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ABSTRACT OF THE DISSERTATION

Proactive Thermal-aware Management in Cloud

Datacenters

by Eun Kyung Lee

Dissertation Director: Professor Dario Pompili

The complexity of modern datacenters is growing at an alarming rate due to the rising

popularity of the cloud-computing paradigm as an effective means to cater to the ever

increasing demand for computing and storage. The management of modern datacenters

is rapidly exceeding human ability, making autonomic approaches essential. In the

meanwhile, the increasing demand for faster computing and high storage capacity has

resulted in an increase in energy consumption and heat generation in datacenters. Due

to the increased heat generation, cooling requirements have become a critical concern,

both in terms of growing operating costs as well as their environmental and societal

impacts. (e.g., increase in CO2 emissions, overloading the electric supply grid resulting

in power cuts, heavy water usage for cooling systems causing water scarcity)

In this thesis, proactive thermal-aware datacenter management solutions, which in-

clude thermal- and energy-aware resource provisioning, cooling system optimization,

and anomaly detection, are proposed to help minimize both the impact on the envi-

ronment and the Total Cost of Ownership (TCO) of datacenters, making them energy

efficient and green. For the proactive thermal-aware solutions, a novel architecture

endowed with different abstract components is introduced, which is composed of four
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layers: the environment layer (which detects, localizes, characterizes, and tracks ther-

mal hotspots), the physical-resource layer (which manages the hardware and software

components of servers), the virtualization layer (which instantiates, configures, and

manages VMs), and the application layer (which is aware of the workload’s and appli-

cations’ characteristics and behavior).

Our solutions autonomically manage datacenters using cross-layer information col-

lected from the four-layered architecture and make decisions based on various application-

specific optimization goals (e.g., performance, energy efficiency, anomaly detection

rate). A sensing infrastructure to measure the datacenter’s environmental change and

methods to acquire thermal awareness (using real-time measurements and heat- and

air-circulation models) are discussed. Then, specific proactive thermal-, energy-, and

anomaly-aware solutions are proposed, which i) optimize cooling systems (i.e., air condi-

tioner compressor duty cycle and fan speed) to prevent heat imbalance and minimize the

cost of cooling, ii) maximize computing resource utilization to minimize datacenter en-

ergy consumption, and iii) differentiate servers’ thermal map (temperature) frequently

to maximize the thermal anomaly detection rate.
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Chapter 1

Introduction

Big data analytics is a key enabler of the paradigm shift towards online data-driven

decision making in the fields of health, banking, commerce, defense, research and educa-

tion, and entertainment. The increase in demand for fast computing and large storage

to handle big data – large volumes of raw data aggregated at high velocities from a

variety (i.e., heterogeneous) of sources – has led to a tremendous increase in the number

and size of cloud datacenters (in terms of number of servers). Datacenters have become

key components of society’s IT infrastructure; therefore, their energy consumption, heat

generation, and cooling requirements have become critical concerns both in terms of the

growing operating costs as well as their environmental and societal impacts [4].

1.1 Motivations and Objectives

Datacenter energy consumption surpassed 237 billion kWh/year worldwide and 76 bil-

lion kWh/year in the US in 2010 [1], which correspond to 1.3% and 2% of the total

electricity usage worldwide and in the US, respectively. The impact of the prolifera-

tion of datacenters on the environment and society includes increase in CO2 emissions,

overload of the electricity supply grid, and rise in water usage for cooling leading to

water scarcity [5], all of which have initiated studies about green-computing practices,

especially, energy and power management [6, 7]. The scale and complexity of datacen-

ters are growing at an alarming rate and their management is rapidly exceeding human

ability, making autonomic (self-configuration, self-optimization, self-healing, and self-

protection) management approaches essential.

Figure 1.1 shows the average share of the different components of datacenter-energy

consumption based on independent studies from different agencies [8] in 2006 and shows
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Figure 1.1: Average share of the different components of datacenter energy consumption
based on independent studies [1, 2].

that large amount (40%) of the energy is consumed by the cooling infrastructure. Even

though the best-case Power Usage Efficiency (PUE, i.e., the ratio of total power con-

sumption to the power usage for computing) improved owing to green-computing efforts

with advances in cooling technologies and operational changes (e.g., innovations at Face-

book and Google datacenters), majority of old datacenters are not equipped yet with

the latest technologies to decrease their total energy consumption [2].

Recent advances in optimization of computing resource and cooling system utiliza-

tion have strived to increase energy and cooling efficiency while decreasing equipment

failure rates so to minimize both the impact on the environment and the Total Cost

of Ownership (TCO) of datacenters. However, the solutions for optimizing comput-

ing resource utilization, e.g., workload consolidation, Dynamic Voltage and Frequency

Scaling (DVFS), pinning (CPU affinity) [9–11], that are oblivious of their thermal im-

plications (i.e., heat generation) may adversely affect the cooling system efficiency, the

lifetime of computing equipment due to overheating, and hence the TCO of datacenters.

Research on improving cooling system efficiency (i.e., heat extraction) has focused on

determining the optimal compressor duty cycle and fan speeds of CRAC units [12, 13]

and on designing datacenter layouts that minimize recirculation of heat generated by

computing equipment inside the datacenter [14,15]. However, cooling system optimiza-

tion solutions provide benefits only when they are aware of the spatial distribution of

heat generation, which is usually not the case.
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From our feasibility study and proof-of-concept experiments conducted at our ma-

chine room in the NSF Cloud and Autonomic Computing Center (CAC), we have

inferred that one of the fundamental problems in cloud datacenters is the local uneven-

ness in heat-generation and heat-extraction rates: the former can be attributed to the

non-uniform distribution of workloads (of different types and intensities) among servers

and to the heterogeneity of computing hardware; the latter can be attributed to the

non-ideal air circulation, which depends on the layout of server racks inside the data-

center and on the placement of Computer Room Air Conditioning (CRAC) unit fans

and air vents.

The heat-generation and -extraction rates may differ, which over time causes what

we call heat imbalance. This heat imbalance will be large if the rates are significantly

different from each other or if their difference prolongs over extended time periods. A

large negative heat imbalance at a particular region inside a datacenter will result in

energy-inefficient overcooling and, hence, a significant decrease in temperature. Con-

versely, a large positive heat imbalance at a particular region will create a thermal

hotspot. Thermal hotspots may also result in a thermal fugue characterized by a con-

tinuous increase in the rate of temperature rise, which in turn leads to server operation

in the unsafe temperature range [16]. Thermal awareness, which is the knowledge of

heat imbalance at different regions inside a datacenter, is essential to maximize energy

and cooling efficiency as well as to minimize server system failure rates. In this disser-

tation, we study the research efforts on thermal-aware management of datacenters.

Moreover, due to their growing importance, datacenters are strategic targets [17]

for denial-of-service attacks (running illegitimate workloads) and cooling-system attacks

aimed at causing thermal runaways and, hence, costly outages, which can potentially

cripple society’s critical IT infrastructure. Furthermore, due to their large scale and

high server density, the probability of computing- and cooling-system misconfigurations

as well as of cooling-equipment and server-fan failures is high [18]. Such unpredictable

events may result in unexpected high temperature areas/regions (hotspots) or exces-

sively cooled low temperature areas/regions (coldspots), also referred to as thermal

anomalies.
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Figure 1.2: Our proposed environment layer and layered architecture mode: À, Á, and
Â show the interactions between hardware-resource and environment layer, virtualiza-
tion and environment layer, and application and environment layer, respectively.

1.2 Contributions

The contribution of the dissertation is to introduce an environment layer in multi-

layered architecture, and proactive thermal-aware resource management techniques.

1.2.1 Environment Layer in Multi-Layered Architecture

The long-term goal of our approach is to autonomically manage datacenters using the

information from sensors and taking decisions at different levels (through controllers)

based on the optimization goals (e.g., performance, energy efficiency, cost). To do this,

we consider an architecture composed of layers belonging to different abstract compo-

nents with different responsibilities but with the same common objectives. The layered

approach to datacenter management was first proposed in [19] to absorb the wide range

of emergent datacenter implementations. Even though there is no consensus in the com-

munity regarding the ‘names’ of the different layers, there is one as far as the set of

functionalities they should encapsulate. For example, the physical-resource layer re-

ferred to in this article is similar to the physical-infrastructure layer introduced in [19].

In this article, we choose names that best convey the functionalities encapsulated by a

layer. Typically, the layered architecture is composed of three layers: physical (hard-

ware) resource layer, virtualization layer, and application layer, as shown in Fig. 1.2.
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The interactions and dependencies between the layers are systematically specified.

In addition to the existing layered architecture, we introduce a new layer in the

datacenter management architecture, the so-called environment layer, whose function-

alities aim at detecting, localizing, characterizing, and tracking thermal hotspots using

a external sensing infrastructure composed of in-built as well as external scalar and mul-

timedia sensors. Thus, our proposed architecture (see Figure 1.2) is composed of four

layers: environment layer (which detects, localizes, characterizes, and tracks thermal

hotspots using a hybrid sensing infrastructure composed of in-built as well as external

scalar temperature and humidity sensors), physical resource layer (which manages the

hardware and software components of servers), virtualization layer (which instantiates,

configures, and manages VMs), and application layer (which is aware of the workload’s

and applications’ characteristics and behavior).

Heat imbalance at different regions inside a datacenter, inferred from the data gath-

ered and processed at the environment layer, can be employed to improve the over-

all operational efficiency of datacenters. This is achieved through interactions with

the other layers rendering the different functionalities thermal aware. Such thermal

awareness, which is acquired using the environment-layer-specific functionalities, can

be leveraged for 1) reduction of the TCO of datacenters as well as their environmental

and societal impacts, and 2) early detection of thermal anomalies inside datacenters

so to improve the availability, security, and lifetime of computing systems. However,

maximizing energy efficiency and utilization of Cloud-datacenter resources, avoiding

undesired thermal hotspots, and ensuring QoS are all conflicting objectives that require

careful consideration of multiple pairwise trade-offs.

For autonomic thermal management we focus on the possible interactions among all

the four layers (cross-layer) based on temperature, power consumption, and application

QoS requirements. Note that the environment layer comprising of the hybrid sensing

infrastructure monitors both the micro (chip and server level) as well as the macro (rack

and datacenter level) phenomena, i.e., temperature distribution, in the datacenter.

The proposed cross-layer approach represents a significant and transformative shift

towards cross-layer autonomics for datacenter management problems, which have so far
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been considered mostly in terms of individual layers. The environment layer provides

information of thermal behavior of datacenters, and then, the controllers in each layer

jointly take decision to minimize the energy consumption while alleviating thermal

anomalies. In this dissertation, the cross-layer solutions are characterized by interaction

between two layers - physical and virtualization layers, physical and environment layers,

application and virtualization layers, or application and environment layers.

1.2.2 Proactive Thermal-aware Resource Management Techniques

The proactive approach is also proposed as the reactive approach causes delay in propa-

gating remedial action in thermal domain. Since the reactive approach directly observes

the temperature at the place where we want to control the temperature, depending on

the size of the datacenters and placement of the temperature sensors this approach

could incur significant delay for cooling. The larger the datacenter size the more the

cooling delay incurs and the farther the temperature sensor from the controller the more

the cooling delay incurs. If the delay increases, the temperature of any blade rises up

to the critical point and damage the hardware components before the air conditioning

system reacts and cools down the computing system. Also, the cooling cost could be

more expensive if only a few overheated machines near the sensor can trigger an entire

cooling system.

In proactive approach, the actions (i.e., adjusting fan speed, adjusting air compres-

sor cycle, placing workloads) are jointly optimized to achieve different objectives (i.e.,

minimizing energy, minimizing thermal anomalies) before taking any action. As the dif-

ferent actions in different layers are optimized ahead, delay does not incur, and hence,

minimize the risk of damaging hardware components in datacenters. Our proactive

solution employs heat-imbalance model to estimates the heat that will be generated in

the future and take actions. This way, we can achieve different optimization objectives

while preventing ‘risk of overheating’ and ‘excessive cooling’.
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1.3 Scope of Dissertation

The scope of the dissertation is shown in Fig. 1.3. Two categories of thermal-aware

datacenter management are mainly discussed in this dissertation: thermal monitoring

and thermal-aware decision making.

Thermal Monitoring: Monitoring is essential to characterize the thermal behav-

ior of a datacenter. The thermal signature, which is the expected distribution (locations

and intensities) of thermal hotspots for a specific workload distribution among servers

and a specific cooling system setting. The thermal signature is exploited to make any

control (i.e., energy-aware, anomaly-aware) decisions. Most thermal-aware datacen-

ter management solutions assume inputs from a single-tier sensing infrastructure (e.g.,

temperature and humidity scalar sensors, and air flow meters). However, this extracted

information from the single-tier sensing infrastructure cannot capture the complex ther-

modynamic phenomena of heat and air circulation inside a datacenter.

Thus, we propose a multi-tier sensing infrastruecure – composed of thermal cam-

eras, scalar temperature and humidity sensors, and airflow meters – into a multi-tier

sensing infrastructure that monitors the complex thermodynamic phenomena inside a

datacenter. The sensing infrastructure exploits the spatio-temporal correlation in the

observed phenomena and the temperature distribution map provided by thermal im-

ages, and decides on-the-fly the granularity at which it should sample over space and
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time (adaptive sampling [20]), thus enabling efficient real-time monitoring of datacen-

ters. Incorporation of real-time measurements (such as temperature, air-flow rate, etc.)

into heat generation and extraction rate models helps estimate the heat imbalance,

which allows prediction of the future temperature map of the datacenter. Also, it helps

the accurate understanding of thermal signature, which is crucial for designing efficient

thermal-management solutions

Monitoring could be simulation based, e.g., using Computational Fluid Dynamics

(CFD), or measurement based, e.g., temperature and humidity sensors, airflow meters,

thermal cameras, etc. Furthermore, datacenter managers may choose to employ ei-

ther single-tier sensing or multi-tier sensing strategy depending on their needs. The

dissertation advocate multi-tier sensing infrastructure to measure the heat transfer in

datacenters.

Decision making (Energy efficient resource management): Thermal Man-

agement decision can be made base on the information provided from the monitoring

phase. Majority of prior research efforts on thermal management of datacenters has

focused exclusively on only one of the two fundamental approaches: management of

heat generation (computing resource optimization) or management of heat extraction

(cooling system optimization) inside a datacenter. The first approach focuses on opti-

mization of computing resource utilization and how to balance or migrate workloads in

such a way as to avoid overheating of computing equipment while minimizing energy

consumption. The second approach aims at improving cooling system efficiency by

effectively distributing cold air inside the datacenter.

However, we propose a joint approach so to maximize resource utilization and

cooling efficiency while simultaneously minimizing the risk of overheating of servers.

Thermal-aware decision making can either be reactive or proactive in nature. Reac-

tive management solutions involve remedial actions in response to undesired thermal

behavior deduced from measurements. In contrast, our proposed proactive manage-

ment solutions use measurements and predictive models so to avoid undesired thermal

behavior.

Decision making (Anomaly detection & classification): Ensuring datecenter
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equipment stays up and operating is essential for the seamless service in datacenters.

As the service failure can incur huge losses in productivity, business, and opportunity

for both service providers and consumers, datacenter manager’s main goal is to prevent

failures and provide reliable service. Unexpected changes in the local heat generation

and extraction rates due to cooling equipment failures, misconfigurations, and attacks

(such as illegitimate workloads) may over time cause large heat imbalances resulting

in unexpected thermal hotspots. Thermal anomalies such as unexpected hotspots and

fugues lead to system operation in unsafe temperature regions, which will increase

the server failure rate and the TCO of datacenters. Furthermore, the probability of

occurrence of thermal anomalies in modern datacenters is high because of their large

scale and high server density. Monitoring and thermal-aware decision making enable

easier detection and localization of anomalous events manifesting as unexpected thermal

hotspots.

1.4 Dissertation Organization

In Chapter 2, we discuss the preliminaries to motivate proactive thermal-aware data-

center management approaches. We introduce changes of datacenter design to explain

the importance of cooling system and need for thermal management, and the state of

the art datacenter monitoring (sensing) and decision making techniques as well as cross-

layer techniques in thermal-aware datacenter management. Then, we take a closer look

at two example cross-layer management solutions. In Chapter 3, we propose a proactive

control approach that jointly optimizes cooling systems (i.e., air conditioner compres-

sor duty cycle, and fan speed) to prevent heat imbalance - the difference between the

heat generated and extracted from a machine - thus minimizing the cost of cooling.

In Chapter 4, we propose VMAP, an innovative proactive thermal-aware virtual ma-

chine consolidation technique to maximize computing resource utilization to minimize

datacenter energy consumption for computing, and to improve the efficiency of heat

extraction. Finally, in Chapter 5, we conclude the dissertation and summarize the open

research problems in datacenter monitoring, in autonomic thermal-aware datacenter

management, and in thermal anomaly detection and classification in datacenters.
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Chapter 2

Preliminaries

In this chapter, preliminaries to motivate proposed proactive and thermal-aware data-

center management approaches are discussed. In sect. 2.1, the evolution of datacenter

design over the last two decades is retraced to explain the need for thermal manage-

ment. In sect. 2.2, the state of the art datacenter monitoring (sensing) techniques and

a novel multi-tier sensing infrastructure (which enable thermal-aware management) are

introduced. In sect, 2.3, the state of the art cross-layer techniques in thermal-aware

datacenter management are discussed.

2.1 Evolution of Datacenter Design

Datacenter design and management has evolved over the years to enable efficient ther-

mal management (extracting heat at a low cost from computing resources) for minimiz-

ing server failure rates due to overheating, for minimizing energy expenditure, and for

minimizing CO2 footprint. Innovations in datacenter design and management can be

roughly categorized as belonging to one of the two eras in which they were made. The

first is the “dot-com era” [21] (late 1990s up to mid 2000s) when a number of small dat-

acenters appeared to support the first online services of dot-com (e-commerce-driven)

companies. The main focus of datacenter designers and managers during this period

was reliability (the goal usually was to ensure 99.99% availability). The second is the

“post dot-com era” (mid-2000s onwards) characterized by the growing popularity of on-

line search, social networking, online gaming, and a host of cloud service offerings (from

storage to high-performance computing support). Due to the advent of warehouse-scale

datacenters [22] during this era, minimizing the TCO and the environmental impact of

datacenters became critical concerns in datacenter design and management apart from
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Figure 2.1: Different design choices of of datacenters in different scopes.

reliability.

Figure 2.1 shows the different innovations and the year (hence the era) in which they

were made. To show the major shift in the design focus from “reliability” to “energy

savings and environmental awareness” we separate the period of last two decades into

“dot-com era” and “post dot-com era”. During the dot-com era, the innovations were

geared towards lowering the room temperature effectively to prevent overheating of

computing resources. As the majority of datacenters is air cooled, cooling system man-

agement techniques focused on optimizing air flow inside the datacenter by preventing

the mixing of cold air from the CRAC and the hot air from the servers [23]. Innovations

in the post dot-com era include modular design (to ease management and scale out)

and free cooling (for energy efficiency). Innovations made during the dot-com era are

still relevant because modern warehouse-scale datacenters still incorporate some of the

innovations (such as raised floor design) and also because as many as 80% of small- to

medium-sized datacenters in the US were built in the late 1990s and early 2000s [22].

Figure 2.2 shows evolving researches trends on the thermal management. We used

keywords of ‘thermal management, green computing, cooling optimization, and comput-

ing optimization’ using Google Scholar (http://scholar.google.com) and count indexes

to show the increasing academic interests on thermal management in datacenters.

2.2 Thermal Monitoring

There have been two approaches for monitoring datacenters; one is simulation-based

and the other one is measuring-based approach. The former focuses on how to model
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and simulate the thermal behavior of datacenter while the later focuses on how to

effectively collect data using sensors. The goal of both approaches is to profile thermal

behavior (i.e.,temperature, humidity, etc.), and hence, to minimize the cost for cooling

or to detect anomalies in datacenters.

2.2.1 Simulation-based approach

Most of the simulation-based approaches use CFD that thermally models 3-D temper-

ature map in datacenters. CFD predicts the condition of the air (i.e., temperature,

airflow, and pressure) in data center to assess performance and energy consumption,

using numerical modeling [24] [25].It has been primarily used for analyzing the effective-

ness of cooling system (i.e., CRAC, fan, and ventilation system) in datacenters. CFD

provides 3-D map of cold air moving through a data center and it identifies potential

“hot spots” where the cold air does not reach enough. Also, it detects “over-cooling

spots” where the area receives more cold air than needed, resulting in wasting energy.

When datacenter manager needs to find potential problem (hotspots) ahead of time,

the CFD tool could be very effective.

However, the simulation-based approach is computationally expensive. This ap-

proach incurs time delay to solve complex differential equations to generate the thermal

map. It is not suitable for the online cooling solutions, which manage cooling system on
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the fly depending on condition of datacenters. Moreover, input parameters of the sim-

ulation (i.e., workload, temperature, power level) are highly time-varying and location-

varying, the simulation gives the results frequently to catch up the variance. Otherwise,

the temperature of the datacenter can readily go up to high temperature if the cooling

system is not properly activated [26]. Also, simulation parameters should be tuned to

give more accurate simulation, which gives more overheads. Hence, simulation-based

approach is not appropriate for the real-time cooling solution, which requires immediate

remedial action.

Simulation-based approach is especially useful in deciding an energy-efficient data-

center design among different design choices. As different building has different limi-

tations (e.g., different cooling system, limited space, insulation), deciding one solution

that works well for other datacenters may not be the best solution. Also, complex

thermodynamic makes hard to decide the design (e.g., location of servers and cooling

system, location of the vent, cooling power). In these cases, simulation-based approach

works very well. Commercial CFD solutions are available at 6Sigma from Future Facili-

ties [27], FloVENT from Mentor Graphics [28], and TileFlow from Innovative Research

Inc. [29].

In [30], As server power and density continue to increase, efficient cooling has become

key to controlling costs. Predictive modeling based on computational fluid dynamics

enables enterprises to configure their data centers for optimal cooling, helping maximize

efficiency, reduce costs, and meet both current and future IT requirements. (CFD-ENV

Layer) Find best design. and

In [31], This paper provides an overview of some of the ongoing work to operate

within the thermal environment of a data center. Some of the factors that affect the

environmental conditions of data-communication (datacom) equipment within a data

center are described. Since high-density racks clustered within a data center are of

most concern, measurements are presented along with the conditions necessary to meet

the datacom equipment environmental requirements. A number of numerical model-

ing experiments have been performed in order to describe the governing thermo-fluid

mechanisms, and an attempt is made to quantify these processes through performance
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metrics.

