s, t), which is typically a spring force that causes the fibers (and

fiber particles) to snap back into their correct positions. With these fiber forces, we

can then interpolate the forces onto the fluid field at any point x as follows:

ffiber(x, t) =

∫
Γ

F (s, t)δ(x−X(s, t))ds, (1.17)

where δ is the Dirac δ function. In practice, a Gaussian weighting function, or similar

smoothing function, often replaces δ, in order to more The Navier-Stokes momentum

equation is then modified as follows:

ρ(
∂u

∂t
+ u · ∇u) = −∇P +∇ ·T + ffiber, (1.18)

Thus, the immersed boundary method can be incorporated into existing fluid sim-

ulation software relatively easily, by just adding these force terms.

Over the years, there have been a huge number of modifications to the Immersed

Boundary Method algorithm to optimize the solutions for various problems, such as

those with elastic boundaries [22], rigid boundaries [23], and many variations thereof.

A detailed review of such Immersed Boundary Methods can be found in [24]. In this

work, we use the method detailed in [21].

1.1.3 Validation

Proper validation of any fluid simulator is critical to our work. The Navier-Stokes solver

that we use is the TOUGH2 general-purpose numerical simulatin program, which was

originally developed by E.O. Lawrence Berkeley National Laboratory and University of

California, Berkeley. This software package has been extensively validated with many

sample problems, discussed in detail in [25]. Further validation that demonstrates very

high accuracy of the boundary management methods can be found in [26].
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1.2 Smoothed Particle Hydrodynamics

An attractive alternative to solving fluid flows using mesh-based methods described

above are meshless methods, which are usually much faster and can handle deforming

of liquid with relative ease. One of the first to use particle-based methods in graphics

applications was [27], modeling effects such as fire, fireworks, and sand to great effect.

However, these primitive methods did not allow for interactions between particles. More

sophisticated methods, such as Smoothed Particle Hydrodynamics (SPH), can be used

to model solid deformation fluid flow at high speeds and reasonable accuracy. For

example, in recent years SPH has been used to simulate shallow water flow [28], lava

flow [29], and melting ice [30]. The algorithm is described below:

1.2.1 Algorithm

SPH [31] is a meshless method originally developed in 1977 to model the motion of

astronomical phenomenon. Later, [32] and [33] adapted it to explicitly solve the equa-

tions of motion at unconnected points, or ”particles,” within the domain, each storing

its own mass, density, pressure, position, and velocity. Unlike Eulerian-based methods,

such as FDM and FEM, no computational mesh is required, and particles are free to

move in the flow. For a quantity A, and for any point r in the domain, we can estimate

the value of A at that point by the following equation:

A(r) =≈
∫∫∫

Ω

A(r′)W (r− r′, h)dr′, (1.19)

where W is a smoothing kernel with h radius. We discuss the smoothing kernel in more

depth later in this chapter. We can discretize this function as follows:

A(r) =

N∑
j=1

Aj
mj

ρj
W (r− rj , h), (1.20)

where mj is the mass of particle j, and ρj is the fluid’s density at particle j.

Using integration by parts on Equation 1.19, we can also derive the equations for

the gradient and Laplacian of A as follows:
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∇A(r) =

N∑
j=1

Aj
mj

ρj
∇W (r− rj , h), (1.21)

∇2A(r) =
N∑
j=1

Aj
mj

ρj
∇2W (r− rj , h) (1.22)

At the beginning of a time step, for each particle i, we first search for all neighboring

particles within some distance h. Subsituting rho for A in Equatin 1.20, the particle’s

density is computed as follows:

ρi =
N∑
j=1

mjW (ri − rj , h), (1.23)

where N is the number of neighboring particles, mj is the mass of particle j, r is

a particle’s position, and W (r, h) is a smoothing kernel of radius h. In SPH, fluid

is actually assumed to be semi-compressible, and so to find we pressure, we use the

constitutive equation

Pi = c2(ρi − ρ0), (1.24)

where c is the speed of sound and ρ0 is the rest density, which we set to 1050kg/m3[1].

Higher values for c represent greater incompressibility, but will cause the simulation

to become unstable if ∆t is too high. Specifically, the Courant-Friedrichs-Lewy (CFL)

condition requires the following for stability [34]:

∆t ≤ h

c
. (1.25)

In other words, the CFL condition states that the tim steps must be small enough

such that a pressure wave (travelling at speed c) can not “skip over” a particle.

Once density and pressure are computed, we can compute the forces as follows:

fpressurei = −
N∑
j=1

mj

ρj

Pi + Pj
2
∇W (ri − rj , h), (1.26)

fviscosityi = µ
N∑
j=1

uj
mj

ρj
∇2W (ri − rj , h). (1.27)

We note the
Pi+Pj

2 term in the pressure gradient equation above. Normally, we

would simply substitute Pj for Aj in Equation 1.21 to find ∇P . However, this could
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lead to particles i and j applying different forces to each other, which is a violation of

Newton’s third law. So, it is common practice to use the average of Pi and Pj for this

term.

Once we know the forces due to the pressure gradient and viscosity everywhere at

every particle, since the mass of each particle is previously defined, it is very simple

to compute the accelerations, new velocities, and new particle positions at every time

step, advancing the flow.

We also note the reason why this algorithm can perform with much faster perfor-

mance than the more traditional Navier-Stokes solvers. Critically, if we do not create

or destroy new particles, we get conservation of mass for free with SPH. All the compu-

tations listed above are completely explicit, and so no expensive linear system solvers

are needed. When using FDM, however, conservation of mass requires us to implic-

itly solve the Pressure-Poisson equation, which can take a very long time. However,

with SPH, we cannot achieve perfect incompressibility, as that would require c to be

extremely high, and so SPH solvers will never be as accurate as FDM solvers. That

said, numerical experiments have shown SPH to maintain at least order 1 accuracy,

compared to order 2 accuracy in using FDM [35].

1.2.2 Weighting Functions

The choice of weighting function is vitally important to the accuracy and stability

of Smoothed Particle Hydrodynamics. There are many different weighting functions

developed for the SPH algorithm, each with their particular uses. We note that all

smoothing kernels should have the follow properties [31],[36]:

∫∫∫
Ω

W (r, h)dr = 1, (1.28)

lim
h→0

W (r, h) = δ(r), (1.29)

W (r) ≥ 0. (1.30)
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With these properties, the weighting function becomes a normalized averaging func-

tion for a given neighborhood of points. Also recommended [33] is that the kernel have

a compact range:

W (r, h) = 0, r ≥ A · h, (1.31)

for some positive constant A. Some weighting functions do not meet this property,

such as the Gaussian kernel [32]):

W (r, h) =
1√
πh
e−u

2
, (1.32)

where u = r/h, but these techniques are far more computationally expensive to

work with, with minimal benefit [37]. There are an enormous number of weighting

functions developed that fulfill these requirements, though, such as the B-spline [38]:

W (r, h) =
1

h


2/3− u2 + 0.5u3 : 0 ≤ u < 1

(2− u)3/6 : 1 ≤ u < 2

0 : u ≥ 2

(1.33)

the Q-spline [38]:

W (r, h) =
1

120h



(3− u)5 − 6(2− u)5 + 15(1− u)5 : 0 ≤ u < 1

(3− u)5 − 6(2− u)5 : 1 ≤ u < 2

(3− u)5 : 2 ≤ u < 3

0 : u ≥ 3

(1.34)

the quadric [39]:

W (r, h) =
1

h

 3(4− u2)/32 : 0 ≤ u < 2

0 : u ≥ 2
(1.35)

the cosine [40]:

W (r, h) =
1

h


3π2

8(π2+3)
(1− u2

4 )(1 + cos(πu2 : 0 ≤ u < 2

0 : u ≥ 2
(1.36)
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and the sextic: [41]:

W (r, h) =
315

(
64πh9)

 (h2 − ||r||2)3 : 0 ≤ ||r|| < h

0 : ||r|| ≥ 2
(1.37)

Each such smoothing kernel has their own advantages and disadvantages when it

comes to computational cost, sensitivity to choice of h, sensitivity to particle positions,

and overall stability [37]. Studies such as [42] and [43] have shown that the Q-spline

generally performs with the highest stability, due to its smooth second derivative func-

tion. We have tried all of these weighting functions, and have found Q-spline and the

sextic polynomial kernels to perform the best. Most of the time, we follow [44] and use

the sextic kernel, due to the much faster computational time, since we do not need to

take the square root of ||r|| at any point using this formula.

However, while all of these preceding weighting functions work very well for comput-

ing the density, they have major problems in pressure gradient and viscosity computa-

tion. In all cases, the derivative of the weighting function at r = 0 is zero. This means,

as two particles become closer and close together, the pressure forces between them

will approach zero, leading to particle clustering and eventually instability. A better

technique would be to find a weighting function with a derivative that is maximal at

r = 0, and use this weighting function only for the pressure gradient step.

In 1996, [45] solved this problem by developing the spikey kernel:

W (r, h) =
15

(
64πh6)

 (h− ||r||)3 : 0 ≤ ||r|| < h

0 : ||r|| ≥ 2
(1.38)

which has the following gradient:

∇W (r, h) = − 45

πh6

r

||r||

 (h− ||r||)3 : 0 ≤ ||r|| < h

0 : ||r|| ≥ 2
(1.39)

This gradient has approaches a maximum as r approaches zero, so it will create

a more realistic repulsive force as particles move closer to each other. Later, [41]

validated the success of this kernel by using it in their own problem to great success.
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Experimentally, we have also found that the spikey kernel works much better in the

pressure gradient step, than any of the preceding weighting functions.

1.2.3 Boundary Management

The enforcement of boundary conditions is one of the most challenging problems in

SPH. There are a wide variety of techniques to solve this problem in different contexts.

The simplest such method is to model the solid surface as a layer of boundary

particles that apply repulsive forces to the nearby fluid particles [46],[47]. This repulsive

force, PBij between fluid particle i and boundary particle j is a function of rij , the

distance between both particles:

PBij = D

[(
r0

rij

)n1

−
(
r0

rij

)n2
]
xij
r2
ij

, (1.40)

where D, n1, n2, and r0 are parameters. The stability of this method is very sensitive

to the choices of these parameters, however. Notably, for optimal stability and accuracy,

r0 - the cutoff distance - must be kept rather small, about the average space between

fluid particles [48]. Later [49] refined this method to allow for sharp corners. Monaghan

et. al showed in several works that this method of boundary management can be used

in a variety of applications, such as dropping boxes [50] and sinking ships [51]. In 2010,

[52] further improved the efficiency of this method by performing the repulsive force

computations from the boundary surface directly, rather than requiring thousands of

boundary particles. However a small r0 would lead to large instability problems in our

cardiac blood flow simulations, since particles on one side of the wall would certainly

interact with particles on the other side of the wall.

A second, common method of boundary management using SPH is by modeling

the solid as boundary fluid particles [53]11, [54]. Here, quasi-fluid particles are used to

model the entire solid. Contrast with the previous repulsive boundary particle method

in that the entire solid is filled with particles, rather than just the boundary surface.

Each quasi-fluid particle maintains its own mass, density, and pressure, just like a

normal fluid particle. At each time step, density and pressure are updated for each
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quasi-fluid particle in exactly the same way as the rest of the fluid, and the normal fluid

particles interact with these solid particles no differently than other fluid particles. This

way, the solid naturally provides a repulsive force against the fluid, and is not dependent

on sensitive parameters like the previous method. These methods were used in [55] to

successfully model simulate free surface flows. Later, [56] validated this method with

several standard 2D and 3D experiments, such as the backward-facing step problem,

flow across a cylinder, and flow within a pipe.

However, this method does encounter some disadvantages. First, these solids must

be reasonable thick to ensure stability. If the solids are too thin, the computed density of

nearby fluid particles will be too low, causing unrealistic pressure gradients and pressure

oscillations [48]. Additionally, if there is fluid on either side of the wall, particles on

one side of the wall may interact with particles on the other side. Later, however, [57]

further improved this method by smoothing the pressure near the boundaries, greatly

reducing potential oscillations, but will not help issues of interacting particles on either

side of a thin wall.

In current state of the art SPH system, ghost particles, introduced by [58], are one

of the most widely-used methods for very accurate and stable boundary management.

Here, fluid particles on one side of the wall are reflected with the same mass, density,

and pressure on the other side of the wall. This method guarantees adherence to the

no-slip condition if velocities of the mirrored particles are also equal, but with opposite

sign. A free slip condition can also be used by forcing equal velocities and equal signs

onto the mirrored particles [59].

