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Economic-lot-size formulas enable us to get number of orders that reduce costs 

of each of: inventory, setup, and ordering. In manufacturing problems, formulas of 

economic-lot-size may give rise in unrealizable schedules, in some production periods the 

shop could not satisfy demands, whereas at other times slack periods that lead to idleness 

may occur. This research depicts a technique that allows the computation of order 

quantities in order that demands are satisfied with available labor and machines. The 

technique includes a simple step-by-step computation, particularly adaptable to 

computer programming (MATLAB). 
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Chapter One 

Introduction 

 

Consider a hypothetical corporation making a particular part to satisfy the 

demands shown in (Figure 1). By the end of February the demand is 30 parts, by the 

end of March the demand is 40 parts, by the end of April the demand is 65 parts, by 

the end of May the demand is 100 parts, and finally by the end of June the demand is 

120 parts. The figure displays two possible production plans. The first plan determines 

that 80 parts be made in January and 40 parts be made in April; whereas the second 

plan proposes these parts should be made each month, 30 in February, 10 in March, 

25 in April, 35 in May, and 20 in June. Actually, both of these production plans satisfy 

the demands, but Plan 1 includes only two set-ups, in January and April, whereas Plan 

2 includes set-ups in each of the six months. Each set-up includes a cost (not only in 

setting up the machine, but also in paperwork). Obviously, Plan 1 includes less set-up 

cost than Plan 2. In other hand, Plan 1 includes a larger inventory and, as a result, a 

larger inventory-carrying cost. If we regard combined inventory and set-up cost, which 

of these two plans represent the lower cost? Also, does either of these plans represent 

the lowest possible cost and, if not, how could one determine the most economic 

production plan? 
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Figure 1: A hypothetical production plan. 

 

The traditional economic-lot-size formula answers this question on condition that 

demands form a straight line. The formula is as follows 

Q = �2𝐷𝐷𝐷𝐷𝐷𝐷/𝑝𝑝𝐷𝐷 

Where Q = order quantity (economic lot size) 

                           D = yearly demand 

                           Cs = set-up cost, C is the cost of the part 

                           pC = annual inventory carrying cost 

Indeed, in many manufacturing corporations, using this economic-lot-size formula 

is limited by the fact that the corporation participates in manufacturing many parts and 

not only one single part. As a result of this, the economic-lot-size formula may lead to an 
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addition condition in some production periods, whereas in other production periods 

there may not be enough work. In most production cases, there are just a limited number 

of machines and workers available and, as a result, production must be planned within 

available machine capacity and workers. The purpose behind this research is to determine 

economic-lot-size formula that satisfies this case. 

Our aim of this research, obtaining a solution to the following problem: Suppose 

a manufacturing corporation produces many parts to satisfy a given set of demands, and 

plans are made for future production periods. It is supposed that the available productive 

hours on each machine are known, that is the time required to make each part (including 

set-up time) is known, and that cost of both set-up and carrying inventory are known. The 

problem is that we have to determine order quantities for each part in order that the 

demands are satisfied and the cost of both set-ups and inventory carrying is minimized. 

This formulation of the problem involves a particular case of traditional economic-

lot-size formula. If there is an increment of machines and workers, then it is possible to 

plan for each part separately. If the demands for each part are given by a straight line, 

then the traditional economic-lot-size formula minimize costs of both carrying inventory 

and setting up. On the other hand, under these conditions the economic-lot-size formula 

gives a production plan that is achievable. As a result, our problem we are dealing with 

here is a generalization of economic-lot-size formula. 

We shall display the problem firstly by defining its mathematical statement. Then 

we shall show that the problem results in a very large nonlinear, mathematical-
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programming problem. This nonlinear programming problem offers such an enormous 

suggestion that it is not yet possible to improve a general solution. However, we shall 

prove that it is possible to get a solution to this problem which satisfies demands and stay 

within available production capacities, but it may not necessarily minimize costs of both 

inventory and set-up. The computation method is simple and especially suitable for a 

computer programming. Although the fact that the computed solution may not be 

optimal, it may be possible to perform a series of computations and then get a relatively 

good solution. This research is to generalize the economic-lot-size formulas. 
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Chapter Two 

Mathematical Model of the Problem 

 
Consider a manufacturing corporation produces parts P1, P2, P3,... on machines M1, 

M2, M3, … . Our problem is that we have to make plans for future production periods π1, 

