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ABSTRACT OF THE THESIS

Characterizing the GlusterFS Distributed File System for

Software Defined Networks Research

by Manonit Kumar

Thesis Director: Dr. Ivan Rodero

With the rapid rise of online resources such as those offered by Google, Dropbox and Mi-

crosoft cloud computing is playing a bigger part in everyday lives than most people can

imagine. More and more services are being offered online even in academia and science

terabytes of data is collected during experiments and this data has to be stored and pro-

visioned across various geographical locations. This is achieved through distributed file

systems and software defined networks is a new paradigm that provides interesting ways

to improve these Distributed File systems. In order to understand the potential impact of

SDN usage on distributed file systems this work has set out to characterize GlusterFS in

certain configurations by emulating a realistic distributed load on the file system. Software

Defined Networks as opposed to traditional networks are not static, in the sense that the

system can manage data bandwidth and balance data loads according to requirements and

cost. This work measures the performance in units of throughput in KB per second along

with graphs of network activity from empirical executions to understand GlusterFS in more

detail.

Experimental results of introducing SDN into GlusterFS yeilded very good results. Signifi-

cant gains in the range of 45% - 60% in the quality of service were observed during manual

manipulation of the network.
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Chapter 1

Introduction

Distributed file systems also known as network file systems have been around for quite a long

time. Distributed file systems as the name suggests allows data storage across a number of

servers to provide advantages such as redundancy, performance, cost etc. Distributed data

storage generally follows the client/server model where servers in remote locations store

data in various formats, locations and the client machines access this data exactly like they

would locally.

With the advent of cloud computing which believes in economies of scale where com-

puting services like processing, memory and storage etc. are shared among many users it

important to support this structure with a dynamic and malleable storage solution. Dis-

tributed file systems allow us to define network storage and change aspects like bandwidth

and throughput according to demand and priority. This flexibility is backbone of the Infras-

tructure as a Service (IaaS) model. The many advantages of such file systems are already

widely known, because of the pay-as-you-go model of these services new companies can

get off the ground much quicker by avoiding the massive initial investments in installing

data servers and focus on more on differentiating there service/applications from the com-

petition. There are also the other environmental advantages of shared resources like less

wastage of power and optimize efficiency depending on demand. The adoption and growth

of cloud computing [1] is what was the motivation behind this project.

Software-defined networking (SDN) is an approach that manages network services through

abstraction of lower-level functionality. In contrast to traditional networks in SDN we can

define the bandwidth, no. of connections, throughput dynamically. The advantage of SDN

is coupled with the massive need of computing and network bandwidth in today’s cloud

environment where multiple users with completely different QOS requirement/needs access



2

data through the same network. For example a scientist running a computation heavy pro-

gram using command line software doesn’t need the same bandwidth as an engineer running

a GUI based chip-design software, hence by using SDN we can make use of the same band-

width to give better QOS to both. The impact of such SDN on a distributed file system is

the aim of this work. The representative file system used in this work is GlusterFS.

GlusterFS is an open open source distributed file system capable of scaling to upto 72

brontobytes [2]. GlusterFS aggregates storage servers over Infniband RDMA or TCP/IP

connections, and manages them in one namespace. We have deployed GlusterFS on clusters

of virtual machines on the Global Environment for Network Innovation (GENI) which is a

virtual network testbed for experiments in distributed computing. All the testing and sim-

ulations were done using Iozone [12] which is an open source benchmark filesystem which

generates a variety of read/write operations to emulate different categories of users on the

GlusterFS client machines. This focus of my thesis is characterizing and testing GlusterFS,

a distributed file system in a truly distributed environment. A lot of research has been

done [4, 5, 6, 7] but all of them focus on improving speed or access times for the end user

by adding memory [7] or building a layer of abstraction [6] over glusterFS without giving

much details about how users were distributed among many clients all trying to access and

manipulate data on the file system.

1.1 Motivation & Goals

The motivation for this work is exploring the potential impact of SDN in distributed file

systems and we needed to understand the behaviour of a representing filesystem (GlusterFS)

and how the networks’ configuration impacts relevant metrics such as performance, resource

utilization or energy consumption. We propose that through this research we want to achieve

maximum throughput for accessing data on our distributed file system but we wanted to

come to this solution by thoroughly testing and stressing the file system on the current

network. Analysing how multiple users all distributed among different clients at separate

geographical locations affect the access time for all users. The underlying focus was always

understanding how GlusterFS behaves under different circumstances such as unbalanced
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user loads and differences in bandwidth between multiple clients and how the file system

reacts to these changes. The project is an initial exploratory work into understanding

GlusterFS and the intent is to give researchers a baseline to build upon so they can make

the correct choices in providing different Quality of Service as per requirements in their

systems.