This algorithm works very well for flat surfaces, but curved boundaries are a more

difficult problem, since reflected ghost particles may be too dense or two sparse, de-

pending on the direction of the curvature. Recently, [43] developed a method to allow

for a pseudo-ghost particle method on curved boundaries. They achieved this by gen-

erating a regular grid of psuedo-fluid particles within the solid (similar to the boundary

fluid particles method described above). The density and pressure are computed in

the same way as boundary fluid particles, but the velocity of the psuedo particles are



18

determined by interpolating reflected ghost particle velocities. More recently, [60] de-

veloped a more refined full ghost-particle method to allow for curved geometries with

much greater accuracy.

However, ghost particles are also not well-suited for problems in which the solid is

thin and complex. In these difficult problems, fluid particles on each side of the thin

surface will produce their own ghost particles, which the fluid particles on the other

side will include in its list of neighbors during density/force computation, generating

instability.

Boundary management in SPH is a highly active field of research, and many other

techniques exist for various problems. For example, [61] developed a method to solve

highly viscous flows across boundaries, resulting in highly accurate eddy formations.

However, this method also struggles with complex boundaries [62]. Later, [63] solved

SPH with highly complex surfaces, but only for rigid, nonmoving, 2-manifold geome-

tries.

1.3 Previous Work in Cardiac Blood Flow Simulations

With the rapid development of high-resolution cardiac CT, patient-specific blood flow

simulation is quickly becoming one of the central goals in the study of cardiac blood

flow. Earlier work in blood flow simulation used less refined models. For example, [64]

was the first to extract boundaries from MRI data to perform patient-specific blood

flow simulations. Later, [65] and [66] used simple models of the left side of the heart,

with smooth ventricular walls, and imposed boundary conditions in the valve regions.

More recently, [67] have published a framework for simulating atrioventricular blood

flow, and showed simulation results using a complete model of the left side of the heart,

including the atrial venae and an aortic stub, together with modeled valve kinematics.

Later, [1] used smoothed 4D CT data to simulate left ventricular blood flow, and

compared the flow around through the aortic valve in a healthy heart and two diseased

hearts. Our work is influenced by these papers, and we improve the heart model by

using higher-quality CT scans of normal subjects and live patients with cardiovascular
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disease that allow us to capture the complex details of the heart walls and trabeculae.

In contrast, the geometry used in [67] was obtained from scans based on data from

the Visible Human Project [68], while the kinematics was transfered to the model from

MRI data, and the models derived from CT data in [1] were highly smoothed and were

not useful for understanding the true interactions between the blood flow and the walls.

Our approach (similarly to the one in [67]) uses predefined motion for the valves,

whose asynchronous opening and closing provides a simple geometric mechanism for

taking care of those boundary conditions. This approach relies on the reasonable as-

sumption that the left ventricle drives essentially all of the dynamics of the blood flow

in the left side of the heart.

Recently, [69] implemented the approach of [70] to obtain a system that can effi-

ciently deal with complex geometric data, such as a system of blood vessels. In 2010, [2]

coupled fluid simulation with solid deformation, which is particularly useful in surgical

simulations. However, performing solid mechanic simulations on trabeculae structures

is computationally infeasible with modern equipment, so we only use completely pre-

determined solid motion in our experiments.

In the field of SPH, attempts at blood flow simulations have been comparatively

few. Microscale simulations through extremely small vessels on the scale of individual

blood cells is a common application, such as in [71] and [72]. In 2004, [73] developed

a framework for realtime blood flow simulations through blood vessels to assist in

virtual surgery. This work used FEM to model the solid dynamics of the vessel, which,

while functional for problems such as these, would be completely infeasible in a cardiac

flow simulation. Later, [74] improved on this framework by using repulsive boundary

particles and allowed for interactions between blood flow and vessel deformation. This

allows for much simpler handling of the boundary conditions, and also for more complex

vessel geometries. However the solid wall geometry was still relatively simple with

overall little motion compared to the left ventricle.
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Chapter 2

Patient-Specific Modeling and Visualization of Blood

Flow Through the Heart

Currently, valvular blood flow can be monitored using imaging techniques such as

Doppler ultrasound and MRI. However, the spatial resolutions of such techniques are

low, and it is not possible to observe the detailed interaction of the blood flow and the

endo-cardial surface of the heart, so the formation of cardiac thrombus remains difficult

to predict. If a physician were able to visualize or quantitatively measure the detailed

alteration of the blood flow by altered contraction, he might be able to make a better

diagnosis or treatment plan. Therefore, in this chapter, we seek to find ways to perform

flow modeling and visualizations, given a 3D model of a heart.

2.1 Data Acquisition

The CT images were acquired on a 320-MSCT scanner (Toshiba Aquilion ONE, Toshiba

Medical Systems Corporation). This advanced diagnostic imaging system is a dynamic

volume CT scanner that captures a whole-heart scan in a single rotation, and achieves

an isotropic 0.5mm volumetric resolution with less motion artifact than the conventional

64-MSCT scanners. A conventional contrast-enhanced CT angiography protocol was

adapted to acquire the CT data in this work. After the intravenous injection of the

contrast agent, the 3D+time CT data were acquired in a single heart beat cycle when

the contrast agent was circulated to the left ventricle and aorta, so that we were able

to achieve an optimal intensity difference level between the blood pool and the left

ventricular myocardium. After acquisition, 3D images were reconstructed at 10 time

phases in between the R-to-R waves using ECG gating. The acquired isotropic data had

an in-plane dimension of 512 by 512 pixels, with an effective atrio-ventricular region
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Figure 2.1: Velocity field visualization of full heart before systole

measuring about 3003 pixels.

The left ventricle region was extracted from the dataset using an initial median

filtering, followed by isosurfacing and mesh cleanup and smoothing. The surface was

extracted at mid diastole, and its motion was transferred from the smooth mesh motion

obtained from the same CT data. An example mesh can be seen in figure 2.2.

2.2 Simulation System

We use the same Immersed-Boundary Navier-Stokes simulation method described in

the preceding chapter to simulate the flow through the aortic valve. The heart models

used here are embedded in a computational mesh of 1003 cells on which the full NS

equations are solved using FDM. The blood is modeled as a Newtonian fluid, with

viscosity of 4mPa· s and density of 1050kg/m3. We use 0.005 second time steps (0.5%

cardiac cycle). A simulation of a single cardiac cycle takes about 6 hours to complete

on a machine with an Intel i7 processor and 16GB of RAM.
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Figure 2.2: View of a detailed mesh extracted from CT data using isosurfacing. Note
the complex trabeculae inside the heart.

2.2.1 Validation

We qualitatively validated the results of our simulation by the inspection and visual

verification of several doctors. In addition, our simulation methods have been proven

in [26] to be extremely accurate. It is possible to noninvasively obtain velocity data

from MRI data, but it is prone to error and can only be retrieved in one direction. In

the future, we plan to use phantoms to perform validation of these results.

2.3 Visualization

As mentioned previously, we adapted the framework described in [67] to perform the

fluid simulation. With the fluid velocity fields and level sets generated for each time step,

we use Paraview to visualize the simulations. We also visualized flows in a simulated

diseased heart suffering from a large perfusion defect area created by reducing motion
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in the anterior apical area, as would be expected from ischemia or infarction in the

distribution of the left anterior descending coronary artery.

2.3.1 Full Heart

We first performed a visualization of the velocity field of the entire heart, as seen in

figure 2.1. The velocity of the blood at a given point is represented by a cone pointed

in the direction of the flow. A cone’s size increases linearly as the magnitude of the

velocity increases. Additionally, we adjust the color of a cone by first setting its hue to

160 (blue), and then linearly lowering this value to a minimum of 0 (red) as velocity

increases.

We then used finite differencing to compute the flow’s vorticity at every point in the

field. We use the magnitudes to create a volumetric visualization of vorticity, where

brighter areas are associated with higher vorticites and greater rates of rotation and

circulation.

2.3.2 Cross-Section

Next, we examined cross-sections of the heart, and visualized the velocities here. This

way, we have a clearer picture of how each of the structures and trabeculae affect the

flow of blood. We visualized the velocity field in the same way as above, representing

the velocity at each point with a colored cone. Screenshots of the visualization can be

seen in figures 2.4 and 2.5.

2.3.3 Flux

In the previous two sets of visualizations, we have seen how the complex structure of the

walls of the heart affects the flow of blood. We now introduce two additional methods

we use to visualize the flux across a certain region. To do this, we simply inserted

a plane at the desired location and orientation, interpolated to sample the velocities

across the plane, and projected the velocities onto the plane’s normal vector. Two

examples can be seen in figure 2.6.
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Figure 2.3: Vorticity field visualization of full heart. Green regions correspond to higher
magnitudes of vorticity and thus greater rates of rotation. Compare to figure 2.1, taken
at the same time step.

2.4 Results and Discussion

2.4.1 Visualizations of Healthy Heart

Full Heart

The visualizations of the velocity field and the vorticity field for the entire heart can

be seen in figures 2.1 and 2.3, respectively. The images generated from visualizing the

vorticity are visually stunning. We see in figure 2.3, the areas with the largest vorticities

are close to the base, near the papillary muscles and the valves, which suggests that the

fluid is spinning more rapidly here. Note that in figure 2.1, which is the velocity field

taken at the same time step as that in figure 2.1, we see a number of large vortices in

the same location.
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Figure 2.4: Cross-section of heart during late diastole

Cross-Sections

As displayed in figures 2.4 and 2.5, the cross-section visualization allows us to see the

interactions between the blood flow and the complex heart walls, which, to the best

of our knowledge, has never been possible before. In our full animation, we can see

how blood moves through and around the trabeculae, the papillary muscles, and the

valves during the entire cardiac cycle. This is far more accurate than earlier attempts of

cardiac blood flow simulations with smooth walls, and we can use this to find problems

with diseased hearts, such as stagnant fluid in the trabeculae that increases the risk of

thrombosis. In a later section, we use this way of visualizing flow to compare the the

blood flow of a healthy heart to that of a diseased heart, demonstrating its potential

clinical use.

Flux

To test the flux visualization method, we place planes at two different locations. First,

we place a flux plane near the apex of the heart and visualize the flow across it. In figure

2.6 (a), we see the flux across this region during ventricular systole. We then insert a
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Figure 2.5: Cross-section view of apical region during systole. Only fluid velocities
directly against the heart walls are displayed, in order to more clearly see the complex
interactions.

flux plane directly against the trabeculae of the heart walls. From figure 2.6 (right), we

can clearly see how, during ventricular systole, the trabeculae contract, expelling the

blood. In the future, we plan to run additional simulations on diseased hearts whose

trabeculae do not contract. We will be using these methods of visualization in order to

determine if blood remains trapped, leaving the patient at greater risk of a blood clot.

2.4.2 Comparison Between Normal and Diseased Heart

We now compare the flow fields of a healthy heart to that of a diseased heart, whose

apex does not contract properly during ventricular systole. In figure 2.7, we show both

hearts at three different stages of the heart cycle. The top row displays a normal heart,

and the bottom row displays the diseased heart. The first column shows mid diastole,

the second shows late diastole, and the third shows systole.

In mid diastole, the fluid entering through the mitral valve reaches the lower regions

and causes the blood to circulate (figure 2.7 (a)). During late diastole, we see that a

large amount of blood enters the healthy heart at high velocity (figure 2.7 (b)), causing
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Figure 2.6: Left: visualization of flux through the apex of the heart during systole;
Right: velocity field directly against trabeculae during systole

significant turbulence and further circulation. Finally, as the heart fully constricts

during systole, the fluid velocities everywhere remain high and the blood is adequately

ejected (figure 2.7 (c)).

However, we see that in the case of the diseased heart, the inflow during diastole is

significantly reduced and the blood in the apex is fairly stagnant (figure 2.7 (d), (e)).

Then, in systole, we see again that the flow velocities are lower than that of the healthy

heart and does not fully expel the blood (figure 2.7 (f)). This result would be extremely

useful to a doctor, as this lack of circulation across all stages of the heart cycle presents

a clear risk of clotting to the patient. We also note that the size of the diseased heart is

larger than that of the normal heart, since the apex is not properly contracting during

systole.

For a quantitative comparison, we seek the velocities around the apex of the heart.

To do this, we selected a small spherical region close to the trabeculae, and computed

the velocity magnitudes within each cell in the sphere at each time step for both the

healthy and diseased heart. We plot the results for two cardiac cycles in figure 2.8. Late

diastole begins at approximately time steps 2 and 52, and systole begins at time steps

10 and 60. We see that, on average, the velocities in the diseased heart in this region

are about half of those in the healthy heart. In particular, we see that during systole,

the blood velocities at the apical region of the diseased heart tend not to increase as
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Figure 2.7: Comparison of blood flow between a normal heart (top) and a diseased
heart with hypokinesis in the apical region (bottom). First column: Mid diastole;
Second column: Late diastole; Third column: Systole. Note how that in all three
stages, the blood in the apical region remains relatively stagnant in the diseased heart,
increasing the risk of clotting. We also note that the apex of the diseased heart remains
large in all stages, since it is not properly contracting.

they do in the healthy heart, suggesting that this fluid is not being effectively expelled,

creating a risk of clotting.