π2, π3, … . Demands for each part in each production period are given, and we denote by 

dim the demands for part P i in production period πm. Our problem is to compute the 

quantity of parts P i to be made in production period πm. Let us denote x im to the order 

quantity of  P i to be made in production period πm, then our problem is to evaluate this 

unknown x im for every part in every production period. (We have to know that in some 

production periods some of these order quantities could be zero.) In order to facilitate 

the improvement of the mathematical statement of the problem, it will be helpful to deal 

with cumulative demands and order quantities. We denote by D im the cumulative 

demands for part P i up to and including period πm, and by X im the cumulative order 

quantity for part P i. In a mathematical statement, we have 

D im = ∑ 𝑑𝑑𝑚𝑚
𝑘𝑘=1 Rim   ………. (1) 

X im = ∑ 𝑥𝑥𝑚𝑚
𝑘𝑘=1 Rim   ………. (2) 

The demands must be satisfied by our production plan, this means that the 

cumulative order quantities must be larger or not less than the cumulative demands. In a 

mathematical statement, this can be written as follows inequality 

X im ≥  PD im   ………. (3) 
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Now we have to deal with a mathematical statement of condition that the 

production plan must stay within available machine capacities. To put this condition into 

a mathematical form, we have to compute the machine-hour requirements enjoined by 

production plan. Making of each part P i on machine Mn needs a particular number of 

hours, let us denote this by Tn,i (This is run-time related to part P i and machine Mn.) Also, 

to make this part on the machine, the machine requires set-up; let us denoted the set up 

time by 𝜎𝜎Rn,i . According to this notation, we can compute how large a load is enjoined on 

machine Mn by the making of a lot of P i . x im denotes the quantity of P i must be made in 

πm ; this quantity of parts needs the following number of hours to making : 

Machine-hour needs = Tn,i x im + 𝜎𝜎Ri,m 

There is a remark about this formula that has to be watched. If we do not make any part 

in this period, then we have  x im=0. The formula would tell us that the machine-hour 

needs in this situation is 𝜎𝜎Ri,n , but this is in fact incorrect, since if there is no manufacturing 

for any part then there is no need for machine  setting up. Therefore, we have to add this 

statement 

Machine-hour needs = 0 if x im = 0 

Now, we introduce now a special notation for the “unit function” so that the above two 

statements will put in a single one. We say that the unit function U(x) is given by 

U(x) = 1 when x>0 , U(x) = 0 when x=0 
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With the above notation we can say that 

Machine-hour needs = Tn,I x im + 𝜎𝜎Rn,I U(x im) 

Now we denote hnm to the number of hours needed for the machine Mn in 

production period πm . To get these machine-hour needs, we have to consider all parts, thus 

we can write that 

hnm = ∑ 𝑇𝑇𝑖𝑖 Rn,i x im + ∑ 𝜎𝜎𝑖𝑖 Rn,i U(x im)   ……….(4a) 

Now we denote by Hnm the number of hours available for machine Mn in period πm . 

According to the production plan, the machine-hour needs must be within available 

hours, thus we have the following inequality: 

hnm ≤ Hnm   ……….(4b) 

These last two equations can now be written as the following : 

∑ 𝑇𝑇𝑖𝑖 Rn,i x im +∑ 𝜎𝜎𝑖𝑖 Rn,I U(x im) ≤ Hnm   ……….(5) 

In other words, the equations (3) confirms that the production plan satisfies demands and 

equations (5) shows that the production plan must be within available machine hours. A 

production plan satisfying these conditions can be called a feasible production plan. To 

complete the mathematical statement of the problem, we shall determine the cost 

related to the production plan.  
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At first, we shall compute the inventory cost. The production plan determine that 

a cumulative quantity of X im is made by production period 𝜋𝜋m. Demands are just D im. 