1.2 Contributions

One of the major contributions that this work has made is collecting empirical data on a

real life testbed ie. ExoGENI. Although there is a lot of complexity involved in setting up

and resource provisioning on the geographically spread out network such as the one used in

this work, We focused on data that represented a real distributed environment with multiple

users that are distributed logically and geographically. This work is also contributing by

adding more dimensions to current research [5] by using their research and entering into the

realm of Software Defined Networks and how file systems need to adapt to this demanding

new area.

1.3 Thesis Organization

The remainder of this thesis is organized as follows Chapter 2 will focus on the current

and related work along with motivations. Chapter 3 will define implementation of the

characterization along with an explanation of the various tools and frameworks that were

used for this project. Chapter 4 will define the experimental setup and assumptions (if any)

that were made during the project. Finally, Chapter 5 will provide the thesis conclusions

and will outline possible directions for future work.
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Chapter 2

Related Work

2.1 Literature Survey

GlusterFS is a recent File System and the literature characterizing the behavior of Glus-

terFS is not very extensive. Existing work [5] has mainly concentrated on the characterizing

the different types of configurations available in GlusterFS i.e., how is the data distributed

among the GlusterFS storage servers. GlusterFS provides many different ways to distribute

data across storage servers, each storage block is known as a brick and each storage server

can contain one or many bricks. Files can striped (broken down) across bricks, distributed

among bricks (bricks are selected using an internal hash algorithm according to filenames)

or file can simply be replicated among bricks. More will be discussed about this in the im-

plementation section. Huang et al. [5] studied the “Quality of Service” (QoS) model through

measuring file write/read throughputs over different GlusterFS configurations. This work

is relevant to this thesis as it provides a good baseline on what to expect while going in to

experiment the different configurations but Huang et al. have not focused on understanding

how this “QoS” or the throughputs of the file system as a whole change when multiple users

are added to the system. They do talk about parallel and distributed applications but have

merely studied how the system behaves while dealing with different file sizes sequentially,

but there is no quantifiable data to illustrate that any such testing in a highly concurrent

environment, which is the ultimate goal of all distributed file systems. There has been no

stress testing of the system, with multiple users distributed or not, they have not given

any details of the system namely, how many server nodes how many client servers did their

system use etc.
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Yu et al. [4] presented novel ways to seed torrents by using GlusterFS servers as a back

end framework and have used Eucalyptus cloud an open source cloud computing platform

developed by the University of California, to emulate a network of users, using a Bitorrent

client. They have mainly concentrated on adding and removing Virtual Servers as per de-

mand which make a good future step for this work. They do mention using a “Distributed

Replicated” GlusterFS configuration without dwelling into and analysing different config-

urations of GlusterFS and why this specific configuration best suits their application of a

highly concurrent model. The main aim of their project was not to characterize GlusterFS

but they could have used a more comprehensive study of GlusterFS to better understand

the back end behavior of their systems. They discuss about using three physical servers as

their GlusterFS storage servers but a major drawback of their work is that while emulating

a multi-user environment they do not clearly illustrate how multiple users are affecting their

system. Torrents being a highly concurrent system, they have not emulated multiple users

or tried to measure how multiple users affect their system.

More we dwell into related work the larger is the need to understand GlusterFS more

accurately. - remove this sentence Existing work [6] have also made lot of effort building

a whole virtual network layer on top of GlusterFS without addressing how to fine tune

GlusterFS for their approaches. This existing work [6] has not stated how their storage is

deployed which is very important because search relates mainly to metadata and hence very

small file sizes but a highly concurrent environment for small files distributed systems will

offer more bandwidth as the overheads involved in striped file systems may outweigh the

benefits of using a striped configuration. Other work such as [7] have gained good ground

in improving latency but not by fine tuning their backend storage systems but by trying

to improve the current database by adding layers of storage in between the storage server

and the client. Moronha et al. [7] have studied many interesting problems in multiple client

file systems like single server bandwidth drop with multiple clients, parallel I/O

bandwidth from multiple servers these are all problems we faced during this work and

hence [7] makes a very good addition or next step in our work.

Finally to get a good reference to understand how to measure or benchmark our file
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system Vogel et al. [14] provided a very comprehensive resource. Their work provides a lot

of insight into how one can define Quality of Service (QoS). QoS can mean many things

and especially in distributed media there are many dimensions like connectivity, throughput,

latency and many more. In agreement with [14] we have decided to use available throughput

i.e., the rate at which data can be written or read from the file system to be our QoS measure.