2.5 Chapter Conclusion

We have demonstrated how we can now model blood flow through hearts extracted from

high-resolution CT data that contain very complex moving boundaries. We have also

described a number of ways to visualize the modeled flow of blood through the heart,

which can be extended and be useful to doctors in diagnoses and treatment plans.

Finally, we have shown how these visualizations can be used to compare the simulated

blood flow through a normal heart and one suffering from disease to show that how the

abnormal heart may be at increased thrombosis risk due to noncirculating blood. In

the next chapter, we look to perform similar visualizations on other models of diseased

hearts derived from patient-specific CT data, with even better model reconstruction

techniques. In particular, we are looking to understand the movement of blood through

trabeculae and detect risk of clots in these regions, and how stagnant fluid may affect
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Figure 2.8: Average magnitudes of velocities in the apex of the healthy and diseased
heart during two cardiac cycles. Late diastole begins at approximately time steps 2 and
52, and systole begins at time steps 10 and 60.

the flow.



30

Chapter 3

Using High Resolution CT Data to Model and Visualize

Patient-Specific Interactions Between Trabeculae and

Blood Flow

In the previous chapter, accurate heart models were achieved by generating a mesh

from high-resolution CT data at mid-diastole. Then, motion was transferred to this

model from the smooth mesh motion obtained from the same CT data to create the

animation. This allowed for more realistic features to be present on the heart walls in

the simulation, including the papillary muscles and some trabeculae. However, while

this approach was an improvement from the smooth-wall assumption, the trabeculae

were missing details and did not move accurately.

In this chapter, we use an improved method of creating the mesh to capture these

smaller details and generate a more accurate simulation. To the best of our knowledge,

we are able to visualize blood flow in unprecedented detail.

3.1 Data Acquisition

The CT images were acquired on a 320-MSCT scanner (Toshiba Aquilion ONE, Toshiba

Medical Systems Corporation) using contrast agent. This advanced diagnostic imaging

system is a dynamic volume CT scanner that captures a whole-heart scan in a sin-

gle rotation, and achieves an isotropic 0.3mm volumetric resolution. A conventional

contrast-enhanced CT angiography protocol was adapted to acquire the CT data in this

work. After the intravenous injection of contrast agent, the 3D+time CT data were

acquired in a single heart beat cycle when the contrast agent was circulated to the left

ventricle and aorta. After acquisition, 3D images were reconstructed at 10 time phases

in between the R-to-R waves using ECG gating. The acquired isotropic data had an
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(a) (b)

Figure 3.1: Meshes reconstructed from CT data (valves removed). (a) Healthy heart
(b) Diseased heart.

in-plane dimension of 512 by 512 pixels.

The detailed cardiac shape features can be used as the boundary conditions and

incorporated in a fluid simulator to derive the hemodynamics throughout the whole

heart cycle. Our goal in defining these boundary conditions is to capture the fine detail

structures of the myocardium, as well as the one-to-one vertex correspondence between

frames, which is required in the fluid simulation. There has been much recent work in

cardiac reconstruction, such as [75], who combined high-resolution MRI images with

serial histological sectioning data to build histo-anatomically detailed individualized

cardiac models to investigate cardiac function. In this work, we use the techniques

described in [76]. Here, snake based semi-automatic segmentation is used to acquire

the initial segmentation from high resolution CT data for an initial (3D) frame of data.

The initial mesh is generated as an isosurface of the segmentation, which is deformed to

match the shape of the heart in each consecutive frame. Also, during the deformation,

we achieve the necessary one-to-one correspondence between frames.

The aortic and mitral valves are thin and move fast, and so the CT data is not

currently able to adequately capture these details. We add 3D models of the valves

created from ultrasound data to each mesh in the sequence, and open and close the

valves at the appropriate time steps.

Reconstruction results for a healthy and a diseased heart can be seen in Figure 3.1.

Note the high level of structural detail at the apex. To the best of our knowledge, this
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has never been simulated before.

3.2 Fluid Simulation

We use the same Immersed-Boundary Navier-Stokes simulation method described in

the preceding chapters to simulate the flow through the aortic valve. The heart models

used here are embedded in a computational mesh of 1003 cells on which the full NS

equations are solved using FDM. The blood is modeled as a Newtonian fluid, with

viscosity of 4mPa· s and density of 1050kg/m3. We use 0.005 second time steps (0.5%

cardiac cycle). A simulation of a single cardiac cycle takes about 5 days to complete

on a machine with an Intel i7 processor and 16GB of RAM.

3.3 Visualizations

With the fluid velocity fields and level sets generated for each time step, we use Paraview

to visualize the simulations. We analyzed a healthy heart and two diseased hearts, and

we describe below our visualization methods and our results.

Blood Flow Velocity

We performed a visualization of the velocity field within the heart, as seen in Figure 3.3.

The velocity of the blood at a given point is represented by a cone pointed in the

direction of the flow. The size of cone increases linearly as the velocity increases. We

also adjust the color of a cone by first setting its hue to 160 (blue), and then linearly

lowering this value to a minimum of 0 (red) as velocity increases. The magnitude of

fluid velocity ranges from 0-.9 m/s.

Streamline visualizations are shown in Figure 3.2. The color at a point within

a streamline is chosen in the same way as the cones described above. In order to

disambiguate direction, we add cones that point in the direction of flow
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3.3.1 Blood Residence Time

In addition to the blood flow velocities, we wish to visualize the residence time of blood

within the heart. By doing so, we can quantitatively determine regions of the heart

that are at greater risk of thrombus, as slower flows are known to be a significant factor

predisposing to thrombus formation.

In order to compute the residence time of blood, we must first determine which

regions in the computational domain are interior to the heart. This region changes at

every time step, due to the deformation of the heart. We find this interior area by

determining which cells are within concave regions of the heart mesh. For each empty

(non-solid) cell in the domain at index (i, j, k), we check whether there exists a pair

(l1, l2) such that both l1, l2 > 0, and either both cells (i + l1, j, k) and (i − l2, j, k) are

solid, cells (i, j + l1, k) and (i, j − l2, k) are solid, or cells (i, j, k + l1) and (i, j, k − l2)

are solid. While this method does not guarantee that all cells within concave regions

are determined, our results show that it accurately determines each cell interior to the

heart.

At the initial time step, ten thousand particles are generated randomly within the

heart. At the beginning of each time step, new particles are generated at the valves,

allowing fresh blood particles to enter the heart during diastole. Each new particle

has an initial age of zero, and this age is incremented at every time step. While some

particles are also generated outside the aortic valve, these never enter the heart and are

completely removed during systole, and so they do not meaningfully affect the results.

At each consecutive time step, we determine a particle’s velocity by interpolation,

given the fluid velocities at the center of each cell. Each particle’s new position is

calculated using Euler time integration. Then, any particle in a cell exterior to the

heart is removed from the system, and the average particle residence time within each

cell can then be easily determined. We run this for four cardiac cycles and create

volumetric visualizations, as seen in Figure 3.4. Here, blue represent regions in which

average residency is less than 1 cardiac cycle, green-yellow represents 1-3 cardiac cycles,

and red represents 3-4 cycles.
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We can also take advantage of these particles in validation of our simulation, by

computing an estimated ejection fraction. During systole, we know exactly how many

particles there originally existed in the system, and how many are being expelled at

each time step. To estimate the ejection fraction, we simply divide the total number of

deleted particles by the original number of particles.

Estimated ejection fraction can be calculated using particles to validate our sim-

ulation. During systole, we know exactly how many particles there originally existed

in the system, and how many are being expelled and deleted at each time step. To

estimate the ejection fraction, we simply divide the total number of deleted particles

by the original number of particles.

3.4 Discussion

The streamline visualizations provide detailed information on the trabeculae-blood in-

teraction. Figure 3.2(b), taken during diastole, demonstrates how the complex surface

causes the flow to move through and around the empty spaces between the trabeculae.

Then, in Figure 3.2(c), during systole, we see another example of how the blood is

forcefully expelled out of the spaces between the trabeculae, rather than simply flowing

directly towards the aortic valve as older methods with simpler meshes have suggested.

The simulation and visualization methods are performed described above on three

different hearts. The first is a healthy heart with no visible medical problems with an

ejection fraction of about 50%. The second is a heart that has simulated hypokinesis,

where the motion of the heart walls is decreased at the apex by a maximum of 50%.

The third comes from a patient who has post tetralogy of Fallot repair. This heart is

known to suffer from right ventricle hypertrophy, significant dyssynchrony in the basal-

midseptum of the left ventricle, and a decreased left ventricle ejection fraction of about

30%.

The streamline visualizations provide detailed information on the trabeculae-blood

interaction. Figure 3.2(b), taken during diastole, demonstrates how the complex surface

causes the flow to fill the empty spaces between the trabeculae. Then, in Figure 3.2(c),
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during systole, we see another example of how the blood is expelled out of the spaces

between the trabeculae, rather than simply flowing directly towards the aortic valve as

older methods with simpler meshes have suggested.

Validation is a difficult task, as current imaging techniques, such as PC-MRI, are

not able to capture flow information at the required level of detail for useful comparison.

We performed a partial validation by comparing the estimated ejection fraction to the

true ejection fraction. The computed ejection fraction is approximately 45% for the

healthy heart, 40% for the hypokinesis heart, and 30% for the dyssynchronous heart.

These values for the healthy and dyssynchronous heart are in agreement with the true

values, so we have confidence in the rest of our results. Performing similar validation

techniques to a smoothed healthy heart model, we computed an ejection fraction of

about 40%, slightly lower than that of our complex model. However, it may not be

especially useful to compare the accuracy of different modeling methods using this

approach, as the ejection fraction does not give information about the flow local to the

apex, the region of primary interest.

Velocity field visualizations are illustrated in Figure 3.3. We can see that in the

healthy heart, the inflow during diastole is significant and fairly uniformly distributed,

circulating blood throughout the heart. During systole, the velocity field throughout the

heart remains high, and fluid in the apex moves toward the valves. In Figure 3.3(c), we

see more detail of the interactions between blood flow and the trabeculae, as the blood

is visibly expelled from these regions. However, in the heart suffering from hypokinesis,

we find that the velocity field is much weaker toward the apex during both diastole

and systole. In Figure 3.3(f), we also see that the trabeculae are no longer adequately

expelling blood as they do in the healthy heart case. We also see in Figure 3.3(g)-(i)

that the flow patterns in the heart with dyssynchronous heart wall movement appears

non-normal, with overall lower velocities and even less fluid being pushed out from the

trabeculae.

We then compare the visualizations of the average particle residence times for each of

the three simulations, as seen in Figure 3.4. Each of these images were made at the same

time step, at the start of systole, after four cardiac cycles. We find that in Figure 3.4(a),
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in the healthy heart, nearly the entire domain contains blood with average residence

time of less than three cycles, suggesting that the blood is not remaining stagnant, and

turning over well between cardiac cycles. In contrast, Figure 3.4(b) shows that in the

heart suffering from hypokinesis, the average residence time is significantly higher near

the walls, particularly near the hypokinetic apex. Finally, in Figure 3.4(c), we find

that a very significant region of the blood has a long residence time, suggesting that

due to the low ejection fraction and relatively low fluid velocities, blood is not being

adequately circulated and thus is remaining stagnant near the walls, again, particularly

toward the apex of the heart.

3.5 Chapter Conclusion

In this chapter, we have described our new framework to generate detailed mesh se-

quences from CT data, and used them to run patient-specific blood flow simulations.