In [32], This paper focuses on the effect on rack inlet air temperatures as a result

of maldistribution of airflows exiting the perforated tiles located adjacent to the fronts

of the racks. The flow distribution exiting the perforated tiles was generated from

a computational fluid dynamics (CFD) tool called Tileflow (trademark of Innovative

Research, Inc.). Both raised floor heights and perforated tile-free areas were varied in

order to explore the effect on rack inlet temperatures. The flow distribution exiting

the perforated tiles was used as boundary conditions to the above-floor CFD model. A

CFD model was generated for the room with electronic equipment installed on a raised

floor. (CFD-ENV Layer)

[33] thermally profiled a non-raised-floor data center in a small office and then

compared the results to a Computation Fluid Dynamics (CFD) model of the space.

The results compared favorably. Data from other electronic equipment rooms are avail-

able, but it is very difficult to glean important information or correlate or compare

data. [24, 25] developed a three-dimensional model of a laboratory data center and ex-

perimentally verified the numerical results to ensure the specified inlet air temperatures

to the computer systems met the temperature limits.

In [34], the authors emulate the thermal behavior of server systems to manage

datacenter cooling. Using the emulator, a system named Freon monitors temperature

changes and, if the temperature of a machine crosses a threshold (defined thermal

emergency), Freon redistributes the jobs; however, cooling cost is not considered in this

study.

Those simulation approaches produce thermal distribution of the datacenter in

space, and does not require any physical sensors or systems to process measurements.

Several commercial simulators are available currently (e.g., ANSYS HPC [35]). How-

ever, the cost for these simulators are expensive and it takes many ours to days to

simulate large quantitative systems, so that cooling system cannot get a chance to re-

act depending the profiled thermal distribution. Also, those thermal distributions from

simulators are not workload dependent. Since the heat generated from the servers are

heavily dependent on location and the types of workloads (i.e., CPU intensive, memory
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intensive, disk intensive, etc.), the features of different workloads should be considered

when running simulations. However, it is hard for the simulators to factorize all the

complexities of different types of workloads. They typically simulate only the tempera-

ture based on steady state power consumption, not considering workload information.

In [36], we propose an abstract heat flow model which uses temperature information

from onboard and ambient sensors, characterizes hot air recirculation based on these

information, and accelerates the thermal evaluation process for high performance dat-

acenters. This is critical to minimize energy costs, optimize computing resources, and

maximize computation capability of the datacenters. Given a workload and thermal

profile, obtained from various distributed sensors, we predict the resulting temperature

distribution in a fast and accurate manner taking into account the recirculation char-

acterization of a datacenter topology. Simulation results confirm our hypothesis that

heat recirculation can be characterized as cross interference in our abstract heat flow

model. Moreover, fast thermal evaluation based on cross interference can be used in

online thermal management to predict temperature distribution in real-time. In [32],

the air flow was modeled using the k-e turbulence model to provide some guidance on

the design and layout of a data center.

2.2.2 Measuring based approach

The source of the cool air in traditional data centers is only part of the problem. Com-

panies have also begun demonstrating the importance of managing circulation within

the space. When Synapsense audits a facility, its technicians install wireless sensors

throughout the building to measure temperature, pressure, humidity, and more. Pandey

says Synapsense often identifies intense hot spots warmer areas that force the fans and

mechanical chillers to work harder to manipulate the temperature, thus increasing en-

ergy usage. ”You might have enough cool air, but it’s not going to the right places,” he

explains. ”There might be mixing of the air or there might be areas where it’s leaking.”

In one case, Synapsense installed 3,674 sensors throughout a 100,000-square-foot

data center. The sensors fed Synapsense’s control system a stream of data on temper-

ature, pressure, and humidity, and the company’s software built a live-updated map of
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these metrics throughout the facility. With this data, Synapsense was able to figure

out how to optimize energy use by turning up certain fans or shutting down specific

air conditioning units. It ended up saving the company 8,244 megawatt hours per year

$766,000 in annual electrical bills.

As a multi-point measurement method, Microsoft research group suggests Wireless

Sensor Networks (WSNs) platform to monitor data center environment. In [37], authors

present a wireless platform named Microsoft Research Genomotes designed for data

centers. Genomotes are composed of wireless and wired hardware devices which embeds

temperature and humidity sensors inside. In [38], a company (MAXIM) propose 1-Wire

system which can route all sensor readings over a single wire. However, the information

from those scalar sensors is not sufficient to capture “heat” because it is too sparsely

deployed to capture the heat propagation. The authors stress that 1-Wire system saves

more energy so reduces cost than adding complex wiring overhead. Building wireless

sensor networks costs more/less than 10$ per node, but 1-Wire system keeps costs to

couple of dollars per nodes.

There are two types of Genomotes, masters and slaves. A master is a wireless node

with sensing capability, having a RS232 port connected to a slave node. A slave only

has a sensing capability without wireless device, wired to the master forming daisy

chain network. They present that the daisy chain formation is ideal for installing on

server racks because this model can measure the temperature of the various heights of

the rack without tangling wires as well as reduce wireless nodes which create bandwidth

saturation.

The same group suggests RACNet [13] defined as a ‘large-scale sensor network for

high-fidelity data center environmental monitoring’ which is the first attempt to moni-

tor cooling behavior of data center. In this paper, they present Reliable Data Collection

Protocol (rDCP) that dynamically constructs spanning trees to reliably route sensing

measurement from the racks in a data center. Their empirical results show that rDCP

achieves over 99% data yield for over 95% of the sensors out of 174-Genomotes deploy-

ments.

Based on the measurement from scalar sensors, there are efforts to thermally profile



17

data centers. Basic mathematical modeling and parameters for profiling datacenter are

proposed in [39]. Since many data centers employ raised floors with perforated tiles

to distribute the chilled air to racks, providing proper distribution of chilled air is one

of the challenges. In [15, 31, 40, 41], the authors provide some insights into the airflow

distribution from perforated tiles and raised floor design in datacenters. In [14, 41],

the authors thermally profiled a datacenter in space and time, and analyzed trends

and correlations among collected measurements. In [31], the authors comment on the

challenges associated with thermal management in datacenters. In [42], the authors

review the existing literature on datacenter thermal management work. However, due

to the complexity of the thermodynamics [24, 25], the research done in profiling using

real measurements from scalar sensors are limited. It is difficult to find a suitable model

to describe the complex phenomena of heat transfer and air distribution in datacenters.

In [43], authors benchmark and profiled 22 data centers about their energy usage.

They stress that energy benchmarking using a metric, which compares energy used for

IT equipment to energy used for Heating, Ventilating, and Air Conditioning (HVAC)

systems, reveals some data centers perform better than the others and the key part

is air management for effective and efficient cooling. This paper mainly compares the

energy cost for different datacenters, which have different layouts, but relying on only

heuristic analysis.

Thermally profiling datacenters based on measurements may be expensive because

there are extra costs for sensing, monitoring and processing measurements(i.e., temper-

ature and humidity sensors, thermal cameras etc.). However, this measurement-based

approach provides high accuracy and less delay compared to simulation based approach.

In using measurement-based approach, cooling system directly receives measurements

from the sensors in real-time while simulation-based approach requires time to solve

complex differential equations. Hence, measurement-base approach is able to capture

the dynamic workload distribution in space easier than simulation-based approach.

One of the challenges to this arrangement is to provide the proper distribution

of chilled air to the racks provided by computer room air-conditioning (CRAC) units

situated on the raised floor. Authors in [41] show the perforated tile distribution on
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Figure 2.3: Network of heterogeneous sensors (scalar temperature and humidity sensors,
airflow meters, and thermal cameras) monitoring a rack of servers in a machine room.

the inlet temperatures of racks located on the raised floor. [24] developed a three-

dimensional model of a laboratory data center and experimentally verified the numerical

results to ensure the specified inlet air temperatures to the computer systems met the

temperature limits. [33] thermally profiled a non-raised-floor data center in a small

office and then compared the results to a Computation Fluid Dynamics (CFD) model

of the space. The results compared favorably. Data from other electronic equipment

rooms are available, but it is very difficult to glean important information or correlate

or compare data. [14] thermally profiled a data center in space in detail. They provide

air flow rate of the perforated floor tiles to analyze the relation between temperature

and air flows. [42] reviewed the existing literatures and presents future directions to

increase data center energy efficiency.

We advocate hybrid approach — Logical Bridge - Sensing Infrastructure, Thermal

cameras are needed for accurate measurement and reaction, modeling, proactive actions.

2.2.3 Sensing Infrastructure

We present innovative communication and coordination solutions for enabling self-

organization of a network of external heterogeneous sensors – composed of thermal

cameras, scalar temperature and humidity sensors, and airflow meters (Fig. 2.3) – into
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a multi-tier sensing infrastructure that monitors the complex thermodynamic phenom-

ena inside a datacenter [44]. The sensing infrastructure exploits the spatio-temporal

correlation in the observed phenomena and the temperature distribution map provided

by thermal images, and decides on-the-fly the granularity at which it should sample

over space and time (adaptive sampling), thus enabling efficient real-time monitoring

of datacenters. Incorporation of real-time measurements (such as temperature, air-flow

rate, etc.) into heat generation and extraction rate models helps estimate the heat

imbalance, which allows prediction of the future temperature map of the datacenter.

Energy-efficient proactive autonomic resource provisioning decisions as well as cool-

ing system optimization in datacenters can leverage this thermal awareness. We have

shown in [12], how heat-imbalance-based proactive datacenter management (cooling

system optimization) is superior in terms of energy-efficiency and minimization of risk

of equipment failures compared to its conventional temperature measurement-based

reactive counterpart. Our novel multi-tier approach eliminates the need for collecting

and processing large volumes of data from the entire datacenter. Instead, it enables to

intuitively zoom-in only into the problem areas like thermal hotspots (higher temper-

ature regions), collect, and analyze thoroughly the most relevant data from multiple

sources (i.e., server and network element logs, internal and external sensors). This

drastically improves the responsiveness of algorithms for time-critical management au-

tonomic thermal-aware anomaly detection and classification.

As mentioned earlier, information from a network of external heterogeneous sensors

is essential for efficient autonomic thermal-aware datacenter management. However,

such a network would not scale in terms of overhead (communication, computation,

and energy) and cost when the size of the datacenter and its server density increase sig-

nificantly. For example, consider instrumenting a large High-Performance Computing

(HPC) datacenter consisting of 1000 racks and 50 blade servers in each rack, with exter-

nal temperature and humidity sensors on each server (50000 in total). The amount of

sensed information collected and processed every second at a monitor node would be of

the order of gigabits, thus increasing the strain on the communication and computation
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resources. We have designed two innovative solutions, namely, autonomic adaptive sam-

pling and coordinated hotspot detection and localization, for enabling self-organization

of these heterogeneous sensors into an intelligent multi-tier sensing infrastructure that

adaptively samples data to be fed into our heat imbalance model. As a result, the sen-

sors function not only as passive measurement devices monitoring thermal phenomena

in a datacenter, but as intelligent data processing instruments capable of data quality

assurance, statistical synthesis, and hypotheses testing as they stream data from the

physical environment to the computational world.

2.3 Thermal Decision Making

In this section, firstly, we review the state of the art in thermal management [31,42] at

the environment as well as application layers. Secondly, we review power management

techniques (such as DVFS and pinning at the physical resource layer) that we propose

to exploit for energy-efficient thermal management in place of costly VM migrations.

Thirdly, we discuss prior work in the field of energy-efficient VM allocation, which is

key for VM migration decisions in reaction to thermal anomalies. Finally, we review

existing cross-layer solutions, which are characterized by pair-wise interactions between

layers.

2.3.1 Thermal management at the environment layer

Prior research efforts in this area focus on management of heat extraction in a data-

center [15, 31, 40, 41]. In [43], Greenberg et al. profiled and benchmarked the energy

usage of 22 datacenters and concluded that the key to energy efficiency is air circula-

tion management (for effective and efficient cooling). Lee et al. [12] propose a proactive

control approach that jointly optimizes the air conditioner compressor duty cycle and

fan speed to prevent heat imbalance and to minimize the cost of cooling in data cen-

ters. As many datacenters employ raised floors with perforated tiles to distribute the

chilled air to racks, researchers have tried to gain valuable insights into efficient air-

flow distribution strategies in such datacenter layouts [15, 31, 40, 41]. Other research
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efforts were aimed at improving the efficiency of cooling systems through thermal pro-

filing [37–39, 45], which is the extraction of knowledge about air and heat circulation

using measurements from scalar sensors and mathematical models. However, capturing

this complex thermodynamic phenomena using compute-intensive models [24,25] (e.g.,

computational fluid dynamics) is prohibitive in terms of computational overhead.

2.3.2 Thermal management at the application layer

Another popular approach to thermal management has been controlling the heat gen-

eration inside a datacenter [46–50] through thermal-aware workload placement. Moore

et al. [46] propose the use of “offline experiments” to characterize the thermodynamic

phenomena (heat recirculation) inside the datacenter and schedule workloads by taking

the temperature distribution into account. In [47], Moore et al. eliminate the need for

the aforementioned offline experiments and propose an online machine-learning-based

method to model the thermal behavior of the datacenter. Bash et al. [49] propose a

policy to place the workload in areas of a datacenter that are easier to cool, which

results in cooling power savings. They use scalar temperature sensor measurements

alone to derive two metrics that help decide whether to place workload on a server

or not. Tang et al. [50] develop a linear, low-complexity process model to predict the

equipment inlet temperatures in a datacenter given a server utilization vector and for-

malize (mathematically) the problem of minimizing the datacenter cooling cost as the

problem of minimizing the maximal (peak) inlet temperature through task assignment.

In [51], Mukherjee et al. explore a spatio-temporal thermal-aware job scheduling as an

extension to spatial thermal-aware solutions like [46–48,50].

2.3.3 SLA-management at the virtualization layer

VM migrations are performed either reactively [52] or proactively [53] in such a way as

to avoid equipment overheating and/or SLA violations. Kochut et al. [54] provide an

estimate of the expected improvement in response time due to a migration decision and

determines which VMs are best candidates to be placed together. In [55], Hermenier

et al. determine the order in which the VM migrations should occur in addition to
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deciding which VMs to migrate so to minimize the impact on application performance

in terms of execution time. Stoess et al. [56] developed a multi-tiered infrastructure that

enables intra-node virtual CPU (vCPU) migration and inter-node live VM migration

for workload consolidation and thermal balancing. Voorsluys et al. [57] present an

evaluation on the effects of live migration of virtual machines on the performance of

applications running inside Xen VMs.

On-demand server resource provisioning techniques monitor the workloads on a

set of VMs and adjust the instantaneous resources availed by VMs. Song et al. [58]

propose an adaptive and dynamic scheme for adjusting resources (specifically, CPU

and memory) among virtual machines on a single server to share the physical resources

efficiently. Menasce et al. [59] proposed an autonomic controller and showed how it

can be used to dynamically allocate CPUs in virtualized environments with varying

workload levels by optimizing a global utility function. Meng et al. [60] exploited

statistical multiplexing of VMs to enable joint VM provisioning and consolidation based

on aggregated capacity needs. However, all the aforementioned techniques are aimed at

satisfying the resource utilization level guarantees and do not consider the application-

level performance (execution time).

2.3.4 Cross-layer solutions for power-, thermal-, and QoS-management

Nathuji et al. [61] investigate the integration of power management at the physical layer

and virtualization technologies. In particular they propose VirtualPower to support the

isolated and independent operation of virtual machines and control the coordination

among virtual machines to reduce the power consumption. In [62], Nathuji et al. con-

sider the heterogeneity of the underlying platforms (in terms of processor and memory

subsystem architecture) to efficiently map the workloads to the best fitting platforms.

Laszewski et al. [63] present a scheduling algorithm for VMs in a cluster to reduce

power consumption using DVFS. Kumar et al. [64] present vManage, a practical coor-

dination approach that loosely couples platform and virtualization management aimed

at improving energy savings and QoS and at reducing VM migrations.

[EXPLAIN]advocate a joint approach so to minimize the risk of overheating of
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servers while simultaneously maximizing resource utilization and cooling efficiency [65]

[66]

Heath et al. [48] propose emulation tools (Mercury and Freon) for investigating the

thermal implications of power management. In [67], Ramos et al. present C-Oracle,

a software infrastructure that dynamically predicts the temperature and performance

impact of different thermal management reactions (such as load redistribution and dy-

namic voltage and frequency scaling) into the future, allowing the thermal management

policy to select the best reaction.

Recently, researchers have started to focus on application- or workload-aware VM

consolidation that not only achieves all the objectives as its traditional resource-utilization-

and energy-aware counterparts but also ensures minimum degradation to application

performance due to resource multiplexing and virtualization overhead [68–70]. Application-

aware VM allocation is not only aimed at energy-efficient VM consolidation but also at

co-locating VMs that are “compatible” so that further gains can be achieved in terms of

energy savings and overhead for virtualization. In [68,69], the authors propose to con-

solidate VMs with similar memory content on the same hosts for higher memory sharing

and Govindan et al. [70] propose to consolidate based on inter-process communication

patterns. Zhu et al. [71] propose pSciMapper, a power-aware method for consolidation

virtual machines that host scientific workflow tasks. They use a dimensionality reduc-

tion technique, Kernel Canonical Correlation Analysis (KCCA), to associate temporal

features extracted from time series data about resource requirements of a workflow task

with its power consumption and execution time (performance). Information about the

tasks’ power consumption and performance are exploited in an online consolidation

algorithm.

All the aforementioned cross-layer solutions are characterized only by pair-wise in-

teraction between two layers - physical and virtualization layers, physical and environ-

ment layers, or application and virtualization layers. In our proposed thermal-aware

management solution interactions between the application and the virtualization layers

are leveraged for proactive VM allocation while interactions among all the four layers
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are exploited for reactive thermal management. In other words, in our thermal man-

agement solution, the environment layer alerts the virtualization layer and physical

layer about undesired thermal behavior. These two layers jointly decide whether to use

power management techniques at the physical layer or VM migration with help from

application layer to alleviate the thermal anomalies.
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Chapter 3

Proactive Thermal Management in Green Datacenters

3.1 Overview

The increasing demand for faster computing and high storage capacity has resulted in

an increase in energy consumption and heat generation in datacenters. Because of the

increase in heat generation, cooling requirements have become a critical concern, both

in terms of growing operating costs as well as their environmental and societal impacts

(e.g., increase in CO2 emissions, overloading the electric supply grid resulting in power

cuts, heavy water usage for cooling systems causing water scarcity, etc.) Many cur-

rent datacenters are not following a sustainable model in terms of energy consumption

growth as the rate at which computing resources are added exceeds the available and

planned power capacities. For these reasons, there is a need for realizing environment

friendly computing systems that maximize energy and cooling efficiency. Technical

advances are leading to a pervasive computational ecosystem that integrates comput-

ing infrastructures with embedded ssensors and actuators, thus giving rise to a new

information/sensor-driven and autonomic paradigm for managing datacenter cooling

systems.

Due to the increasing costs and high energy consumption of current cooling systems

in datacenters, energy efficient and intelligent cooling solutions are required to mini-

mize these costs and consumption. Empirical data from Little Blue Penguin cluster

shows that every 10oC rise in temperature results in a doubling of the system failure

rate, as per Arrhenius’ equation applied to microelectronics, which increases the Total

Cost of Ownership (TCO) significantly [72]. Overheating of components causes thermal

cycling, which eventually leads to device failure, thus affecting the TCO [16]. Cooling
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systems aim at effectively maintaining the temperature of the datacenter. For robust-

ness and safety, over-provisioning is often implemented to avoid any loss to property

due to unforseen perturbations. According to Lawrence Livermore National Laboratory

(LLNL), for every watt of power its IBM BlueGene/L consumes, 0.7 W is required to

cool it [73, 74]. As the number of datacenters with high processing power increases,

the expense to run cooling equipment such as chillers, compressors, and air handlers

also increases. According to [75], it is predicted that datacenter energy consumption in

the U.S. will reach 100 billion kWh/year by 2011 with a corresponding energy bill of

approximately $7.4 billion.

Current cooling solutions in datacenters rely on reactive techniques, which aim at

keeping the temperature at a fixed value. Existing datacenter cooling systems control

the temperature/humidity of the air based on the temperature external to the ma-

chines, i.e., the temperature inside a datacenter. Some of the cooling system control

mechanisms are based on the internal temperature of the racks or blades. Irrespective

of the external or internal temperature, the reactive approach has numerous disadvan-

tages: i) it takes a corrective action after the temperature has crossed a threshold and

may not be able to prevent damages in certain cases where temperature rises above

the safe operating range of the internal components, ii) it is very difficult to determine

the optimal threshold range as it should not be too high that a small increase above

it damages the components or too low to waste energy required for cooling, and iii) if

the threshold range is too small it causes cycling (or hysteresis) in the Computer Room

Air-Conditioning (CRAC) unit and in turn reduces its life; conversely, if the thresh-

old range is too high the response time of the system increases with a possible risk of

damage to the internal components of the machines.

Due to the numerous disadvantages of temperature-based reactive approaches, in

this work we propose a heat-imbalance estimation-based proactive approach that op-

timizes the cooling system operation by minimizing the cooling costs and the risk of

damage to components due to overheating. The proposed proactive approach controls

the cooling system before the heat imbalance can raise the temperature and cause

damage to the internal components of a machine. Heat imbalance is the difference



27

between the heat generated and heat extracted (under ideal conditions heat imbalance

should be zero). The proactive approach has numerous advantages over the reactive

approach: i) there is no need for setting thresholds as needed in reactive approaches,

ii) it is intrinsically predictive in nature as it estimates the heat that will be generated

in the future (based on information on scheduled type/intensity of workload) and, ac-

cordingly, adjusts the operation of the CRAC unit, iii) it observes the ‘cause’ instead

of the ‘effect’, i.e., it estimates the heat imbalance rather than measuring the rise in

temperature caused by it.

The remainder of this chapter is organized as follows. In Sect. 3.2, we address the

background and related work. In Sect. 3.3, we formulate our heat-imbalance estimation-

based proactive control approach. In Sect. 3.4, we describe our mathematical model in

details. In Sect. 3.5, we present the performance evaluation. Finally, in Sect. 3.6, we

draw the conclusions and discuss future work.

3.2 Background and Related Work

There are two main approaches for thermal management of datacenters; one is mechani-

cal design based and the other is software based. The former focuses on how to effectively

distribute cold air by managing cooling infrastructure, while the latter focuses on how

to balance or migrate jobs in such a way as to minimize heat imbalances.

Mechanical design-based approaches study the airflow models, datacenter design,

and cooling system design. Datacenter design plays an important role in the efficient

thermal management. The cooling systems used for current datacenters are chilled-

water cooled CRAC units that supply a raised floor plenum underneath the racks with

cold air. Perforated tiles are located near the racks to transfer the cool supply air to the

front of the racks. The hot exhaust air from the racks is then collected from the upper

section of the facility by the CRAC units, thus completing the airflow loop as shown

in Fig. 3.1(a). Racks are typically arranged in rows with alternating airflow directions,

forming ‘hot’ and ‘cold’ aisles [76]. This hot-and-cold aisle approach attempts to prevent

mixing of the hot rack exhaust air and the cool supply air drawn into the racks with the
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Figure 3.1: Current cooling design schemes: (a) underfloor supply and overhead return,
(b) underfloor supply and horizontal return, (c) overhead supply with horizontal return,
and (d) poor airflow condition.

objective of increasing the overall efficiency of the air delivery and collection from each

rack in the datacenter. Different thermal efficiencies may be achieved with alternate

configurations, as illustrated in Figs. 3.1(b) and 3.1(c).

