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ABSTRACT OF THE THESIS

Minimizing Dissemination on Large Graphs

by Long T. Le

Thesis Director: Professor Tina Eliassi-Rad

Given the topology of a graph G and a budget k, can we quickly find the best k edges to delete

that minimize dissemination on G? Stopping dissemination on a graph is important in vari-

ety of fields such as epidemic control and network administration. Understanding the tipping

point is crucial to the success of minimizing dissemination. The tipping point of an entity (e.g,

virus or memo) on an arbitrary graph only depends on (i) the topology of graph and (ii) the

characteristics of the entity. In this work, we assume that we cannot control the characteristics

of the entity such as its strength, death rate, and propagation rate. Thus, we can only modify

the topology of the graph. In particular, we consider the problem of removing k edges from

the graph. In order to minimize the dissemination, we need to reduce the graph’s connectivity.

The connectivity of a graph is determined by the largest eigenvalue of its adjacency matrix.

Therefore, reducing the leading eigenvalue can minimize the dissemination. In social graphs,

the small gap between the largest eigenvalue and the second largest eigenvalue creates a chal-

lenge for minimizing the leading eigenvalue. In this work, we propose a scalable algorithm

called MET (short for Multiple Eigenvalues Tracking), which minimize the largest eigenvalue.

MET can work well even if the gap between the top eigenvalues is small. We also propose

a learning approach called LearnMelt, which is useful when the exact topology of graph is

not available. We evaluate our algorithms on different types of graphs such as technological

autonomous system networks and various social networks.
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Chapter 1

Introduction

1.1 Motivation

Controlling the dissemination of an entity (e.g., a virus or a meme) on a graph is an impor-

tant problem with a variety of applications in social good, cyber-security, epidemiology, and

marketing. In order to control (or manipulate) dissemination, one could add/delete nodes; or

alternatively add/delete edges. We are interested in the case of deleting edges in order to min-

imize dissemination. In a social network, such as the Facebook friendship graph, removing an

edge means that we “un-friend” the friendship, while deleting a node means that we need delete

a user account.

From past literature [18, 33, 26, 32], we know that the tipping point for an entity’s spread on

a graph is a function of the connectivity of the graph (which is often approximated by the largest

eigenvalue of the adjacency matrix) and the strength of the entity (e.g., the birth and death rates

of a virus). In this work, we will assume that we cannot control the intrinsic properties of

entities. Therefore, to minimize dissemination on a given graph, we will only focus on ways to

modify its connectivity−i.e., which edges to delete.

1.2 Problem Definition

Since we do not have control over the characteristic of the entity, the only possible way to min-

imize the dissemination on a graph is by modifying its structure. In our work, we consider the

problem of removing edges to minimize the largest eigenvalue. Below is the formal definition

of our problem:

Problem Definition. Given a graph represented by its adjacency matrix A and a budget k,

select the k edges in A whose deletions will create the largest drop in the leading eigenvalue of
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A.1

Finding an optimal solution for the above problem is NP hard [32]. Existing algorithms

suffer from some important drawbacks, and so we propose new algorithms called MET and

LearnMelt. For example, existing algorithms such as NetMelt [32] perform poorly in social

graphs. Figure 1.1 visualizes the list of edges selected by an existing method (NetMelt) and our

algorithms, MET and LearnMelt. We see that our proposed methods select edges in various

areas of the graph, which lead to higher drop in the leading eigenvalue. In particularly, our

algorithms perform well in cases where the gap between the top eigenvalues is small.

The majority of the existing methods require the exact graph topology as their input. Yet, in

some scenarios (such as the financial domain), the actual link information might be too sensitive

to be accessed by an algorithm. How can we still tell which links to delete without knowing the

actual graph topology? An approach that is based on structural features does not directly use

the graph’s topology. To address this limitation, we also study the following modified problem

definition:

Modified Problem Definition. Given a graph H , can we effectively and efficiently learn

a model on H that can predict which k edges to delete on a never-seen-before graph G in order

to get the largest drop in the leading eigenvalue of G?

1.3 Thesis Overview

In this thesis, we study an important problem about minimizing the largest eigenvalue of graph.

The problem was studied in some previous works (see Chapter 3 for details) but there exists

several limitations. We propose novel frameworks which can work well in different types of

graphs. Below are our contributions:

• We observe that social graphs have small gaps between their eigenvalues. These small

gaps make the problem of estimating the drop in the largest eigenvalue from k edge-

deletion difficult.

• We introduce a novel algorithm, called MET, which tracks multiple eigenvalues. Our

1Both ‘largest eigenvalue’ and ‘leading eigenvalue’ refer to the biggest eigenvalue in magnitude.



3

(b1) MET

(b2) LearnMelt

(a) An existing method (NetMelt) on Yahoo! IM (b) Our algorithms on Yahoo! IM

Figure 1.1: (Best viewed in color.) Comparing the edges selected for deletions (in red color)

in Yahoo! IM by an existing method (NetMelt [32]) and our proposed methods (MET and

LearnMelt). NetMelt gets ‘stuck’ in one area of the graph while MET and LearnMelt select

edges in multiple areas of the graph.
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algorithm performs well on different types of graphs, even when the gap between eigen-

values is small.

• We introduce a learning approach, called LearnMelt, that learns which edges to delete in

a new graph when its exact topology is not available.

• We conduct an extensive empirical study on different real graphs, which shows the ef-

ficacy and efficiency of our methods. The datasets used in our experiment include both

technological and social graphs.

The thesis is organized as follows. Chapter 2 describes the background about eigenvalues,

eigenvectors and eigen-scores of an adjacency matrix. This chapter also provides the back-

ground about structural features of the nodes in a graph. Chapter 3 lists the related works such

as information diffusion and applications of structural features. Chapter 4 explains how we can

track multiple eigenvalues to minimize the dissemination. We present our learning approach,

which uses the structural features of a graph to learn which edges to delete in Chapter 5. In

Chapter 6, we evaluate our algorithms and compare with other methods using different datasets.

We discuss conclusions and future works in Chapter 7.
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Chapter 2

Background

2.1 Notation

Table 2.1 lists the notations used in this thesis. We represent a graph by its adjacency matrix,

which is in bold upper-case letter. The bold lower-case letters represent vectors. We use the

standard Matlab notation to denote elements in a matrix: A(i, j) denotes the (i, j)th element of

matrix A; A(i, :) denotes the ith row of matrix A; and A(:, j) denotes the jth column of matrix

A. We use λ1 ≥ λ2 ≥ λ3 ≥ ... to represent the eigenvalues of an adjacency matrix. The left

and right eigenvectors of the adjacency matrix are denoted by ui and vi respectively. We use

∆λi,e to denote the drop in λi due to removal of edge e.