All our experiments are hence measured in total throughput or throughput per user. The

user being a process in our tests which emulates the behaviour of a user trying to access

their data on our file system.
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Chapter 3

Background

The implementation of this project has 3 essential requirements. The network testbed

(ExoGENI), a file system (GlusterFS) and a benchmarking tool (iozone).

3.1 ExoGENI

GENI [8](Global Environment for Network Innovations) provides a virtual test bed of vir-

tual machines for networking and distributed systems research and education. It is well

suited for exploring networks at scale, thereby promoting innovations in network science,

security, services and applications. GENI allows us to obtain compute resources from lo-

cations around the United States where GENI has a resources from many universities like

UCD,FIU,UFL etc. Connect compute resources using Layer 2 networks in topologies best

suited to their experiments. Install custom software or even custom operating systems on

these compute resources as there is a whole virtual machine available to the users. Software’s

such as network monitoring systems were installed to study the network traffic patterns on

each of the GlusterFS nodes. Control the bandwidth of network switches to test out systems

and architectures as required by the user. Run their own Layer 3 and above protocols by

installing protocol software in their compute resources and by providing flow controllers for

their switches.

GENI provides an array of compute and storage resources at multiple universities across

America. Geni provides compute resources in the form of ”Virtual Machines” or ”Bare

Metal” Machines, attached Network Storage. Each of these machines is defined as a ”Node”

by GENI and we can connect all these servers together via a broadcast links that connect our

virtual network together. In the next section Flukes is described which allows us provision

these resources from GENI.
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3.1.1 ORCA

ORCA [9] is a Control Framework to provision virtual networked systems via Secure and

Distributed management of Heterogeneous Resources over Federated substrate sites and

domains. It was originally developed by the NICL Lab at Duke University, and is currently

being developed jointly with Duke University by the Networking Group at The Renaissance

Computing Institute (RENCI).

ORCA is the control framework for the GENI testbed. ORCA is tightly integrated with

OpenStack and Eucalyptus via special extensions to both for provisioning virtual machines.

ORCA is also integrated with xCAT to support bare-metal node provisioning. The ORCA

native interface is used by flukes to provision and monitor ORCA substrates.

3.1.2 Flukes

Flukes [10] is Java based GUI that allows an experimenter to graphically inspect the state

of ORCA substrates, create request topologies, submit requests to ORCA and inspect the

returned substrate information (called manifest). The key features of flukes include

• Graphical User Interface.

• Uses native ORCA interfaces and resource descriptions for maximum flexibility.

• Allows the user to submit requests and inspect the output manifest for any failing or

defective units in the network.

• Allows users to login to provisioned resources.

• Allows users to extend reservations of provisioned resources for further experimenta-

tions.

Figure 3.1 shows a typical request for a slice. A “slice” is defined as a cluster of resources

that include nodes, links and storage devices. Each node can chose from flavour of different

operating systems like Ubuntu, CentOS, RedHat etc. Network storages can provision up to

multiple 100GB of disk space which can be attached to the Nodes.



9

Figure 3.1: Requesting a slice through flukes

After requesting slice we get a manifest from ORCA which gives us the status of each

of the provisioned resources from our slice.

Figure 3.2: Manifest of a requested slice

The above figure 3.1 shows a typical “slice” request in flukes and also one that was

used during my research. The yellow blocks are nodes or virtual machines with a preloaded

operating system. The green cylinders represent attached “network storage” which are of

100GB each in this case. The grey link is the “broadcast link” which is connecting all

the nodes together. Looking at this picture it is obvious that only 3 nodes have attached

storage, hence we can conclude that I used a 6 node network with 3 nodes serving as

GlusterFS servers while the other 3 nodes are serving as GlusterFS servers. Figure 3.2

shows a manifest for a provisioned slice, where one can view the status of all the requested
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resources.
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3.2 GlusterFS File System

GlusterFS [2] is an open source, distributed file system capable of scaling beyond petabytes

(actually, 72 brontobytes) and handling thousands of clients. GlusterFS clusters together

storage building blocks over Infiniband RDMA or TCP/IP interconnect, aggregating disk

and memory resources and managing data in a single global namespace. GlusterFS is

based on a stackable user space design and can deliver exceptional performance for diverse

workloads.