Any configuration for the CRAC unit can be applied, but only certain combinations

are feasible due to mechanical constraints of the CRAC units (e.g., to not introduce

an excessive amount of duct work). With these constraints, achieving thermal (en-

ergy) efficiency is complicated and there is no single optimal solution. In [77], the

authors made an attempt to compare cooling efficiencies among four airflow distribu-

tion systems in high heat density room: underfloor supply/overhead return, under-

floor supply/horizontal return, overhead supply/underfloor return, and overhead sup-

ply/horizontal return. In [78,79], the authors expand on the concepts proposed in [77].

Datacenter design guidelines from PG&E [80] - mainly based on [76] -, presents a poorly

designed datacenter room (Fig. 3.1(d)) cooled by a raised floor system, which has often

trouble maintaining an appropriate room temperature. In [43], the authors benchmark

22 datacenters according to their energy usage and conclude that energy benchmarking
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using a specific metric - ranging from the energy used for IT equipment to the energy

used for Heating, Ventilation, and Air Conditioning (HVAC) - is extremely helpful to

understand why some datacenters perform better than others.

Another important aspect of mechanical design for cooling system involves airflow

distribution. In [15, 31, 41, 81], the authors provide some insights into the airflow dis-

tribution from perforated tiles and raised floor design in datacenters. In [82, 83], the

authors thermally profiled a datacenter in space and time, and analyzed trends and

correlations among collected measurements. Basic mathematical modeling and param-

eters for modeling datacenter are proposed in [39]. In [31], the authors comment on

the challenges associated with thermal management in datacenters. In [42], the authors

review the existing literature on datacenter thermal modeling work. However, due to

the complexity of the thermodynamics [24,25], the research done in formulating models

suitable to describe the complex phenomena of heat propagation and air distribution

in datacenters has been limited.

On the other hand, software-based approaches focus on minimizing the cooling cost

by distributing or migrating jobs. In [34], the authors emulate the thermal behavior

of server systems to manage datacenter cooling. Using the emulator, a system named

Freon monitors temperature changes and, if the temperature of a machine crosses a

threshold (defined thermal emergency), Freon redistributes the jobs; however, cool-

ing cost is not considered in this study. In [3], the authors introduce the concept of

power budget, which is the product of power and temperature. Higher power budget

means that a machine has more capacity to accept a job in terms of temperature and

power. The authors propose two scheduling algorithms based on power budget to fairly

and efficiently distribute the workload. In [51], the authors propose energy savings

by temporally spreading the workload and assigning it to energy-efficient computing

equipment. However, these works are not coupled to a physical datacenter model and

only consider scenarios that are reactive in nature. In [84], the authors propose a co-

operative power-aware game theoretic solution for job scheduling in grids to minimize

the energy consumption while maintaining a specific Quality of Service (QoS) level.

They highlight the fact that it is not enough to minimize the total energy of grid but
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there is the need to minimize energy locally at different providers in the grid. The pro-

posed solution simultaneously minimizes the energy used by all providers so to be fair

to all users. The energy usage is kept to minimum level while maintaining the desired

QoS level. The authors claim that the proposed solution is robust against prediction

inaccuracies. In [85], the authors study the problem of task allocation onto a compu-

tational grid and aim at simultaneously minimizing the energy consumption and the

makespan (time difference between the start and finish of a sequence of jobs), subject

to the constraints of deadlines and tasks’ architectural requirements. The solution is

proposed from cooperative game theory based on the concept of Nash Bargaining So-

lution (NBS). The frameworks proposed in [84, 85] do not take the datacenter design

or airflow characteristics into consideration and are, hence, not suitable for optimizing

the cooling system performance.

In current datacenter thermal management, the mechanical- and software-based

approaches are usually independent on each other. However, there exists a strong

correlation between the two; for this reason, there is the need to combine the two

approaches to obtain an optimal cooling solution. The proactive approach proposed

in this work can adapt itself to any type of mechanical design and it also considers

the distribution and type of workload running. It combines the mechanical aspect of

a datacenter with the software-based scheduling approach to optimize the performance

of the cooling system.

3.3 Problem Formulation

In this section, we formulate the mathematical model for heat transfer in datacenters

that our solution is based on. The heat transfer model is divided into three parts

as follows: i) overall heat circulation model, ii) heat generation model, and iii) heat

extraction model. We describe heat generation, extraction, and circulation based on

the fundamental thermodynamic principles in physics. It is assumed that the datacenter

is built on a hot-and-cold aisle based raised plenum design, supplying cold air from the

raised plenum and returning hot air to the ceiling.
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Figure 3.2: Layout of datacenter and location of a blade.

3.3.1 Air Circulation Design

The proposed datacenter model is designed in a 3-dimensional space as shown in Fig. 3.2.

In Fig. 3.2, the columns represent aisles, the rows represent the distance from the

CRAC, and the height represents the enclosure number from the bottom. These are

referred to as ‘i’, ‘j’, and ‘e’, respectively. The latest rack design includes 3-4 enclosures,

each containing 10-20 integrated vertical blades with an independent cooling module to

cool all the blades in it. We assume that every odd numbered aisle is a cold aisle and

every even numbered aisle is hot aisle. For the sake of clarity, the notation used in the

model are summarized in Table 3.1.

The proposed model is based on heat imbalance equations. Heat is mainly generated

by the processor and subsystems, i.e., memory and storage devices, I/O subsystem,

network interface card, etc., is extracted by the fans in the enclosure and the fan in the

CRAC unit. We assume that there is no external heat source and the room is thermally

insulated. The notations used to describe the datacenter thermal flow model is similar

to the ones used in [39].

In order to calculate the heat imbalance and flux, we assume that our datacenter is

extended in a 2-dimensional space as shown in Fig. 3.3(a) and explained following airflow

from the CRAC (‘À’ in Fig. 3.3(a)) and returning to CRAC (‘Ä-Å’ in Fig. 3.3(a)).

First, a cold air stream from the CRAC unit is pumped through the plenum at flow

rate mout
crac and temperature Tcrac in ‘À’; this flow is evenly divided and exhausted

through the plenum and perforated tiles ‘Á’ in the cold aisle ideally. However, in real
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Table 3.1: Notations.
Nomenclature

∆I Heat imbalance [J]
Cp Specific heat of air at constant pressure [J/kg ·K]
m Mass airflow rate [kg/s]
M Mass of air [kg]
T Temperature [K]
ρ Density of air [kg/m3]
A Area of the component [m2]
NC Total number of columns / aisles
NR Total number of rows
NA Total number of Rack
NE Total number of enclosures in a rack

Subscript

e Enclosure
r Rack
i Column
j Row

crac CRAC unit
tile Perforated vent tile
room Room where the equipment is placed in a datacenter

Superscript

in Inlet
out Outlet

2 2 6

4
5

RACK 1 RACK 2 RACK 3 RACK 4

CRAC

3

1

(a)

Rack i+1Rack i

Enclosure 1

Enclosure 2

Enclosure 3

Enclosure 4

(b)

Figure 3.3: (a) 6 different places to consider mathematical model; (b) Rack level airflow.
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case, perforated tiles can be modeled as a lumped resistance using the relationship

∆P = β · (mout
crac/ρ)

2, where the coefficient β can be found in standard flow resistance

handbooks (e.g., [86]). Experimental values of β have been proposed in [82, 83]. Using

equation for dynamic pressure ∆P = ρ · v2/2, where v is the fluid velocity, min
tile and

mout
tile can be written as follows,

min
tile = mout

tile = Atile ·

√
β · 2 · (m

out
crac)

2

ρ
. (3.1)

Between ‘Á’ and ‘Â’, inlet airflow rate of an enclosure is proportional to inlet airflow

of a rack. Ideally, if there is no air circulation, leakage or Bernoulli effect1, and the

fans on every enclosure have the same speed then, min
e is min

r /NE and min
r is half of

mout
tile because the air flowing from a tile splits into two racks. The relations of those

parameters are,

min
r =

NE∑
e=1

min
e = NE ·min

e =
mout

tile

2
. (3.2)

In ideal case, The inlet mass airflow rate in through ‘Â’ for all the racks are the same

as,

mr
in = ml

in, ∀r,l. (3.3)

As these ideal assumptions are often not valid in realistic scenarios, to improve the

accuracy of the model we need realtime measurements collected via a sensing infras-

tructure, as discussed in Sect. 3.6. Figure 3.3(b) shows the flow from the tile to the

rack and Equation 3.2 shows the relation between mout
tile and min

r , where ‘r’ denotes the

racks between aisle i to i+1 (column) and j (row) cell. Cooling fans in each enclosure

suck the air streams in at flow rate min
e , cool the heated components down in ‘Â’, and

the air stream in the enclosure flows to the back of the racks with flow rate mout
r in ‘Ã’.

We formulate heat-imbalance model in a datacenter as follows, which explains

1In fluid dynamics, the Bernoulli’s principle states that an increase in the speed of the fluid occurs
simultaneously with a decrease in pressure or a decrease in the fluid’s potential energy.
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the heat exchange in ‘Â’ as,

∆Ieij =

∫ t2

t1

(heij − qeij)dt = M e · Cp ·∆T e
[t2,t1]

, (3.4)

where,

• ∆Ieij denotes the heat imbalance of the enclosure e in the cell (i, j), which is

between i and i+ 1, and j, during the time between t1 and t2;

• heij is the rate of heat generation from the enclosure e in the cell (i, j) [J/s];

• qeij is the rate of heat extraction from the enclosure e in the cell (i, j) [J/s];

• If ∆Ieij is positive (i.e., heij > qeij), the temperature in the enclosure e increases

(hence, ∆T e > 0);

• If ∆Ieij is negative (i.e., heij < qeij), the temperature in the enclosure e decreases

(hence, ∆T e < 0).

Eq. (5.1) shows the difference between heat generated and heat extracted in an en-

closure. If the heat difference is positive, the enclosure temperature will increase; if

the imbalanced heat of the entire datacenter is set up as a function of blades of the

enclosures, and enclosures of the racks, then we have,

∆I =

NC∑
i=1

NR∑
j=1

NE∑
e=1

∆Ieij = Mroom · Cp ·∆T room
[t2,t1]

. (3.5)

If the heat difference is positive, the average temperature of the datacenter will increase.

From the experiments on our test server, which has the following configuration,

eight 8 core Intel Nehalem processors, 138 GB of RAM and 500 GB of storage, it was

observed that the dominant power utilizing subsystems were the CPU, I/O subsystem,

memory and storage subsystem, and the Network Interface Card (NIC). Out of the

total power utilized, a certain percentage was dissipated as heat. The percentage of

power dissipated as heat by the subsystems is denoted by αsub [%] as detailed in Sect.
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3.4.1. The rate of heat generation by a subsystem heij [J] is given by,

heij = P e,cpu
ij · αcpu + P e,IO

ij · αIO + P e,mem,stg
ij · αmem,stg + P e,NIC

ij · αNIC , (3.6)

where P cpu, P IO, Pmem,stg, PNIC is the power utilized by CPU, I/O subsystem, mem-

ory and storage devices, and the NIC, respectively, and αcpu, αIO, αmem,stg, αNIC are

the respective percentage power dissipation factors. Using equation 3.29, the total rate

of heat generation ‘H’ can be calculated as,

H =

NC∑
i=1

NR∑
j=1

NE∑
e=1

heij . (3.7)

On the other hand, the heat is extracted by the inlet-air and flows out with the outlet-

air, which can be calculated as,

qeij = me
ij,in · Cp · (T e

ij,out − T e
ij,in). (3.8)

By measuring inlet and outlet temperature and airflows, we can calculate how much

heat is extracted from the enclosure e located in i (row) and j (column), i.e., in cell

(i, j). The total rate of heat extracted can be computed as,

Q =

NC∑
i=1

NR∑
j=1

NE∑
e=1

qeij . (3.9)

Temperature of the inlet airflow T e
ij,in varies depending on whether the air compressor

is ‘on’ or ‘off’ in equation 3.8. In Fig. 3.4, if the air compressor is on (Qoff ), the air from

the server room with the temperature (T room) can extract the heat because only the

fan is working, but if the air compressor is on (Qon), then the air with the temperature

from the CRAC unit (T crac) can extract the heat because both the compressor and

fan are working. The heat generation ‘H’ is independent on whether air compressor is

working or not because it is generated based on the workload and it’s distribution. In

equilibrium state, ‘T crac’ is lower than ‘T room’ and ‘T room’ is lower than ‘Tout’ (T
crac

< T room < Tout).
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Figure 3.4: Qon is the heat extraction when compressor is on, Qoff is the heat extrac-
tion when compressor is off which are proportional to Tout - T crac and Tout - T room

respectively, while H is the heat generation.

Heated air streams are collected through the ceiling in ‘Ä’ and returned to the

CRAC unit. Finally, the circulated air enters the CRAC unit and is compressed and

cooled again in ‘Å’. In an ideal case, it holds,

mcrac
out =

NA∑
r=1

mr
in =

NA∑
r=1

mr
out = mcrac

in . (3.10)

The air can be mixed for a variety of reasons, some of which are discussed in Sect. 3.2.

The phenomenon and the effect of mixing cold air and hot air streams are discussed

in [39]. Supply using Heat Index (SHI) is denoted as follows,

SHI =

∑NC
i=1

∑NR
j=1(T

r
in,ij − T crac

out )∑NC
i=1

∑NR
j=1(T

r
out,ij − T crac

out )
. (3.11)

Because the air from the CRAC unit T crac
out is not at the same temperature as the rack

T r
ij , we can assume that there is a re-circulation and mixing of hot-cold air in the

datacenter. We can apply the simple SHI configuration for our model to explain air

re-circulation. However, this model using inlet and outlet airflow can be applied only

if we know the inlet and outlet temperature and airflows at each blade. This requires a

sensing infrastructure that measures airflows and temperature to quantify the amount

of heat extracted.
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Figure 3.5: Coefficient of Performance (COP) curve for the different chilled-water
CRAC units. COP can vary for different CRAC unit depending on the type of fan
and compressor used. CRAC 2 shows COP of cooling system at the HP Labs Utility
Datacenter [3]. This COP is also used in our simulations.

3.3.2 Air Cooling System Design

Cooling is the process where heat is transferred from a lower to a higher temperature

level by doing work on a system in order to extract the heat. Most datacenters use

chilled-water air conditioning system. With chilled water air conditioning, the refrig-

eration equipment (compressor, condenser, evaporator, etc.) does not directly cool the

air; rather, it uses chilled water to cool the air, where chilled water is pumped to the

cooling coils and a fan draws the air through the chilled water pipe to the coils, thus

cooling the air. With chilled water air conditioning, the compressor is usually mounted

on a rack or a frame, within a few feet from the evaporator that cools the chilled water.

The efficiency of this cycle can be determined by several factors such as airflow and

chilled water temperature, and can be quantified by the Coefficient Of Performance

(COP). The COP is the ratio of total heat removed ‘Q’ from low-temperature level and

the energy input used (W) as,

COP (T ) =
Q

W
. (3.12)

Since the COP is inversely proportional to the W, a higher COP means that more
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heat ‘Q’ can be removed by doing less work (W), as given in (3.12). The COP can be

calculated in each cooling cycle and through (3.12), we can calculate how much work is

needed to extract a certain amount of heat. For example, a cooling cycle with COP of

2 will consume 30 kWh to extract 60 kWh of heat, while a cooling cycle of COP of 3

will consume 20 kwh to remove the same amount of heat. Figure 3.5 shows COP values

for different CRAC units. As the CRAC supply temperature increases, the COP also

increases (in compliance with the second principle of thermodynamics). Consequently,

our cooling cost ‘ETotal’ can be calculated as,

ETotal = ECompressor + Efan, (3.13)

which is the total amount of energy needed to power the air compressor, ‘ECompressor’,

plus energy needed to run the CRAC fan, ‘Efan’. If the duty cycle η of the compressor

is represented as,

η =
∆ton

∆ton +∆toff
, (3.14)

where the window size of the compressor cycle is represented as ‘∆ = ∆toff + ∆ton’,

then the work done to extract the amount of heat for a compressor can be calculated

as,

ECompressor = PAC ·∆ton =
Q

COP (T )
. (3.15)

The ‘affinity law’, which describes how the performance of a centrifugal pump is affected

by a change in speed or impeller diameter is given by,

P = Pref · ω3

ω3
ref

, (3.16)

where ω is the shaft rotation speed (fan speed) and P is the shaft power correspond

to the ω. Note that the shaft power is proportional to the cube of rotation speed of

the fan shaft. ‘Efan’ can be calculated using this law. Specifically, once we know the

reference-point power Pref of the fan and its rotational speed ωref , which both vary

depending on the manufacturer and type of fan, the power required to increase the fan
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speed to ω in [t1, t2] can be computed as,

Efan =

∫ t2

t1
Pref · ω3

ω3
ref

dt. (3.17)

Also, the mass of airflow rate injected from the CRAC, ‘mcrac’, can be computed based

on fan speed ω as,

mcrac = ρ(T ) ·Kω · ω, (3.18)

where ρ(T ) denotes density of the air in certain temperature and Kω denotes coefficient

of amount of air through the fan, when the speed of the fan is ω.

Since there is only one fan with airflow rate ‘mcrac’ is used in this model, we cannot

extract the localized heat generated in each aisle or each rack. However if we use

multiple fans, then the total mass airflow rate in each corridor is given by,

mcrac = mfan1 +mfan2 +mfan3 . . . , (3.19)

where mfannum denotes the mass airflow rate of each fan. If we install multiple fans,

one for each corridor or each rack, then we can have more control over the net airflow

rate. However, there is an additional cost for installation and operation of these fans.

Power usage by a fan ranges from hundreds to thousands Watt and the power usage by

the air compressor is hundreds of kilowatt. However, the energy savings obtained by

just increasing fan speed and not increasing the compressor cycle to extract localized

heat offsets the additional cost. In this way we can selectively extract localized heat

without much extra cost.
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3.3.3 Problem Formulation to Minimize Cooling Energy

We formulate the problem to optimize fan speed (ω∗) and duty cycle of the air com-

pressor (η∗) to minimize the energy consumed by the compressor and fan as follows.

Given (offline): T crac, Tset, Tinit, PAC , ωref , Pref ,Mroom,∆, Cp, ρ(),

COP (),Kω, NC , NR, NE

Given (online): heij , Tout, T
room

Find: ω∗, η∗

Minimize: ETotal = ECompressor + Efan = PAC · η ·∆+ Pref · ω3

ω3
ref

Subject To:

∆I =

∫ t0+∆

t0

Hdt−Qon −Qoff = Mroom · Cp · (Tset − Tinit); (3.20)

H =

NC∑
i=1

NR∑
j=1

NE∑
e=1

heij ; (3.21)

Qon = ρ ·Kω · Cp · (Tout − T crac) · η ·∆; (3.22)

Qoff = ρ ·Kω · Cp · (Tout − T room) · η · (1−∆). (3.23)

Constraint (3.20) forces the heat imbalance ‘I’ to be equal to the amount of heat to

adjust the temperature to the set point from the initial temperature, so that the server

room temperature remains in equilibrium with the set point. By using this constraint

and on-line and off-line parameters obtained from the datacenter, the fan speed ω and

compressor cycle η can be optimized. If the amount of heat generated is the same as the

amount of heat extracted, then there is no heat unbalance and the temperature stays in

the equilibrium point. Equation (3.21) shows the heat generated from each component

of the server blade. Equation (3.22) shows heat extraction when the compressor is

turned on, and Equation (3.23) shows heat extraction when the compressor is turned

off.
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3.4 Proposed Solution

In this section, we propose our proactive approach model and later we describe the

reactive approach. The proactive approach keeps the return temperature or internal

blade-temperature in a safe operating range by jointly optimizing the duty cycle of

air compressor and the CRAC fan speed before the rack/enclosures are heated using

knowledge of the workload. The reactive approach is based on a feedback mechanism,

in which the external temperature is adjusted back to a safe operating range when

the heat generated by the rack/enclosures causes heat imbalance leading the external

temperature to rise above a certain safe operating threshold temperature.

3.4.1 Proactive Approach

Application / Workload

Resource

Environment / Physical

Actuator

CRAC

Controller

Controller

Observer

Observer

Sensor

Sensor

(Work Type/ Intensity / Distribution)

Pro-active 
Model

Heat
Generation

Heat
Extraction

Figure 3.6: Proactive approach.

The proactive approach solves the problem at grass-root level. It is based on temper-

ature change due to the heat imbalance between the heat generated and heat extracted.

This proactive approach is quantitative in nature as it measures/estimates the heat im-

balance. Conversely, compared to a proactive approach, a reactive approach is only

qualitative in nature as it reacts to the changes in temperature. Using an analogy with

kinematics in physics, we can say that a proactive approach is analogous to determining

the final position of an object by measuring its velocity instead of the position itself.

The effectiveness of a proactive approach is based on having comprehensive knowl-

edge about the behavior of the workload running and its utilization of the subsystems
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in a blade. Knowing the subsystem usage pattern of the workload that is expected

to run in advance and knowing the specifications of the subsystems by the applica-

tion/workload layer (Fig. 3.6), the heat dissipated by each of the subsystems can be

estimated. The subsystem usage pattern is obtained by observing the subsystem usage

behavior of the selected workload over a certain period of time. The historical data

obtained is used to generate workload patterns as shown in Fig. 3.7. These patterns

can be used to estimate the power utilized and, in turn, the heat generated from the

subsystems. Estimating the heat generated by subsystems and knowing the heat ex-

tracted by the cooling system, i.e., the heat imbalance, the temperature rise at a blade

can be estimated. Based on this predicted temperature rise, the external temperature

can be adjusted accordingly in order to maintain the internal temperature under safe

operating threshold by the Environment/Physical Layer, as in the schematic in Fig. 3.6.

Based upon the subsystem usage pattern of the workload provided by the Applica-

tion/Workload Layer, we propose two solutions; i) proactive approach using single fan,

and ii) proactive approach using multiple fans. Single fan approach uses one fan for the

CRAC unit; however, single fan approach could be too global to adjust local temper-

atures since only few estimations of overheating can trigger the entire CRAC unit to

operate. This inefficiency may be reduced by the use of multiple fans assigned one for

each aisle. For example, if the number of jobs assigned in a certain aisle is more than

other aisles, we can optimize the fan speed based on the workload type and pattern.