We then created several visualizations to reveal the interactions between the complex

trabeculae of the heart wall and the blood, which has never been possible before, and

used them to compare the flow fields between a healthy heart and two diseased hearts,

which would potentially be extremely useful to doctors to help in diagnosis and treat-

ment plans. This is the first time that intracardiac blood flow fields and their interaction

with the heart wall have been investigated at this level of resolution.
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(a)

(b)

(c)

Figure 3.2: Visualization of streamlines within the healthy heart. (a) Streamlines of
cardiac blood flow during diastole. (b) Blood flow near apex during diastole. (c) Blood
flow during systole at the apex, against the trabeculae.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Velocity fields at various time steps for three different hearts. Top row:
Healthy Heart, Middle row: Hypokinetic heart, Bottom row: Dyssynchronous heart.
Left column: Diastole, Middle column: Systole, Right column: Velocity field at trabec-
ulae during systole.
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(a)

(b)

(c)

Figure 3.4: Visualization of average particle residence time. Colors closer to red repre-
sent longer average residence time. (a) Healthy Heart (b) Heart with Hypokinesis (c)
Heart with dyssynchronous wall movement.
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Chapter 4

The Importance of Trabeculae Structures in Cardiac

Blood Flow Simulations

In the previous chapter, we used a sophisticated methods of extracting the heart and

its motion from CT in order to capture the geometry of the trabeculae, and used

fluid simulations to determine whether the motion and structure of the trabeculae

interacts with the blood flow. While this work did show evidence of such interactions,

we have not shown that these interactions are significant enough to justify the much

higher cost of incorporating the trabeculae in blood flow simulations, rather than using

more traditional smoothed-heart models. Thus, the purpose of this chapter is to fill

this gap, by comparing the computed flow fields of simplified and complex versions

of four patient-specific heart models, and visually and quantitatively show that these

trabeculae structures are critical in developing the best, clinically-useful results.

4.1 Data Acquisition

The CT images were acquired on a 320-MSCT scanner (Toshiba Aquilion ONE, Toshiba

Medical Systems Corporation) using contrast agent. This advanced diagnostic imaging

system is a dynamic volume CT scanner that captures a whole-heart scan in a sin-

gle rotation, and achieves an isotropic 0.3mm volumetric resolution. A conventional

contrast-enhanced CT angiography protocol was adapted to acquire the CT data in this

work. After the intravenous injection of contrast agent, the 3D+time CT data were

acquired in a single heart beat cycle when the contrast agent was circulated to the left

ventricle and aorta. After acquisition, 3D images were reconstructed at 10 time phases

in between the R-to-R waves using ECG gating. The acquired isotropic data had an

in-plane dimension of 512 by 512 pixels.
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Figure 4.1: 3D meshes generated from high-resolution CT imagery. Patient 1 (Normal)
Row 1: Smoothed, Row 2: Complex; Column 1: Outside, Column 2: Apex

Figure 4.2: 3D meshes generated from high-resolution CT imagery. Patient 2 (Nonob-
structive CAD) Row 1: Smoothed, Row 2: Complex; Column 1: Outside, Column 2:
Apex
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Figure 4.3: 3D meshes generated from high-resolution CT imagery. Patient 3 (Ob-
structive CAD) Row 1: Smoothed, Row 2: Complex; Column 1: Outside, Column 2:
Apex

Figure 4.4: 3D meshes generated from high-resolution CT imagery. Patient 4 (Dyssyn-
chrony) Row 1: Smoothed, Row 2: Complex; Column 1: Outside, Column 2: Apex
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CT images were acquired from four patients. Patient 1’s heart is healthy and func-

tions normally. Patient 2 is 49 year old female with nonobstructive coronary artery

disease. Patient 3 is a 62 year old patient with obstructive coronary artery disease.

Finally, Patient 4 suffers from dysynchronous cardiac function. For each patient, we

construct both “smoothed” (less trabeculae) and “complex” (more trabeculae) 4D mod-

els of their heart, described below.

4.1.1 Mesh Generation

In order to study the impact of trabeculae structures on patient-specific cardiac blood

flow simulations, a high quality segmentation which captures these fine structures is

required. However, accurately segmenting the complex structures is a challenging task

due to their complexity and thin nature. The trabeculae structures, which are attached

to the heart wall at their ends, and can be freely moved in the middle, form the

topological structure called handle. Gao et al. [77] proposed and demonstrated an

algorithm to segment 3D high resolution CT data by explicitly restoring topological

handles. The location and geometry of these handles are suggested by a tool from

computational topology, namely, persistent homology. Intuitively speaking, a handle

will be detected if it goes to relatively high intensity in the CT image. The method has

been proved to be accurate both topologically and geometrically. The segmentation

results are reconstructed to 3D mesh to build a patient-specific cardiac endocardial

surface model.

After the model was reconstructed at the end-diastole frame, which is where those

structures are most expanded and cleared captured in the CT images, we deformed

the model to other frames of the data in order to recover the LV motion [78]. The

deformation is constrained by both the imaging information and the model geometrical

information, such that to look for a balance between the model consistent between

frames and model fitting to images at different frames. Since we were using the same

model to segment all frames of the data, we were able to find one-to-one correspondence

automatically through the segmentation. The one-to-one correspondence provides the

velocity of the LV motion and is used to drive the blood flow simulation.
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To compare the impact the trabeculae structures, we also reconstructed the smoothed

models with trabeculae. The registration between smoothed models directly would not

be reliable because of the limited anatomical information. We first build the correspon-

dence between the smoothed models and complex models. Then using the registration

of the complex models between frames, the smoothed models also captures the motion

of the LV endocardial surface.

The aortic and mitral valves are thin and move fast, and so the CT data is not

currently able to adequately capture these details. We add 3D models of the valves

created from ultrasound data to each mesh in the sequence, and open and close the

valves at the appropriate time steps.

4.2 Fluid Simulation

We use the same Immersed-Boundary Navier-Stokes simulation method described in

the preceding chapters to simulate the flow through the aortic valve. The heart models

used here are embedded in a computational mesh of 1003 cells on which the full NS

equations are solved using FDM. The blood is modeled as a Newtonian fluid, with

viscosity of 4mPa· s and density of 1050kg/m3. We use 0.005 second time steps (0.5%

cardiac cycle). A simulation of a single cardiac cycle takes about 5 days to complete

on a machine with an Intel i7 processor and 16GB of RAM.

4.2.1 Blood Residence Time

In addition to the blood flow velocities, we wish to visualize the residence time of blood

within the heart. By doing so, we can quantitatively determine regions of the heart

that are at greater risk of thrombus, as slower flows are known to be a significant factor

predisposing to thrombus formation.

In order to compute the residence time of blood, we must first determine which

regions in the computational domain are interior to the heart. This region changes at

every time step, due to the deformation of the heart. We find this interior area by

determining which cells are within concave regions of the heart mesh. For each empty
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(non-solid) cell in the domain at index (i, j, k), we check whether there exists a pair

(l1, l2) such that both l1, l2 > 0, and either both cells (i + l1, j, k) and (i − l2, j, k) are

solid, cells (i, j + l1, k) and (i, j − l2, k) are solid, or cells (i, j, k + l1) and (i, j, k − l2)

are solid. While this method does not guarantee that all cells within concave regions

are determined, our results show that it accurately determines each cell interior to the

heart.

At the initial time step, ten thousand particles are generated randomly within the

heart. At the beginning of each time step, new particles are generated at the valves,

allowing fresh blood particles to enter the heart during diastole. Each new particle

has an initial age of zero, and this age is incremented at every time step. While some

particles are also generated outside the aortic valve, these never enter the heart and are

completely removed during systole, and so they do not meaningfully affect the results.

At each consecutive time step, we determine a particle’s velocity by interpolation,

given the fluid velocities at the center of each cell. Each particle’s new position is

calculated using Euler time integration. Then, any particle in a cell exterior to the

heart is removed from the system, and the average particle residence time within each

cell can then be easily determined. We run this for four cardiac cycles and create

volumetric visualizations, as seen in Figure 4.5. Here, blue represent regions in which

average residency is less than 1 cardiac cycle, green-yellow represents 1-3 cardiac cycles,

and red represents 3-4 cycles.

4.3 Results and Discussion

Visualizations of average residency time for each patient after four cardiac cycles can be

seen in Figure 4.5. Figures 4.5(a-b) are of Patient 1, smoothed and complex respectively,

(c-d) are of Patient 2, (e-f) are of Patient 3, and (g-h) are of Patient 4. Each image was

taken during diastole, and both images within a pair were taken from the same angle.

We immediately notice large differences between the smooth and complex experiments

for all four patients. In Patients 1 and 2, in particular the latter, we see that blood in the

complex models have a significantly lower residency times than in the smoothed models.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Average residency time visualizations for four blood flow simulations after
four cardiac cycles. Blue regions represent areas of fresh blood, red regions represent
blood that has been in the left ventricle for about four cycles. (a-b) Patient 1 [Normal]
- Smoothed and Complex meshes, respectively; (c-d) Patient 2 [Nonobstructive CAD]
- Smoothed/Complex; (e-f) Patient 3 [Obstructive CAD] - Smoothed/Complex; (g-h)
Patient 4 [Dyssynchrony] - Smoothed/Complex. We note that in Patients 1 and 2,
average residency time appears higher in the smoothed version, but for Patients 3 and
4, residency time is higher in the complex version.
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Mean Age (Cycles) Standard Deviation T-test p-value

Patient 1 (Smoothed) 1.425 0.93
6.1743e-04

Patient 1 (Complex) 1.353 0.94

Patient 2 (Smoothed) 1.438 0.75
7.2427e-14

Patient 2 (Complex) 0.708 0.44

Patient 3 (Smoothed) 1.078 0.76
1.7572e-78

Patient 3 (Complex) 1.486 1.03

Patient 4 (Smoothed) 1.775 0.79
1.0817e-102

Patient 4 (Complex) 2.496 0.97

Table 4.1: Mean and Standard Deviation of particle ages after four cardiac cycles.

This suggests relatively healthy trabeculae motion and fast blood turnover rates. While

Patient 2 does suffer from non-obstructive CAD, hearts with non-obstructive CAD can

still function normally when at rest. Therefore, these results are consistent with our

expectations.

We then see the opposite effect in Patients 3 and 4. In both cases, the average

residency time is much higher in the complex version, suggesting poorly-functioning

trabeculae that is severely dampening the intraventricular flow. Since Patient 3 has

obstructive CAD, her cardiac function is impaired, even at rest. Even more importantly,

we note that in the smoothed cases, Patient 2 and Patient 3 appear to have very similar

average residency times. However, in the complex cases, Patient 3 is clearly much worse.

If just the simplified models are used in cardiac blood flow simulations, these clinically

significant problems would be completely invisible to the physician.

Quantitative analysis corroborates our visual inspection of the particle age fields. In

Table 1, we see the mean and standard devation of the average particle ages at the end

of four cardiac cycles. We note that in both Patients 1 and 2, there is a significant drop

in median residency time as we move from smoothed to complex models. In Patients

3 and 4, we see that the opposite: median residency time sharply increases in the

complex case. This, also, suggests that healthy trabeculae helps to circulate residual

blood within the ventricle so as to speed up the turnover rate, while poorly-functioning

trabeculae of the older/obstructive CAD (Patient 3) or dyssynchronous (Patient 4)

heart by acting as a cushion or trap, slowing the blood turnover rate.



48

Patient 1 Patient 2

Patient 3 Patient 4

Figure 4.6: Histograms showing distribution of average particle age within cells. X-axis:
Average Particle Age, Y-axis: Number of cells. Red: Smoothed, Green: Complex
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Finally, in Figure 4.6, we plot histograms showing the distribution of residency time

within each heart. The x-axis represents residency time in cardiac cycles, while the

y-axis represents the number of cells whose average particle age falls in a given bin.

While Patient 1 and Patient 2 have interest, we note that in Patient 2’s case, the

significantly smaller variance in the complex model . Additionally, we note that the

clearly bimodal distribution in Patient 3’s and Patient 4’s complex cases reflect their

poor blood turnover rate, and with Patient 3, this bimodal image is not visible in the

smoothed model.

4.4 Chapter Conclusion

In this paper, we have described our method of deterimining the impact trabeculae

geometry, or lack thereof, can have on the computed flow fields in a cardiac blood flow

simulation. For example, in the cases of Patients 2 and 3, while they appear to maintain

similar average residency times in simplified heart models, we have seen that by adding

the trabeculae to the models, these residency times can significantly change. It is clear

that these structures provide an important role in intraventricular hemodynamics, and

thus their inclusion in future simulations is critical for the most clinically useful results.
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Chapter 5

Patient-Specific Aortic Valve Blood Flow Simulations

Aortic valve disease-induced alterations in the blood flow pattern may promote chronic

remodeling of the aortic root and the left ventricle. Although the mechanism of the

aortic root remodeling is not fully understood, the hemodynamic pattern in the aortic

valve vicinity is believed to play an important role. Color Doppler echocardiography

and MR phase-contrast flow imaging are two clinical techniques used in quantifying

valvular blood flow [79, 80]. However, both techniques are limited in imaging the blood

flow in the aortic valve vicinity. Color Doppler echocardiography is not suitable for 3D

flow velocity quantification because of the one dimensional imaging angle. MR flow

imaging has a limited 3D spatial resolution that makes it difficult to quantify a high-

resolution flow pattern in a small structure of the aortic root. Furthermore, the blood

flow in the aortic vicinity exhibits high rates of acceleration and a turbulent pattern

with high vorticity, which compromises the flow quantification accuracies of Doppler-

based echocardiography and phase-contrast MRI. In [81] , it is found that the aortic flow

quantification discrepancy found in color Doppler echocardiography and phase-contrast

MRI mainly came from the flow vorticity.