Which means that there will be inventory X im - Dim . This includes an inventory carrying 

cost, which computed as follows 

pC i (X im - Dim)   ……….(6) 

Where pC i now represents the carrying cost per part i for one production period. We can 

get the total inventory carrying cost by adding the inventory carrying cost of each part for 

each period. We denote by Ic the total inventory carrying cost, so we have the following 

equation 

Ic = p  ∑ ∑ 𝐷𝐷𝑚𝑚𝑖𝑖 RI (X im -D im)   ……….(7) 

Now, we shall compute set-up cost. Let  Cn,i denote the set-up cost of 

manufacturing part P i on machine Mn . (This set-up cost involves  the labor cost and the 

paperwork cost.) The total set-up cost is computed by following equations 

Sc = ∑ ∑ 𝐷𝐷𝑛𝑛𝑖𝑖 Rn,I U(x im)   ……….(8) 

As we know, the unit function takes the value of 1 when there is a production order, and 

the value 0 when there is none. We obtain the total cost related to the production plan, 

by adding up inventory carrying and set-up costs, as follows 

Z = p∑ ∑ 𝐷𝐷𝑚𝑚𝑖𝑖 RI (X im - D im) + ∑ ∑ 𝐷𝐷𝑛𝑛𝑖𝑖 Rn,i U(x im)   ……….(9) 
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In mathematical language, we have to minimize the total cost Z, subject to the inequalities 

as expressed by equations (2), (3), and (5). This result in a linear-programming problem, 

except that the equation (5) is nonlinear as well as cost function. The reason is that these 

equations contain the unit function, which is a nonlinear function. So we have here a 

problem in nonlinear programing. 

In order to estimate the size of the problem, we will consider a pragmatic example. 

Assume that we have to make 500 parts on 50 machines, and we are having a production 

plan for 10 production periods. In our equations system we have 500 unknowns in each 

production period, as a result we have 5000 unknowns. Equation (2) pertains the 

cumulative production quantities to the monthly production quantities. This equation 

have to be written for each part and each production period, as a result, the equation (2) 

represents 5000 equations. In the same manner, the equation (3) represents another 

5000 equations. The condition of staying within available machine hours as written by 

equation (5) must be considered for each machine and each production period, thus we 

have here 500 inequalities. The total cost, as written by equation (9), consists of two 

terms for each part in each production period, thus, a total of 10000 terms. Now, we have 

5000 unknowns, 10500 inequalities, and our problem is to minimize a cost function 

consisting of 10000 terms. Now, we know that even if our equations were linear we will 

have programming problem that can be solved by capacity of the largest electronic 

computer. But we have nonlinear equations, and we don’t have a general known method 

to deal with such kind of equations. This implies that the solution of our problem, which 

minimize the cost function, is outside the available capabilities, and this should not 
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inhibits us because in many production cases the most important thing is to get a feasible 

solution (one that satisfies demands and stay within available machine abilities). The 

motivating point is that such a feasible solutions can be got with relative case. Now we 

shall describe the computation related to getting a feasible solution to problem of 

production planning. 

 

Feasible Solution Computation 

Computation method can be best explained by hypothetical example. Consider a 

manufacturing corporation that is manufacturing four parts,P1, P2, P3, and P4 on three 

machines M1, M2, and M3 . A production plan is to be done for five future production 

periods π1, π2, π3, π4, and π5. Table 1 illustrates the demands for each part in each 

production period. It is shown that there are no demand in π1 and π2 for part P1, and for 

example, the demand is 25 for P2 in production period π4. The cumulative demands are 

given in Table 2. The production time (run-time) for each part in each machine is given in 

Table 3. The available hours on each machine for each production period are shown in 

Table 4. (It has to be known that hours available on individual machine do not change 

through periods, because in this plant the machines remain the same and have not 

changed. It is obvious that different machines may have different hours available. 

Generally, we might mean by M1 a group of similar machines, by M2 another group of 

similar machines, and so on.) 
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       K        
J 𝝅𝝅1 𝝅𝝅2 𝝅𝝅3 𝝅𝝅4 𝝅𝝅5 

P1 0 0 30 10 20 

P2 0 5 10 25 20 

P3 0 20 15 15 20 

P4 5 35 0 0 0 
 

Table 1:  Demand matrix [d] 

 

       K        
J 𝝅𝝅1 𝝅𝝅2 𝝅𝝅3 𝝅𝝅4 𝝅𝝅5 

P1 0 0 30 40 60 

P2 0 5 15 40 60 

P3 0 20 35 50 70 

P4 5 40 40 40 40 
 

Table 2: Cumulative demand matrix [D] 

 

      K    
i P1 P2 P3 P4 

M1 2 3 0 1 

M2 4 0 2 2 

M3 0 5 5 2 
 

Table 3: Run-time matrix [T] 

 

       K        
i 𝝅𝝅1 𝝅𝝅2 𝝅𝝅3 𝝅𝝅4 𝝅𝝅5 

M1 100 100 100 100 100 

M2 150 150 150 150 150 

M3 200 200 200 200 200 
 

Table 4: Available-hours matrix [H] 
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Before we start the computation of a production plan which satisfies demands 

and stay within capacities, we have to know the set- up time for each part on each 

machine. However, we ignore these set-up times because it may be easier for 

computation when set-up times are ignored. Later, we will include the set-up times into 

the computation procedure which needs just a slight adjustment. The supposition of 

ignoring set-up time can be considered in another way. One could have experience from 

past rendering to foretell the number of machine hour available for production, and thus 

a particular number of hours may be specified for set-up. 