Since the energy needed for adjusting fan speed is much lower than the energy needed

for adjusting the duty cycle of air compressor, we can reduce the energy consumption.

We obtain the historic subsystem usage data for some standard HPC benchmark

workloads like, FFTW, HPL, NAS-benchmarks, from our test server to observe their

subsystem usage pattern. The data in Fig. 3.7 shows the subsystem usage pattern of

the FFT workload for CPU, I/O subsystem, storage device, and NIC utilization with

respect to time in four subplots. Each subplot represents the magnitude of usage of

a subsystem with respect to time. CPU usage is represented as percentage usage per

second, I/O and storage usage is represented in the units of input/ouput instances or

read/write instances per unit time, and the NIC usage is represented in units of data
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bytes exchanged per unit time using the TCP protocol. The subsystem usage pattern

of the workload provides us with the information about the time instances at which

each subsystem is utilized and when it is idle. From the pattern in Fig. 3.7 we can

estimate the power utilized by the subsystems and, in turn, the heat generated. The

subsystem usage patterns are the back bone for estimating the heat generated at the

blade level.
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Figure 3.7: FFTW benchmark subsystem usage profile showing processor, I/O subsys-
tem, memory subsystem, and the NIC usage.

Combining the power dissipated as heat at the CPU and other subsystems, the

total power dissipation of the blade is estimated. All the subsystems are composed of

semiconductor devices, hence we calculate the leakage power dissipated as heat from

the formulas given in [87]. This is an approximate estimate as modeling the exact

amount of heat dissipated is complicated and not absolutely necessary. In the model

we are interested in estimating the maximum heat that can be generated at any of the

subsystems at any time instant based on the workload pattern. Hence, we assume it is

safe to use the leakage power formulas presented in [87].
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The leakage power Pleakage for a semiconductor chip as given in [87] is,

Pleakage = Wavg · Ileak ·Ntrans · Vdd, (3.24)

where Wavg is the average size of the transistor at the input gate, Ileak is the leakage

current per unit width, Ntrans is the total number of transistors in ‘on’ state, Vdd is the

input voltage. In (3.24), Ntrans is dependent on the device usage, which is obtained

from the workload pattern, all the remaining parameters are obtained from the technical

specifications of the motherboard and individual IC datasheets. Hence, (3.24) provides

us with the direct relation between the subsystem utilization and heat dissipation.

Also, some of the subsystems like the CPU have multiple sleep states also known as

C-states and the value of Ntrans varies depending on the power state in use, while other

subsystems may have only two states, i.e., ‘on’ and ‘off’.

The test server is configured to have the following specific configuration: 1)Advanced

Configuration and Power Interface (ACPI) is enabled, and 2) processor dynamic fre-

quency scaling is enabled. Since, ACPI is enabled, the CPU can transition to multiple

C-states, with C0 being the most power utilizing state or an active state, and Cn be-

ing the least power utilizing state or a deep sleep state [88]. Other subsystems, i.e.,

I/O subsystem, memory and storage devices, and the NIC, do not have any operating

system based power management enabled and, hence, have only two states with D0

being the ‘on’ state (or most power utilizing state) and Dn being the ‘sleep’ state (or

least power utilizing state). With dynamic frequency scaling enabled, the CPU can

transition to various predetermined frequency levels also known as P-states. Because

the CPU has multiple sleep and power states, we calculate its power separately from

other subsystems.

Power utilization of the processor in C0 is a function of P-states or the frequency at

which the processor is running. The power utilization of the processor is calculated as,

P cpu = P cpu
C0

+ · · ·+ P cpu
Cn

, (3.25)
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where P cpu
C0

is given as,

P cpu
C0

=

k∑
j=0

PPj , (3.26)

where PPj [W] is the power utilized in the P-state j assuming processor has k P-states.

P-states are not relevant for sleep states (C-states other than C0) as processor is inactive

in them. Hence, the power utilized in C-states other than C0 is given as P cpu
Cn

[W], where

‘n’ is the C-state depth. The power utilized by other subsystems, i.e., I/O subsystem,

storage devices, and the NIC, is given by,

P sub = P sub
S0

+ P sub
Sidle

, (3.27)

where P sub [W] is the total power utilized by the subsystem and P sub
S0

[W] is the power

utilized when the subsystem is in use or ‘on’ sate and P sub
Sidle

[W] is the power consumed

when the subsystem is idle or in ‘sleep’ state.

The percentage of power dissipated as heat αcpu,sub [%] is given by,

αcpu,sub =
P cpu,sub
leakage

P cpu,sub
× 100, (3.28)

where P cpu,sub is the total power utilized by the CPU and subsystems, and P cpu,sub
leakage is

the leakage power for the CPU and subsystem calculated from (3.24).

Total Heat generated heij [J] by the processor and subsystems in blade, over the time

tcpu,sub is given by,

h = P cpu,sub · αcpu,sub
d · tcpu,sub. (3.29)

From (3.29), we observe that heij is directly proportional to the product of power utilized

by the processor and subsystems P cpu,sub and the time tcpu,sub when the processor and

subsystems are ‘on’.

3.4.2 Reactive Approach

The reactive approach is based on measuring the change in temperature and accordingly

adjusting the duty cycle and fan speed of the CRAC unit in Fig. 3.8. Reactive approach
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Figure 3.8: Reactive approach.

based models can be implemented in two ways depending on where the temperature

change is measured: i) by measuring the change in return temperature, and ii) by

measuring the change in internal temperature at each blade. There are advantages and

disadvantages for both approaches. Since the former approach uses only the return air

temperature, it is simple to adjust the controller. However, it could have a substantial

delay depending on how fast the room air is circulated and how big the machine room

size is.

The advantages of the reactive approach is that we are directly observing the tem-

perature at the place where we want to control the temperature. If the temperature

of any blade rises up to the critical point that can damage the hardware components,

air conditioning system reacts to cool down the system. Controller can react faster in

this approach than the former one because the source of the problem is close to the air

conditioning system, but it still has delay and cooling can be more expensive as only

a few overheated machines can trigger an entire cooling system. Moreover, it increases

the complexity of the control and communication mechanism and this approach mea-

sures the change in temperature but does not measure the quantitative heat generated.

Hence, this approach is inefficient compared to proactive approach.

The reactive approach takes corrective actions after the temperature has crossed

a threshold temperature THhigh,low. One possible action is to increase the fan speed,

which leads to increase the flow of the air and extract more heat from the blades. As the

heat extracted depends on the inlet temperature, if the temperature of the room is not

low enough to cool down the machine this action is not affective. Another possible action

is to increase the compressor duty cycle so to lower the temperature of the air. Within
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the reactive approach, however, a fine balance between these two actions as well as

the optimal tuning of the parameters controlling them are not possible as quantitative

relations between causes and effects are missing. For this reason, we proposed the

proactive approach, whose performance is provided in the following section.

3.5 Performance Evaluation

In this section, we analyze the performance of the models developed in this work.

The simulations are built using MATLABr. The nonlinear optimization problem in

Sect. 3.3.3 is solved using the fmincon solver in the Optimization Toolbox of MATLABr.

In Sect. 3.5.2, we analyze the proactive approach based mathematical model using the

chosen benchmarks and compare the results with that of the reactive approach. The

proactive approach using multiple fans is also simulated. In Sect. 3.5.3, we compare

the energy consumption and the risk of overheating for both reactive and proactive

approaches.

Table 3.2 shows the benchmarks used to validate the model. The chosen workload

benchmarks are compute intensive and generate substantial amount of heat. Most of

the workloads that run in high performance clusters and the datacenters are compute

intensive, and are comparable to the chosen workload benchmarks. Using the chosen

benchmarks and input variables in Table 3.3, we simulate the thermal behavior of a

datacenter and the ‘heat imbalance (Q)’. We used two types of scheduling algorithms

for simulations: i) random load balancing and ii) sequential load balancing. Random

load balancing selects random blades and assigns workloads, whereas sequential load

balancing selects sequential blades that are closely located and assigns workloads ac-

cordingly.

Table 3.2: List of benchmarks used.
Benchmark Name Benchmarks Type

FFTW Computing discrete Fourier Transforms
NAS-SP The NASA Parallel Benchmarks (NPB) family

HPL Linpack Solves a linear system on distributed-memory computer

The chosen benchmark workloads were run and profiled on our test server. Their

processor, I/O subsystem, memory subsystem and NIC usage with respect to time were
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Table 3.3: Input variables for the simulation.
Input

Maximum airflow from the CRAC 18000 m3/h
Supply-temperature from the CRAC 17 ◦C

Number of blades 1260
Number of enclosures 90

Number of racks 30
Number of perforated tiles 15

Size of a perforated tile (Atile) 1 m2

Mass of the air in the datacenter 220.5 kg
Maximum fan flow 5 m3/s

Set point 22 ◦C
threshold for the risk condition 70 ◦C

Heat generation model HPL Linpack, FFTW, NAS-SP
Scheduling algorithm Random load balancing, Sequential load balancing

measured using custom scripts. We obtained the time for which each subsystem was

‘on’ from the profiling data, and from the data sheet we know the power utilized by the

subsystems and also the power dissipated. With this information, we derived the heat

dissipated per unit time based on this profile data.

3.5.1 Reactive Approach

In reactive approach, either the ‘duty cycle of a compressor (η)’ or ‘fan speed of the

CRAC (ω)’ can be changed based upon the user specifications. We choose the set

point to react based on the temperature recommended in [76], which ranges from 64.4

(18) to 80.6 (27). We change the fan speed or duty cycle of the compressor to adjust

temperature set point within the recommended range, which is bounded by THhigh and

THlow as shown in Figs. 3.9 and 3.10. Since controller does not have knowledge about

how much heat will be generated in the future, it can only adjust fan speed or duty

cycle based on the temperature variations in this approach.

The reactive approach takes a corrective action after the temperature has crossed

a set point temperature. Note that this set point temperature can be different based

on the response time of the control system used. As a reaction, duty cycle of the

compressor can vary based on the changes in returning air temperature as shown in

Fig. 3.9. If returning temperature increases above the set point, then the controller

increases duty cycle of the compressor accordingly to extract more heat and hence lower

the temperature. Fan speed is fixed at its maximum value which is 5 m3/s. However,
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Figure 3.9: Reactive Approach: Compressor cycle change vs. returning temperature
of the CRAC; Positive heat imbalance creates ‘risk of overheating’ and negative heat
imbalance shows ‘excessive cooling’ when fan speed ω is fixed as 5 m3/s.

the ‘risk of overheating,’ which refers to the amount of heat that can damage internal

components, exists because of the non-instantaneous cooling effect on the blades. Also,

because of the delayed reaction of the cooling system, excessive amount of heat may be

extracted (excessive cooling) bringing the temperature below the guide line.

Figure 3.10: Reactive Approach: Fan speed change vs. returning temperature of the
CRAC; ’risk of overheating’ still exist even if the CRAC fan speed increases. Duty cycle
of the air compressor η is fixed as 0.6.

Changing the fan speed to adjust the temperature is the alternative way to control

the temperature in reactive approach. Figure 3.10 shows CRAC fan speed control and

corresponding returning temperature when compressor cycle is fixed at 0.6 to show the
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effect of fan in this case. Fan speed is controlled by the controller as the tempera-

ture increases above the set point or decreases below the set point, but the ‘risk of

overheating’ and ‘excessive cooling’ still exists because of the delay.

Figure 3.11: Temperature variations for FFTW, NAS-SP and HPL workloads.

We observed the temperature variations for different workloads such as FFTW,

NAS-SP, and HPL. From Fig. 3.11, we see that the temperature change for different

workload is different. From this, we infer that the temperature variation is dependent

on the workload and each one of them has a different heat pattern. In Fig. 3.11, it is

easy to control the temperature for FFTW workload as it generates less heat compare

to the other two. In the case of HPL it is difficult to control the temperature be-

cause it generates more heat and the temperature rises quickly above the recommended

temperature range.

In Fig. 3.12, we show the temperature variations based on the time delay which is

dependent on the distance of the blade from the CRAC unit. As the heat propagation

is dependent on the distance of the heat sensors from the source of the heat generation,

there is a delay in detection of the rise in temperature at the CRAC unit. Hence, there

is a delay in the response of the CRAC unit to control the temperature at the source

of heat generation. In Fig. 3.12, we see that higher the delay, more is the chance of

temperature rising above recommended temperature range.
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Figure 3.12: Temperature variations based on the time delay which is dependent on
the distance of the blade from the CRAC unit.

3.5.2 Proactive Approach

In proactive approach, ‘duty cycle of a compressor (η)’ or ‘fan speed of the CRAC

(ω)’ can be jointly optimized upon the heat estimation model provided in Section 3.4.

Optimization problem is solved every 50s, which is time window size of air compressor

duty cycle (TON + TOFF ) to adjust η and ω. This model is evaluated for the three

chosen benchmarks. Proactive approach is intrinsically predictive in nature as it esti-

mates the heat that will be generated in the future and adjusts CRAC unit accordingly.

This way, we can prevent ‘risk of overheating’ and ‘excessive cooling’ by eliminating the

delay in cooling action. In Fig. 3.13, we plot the percentage of server blade utilization

with respect to time. It provides us the information about the workload intensity at a

particular time instance. This server utilization rate is same for all the other workload

simulations.
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Figure 3.13: Utilization rate of server blades [%].
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(a)

(b)

Figure 3.14: Temperature variation of datacenter, FFTW workload, Random load bal-
ancing for the job distribution (a) Reactive approach; (b) Proactive approach.

Figures 3.14(a) and 3.14(b) show the temperature changes based on FFTW work-

load subsystem usage profile. Workloads are assigned to the blades by random load

balancing algorithm. Compressor cycle in reactive approach in Fig. 3.14(a) decreases

when the temperature crosses the set point. This workload shows moderate tempera-

ture change because this workload does not generate much heat compared to the other

two workloads. In this case, ‘excessive cooling’ appears due to non-instantaneous action

of air conditioning system. Figure 3.14(b) shows that temperature remains around the

‘set point,’ and in turn saves energy by optimizing fan speed and compressor cycle.

Energy consumption is compared in Section 3.5.3.

Figures 3.15(a) and 3.15(b) show the temperature change based on NAS-SP work-

load subsystem usage profile. In Fig. 3.15(a), we observe a periodic ‘risk of overheating’

during the time of simulation due to delay in cooling. This approach causes almost 10

second delay because of the distance of the blade from the CRAC unit. On the contrary,

proactive approach estimates the heat to be generated, and optimizes fan speed and

compressor cycle based on the estimation by the model proposed in Sect. 3.4. Figure

3.15(b) shows that temperature varies mostly within the recommended temperature
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(a)

(b)

Figure 3.15: Temperature variation of datacenter, NAS-SP workload, Random load
balancing for the job distribution (a) Reactive approach; (b) Proactive approach.

range.

Figures 3.16(a) and 3.16(b) show the temperature change based on HPL-Linpack

workload subsystem usage profile that has a highest heat generation among the three

benchmarks. Since reactive approach (Fig. 3.16(a)) does not have any knowledge about

the workload, the controller increases the compressor cycle and fan speed according

to increase in temperature. A high ‘risk of overheating’ appears between 250 to 350

seconds because heat imbalance (Q) is positive and very high. The compressor is too

slow to react to the temperature rise because HPL generates more heat as compared

to other workloads. Also, from Fig. 3.13, we see that the highest blades utilization

occurs in this same period of time. Due to this, there is extreme load on the CRAC

and hence, the slow reaction. On the contrary, proactive approach optimizes fan speed

and compressor cycle based on the estimation of heat to be generated. Figure 3.16(b)

shows that temperature varies mostly within the recommended temperature range.

The heat generation in a datacenter is dependent on workload distribution, with

uneven distribution of the workload there is uneven heat generation. With a global

control system and a single fan, we cannot partially extract the heat. Ideally one fan
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(a)

(b)

Figure 3.16: Temperature variation of datacenter, HPL Linpack workload, Random
load balancing for the job distribution (a) Reactive approach; (b) Pro-active approach.

can extract the same amount of heat from each blade, but cannot extract heat from

a selected blade, enclosure or a rack. Moreover, selective cooling using multiple fans

is needed for an intensive workload since, it can causes a high heat imbalance and

isolated hot spots. A selective air conditioning system control using multiple fans (one

per ‘corridor’ j) is an energy efficient alternative, since we increase the fan speed only

when needed depending on uneven heat generation.

3.5.3 Energy consumption and overheating risk

We estimate the ‘energy consumption’ for cooling systems and the ‘risk’ of overheating

for the hardware components, which is the input to both reactive approach and proac-

tive approach models. Energy consumption is the sum of energy consumed by the fan

and the air compressor during the time for which the simulation runs. The energy is

represented in the units of ‘kWh’, which can be directly converted into kJ, multiplying

by a factor of 3600. ‘Risk’ refers to percentage of overheating risk of the hardware

components, calculated by averaging the percentage of blades over the threshold which

is set as 70elsius in this simulation. In this way, we can show what percentage of blades
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Table 3.4: Risk of overheating and Energy consumption for random load balancing.

Workload

Reactive Proactive
Return temperature Internal temperature Single fan Multiple fans
(Global Temperature) (Local Temperature) (Global control) (Local control)

Risk (%) Energy (kWh) Risk Energy Risk Energy Risk Energy

FFTW 0.00 7.61 0.00 7.92 0.00 8.23 0.00 7.27
NAS 3.27 14.84 0.58 15.45 0.03 15.03 0.05 14.22
HPL 15.55 18.12 16.35 20.09 3.10 18.515 3.71 16.19

Table 3.5: Risk of overheating and Energy consumption for sequencial load balancing.

Workload

Reactive Proactive
Return temperature Internal temperature Single fan Multiple fans
(Global Temperature) (Local Temperature) (Global control) (Local control)

Risk (%) Energy (kWh) Risk Energy Risk Energy Risk Energy

FFTW 0.00 7.62 0.00 7.93 0.00 7.99 0.00 7.12
NAS 2.74 13.52 0.36 14.57 0.28 14.24 0.00 13.83
HPL 14.65 18.74 11.02 19.15 2.55 20.95 2.44 17.57

are under the state of overheating risk in a datacenter.

Tables 3.4 and 3.5 show the results for random load balancing and sequential load

balancing respectively. Simulations are performed by using parameters in Table 3.3.

Table 3.5 shows lower energy consumption than Table 3.4 because in Table 3.4 workloads

are evenly distributed in an orderly manner so that the heat generation is uniform.

We compare the proactive and reactive approach based on their energy consumption

and ’risk’ factor. In reactive approach, using return temperature (global temperature

measurement) for activating CRAC unit shows lower energy consumption than using

internal temperature (local temperature measurement) because it only uses mixed re-

turning air temperature that averages heat imbalance of all the blades in a datacenter.

However, using the internal temperature of the blade activates CRAC unit whenever

the temperature at any blade crosses threshold, and therefore prevents the ‘risk’ of over-

heating, but while avoiding this risk consumes more energy compared to the approach

that uses return temperature (global temperature measurement).

The proactive approach does not have big ‘risk’ compared to the reactive approach

since the controller can quantify and extract heat before it creates heat imbalance.

However, the proactive approach is inherently based on localized estimation of heat

generated at each blade and hence, it consumes more energy compare to the reactive

approach using single fan in tables 3.4 and 3.5.
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(a)

(b)

Figure 3.17: Temperature variation of the datacenter, NAS-SP workload, Random load
balancing for the job distribution (a) Proactive approach with single fan; (b) Proactive
approach with multiple fan.

In proactive approach, using multiple fans consumes less energy than using single

fan or reactive approach. Even though multiple fans require additional power to operate

which is few kilowatts, they can adjust the airflows to different aisles and selectively

extract heat that causes the ‘risk’ of overheating efficiently. Since, proactive approach

is by default based on localized estimation, multiple fans help remove this heat in a

localized manner, which results in increase in the energy efficiency. Difference in energy

consumption between using multiple fans and single fan is more apparent in sequential

load balancing in Table 3.5. Using multiple fans (Fig. 3.17(b)) achieves lower energy

consumption than using single fan (Fig. 3.17(a)), showing that temperature changes in

lower range using lower compressor duty cycle.

3.6 Discussion

In this chapter we proposed a proactive approach based optimization model for cool-

ing systems of the datacenters. The proactive approach is based on having advanced

knowledge of the workload behavior and taking an appropriate action before the heat
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imbalance affects the temperature. When we compared the proactive approach with

the reactive approach, reactive approach was found to have many disadvantages such

as delayed response, high risk of over heating, excessive cooling and recursive cycling.

Proactive approach proposed in this chapter overcomes these disadvantages of the re-

active approach. Proactive approach cools the system before temperature rises and

prevents any occurrence of ‘risk of overheating’ and also prevents ‘excessive cooling’ as

the heat imbalance is estimated based on the knowledge of subsystem usage and the

workloads. For it to be effective there is a need for multiples fans under each plenum

for each aisle or each corridor, which is possible with minimal or no changes to the

designs of the existing datacenters. Multiple fans help in effectively controlling hot

spots occurring in different locations, which cannot be eliminated by the current single

fan cooling systems even by using proactive approach. The use of multiple fans in the

proactive approach to control the cooling system saves approximately 4% to 10% of

the energy required for cooling, depending on the workload and scheduling algorithms

implemented.

Proactive approach suggested in this chapter can be optimized if it is implemented

with supporting infrastructure such as external temperature and humidity sensors and

airflow meters that are crucial in obtaining inlet and outlet temperatures, humidity

and airflow for accurate air circulation modeling in (3.8). Thermal cameras could be

another option to micro-managing heat imbalance and hot spots. Thermal cameras can

be used to detect, characterize, localize, and track hot spots causing heat imbalances.

We introduce implementing proactive approach using the thermal infrastructure in the

next chapter.



58

Chapter 4

VMAP: Proactive Thermal-aware Virtual Machine

Allocation in HPC Cloud Datacenters

4.1 Overview

The trend: Datacenters are a growing component of society’s IT infrastructure and

their energy consumption surpassed 237 billion kWh/year worldwide and 76 billion

kWh/year in the US in 2010 [1]. Even though these numbers are lower than what the US

Environmental Protection Agency predicted in 2007 [4], they correspond to 6% and 2%

of the total electricity usage in the US. The impact of this proliferation of datacenters

on the environment and society includes increase in CO2 emissions, overload of the

electricity supply grid, and rise in water usage for cooling leading to water scarcity [5].

The scale and complexity of datacenters are growing at an alarming rate and their

management is rapidly exceeding human ability, making autonomic (self-configuration,

self-optimization, self-healing, and self-protection) management approaches essential.