In this chapter, we propose a framework to study the blood flow within the aortic

valve vicinity using the computational fluid simulation and patient-specific aortic root

models. Computational fluid simulation has been employed in the studies of the intra-

ventricular flow and aortic flow. In 2011, Kulp et al [4] described a method of extracting

the heart and its motion from CT to capture the geometry of the trabeculae and papil-

lary muscles and show evidence of interactions between these structures and the blood

flow. On the other hand, CT has become an important preprocedural imaging tool for

assessing the aortic root anatomy in transcatheter aortic valve implantation patients,
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Figure 5.1: Our aortic root model is attached to the left ventricle model segmented from Visible
Human Project data to form a complete system of the left ventricle, the left ventricle outflow
tract, and the aortic root.

because of its high spatial resolution and high reproducibility [82]. In this study, we

utilized CT as the imaging modality for accurate aortic valve modeling.

5.1 Data Acquisition

The aortic root models were reconstructed from contrast-enhanced 3D CT images that

were acquired using a retrospective full R-R ECG gating protocol. In each heart cycle,

10 phases of 3D CT volumes were reconstructed at every 10% interval. The patient-

specific aortic models were semi-automatically reconstructed using a valve segmentation

research software (Siemens Cooperate Research). The aortic models of the 10 temporal

phases were further aligned and registered to generate a smooth aortic root motion

model. Images of the stenotic valve can be seen in Figure 5.2.

In addition to the geometry and motion of the valve, inflow boundary condition
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plays a critical role in determining the accuracy of our simulation results. However,

the inflow boundary condition is largely determined by the left ventricular function.

We cannot use patient-specific left ventricle geometries in this work, as we are focused

solely on the impact of valvular geometry and motion on the aortic flow patterns,

independent of changes in LV function. Therefore, we attach our aortic root models

to a standard 3D model of a human left ventricle, which was reconstructed from the

high-resolution Visible Human Project datasets, as discussed by Hurmusiadis et al [83].

Ventricular motion was derived from a fiber-based deformation model, also described

in [83]. Models generated using this method were used in [26] to simulate flow through

the left ventricle with high accuracy, so we are confident that these models provide

acceptable inflow velocity boundary conditions to the aortic root. We removed the

aortic root structures generated from the Visible Human Project data, and manually

attached our own reconstructed aortic root models, as seen in Figure 5.1. We then used

this full, animated model as the solid boundary conditions in our fluid simulator, as

described below.

5.2 Fluid Simulation

We use the same Immersed-Boundary Navier-Stokes simulation method described in

the preceding chapters to simulate the flow through the aortic valve. The heart models

used here are embedded in a computational mesh of 1003 cells on which the full NS

equations are solved using FDM. The blood is modeled as a Newtonian fluid, with

viscosity of 4mPa· s and density of 1050kg/m3. Since the aortic valve moves much

faster than the rest of the left ventricle, we use much smaller time steps than normal,

at 0.00005 seconds. A simulation of a single cardiac cycle takes about 5 days to complete

on a machine with an Intel i7 processor and 16GB of RAM.

5.3 Visualizations

After solving the flow fields for both aortic root models, we then use Paraview to

visualize the results. We are primarily focused on differences in flow velocity and
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vorticity between the healthy and diseased valves. Our methods for visualization are

described below.

Figure 5.3 gives visualizations of the velocity field of both valve models at two

different time steps. Fluid velocity is represented by cones pointing in the direction

of the flow and we change the hue of a cone depending on the magnitude of velocity

at its location. At hue=160 (blue), velocity is approximately 3.5cm/s, and at hue=0

(red), velocity is approximately 190cm/s. Areas of flow velocities less than 3.5cm/s are

not shown in our renders, as they tend to be noisy and less interesting in our analysis.

Figures 5.3 (a) and (b) show the flow field through the healthy aortic valve in early

and late systole, respectively, while figures 5.3 (c) and (d) give the flow field through

the diseased aortic valve, also in early and late systole, respectively. To provide a more

useful comparison, Figures 5.3 (a) and (c) were taken exactly the same time step and

at the same angle, as were Figures 5.3 (b) and (d).

In Figure 5.4, we have visualizations of the flow vorticity at several time steps. Since

vorticity is a scalar field, we render it volumetrically, rather than in the glyph-based

manner of the velocity field. Similar to Figure 5.3, the color of a particular region

represents the magnitude of the vorticity at that point. At hue=160 (blue), vorticity

is nearly 0s−1, and at hue=0 (red), vorticity is approximately 3s−1. Like Figure 5.3,

Figures 5.4 (a) and (b) are of the healthy aortic valve, while (c) and (d) are of the

diseased valve. Each image in Figure 5.4 was taken at the same time step and at the

same angle as their respective images in Figure 5.3.

Finally, Figure 5.5 include images of plotted streamlines in late systole through the

healthy and diseased valves. Colors represent velocity magnitude at a given point in

the streamline, and are scaled in precisely the same way as in Figure 5.3. This image

was taken at the same timestep as in Figures 5.3 (b)/(d) and Figures 5.4 (b)/(d).

5.4 Results and Discussion

From Figures 5.3-5.5, we can see that this simulation framework provides a very clear

view of the flow fields in both of our experiments. In our streamline visualization,
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Figure 5.5, we see the formation of vortices in detail. Vortices are also easily visible

in the velocity fields of Figure 5.3, especially in the diseased valve case, and in late

systole. In Figure 5.6 (a), we compute the average velocities through both the diseased

and healthy valves at the sino-tubular junction. The time steps plotted were temporally

equally spaced, and in every time step, both valves were open. We can see that in early

systole, flow through the aorta in both simulations had very similar velocities. However,

in mid-late systole, flow in the aorta appears to drop more rapidly in our diseased valve

simulation, showing the decreased efficiency of the stenotic aortic valve.

In Figure 5.4, the vorticity fields strongly agree with our findings in the previous

images. In the sinus region, we note the high rotational energy against the stenotic

valve, as compared to the healthy valve, which is consistent with the vortices visible in

the streamlines and velocity field. We also note that regions of elevated vorticity are

visible in both simulations at the regions above the sinus, especially in late systole. In

Figure 5.6 (b) we have plotted mean vorticities during systole at the sinus and above-

sinus regions. Only those points at least one full grid cell away from the wall were

included in the mean vorticity computation. We see that the flow through the stenotic

valve consistently produces mean vorticities significantly higher than the healthy valve

in both regions. Interestingly, in the diseased case, vorticities seem to slightly grow

through time in the region above the sinus, and decrease in the sinus region. This is

possibly due to the effects of flow separations and shedding vorticies. This is also seen

more dramatically with the healthy valve in the final plotted time step, with voriticites

in the segment above the sinus sharply increasing, while decreasing at the sinus. Again,

we hypothesize that this is due to vortex shedding caused by the valve beginning to

close.

5.5 Chapter Conclusion

In this chapter, we have presented a new framework to simulate and visualize blood

flow through patient-specific aortic root models. Our results provide a clear, high-

resolution view of flow patterns, which have been previously not visible in traditional

flow imaging techniques, such as Doppler-based echocardiography and phase-contrast
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MR. We clearly can see differences in flow patterns through normal and abnormal aortic

valve geometries and motion, which could potentially become a highly useful tool for

doctors and scientists to assist in diagnosis and understanding valvular diseases.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2: Four views each of both our healthy (top) and stenotic (bottom) aortic root models
reconstructed from CT data.
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(a) (b)

(c) (d)

Figure 5.3: Velocity field visualizations. (a) Early systole, healthy valve; (b) Late systole,
healthy valve; (c) Early systole, diseased valve; (d) Late systole, diseased valve. Both (a) and
(c) were taken at the same time step, as were (b) and (d)
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(a) (b)

(c) (d)

Figure 5.4: Vorticity field visualizations. (a) Early systole, healthy valve; (b) Late systole,
healthy valve; (c) Early systole, diseased valve; (d) Late systole, diseased valve. Each image
was taken at the same time step as their corresponding images in Figure 5.3
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(a) (b)

Figure 5.5: Streamline visualizations of (a) healthy and (b) diseased aortic valve, late systole.
Flow vortices are clearly visible.

(a) (b)

Figure 5.6: Analysis of blood flow velocity and vorticity. (a) Mean velocity at the sino-tubular
junction (b) Mean vorticity in sinus and above-sinus regions
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Chapter 6

CUDA-Accelerated Particle-Based Blood Flow

Simulations

As the geometry and motion of the heart wall models become more realistic and com-

plex, the computation time for running these simulations becomes extremely high; as

described in earlier chapter, single simulations can take nearly a full week to complete.

In a clinical setting, these long waits for one result would be unacceptable. However, in

recent years, there has been increasing interest in meshless methods, such as Smoothed

Particle Hydrodynamics (SPH), due to their improved running times. However, while

these algorithms are fast, working with complex boundary conditions is a notoriously

difficult unsolved problem. While SPH has been successfully used for blood flow simu-

lations before [84], these studies have focused entirely on the flow through blood vessels,

which is far simpler than that of the heart. In this chapter, we present three major

contributions: 1) A method to manage the highly complex boundary conditions of the

heart using SPH by thickening the walls and treating the boundaries as particles, 2) A

very fast and effective collision detection method optimized for a GPU implementation

of SPH, and 3) Analysis of the SPH results that clearly show that these methods are

practical and accurate enough in a clinical setting.

6.1 Data Acquisition

The CT images we used to generate the 3D heart mesh data were created on a Toshiba

Aquilion ONE 320-MSCT scanner, which produces 10 images of the whole heart in a

single cardiac cycle at a volumetric resolution of 0.3mm, and an in-plane resolution of

512x512.

For this application, we do not require such sophisticated methods to reconstruct
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(a) (b)

Figure 6.1: Meshes reconstructed from CT data. (a) Outside heart (b) Apex.

the heart model, since detail will be lost in a wall-thickening process, described in a

later section. To build the mesh animation, we first apply a smoothing filter to the 3D

image that corresponds to the beginning of diastole, and then extract a mesh through

isosurfacing. Following manual cleanup with a 3D modeling tool, we transfer motion

data, acquired from the same CT scan, to the mesh to generate a total of 10 frames.

Since the valve motion is difficult to extract through CT imagery, we add models of the

mitral and aortic valves generated from ultrasound data. Finally, we use cubic spline

interpolation to create a final, smooth animation of 50 3D meshes, appropriate for use

by the simulator. As can be seen in Figure 6.1, the reconstructed results are highly

detailed, clearly showing the papillary muscles and trabeculae.

6.2 Simulation System

In this chapter, we use the SPH algorithm, described in Chapter 2.

6.2.1 Boundary Management

The enforcement of boundary conditions is one of the most challenging problems in

SPH. To the best of our knowledge, no other group has attempted to adapt SPH to a
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(a) (b) (c) (d) (e)

Figure 6.2: Collision detection on CUDA. (a) Initial State - Boundary (red) and fluid (black),
sphere of radius hsolid surrounds each particle; (b) Boundary moves, new location too close to
fluid; (c) Pass 1: Bounding box collision to detect danger pairs; (d) Pass 2: For all danger
pairs, determine if line segment intersects sphere. If so, push fluid particles forward in the same
direction as the boundary; (e) New positions: Boundary is no longer too close to fluid particles

problem of such complex geometry and movement as the left ventricle. As mentioned

earlier, the most common techniques include either using fluid particles to model the

solid boundaries, or using ghost particles. Ghost particles generally perform quite

accurately, but they are not well-suited for problems in which the solid is thin and

complex. In these difficult problems, fluid particles on each side of the thin surface

will produce their own ghost particles, which the fluid particles on the other side will

include in its list of neighbors during density/force computation, generating instability.

Most techniques that use fluid particles as boundaries either keep the boundary

pressure constant, or raise it slightly to discourage particles from entering. However,

we found that in our problem, these methods causes significant instabilities in the flow,

due to the complex nature of the geometry and wall movement. We note that as the

left ventricle expands during diastole, the pressure within the left ventricle drops, which

allows fluid from the left atrium to enter. If the boundary particles at the walls maintain

a constant pressure as the fluid particles within encounter an lower pressure, the fluid

will unrealistically be repelled from the wall and cause instabilities. Similarly, we found

that low pressure at the walls during systole will also become unstable. To overcome this

problem, we used a technique that allows the boundary particles to naturally change

in pressure with the rest of the fluid.