Symbol Definition

A, B, . . . matrices (capital letters in boldface)

A(i, j) the (i, j)th element of matrix A

A(i, :) the ith row of matrix A

A(:, j) the jth column of matrix A

n the number of nodes in graph

m the number of edges in graph

k the budget (in terms of the number of edges that we can delete)

λ1, λ2, λ3, ... eigenvalues of adjacency matrix: λ1 ≥ λ2 ≥ λ3 ≥ ..

ui,vi the left and right eigenvector corresponding to λi

∆λi,e the drop in λi due to removal of edge e

Table 2.1: Notations used in the thesis.
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2.2 Eigenvalues of and Dissemination on Graphs

Minimizing the leading eigenvalue is crucial in minimizing dissemination on a graph. In [6],

Chakrabarti et al. showed that the leading eigenvalue of an adjacency matrix is the threshold of

an epidemic for more than 25 different virus models [6]. Previous work, such as NetMelt [32],

relies on a large gap between λ1 and λ2, which is not true in many real graphs (especially social

graph).

In our work, we propose an algorithm that keeps track of multiple eigenvalues and their cor-

responding eigen-scores. Our algorithm uses eigen-scores of multiple eigenvalues to estimate

the effect of removing an edge. The way to compute the eigen-scores of a particular eigen-

value is to use the corresponding left and right eigenvectors of the adjacency matrix. Given an

eigenvalue and its corresponding left and right eigenvectors, the eigen-scores of an edge (i, j)

is equal to the product of the ith and jth element of the left and right eigenvectors. We can

use the power iteration method to compute the leading the eigenvalue and its corresponding

eigen-scores, which takes O(m + n), where m,n are the number of edges and nodes of the

graph, respectively [32]. In order to compute the top-T eigenvalues and their corresponding

eigen-scores, we can use the iterative approximate method by Lanczos algorithm [23], which

takes O(mT + nT + nT 2).

In social communication graphs (e.g. instant messaging networks), the gap between the

largest eigenvalues is often small. Figure 2.1 shows one case of deleting edges based on the

eigen-scores of the leading eigenvalue in a Yahoo! IM graph. The drop in the leading eigen-

value is basically constant after a few edges deletions. The figure also shows that the leading

eigenvalue drops slowly when λ1 and λ2 are equal. When an edge e is removed, all eigenval-

ues are affected. Since the strategy of choosing edges is based on the leading eigenvalue λ1,

the value of λ1 quickly drops to equal or below λ2. In this case, the original λ2 will play the

role of the leading eigenvalue. Therefore, the strategy of selecting edges based on the original

eigenvalue will not be effective anymore. In social graphs, many eigenvalues could be close

to each other, which makes the situation even more complex. In Chapter 6, we compute the

top eigenvalues of different graph types, which shows that the gap could be very small. This

observation motivates us to develop new algorithms, which can track multiple eigenvalues.
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Figure 2.1: The poor performance in minimizing the leading eigenvalue of a social graph (here

Yahoo! IM) when using the eigen-scores of the leading eigenvalue in order to pick up the best

k edges to delete. Removing an edge will affect the values of all eigenvalues. Selecting the

edges based on the highest eigen-scores of the leading eigenvalue makes λ1 drop quickly while

λ2 drops slowly. When the gap between λ1 and λ2 is small, their values may invert as more

edges are removed. Therefore, the strategy of selecting the edges based on the original leading

eigenvalue will not be effective anymore.

2.3 Structural Features

In some real applications, the exact topology of a graph may be too sensitive to release (such as

in the financial domains). In this case, how can pick which edges to delete without knowing the

actual graph topology? Our approach, LearnMelt, is based on structural features, which does

not directly use the graph’s topology. Studying the structural features of graph is an emerging

field in recent years. For example, structural features are used to measure the network similarity

[1], [30]. In this work, we will show that local structural features are useful in our learning

approach.

We also evaluate which structural features are important in minimizing dissemination. In

particular, degree-based features are more important than clustering-based features. The intu-

ition is that degree-based features have a stronger effect on the number of paths in the graph

compared to say clustering coefficient.
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Chapter 3

Related Work

To the best of our knowledge, our MET is the first algorithm that tracks multiple eigenvalues

to minimize dissemination on large graphs, and LearnMelt is the first learning approach to

minimize the dissemination. In this section, we discuss works related to ours.

3.1 Dissemination and Tipping Point

There has been a lot of research on different cascade models such as Linear Threshold model

[19], [20], and Independent Cascade model [11]. One of the most popular models is the SIS

model (short for Susceptible-Infected-Susceptible). In the SIS model, the entity can be in

either one of two states: infected or susceptible. The susceptible node will be infected through

its infected neighbors at some infection rate. At the same time, an infected node can recover

by itself. Due to the popularity of SIS and related models, researchers studied the effect of

the topology and found the tipping point of a virus [6], [34], [35], [6]. The epidemic threshold

depends on the leading eigenvalue of adjacency matrix. In [27], Prakash et al. proved the

epidemic threshold is applicable for 25 different virus models. In [10], Du et al. proposed a

randomized algorithm to estimate dissemination in a network. Purohit et al. [29] examined an

algorithm to collapse multiple nodes into one single node, which minimizes the change in the

leading eigenvalue.

3.2 Extracting Features from Graphs

Extracting features at both the micro- and macro-level of graphs is an important graph mining

task. Henderson et al. [16] presented a scalable framework for analysis of volatile graphs

by extracting features at multiple levels and multiple resolutions of the graph. Berlingerio et
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al. [1] proposed an efficient algorithm which uses a small number structural features to capture

similarity between graphs.

3.3 The Importance of Graph Structure to Dissemination

The topology of a graph affects the dissemination in that graph. There are two ways to minimize

dissemination in graphs (i) deleting nodes and (ii) deleting edges. Removing a node means that

we need to shut down an infected machine in the network or close a user account in a social

network. In both cases, the leading eigenvalue of the graph is reduced.

Many previous studies have considered the problem of removing nodes from the graph.

Tong et al. [33] selected the best nodes to delete in order to minimize the leading eigenvalue

of the adjacency matrix. Chan et al. [7] developed different strategies to measure and mini-

mize the robustness of a graph. In [27], [24], the authors identified the nodes from which the

infections started to spread. In [14], Goyal et al. proposed Simpath, an algorithm to maximize

dissemination under the linear threshold model. Many previous works studied the importance

of nodes in controlling dissemination or removing important nodes [9], [12], [19], [18].

Recently, researchers began studying the problem of modifying edge connections in a

graph. In [32], the authors used eigen-scores of the leading eigenvalue to select the best edges

to delete, but this method performs poorly in social graphs where the gap between top eigen-

values is small. In [2] and [13], authors learnt important links by studying the propagation logs

in the past. The important links are the ones that most likely can explain propagation in a social

network. These works examined the influence probabilities from available propagation events

since the social network connections are not associated with probabilities. The influence prob-

ability is dynamic and can change over time. Our work uses the topology of the graph, rather

than the propagation logs. Kuhlman et al. [21] studied the way to block simple and complex

contagions in ratcheted dynamical systems, where an infected node cannot recover. In simple

contagion, a node is infected by contacting with another infected node, while complex conta-

gion requires interaction with at least two infected nodes. They showed that simple contagion

is an easier task in general.
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3.4 Spectra of Graphs

Spectra of a graph is an important subject which studies the relation between the topology and

the eigenvalues of a graph. Spectra of a graph gives information about the graph such as its

connectivity, robustness, and randomness [8], [4]. Stewart et al. [31] studied the perturbation

matrix to see the behavior of a particular function when the matrix changes. One emerging field

is analyzing the spectra of graph by using only the local structural information [37], [28].