High-Performance Computing (HPC) applications are resource-intensive scientific

workflow (in terms of data, computation, and communication) that have typically tar-

geted Grids and conventional HPC platforms like super-computing clusters. Clouds –

composed of one or more virtualized datacenters providing the abstraction of nearly-

unlimited computing resources through the elastic use of federated resource pools –

are being increasingly considered to enable traditional HPC applications. However,

maximizing energy efficiency and utilization of cloud datacenter resources, avoiding un-

desired thermal hotspots (due to overheating of over-utilized computing equipment),

and ensuring Quality of Service (QoS) guarantees for HPC applications are all conflict-

ing objectives, which require joint consideration of multiple pairwise tradeoffs.

Need for thermal awareness: From our feasibility study and proof-of-concept
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experiments conducted at our machine room in the NSF Cloud and Autonomic Com-

puting Center (CAC), Rutgers University, we have inferred that one of the fundamen-

tal problems in HPC-cloud datacenters is the local unevenness in heat-generation and

heat-extraction rates: the former can be attributed to the non-uniform distribution of

workloads (of different types and intensities) among servers and to the heterogeneity of

computing hardware; the latter can be attributed to the non-ideal air circulation, which

depends on the layout of server racks inside the datacenter and on the placement of

Computer Room Air Conditioning (CRAC) unit fans and air vents. The heat-generation

and -extraction rates may differ, which over time causes heat imbalance. This heat im-

balance will be large if the rates are significantly different from each other or if their

difference prolongs over extended time periods.

A large negative heat imbalance at a particular region inside a datacenter will result

in energy-inefficient overcooling and, hence, in a significant decrease in temperature.

Conversely, a large positive heat imbalance will lead to a significant temperature in-

crease, which may result in undesired thermal hotspots and server operation in the

unsafe temperature range. Thus, thermal awareness, which is the knowledge of heat

imbalance at different regions inside a datacenter, is essential to maximize energy and

cooling efficiency as well as to minimize server system failure rate. Our novel concept

of heat imbalance enables proactive datacenter management decisions (such as resource

provisioning, cooling system optimization) through prediction of future temperature

trends as opposed to the state-of-the-art reactive management decisions based on cur-

rent temperature measurements.

Our contributions: In virtualized HPC datacenters, one or more Virtual Machines

(VMs) are created for every application request (with one or more workloads) and each

VM is provisioned with resources that satisfy the application QoS requirements, which

are based on Service Level Agreements (SLAs). Once VMs are provisioned, they have to

be allocated to servers. We propose a novel thermal-aware proactive VM consolidation

solution referred to as VMAP. The benefit of employing VMAP is three-fold: i) energy

spent on computation can be saved by turning off the unused servers after workload

(or VM) consolidation; ii) the utilization of servers that are in the “better cooled”
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areas of the datacenters (with high heat extraction) can be maximized; iii) heat can

be extracted more efficiently (by doing a lower amount of work) by the CRAC system

from the consolidated server aisles, which are hotter than non-consolidated server aisles.

Note that (iii) is possible due to the fact that the efficiency of heat extraction increases

with increase in return-air temperature.

Furthermore, capability to migrate VMs opens up more opportunities to save energy

as we can perform better resource consolidation over time. However, migrations incur

overheads in terms of delays in the applications running within the VMs and energy

consumption. We propose VMAP+, which possesses all of VMAP’s capabilities and in

addition leverages thermal-aware VM migrations in order to achieve greater resource

consolidation over time while taking into account the following key tradeoffs: energy

savings vs. delay and network overhead. VM migration involves transferring the mem-

ory of the VM from the host to the destination server. The time taken and, hence, the

energy consumption for VM migration depends on the network bandwidth. The higher

the network bandwidth the shorter the migration time and smaller the energy footprint.

Excessive migrations can cause large delays and high energy consumption compared to

the no-migration case. VMAP+ takes the aforementioned factors into consideration by

migrating VMs only i) if migration does not result in excessive heat generation, ii) if

energy saving is greater than the migration cost, and iii) if migration delay is within

the SLA.

Potential benefits: Both VMAP and VMAP+ also exploit the heterogeneity in

the cloud infrastructure (federated datacenters) – in terms of electricity cost, hardware

capabilities (CPU, memory, disk I/O, and network subsystems), tunable parameters of

the CRAC system, and local regulations (governing CO2 emission and water usage) – to

maximize energy efficiency. Our solutions are aimed at increasing the energy and cool-

ing efficiency and at decreasing equipment failure rates so to minimize both the impact

on the environment and the Total Cost of Ownership (TCO) of datacenters. VMAP

can significantly contribute to energy efficiency (9%, 9%, and 35% average reduction in

energy consumption compared to the traditional temperature-based reactive thermal
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management schemes: first-fit-decreasing, best-fit-decreasing, and “cool-job” [3] allo-

cation, respectively) while not violating recommended operating temperature range.

VMAP+ achieves a further 3% average reduction in energy consumption compared to

VMAP. The following are the main contributions of our work.

• We introduce the novel notion of heat imbalance and validate a simple yet robust

heat-imbalance model, which helps predict future temperature trends and make

proactive resource provisioning and migration decisions;

• We propose a proactive thermal-aware VM consolidation solution, VMAP, which

minimizes energy consumption for computation, increases resource utilization,

and improves efficiency of cooling;

• We propose VMAP+, which extends VMAP’s capabilities by leveraging thermal-

aware VM migrations so to achieve greater resource consolidation over time while

taking into account the following key tradeoffs: energy savings vs. delay and

network overhead;

• We validate our proposed approach through extensive experiments – in a single-

datacenter as well as in federated-datacenters (at different sites of NSF CAC,

Rutgers University and University of Florida).

The remainder of this chapter is organized as follows: in Sect. 4.2, we discuss the

state of the art in autonomic thermal-aware management of datacenters; in Sect. 4.3,

we outline our broader vision for thermal-aware autonomic datacenter management,

present details on the design and validation of our heat-imbalance model (Sect. 4.3.1),

and describe VMAP and VMAP+ (Sect. 4.3.2); in Sect. 4.4, we study the performance

of VMAP and VMAP+ using experiments and simulations; and finally, in Sect. 4.5, we

present our conclusions.
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4.2 Related Work

Prior research efforts on thermal management of datacenters [42] have focused exclu-

sively on only one of the two fundamental approaches: management of heat extrac-

tion [31] or management of heat generation inside a datacenter [47, 50]. The first

approach aims at improving cooling system efficiency by effectively distributing cold

air inside the datacenter (cooling system optimization), while the second approach fo-

cuses on how to balance or migrate workloads in such a way as to avoid overheating

of computing equipment. In contrast, we focus on a joint approach so to minimize the

risk of overheating of servers while simultaneously maximizing the cooling efficiency.

In [43], the authors profile and benchmark the energy usage of 22 datacenters. They

perform energy benchmarking using a metric that compares energy used for IT equip-

ment to the energy used for the CRAC system and conclude that the key to energy

efficiency is air circulation management (for effective and efficient cooling). As many

datacenters employ raised floors with perforated tiles to distribute the chilled air to

racks, researchers have tried to gain valuable insights into efficient airflow distribution

strategies in such datacenter layouts [31]. Other research efforts were aimed at im-

proving the efficiency of cooling systems through thermal profiling (knowledge of air

and heat circulation) of datacenters. Basic mathematical modeling and parameters

for profiling datacenter are proposed in [39]. However, capturing complex thermody-

namic phenomena using complex Computational Fluid Dynamic (CFD) models [25]

is prohibitive in terms of computational overhead. Measurements from scalar sensors

alone [37] cannot capture the complex thermodynamic phenomena inside a datacenter.

Hence, we used a heterogeneous sensing infrastructure [44] – composed of temperature

and humidity scalar sensors, thermal cameras, and air flow meters – to thermally profile

datacenters in space and time so to exploit that information for resource provisioning

and cooling system optimization.

Several solutions that employ temperature-aware job distribution and migration

have been proposed for alleviating undesired thermal behavior (higher operating tem-

peratures) inside datacenters. Moore et al. [47] proposed thermal management solutions
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that focus on scheduling workloads considering temperature measurements. They de-

signed a machine-learning-based method to infer a model of thermal behavior of the

datacenter online and to reconfigure automatically the thermal load management sys-

tems for improving cooling efficiency and energy consumption. Bash and Forman [49]

developed a policy to place the workload in areas of a datacenter that are easier to

cool, which results in cooling power savings. They used scalar temperature sensor mea-

surements alone to derive two metrics that help decide whether to place workload on

a server or not: the first metric, Thermal Correlation Index (TCI), gives the efficiency

with which any given CRAC can provide cooling resources to any given server; while

the second is Local Workload Placement Index (LWPI). Tang et al. [50] investigated

the mechanism to distribute incoming tasks among the servers in order to maximize

cooling efficiency while still operating within safe temperature regions. They developed

a linear, low-complexity process model to predict the equipment inlet temperatures in a

datacenter given a server utilization vector; they mathematically formalize the problem

of minimizing the datacenter cooling cost as the problem of minimizing the maximal

(peak) inlet temperature through task assignment. However, the work was validated

only through simulations. In [51], the authors explore a spatio-temporal thermal-aware

job scheduling as an extension to spatial thermal-aware solutions like [47,48,50].

Heath et al. [48] propose emulation tools (‘Mercury’ and ‘Freon’) for investigating

the thermal implications of power management. In [67], the authors present ‘C-Oracle’,

a software infrastructure that dynamically predicts the temperature and performance

impact of different thermal management reactions (such as load redistribution and dy-

namic voltage and frequency scaling) into the future, allowing the thermal management

policy to select the best reaction. However, neither of the aforementioned thermal-aware

workload placement solutions explicitly take into account the direct impact of workload

distribution on cooling system efficiency and vice-versa. Thermal-aware management

of datacenters should strive to minimize the TCO of datacenters, i.e., to minimize the

cost of running servers through energy-aware workload distribution as well as to mini-

mize the energy spent on cooling, by thoroughly understanding the effect of one on the

other. That is why we combined thermodynamic models and real-time measurements
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Figure 4.1: Envisioned cross-layer approach to autonomic management of virtualized
HPC datacenters. The main focus of this chapter is indicated in red boxes.

(from temperature and humidity scalar sensors as well as air flow meters) to capture

the complex thermodynamic phenomena of heat generation (due to specific workload

distribution) and heat extraction (due to cooling system parameters and characteris-

tics), in order to predict the future temperature map of the datacenter for enabling

proactive thermal-aware datacenter management decisions.

4.3 Proposed Approach

We propose a proactive cross-layer approach to autonomic datacenter management,

which is information centric and requires continuous processing and analysis of real-

time feedback from multiple layers of abstraction (as depicted in Fig. 4.1). The applica-

tion layer provides information regarding the applications’ (and, hence, the workloads’)

characteristics such as their computing resource requirements, energy consumption, and

performance on different hardware platforms. Modern blade servers (hardware resource

layer) are equipped with a number of internal sensors that provide information about

server fan speed and subsystem operating temperatures as well as utilization. However,

information extracted from the application and hardware resource layers alone cannot

capture the complex thermodynamic phenomena of heat and air circulation inside a

datacenter.
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Information from the environment layer, comprising of an heterogeneous sensing

infrastructure (with scalar temperature and humidity sensors, thermal cameras, and

airflow meters) is key to characterize the thermal behavior of a datacenter under a given

load (information from the application layer) [44]. As mentioned earlier, the estimation

of heat imbalance requires estimation of the heat-generation and heat-extraction rates.

The heat-generation model exploits the information provided by the application layer

while the heat-extraction model leverages information provided by the environment as

well as hardware resource layers. The virtualization layer – which provisions, allocates,

and manages VMs (created based on application requests) – exploits the knowledge

of heat imbalance to predict future temperature trends for optimal resource allocation

in datacenters. In this chapter, we focus on the design and validation of the heat-

imbalance model and on how the knowledge of heat imbalance can be exploited to

perform energy-efficient proactive VM consolidation in datacenters (shown in red boxes

in Fig. 4.1).

While proactive VM consolidation (involving allocation and migration) has several

clear advantages, namely, reduced energy cost for computation (through high utiliza-

tion of fewer computing resources) as well as for cooling (through better heat extraction

at higher operating temperatures), it has certain drawbacks. Increased utilization of

servers results in continuous operation of computing hardware at temperatures close

to the upper bound of the recommended operating temperature range. This, however,

is not a major concern due to the following reasons: i) manufacturers usually pro-

vide a conservative upper bound for the recommended operating temperature range;

ii) our consolidation solution is thermal-aware and does not let the operating tem-

peratures go beyond the recommended range (referred to as thermal violation) unlike

other temperature-agnostic solutions; iii) the frequency of equipment upgrades (due to

tremendous rate of innovation in computing hardware) is much higher than the rate of

replacement due to failures.

Another drawback of traditional server consolidation is violation in SLAs (in terms

of application runtime) due to greater resource contention at higher utilization levels.

However, this is not a concern for virtualized HPC clouds as i) users are guaranteed
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the resources they specifically ask for, ii) VMs are isolated from each other, and iii) we

do not multiplex resources, i.e., the total subsystem utilization of all VMs in a server

will not exceed the total subsystem capacity of that server. In our prior work [12, 66],

we have shown through simulations that heat-imbalance-based proactive datacenter

management (cooling system optimization) is superior in terms of energy efficiency and

minimization of risk of equipment failures compared to its conventional temperature-

measurement-based reactive counterpart. Our envisioned approach represents a trans-

formative shift towards cross-layer autonomics for datacenter management problems,

which have so far been considered mostly in terms of individual layers. In the follow-

ing, we first focus on our novel heat-imbalance model, which incorporates information

from the application, hardware resource, and environment layers. We then present our

heat-imbalance-based proactive VM allocation and migration solutions, which resides

in the virtualization layer.

4.3.1 Heat-Imbalance Model

A VM is created for every application request and is provisioned with resources (CPUs,

memory, disk, and network capacity) that satisfy the application’s QoS (usually dead-

line) requirements. Without any loss of generality, we assume that this provisioning

has already been performed using techniques such as the ones described in [89]. The

provisioned VMs now have to be allocated to physical servers housed within racks in

datacenters. Let M be the set of VMs to be allocated and N be the set of servers.

An associativity binary matrix A = {amn} (with amn ∈ {0, 1}) specifies whether VM

m is hosted at server n or not. A VM m is specified as a vector Γm = {γsm}, where

s ∈ S = {CPU,MEM, IO,NET} refers to the server subsystems and γsm’s are the

VM subsystem requirements (e.g., CPU cores, amount of volatile memory [MB], disk

storage space [MB], network capacity [Mbps]).

Representation (or mapping) of a VM’s subsystem requirement (γsm) as a factor of

physical server subsystem capacity is straightforward if all the servers of the datacenter

are assumed to be homogeneous. For example, a VM m requiring 4 virtual CPUs,

2 GB of RAM, 64 GB of hard-disk space, and 100 Mbps network capacity can be
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represented as Γm = {0.25, 0.125, 0.125, 0.1} if all the servers in a datacenter have 16

CPU cores, 16 GB of RAM, 512 GB of local hard-disk space, and a gigabyte ethernet

interface. However, homogeneity is rarely the case as datacenters usually have a few

different generations of each subsystem, for example, CPUs with different clock rates

and number of cores (1.6/2.0/2.4 GHz and 4/8/16/32 cores), different generations or

sizes of RAMs (SDR/DDR SDRAM or sizes ranging from 4 to 32 GB), network switches

of varying capacities (0.1, 1, or 10 Gbps), etc. The mapping problem becomes non trivial

in an heterogeneous environment. However, assuming that only a small finite number of

generations of each subsystem are present in the datacenter, we create such a mapping

for each generation of every subsystem.

Estimation of heat imbalance: We formulate the heat-imbalance model in a

datacenter based on heat-generation and heat-extraction rates as follows,

∆In =

∫ t0+δ

t0

(hn − qn)dt = Mn · C ·∆Tn
[t0,t0+δ], (4.1)

where ∆In [J] denotes the heat imbalance of CPU inside server n during the time

between t0 and t0 + δ, and Mn and C denote the mass and specific heat capacity,

respectively, of the CPU. Note that if ∆In is positive (i.e., hn > qn), the temperature

of the CPU at server n increases in the time interval [t0, t0 + δ] (hence, ∆Tn > 0);

conversely, if ∆In is negative (i.e., hn < qn), the temperature of the CPU at server n

decreases (hence, ∆Tn < 0).

This estimated heat imbalance helps us predict the increase or decrease in tem-

perature, given by ∆Tn, to take management decisions such as VM placement, VM

migration, and cooling system optimization.

Validation of the proposed models: Certain parameters in the proposed heat-

imbalance model are determined empirically as they cannot be obtained directly (e.g.,

from server specification documents). The heat dissipation factor α in (1) is one of the

key parameters that is determined empirically. Similarly, the server outlet temperature

Tout in (2) varies with time and is a function of CPU temperature, which is what

the heat-imbalance model is designed to estimate. Hence, the relationship between
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Figure 4.2: Empirical data collected from servers at RU – (a) power consumption, (b)
CPU and external (inlet and outlet) temperatures, and (c) calculated heat imbalance
– when a representative CPU-intensive workload is run at different CPU utilization
levels.

T out and ∆T is determined empirically (assuming T in is known and is constant in

the time interval [t0, t0 + δ]) and is substituted in the heat-imbalance model so to

eliminate an extra unknown. We performed simple experiments (measurements shown

in Fig. 4.2) to obtain α, to derive the relationship between T out and ∆T , and to validate

the resulting heat-imbalance model by comparing its output (predicted increase in the

CPU temperature ∆T at a server) with actual observation (shown in Fig. 4.4).

We started from an initial idle condition, with 0% CPU utilization and a correspond-

ing zero heat imbalance, and increased the CPU utilization from 0% to 25%, 50%, 75%,

and 100% progressively as shown in Fig. 4.2. The CPU was subject to each of the

aforementioned load levels for around 60 minutes so to allow the CPU temperature to

reach steady state. To increase the CPU utilization we used Lookbusy (a synthetic load
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Figure 4.3: Relationship between ∆T and CPU utilization using data from both RU
and UFL servers.

generator for Linux systems), which keep the CPU(s) at the chosen utilization level

by adjusting its own load up or down to compensate for other loads on the system.

We measured the corresponding increase in power consumption (Fig. 4.2(a)) as well

as CPU and server outlet temperatures (Fig. 4.2(b)), and also calculated the variation

in heat imbalance over time (Fig. 4.2(c)). Obtaining the value of α using (3) is now

straightforward as the heat imbalance, heat extraction, and power consumption are

known. On the contrary, deriving the relationship between T out and ∆T is non-trivial.

First, we use logarithmic regression equations to model the relationship between

CPU utilization (un%) and the increase in CPU temperature (∆Tn
◦C, shown in

Fig. 4.3), i.e., ∆Tn = α ln(un) + β. Then, based on this knowledge and our obser-

vation from Fig. 4.2(c), we derive a simple linear regression model that represents the

relationship between ∆Tn and T out
n (for a fixed server inlet temperature and airflow

rate) for use in our heat-imbalance model. We verify the accuracy of the logarith-

mic regression equations with the empirically determined coefficients (α and β) as well

as the linear regression model by repeating the aforementioned experiment again and

comparing the predicted CPU temperatures over time with the actual CPU operating

temperature as shown in Fig. 4.4. Prediction of future CPU operating temperatures

using our heat-imbalance model is sensitive to the variable heat and air circulation

patterns (thermodynamic phenomena) at different regions inside a datacenter.

4.3.2 Thermal-aware VM Consolidation

For a given set of VMs, minimizing the number of servers that are in operation (consoli-

dation) will help reduce the energy overhead and, hence, the total energy consumption.
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Figure 4.4: CPU temperature – measured and estimated (using the heat-imbalance
model) – when a representative CPU-intensive workload is run at different CPU uti-
lization levels.

In addition to saving the energy spent on computation, thermal-aware VM consolida-

tion also helps achieve a higher COP of cooling. In this section, we first formulate the

VM allocation problem as an optimization problem, which employs our heat-imbalance

model. As this optimization is NP-hard, we then present our heuristic solution, VMAP

(thermal-aware proactive VM mapping solution). The motivation for formulating the

optimization problem is to gain insight and make key design decisions for our heuristic

solution.

Optimization Problem: The total energy consumption in a datacenter can be

split into energy consumption for computing (Ecomp [kWh]), i.e., for running the work-

loads (or VMs) on servers, and energy consumption for cooling (Ecool [kWh]). We

assume that the cooling system parameters (fan speed and compressor duty cycle of

the CRAC) are fixed, i.e., the energy spent on cooling is fixed (Ecool = const) for the

duration δ. Note that Ecool can be optimized independently at a periodicity ∆ ≫ δ.

The goal is to find an optimal mapping of VMs to physical servers (represented by the

binary associativity matrix A) so to minimize Ecomp while simultaneously increasing

COP of cooling. The known (given as well as measured) parameters and optimization

variables of the optimization problem can be summarized as,

Given (offline) : N, T reco, δ,Mn, Cp;

Given (online) : M,Γm ∀m ∈ M;

Measured (online) : T t0
n ,min

n , T in
n ,Λn ∀n ∈ N;

Find : A = {amn}, m ∈ M, n ∈ N. (4.2)
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Here, T t0
n and Λn = {λs

n} represent the current CPU temperature and the maximum

residual capacity of each subsystem s at server n, respectively. The objective of the

optimization problem is,

Minimize : Ecomp =
∑
n∈N

Ecomp
n , (4.3)

Ecomp
n =

∑
s∈S

(
P s,on
n · ts,onn + P s,idle

n · ts,idlen

)
· αs

n; (4.4)

Subject to : C1, C2, C3.

The first constraint (C1) ensures that a VM is allocated to one and only one server,

i.e.,

C1:
∑
n∈N

amn = 1,∀m ∈ M. (4.5)

The second constraint (C2) ensures that the resource requirements of all VMs allocated

to one server do not exceed the maximum capacity of a server subsystem and is given

by,

C2:
∑
m∈M

amn · γsm ≤ λs
n, ∀n ∈ N, ∀s ∈ S. (4.6)

The third constraint (C3) ensures that the predicted CPU temperature – sum of the

current CPU temperature T t0
n and the predicted temperature increase ∆Tn

[t0,t0+δ] calcu-

lated using (5.1) – is always below the recommended maximum operating temperature

(T reco) and is represented as,

C3: T t0
n +∆Tn

[t0,t0+δ] ≤ T reco, ∀n ∈ N. (4.7)

The optimization problem presented here naturally forces VM consolidation. As

heat generation increases logarithmically with increase in CPU utilization (shown in

Fig. 4.5), the optimization prefers already loaded active servers for VM allocation when

all the constraints (C1, C2, and C3) are met. This is because the additional cost of
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placing a VM in an already loaded server (in terms of increase in temperature) decreases

as the load increases. Also, constraint C3 ensures that more VMs are allocated to

servers in better-cooled areas of the datacenter. Such thermal-aware VM consolidation

leads to better utilization of resources. In addition, consolidation increases the return

air temperature in the consolidated server aisles thus increasing the efficiency of cooling.