First, to generate the boundary particles, an implicit function computing the dis-

tances to the mesh is rasterized onto a 1003 grid. Then, at each grid point where the
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value of the implicit function is less than some distance ε, we label the particle gen-

erated at this position as a boundary. All other particles at a distance greater than ε

are labeled as normal fluid particles. We then perform a search for the k closest mesh

vertices, and the boundary particle’s velocity is set to the inverse-distance weighted

average of the velocities of its neighbors. Note that ε must be thick enough to prevent

particles within the heart near the boundaries from including particles outside the heart

during the neighborhood search. We found that setting ε ≥ h/2 and k = 5 produces

the most stable results.

At each time step, each boundary particle’s density and pressure is computed in

the same manner as a normal fluid particle, but its velocity is forced to match its

corresponding heart mesh vertices’ velocities. As such, during diastole, the pressure at

boundary particles drops as they move slightly farther apart, and the opposite occurs

in systole. We found this method to be remarkably effective, and consistently produced

stable and accurate results, as we discuss later.

6.3 CUDA Implementation

To further improve performance, we implemented and optimized our simulator using

CUDA, allowing it to take advantage of highly-parallelizable GPUs. A framework

for implementing SPH on CUDA, including the neighborhood search, density/pressure

gradient computation, etc, is described in [85].

Collision detection is another open problem in SPH. Most methods focus on polygon-

sphere collision, such as [86], who recently developed a method for continuous collision

detection optimized for GPUs. Our problem requires sphere-sphere collision detection,

so we devised a new GPU-optimized algorithm for this task. First, we set hsolid to be

the minimum distance a fluid particle must be from a boundary particle (Figure 6.2

(a)). At the beginning of each time step, the boundary particles will advance forward

in time. Let di be the line segment connecting particle i’s starting and end positions

(Figure 6.2 (b)). In the first pass, we make a list of all fluid-boundary particle pairs

that are in danger of colliding by performing a bounding box test between di and
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each neighbor (Figure 6.2 (c)). Each time a potential ”danger pair” is encountered,

the particle pair indices are saved in global RAM. When done, we have a full list of

all potential collisions. We then execute a second CUDA kernel, where each thread

performs a sphere-line segment collision test on a single pair (Figure 6.2 (d)). If a

collision is detected, we know where on the line segment the intersection took place,

and move the fluid particle in the direction of the boundary’s motion such that the

collision is resolved. The reverse procedure is done after the fluid particles move, to

prevent them from moving through the boundary.

6.4 Results

As mentioned previously, the models used in this simulation were generated from CT

imagery from a healthy patient’s heart. The simulation was run three times, with

different settings of c and ∆t for each run. Each experiment was initialized with 1003

particles evenly-spaced throughout the domain, and the smoothing radius h was set to

2.5x the initial distance between particles. In run 1, we set ∆t = 0:001s, and c = 10m/s.

In run 2, we set ∆t = 0:0005s, and c = 20m/s. Finally, in run 3, ∆t = 0:00025s, and c =

30m/s. As c increases, the fluid becomes less compressible, and so we expect accuracy

to improve. All simulations were performed on an Nvidia Geforce GTX 590. The

running time of the simulations scaled linearly as ∆t dropped. The total computation

time for run 1 was 30 minutes, the time for run 2 was 62 minutes, and the time for

run 3 was 126 minutes. All of these running times are orders of magnitude better than

those described in other methods. Each time step took 2.5-3 seconds to complete. The

force computation was the most expensive step, taking an average of 1.5 seconds per

iteration. The density computation took, on average, 0.5 seconds each per time step.

The rest of the time in each iteration was spread across the remaining CUDA kernels,

including the collisions; compared to the density/force/velocity correction functions,

the others’ individual running times were negligible.

Visualizations of the blood flow can be seen in Figure 3. Columns 1, 2, and 3

correspond to Runs 1, 2, and 3, respectively. Frames in row 1 were taken during mid-

diastole, and frames in row 2 were taking during mid-systole. All frames in a row were
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Velocity fields for simulations with different ∆t. Left Column: Diastole, Right
Column: Systole, Row 1: ∆t=0.001s, Row 2: ∆t=0.0005s, Row 3: ∆t=0.00025s.
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taken at equivalent time steps. The direction of the flow is seen in the direction of

the embedded cones, and the velocity magnitude is shown by color, where blue regions

represent velocities approaching zero, and red regions represent velocities approaching

1 m/s. We can see that as ∆t decreases and compressibility goes down, the computed

velocities within the heart go up and approach more accurate values. We note, however,

that by thickening the walls, interactions between blood flow and trabeculae are not

clearly visible.

Validation of cardiac blood flow simulations is difficult. In the future, we plan to

acquire both CT and MRI images of the patient’s heart, and use the MRI flow data to

compare and validate. Here, we compute the ejection fraction by counting the number

of particles within the heart at the end of systole and the end of diastole. We found

that for run 1, the ejection fraction was about 0.42, for run 2, the ejection fraction

was about 0.48, and for run 3, the ejection fraction was 0.50. Again, the increase in

accuracy as ∆t is decreased is expected, and gives the doctor a scalable option.

6.5 Chapter Conclusion

In this chapter, we have described an adaptation of SPH to simulate blood flow through

the left ventricle quickly and accurately. By simply scaling ∆t and c, doctors can choose

an appropriate level of accuracy, while maintaining faster speeds than previous methods

allowed. To the best of our knowledge, this is the fastest that patient-specific cardiac

blood flow simulations has been solved.
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Chapter 7

Thin-Wall Smoothed Particle Hydrodynamics

In the previous chapter, we have shown that Smoothed Particle Hydrodynamics can

provide clinically useful fluid simulations at a fraction of the computational cost of

full Navier-Stokes solvers. However, in that approach, we had to thicken the walls

considerably to prevent particles on either side of the boundary from interacting with

each other. In addition to not allowing for flows through small structures, which become

filled in after wall thickening, this method could cause other undesirable inaccuracies.

For example, by thickening the walls of the heart, we are also decreasing the volume

of fluid within the chamber, and shrinking the openings in the valves. In an effort

to improve these results, this chapter describes a new framework that allows for SPH

simulations against arbitrarily thin walls.

7.1 Correcting Densities

The thin-wall problem can be seen in Figure 7.1. In this image, the boundary is flat for

illustrative purposes, but there is no flat surface requirement. Let pi denote the particle

of interest, near the boundary. Let +(Si) be the side of the domain containing pi, and

−(Si) be the side of the domain opposite of p. Additionally, ρ+(Si) is the density on side

+(Si), while ρ−(Si) is the density on side −(Si), and in this example, ρ−(Si) > ρ−(Si).

Therefore, since pi is very close to the boundary (distance less than h), particles on

side −(S) will incorrectly exert their higher-density influence on pi, causing the density

computed at pi to be significantly higher than it truly should be. We seek to compute

correct this error.

We note that before any correction, the density computed at any near-boundary

particle pi is approximately equal to the following (in integral form):
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Figure 7.1: Image of the thin-wall SPH problem. Note that in the density computation
step, particle p near the boundary will interact with particles on the opposite side of
the wall.

ρi ≈
∫∫∫

Ω+(Si)

ρ+(Si)W (r, h)dΩ +

∫∫∫
Ω−(Si)

ρ−(Si)W (r, h)dΩ, (7.1)

where Ω is the entire domain of interest, Ω+(Si) is the domain on side +(Si), and

Ω−(Si) is the domain on side −(Si). Thus, the term
∫∫∫

Ω+(Si)

ρ+(Si)W (r, h)dΩ approximates

the density influence side −(Si) has on particle pi. It follows, then, that the error ei

can be found as follows:

ei =

∫∫∫
Ω−(Si)

ρ−(Si)W (r, h)dΩ−
∫∫∫

Ω−(Si)

ρ+(Si)W (r, h)dΩ. (7.2)

To perform the error correction, we need to compute both terms in this equation.

Now, let bi be the point on the boundary very close to particle pi. Taking a first

order Taylor series about bp tangent to the wall, and zeroth order normal to the wall,

we find
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∫∫∫
Ω−(Si)

ρ−(Si)W (r, h)dΩ =

∫∫∫
Ω−(Si)

ρ−(Si)(bp)W (r, h)dΩ+

∫∫∫
Ω(−Si)

(∇ρ−(S)(bp) ·∆xt)W (r, h)dΩ,

(7.3)

where ρ−(Si)(bp) is the side −(S) density at point bi, and ∆xt is the displacement

from point bi tangent to the wall.

Note that relative to point bi, (∇ρ−(S)(bp) ·∆xt) is odd, and W (r, h) is even, and

so the product of these terms is odd. The integral of an odd function over a symmetric

interval is zero, and so the entire integral term vanishes, leaving

∫∫∫
Ω−(Si)

ρ−(Si)W (r, h)dΩ =

∫∫∫
Ω−(Si)

ρ−(Si)(bp)W (r, h)dΩ. (7.4)

Using the same technique, we can find

∫∫∫
Ω+(Si)

ρ+(Si)W (r, h)dΩ =

∫∫∫
Ω+(Si)

ρ+(Si)(bp)W (r, h)dΩ. (7.5)

Since ρ−(Si)(bp) and ρ+(Si)(bp) are both constant, we see the error term can be

computed as follows:

ei = (ρ−(Si)(bp)− ρ+(Si)(bp))

∫∫∫
Ω+(Si)

W (r, h)d (7.6)

If h is constant, the term
∫∫∫

Ω+(Si)

W (r, h)d can easily be precomputed for many values

of r, stored in a lookup table, and interpolated at runtime for very good results. So,

if we can find ρ−(Si)(bp) and ρ+(Si)(bp), we can therefore compute an approximation to

this error term and correct the density at particle pi.

Since all near-boundary particles will require this correction, we will seed the entire

boundary with a high number of boundary particles. To find the density for either side

(S) at any boundary point bk, ρ
(
kS), we can use the standard discrete SPH formulation:

ρ
(S)
k =

N∑
j∈(S)

mjW
boundary(rjk, h). (7.7)
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Figure 7.2: Curved wall problem: particles on low density side could “sneak” into the
density computation for the opposite side.

This, however, requires some choice of weighting function. Since each region, +(S)

and −(S), is one hemisphere on either side of bk, it is perhaps intuitive to use

W boundary(rjk, h) = 2W (∗)(rjk, h), (7.8)

Where W (∗) is any commonly-used weighting function described in previous chap-

ters. This choice could work fine for flat surfaces, but has a severe problem in curved

surfaces. For illustration, see Figure 7.2. Here, the solid line is the boundary, the

dashed line is tangent to the boundary, and the colored region represent the relative

values of W (∗)(rjk, h) given this scheme.

We can see that the problem is that particles from side +(S) can, in fact, be on the

wrong side of the tangent wall and be counted in the density computation for ρ−(Si)(bp).

If particles are very close to bk, this problem can cause dramatic instabilities, since small
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changes in particle positions close to the tangent wall - that is, moving between either

side of the tangent wall - can cause huge changes computed density at bk. Instead,

we would rather find a weighting function such that small changes in particle position

causes small changes in ρ−(Si)(bp). That is, the weighting function and its derivative

should be equal to zero at the tangent wall. Consider the following alternative equation:

W boundary(r, h) = 2 ·W ∗ (ζ(r, h,n, t1, t2), h) , (7.9)

where

ζ(r, h,n, t1, t2) = ‖
(

r · n +
h

2

)2

+ (r · t1)2 + (r · t2)2|| (7.10)

This weighting function produces the image seen in Figure 7.3. This function is

clearly much more stable at the boundary. However, it does have the disadvantage that

the region of highest influence is some distance away from the wall. Empirically, we

have found this weighting function to perform far better than the previous.

With this, we can now compute ρ
−(S)
k and ρ

+(S)
k for any boundary point bk. As

mentioned earlier, in our implementation, we seed many boundary points across the

surface. We then either assign each fluid particle pi to its nearest boundary particle

bi, or apply an inverse-distance weighting scheme to interpolate the boundary values

of ρ between the closest boundary points. If the density of boundary points is high

enough, both methods are nearly equivalent. In practice, we have found the most

stable results using the latter (interpolated) method to determine the final ρ boundary

values corresponding to each fluid particle.