3.5 Transfer Learning

Effective transfer learning between graphs is important. Pan et al. [25] presented a detailed sur-

vey of current progress on transfer learning for classification, regression and clustering prob-

lems. Transfer learning is an active field and is used widely in graph mining in recent years.

Role transfer is adopted to determine similarity between graphs [17]. Wang et al. [36] measured

matrix similarity to transfer across networks. Cao et al. [5] have shown that transfer learning

across graphs achieves high accuracy in collective link prediction. Transfer learning shows a

lot of potential for solving challenging problems in graph mining.
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Chapter 4

Multiple Eigenvalues Tracking (MET)

4.1 Proposed Method

In social graphs, the gaps between the top eigenvalues are normally small. In order to minimize

the largest eigenvalue, we should track several top eigenvalues at the same time. In this chapter,

we introduce the Multiple Eigenvalues Tracking (MET) algorithm.

As mentioned before, all eigenvalues are affected when an edge is removed from a graph.

When the graph has small eigen-gaps,1 algorithms that estimate only the leading eigenvalue

can exhibit significant performance degradations. One can alleviate these shortcomings in two

ways: (1) track/estimate more than one eigenvalue, and (2) recompute eigenscores of the re-

maining edges periodically. In the former, the question becomes how many eigenvalues should

one track. In the latter, the question becomes how often should one recompute eigenscores. Bad

answers to these questions can adversely affect the efficiency and efficacy of one’s algorithm.

Algorithm 1 describes our MET algorithm. MET provides satisfactory answers to both

of the aforementioned questions. Tracking more than one eigenvalue. MET determines

the number of eigenvalues T to track adaptively. It starts by tracking the top-2 eigenvalues

(i.e., T = 2) and modifies T only when the gap between λ1 and λT changes. If the gap

decreases, then MET increases T by 1; if the gap increases, then MET decreases T by 1;

otherwise, T does not change. In MET, the minimum value for T is 2. Note that a large T

value can cause unnecessary tracking of too many eigenvalues and lead to increased runtime.

Recomputing eigenscores periodically. MET uses λT as a threshold for deciding when to

recompute eigenscores. Specifically, when all estimated λ values (i.e., λ1, . . . , λT−1) fall below

the threshold λT , then MET recomputes the eigenscores. Since a small T value can cause

1Figure 6.3 shows that the eigen-gap between the top-21 eigenvalues can be as small as 0.05 in a social graph
(such as Facebook user-postings).
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unnecessary recomputation of eigenscores (leading to a longer runtime), MET uses a slack

variable ε, whereby MET recomputes the eigenscores only if all estimated λ values are less

than λT − ε. A nonzero ε is useful when all the top T eigenvalues are very close to each other.

We evaluate the effects of various ε values in Chapter 6.

4.2 Complexity

Next, we analyze the runtime complexity and space cost of our MET algorithm. Recall n and

m are the number of nodes and edges in the graph, respectively.

Lemma 4.2.1. The runtime complexity for MET is O(k1T̄ × (m + nT̄ ) + k × (m + T̄ )).

The space cost for MET is O(m × (1 + T̄ )). n and m are the number of nodes and edges

in the graph, respectively; k is the budget for edge deletions; k1 is the number of times that

MET recomputes eigenvalues (k1 < k); and T̄ is the average number of eigenvalues that MET

tracks.

Proof. In Algorithm 1, the following lines do not take O(1). The while loop on Line 4 is exe-

cuted on average k1 times, which is also the number of times that MET recomputes eigenvalues

and eigenscores. Line 5 computes the average T̄ eigenvalues and eigenvectors using Lanczos

algorithm [23]; this takes O(mT̄ + nT̄ 2). Line 6 computes eigenscores, which takes O(mT̄ ).

Line 9 takes O(T̄ ) to find the maximum λ in the estimated eigenvalues {λ1, λ2, . . . , λT̄ }. Let

k2 denote the average number of iterations of the while loop on Line 10. (Note that the

edge-deletion budget k is equal to k1 × k2.) Line 11 takes O(m) to find the edge with the

highest eigenscore. The for loop on Lines 13 through 16 takes O(T̄ ). Similar to Line 9,

Line 17 takes O(T̄ ) to find the maximum λ. Thus, the while loop covering Lines 10 through

18 takes O(k2 × (m + T̄ + T̄ )) ≈ O(k2 × (m + T̄ )). Putting all of this together, we get

that the total runtime of MET is O(k1 × (mT̄ + nT̄ 2 + mT̄ + T̄ + k2 × (m + T̄ ))) ≈

O(k1mT̄+k1nT̄
2+k1mT̄+k1T̄+k×(m+T̄ )) ≈ O(k1T̄×(m+nT̄+m+1)+k×(m+T̄ )) ≈

O(k1T̄ × (m+ nT̄ ) + k × (m+ T̄ )).

MET needs O(m) to store the graph and O(k) to store the deleted edges. On average, MET

tracks T̄ eigenvalues and their corresponding eigenscores, this requires O(mT̄ ) space. Thus,
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Algorithm 1 MET Algorithm
Input: A graph represented by its adjacency matrix A and a budget k

Output: The list of k edges to be deleted from A

1: E ← {}

2: T ← 2

3: previousGap←∞

4: while (|E| < k) do

5: Compute the top-T eigenvalues λ1, λ2, . . . , λT ; and the corresponding left ui and right

vi eigenvectors for i = 1, 2, . . . , T − 1.

6: Eigenscores[e, i]← getEigenscore(e, λi,ui,vi),

for each edge e and for i = 1, 2, . . . , T − 1; see Chapter 2.

7: currentGap← λ1 − λT

8: threshold← λT − epsilon

9: λmax ← max{λ1, λ2, . . . , λT−1}

10: while (λmax > threshold and |E| < k) do

11: emax ← edge with the maximum eigenscore under λmax and its corresponding left

and right eigenvectors.

12: E ← E ∪ emax; and remove emax from A.

13: for i = 1, 2, . . . , T − 1 do

14: λi← λi − Eigenscores[emax, i] // Update λi

15: Eigenscores[emax, i]← −1 // Mark emax as deleted

16: end for

17: λmax ← max{λ1, λ2, . . . , λT−1}

18: end while

19: if (currentGap < previousGap) then

20: T ← T + 1

21: else if (currentGap > previousGap and T > 2) then

22: T ← T − 1

23: end if

24: previousGap← currentGap

25: end while

26: return E
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MET requires O(m + k + mT̄ ) storage. Since k << n, the total storage cost for MET is

O(m× (1 + T̄ )).

In the runtime complexity of MET, there are terms T̄ 2 and k1. Table 6.2 shows that T̄ and

k1 are very small. In addition, k << m. Thus, the runtime of MET is linear with the size of

graph.