Figure 3.3: GlusterFS Virtual File System

GlusterFS supports standard clients running standard application over any standard

IP network.GlusterFS supports standard clients running standard applications over any

standard IP network. Figure 4.1 [2], above, illustrates how users can access application

data and files in a Global namespace using a variety of standard protocols. Gluster takes

advantage of commodity software, users can use NFS,SMB/CIFS as shown in figure 4.1,

there is also no need to fine tune the kernels GlusterFS supports almost any Operating

System, of course there are some recommended ones.



12

3.2.1 Gluster Concepts

3.2.1.1 Terms

• Brick

The brick is the storage filesystem that has been assigned to a volume. Bricks reside

on GlusterFS servers, each server can have a single or multiple bricks.

• Client

The machine which mounts the volume (this may also be a server). At the client

GlusterFS has an API which makes the mounted drive look like a local disk area.

Figure 3.4: Mounted GlusterFS File System on a Client

Figure 3.4 shows what mounted GlusterFS file system looks like on a client machine.

• Server

The machine (virtual or bare metal) which hosts the actual filesystem in which data

will be stored.

• Subvolume

A brick after being processed by at least one translator.

• Volume

The final share after it passes through all the translators.
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3.2.1.2 Translator

A translator connects to one or more subvolumes, and offers a subvolume connection for

the users.

Figure 3.5: A translator logically.

The brick’s first translator is the storage/posix translator that manages the direct filesys-

tem interface for the rest of the translators. This posix translator directly looks at the ext3,

ext4 FAT filesystem on the network storage and translates this into a common format for

all other translators.

Figure 3.6: The Posix translator

The configuration of translators (since GlusterFS 3.1) is managed through the gluster

command line interface (cli), so the users don’t need to know in what order to graph the

translators together this is done internally. Finally all the translators hooked up together

to perform a complete translation from the local filesystem to the mounted network drive,

is called a graph. A complete brick graph might look like this:

Figure 3.7: Example of a Brick Graph
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3.2.2 GlusterFS Configurations

GlusterFS has 3 basic configurations [11] striped, replicated and distributed. These 3 con-

figurations can be mixed and matched together to get better redundancy, throughput etc

for different use cases.

Figure 3.8: GlusterFS Volume

But before we describe all the different configurations Figure 3.7 shows a logical setup

configuration of a GlusterFS setup where the GlusterFS API resides on the client server and

translator decides how the files have to be striped and distributed among bricks depending

upon our configurations. But as mentioned above the user is completely shielded from the

translator and its activities. This mapping can although be seen in files that gluster created

on the server side.

3.2.2.1 Distributed Volume

Distributed volumes distributes files among different bricks/servers depending on a hashing

algorithm depending on the names of the files. These files are not processed in any way

but taken as a whole and stored in one of the bricks at random. Distribution provides fast

throughputs in reading and writing as there is no processing required for the file but bad

redundancy because if anyone server crashes then we can lose whole chunks of data in our

volume. Also if the single file is larger than a brick then the write will fail.



15

Figure 3.9: Distributed GlusterFS Volume

Distributed volumes are obviously not good for high concurrency applications where

multiple clients might try to access multiple files or even the same file and be limited by

the bandwidth of a single server.

3.2.2.2 Replicated Volume

Replicated simply takes a file and stores multiple replicas of it on multiple bricks as per

our definition . Replication obviously is just to add data redundancy and not really for any

algorithmic advantage to increase access times . Replicated volumes are usually used in

addition to the other 2 types of volumes.

Figure 3.10: Replicated GlusterFS Volume

3.2.2.3 Striped

Striped volume stripes data across bricks in a volume. This means that the each file is

split up into multiple parts and stored on different bricks. Stripe volumes do away with
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much of the disadvantages of distributed volumes such as in high concurrency environments

and even if the size of the file is larger than the remaining space in one brick, the file can

partitioned accordingly and stored in different bricks.

Figure 3.11: Striped GlusterFS Volume

3.2.2.4 Distributed Striped volumes

Distributed striped volumes stripe data across two or more nodes in the cluster. You

should use distributed striped volumes where the requirement is to scale storage and in

high concurrency environments accessing very large files is critical.

Figure 3.12: Distributed Striped Volume

3.2.2.5 Distributed Replicated volumes

Distributed replicated volumes distributes files across replicated bricks in the volume. You

can use distributed replicated volumes in environments where the requirement is to scale
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storage and high-reliability is critical. Distributed replicated volumes also offer improved

read performance in most environments.

3.2.2.6 Striped Replicated

Striped replicated volumes stripes data across replicated bricks in the cluster. For best

results, you should use striped replicated volumes in highly concurrent environments where

there is parallel access of very large files and performance is critical.