This can be attributed to the fact that higher the CRAC return air temperature the

higher the COP of cooling.

VMAP: We characterize the aforementioned optimization problem as a variable-

size multi-dimensional bin-packing problem [90,91]. This is a generalized version of the

traditional fixed-size one-dimensional bin-packing problem as the bins (servers) and

objects (VMs) are represented as “hypercuboids” with multiple dimensions d (5 in our

problem) and all the bins need not have the same capacity along each dimension. The

size of each VM along the five different dimensions are its four normalized subsystem

utilization requirements and the heat-generation rate. The size of a server along the five

different dimensions are the normalized residual capacity (or availability) of each of the

four subsystems and the heat extraction rate. The first four dimensions corresponding

to VM subsystem requirements (in the object definition) and server subsystem residual

capacities (in the bin definition) are straightforward to interpret and incorporated into

a bin-packing problem. However, the relationship between the heat-generation (in the

object definition) and heat-extraction (in the bin definition) rates is more involved. The

bin capacity along the fifth dimension is actually the difference between current CPU

temperature (T t0) and the upper bound of the recommended temperature range T reco.

We use a multi-dimensional best-fit-like algorithm [92] to allocate a set of VMs (M)

that have arrived in a time window to a set of physical servers (N). First, the VMs are

sorted in decreasing order of their deadlines (or running time). Note that this is a shift

from the traditional method of sorting based on one of the dimensions. This is because,

in HPC clouds, the subsystem requirements of VMs are comparable and, hence, their

durations play a pivotal role in determining energy consumption. It is desirable to pack

longer duration VMs together so that server that host smaller duration VMs can be

switched off at the completion of workload tasks so to save energy. Once the VMs are



73

0 10 20 30 40 50 60 70 80 90 100

80

100

120

140

160

CPU Utilization [%]

P
ow

er
 [W

]

 

 

RU (measured)
UFL (measured)
RU (curve fitted)
UFL (curve fitted)

Figure 4.5: Relationship between power consumption and CPU utilization in multi-core
multi-threaded systems at RU and UFL servers.

sorted according to their deadline, each VM m ∈ M is allocated a server n ∈ N whose

residual volume (of the hypercuboid) is the lowest of all servers’ after assignment. The

time complexity of the aforementioned heuristic is O(|M| · log |M|+ d · |M| · |N|), where

the first and second components correspond to the sorting step and the assignment

steps, respectively.

The objective of bin packing (minimize the number of bins used) is in line with

the objective of the optimization problem, i.e., the fewer the active physical servers,

the lower the energy consumption. This is also made possible due to the logarithmic

behavior (as shown in Fig. 4.5) of CPU temperature as well as energy consumption with

respect to CPU utilization in multi-core multi-threaded systems (which are the most

common computing equipment configuration in cloud datacenters). In addition, bin-

packing heuristics require that the objects are not further manipulated (i.e., divided or

rotated) and do not overlap inside the bins (similar to constraint C1), the total volume

of all the object inside a bin cannot exceed the bin’s volume (similar to constraints C2

and C3).

VMAP+: We extend the capabilities of VMAP to migrate VMs between servers

(based on the utilization of the servers) for greater resource consolidation and energy

savings while not exceeding the recommended operating thermal conditions. As men-

tioned earlier VM consolidation (i.e., allocation using VMAP) is performed every δ.

The goodness of consolidation reduces over time as some VMs terminate their opera-

tion. In other words, VMAP as it is may lose the opportunity to further consolidate

and save energy over time, especially in the case when δ is large. Therefore, we propose
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VMAP+, an adaptive solution that builds on VMAP’s capabilities. VMAP+ uses the

information about VM terminations and the resource utilization (CPU, memory, disk

I/O, and network subsystems) at the corresponding host servers to make migration deci-

sions. VMAP+ determines the subset of “lightly-loaded” servers (L ⊆ N) and migrates

the remaining VMs in those servers to already moderately- or highly-loaded servers.

We know from Fig. 4.5 that the additional cost of running a VM in a moderately- or

highly-loaded server is lower than running it in a lightly-loaded server.

VMAP+ also takes the migration cost (in terms of service delay, energy consump-

tion, and heat generation) into consideration while choosing the candidate VMs for

migration from the lightly-loaded servers. The process of VM migration is in itself

a network-intensive workload. Network-intensive workloads also result in an increase

in the CPU utilization thus resulting in heat generation at the host and destination

servers of the candidate VM under consideration [93, 94]. VMAP+ takes into account

the following key tradeoffs: energy savings vs. delay and network overhead. As VM

migration involves transferring the memory of the VM from the host to the destination

server, the time taken and, hence, the energy consumption depends on the network

bandwidth. The higher the network bandwidth the shorter the migration time and

smaller the energy footprint. Excessive migrations can cause large delays and high en-

ergy consumption compared to the no-migration case. VMAP+ migrates VMs only i)

if migration does not result in excessive heat generation, ii) if energy saving is greater

than the migration cost, and iii) if migration delay is within the SLA.

Let us consider a toy example in which we use only one of the dimensions (CPU)

for ease of illustration. Let us define a highly-loaded server as one that uses >75% of

CPU, a moderately-loaded server as one that uses 50-75% of CPU and a lightly-loaded

server as one that uses <50% of CPU. Once VMs are allocated using VMAP at time t,

the servers 1 and 2 are highly loaded as shown in Fig. 5.7(a). As the time elapses, one

or more VMs terminate their operation and one or more highly-loaded servers become

moderately-loaded and the moderately-loaded ones may become lightly-loaded. At time

t′ Server 2 becomes lightly-loaded and at time t′′, Server 1 becomes moderately-loaded.

If only VMAP were to be employed at t+ δ, then the servers would continue operation
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Figure 4.6: Placement and progress of VMs between two allocation instants (duration
δ) (a) when only VMAP is employed; (b) when VMAP+ is employed. VMAP+ relieves
Server 2 of its load and switches it off after the migrating the remaining VM thus saving
on energy required for running the different server subsystems.

under the current load conditions. In general, if the rate of VM termination is greater

than the rate of VM arrival, there will be a high number of light and moderately-loaded

servers.

However, VMAP+ keeps track of lightly-loaded and the moderately-loaded servers

and relieves lightly-loaded servers as shown at time t′′ in Fig. 5.7(b). Therefore, Server

can be shut down after migrating the remaining VM to Server 1 making it highly-loaded.

However, the migrated VM experiences a temporary suspension in service referred to

as migration delay (overhead). This delay is kept to pre-specified limits specified in the

SLA. VMAP+ strives to maximize the number of highly-loaded and moderately-loaded

servers and minimize the number of lightly-loaded servers. Algorithm 1 describes the

migration strategy in VMAP+.

The datacenter manger has the capability to modify the definition of a lightly-

loaded server. If the definition is too strict, the migration delay is small as less amount
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Algorithm 1: VMAP+ migration strategy

Input: L, T reco, T t
n,Λn,Λ

max
n

Output: Migration source server l and target server n

if a VM (m) in server n finished its operation at time t then
Update L based on the newly available resources
for all l ∈ L do

if T t
n +∆Tn ≤ T reco & Λmax

l −Λl ≤ Λn then
Migrate VMs in server l to n.
Break

end if
end for

end if

of memory should be copied to the migration target (destination server). In general,

servers and their VMs that consume small amount of resources can be easily migrated.

However, if the definition of the lightly-loaded server is relaxed, the migration delay

will increase as there will be more candidate VMs (also big in terms of resource require-

ments) for migration. VMAP+ is suited for HPC applications in the cloud as these

applications are not elastic in nature (i.e., fixed resource requirements and predictable

performance). This non-elasticity allows VMAP+ to estimate and control the overhead

in terms of time (service delay due to VM suspension), energy consumption (as the

migration process is modeled as a workload in itself), and heat generation.

VMAP (and hence, VMAP+) also has the ability to optimize resource allocation

across a network of heterogeneous yet federated datacenters. Heterogeneity here refers

to the difference in characteristics and capabilities of computing (e.g., heat-generation

rate of servers, processing power, network capacity, etc.) and cooling (e.g., COP of air-

chilled vs. water-chilled cooling) equipment, sources of energy for operation and cooling

(e.g., renewable or non-renewable), and environmental regulations in the respective

geographical region (e.g., cap on CO2 footprint or cap on water temperature increase

caused by cooling systems). We follow a two-step approach in which the problem of

deciding which datacenter should handle the VM and which physical server should host

the VM are determined sequentially. For example, if reducing the CO2 footprint and the

aggregate TCO are the goals, the solution will load datacenters that rely on renewable

sources of energy as long as the following conditions are met: high COP of cooling,
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compliance with requirements of VMs/workloads and with environmental regulations

such as cap on water consumption and cap on water temperature increase caused by

the cooling system. As mentioned earlier, we have a testbed of geographically separated

yet federated datacenters to validate our solutions.

4.4 Performance Evaluation

We evaluated the performance of VMAP and VMAP+ via experiments on a small-scale

testbed and via trace-driven simulations. The system model used in our simulations has

the same characteristics of our real testbed. First, we provide details on our testbed

and experiment methodology (workload traces, performance metrics, and competing

approaches). Then, we elaborate on the experiment and simulation scenarios aimed

at highlighting the benefits of thermal-aware VM consolidation using VMAP (only

allocation) and VMAP+ (only allocation as well as migration). As the performance of

VMAP+ is affected by the definition of a lightly-loaded server, a separate sensitivity

analysis is presented at the end of this section.

4.4.1 Testbed and Experiment Methodology

Testbed: We have fully equipped machine rooms at two sites of NSF CAC – Rutgers

University (RU) and University of Florida (UFL) – with state-of-the-art computing

equipment (modern blade servers in enclosures) and fully controllable CRAC systems.

The blade servers at both sites are equipped with a host of internal sensors that pro-

vide information about server subsystem operating temperatures and utilization. In

addition, the machine room at RU is instrumented with an external heterogeneous

sensing infrastructure [44] to capture the complex thermodynamic phenomena of heat

generation and extraction at various regions inside the machine room. The sensing in-

frastructure comprises of scalar temperature and humidity sensors placed at the server

inlet (cold aisle) and outlet (hot aisle), airflow meters at the server outlet, and thermal

cameras in the hot aisle.

The computing equipment configuration at RU is two Dell M1000E modular blade
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enclosures. Each enclosure is maximally configured with sixteen blades, each blade

having two Intel Xeon E5504 Nehalem family quad-core processors at 2.0 GHz, forming

an eight core node. Each blade has 6 GB RAM and 80 GB of local disk storage.

The cluster system consists of 32 nodes, 256 cores, 80 GB memory and 2.5 TB disk

capacity. The cooling equipment at RU is a fully controllable Liebert 22-Ton Upflow

CRAC system. The computing equipment configuration at UFL is two IBM Blade

Center with sixteen blades in each, each blade having two Intel Xeon E5504 Nehalem

family quad-core processors at 2.0 GHz, forming an eight core node. Each blade has

24 GB RAM and 80 GB of local disk storage. The cluster system consists of 32 nodes,

256 cores, 768 GB memory and 2.5 TB disk capacity. The cooling equipment at UFL

consists of two fully controllable Liebert 14- and 9-Ton CRAC system (Model FH302C-

CA00 and FH147C-CAEI) with humidifier and reheating capacity.

Workloads: We used real HPC production workload traces from the RIKEN In-

tegrated Cluster of Clusters (RICC) [95]. The trace included data from a massively

parallel cluster, which has 1024 nodes each with 12 GB of memory and two 4-core CPUs.

As the RICC is a large-scale distributed system composed of a large number of nodes,

we scaled and adapted the job requests to the characteristics of our system model.

First, we converted the input traces to the Standard Workload Format (SWF) [96].

Then, we eliminated failed and canceled jobs as well as anomalies. As the traces did

not provide all the information needed for our analysis, we needed to complete them

using a model based on [97].

The entire trace consists of 400,000 requests spread over 6 months. We extracted

three versions out of this long trace, one for use in the small-scale experiments (with

tens of servers) and two for use in medium-scale (hundreds of servers) simulations. The

trace used in our experiments have 100 requests over the course of one day. The two

other traces used in our simulations, however, have 5,200 requests spread over 2 days

and 10,000 requests spread over 3 days. We assigned one of four benchmark profiles

(based on Sysbench for CPU-intensive and TauBench for CPU-plus-memory-intensive

workloads) to each request in the input trace, following a uniform distribution by bursts.

The bursts of job requests were sized (randomly) from 1 to 5 requests.
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Competing Strategies:We compared the performance of VMAP against six strate-

gies, namely, Round Robin (RR), First-Fit-Decreasing (FFD), Best-Fit-Decreasing

(BFD), FFD Reactive (FFD R), BFD Reactive (BFD R), and Cool-Job (CJ) [3] allo-

cation. Of these six strategies, RR, FFD, and BFD are thermal-unaware while FFD R,

BFD R, and CJ make reactive allocation decisions based on current temperature mea-

surements.

• In RR, the VMs are allocated sequentially to servers.

• In FFD, the VMs corresponding to the requests that have arrived in the previous

time window (of duration δ [s]) are first sorted in the decreasing order of volumes

of the hypercuboids representing the VMs. Then, each VM is allocated to the

first server (w.r.t. server ID) that satisfies all the four subsystem utilization

requirements.

• In BFD, the VMs are again sorted according to volume as in FFD. Then, each

VM is allocated to the first physical server (w.r.t. server ID), which not only

satisfies all the four subsystem utilization requirements but also has the least

residual volume after packing that VM.

• In FFD R, VMs are first placed following the FFD policy. Then, VMs in over-

heated servers are relocated to cooler servers again based on the FFD principle.

• In BFD R, VMs are first placed following the BFD policy. Then, VMs in over-

heated servers are relocated to cooler servers again based on the BFD principle.

• In CJ, each VM (that has arrived in the previous δ [s]) is allocated to the first

“coolest” physical server, which satisfies all the four subsystem utilization require-

ments. Similar to FFD and BFD, the VMs are sorted in the decreasing order of

their normalized volume. Note that CJ does not predict future temperatures like

VMAP does.

Metrics: We evaluate the impact of our approach in terms of the following met-

rics: energy consumption (in kilo- Watt-hour [kWh]), and thermal violation (duration
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Figure 4.7: (a) VMAP’s overall energy savings [kWh] in comparison to the competing
algorithms; (b) Components (and their percentage) of energy savings due to: 1) in-
creased server utilization rate, 2) efficient cooling because of the higher COP, and 3)
turning off idle servers.

in second per day[s/day]). The thermal violation was calculated by monitoring the

average time the servers were operating in the unsafe temperature region in a day (24

hours). Unsafe temperature region here refers to temperatures greater than the upper

bound of the recommended range specified by equipment manufacturers. A higher per-

centage of thermal violation results in greater risk of equipment failure and/or drop in

performance.

4.4.2 Energy savings

Non-consolidation vs consolidation: We performed trace-driven simulations to

quantify the energy savings achieved by VMAP in a large-scale setting (180 servers and
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Figure 4.8: Thermally violated duration of CPU temperature per server in a day.

10,000 VM requests spread over 3 days). Figure 4.7(a) shows VMAP’s energy savings

in comparison to each competing algorithm. RR and CJ are the least energy efficient

in comparison to VMAP as they spread the workload (VMs) over the entire datacenter

(to balance the load in the case of RR and in search for the coolest server in the

case of CJ). The other four schemes consolidate VMs like VMAP does, however, they

consume more energy than VMAP. In Fig. 4.7(b), we analyzed different components

(and their percentage of the total) of VMAP’s energy savings. The main reasons for

VMAP’s superior energy performance are savings due to 1) increased server utilization,

2) efficient cooling because of the higher COP, and 3) turning off idle servers. Even

though the actual amount of energy savings ranges from 17 (in comparison to BFD) to

148kWh (in comparison to CJ), the ratio of the three components of savings does not

fluctuate significantly. It can be clearly observed that increased server utilization is the

largest contributor to energy efficiency followed by shutdown of idle servers.

Non-thermal-aware vs thermal-aware: Figure 4.8 shows thermal violation of

the same simulation performed above. Thermal-aware algorithms (FFD R, BFD R, CJ,

VMAP) exhibit a smaller degree of violation in comparison with non-thermal-aware al-

gorithms (FFD, BFD). FFD R and BFD R perform better in comparison to FFD and

BFD because VMs from overheated servers are reallocated in reaction to thermal vi-

olation alarms. However, due to the reactive nature of these techniques, undesired

equipment overheating is still an issue. VMAP and CJ avoid thermal violations. How-

ever, CJ’s performance in terms of this metric is similar to VMAP’s, it comes at a very

high energy cost as shown in Fig. 4.7(a).
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Figure 4.9: Energy consumption [kWh] under different degrees of unevenness in heat
extraction (induced by difference in server inlet temperatures).

4.4.3 Consolidation in “better-cooled” areas

We performed trace-driven simulations to show how VMAP can exploit unevenness in

heat imbalance inside a datacenter (with homogeneous computing equipment) caused by

unevenness heat-extraction rates due to difference in server inlet temperatures. Eval-

uation was carried out in a small-scale setting (180 servers and 5,200 VM requests

spread over 2 days). We studied the performance of the four thermal-aware techniques

(FFD R, BFD R, CJ, and VMAP) under different degrees of Gaussian variation in the

server inlet temperature; N(25, 1)◦C, N(25, 52)◦C, and N(25, 92)◦C. Unevenness of in-

let temperature of each server can be attributed to the non-ideal air circulation, which

depends on the layout of server racks inside the datacenter and on the placement of

CRAC unit fans and air vents. Figure 4.9 shows that the total energy consumption

(for computation as well as cooling) of VMAP decreases as the degree of unevenness

increases. This is because VMAP consolidates VMs in better-cooled areas where a

higher heat-extraction rate leads to a lower increase in CPU temperature (with the

same heat-generation rate).

4.4.4 Performance Under High COP

We performed trace-driven simulations to study VMAP’s performance under varying

COP. First, based on the system model of the infrastructure at RU and UFL, we carried

out evaluations in a large-scale setting (180 servers and 10,000 VM requests spread over

3 days at each site). The CRAC outlet temperature in the UFL system model was set

to a higher value (30 ◦C) compared to the 25 ◦C in RU system model. It can be seen
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Figure 4.10: Energy consumption for computation and cooling at different datacenters
– RU and UFL
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Figure 4.11: Thermal violations under different average server inlet temperatures.

in Fig. 4.10 that the energy consumption for cooling at UFL is lower than the one at

RU because the COP of the CRAC system model at UFL is higher than the one at

RU. COP of a CRAC unit increases with increase in the outlet temperature [3] as the

work that needs to be done to reduce the hot-air temperature to 30 ◦C is lower than

the work that needs to be done to reduce it to 25 ◦C. We then studied the performance

of VMAP and the other thermal-aware techniques using one system model (RU’s) with

different CRAC COPs. In Fig. 4.11, we also show that VMAP does not incur thermal

violation while others do even for the servers in higher temperature.

4.4.5 Impact of Decision Window (δ)

We studied the impact of the periodicity (δ) on the performance of VMAP. Evaluation

was carried out in a large-scale setting (180 servers and 10,000 VM requests spread over

3 days). If δ is big, the complexity increases because the number of VM requests (|M|)

increases. If δ is small, the complexity decreases because |M| decreases, but it is less

efficient as only fewer VM requests can be optimized. Generally, VMAP can do better

packing and save energy when δ is big but δ cannot exceed certain time bound because

the extra delay incurred may violate SLA. Figure 4.12 shows high energy consumption

for small δ but lower energy consumption for large δ. VMAP outperforms the other

thermal-aware strategies for any δ. The best choice of δ is, however, dependent on the
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Figure 4.12: Energy consumption of servers based on different periodicity
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Figure 4.13: Definition of lightly loaded server (CPU-memory) and migration overhead
[GB] (data), which should be migrated over the network.

workload pattern and its statistics.

4.4.6 Impact of Definition of “Lightly-loaded server”

We performed simulations to study the impact of the definition of “lightly-loaded server”

on the performance of VMAP+. Evaluation was carried out in a small-scale setting

(180 servers and 5,200 VM requests spread over 2 days). It is clear that the migration

overhead increases when there is an increase in the amount of memory (in bytes) to be

migrated from source to destination servers. Figure 5.12 shows the migration overhead

in GB along the z-axis and the parameters for the definition of a lightly-loaded server

along the x- and y-axes. If the definition of a lightly-loaded server is strict (i.e., those
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Figure 4.14: CDF of VM execution delay (time difference between requested VM ter-
mination and actual VM termination) when (a) the network capacity is 100 Mbit/s and
δ is set 800s; (b) the network capacity is 1000 Mbit/s and δ is set 800s; (c) the network
capacity is 1000 Mbit/s and δ is set 1200s.

servers in which a small number of CPUs and small amount of memory are being

utilized), the migration overhead is small because there are small number of candidate

VMs for migration. The overhead increases when we relax the definition of lightly-

loaded server and the overhead saturates when the definition is extreme (i.e., anything

greater than 10 active CPUs and 6GB utilized memory) as we cannot find candidate

destinations to migrate a large number of VMs.

Figures 4.14(a)-(c) show the cumulative distribution function (CDF) of VM execu-

tion delays for all the jobs in the workload trace when the four different definitions of

lightly-loaded server are employed. It is clear that when the definition of lightly-loaded

server is relaxed (higher number of utilized CPUs and larger amount of utilized mem-

ory) the migration overhead increases (due to increase in number of candidate VMs for

migration) and the service delay of a greater percentage of VM (i.e., jobs) increases.

Figures 4.14(a) and (b) shows the CDF of VM execution delay when the average net-

work bandwidth in the datacenter is 100 Mbit/s and δ is set to 800s, and when the

average network bandwidth is 1000 Mbit/s and δ is set 800s, respectively. A greater

percentage of jobs experience longer delays in Fig. 4.14(a) than in Fig. 4.14(b) due to

the smaller network bandwidth. For example, when the definition is set to 6 CPUs and

4GB memory, nearly 10% of the jobs experience a delay of more than 1500s when the

average network bandwidth is 100 Mbit/s while only less than 2% of jobs experience

similar delays when the network bandwidth is 1000 Mbit/s. The larger network band-

widths a datacenter infrastructure supports, the shorter time needed to migrate VMs,
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Figure 4.15: Energy consumption of VMAP+ with various network speed.

and hence, the smaller overhead (in terms of time) incurred. Figure 4.14(c) shows the

CDF of VM execution delay when the network capacity is 1000 Mbit/s and δ is set

1200s. This is a case where the service delay is dominated by δ = 1200s as compared

to Fig. 4.14(b) in which δ = 800s.

Figure 5.13 shows the overall energy consumption under different average datacen-

ter network bandwidths. It can be observed that the overall energy consumption for

VMAP+ decreases when the average datacenter network bandwidth is high as it de-

creases migration delay and hence, the energy consumption at the host and destination

servers. Our inference from this study is that the migration strategy is beneficial only

if the network speeds are high so that the benefits of further consolidation outweigh the

cost for migration (in terms of service delays and energy consumption).