MET-Naive. If one happens to know how many eigenvalues T to track a priori, then MET

does not need to adaptively track multiple eigenvalues. We have a naive version of MET,

called MET-naive, where k edges are sequentially deleted based on the largest estimated λi in

i = 1, 2, . . . , T . Similar to MET, all estimated λ values are updated after each edge deletion

(Line 15 in Algorithm 1) and the eigenscore of the deleted edge is marked so that edge is not

selected again (Line 16 in Algorithm 1).

MET-Naive tracks a constant number of eigenvalues T and does not recompute eigenscores.

Its runtime cost is O(T × (m+ nT ) + k × (m+ T )). For brevity, we have omitted the proof

for it here. Similar to MET, the space cost for MET-Naive is O(m× (1 + T )).

See Appendix A for a discussion of how far MET’s results are from the upper-bound on the

optimal solution that minimizes the largest eigenvalue of a graph.
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Chapter 5

Learning to Minimize Dissemination (LearnMelt)

5.1 Proposed Method

Most of the existing methods need the exact topology of a graph to find the k edges to delete.

This might not be feasible in some domains, such as finance. We develop a method, called

LearnMelt that only uses structural features of a graph to learn which edges to delete in a

never-before-seen graph. Structural features are useful in measuring the similarity of graphs

[1]. In our work, we want to understand whether structural features are useful in learning

dissemination or not. Furthermore, we also want to measure which features are more important

in our learning approach.

Given a graph G, LearnMelt uses its trained model to predict which k edges to delete for

the maximum drop in the leading eigenvalue. So, the key to LearnMelt’s success is how well

it can generalize across various graphs. This section is divided into four parts: (1) obtaining

training data; (2) structural features used in LearnMelt; (3) learning an eigen-drop model on

structural features (i.e., the LearnMelt model); (4) inference on the learnt eigen-drop model;

and (5) computational complexity of LearnMelt.

5.1.1 Obtaining Training Data

Like all supervised learning models, LearnMelt needs labeled data to train a model. Learn-

Melt’s labeled data is of the form 〈X, y〉, where each instance inX represents an edge e. X is a

1×2p dimensional vector, which encodes the features of the two endpoints of e. In LearnMelt,

p corresponds to the seven local structural features extracted by the NetSimile algorithm [1].

We can easily add other features into our framework. We describe these features in detail below.

The target (a.k.a. response variable) y is a real number. For an edge e in the labeled set, y is
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set to the actual eigen-drop for e. We ran experiments with y being set to the edge’s eigen-score,

but those response variables were too noisy on social graphs.

Given a training graph H and a training set of size t, we use NetMelt+ to select t
2 edges

from H . These edges correspond to ‘good’ examples of edges with large eigen-drops. For the

remaining t
2 edges, we randomly select an edge and compute its eigen-drop. When a randomly

selected edge is added to the training set, it is not removed from the graph. These random edges

provide diversity to the training set. The cost of obtaining labeled data is a one-time cost. As

we show in Section 6.3.4, LearnMelt performs well with relatively small train sets (e.g., 1000

edges).

5.1.2 LearnMelt’s Structural Features

We represent an edge e : (u, v) with the structural features of its endpoints (i.e., features of u,

and v). In particular, we utilize these seven local structural features of an endpoint node i:

• Number of neighbors (i.e., degree) of node i

• Average degree of node i’s neighbors

• Clustering coefficient of node i1

• Average clustering coefficient of node i’s neighbors

• Number of edges in node i’s egonet (i.e., its 1-hop induced subgraph)

• Number of edges leaving from node i’s egonet

• Number of neighbors of node i’s egonet

Berlingerio et al. [1] showed that these seven features correspond to four commonly used social

theories−namely, Social Capital, Social Exchange, Structural Holes, and Balance. LearnMelt

can easily incorporate additional features. In Section 6.3.4, we discuss results of our feature

selection experiments.

1We define the clustering coefficient of a node i as the number of triangles connected to i divided by the number
of the connected triples centered at i.
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5.1.3 Learning LearnMelt’s Eigen-drop Model

Any regression model can be used for LearnMelt (since the target variable y is numeric). We

use an ensemble approach−namely, random forests [3] with regression trees. Random forests

have many advantages. First, they use bagging, which is known to alleviate overfitting (by

reducing variance). Second, they conduct feature selection as part of the training process.

Third, they are fast in both training and inference.

5.1.4 Inference on LearnMelt

Algorithm 2 provides the pseudo-code for inference on LearnMelt. The inputs to this inference

algorithm are (1) a never-before-seen graph, (2) the number of edges k to be deleted, and (3)

the learnt random-forest model (described in Section 5.1.3). LearnMelt iterates over all the

edges in the given graph and predicts the drop in ∆λ for each edge deletion. It returns the k

edges with the largest ∆λ.

Algorithm 2 The LearnMelt Inference Algorithm
Input:

• A graph represented by adjacency matrix A

• Budget k

• The learnt random-forest model M (see Section 5.1.3)

Output: The list of k edges to be deleted from A

1: F← structural features extracted from A

2: for (each edge e : (i, j) in A) do

3: fe← [F(i, :), F(j,:)] //feature vector for each e

4: ∆λe←M(fe) //Use model M to predict ∆λ for e

5: end for

6: E ← the top-k edges having highest predicted ∆λe //∆λe is predicted in Line 4

7: return E: list of edges to be removed
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5.2 Complexity

Step 1 of Algorithm 2 computes the structural features for the nodes. This is an almost linear

time algorithm on the number of edges, taking almost O(n log n), where n is the number of

nodes [1]. Computing ∆λ in Step 2 takes O(m), where m is the number of edges. Finding

k edges with the highest predicted values in Step 3 takes O(mk). Therefore, the total compu-

tational cost for LearnMelt is almost O(n log n + mk)−i.e., LearnMelt’s inference is almost

linear on the number of edges.
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Chapter 6

Evaluation

In this chapter, we evaluate our algorithms and compare them with existing methods. First, we

present the datasets used in our experiments. Next, we describe the experiment settings, our

results, and a discussion.

6.1 Datasets

Table 6.1 lists the graphs used in our experiments. Our graphs are undirected and unweighted.

We have four sets of real graphs, which include:

• Oregon Autonomous System (AS):1 We have four technological graphs, each corre-

sponding to a week’s worth of data. A node here is an autonomous system. An edge is a

connection inferred from the Oregon route-views.2

• Yahoo! Instant Messenger (YIM):3 We have three social graphs, each corresponding to

a day’s worth of data. The data was collected in April 2008. Our graphs are from the 1st,

11th, and 21st of the month. A node is a Yahoo! IM user. An edge is a communication

between two users during the selected day.

• Facebook user-postings (FB):4 We have five social graphs, each corresponding to a

day’s worth of data. The data was collected in March 2013. We used the 10th to the 14th

of the month in our study. A node is a Facebook user. An edge is a ‘posting’ event (where

1http://topology.eecs.umich.edu/data.html

2In [32], AS graphs were treated as directed graphs. Thus, the number of edges reported there is twice the
number reported here.