Figure 3.13: Striped Replicated GlusterFS Volume

The subtle difference between stripe-replication and distributed replication is that stripe

replication will partition files and replicate the partitions of the file for added redundancy

along with concurrency already present in striped volumes. On the other hand distributed-

replicated drives simply replicate complete files .
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3.3 Iozone File System Benchmark

IOzone [12] is a filesystem benchmark tool written in C++. The tool can be run on any linux

operating system with gcc, Iozone has been ported to many machines and runs under many

operating systems. Iozone is useful for performing a broad filesystem analysis of a vendors

computer platform. The benchmark tests file I/O performance for the following operations:

Read, write, reread, rewrite, read backwards, read strided, fread, fwrite, random read. All

the I/O performance testing in done the form of throughput, Iozone measures throughput

of each of the functions described above. Iozone has 2 fundamental modes of opreation an

auto and a manual mode. While functioning in auto mode we can provide iozone with a

multitude of inputs to define file size range, types of operation etc we get a combined three

dimesional throughput assessment as shown in figure 3.14.

Figure 3.14: Iozone results

This graph shows a comparison in reading throughput speeds for different file sizes and

each file size has been read with a different block size or page length of reading. In the

manual mode operation we can do througput testing on files previously generated and pro-

vide file names, size and precisely which test out of the multitude of available tests. Iozone

testing formed platform of all experimentation, for testing in a distributed environments

and emulating multi user loads on the filesystem, I had to write many scripts around the

iozone executable to fine tune and adapt iozone to my needs.
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3.4 Ganglia Network Monitoring System

Ganglia [15] is a scalable distributed monitoring system for high-performance computing

systems such as clusters and Grids. It is based on a hierarchical design targeted at federa-

tions of clusters. It leverages widely used technologies such as XML for data representation,

XDR for compact, portable data transport, and RRDtool for data storage and visualization.

It uses carefully engineered data structures and algorithms to achieve very low per-node

overheads and high concurrency. The implementation is robust, has been ported to an

extensive set of operating systems and processor architectures, and is currently in use on

thousands of clusters around the world. It has been used to link clusters across university

campuses and around the world and can scale to handle clusters with 2000 nodes.

Ganglia is a BSD-licensed open-source project that grew out of the University of Califor-

nia, Berkeley Millennium Project which was initially funded in large part by the National

Partnership for Advanced Computational Infrastructure (NPACI) and National Science

Foundation RI Award EIA-9802069. NPACI is funded by the National Science Foundation

and strives to advance science by creating a ubiquitous, continuous, and pervasive national

computational infrastructure: the Grid. Current support comes from Planet Lab: an open

platform for developing, deploying, and accessing planetary-scale services.



20

Chapter 4

Experimental Evaluation

4.1 Experimental Setup

The implementation of this thesis was done on a slice of six servers spread out all over USA.

Figure 4.1 gives an accurate picture of the experimental setup used for this experiment. The

6 servers reside at Davis (UCD), Oakland (OSF), Miami(FIU), Chapel Hill (RCI), Detroit

(WVN) and Morgantown(WSU). The 3 servers at Davis, Chapel Hill and Miami are being

used as storage servers while Morgantown, Oakland and Detroit are being used as GlusterFS

client servers.

Figure 4.1: Implementation
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The GlusterFS virtual network drive is created created by RCI and mounted on each

of the client machines. Each storage server has an allocated disk space of 75GB so the

GluterFS drive has a total of around 225GB. To test the filesystem the gluster drive was

filled up to 95%. The file size distribution used in [13] was tweaked a little but the

following distribution was followed :

File Size Distribution

5MB 40%

50MB 40%

500MB 10%

5GB 10%

Table 4.1: File Size Distribution

The percentage values above reflect a percentage of the total disk available disk size,

220GB in our case. They collected file distributions from thirty-two file servers that were

in use for the ASCI Linux clusters during the science runs phase. The file servers were

dedicated to a small number of large-scale scientific applications, which provides a good

model of data storage patterns. The experimental use case for this work was to emulate a

multi user highly concurrent environment. The natural Gluster configuration for this sort

of an experiment was to use a striped file system where files are partitioned into pieces and

striped across multiple bricks in the volume. I will further compare the throughput of these

two fundamentally different GlusterFS volumes to prove why a striped and not distributed

GlusterFS volume was more suitable for my experiment.