Now we have to compute the unknown production quantities x im to satisfy the 

demands as shown in Table 1 and we stay within available hours as shown in Table 4. 

We maybe think of a question, why cannot we make the order quantities equal 

the demands? That is, why cannot we have: 

x im = dim   ?   ………. (10) 

These order quantities satisfy demand, but do they stay within available productive 

machine hours? We cannot consider that this is the case. As an explanation, we will 

compute the number of hours required by M1 in production period π5. We have to use 

the equation (4) to obtain h15; 

h15 = T1,1 d15 + T1,2 d25 + T1,3 d35 + T1,4 d49   ……….(11) 

(Remark that we are neglecting set-up time). By substituting the numerical values we 

obtain a machine load of 140 hours. But we have just 100 hours available and, as a result, 
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we are not within the abilities of M1 (Therefore, we have to make some of parts earlier 

than the fifth production period to satisfy the demands and stay within available 

capacities.) 

We suggest a method to computing order quantities. This method consists of a 

step-by-step computation beginning at the last production period. Now, consider only the 

schedule for P1. We need 60 P1’s by the end of the fifth production period, whereas we 

need 40 P1’s by the end of the fourth production period. If we do not make anything just 

P1’s, how many of these parts can we manufacture in the fifth production period? To 

answer this question, we have to know the machine loads enjoined in the fifth production 

period, which are given as follows 

h14 = 2 x14, h24 = 4 x14, h34 = 0   ……….(12) 

We must be within capacities and, therefore, we must have 

h14 ≤ 100, h24 ≤ 150, h34 ≤ 200   ……….(13) 

From above equations, it follows that 

x14 ≤ 50 , x14 ≤ 150/4 = 37   ……….(14) 

It is shown that we cannot make more than 37 P1’s in the fourth production period. 

However, we want just 20, and therefore, we manufacture 20 or put x14 = 20. Now, we 

perform the same reasoning for making P1’s in the fourth production period. It is obvious 

to show that we could make 37 parts, but we want just 10; so we manufacture 10, 

therefore x14 = 10. The same situation in the third production period, we could 

manufacture 37 of P1’s but we want just 30, so we put x13 = 30. Now, all order quantities 
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for P1 are known, and so we satisfy the demand. Now, we are going to deal with P2 and 

its computation. 

We have to consider that we have come to an agreement to manufacture P1’s 

and therefore we do not have the productive hours available as shown in Table 4. In 

order to compute how many hours we still have, we will determine the hours enjoined 

by P1. This is shown in Table 5 and it was obtained with the help of first column of 

Table 3, which shows machine-hour needs (run-time) for P1. Now we subtract the 

hours expended from Table 5 from the hours available in Table 4, so we obtain the 

hours still available in Table 6. 

 

       K        
i 𝝅𝝅1 𝝅𝝅2 𝝅𝝅3 𝝅𝝅4 𝝅𝝅5 

M1 0 0 60 20 40 

M2 0 0 120 40 80 

M3 0 0 0 0 0 
 

Table 5: Hours imposed by P1 or matrix [yn,1m]. 

 

 

       K        
i 𝝅𝝅1 𝝅𝝅2 𝝅𝝅3 𝝅𝝅4 𝝅𝝅5 

M1 100 100 40 80 60 

M2 150 150 30 110 70 

M3 200 200 200 200 200 
 

Table 6: Available hours for P2, P3, P4, or matrix [zn,1m]. 
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Now, there is a question: how many P2’s can we manufacture in the fifth 

production period? The load enjoined on M1 must be within capacity, such that 

3 x25 ≤ 60   ……….(15)  

P2 does not include Machine 2, so there is no limitation there. But we must stay within 

limitation on M3 and, thus, we must have 

5 x25 ≤ 200   ……….(16) 