3http://webscope.sandbox.yahoo.com/

4Proprietary data given to us by a collaborator.



20

useri generates a post and userj sees that post) in the selected day. For our experiments,

we convert this directed graph into an undirected one.

• Twitter re-tweet (TT): We have four social graphs, each corresponding to a month’s

worth of data. The data was collected from May to August in 2009. A node represents

a twitter user. There is an edge between two users if there is a re-tweet event between

them. A detail description of this dataset is available in [38].

Time # of # of Avg. # of % of Nodes Avg Dis

Dataset Span Nodes (n) Edges (m) Degree ConComps in LCC in LCC

Oregon-1 7 days 5,296 10,097 3.81 1 100% 3.5

Oregon-2 7 days 7,352 15,665 4.26 1 100% 3.5

Oregon-3 7 days 10,860 23,409 4.31 1 100% 3.6

Oregon-4 7 days 13,947 30,584 4.39 1 100% 3.6

YIM-1 1 day 50,492 79,219 3.14 2802 54.5% 16.2

YIM-2 1 day 56,454 89,269 3.16 2650 61.2% 15.9

YIM-3 1 day 31,420 39,072 2.49 2820 62.9% 13

FB-1 1 day 27,165 26,231 1.93 2081 50.4% 9.4

FB-2 1 day 29,556 29,497 1.99 1786 57.8% 9.3

FB-3 1 day 29,702 29,384 1.98 1902 55.6% 9.4

FB-4 1 day 29,442 29,505 2.00 1746 58.1% 8.9

FB-5 1 day 29,553 29,892 2.02 1624 59.8% 8.8

Twitter-1 1 month 25,799 16,410 2.18 2899 63.6% 7.5

Twitter-2 1 month 39,477 45,149 2.29 3827 68.9% 7.3

Twitter-3 1 month 57,235 68,010 2.38 4828 73.4% 7.5

Twitter-4 1 month 77,589 96,980 2.50 5665 77.1% 7.6

Table 6.1: Graphs used in our experiments. LCC stands for the largest connected component

and ConComps stands for connected components. “Avg Dis” is the average number of hops

between two randomly selected nodes.
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6.2 Experiemental Setup

We compare our algorithms with the following eight methods:

1. NetMelt: edges are selected based on eigen-scores of the leading eigenvalue [32].

2. NetMelt+: an improved version of NetMelt; it re-computes the eigen-scores after each

edge deletion.

3. Rand: edges are selected randomly.

4. Rich-Rich: edges are selected based on the highest dsrc.ddst, where dsrc and ddst are the

degrees of the source and destination nodes [7].

5. Rich-Poor: edges are selected based on the highest |dsrc − ddst|.

6. Poor-Poor: edges are selected base on the lowest dsrc.ddst.

7. EBC: edges are selected based on the highest edge betweenness centrality. The EBC of

an edge is the number of shortest paths that pass through that edge.

8. Miobi: edges are selected to minimize the robustness of graph [7]. In [7], the robustness

of graph is defined as the “average” of the top K eigenvalues of the adjacency matrix.

In all graphs, Rich-Poor and Poor-Poor perform poorly compared with Rich-Rich. Thus, we

only present the results of Rich-Rich for brevity.

6.2.1 The Settings of MET

The default parameter of epsilon is 0.5 in MET algorithms. In MET-Naive, the default value

of T is 10 when we do not mention the value of T explicitly. As we mentioned, MET does

not need the parameter T to be specified, because it adaptively selects T . We also evaluate the

effect of selecting different values of epsilon in Figure 6.4.

6.2.2 The Settings of LearnMelt

Our LearnMelt does not compute eigen-scores on every graph. Instead, LearnMelt uses labeled

data from one graph in order to learn a model that predicts the eigen-drop of a set of edges in
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never-seen-before graphs. For the experiments reported here, the training and test data come

from the same set of graphs. Recall that we have four sets of graphs: Oregon (with 4 graphs),

YIM (with 3 graphs), FB (with 5 graphs), and TT (with 4 graphs).

As described in Section 5.1.1, our labeled dataset is of the form 〈X, y〉, where each instance

in X represents an edge by the structural features of its endpoints. The variable y ∈ R is the

target (a.k.a. response) variable, which is the actual eigen-drop of the edge. For our experi-

ments, we used 2K labeled edges: 1K of which were selected by NetMelt+ and the other 1K

were selected at random. LearnMelt is effective with a much lower number of labeled edges.

For example, in Figure 6.5 we show results with only 1K edges in the labeled set.

LearnMelt uses an ensemble approach−namely, a random forest of 100 regression trees.

The number of randomly selected features is log214 (where 14 is number of structural features

of each edge), and the minimum number of samples required to split an internal node is 2.

With a random forest of regression trees, we get (1) fast training and inference runtimes, (2)

nonlinear decision boundaries, (3) built-in feature selection, and (4) ease overfitting.

6.2.3 Evaluation Criteria

One of our evaluation criteria is efficacy, which is the relative drop of the leading eigenvalue:

%drop = 100 |λ̄1−λ1|λ1
, where λ1 is the leading eigenvalue of the original graph and λ̄1 is the

leading eigenvalue of the graph after removing k edges. The higher the percentage drop in the

leading eigenvalue, the better the algorithm’s performance.

We also evaluate the efficiency of our algorithms by measuring the wall clock time. Obvi-

ously, lower runtime is better. All experiments were conducted on a Macbook Pro with CPU

2.66 GHz, Intel Core i7, RAM 8 GB DDR3, hard drive 500 GB SSD, and OS X 10.8.
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6.3 Results and Discussion

6.3.1 Comparing the Efficacy of Different Methods

Figure 6.1 compares the efficacy of the different methods when we change the budget k from

0 to 1000 edges. MET-Naive outperforms NetMelt but it is still below NetMelt+. NetMelt+ al-

ways creates the highest eigen-drop but it is not scalable (we will discuss the trade-off between

efficacy and runtime in Section 6.3.2). MET performs well on all graphs and achieves similar

efficacy to NetMelt+. NetMelt+ achieves the highest efficacy because it updates the topology

and the eigens-cores after each deletion. Thus, it can select the next best edges to delete. Even

though it is intractable to calculate the optimal solution, we expect that NetMelt+ and MET are

very close to optimal solution. We see that NetMelt performs very well in Oregon graph due to

the large gap between eigenvalues. Our algorithms, MET-Naive and MET , also perform well

in these technological graphs and have a runtime similar to NetMelt. When the exact topology

of graph is not available, LearnMelt achieves the highest efficacy. The other methods which do

not use the full topology are Rich-Rich, Rich-Poor, Poor-Poor. 5

6.3.2 Trade-off Between Efficacy vs. Efficiency

Figure 6.2 examines the trade-off between efficacy and efficiency (in terms of runtime). NetMelt

is a fast algorithm, but it performs poorly in social graphs. NetMelt+ is very slow. MET

achieves similar efficacy to NetMelt+ while having a low runtime. For example, MET is 108

times faster than NetMelt+ in the Yahoo! IM graphs, while preserving 99% of the efficacy. In

the FB graphs, MET is 12 times faster than NetMelt+ while preserving 96% of the efficacy. In

the TT graph, MET is 30 times faster than NetMelt+ while preserving 99.3% of the efficacy.