There are three main dimensions to evaluate in this work, Workload, Network and

Filesystem. Workload obviously refers to the user behaviour and types of file accesses. To

test user work load an option of evaluation sequential or parallel loads is present. But for

reasons of testing or even stress testing the file system there is no insight to be gained by

studying sequential access to the system. Parallel workloads are more interesting to our

cause because we want to see how the system behaves in a highly concurrent environment

with multiple users distributed across multiple servers all trying to concurrently access

their files on the filesystem. The second dimension to this study is the network. The

allocated bandwidth between the storage servers and client servers, and between the storage
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servers itself. There were some interesting findings on this dimension that I will present.

Finally the third dimension is the file system itself, as mentioned earlier that GlusterFS

offers two fundamental types of configurations, distributed and striped, we can use the

replicated configuration in concurrence with these to achieve added redundancy to our

system. Also mentioned earlier that striped filesystems are ideal for our use case of a highly

concurrent environment but we will also study the distributed system to study and quantify

its advantages/disadvantages.

4.2 Results & Evaluation

4.2.1 Workload Testing

In this thesis, we have used large files for testing workloads as all the servers used have

moderately high bandwidths around 20 Mbps therefore file sizes of at least 5GB were used

to allow the network activity to settle and collect more realistic data. The following three

tables shows the throughput analysis done on each of client servers individually. This

step was necessary to establish a baseline behavior of the different client servers in the

network. Each of the client servers was tested individually with none of the the other

clients competing for read/write bandwidths. The experiment setup a striped file system

configuration of Section 3.2.2.3 and we simply loaded each clients with users to understand

what kind of bandwidth allocation is done by GlusterFS. The key to this experiment was

to study the following:

1. Bandwidth allocated to each user by GlusterFS.

2. Bandwidth allocation to users when multiple users are competing for resources at the

same client.

3. Bandwidth utilization of the client at each data point.
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Number of Users Throughput (KB/sec) Per User (KB/sec) B/W Utilization

1 3638.19 3638.19 16.12376984

2 5769.92 2884.96 25.57119394

4 12042.24 3010.56 53.36892964

8 19288.32 2411.04 85.48218545

10 20722.33 2072.233 91.8374465

12 22564.14 1880.345 100

16 22355.36 1397.21 99.07472654

Table 4.2: Throughput Testing WVN

Figure 4.2: Throughput testing on WVN

Looking at the acquired data we are in a good position to answer the 3 major questions.

We start testing with a single user and keep loading the client with more users. The

bandwidth allocated to each user keeps degrading as the number of users keep increasing.

But we notice that a maximum bandwidth is approached around 12 users per client. It is

important to note that all users during testing are assumed to be active as the same time

and and accessing files equivalent to 5GB-10GB. Another observation to be made here is

that the bandwidth utilization increases as we load the the client with more number of users

This is a drawback in the files system because it should be aiming to maximize bandwidth

utilization at all possible times, the same is also a draw back of the striped file system files

have to pulled from different servers and stitched together hence overheads are involved.
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This makes the striped configuration a good candidate for highly concurrent use cases.

Number of Users Throughput (KB/sec) Per User (KB/sec) B/W Utilization

1 2816.23 2816.23 38.26337071

2 4462.96 2231.48 85.80294886

4 6315.2 1578.8 60.63705483

8 6958.81 869.85 94.54750738

12 7191.41 599.28 97.70778194

16 7360.12 460 100

Table 4.3: Throughput Testing WSU

Figure 4.3: Throughput testing on WSU

Number of Users Throughput (KB/sec) Per User (KB/sec) B/W utilization

1 3723.05 3723.05 14.72808786

2 5739.89 2869.945 22.7065455

4 13883.89 3470.97 54.92355778

8 24454.57 3056.821 96.74032194

10 23722.33 2372.23 93.8436391

12 25278.57 2106.5475 100

16 22355.36 1397.21 88.43601517

Table 4.4: Throughput Testing OSF
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Figure 4.4: Throughput testing on OSF

All three tables resonate the same findings about bandwidth utilization and allocated

bandwidth to each user on the client machines. To calculate bandwidth utilization we are

going to assume that the maximum bandwidth achieved at client during testing is our true

bandwidth available to each client as a total and hence we deduce the following graph,

which shows the bandwidth utilization of each client server as we increase the number of

users. Infact if we notice row 1 and 3 in table 4.5 you notice that by the time we measure 16

users the utilization starts falling i.e., the overheads involved in handling so many users is

actually slowing the network transmission down this maybe another drawback of the striped

file system.
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Figure 4.5: Maximum Throughput(%) per client