From equation (15) we conclude that we cannot make more than 20 of P2 in the fifth 

production period. Now, we will check Table 2, the cumulative demands for P2. We see 

that we want 60 parts of P2 by the end of the fifth production period, whereas we want 

40 of P2 by the end of the fourth production period. Therefore, we have to make 20 of P2 

in the fifth production period. This mean that x25 = 20, and the cumulative order quantity 

for the fifth and fourth periods are 

X25 = 60   ……….(17) 

X24 = 40   ……….(18) 

Now, we will consider the order quantities P2 in fourth production period. We 

must not overtake machine capacities on M1 

3 x24 ≤ 80   ……….(19) 

And the same on M3 

5 x24 ≤ 200   ……….(20) 
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This implies that we can manufacture 26 of P2 in the fourth production period, but we 

need only 25. Therefore, x24 = 25   ……….(21) 

The cumulative order quantity for P2 is 

X24 = 40   ……….(22) 

With the same manner, we can determine the rest of order quantities for P2 , and obtain 

x23 = 10 , X23 = 15 , x22 = 5 , X22 = 5 

Now, we have completed the computations of order quantities for P1 and P2. Next, 

we will compute the machine load enjoined by P2 and subtract from the original available 

productive hours the combined load enjoined by P1 and P2. This gives us the hours available 

for making P3 and P4 . After that, we continue and determine step-by-step the order 

quantities for P3. Afterwards, we again compute the available machine hours for P4 by 

subtracting the load imposed by P1, P2, and P3. Then we end our computation by determining 

step-by-step the order quantities for P4 . The computed order quantities for the different 

parts are shown Table7, and, the cumulative order quantities are shown in Table 8. It is clear 

that see that these order quantities satisfy the demand. Table 9 determines the total labor 

imposed and it is observed that these productive machine hours are staying within available 

productive hours as shown in Table 4. 

Indeed, it is possible that there is no schedule that satisfies the demands within 

available capacities. On the other hand, with some other computation methods, it is 

possible that a feasible schedule could be obtained. This problem cannot be resolved by 
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our method and there is no substitution in this case except to go back to the gigantic non-

linear-programming problem as explained in our research. 

 

       K        
J 𝝅𝝅1 𝝅𝝅2 𝝅𝝅3 𝝅𝝅4 𝝅𝝅5 

P1 0 0 30 10 20 

P2 0 5 10 25 20 

P3 0 20 15 15 20 

P4 5 35 0 0 0 

Table 7: The order-quantity matrix [x]. 

 

        K        
J 𝝅𝝅1 𝝅𝝅2 𝝅𝝅3 𝝅𝝅4 𝝅𝝅5 

P1 0 0 30 40 60 

P2 0 5 15 40 60 

P3 0 20 35 50 70 

P4 5 40 40 40 40 

Table 8: The cumulative-order-quantity matrix [X]. 

 

       K        
i 𝝅𝝅1 𝝅𝝅2 𝝅𝝅3 𝝅𝝅4 𝝅𝝅5 

M1 5 50 90 95 100 

M2 10 110 150 70 120 

M3 10 195 125 200 200 

Table 9: Labor-hours-imposed matrix [h]. 
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Now, we have completed a procedure of getting a solution to our problem (under 

condition that we ignored set-up time and that there is no need for initial inventory). If the 

problem is not too large, then a solution can be gotten by hand computation. But if the 

problem gets really large, for example, if we make 500 parts, in 10 production period, and 50 

machines, then hand computation will be difficult. Fortunately, the solution of this problem 

can be obtained through a program in MATLAB (we will present this program). Also, we will 

present a more general mathematical formulation of this computation technique. 

 

The General Method of Obtaining Feasible Solution 

At first, we want to commute equation (5) by an equation which deals with the 

cumulative schedules (we still are neglecting set-up time) or 

∑ 𝑇𝑇𝑖𝑖 Rn,i (X im – X im-1) ≤ Hnm    ……….(23) 

Now, our problem is to get a positive solution to the equation (23) under condition that 

Xim ≥ X im-1    ……….(24) 

(The last equation implies that the cumulative schedule does not lessen.) We begin our 

method by neglecting all other parts, but P1 and by taking the port of the equation (23) 

which relates to P1. Thus, we get the following inequality 

Tn,1 (X1m – X1m-1) ≤ Hnm    ……….(25) 
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Suppose that we do not design to have a final inventory: 