In Figure 6.2, there are two methods which are applicable when the exact topology of graph

is not available. They are LearnMelt and Rich-Rich. Both method are scalable. Our method

is a learning approach while Rich-Rich deletes the edges based on the degrees of the edges’

endpoints. We see that our method always achieves higher drop of the leading eigenvalue than

Rich-Rich. Notice that the runtime of LearnMelt does not depend on the the budget k, since

5Rich-Poor, and Poor-Poor always achieve lower efficacy than Rich-Rich. We omitted for brevity.
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Figure 6.1: (Best viewed in color.) Comparing efficacy (as measured by the percentage decrease

in the leading eigenvalue λ) vs. budget k (i.e., the number of edges to delete). The larger the

drop, the better the performance. NetMelt performs poorly in all social graphs, especially YIM

and FB. NetMelt+ has the best performance but it is very slow (see Figure 6.2). Our proposed

method MET-Naive can beat NetMelt. MET performs well across both technological and social

graphs. In social graph, MET is close to NetMelt+. When the exact topology of the graph is

not available, LearnMelt always achieves the highest efficacy. (Recall that Rich-Rich also does

not use the full topology of graph.)
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Figure 6.2: (Best viewed in color.) Trade-off between efficacy and efficiency when removing

1000 edges from our graphs. Higher percentage drop of the leading eigenvalue and lower

runtime is better (i.e, the upper left corner of the plots). We depict efficacy as the average

of percentage drop in the leading eigenvalue and the average runtime for all graphs of the

same type. MET and NetMelt+ achieve similar percentage drop of the leading eigenvalue,

but NetMelt+ is much slower (e.g., NetMelt+ is 100 times slower than MET in YIM graph.).

When we cannot access the full topology of graph, we can use LearnMelt, which is a learning

approach and is scalable.
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LearnMelt estimates the eigen-drop of all edges and picks the edges with highest estimated

eigen-drop. Thus, LearnMelt is recommended when we can only access some structural fea-

tures of the graph.

6.3.3 Performance Analysis of MET

6.3.3.1 Re-computation in MET

We also measure how many times MET re-computes the eigen-scores and the average number

of eigenvalues MET tracks. Table 6.2 lists the average values of different datasets. We observe

that MET needs to track a few eigenvalues with a small number of re-computations, which

makes MET much faster than NetMelt+. In the FB graph, we need to track more eigenvalues

and the re-computation is more frequent than in the YIM and TT graphs. The reason for this is

that the gap between top eigenvalues in the FB graph are much closer than the gap in the YIM

and TT graphs.

Avg. # eigenvalues Avg. # of

Dataset being tracked re-computations

Oregon 2.08 1.25

YIM 5.17 10.3

FB 6.83 24.6

TT 3.03 9.4

Table 6.2: Average number of eigevanlues being tracked in MET and average number of times

MET re-computes eigen-scores when removing k = 1000 edges from each graph. MET tracks

small numbers of eigenvalues and the re-computations are not often, which makes MET a fast

algorithm.

6.3.3.2 The Motivation for Introducing the Slack Variable epsilon in MET

Figure 6.3 plots the top eigenvalues of the original graph, and after MET removes 1000 edges.

The gaps between λ1 and λ21 are as small as 0.37 in Yahoo! IM, 0.36 in TT graph, and

0.05 in FB graph. When this situation happens, the re-computation condition is triggered too
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Figure 6.3: Top eigenvalues of the “Original graph” and “Modified Graph” (i.e., the graph

after removing 1000 edges selected by MET). The top eigenvalues in social networks are “very

close” after removing 1000 edges using MET . After removing the edges, the gaps between λ1

and λ21 in YIM-1, FB-1, and TT-1 are 0.37, 0.05, and 0.36 respectively.

often (i.e., max(estimatedλi) < λT after few deletions). One possible solution is to track

even more eigenvalues, which also increases runtime. We allow trade-off between efficacy and

runtime by introducing a slack variable epsilon. Figure 6.4 shows the effect of increasing

epsilon. In practical applications, one may allow a small drop in the efficacy to improve the

runtime. In order to achieve the highest efficacy, we simply set epsilon to 0. In this case, MET

can preserve more than 99% of efficacy compared with NetMelt+ in all social graphs.

6.3.4 Performance Analysis of LearnMelt

We also investigated how much the performance of LearnMelt drops when the size of the

training set is reduced by a half (i.e., going from 2K edges in the training set to 1K edges). For

this experiment, we defined Efficacy Drop as follows. Let ∆λ1 be the average eigen-drop when
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Figure 6.4: The effects of selecting epsilon values on efficacy and runtime in MET . The run-

times and percentage drops in the leading eigenvalue are the averages over graphs of the same

type. Smaller epsilon values create higher eigen-drops but also higher runtimes. Note that

when epsilon equals to 0, the runtimes are still lower than NetMelt+ (i.e., MET is 23 times

faster in Yahoo! IM graph, 4 times faster in FB graphs, and 11 times faster in TT graphs while

preserving 99.9%, 99.2%, and 99.9% efficacy respectively). The performance of MET on Ore-

gon graphs is not affected by the value of epsilon due to the large gap between the largest

eigenvalues (i.e., epsilon does not trigger re-computation).
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Figure 6.5: The percentage efficacy drop of LearnMelt when reducing the size of training set

by a half. We define efficacy drop as the relative change in performance. The decrease in

performance is no more than 6% when we reduce the training set from 2K to 1K edges. For

these experiments, we used a budget of k=1000.

using the default setting and ∆λ2 be the average eigen-drop when using half of the training

set. Then, Efficacy Drop equals ∆λ1−∆λ2
∆λ1

. Figure 6.5 shows that the Efficacy Drop is less than

6% across all sets of graphs. Thus, reducing the size of the training set significantly (e.g., by

a half) does not significantly affect the efficacy (as measured by the decrease in the leading

eigenvalue).

6.3.4.1 Efficacy vs. Network Similarity

In LearnMelt, we build a model on a training graph and use it on never-seen-before graphs.

Here, we evaluate the relationship between the similarity of the training and test networks

vs. the efficacy of the learnt model in LearnMelt. We use NetSimile [1] to measure similarity

between graphs. NetSimile uses structural features of nodes to build a ‘signature’ vector for a

graph. Then, it uses Canberra Distance 6 to measure how different two graphs are. A Canberra

Distance of zero indicates perfect similarity.