Number of Users 1 2 4 8 12 16

WVN Utilization 16.1237 25.5711 53.3689 85.4821 100 99.0747

WSU Utilization 38.2633 60.6370 85.8029 94.5475 97.7077 100

OSF Utilization 14.7280 22.7065 54.9235 96.7403 100 88.4360

Table 4.5: Bandwidth Utilization per client

4.2.2 Distributed Workload Testing

This section deals with the same dimension of testing ie workload testing but here we truly

test a distributed user environment. The following experiment sets up multiple users on all

clients simultaneously . This test was important to emulate a real multi-user environment,

we want to strain the system by placing multiple requests to the filesystem not only from the

same client but from different clients all at the same time. This stress testing is important

in establishing a baseline to the bandwidth spread across different clients and users on that

client.
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No. of

Users

Throughput

(KB/sec)

Throughput

Per User

(KB/sec)

WVN

(KB/sec)

OSF

(KB/sec)

WSU

(KB/sec)

6 16039 2673.166 5854 5886 4297

9 24361.89 2706.876 8724 9466 8724

12 29052.89 2421.074 11204 12936 6644

15 33331.69 2222.112 - - -

24 34854.33 1452.263 13239.58 14423.34 7191.41

30 33681.22 1122.707 13875.74 15304.91 4500.57

36 33986.3 944.0638 13198.46 14004.14 6783.7

48 37392.3 779.0062 14154.66 15192.29 8045.35

Table 4.6: Distributed Throughput Testing

Figure 4.6: Throughput testing in parallel and isolated

The table 4.6 enumerates the same throughput testing done in the earlier sections but

this experiment strains the complete network as well as the system, as mentioned earlier, the

previous experiment was a simple isolated stress test at each of the client machines. This

experiment gives us a good comparison of how the system behaves in a highly concurrent

environment. Figure 4.6 is comparing the total throughput and throughput per user on

each client during isolated and during distributed testing to better understand how what

degree of advantage do we gain in high concurrency environments. It is clear from figure
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4.6 that total throughput of the whole system when distributed is much higher than each

of the clients in isolation . The other important observation is that throughput per user

is also much higher during parallel and distributed testing. This however is very evident

that multiple clients will provide more cumulative throughput than each of the clients in

isolation but figure 4.7 compares the per user throughput of each of the clients compared

to an average per user throughput user when we perform parallel testing.

Figure 4.7: Average throughput per user in parallel and isolated tests

In Figure 4.7 although the client WSU initially has a slightly better throughput per

user but add we start to increase number of users, parallel environments do have a distinct

advantage in GlusterFS striped file systems.
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4.2.3 Software Defined Network (SDN) Testing

This experiment is the final dimension of testing the GlusterFS file system by changing

network bandwidth of client servers to understand how the GlusterFS filesystem responds.

The primary aim for doing this synthetic network modification was to understand how

SDN will affect the file system. We then observe wether GlusterFS takes advantage of

this and diverts bandwidth to other client servers. This is where the flexibility of SDN

and its impact on distributed file systems come in. The results of this experiment will

determine the compatibility of GlusterFS with SDN’s. To understand better the setup of

this experiment lets recap the initial setup of our experiment as shown in Figure 4.1 and

in the next table, table 4.7 are enumerated the the maximum operating throughput that

each each client achieved during parallel isolated testing, and parallel distributed testing.

The latter is expected to be slower as many more number of users were during distributed

testing.

Client Server Isolated (KB/sec) Distributed (KB/sec)

WVN 22564.14 14154.66

WSU 7360.12 8724

OSF 25278.57 15304.91

Table 4.7: Maximum Throughput per client

An important point to note here is that each of these values is obtained when 10-12

users are operating on each client server. This same fact is pretty visible through Figures

4.3, 4.4, and 4.5 . Now for this experiment we limit the bandwidth of Client WSU

to about 1500 KB/sec. After setting up this limitation the effect of this limitation is

checked on maximum bandwidth data points i.e., for 10 users and 12 users per client or 30

and 36 users in total. The results of this are in the following table.
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After Before

Client Server 10 Users 12 Users 10 Users 12 Users

Total Throughput (KB/sec) 25677.54 30199.82 33681.22 33986.3

Throughput per user (KB/sec) 855.918 838.883 1122.707 944.063

WVN (KB/sec) 19806.42 21969.32 13875.74 13198.46

WSU (KB/sec) 4740.16 6946.8 4500.57 6783.7

OSF (KB/sec) 1130.96 1446.8 15304.91 14004.14

Table 4.8: Network Manipulation: Throughput per client

Table 4.8 shows the clear distinction between the throughput “Before” and “After”

synthetically manipulating the bandwidths to measure how this change affects different

clients server operating throughputs. Figure 4.8 gives a more graphical description clearly

showing how other clients are affected as we change/limit the bandwidth of certain parts

of our network. The results are pretty conclusive and can be summarized in the following

points.