7.2 Correcting Pressure Gradient

Correcting the pressure gradients at particles near the boundary takes a very similar

approach. Using SPH integral form, we know the following:

∇Pi ≈
∫∫∫

Ω+(Si)

∇P+(Si)W (r, h)dΩ +

∫∫∫
Ω−(Si)

∇P−(Si)∇W (r, h)dΩ (7.11)
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Figure 7.3: New weighting function stable at tangent wall
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At the moment, we are concerned only with the pressure gradient in the tangential

direction(s). Given t is in a direction tangent to boundary at boundary point bi (near

particle pi), we can reformulate this equation as

∂Pi
∂t
≈
∫∫∫

Ω(+Si)

∂Pi
∂t

W (r, h)dΩ +

∫∫∫
Ω(−Si)

∂Pi
∂t
∇W (r, h)dΩ (7.12)

As mentioned earlier, we are taking a first-order approximation of density, and so the

density gradient (and therefore also the pressure gradient) is constant in the tangential

directions. Using a similar technique as in the density correction step, we can find that

the pressure gradient error ei in the direction of t is

ei = (
∂P−(Si)

∂t
− ∂P+(Si)

∂tn
)

∫∫∫
Ω(−Si)

W (r, h)dΩ (7.13)

We then only need to find ∂P+(Si)

∂tn
and ∂P−(Si)

∂tn
at the boundary point bi to compute

the error.

We seek these values for any boundary point bk. We can use discrete gradient SPH

formulation to derive the following:

∂P
(S)
k

∂t
= −

N∑
j∈(Sk)

mj

ρj

∂W boundary

∂t
(ζ(r, h,n, t1, t2), h) (7.14)

This equation provides us with ∂P+(Si)

∂tn
and ∂P−(Si)

∂tn
, and so we can use this to

compute and correct the error ei.

7.3 Correcting Velocity

The formulation in the preceding sections will provide for us corrections for the fluid

pressure gradient in the direction tangent to the surface. However, we have empir-

ically found that it is impossible to use such techniques to accurately compute the

normal pressure gradient correction, since there is much less information available to

the boundary particle in the normal direction.
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We note, however that in the normal direction, fluid motion is predominately gov-

erned by the no-penetration condition:

(u− ub) · n = 0, (7.15)

where u is the fluid velocity, ub is the velocity of the solid boundary, and n is the

unit vector normal to the wall. Therefore, at particles near the wall, we simply set the

fluid particle’s final velocity u(f) to

u(f) = u− (u− ub) · n (7.16)

This way, computing the corrected pressure gradient normal to the wall is completely

unnecessary, since it is completely driven by the wall motion. Meanwhile, forces and

motion tangential to the wall is still being accurately corrected.

7.4 Experiments

To test the accuracy of our Thin-Wall SPH method, we have devised two experiments.

The first is a static (single-frame) experiment where are testing the accuracy of

the computed density fields and density gradient fields on a curved surface, both on

the boundary surface and the corrected solutions projected onto the fluid. Since the

pressure gradient depends on the choice of C (the speed of sound), and pressure gradient

is computed as a scalar multiple of the density gradient, it allows more a more intuitive

comparison to test the density gradient, rather than the pressure gradient.

Here, our boundary is a sphere. Outside the sphere, the fluid has constant density

(1060) and zero density gradient. Within the sphere, we assign particle masses such

that

ρ(θ, φ) = 1060− 8θ − 8φ (7.17)

The density gradient with respect to θ and φ can be easily computed from this formula.

We then run the Thin-Wall SPH algorithm for a single frame, and compare to the true

values.
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Figure 7.4: Experiment 1: True inner density at boundary

The second experiment tests this algorithm’s ability to handle rapid deformation

and motion. Similar to the first experiment, we start with fluid with an embedded

sphere boundary. The fluid’s density starts constant (1000) everywhere in the domain.

The sphere then shrinks to half its original radius in one-half of a second. Since the

sphere’s final volume is one-eight that of its starting volume, we know that the final

density of the fluid within the sphere should be 8 times higher than its starting density.

7.5 Results

The results of the first experiment can be seen in Figures 7.4-7.13. In Figure 7.4,

we have the true inner density at the boundary, computed from Equation 7.17. In

Figure 7.5, we have the computed density at the boundary. To the eye, these two

images are nearly indistinguishable. Similarly, we see Figure 7.6, which shows the

computed density in the fluid particles immediately adjacent to the boundary surface.

Note that the distribution of fluid particles is more sparse than the distribution of

boundary particles. Again, though, we see that visually, the computed density in the

fluid particles looks nearly identical to the true density field.

In Figure 7.7, we have the percent error of the computed density on the inner
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Figure 7.5: Experiment 1: Computed inner density at boundary

Figure 7.6: Experiment 1: Computed inner density at fluid
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Figure 7.7: Experiment 1: Boundary Inner Density Percent Error ≤ 0.092%

Figure 7.8: Experiment 1: Fluid Inner Density Percent Error ≤ 0.092%
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Figure 7.9: Experiment 1: True Inner Density Gradient at Boundary

boundary. The errors range between -0.028% and 0.092%, which is better than we had

even expected. We note that the regions of highest error are in very small, localized

regions across the sphere. The error variance is due to the changing fluid particle

distributions in in the neighborhood of the boundary across the surface. In Figure

7.8, we have the percent error of the computed density of the fluid inside the sphere.

Using the same color scale as in the Figure 7.7, we can see that the errors are actually

noticeably less than those at the boundary. At these small errors, the computed density

would be at most ±1 kg/m3 from the truth, which is easily on-par with errors from

computing density within the fluid, without any solid boundary. Therefore, we feel that

the density correction step of the thin-wall SPH algorithm works exceedingly well.

In Figure 7.9, we see the true density gradient at the boundary, represented by cone

glyphs. The color of the glyphs corresponds to their relative magnitude. Note that

we are using density gradient, rather than pressure gradient here. This is because, in

SPH, pressure and pressure gradient can change somewhat arbitrarily depending on the
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Figure 7.10: Experiment 1: Computed Inner Density Gradient at Boundary

Figure 7.11: Experiment 1: Computed Inner Density Gradient at Fluid
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Figure 7.12: Experiment 1: Inner Density Gradient Percent Error at Boundary

choice of the speed of sound, c, and so these values are less interesting than the density

gradient.

In Figures 7.10 and 7.11, we have the computed density gradient fields at the bound-

ary and at the fluid, respectively. We note that in both cases, the density gradient fields

are nearly identical to the true values in terms of their directions. However, in both

cases, the magnitudes of the gradients are slightly higher here, than in Figure 7.9.

This difference is more clear in Figures 7.12 and 7.13, which show the percent error

of the density gradient magnitude at the boundary and fluid, respectively. In the

case of the boundary density gradient, we see that error generally is less than 10%,

with some small regions where error is above 15%. The errors at the fluid are, again,

considerably less, in most regions less than 8%, with some very small areas with 15%

error. Again, though, from Figures 7.10 and 7.11, we know that the gradient directions

are correct, so these small magnitude errors are quite acceptable, and so we believe the

pressure/density gradient correction step of the thin-wall SPH algorithm also works

successfully.

We now bring our attention to the second experiment, of the shrinking sphere.

Again, this experiment tests the effectiveness and stability of the thin-wall SPH system
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Figure 7.13: Experiment 1: Inner Density Gradient Percent Error at Fluid

with fast, deforming geometry. Figures 7.14 and 7.15 show the computed density of

the fluid particles within the sphere before and after the shrink, respectively. We see

that the density of the fluid started at 1 kg/m3. As mentioned earlier, this experiment

was designed such that the sphere ends with half the radius, and thus one-eighth the

volume. As we can see from Figure 7.15, the simulation remains stable during the entire

deformation, and the fluid density increases to 8 kg/m3, as expected.

Finally, in Figures 7.16 and 7.17, we have the percent error of the density at the

boundary and fluid, respectively. We see that errors are slightly greater than in Ex-

periment 1, between 0.52% and -0.64% at the boundary. In the fluid, again, errors are

smaller, at around ± 0.3%. The slightly increased error is certainly due to the high

velocities experienced by the fluid particles. However, at over 99.5% accuracy and high

stability, we feel that this experiment shows that the thin-wall SPH algorithm works

exceptionally well, even in these strenuous tests.

7.6 Chapter Conclusion

In this chapter, we have described a new method to solve Smoothed Particle Hydro-

dynamics with an arbitrarily thin, curved, and moving solid wall boundary. We have
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Figure 7.14: Experiment 2: Density before sphere shrinks

Figure 7.15: Experiment 2: Density after sphere shrinks



83

Figure 7.16: Experiment 2: Boundary density percent error after sphere shrinks

Figure 7.17: Experiment 2: Fluid density percent error after sphere shrinks
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shown that this method works on two difficult test cases, including a spatially changing

density field across a static spherical surface, as well as in a quickly deforming and

shrinking sphere. While this method currently has limitations to clinical problems, de-

scribed in more detail in the next chapter, we believe that this algorithm is an important

step in solving solid wall treatment in SPH.
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Chapter 8

Conclusions

In this thesis, we have described a number of difficult problems related to ventricular

blood simulation and analysis. We conclude this dissertation by first providing a short

summary of all the work presented here, followed by answers to the questions posed

in Chapter 1. We will then describe my specific contributions to the research work

performed here. Finally, we discuss limitations and future work of all methods and

results presented in this dissertation.

8.1 Summary of Work

In this section, we provide a very short summary of each of the preceding chapters, in

order to briefly review the methods used and results found.

8.1.1 Chapter 2 Summary

In Chapter 2, we developed ways to perform flow modeling and visualizations through

the left ventricle, reconstructed from CT images, that could be used to help doctors

differentiate flow between normal and diseased hearts.

For flow simulation, we use the Immersed-Boundary Navier-Stokes simulation method

described in Chapter 1. With the fluid velocity fields and level sets generated for each

time step, we developed visualizations of the flow fields in both a healthy heart and a

simulated diseased heart suffering from a large perfusion defect area created by reduc-

ing motion in the anterior apical area. These visualizations proved to effectively and

clearly differentiate between the normal and abnormal models.

We also performed a quantitative comparison of the velocities around the apex of

both heart models. We found that, on average, the velocities in the diseased heart
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in this region are about half of those in the healthy heart. In particular, we see that

during systole, the blood velocities at the apical region of the diseased heart tend not to

increase as they do in the healthy heart, suggesting that this fluid is not being effectively

expelled, creating a risk of clotting.

8.1.2 Chapter 3 Summary

In Chapter 3, we use an improved method of creating the mesh to capture these smaller

details and generate a more accurate simulation. To the best of our knowledge, we are

able to visualize blood flow in unprecedented detail. We used models generated from a

healthy patient, a model with simulated hypokinesis, as well as a patient suffering from

dyssynchronous heart wall motion.

After simulation, we then analyze the blood flow field through velocity and stream-

line visualizations. These images, taken during diastole, demonstrates how the complex

surface causes the flow to move through and around the empty spaces between the tra-

beculae. Also, during systole, we see another example of how the blood is forcefully

expelled out of the spaces between the trabeculae, rather than simply flowing directly

towards the aortic valve as older methods with simpler meshes have suggested. To the

best of our knowledge, this level of detail of blood flow-trabeculae interaction has never

been seen before.

Blood residency time is a new form of flow analysis, with which we can quantitatively

determine regions of the heart that are at greater risk of thrombus, as slower flows are

known to be a significant factor predisposing to thrombus formation. Comparing the

blood residency times between each of the three heart models, we find that in the

healthy heart, blood turnover is high and residency time stays rather low. In a heart

model suffering from hypokinesis, the average residence time is significantly higher near

the walls, particularly near the hypokinetic apex. Finally, in the dyssynchronous heart

patient, we find that a very significant region of the blood has a long residence time,

suggesting that due to the low ejection fraction and relatively low fluid velocities, blood

is not being adequately circulated and thus is remaining stagnant near the walls, again,

particularly toward the apex of the heart.
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8.1.3 Chapter 4 Summary

In the previous chapter, we used a sophisticated methods of extracting the heart and

its motion from CT in order to capture the geometry of the trabeculae, and used fluid

simulations to determine whether the motion and structure of the trabeculae interacts

with the blood flow. The purpose of Chapter 4 was to determine the importance of using

these detailed models, and whether they are worth the increased computational cost.

We did this by comparing the computed flow fields of simplified and complex versions

of four patient-specific heart models, and we visually and quantitatively showed that

these trabeculae structures are critical in developing the best, clinically-useful results.

In this Chapter, CT images were acquired from four patients. Including a healthy

patient, two patients with coronary artery disease, and a patient suffering from dyssyn-

chronous cardiac function. For each patient, we construct both “smoothed” (less tra-

beculae) and “complex” (more trabeculae) 4D models of their heart, described below.