Figure 6.6 reports the efficacy of LearnMelt (again in terms of the percentage decrease in

6Canberra(p,q) =
∑n

i=1
|pi−qi|
|pi|+|qi|

, where n is the number of dimensions in p,q [22].
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Figure 6.6: (Best viewed in color.) efficacy of LearnMelt vs. the normalized Canberra distance

of train-test graph pairs in the same domain (k=1,000). The learnt model in LearnMelt is able

to maintain their efficacy even when the distance between the train-test graph pairs increases

from 0.05 to 0.2. In our graphs, the Canberra distances of train-test graphs in the same set (e.g.,

FB) are less than 0.2.

the leading eigenvalue) vs. the normalized Canberra Distance of the train-test graph pairs across

our four sets of graphs. We used a budget of k=1000 for these experiments. We observe that

across our four sets of graphs, the learnt model in LearnMelt is able to maintain its efficacy

even as the normalized Canberra Distance increases between the train-test graph pairs. That

is, LearnMelt is indeed generalizing across graphs in the same group. We observe that this

generalization is better maintained in social graphs than in technological graphs.

Figure 6.7 reports the efficacy of LearnMelt’s inference on Oregon-1, YIM-1, FB-1, and

TT-1 graphs when it is trained across different graph sets. In Figure 6.7(b), (c), and (d), we

observe that LearnMelt maintains its efficacy when it is trained on Facebook, Twitter and tested

on YIM-1 (and vice versa); but LearnMelt’s performance drops when it is trained on the Oregon

AS graph and tested on a social graph such as YIM-1, FB-1 or TT-1. Similarly, Figure 6.7(a)

shows that efficacy of LearnMelt on Oregon-1 decreases when it is trained on Yahoo! IM,

Twitter or Facebook graphs. This is not surprising. The structures of technological graphs are

very different from social graphs, which make transfer-learning approaches such as LearnMelt

difficult across unrelated domains.
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(a) Test graph = Oregon-1 (b) Test graph = YIM-1
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(c) Test graph = FB-1 (d) Test graph = TT-1

Figure 6.7: (Best viewed in color.) Efficacy of LearnMelt vs. normalized Canberra distance

across different train-test graph pairs (k=1,000). (a) shows the efficacy of LearnMelt on

Oregon-1 when it was trained on Oregon AS (blue diamonds), on Yahoo! IM (red squares),

on Facebook data (green triangles), and on Twitter data (black crosses). (b), (c) and (d) depict

the same for YIM-1, FB-1, and TT-1, respectively. LearnMelt is able to successfully transfer

knowledge between social graphs (Yahoo! IM, Facebook, and Twitter), but has difficulty doing

so between Oregon AS and Yahoo! IM (or Oregon AS and Facebook). This is not surprising

since the structures of technological and social graphs are very different.
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6.3.4.2 Feature Importance in LearnMelt

Here, we quantify feature importance in LearnMelt. The most popular method to evaluate

the feature importance in random forests is measuring the mean square error of prediction [15].

When building the regression trees in random forests, the out-of-bag (OOB) samples are used to

compute the prediction error. For each feature f , f is randomly permuted in the OOB samples

and the prediction error is computed. The change in prediction error is used to measure the

importance of feature f .

Figure 6.8 depicts feature importance in LearnMelt. The higher the value, the more impor-

tant the feature. Generally, the degree-based features are more important, while the clustering-

coefficient based features are less important in LearnMelt. Intuitively, this observation makes

sense. Degree of a node is a better indication of the number of paths it is involved in than

its clustering-coefficient. Deleting an edge that has high degrees in both of its endpoints can

reduce the number of paths in a graph significantly. The experiments in the previous section

confirm that the Rich-Rich method can achieve high eigen-drop. Clustering-coefficient based

features are less important since clustering coefficient hardly affects the number of paths in

graph. Figure 6.9 illustrates an example of the effect of clustering coefficient. Let’s consider

two cases: (i) The edges u2-u3 and u3-u4 do not exist, (ii) There are edges u2-u3 and u3-u4

in the graph, which cause higher clustering coefficient for node u. Low or high clustering-

coefficient of node u hardly affects the connectivity of the graph when deciding to delete the

edge u-v.

6.3.5 Simulating Virus Propagation

As we mentioned before, the leading eigenvalue λ of the adjacency matrix affects the dissemi-

nation of a virus. Here, we simulate the popular virus model called SIS (short for Susceptible-

Infected-Susceptible) to evaluate the efficacy of minimizing the virus by different methods. In

the SIS model, the node can be in one of two states: susceptible or infected. A susceptible node

will be infected at some infection rate β if it connects with infected neighbors. In the mean

time, an infected node also tries to recover by itself at a rate δ. In our experiment, we removed

k = 1000 edges from the original graph and evaluated how many nodes were infected. We ran
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Figure 6.8: Feature importance in LearnMelt. Features with higher values are more important

in predicting the eigen-drop. In order to evaluate the feature importance in random forests, we

measure the mean square error of prediction [15]. When building the regression trees in random

forests, the out-of-bag (OOB) samples are used to compute the prediction error. For each

feature f , f is randomly permuted in the OOB samples and the prediction error is computed.

The change in prediction error is used to measure the importance of feature f . The values

are normalized such that the total importance values of all features is 1. In LearnMelt, the

degree-based features are more important than the clustering-coefficient based features.
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Figure 6.9: Clustering-coefficient is not an important feature in LearnMelt when deleting the

connection between u,v. Edges u2-u3 and u3-u4 hardly affect the connectivity of the graph

when deciding to delete the edge u-v
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experiments for 100 times and report the average. In Figure 6.10, the x-axis is the time step

and the y-axis is the fraction of nodes infected at particular time. A lower fraction of infected

nodes is better. We observe that our method MET always achieves similar performance to Net-

Melt+. Among methods that only use structural features, LearnMelt is the best method. Again,

Rich-Poor and Poor-Poor perform poorly and are omitted for brevity.

6.4 Discussion

One possible strategy for improving NetMelt+ is to optimize the eigen-scores computation

steps. As mentioned before, we use the power iteration method to compute the eigenvector for

λ. The power iteration method uses an initial random eigenvector u0 and performs the iteration

ui+1 = Aui
||Aui|| . In NetMelt+, we store the current eigenvector for the next iteration of dele-

tions. When re-computing the eigen-scores, we use the stored eigenvector as the initial vector

for the power iteration calculation. This method can improve runtime in the Oregon graphs

by 13.4%, but it does not improve the runtimes on Yahoo! IM, Facebook, and Twitter graphs.

The reason for this is because the gap between the leading and the second highest eigenvalues

is small. Thus, it takes a significant number of iterations to converge. Also, social graphs are

often more volatile than technological graphs, where one deletion can change the eigenvec-

tors significantly. Therefore, optimizing the power iteration will not solve the aforementioned

efficiency problems of NetMelt+ when dealing with social graphs.

The runtime of MET is 100+ times faster than NetMelt+ in the YIM graphs, 30 times faster

in the TT graphs, but only 10+ times faster in the FB graphs. The reason for this is that the

top T eigenvalues of the FB graph become close together after removing k edges (as in Figure

6.3, the difference between λ1 and λ21 in FB graph can be as small as 0.05). When the top-T

eigenvalues are so close as in the FB graph, MET has to track more eigenvalues or re-computes

the eigen-scores more often, which leads to the higher runtimes.