1. WSU evidently as per table 4.2, is much slower that OSF, WVN and is already at

near maximum operating throughput, hence we do not see much change in behavior.

2. The operating throughput for WVN increases by 42% and 66% for 30 and 36 users

respectively. This is very interesting behavior which shows that we can easily divert

bandwidth to different client servers by simply limiting bandwidth of certain servers.

3. This type of software defined behavior is very important for distributed filesystems in

providing different levels of quality of service to different clients.

4.2.4 Workload Testing: Same file

This test although not very crucial the experiment as a whole was done on a different

client server based Texas A&M University. This experiment just aims at measuring the

throughput of file accesses in case we a had a case of multiple users trying to access the

same file. Now the drawback for this type testing is that once data is written into the local

cache of the client server each user get access to their data instantaneously available to

all the users. The same test was performed where multiple users are added onto the same
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server to check how the throughput varies. The per user throughput remains almost the

same while the total throughput keeps on climbing with each user, this result agrees with

our assumption of the file being read into the local cache and then being re-read by each

user. This result can be confirmed with the following plot of network activity.

Figure 4.8: Throughput of multiple users reading the same file

Figure 4.9: Network activity

The above figure 4.9 is plot of network throughput vs time, the the three distinct block

that we see is the network activity during 2, 4 and 8 users reading the same file. From a look

at the figure it visible that the network activity or the total amount of data transmitted

is almost identical which conclusively proves our initial assumption and hence any further

investigation down this path is trivial.
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Chapter 5

Conclusion & Future Work

GlusterFS is a recent file system and there is a severe lack of research to understand this

system better. This work is an initial exploratory work to venture and help towards the

adoption of the exciting new open source technology and contribute to the field of distributed

computing.

Based on the results obtained in this work we conclude that SDN has a large potential

for balancing the different sites in distributed filesystems such as GlusterFS. Another key

highlight is that while testing out GlusterFS we have to consider multiple concurrent users

to get any reliable data, considering distributed file systems generally have multiple users

hundreds of them at times this conclusion makes sense.

Workload testing was used as a baseline test on each client in isolation to understand

how each client behaves separately and with this knowledge we can compare how the results

to a more realistic distributed system with parallel file accesses to stress the system. Each

client server was loaded with multiple users and each of these users were accessing files in

parallel. Since we now understand that maximum throughput is not allocated to each user

on network when not completely loaded, with at least 10-12 users for our configuration,

and beyond these we start losing bandwidth utilization it might be more useful to maintain

this balance if not too many users are demanding services at the same time. All these

point to the inherent limitations of a non-distributed user environment. Distributing the

users across multiple client servers was a very important experiments conducted, because

this type of distributed workloads where each distributed client server was hosting multiple

users emulates more closely a real life situation. In real cloud systems which are obviously

much larger than our testbed, large number of users for example at a University or a

research facility where a number of researchers in geographically different locations are
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trying to access their data. Of course in a production environment the data access may not

be as uniform as our experiments but the idea was to stress test the network and look the

extreme end of the spectrum.

For the SDN testing, we synthetically changed the bandwidth of a client and tried to emulate

a a software defined network where a certain quality of service is provided to a certain

client server. A very important observation was made that we can divert the remaining

bandwidth to other clients hence paving the way for a dynamically adjusting QOS either

due to requirements of load balancing or simply and user-provider contract.

In conclusion, with this thesis we have acquired a good understanding of the GlusterFS

file system and providers of federated cloud systems could use such understanding to decide

what kind of QoS they would like to provide to certain users. We have many different

combinations that we have studied. We can draw many conclusions based upon the different

dimensions of tests that were performed during these all the tests.

5.1 Future Work

Existing work such as the provided in [4], [6] and [7] provide insight on how a better

understanding of underlying storage file systems and its configurations can enhance these

ideas. Wether we are deploying a novel data access architecture [4] for a specific application

or we want to build an abstract layer of data distribution for client application using open

source filesystems such as GlusterFS, a deeper understanding with specific benchmarks can

give any researcher a better knowledge.

Future work on this project can be extended to much larger networks and increase use

cases to emulate actual scientific environments where all the users may not be so uniform

and equally balanced over all of the clients. Future work in the domain of SDN, using the

capabilities offered by ExoGeni, and the characterization of energy consumption and how

SDN can impact the energy cost due to optimization of data placement/movement and

network provisioning .
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