We performed the fluid simulation and blood residence time analysis, similarly to the

previous chapter.

We found that in patients with healthy or nonobstructive CAD, blood flow in the

complex models have a significantly lower residency times than in the smoothed models.

This suggests relatively healthy trabeculae motion and fast blood turnover rates, which

are consistent with our expectations. The opposite effect was seen in the patients

with highly diseased hearts, where the average residency time is much higher in the

complex version, suggesting poorly-functioning trabeculae that is severely dampening

the intraventricular flow. Quantitative analysis further determined that the simulations

with the complex models were significantly different than those with the smoothed

models.

8.1.4 Chapter 5 Summary

In Chapter 5, we proposed a framework to study the blood flow within the aortic

valve vicinity using the computational fluid simulation and patient-specific aortic root

models. For this work, instead of using the high-resolution patient-specific models, we
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used the more standard LV data from the Visible Human Project datasets, since we are

currently focused solely on the impact of valvular geometry and motion on the aortic

flow patterns, independent of changes in LV function.

We used the same Navier-Stokes simulation method described in the preceding chap-

ters to simulate the flow through the aortic valve and produced very interesting images

of the velocity and vorticity fields during systole. From these images, we clearly can

see differences in flow patterns through normal and abnormal aortic valve geometries

and motion.

8.1.5 Chapter 6 Summary

In Chapter 6, we described a method to improve running times by using the Smoothed

Particle Hydrodynamics algorithm with NVIDIA CUDA. These algorithms are very

fast, but working with complex boundary conditions is a difficult problem. We solve

this problem using two new techniques. First, we presented an updated method of

using fluid particles as boundaries, in order keep pressure at the walls stable. With

this method, during diastole, the pressure at boundary particles drops as they move

slightly farther apart, and the opposite occurs in systole. We found this method to

be remarkably effective, and consistently produced stable and accurate results. Addi-

tionally, we developed a new method to perform collision detection between fluid and

boundary particles.

The simulation was run three times, with different settings of speed of sound, c,

and time step length, ∆t, for each run. Depending on the choice of ∆t, total run times

were between 30 and 126 minutes. All of these running times are orders of magnitude

better than those described in previous chapters. We also found that as ∆t decreases

and compressibility goes down, the computed velocities within the heart go up and

approach more accurate values. By changing c and ∆t, we found that the computed

ejection fraction could range from 42% to 50%, on par with the Navier-Stokes methods.
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8.1.6 Chapter 7 Summary

In Chapter 7, we described a new framework that allows for SPH simulations against

arbitrarily thin walls.

We accomplish this in three steps. The first step, density correction, was performed

by deriving the effect and error of computed density particles on one side of the wall will

encounter due to interactions with particles on the other side of the wall. Similarly, in

the second step, pressure gradient correction, we find and correct the adverse effects on

the computed tangential pressure gradients due to particle interactions on either side

of the wall. Finally, to enforce the no-penetration condition of particles through the

solid wall, we force the normal velocity of particles near the wall to match the normal

velocity of the wall itself.

We devised two experiments to evaluate the performance of the Thin-Wall SPH

algorithm. The first is a static (single-frame) experiment where are testing the accuracy

of the computed density fields and density gradient fields on a curved surface, both on

the boundary surface and the corrected solutions projected onto the fluid.We then ran

the Thin-Wall SPH algorithm for a single frame, and compared to the true values. The

second experiment tests this algorithm’s ability to handle rapid deformation and motion.

Similar to the first experiment, we start with fluid with an embedded sphere boundary.

The fluid’s density starts constant everywhere in the domain. The sphere then shrinks

to half its original radius in one-half of a second. The results for both experiments were

highly promising, with density error values less than 0.5%, and density gradient errors

of less than 15%.

8.2 Answers to Questions

In Chapter 1, we presented a number of major questions, which have been fulfilled over

the course of this thesis. In this section, we again list the questions, with our concise

answers.
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• Can we simulate, visualize, and analyze full Navier-Stokes fluid simu-

lations of the left ventricle with highly detailed models, including pap-

illary muscles and trabeculae, and can our visualizations and analysis

of these simulations be used in clinically useful discrimination between

healthy and diseased hearts?: Yes. In Chapters 2 and 3, we successfully sim-

ulated blood flow through highly detailed heart models. With our velocity and

vorticity visualizations, as well as the particle residency time visualizations, we

demonstrated very clear visual differences between healthy and diseased hearts,

which could have great practical use in a clinical setting.

• Does there exist interaction between trabeculae motion and fluid flow?:

Yes. In Chapter 3, for the first time, we have shown clear interactions between

trabeculae and blood flow. In a healthy patient, during diastole, trabeculae allow

blood to enter. During systole, blood is squeezed out of these smalls paces, helping

to circulate blood within the heart. In a diseased patient, there is much less of

such interaction, and blood can remain stagnant within the trabeculae, which

may lead to potential thrombus.

• Are there clinically useful reasons to use and prefer the more complex

models and simulations of the left ventricle over the more traditional

smoothed-wall simulations?: Yes. In Chapter 4, we show that there are clear

differences between blood flow simulations through smoothed and complex models

of several patients’ hearts. These differences are both visually and quantitatively

very noticeable and important, both both healthy and diseased hearts.

• Can we use blood flow simulations to understand how the blood flow

pattern in the aortic valve may play an important role in the remod-

eling of the aortic root?: Yes. In Chapter 5, we show our framework provides

a clear, high-resolution view of flow patterns. We clearly can see differences in

flow patterns through normal and abnormal aortic valve geometries and motion,

which could potentially become very useful in a clinical setting.

• Can we find a new method of SPH boundary management that can
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handle the complex geometry and motion of the left ventricular walls?:

Yes. In Chapter 6, we presented new (CUDA-enabled) methods for both treating

boundaries as particle to keep the flow simulation at the solid wall stable, as

well as boundary particle/fluid particle collision detection and treatment. These

methods were highly effective in driving the SPH fluid flow in this difficult, high-

complexity, high-deformation solid wall motion.

• Does SPH perform at a high enough accuracy that could still remain

useful for clinical applications?: Yes. In Chapter 6, we showed that our SPH

simulations of a healthy heart provided us with ejection fractions very similar

to that from the more traditional Navier-Stokes simulation. However, we cannot

currently capture flow through the trabeculae using SPH.

• Can we derive a new algorithm to allow for Thin-Wall Smoothed Par-

ticle Hydrodynamics?: Yes. In Chapter 7, we have derived a Thin-Wall SPH

algorithm and tested it against two intensive experiments. This algorithm per-

formed very well in both experiments, with density values near the boundary no

less than 99.5% accurate, and density gradient values no less than 85% accurate.

However, as discussed in a later section, we cannot currently use this method for

ventricular blood flow simulations and analysis.

8.3 Overview of Main Contributions

In this section, we discuss, in concise terms, my main individual contributions to the

work described in this thesis.

In Chapters 2 through 5, I developed all of the visualization methods, designed all

of the experiments, and performed all of the analysis. However, I did not perform any

of the data acquisition in any of these chapters. Details are listed below.

In Chapter 2, I designed all the visualization techniques and experiments. My

analysis and visualizations showed details in the flow that were previously impossible

to see, especially around the papilary muscles and some trabeculae structures. Also,

the analysis I performed demonstrated clinically useful difference between normal and
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simulated diseased heart models.

In Chapter 3, I designed and implemented the “blood residency time” visualization

algorithm, which was used to clearly differentiate between healthy and diseased hearts.

Most importantly, my visualizations and deep analysis of the cardiac blood flow fields

proved the interactions the LV trabeculae and blood flow patterns, which has never

been seen before, and is a completely new discovery.

In Chapter 4, I designed and developed the entire set of experiments that further

prove the trabeculae-blood flow interactions described in previous chapters. These

experiments and my statistical analysis also showed the clear difference and importance

of using high-complexity LV models over the more traditional smoothed-wall models in

blood flow simulations.

In Chapter 5, my visualizations and analysis were also used to show the clear dif-

ference in flow patterns in diseased and healthy aortic valves. Previously, it had been

uncertain if and how aortic valve diseases could cause changes in blood flow pattern,

which in term causes futher changes and problems in the shape, structure, and perfor-

mance of the aortic root. My analysis was the first to clearly demonstrate the altered

flow patterns in diseased valves, and explain how they could potentially lead to further

pathological development.

In Chapter 6, the new method to use particles as boundaries in a deforming solid

(LV) was of my design and implementation. I also developed The CUDA-implemented

boundary particle/fluid particle collision system. I designed the experiments to test

these new algorithms, and I performed the analysis that show that these methods are

practical and accurate enough in a clinical setting.

In Chapter 7, I recognized the initial problem (Thin-Wall SPH), and derived all of

the necessary equations and developed the entire algorithm independently. I designed

experiments and performed the analysis to show that the thin-wall SPH algorithm

works, and is a promising new technology for future SPH systems.
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8.4 Limitations

8.4.1 Cardiac Blood Flow Analysis

The greatest limitations of the cardiac blood flow analysis for Chapters 2 to 5 is the

lack of data. The complex models from high-resoluation CT scans have proven to be

very difficult to acquire. Additionally, higher-quality validation is currently impossible.

While the ejection fraction results have been very promising, and the simulator itself

has been thoroughly validated, we would ideally like to validate the cardiac analysis

by comparing computed blood flow velocities with true velocities. For this, we would

need a set of patients who would go through both a CT scan to capture images of their

heart, as well as MRI or ultrasound to acquire low-resolution valvular flow velocities.

This data currently does not exist, and therefore limits our current ability to validate.

8.4.2 Thin-Wall SPH

As mentioned previously, the work in Chapter 6 is limited to effectively smoothed-wall

heart models. In addition, since the walls are thickened, flow velocities through the valve

tend to be slightly higher than they should normally be. However, the visualizations

still compare well with the Navier-Stokes solver results, as well as the ejection fraction.

The Thin-Wall SPH algorithm has several limitations. First, this system does not

work well with areas of high curvature. In these regions, this algorithm cannot correctly

compute the correct density and pressure gradient on both sides of the wall, leading to

inevitable instability. This also means geometries with sharp corners (effectively infinite

curvature) perform poorly with the thin-wall SPH method. However, this problem with

high curvature and sharp corners is an issue with nearly all SPH boundary management

methods. Also, we have found that this method does not currently perform well with

geometries that abruptly end or are cut off. For example, the ends of the mitral valve

leaflets of the left ventricle cause problems. So, the experiments in this work only used

closed spheres to test the algorithm. For this reason, the Thin-Wall SPH method, as

it has been described in this thesis, cannot currently be used effectively for ventricular

blood flow simulations. That said, we believe that this algorithm is an important first
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step in solving the very difficult thin-wall problem.

8.5 Future Work

There is still a large amount of future work possible on this topic. As mentioned in the

last section, more thorough validation is the most important next step for this work.

However, this will not be possible until the data for such validation exists.

A more immediately approachable future extension of this work is in feature extrac-

tion of the fluid flow. In particular, with the very large datasets the fluid simulators

produce, we need new tools need to assist domain experts in quick identification of

critical patterns. At the time of this writing, we have already submitted a paper for

peer review on a method using topological data analysis tools to analyze simulated

ventricular blood flow, and automatically detect interesting topological features within

the flow. Our method can automatically extract eddies created from vortex shedding

across the mitral valve, but we believe that such tools could be extended to find other

clinically-useful features of the blood flow.

Another long-term project would be in the simulation of the heart walls themselves.

Currently, we drive the fluid flow by forcing the solid to move by a predetermined

animation, generated from the CT scan images. An increasingly important topic of

research has been using the material properties of the heart muscles to use physical

simulations to drive the solid motion. Recent such work has mostly focused on the

valves, especially after virtual surgeries [87], but similar techniques might also be used

to acquire more accurate motion of the trabeculae.

For the work on the aortic valve blood flow simulations, there are other potential

ways to improve this framework. Currently, while LV motion can be adjusted to repli-

cate certain defects, such as hypokinesis, it would be optimal to use models of the

patient’s true LV by segmenting CT/MRI images of their full heart. This way, our

framework would be fully patient-specific, including inflow boundary conditions to the

aortic root.

For the Thin-Wall SPH algorithm, there could still be more work to be done, in order
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to solve the limitations listed in the previous section. The high-curvature problem could

be an important first step. The current method uses the flat wall tangent to the surface

to act as the boundary for density/pressure gradient computation on either side. So,

the higher the curvature, the more the true surface diverges from the tangent wall. One

possible solution would be to find a higher-order tangent surface that fits the shape of

the wall more closely. Thus, the particles used to determine density/pressure gradient

are more likely to be on their ‘correct side” on the correction step.
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