4.5 Conclusions and future work

We first introduced and validated the novel concept of heat imbalance, which cap-

tures the unevenness in heat generation and extraction, at different regions inside a

HPC cloud datacenter. We then proposed thermal-aware (knowledge of heat imbal-

ance) proactive Virtual Machine (VM) mapping (consolidation) solution, VMAP. Our
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solution maximizes computing resource utilization, minimizes datacenter energy con-

sumption for computing, and improves the efficiency of heat extraction, while not vio-

lating recommended maximum operating temperature. We proposed VMAP+, which

extends the capabilities of VMAP by performing VM migrations from lightly-loaded

to moderately- and heavily-loaded servers in between two allocation instants. We ver-

ified the effectiveness of VMAP and VMAP+ through experimental evaluations with

HPC workload traces at Rutgers University and University of Florida machine rooms.

We observed that the VMAP is 9%, and 35% more energy efficient than best-fit and

“cool job”, respectively, two state-of-the-art reactive thermal-aware solutions. VMAP+

achieves a further 3% average reduction in energy consumption compared to VMAP

due to its ability to further consolidate resources in between two allocation instants.
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Chapter 5

Model-based Thermal Anomaly Detection in Cloud

Datacenters using Thermal Imaging

5.1 Overview

High-Performance Computing (HPC) systems housed in datacenters are a key compo-

nent of the society’s IT infrastructure. Due to their growing importance, datacenters are

strategic targets [17] for denial-of-service attacks (running illegitimate workloads) and

cooling system attacks aimed at causing thermal runaways and, hence, costly outages,

which can potentially cripple critical health, banking and commerce, defense, scien-

tific research, and educational infrastructures. Furthermore, due to their large scale

and high server density, the probability of computing and cooling system misconfigu-

rations as well as of cooling equipment and server fan failures is high [18]. Such unpre-

dictable events may result in unexpected high temperature areas/regions (hotspots) or

excessively cooled low temperature areas/regions (coldspots) also referred to as thermal

anomalies.

Local unevenness in heat-generation (by computing and communication equipment)

and heat-extraction (by cooling equipment) rates determines the temperature distribu-

tion inside a datacenter. The heat-generation and -extraction rates may differ, which

over time leads to what we call heat imbalance [66]. Unexpected changes in the local

heat-generation and -extraction rates due to 1) attacks (on the computing or cooling

infrastructure), 2) Computer Room Air Conditioning (CRAC) unit and server fan fail-

ures, and/or 3) computing and cooling system misconfigurations may over time cause an

unexpected large positive heat imbalance resulting in a significant temperature increase

and, hence, in unexpected thermal hotspots. Such hotspots may also result in thermal

fugues, which are characterized by a continuous increase in the rate of temperature rise.
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Figure 5.1: Multi-tier sensing infrastructure composed of temperature and humidity sensors,
airflow meters, and thermal cameras for thermal-aware datacenter management.

Thermal anomalies such as unexpected hotspots and fugues lead to system operation in

unsafe temperature regions [16], which will increase the server failure rate. Computing

as well as cooling system misconfigurations may also cause energy-inefficient overcool-

ing resulting in unexpected coldspots. In summary, thermal anomalies, i.e., hotspots,

fugues, and coldspots, significantly impact the Total Cost of Ownership (TCO) of dat-

acenters.

Thermal awareness, i.e., the knowledge of heat imbalance (for a given distribution

of workloads at different regions inside a datacenter), is essential for timely detection

and classification of thermal anomalies so to minimize their effect on the efficiency,

availability, security, and lifetime of mission-critical HPC systems. In [98], we proposed

a multi-tier sensing infrastructure (composed of temperature and humidity sensors,

airflow meters, and thermal cameras as shown in Fig. 5.1) for autonomic management

of datacenters (i.e., self-organizing, self-optimizing, and self-healing), and in [66], we

designed and validated a simple yet robust heat-imbalance model, which exploits the

data from the sensing infrastructure. The notion of heat imbalance allows us to predict

future temperature maps of the datacenter and take proactive management decisions

such as workload placement [66] and cooling system system optimization [26].

We propose an efficient method for online (real-time) processing and interpretation

of infrared images (also called thermograms) with the knowledge of heat imbalance
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at various regions inside a datacenter for thermal anomaly detection. State of the

art in thermal anomaly detection in datacenters involves complex offline processing

of thermograms in order to construct 2-D (two dimensional) or 3-D reconstruction of

thermal maps of datacenters for detailed visual inspection by domain experts [99–101]

and to identify electrical, mechanical, computing, and/or cooling system faults. On the

contrary, we decompose thermograms from thermal cameras with a large field of view in

to localized sub-images by exploiting our prior knowledge of the aisle-rack-enclosure-

blade layout in order to focus on specific Regions of Interest (ROIs). Our anomaly

detection scheme is model-based, i.e., it involves comparison of expected (generated

using the heat-imbalance model) and observed (obtained from thermograms) thermal

maps.

In addition to model-based thermal anomaly detection, we propose a Thermal

Anomaly-aware Resource Allocation (TARA) solution, which exploits the knowledge

of heat imbalance. Our idea is to create a time-varying thermal fingerprint (thermal

map) of the datacenter so that the intensity of an unexpected hotspot is sufficiently

high for the model-based detection to notice (even when a very low detection threshold

is used). TARA allocates workloads or Virtual Machines (VMs, in case of a virtualized

datacenter) to servers where the heat imbalance due to the workload is high in order

to maximize the temperature difference between two consecutive thermal maps. This

strategy allows for early detection of failures (as the solution tries to utilize as many

servers as possible) and easy detection of attacks (such as illegitimate workloads).

Creation of consecutive thermal maps that vary significantly from each other (for

early and easy detection of anomalies) is possible when there is no cap on power usage.

No cap on the power budget implies unlimited access to additional servers and no re-

striction on costly workload migrations, which are unrealistic. Hence, we assume that

TARA operates under strict power budgets and it is designed to factor in the costs of op-

erating additional servers and of workload migrations while maximizing the detection

accuracy for a given power budget. TARA can significantly contribute to the ther-

mal anomaly detection (7%, 15%, and 31% average improvement in thermal anomaly

detection with only 10% false positive rate) compared to the traditional scheduling
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algorithms: random, round robin, and best-fit-decreasing.

In summary, our contributions in this chapter include:

• We propose a model-based thermal anomaly detection solution in HPC cloud

datacenters that involves comparison of expected and observed thermal maps.

• We propose TARA, an anomaly-aware resource allocation (VM placement and

migration) solution for virtualized datacenters, which significantly improves the

accuracy of our model-based anomaly detection technique.

• We propose a solution to employ thermal imaging for anomaly detection in cloud

datacenters.

• We introduce thermal image processing solutions to capture thermal features. His-

togram analysis and high order statistics are employed to understand the hotspots

and coldspots.

The remainder of this chapter is organized as follows: in Sect. 5.2, we present the

state of the art in thermal anomaly detection in cloud datacenters; in Sect. 5.3, we

discuss our proposed solution for thermal anomaly detection along with a anomaly-

and energy-aware virtual machine allocation solution, which significantly improves the

detection accuracy; in Sect. 5.4, we explain our evaluation methodology and the obser-

vations from our simulation study; finally, we conclude in Sect. 5.5.

5.2 State of the Art

Cloud deployments employ a Intrusion Detection Systems (IDS) - or an anomaly detec-

tion system - for a cyber-threat defense mechanism, and there are efforts to integrate the

anomaly detection system into a cloud environment. An open source and distributed

strategy is proposed in [102], and IDS as a service is proposed [103]. Self-healing and

rejuvenation techniques in virtualized cloud environment are also proposed in [104] and

evaluated in [105]. However, those methods, which rely on aggregation (at a mon-

itor node) and on continuous online analysis of huge amounts of data (e.g., VM or

job requests and distribution, server utilization, network traffic, internal sensor values,
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etc.), are prohibitive in a large datacenter because of limitations in terms of network

bandwidth and computational overhead. In addition, such methods are not capable

of detecting thermal anomalies as they do not capture the complex thermodynamic

phenomena inside a datacenter.

Hence, we propose a novel method to detect anomalies in thermal domain. We ex-

tract information from the raw measured data (using an external sensing infrastructure

as shown in Fig. 5.1) and to create knowledge about the heat imbalance and impart

self-protection capabilities on large-scale HPC systems. Note that our proposed thermal

anomaly detection solution can be complimentary to any IDS as it operates in ther-

mal domain, which is totally different from the traditional solution. We introduce the

use of thermal cameras, which have a large field of view and can provide temperature

distribution information at a greater granularity than scalar point-source temperature

sensors.

In [106], the authors propose four methods to perform ‘prediction’ or ‘early detec-

tion’ of thermal anomalies so to enable proactive thermal management decisions. The

first three methods are variants of a simple temperature-threshold-based approach,

while the fourth method employs a Bayesian classifier to ‘predict’ thermal anomalies.

The threshold-based methods rely heavily on the choice of the threshold and the time

window used for classification of events as either normal or anomalous. Of the four

proposed methods, the Bayesian classifier method performs best by predicting thermal

anomalies earlier than the rest while also minimizing false positives. However, this

Bayesian method takes only scalar temperature measurements as inputs, involves an

offline training phase, does not use models, and finally does not provide insights into the

causes and locations of the anomalies: for these reasons appropriate preemptive steps

cannot be taken immediately. In contrast, we incorporate data from a heterogeneous

sensing infrastructure [14,41,98] into models to profile thermally a datacenter in space

and time, and then exploit this information for early thermal-anomaly detection by

comparing it against appropriate features extracted from raw thermal images.

Recently, datacenter managers have started using infrared thermography to locate



93

and diagnose problems such as short cycling of the air conditioning system, loose electri-

cal connections, worn out wires, and fan failures [99–101]. These solutions rely heavily

on manual inspection of thermal images to detect anomalies. On the contrary, our

thermal anomaly detection solution employs knowledge of workload distribution and

multi-modal sensor data in the heat-imbalance model as well as infrared thermograms to

automatically detect thermal anomalies through comparison of expected and observed

thermal maps. Prior work on thermal management of datacenters target either the

uptime-conscious datacenter managers, who are interested in eliminating hotspots (for

security, reliability, and availability), or the energy-conscious datacenter managers, who

are interested in eliminating coldspots (for energy efficiency). In contrast, our solution

for thermal-aware resource allocation, TARA, is bestowed with controllable parame-

ters that allow the datacenter managers to exploit the energy vs. anomaly-detection

accuracy tradeoff.

5.3 Proposed Solution

The overall scope of our work is shown in Fig. 5.2. Our solution is composed of four

main modules: VM placement (resource allocation), prediction (heat-imbalance esti-

mation), image/data processing (thermography), and anomaly detection (comparison)

modules. The VM placement module includes TARA, which allocates physical resources

to the VMs in such a way that the detection accuracy is maximized for a given power

budget. The prediction module uses the VM placement information and other sensor

information to estimate the thermal map. Then, the model-based anomaly detection

module compares the expected thermal map with the observed thermal map (processed

by image/data processing module) to detect anomalies. Firstly, we elaborate on our

heat-imbalance model for the estimation of expected thermal map. Secondly, we present

how we extract observed thermal maps from thermograms in our solution. Thirdly, we

elaborate solutions to compare the expected thermal map with observed thermal map,

and detect anomalies. Finally, we formulate thermal anomaly-aware resource allocation

as an optimization problem aimed at maximizing the anomaly detection probability, and

propose a heuristic that balances the energy-accuracy tradeoff.
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Figure 5.2: The different modules of our thermal anomaly detection solution (the focus of this
chapter is indicated in blue boxes).

5.3.1 Expected Thermal Map: Model-based

A VM is created for every application request and is provisioned with resources (CPUs,

memory, disk, and network capacity) that satisfy the application requirements (usu-

ally deadline). Without any loss of generality, we assume that this provisioning has

already been performed using techniques such as the ones described in [89]. The pro-

visioned VMs now have to be allocated to physical servers housed within racks in

datacenters. Let M be the set of VMs to be allocated and N be the set of servers.

An associativity binary matrix A = {amn} (with amn ∈ {0, 1}) specifies whether VM

m is hosted at server n or not. A VM m is specified as a vector Γm = {γsm}, where

s ∈ S = {CPU,MEM, IO,NET} refers to the server subsystems and γsm’s are the

VM subsystem requirements (e.g., CPU cores, amount of volatile memory [MB], disk

storage space [MB], network capacity [Mbps]).

Representation (or mapping) of a VM’s subsystem requirement (γsm) as a factor of

physical server subsystem capacity is straightforward if all the servers of the datacenter

are assumed to be homogeneous. For example, a VM m requiring 4 virtual CPUs, 2GB

of RAM, 64GB of hard-disk space, and 100Mbps network capacity can be represented

as Γm = {0.25, 0.125, 0.125, 0.1} if all the servers in a datacenter have 16 CPU cores,

16GB of RAM, 512GB of local hard-disk space, and a gigabit ethernet interface. The
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mapping problem becomes non trivial in an heterogeneous environment. However,

assuming that only a small finite number of generations of each subsystem are present

in the datacenter, we create such a mapping for each generation of every subsystem.

Heat imbalance: In our previous work [66], we formulated the heat-imbalance

model in a datacenter based on heat-generation (hn) and heat-extraction (qn) rates as

follows,

∆In =

∫ t0+δ

t0

(hn − qn)dt = Mn · C ·∆Tn
[t0,t0+δ], (5.1)

where ∆In [J] denotes the heat imbalance of CPU inside server n during the time

between t0 and t0 + δ, and Mn and C denote the mass and specific heat capacity,

respectively, of the CPU. Note that if ∆In is positive (i.e., hn > qn), the temperature

of the CPU at server n increases in the time interval [t0, t0 + δ] (hence, ∆Tn > 0);

conversely, if ∆In is negative (i.e., hn < qn), the temperature of the CPU at server

n decreases (hence, ∆Tn < 0). This estimated heat imbalance helps us generate the

expected thermal map of the datacenter as long as the information about the different

workloads and their potential location (physical server) as well as real-time temperature

and airflow measurement are known.

5.3.2 Observed Thermal Map

Infrared thermogram is used to acquire accurate thermal maps of the datacenter. As

the thermogram gives higher resolution than scalar sensors, the it provides more infor-

mation about the object. Histogram analysis and high order statistics are employed

to understand the hotspots (i.e., size, intensity, degree) and their behavior over time.

However, as the thermogram includes denser and wide-view information (each pixel

indicates the temperature of certain location) than a scalar sensor measurement, the

observed thermal map could be readily over fitted giving wrong observation result.

Hence, the ROIs of the thermogram and the image features should properly selected.

Regions of Interest (ROI): We decompose thermograms from thermal cameras

with a large field of view to localized sub-images in order to focus on specific ROIs

(e.g., racks, enclosures, servers, and fans). This decomposition allows for fast diagnosis
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Coldspot Hotspot

Figure 5.3: Histogram representation of thermal images capturing a coldspot on an idle server
(left) and a hotspot on a 70% utilized server (right).

of thermal anomalies through comparison of localized thermal maps of ROIs with the

estimated thermal maps from the heat-imbalance model. Our proposed solution does

not require accurate 2-D or 3-D thermal maps of the entire datacenters. Thermogram

decomposition and the ROI selection can be a simple, yet powerful solution, as the

servers, enclosures, racks and vents has clear edges and the shapes are rectangular and

static.

Histogram Analysis: The output of a thermal camera is a gray scale image formed

using infrared radiation from an object. Image pixels indicate temperature measures

of different points on the object’s surface. To extract the temperature of the observed

thermal map, one specific point of a pixel value (i.e., specific location, or mean, min,

max value of ROI) can be used to represent the object’s temperature, but the more

useful information can be extracted with the help of image processing technique. We

employ higher-order histogram statistics as they convey information about not only the

intensity of the image pixels (temperature) but also their distribution. Histogram is a

graphical representation of the ‘distribution’ of data (pixel values). Figure 5.3 shows

the pdf of pixel intensities in an image of server fan vents under two different settings,

idle and 70% CPU utilization, where the pixel value 0 is calibrated to 15◦C with the

pixel step difference is 0.075◦C.

Higher-order Histogram Statistics: The statistics are obtained by first getting the

histogram of pixel values from an N×M sub-image matrix I, which has been processed
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using a median blurring filter as well as a Gaussian blurring filter, to remove the noise.

We then calculate an empirical probability density function p(x) (where 0 ≤ x ≤ 255)

from the relative frequencies of each pixel in the sub-image. Using the standard notation

to denote p’s moments-about-the-mean (µi) and its standard deviation (σ), histogram

statistics can be calculated, where N denotes the number of histogram bins. Followings

are the 5 histogram statistic feature set (F) considered in this chapter, where f ∈ F =

{energy,Hsize, skewness, kurtosis, entropy}.

• Energy: Measures the energy of the histogram distribution, in the usual manner:

energy =

N∑
x=0

p(x)2

• Hotspot size: Count the ’number of pixels,’ which are greater than the threshold

bin number:

Hsize =

N∑
x=threshold

p(x)

• Skewness: Formally, the ‘third standardized moment’; informally, measures

asymmetry of the histogram distribution:

skewness =
µ3
3

σ3

• Kurtosis: Formally, the ‘fourth standardized moment’; informally, measures the

’peakedness’ of the histogram distribution:

kurtosis =
µ4
4

σ4
− 3

• Entropy: Measures the ‘uncertainty’ or randomness inherent in the histogram

distribution; also, a measure of the complexity:

entropy = −
N∑

x=0

p(x) log2 p(x)

Extraction of energy, hotspot size, skewness, kurtosis, and entropy allows us to



98

determine how to interpret the pixel values to get the best representation of the tem-

perature of the server. Energy metric helps us to understand how the overall trend of

server temperature is, not the specific point of temperature, and the Hsize metric helps

us to measure the heat influx if it is measured in time because it measures the size of

the hotspot. Skewness and kurtosis help us understand whether a thermal image has a

hotspot or a coldspot and how big it is, respectively. Skewness gives information regard-

ing the asymmetry of the histogram. Positive skewness indicates presence of a coldspot

as there are more pixels in low temperature (Fig. 5.3 left), and negative skewness in-

dicates presence of a hotspot as there are more pixels in high temperature (Fig. 5.3

right). Thus, more accurate representation of the temperature can be extracted by

jointly employing the features of thermograms.

In addition to the higher-order histogram statistics, we have investigated Haralick

Features, which were first introduced in [107]. These features are indirect features

as they are not directly extracted from the raw image, but instead, extracted from

coocurrence matrix [108], which is originally known as gray-tone spatial dependency

matrices [107]). It is not discussed in this chapter in detail because we focused more on

the higher-order histogram statistics, but a full discussion of the relative benefits and

information inherent in these features can be found in [107].

5.3.3 Anomaly Detection Module

The abstracted features of hotspots and coldspots are determined through the histogram

analysis features of their thermograms. These features are then jointly selected, and

translated to the observed thermal map in order to detect anomalies by comparing it

with the estimated thermal map. However, the estimated thermal map may not be

directly compared with those observed thermal features like energy and Hsize as their

unites are different. Hence, we proposed a simple linear-scaled metric to translate the

features into temperature as follows,

Tf = Tidle + αf (f − fidle). (5.2)
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Figure 5.4: (a) Original thermal image (left), and ROI selection and hot spot extraction (right);
(b) Real temperature estimation using different features of hotspots; (c) Error (difference in
temperature against actual CPU Temperature) in time.

It shows the linearly scaled temperature Tf from the feature f with the factor of αf ,

where Tidle and fidle indicates the temperature and the feature value when the server

is idle, respectively. The linear scale parameter αf needs to be tuned apriori as it may

differ depending on the field of view (number of total pixels that covers the area in the

ROI), and the camera specifications.

We have performed a small-scale experiment to tune the αf and show the per-

formance of thermal map extraction using different features. Our experiment had

performed by running a server 35 min with 100% CPU utilization rate and making

hotspots until it reaches high steady state, and cooling it down until it reaches low

steady state when the server is idle. Figure 5.4 (a) shows a original thermal image
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Figure 5.5: (a) Average error in different states; (b) Average error in different temperature
changing trend.

used for this experiment and ROI selection, and also shows changes in thermogram

over time. Hotspots are indicated in dark-red line. Figure 5.4 (b) and (C) shows the

observed temperature using different features F, and their error values compared with

the estimated temperature using 5.1 [66]. We have used an energy and Hsize features

for this experiment as we observe that they reflects the temperature more accurate

than the other features. We have also used the maximum temperature of ROI as for a

comparison assuming it represents hotspots in ROI. Note that the error incurs due to

the delay of the heat transfer from inside to outside of the servers.

We observe that using the Hsize feature gives less error in increasing temperature

but higher error in decreasing temperature than using other features. We imply that

the hot air heated by the internal computing components increases the size of hot spot

immediately when the server is running, but once the metal part of the vent get heated

up, it takes time in decreasing temperature showing delay in reducing hotspot size. In

contrast, using max temperature or energy feature gives less error in decreasing temper-

ature. Thus, we propose to use hybrid feature, which uses the Hsize feature when the

temperature is in increasing trend and uses energy feature when the temperature is in
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decreasing trend to minimize the error. Figures 5.5 (a) and (b) shows the average error

of our Hybrid solution compared with other feature extraction solution in different state

and different temperature trend, respectively. Our Hybrid solution achieve minimum

error for temperature estimation by jointly employing the features of thermograms.

5.3.4 Thermal Anomaly-aware Resource Allocation: TARA

We propose a novel VM allocation solution (TARA), which increases the probability of

detecting unexpected hotspots (thermal anomalies) when the number of computing re-

sources that can be operational for a given load (set of workload requests) is increased.

TARA harnesses information from our sensing infrastructure (thermal cameras, airflow

meters, and internal sensors), the VM requests, and the prediction module (heat im-

balance model) to allocate VMs such that the orthogonality between two consecutive

thermal maps. Then, the original thermal map, captured online, is compared with the

predicted one using our heat-imbalance model [66] to detect anomalous VM placement.

TARA is comprised of thermal anomaly-aware VM placement and migration strategies.

Thermal Anomaly-aware VM Placement: Our novel anomaly-aware resource

placement strategy enables self-protection by inducing as much difference between con-

secutive thermal maps (generated every δ seconds) as possible when placing VM in

cloud datacenters. This strategy allows for early detection of thermal failures and easy

detection of attacks such as illegitimate workloads because the solution tries to utilize

as many servers as possible and changing their thermal map frequently. This frequent

changes in thermal map gives more opportunity to detect long-lasting unexpected ther-

mal hotspots, anomalies.