We see that finding the best k edges to delete is more difficult in social graphs, especially

when many of the top eigenvalues are close to each other. In this case, we need to track more

eigenvalues which makes the computation more expensive. In real applications, we may allow

a small loss in efficacy by introducing a slack variable epsilon, which makes MET faster.
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Figure 6.10: (Best viewed in color.) Comparing the capability of different methods to minimize

the number of infected nodes in the SIS model. Lower on the y-axis is better. We removed

k = 1000 edges from the graph using different algorithms, ran 100 simulations and took the

average number of infected nodes. The normalized virus strength ' 1.5. The virus strength

is β
δ , where β, δ are the infection and death rates of the virus, respectively. Our method MET

achieves similar performance to NetMelt+ in minimizing the number of infected node. MET

always beats other methods in social graphs, who often have small eigen-gaps. LearnMelt beats

Rich-Rich, which is another applicable method when the exact topology is not available.
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Chapter 7

Conclusions and Future Work

Our work studied different approaches to minimize dissemination on graphs. We observed that

the small gap between the top eigenvalues is prevalent in social graphs, which makes the prob-

lem of minimizing the leading eigenvalue a challenge. We proposed a novel approach, MET , to

tracking multiple eigenvalues and their associated eigen-scores. Our proposed method can find

edges whose deletions result in the largest drop in the leading eigenvalue, while being scalable

for large graphs. Our method performs well across different graph types, from technological to

social networks.

Our work also considered the aforementioned problem when the exact topology of the graph

is not available. In some domains, such as finance, the exact connectivity of the graph might

be too sensitive to release and we might have access to structural features only. In this case,

we proposed a learning approach called LearnMelt that learns which edges to delete based

on available graph. Our experiment showed that the degree-based features are very important

when deciding which edges to delete.

We evaluated our algorithms extensively on multiple large real graphs and showed the ef-

ficacy and efficiency of our methods. In our comparative study, we found that: (i) our MET

achieves the best combination of efficacy and efficiency, and (ii) our LearnMelt achieves high-

est efficacy when the exact topology of the graph is not available.

In future work, we plan to improve our estimation of the eigen-drop, which can help in

improving the runtime of our algorithms. We hope to develop a distributed version of MET

to reduce the computational cost of our algorithms MET. At the moment, our algorithms and

existing algorithms use the full topology of the graph, which is hard to distribute computation.

We will also consider the problem of when we have partial observation of the graph. For

example, we can pick up some nodes in graph and extract the egonet around these nodes. In
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this case, we can only use the partial information of the graph to decide which edge to delete.

Developing a distributed algorithm that can work with partially observable graph is challenging

but promising.
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Appendix A

Appendix

A.1 Relationship Between Eigenvalues and Eigenvectors

Lemma A.1.1. Given a graph G represented by a symmetric matrix A and an edge e in G, let

λi be the ith eigenvalue of A and λ̄i be the corresponding eigenvalue after removing the edge

e. We have:

∆λi = λi − λ̄i ≈ eigenscores(e, i) (A.1)

Proof. Let ∆A be the perturbation matrix of A when removing edge e (i.e., all entries are zeros

except the corresponding entries of edge e. Let ∆ui be the perturbation of the ith eigenvector.

By definition of eigenvalue and eigenvector, we have:

Aui = λiui (A.2)

(A−∆A)(ui −∆ui) = (λi −∆λi)(ui −∆ui) (A.3)

Ignoring the high-order perturbations such as ∆A∆ui,∆λi∆ui, and using Eq. A.2, we

have:

A∆ui + ∆Aui ≈ λi∆ui + ∆λiui (A.4)

Multiplying both sides of Eq. A.4 by u′i (i.e., the transpose of vector ui), leads to:

u′iA∆ui + u′i∆Aui ≈ u′iλi∆ui + u′i∆λiui (A.5)

Reordering the scalar values, we get:

u′iA∆ui + u′i∆Aui ≈ λiu′i∆ui + ∆λiu
′
iui (A.6)
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Using the unitary characteristic of ui (i.e,. u′iui = 1) and the symmetric property of A (i.e.,

Aui = λiui⇒ (Aui)
′ = (λiui)

′⇒ u′iA = λiu
′
i), we have:

∆λi = u′i∆Aui ≈ eigenscores(e, i) (A.7)

A.2 Relationship Between the Leading Eigenvalue and the Maximum Degree of

a Graph

Lemma A.2.1. Let dmax be the maximum degree of graph G, and λ1 be the largest eigenvalue

of the adjacency matrix. Then: √
dmax ≤ λ1 (A.8)

Proof. If A′ is a sub-matrix of A, according to Proposition 3.1.1 in [4]), we have:

λ1(A) ≥ λ1(A′) (A.9)

From the definition of λ, we can write:

λ1 = max
x

xTAx

xTx
(A.10)

We see that
√
dmax is an eigenvalue of a star graph with the highest degree of dmax. This

can be shown by choosing the values of vector x in Eq. A.10 as
√
dmax for the node with

highest degree and 1 for other nodes.

From the facts A.9 and A.10, we have
√
dmax ≤ λ1.

A.3 An Approach for Finding the Upper-bound of the Optimal Solution when

Removing k Edges

It has been shown that finding the optimal solution for minimizing the largest eigenvalue is

NP-hard [32]. Here, we show the upper-bound on the largest degree of a graph after removing

k edges. This helps us in upper-bounding the drop of the leading eigenvalue in the optimal

solution.
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Figure A.1: Upper-bound on the percentage decrease in λ1. Budget k = 1000. The optimal

solution must be in between the black and red bars. Equation A.11 provides a tighter bound

than Equation A.12.

Suppose we have a sequence of numbers: d1 ≥ d2 ≥ ... ≥ dn (this is not a degree sequence-

just a sequence of numbers). Consider the trivial problem of minimizing the maximum element

in this sequence by reducing one element at a time. Obviously the best way to do this is by

reducing d1 until it is equal to d2, then reduce d1 and d2 alternately until they are equal to

d3, etc. Let f(x) be the maximum value of this specific sequence after one performs x such

reductions.

In the case of a graph, if we are allowed to remove k edges in a given graph, the maximum

degree of the modified graph can not be smaller than f(2k). We can find the upper-bound of

the drop of the leading eigenvalue as in Eq. A.11. Notice that 0 <
√
f(2k) ≤ λ̄1 ≤ λ1.

%drop =
100 ∗ (λ1 − λ̄1)

λ1
≤

100 ∗ (λ1 −
√
f(2k))

λ1
(A.11)

There is a simpler approach for finding the upper bound of the optimal solution. Let the

highest degree of original graph be dmax, then the highest degree after removing k edges will

be at least dmax − k. Thus,

%drop =
100 ∗ (λ1 − λ̄1)

λ1
≤ 100 ∗ (λ1 − (dmax − k))

λ1
(A.12)

Figure A.1 depicts the upper-bound of the optimal solution when using (dmax−k) to bound

the highest degree of modified graph. We see that f(2k) provides a tighter bound.