Energy-accuracy Tradeoff : Our VM placement method generate thermal maps every

δ seconds given the budget (β), which restricts the number of servers that can be utilized

in the datacenter. Parameter β represents the fraction of total datacenter resources that

can be used and the corresponding power budget is given by, Pβ = Pmax ·β, where Pmax

is the power consumption when all the computing resources are utilized to the maximum

in the datacenter. The higher the power budget, the greater the number of servers that

can be utilized, and hence, the greater the difference between thermal maps (resulting
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in a higher detection rate). TARA allows the datacenter managers to exploit the budget

β to explore the tradeoff between energy expenditure and anomaly detection accuracy.

Note that β is always greater than β0, which is the minimum fraction of resources in

the datacenter that is required for a given set of workloads to be completed without

compromising their quality of service.

An uptime-conscious datacenter manager may be interested in eliminating hotspots

so to increase service availability (and hence, use a high β). An energy-conscious

datacenter manager, on the other hand, may be interested in eliminating coldspots

so to improve energy efficiency (and hence, use a low β). TARA can autonomously

allocate resources within the budget that the datacenter manager provides. Our VM

allocation solution changes the thermal map when allocating resources to VMs every

δ seconds. Frequent thermal map change increases the robustness of our anomaly

detection module. We first formulate the VM allocation problem as an optimization

problem, which employs our heat-imbalance model. The motivation for formulating the

optimization problem is to gain insight and make key design decisions for our heuristic

solution.

Optimization Problem: The goal is to find an optimal mapping of VMs to physical

servers (represented by the binary associativity matrix Λ) so to maximize the difference

between the existing thermal map and the expected thermal map when the workloads

in the VMs are all active. The known (given as well as measured) parameters and

optimization variables of the optimization problem can be summarized as,

Given (offline) : N, T reco, δ,Mn, Cp;

Given (online) : β0, β,M,Γm ∀m ∈ M;

Measured (online) : T t0
n ,min

n , T in
n ,Λn ∀n ∈ N;

Find : A = {amn}, m ∈ M, n ∈ N. (5.3)

Here, T t0
n and Λn = {λs

n} represent the current CPU temperature and the maximum

residual capacity of each subsystem s at server n, respectively. The objective of the
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optimization problem is,

Maximize :
∑
n∈N

|T t0
n − T̃ t0+δ

n |; (5.4)

Subject to : C1, C2, C3, C4.

Here, T̃ t0+δ
n = T t0

n +∆Tn
[t0,t0+δ] is the estimated temperature of an “active” server n at

time t0 + δ and ∆Tn
[t0,t0+δ] is calculated using (3). If the server is unused, then we set

∆Tn
[t0,t0+δ] = 0. The first constraint,

C1:
∑
n∈N

amn = 1,∀m ∈ M, (5.5)

ensures that a VM is allocated to one and only one server. The second constraint,

C2:
∑
m∈M

amn · γsm ≤ λs
n, ∀n ∈ N, ∀s ∈ S, (5.6)

ensures that the resource requirements of all VMs allocated to one server do not exceed

the maximum capacity of a server subsystem. The third constraint,

C3: T t0
n +∆Tn

[t0,t0+δ] ≤ T reco, ∀n ∈ N, (5.7)

ensures that the predicted CPU temperature – sum of the current CPU temperature T t0
n

and the predicted temperature increase ∆Tn
[t0,t0+δ] calculated using the heat-imbalance

model – is always below the recommended maximum operating temperature (T reco),

which is chosen by the datacenter manager. The fourth constraint,

C4: β0 ≤
∑

n∈N rn

|N|
≤ β, ∀n ∈ N, (5.8)

ensures that the specified utilization factor of the datacenter (in terms of number of

active servers) is not exceeded. Here, rn is an indicator variable that conveys whether
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Figure 5.6: Toy example of VM allocation using TARA with different budgets (β = 0.5, 0.75):
(a) An actual enclosure with eight blade-servers; (b) Thermal map of an enclosure at t0 with
three active VMs; A possible allocation of four newly arrived VMs (4 to 7) and the corresponding
thermal map at t0 + δ (c) when the budget β = 0.5 (β0 = 0.375) and (d) when the budget
β = 0.75 (β0 = 0.375).

a server n is active or not,

rn =


1 if

∑
m∈M amn ≥ 1

0 otherwise

, ∀n ∈ N. (5.9)

This optimization problem is NP-hard as it needs to find the maximum temperature

difference when allocating |M| workloads to |N| servers (combinatorial problem). Hence,

we present our heuristic solution in Algo. 2.

Algorithm 2: Thermal Anomaly-aware VM Placement Strategy

for i = 1 → |M| do
1 Find server(s) k ∈ K ⊂ N, where Pβ/|N| > Ps ;

2 Find a server k ∈ K, where |T t
k − T̃ t+δ

k | is maximal, T̃ t+δ
k < T reco, and

γi ≤ Λk ;
3 Place ith VM to the server k ;
4 Update A ;

end
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The objective (maximize the temperature difference to maximize the detection ac-

curacy) of TARA is in line with the objective of the optimization problem, i.e., the

more the active physical servers, greater the detection accuracy. This is also made pos-

sible due to the logarithmic behavior (as shown in Fig. 4.3) of CPU temperature with

respect to CPU utilization in multi-core multi-threaded systems which are measured

using two different platforms, Dell cluster (PowerEdge M620 blade server) and IBM

cluster (blade center) at Rutgers University (RU) and University of Florida (UFL) ma-

chine rooms (which are the most common computing equipment configuration in cloud

datacenters). As the temperature difference is smaller when utilizing higher number of

cores, the detection rate decreases under high utilization (at each server).

Toy Example: Figure 5.6(a) shows an actual enclosure of eight servers. Figure 5.6(b)

shows an example temperature map at time t0. Figure 5.6(c) and (d) show thermal

map change from time t0 to t0 + δ under different power budgets of β = 0.5 and 0.75,

respectively. For the scenario depicted in Fig. 5.6, β0 is set to 0.375. The difference

between the thermal maps at t0 and t0 + δ can be increased by increasing the budget

β. Here, the difference between thermal maps at t0 and t0 + δ are 30◦C and 48◦C for

β = 0.5 (Fig. 5.6(c)) and β = 0.75 (Fig. 5.6(d)), respectively. Note that VM 3 is not

shown in (c) and (d) as it is assumed to have ended right after t0. Thermal anomalies

due to attacks can be easily detected and the ones due to failures can be detected early

when the budget β = 0.75 as opposed to the case when β = 0.5 because the expected

hotspots’ intensities are kept low.

When placing VMs, the temperature of the server increases and the difference be-

tween the two maps is maximized given the budget as VMs. When some VMs are

finished (e.g., VM number 3), temperature decreases and the difference is still high be-

cause they were placed where the heat-imbalance is maximum. However, the difference

cannot be maximized as we do not know the length of the VMs and when the VMs

finish. We will discuss more the length of the jobs and its impact in Sect. 5.5. The

More servers are utilized in increase in budget, the higher intensity of thermal map

change. The difference between thermal maps in temperature at t0 and t0+δ are 30, 48,

and 54◦C for the budget β = 0.5, 0.75, and 1.0, respectively.
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Thermal Anomaly-aware VM Migration: TARA has a VM migration capabil-

ity to boost anomaly detection rate and energy savings within the power budget, while

not exceeding the recommended operating thermal conditions. The goodness of detec-

tion rate may reduces over time because some VMs terminate their operation changing

the observed thermal map. It may decrease the difference between thermal maps, and

hence, decrease the sensitivity of anomaly detection rate. In other words, TARA may

lose the opportunity to detect more anomalies over time, especially in the case when δ

is large.

Migration strategy : TARA’s migration strategy enables a strong defensive mech-

anism to deal with cyber-threats. It allows for creating periodically (δ) alternative

random migrations (called moving target), while maintaining the power budget and

reasonable service delay. When the average life time of the VMs is high compared to

δ, then the average number of VMs at any point in time in the datacenter will be very

high. Under such circumstances, β0 ≃ 1 and β cannot be increased further. The only

way the detection rate can be increased (especially for attacks such as spy VMs) is by

migrating the high-intensity hotspots to various regions inside the datacenter. This

“moving target” or “hopping” of high-intensity hotspots in space and time makes it a

moving target problem for attackers.

Also, the attackers break the cloud computing system through specific IP that

she/he has an access or a physical hardware depending on the the external or internal

intrusion. However, the moving target makes invaders difficult to identify the physical

or virtual resources. Even if the entire system is compromised and even the VM hy-

pervisor, the anomalous behavior of the servers can be detected in thermal domain as

the energy consumption based on the job allocation generates heats, and the thermal

camera provides another layer of security. The frequent random migration of VM’s

physical location in the network will deceive the invader’s discoveries.

TARA uses the information of VM terminations and the resource utilization (CPU,

memory, disk I/O, and network subsystems) at the corresponding host servers to make

migration decisions. TARA determines the subset of “highly-loaded” servers (H ⊆

N) and migrates VMs to already lighly-loaded servers. We know from our previous
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work [66] that the temperature difference of running a VM in a highly-loaded server is

lower than running it in a moderately-loaded or lightly-loaded server. As this different

level of temperature difference determines the detection rate (high detection rate in a

moderately-loaded or lightly-loaded server and low detection rate in a highly-loaded

server), TARA strives to migrate VMs from highly-loaded server to moderately-loaded

or lightly-loaded servers. We present our VM migration strategy in Algo. 3.

Algorithm 3: Thermal Anomaly-aware VM Migration Strategy

if a VM in server n finished its operation at time t and the server n becomes
lightly-loaded then

1 Find a random server h ∈ H ;

2 Find a VM v running in h, where T̃ t+δ
n < T reco, and γv ≤ Λh ;

3 Migrate VM (v) in server h to n

end

Migration cost : TARA also takes the migration cost (in terms of service delay, energy

consumption, and heat generation) into consideration while choosing the candidate VMs

for migration from the highly-loaded servers. The process of VM migration is in itself

a network-intensive workload. Network-intensive workloads also result in an increase

in the CPU utilization thus resulting in heat generation at the host and destination

servers of the candidate VM under consideration [93, 94]. TARA takes into account

the following key tradeoffs: detection rate vs. energy savings vs. delay and network

overhead. As VM migration involves transferring the memory of the VM from the

host to the destination server, the time taken and, hence, the energy consumption

depends on the network bandwidth. The higher the network bandwidth the shorter

the migration time and smaller the energy footprint and higher the detection rate.

Excessive migrations can cause large delays and high energy consumption compared

to the no-migration case. TARA migrates VMs only i) if migration does not result in

excessive heat generation, ii) if the migration cost is within the power budget, and iii)

if migration delay is within the SLA.

Toy Example: Let us consider a toy example in which we use only one of the di-

mensions (CPU) for ease of illustration. Let us define a highly-loaded server as one

that uses >75% of CPU, a moderately-loaded server as one that uses 25-75% of CPU
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Figure 5.7: Placement and progress of VMs between two allocation instants (duration δ) (a)
without VM migration; (b) with VM migration capability. Server 1 retains some margin to
detect thermal anomalies by migrating the VM from the highly-loaded to lightly-loaded server.

and a lightly-loaded server as one that uses <25% of CPU. Once VMs are allocated

using TARA at time t0, the servers 1 and 2 are highly loaded as shown in Fig. 5.7(a).

As the time elapses, one or more VMs terminate their operation and one or more

the moderately-loaded ones may become lightly-loaded while some servers are heavily-

loaded. If only TARA were to be employed at t + δ, then the servers would continue

operation under the current load conditions, not changing thermal map. In general, if

the rate of VM arrival is greater than the rate of VM termination, there will be a high

number of high and moderately-loaded servers.

However, TARA keeps track of highly-loaded and the lightly-loaded servers and

relieves highly-loaded servers as shown at time t′ in Fig. 5.7(b). Therefore, the thermal

map of each server changes more frequently after migrating the VM to Server 2 making

it moderately or lightly-loaded. However, the migrated VM experiences a temporary

suspension in service referred to as migration delay (overhead). This delay is kept

to pre-specified limits specified in the SLA. TARA strives to maximize the number of

moderately-loaded and lightly-loaded servers and minimize the number of highly-loaded
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servers within the power budget.

The datacenter manger has the capability to modify the definition of a highly-loaded

server. If the definition is too strict, the migration delay is small as less amount of mem-

ory should be copied to the migration target (destination server). In general, servers and

their VMs that consume small amount of resources can be easily migrated. However,

if the definition of the high-loaded server is relaxed, the migration delay will increase

as there will be more candidate VMs (also big in terms of resource requirements) for

migration. TARA is suited for HPC applications in the cloud as these applications are

not elastic in nature (i.e., fixed resource requirements and predictable performance).

This non-elasticity allows TARA to estimate and control the overhead in terms of time

(service delay due to VM suspension), energy consumption (as the migration process is

modeled as a workload in itself), and heat generation.

5.4 Performance Evaluation

We evaluated the performance of TARA, in terms of thermal-anomaly-detection accu-

racy, via experiments on a small-scale testbed, and via trace-driven simulations. We

performed small-scale experiments (16 servers) to design large-scale simulations (220

servers) under realistic assumptions. The system model used in our simulations has

the same characteristics of our real testbed (e.g., temperature profile of CPU, room

temperature, and workload profile). First, we provide details on our testbed and exper-

iment methodology (workload traces, performance metrics, and competing approaches).

Then, we elaborate on the simulation scenarios aimed at highlighting the benefits of

anomaly-aware VM allocation for efficient anomaly detection.

5.4.1 Testbed and Simulation Methodology

Testbed: We have a fully equipped machine room in NSF CAC at RU with state-of-the-

art computing equipment (modern blade servers in enclosures) and a fully controllable

CRAC system. The blade servers are equipped with a host of internal sensors that

provide information about server subsystem operating temperatures and utilization.
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In addition, the machine room at RU is instrumented with an external heterogeneous

sensing infrastructure [98] to capture the complex thermodynamic phenomena of heat

generation and extraction at various regions inside the machine room. The sensing

infrastructure comprises of scalar temperature and humidity sensors placed at the server

inlet (cold aisle) and outlet (hot aisle), airflow meters at the server outlet, and thermal

cameras in the hot aisle.

The computing equipment configuration is two Dell M1000E modular blade enclo-

sures. Each enclosure is maximally configured with sixteen blades, each blade having

two Intel Xeon E5504 Nehalem family quad-core processors at 2.0 GHz, forming an

eight core node. Each blade has 6 GB RAM and 80 GB of local disk storage. The clus-

ter system consists of 32 nodes, 256 cores, 80 GB memory and 2.5 TB disk capacity.

The cooling equipment is a fully controllable Liebert 22-Ton Upflow CRAC system.

Workloads: We used real HPC production workload traces from the RIKEN In-

tegrated Cluster of Clusters (RICC) [95]. The trace included data from a massively

parallel cluster, which has 1024 nodes each with 12 GB of memory and two 4-core CPUs.

As the RICC is a large-scale distributed system composed of a large number of nodes,

we scaled and adapted the job requests to the characteristics of our system model.

First, we converted the input traces to the Standard Workload Format (SWF) [96].

Then, we eliminated failed and canceled jobs as well as anomalies. As the traces did

not provide all the information needed for our analysis, we needed to complete them

using a model based on [97]. The entire trace consists of 400,000 requests spread over

6 months. The trace used in our simulation have 5,200 requests spread over 2 days.

Competing Strategies: We compared the performance of TARA against four

strategies, namely, Random, Round Robin (RR), Best-Fit-Decreasing (BFD), and an

energy-plus-thermal-aware consolidation technique VMAP [66]. In Random, the VMs

are allocated in random sequence to any server. In RR, the VMs are allocated sequen-

tially to servers. In BFD, the VMs are sorted according to volume. Then, each VM

is allocated to the first physical server (w.r.t. server ID), which not only satisfies all

the four subsystem utilization requirements but also has the least residual volume af-

ter packing that VM. In VMAP, VM is allocated to minimize the energy consumption
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Figure 5.8: (a) ROC of TARA with competing algorithms; (b) Energy consumption of TARA
with competing algorithms.

while ensuring that the servers do not overheat.

Metrics: We evaluate the impact of our approach in terms of the following metrics:

True Positive Rate (TPR) and False Positive Rate (FPR) of anomalies, and energy

consumption (in kilowatt-hour [kWh]). TPR and FPR are depicted using Receiver

Operating Characteristic (ROC) [109] curves. The TPR and FPR are calculated using

different thresholds and the resulting points are plotted as a ROC curve. The larger

the area under ROC curve, the better the performance of the detection in terms of

accuracy.

Figure 5.8(a) shows ROC of TARA and competing algorithms. When the budget is

high enough, TARA outperforms other competing algorithm. Random placement and

RR show higher detection rate than VMAP and BFD because they inherently spread

the VMs like TARA does resulting in a large number of lightly-loaded servers in which

unexpected hotspots can easily be identified. However, VMAP and BFD consolidate

VMs making the temperature map change due to anomalous events insignificant, result-

ing in low detection rate. Thus, energy consumption shown in Fig. 5.8(b) of VMAP and

BFD is lower than TARA, VMAP, RR, and Random as they save a significant amount

of energy by turning of the unused servers. TARA’s anomaly-detection-rate is higher

than those of other non-consolidation schemes even though its energy consumption is

comparable to others’.
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Figure 5.9: (a) ROC of TARA with different degree of uncertainty; (b) Area under ROC of
TARA with different degree of uncertainty.

5.4.2 Model-based Anomaly Detection

We performed simulations to see the impact of uncertainty in data reported by the hard-

ware sensors on the detection rate. Figure 5.9(a) shows ROC of TARA with different

degrees of sensor-data uncertainty. As our heat imbalance model uses the tempera-

ture measurement we generate the Gaussian noise with the same mean (µ = 0◦C), but

different standard deviations (σ = 0.5, 2.5, and 4.5◦C, for low, medium, high environ-

ment uncertainties, respectively). The performance of model-based anomaly detection

drops when uncertainty increases because our heat-imbalance model cannot perform

well when the input is too noisy. Figure 5.9(b) shows the bar graph of area under ROC

curve with different algorithms. The area under ROC curve of TARA’s is higher than

that of other schemes’ representing higher detection accuracy for different degrees of

uncertainty.

Figure 5.10(a) shows the ROC of TARA under different power budgets. Detection

accuracy improves with increase in the power budget as more servers are available to

distribute the workload and to maximize the difference between consecutive thermal

maps (the objective of TARA). Figure 5.10(b) shows average power usage given the

power budget. It shows that instead of exploiting the entire power budget TARA

explores the solution space to find the most power efficient configuration that can

provide the highest possible detection accuracy for a given power budget.
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Figure 5.10: (a) ROC of TARA with different power budget (b) Average power level of TARA
with different power budget (here, β0 = 0.55).
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Figure 5.11: Area under ROC of TARA and competing algorithms in the presence of anomalies
of different intensities.

Figure 5.11 shows the ROC of TARA given anomalies of different intensities. As

the intensity and the distribution of unexpected hotspots caused by different types

anomalies can be different as summarized in Table 5.1, we designed simulations with

anomalies of different intensities (1, 3, and 5◦C, for low, medium, and high intensity, re-

spectively). Our model-based anomaly detection mechanism in conjunction with TARA

performs the best under all scenarios. It shows that the detection rate increase when

the anomaly intensity increases even when a low threshold is used in our model-based

anomaly detection mechanism.

5.4.3 Impact of VM Migration

We performed simulations to study the impact of the definition of “highly-loaded server”

on the performance of TARA. Evaluation was carried out in a small-scale setting (180
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Table 5.1: Intensity and distribution of thermal anomalies.

Causes of Thermal Anomaly Intensity Distribution

Attack
DOS attack High Group
SPY VM Low Sporadic

Failure
CRAC fan High Group
Server fan High Sporadic

Misconfig.
Misplacement Normal Diff. from Orig.
Profiling Error Diff. from Orig. Normal
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Figure 5.12: Definition of highly-loaded server (CPU-memory) and migration overhead [GB]
(data), which should be migrated over the network.

servers and 5,200 VM requests spread over 2 days). It is clear that the migration

overhead increases when there is an increase in the amount of memory (in bytes) to be

migrated from source to destination servers. Figure 5.12 shows the migration overhead

in GB along the z-axis and the parameters for the definition of a highly-loaded server

along the x- and y-axes. If the definition of a highly-loaded server is strict (i.e., those

servers in which a high number of CPUs and high amount of memory are being utilized),

the migration overhead is small because there are small number of candidate servers for

migration. The overhead increases when we relax the definition of highly-loaded server,

and the overhead saturates when the definition is extreme (i.e., anything greater than 4

active CPUs and 1GB utilized memory) as the migration unnecessarily creates another

highly-loaded server.
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Figure 5.13: Energy consumption of TARA with various network speed based on the different
definition of highly-loaded server (CPU).

Figure 5.13 shows the overall energy consumption under different average datacenter

network bandwidths. It can be observed that the overall energy consumption for TARA

decreases when the average datacenter network bandwidth is high as it decreases mi-

gration delay and hence, the energy consumption at the host and destination servers.

Our inference from this study is that the migration strategy is beneficial only if the

network speeds are high so that the benefits of further consolidation outweigh the cost

for migration (in terms of service delays and energy consumption).

5.5 Discussion

Anomalies (i.e., attacks, misconfigurations, hardware failures) are becoming a signifi-

cant concern for the datacenter managers as the failure of detecting them can cost a

large business millions of dollars in loses. Our model-based thermal anomaly detection

solution in conjunction with TARA can significantly improve the detection probability

(7%, 15%, and 31% average improvement in detection with only 10% false positive rate)

compared to model-based anomaly detection with traditional scheduling algorithms:

random, round robin, and best-fit-decreasing.
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Chapter 6

Conclusion

Due to the need of modern datacenters with the paradigm of cloud computing and

big data analytics, the complexity of modern datacenters is growing at an alarming

rate and their management is rapidly exceeding human ability, making autonomic ap-

proaches essential. In this thesis, we have proposed proactive thermal-aware datacenter

management solutions, which include thermal- and energy-aware resource provisioning,

cooling system optimization, and anomaly detection, to help minimize both the impact

on the environment and the Total Cost of Ownership (TCO) of datacenters, making

them energy efficient and green.

We have introduced four-layered architecture endowed with four different abstract

components for the proactive thermal-aware solutions. Our proactive solutions auto-

nomically manage datacenters using cross-layer information collected from the four-

layered architecture and make decisions based on various application-specific optimiza-

tion goals (e.g., performance, energy efficiency, anomaly detection rate). We have

discussed the methods for acquiring thermal awareness using real-time measurements

and heat and air circulation models. Also, we have proposed specific proactive thermal-

and energy-aware solutions, which i) optimize cooling systems (i.e., air conditioner com-

pressor duty cycle, and fan speed) to prevent heat imbalance and minimize the cost of

cooling, and ii) maximize computing resource utilization to minimize datacenter energy

consumption for computing and improve the efficiency of heat extraction.
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