X im = D im   ……….(26) 

(If we wish to have a final inventory, we have to change the last equation.) Now, we will 

compute X1m-1. We compute the maximum number of P1’s that could be manufactured 

by determining the hours enjoined on the machines. We get the following inequality: 

X1m – X1m-1 ≤ Hnm/ Tn,1    (n = 1,2,…,N)   ……….(27) 

Last equation can be written in a this form 

X1m – X1m-1 ≤ minn [Hnm / Tn,1]   ……….(28) 

This means that the left-hand side must be smaller than the smallest of the different terms 

on the right-hand side. Now, we compute this with our previous numerical example. In 

equation (13) we had 100, 150, and 200 hours for each of the machines, dividing them by 

run-time 2, 4, and 0 we got 50, 37, and infinity. According to equation (28), we picked the 

smallest of these numbers. We can rewrite equation (28) in a different form: 

X1m-1 ≥ X1m – minn [Hnm / Tn,1]   ……….(29) 

Last inequality implies that X1m-1 has to be larger than the number shown on the right-

hand side. According to the demands X1m-1  must also be larger than D1m-1, therefore we 

have 

X1m-1 ≥ D1m-1    ……….(30) 



20 
 

In our method, we usually picked  X1m, the largest possible; this implies that we take X1m-

1, the smallest possible. In other words, we obtained X1m-1 by picking the larger of the two 

numbers appearing on the right-hand side of equations (29) and (30). In mathematical 

statement, this can be written as follows 

X1m-1 = max { [ X1m – minn (Hnm/Tn,1) ] ; D1m-1 }   ……….(31) 

In our particular numerical problem we had  

min (Hnm / Tn,1) = 37   ……….(32) 

The cumulative demand for P1 at the end of the fifth period was 60, and thus we have 

X1m = D1m = 60   ……….(33) 

The cumulative demand for P1 at the end of the fourth period was 40, and thus we have 

D1m-1 = 40   ……….(34) 

We get the cumulative schedule by the help of equation (31), which in the present 

situation, we have 

Max { [60 – 37] ; 40 } = 40   ……….(35) 

As a result, we obtained  X1m-1 = 40   ……….(36) 

In fact, we see then, that our equation (31) is the same as the method we have already 

used. Exactly similarly, we can determine, step-by-step, the schedule of P1 for the 
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remaining of the production periods by working backward with the help of the following 

relation 

X1m-1 = max { [X1m – min (Hnm / Tn,1) ] ; D1m-1} 

                                             (m = m,m-1,m-2,…)   ……….(37) 

Now we have a general mathematical expression to get the schedule for P1. In 

order to compute the schedule for P1. We have to compute the machine hours enjoined 

by P1. Let Yn,1m denote the load enjoined on machine Mn in production period πm . (The 

second index 1 means that this is the load enjoined by schedule only part one.) Therefor, 

we have 

Yn,1m = Tn,1 x1m   ……….(38) 

Now, we can determine the hours that are still available with the help of the formula 

Zn,1m = Hnm – Yn,1m   ……….(39) 

Now, we can employ equation (37), but we have to change the originally available hours 

by the balance of the hours. Thus, we obtained 

X2m-1 = max { [X2m – min (zn,1m / Tn,2)] ; D2m-1 }   ……….(40) 

This is the schedule for P2. Next, we determine the hours enjoined on the machines by P1 

and P2 with the help of the formula 

Yn,2m = Tn,1 x1m + Tn,2 x2m    ……….(41) 
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Now, the balance of available hours can be determined as follows 

zn,2m = Hnm – Yn,2m   ……….(42) 

By similar way, we can compute the schedule for P3 with the help of the formula 

X3m-1 = max { [ X3m – min(zn,2m / Tn,3)] ; D3m-1 }   ……….(43) 

For generalization, after k steps (that is, after determining the schedule for P1, P2, 

…, Pk) we impose on the machine the load 

Yn,km = ∑ 𝑇𝑇𝑗𝑗=𝑘𝑘
𝑗𝑗=1 Rn,j xjm    ……….(44) 

Now, the available productive hours are computed as following 

zn,km = Hnm –Yn,km   ……….(45) 

The schedule for Pk+1 is determined by 

Xk+1m-1 = max { [ Xk+1m – min (zn,km / Tn,k+1)] ; Dk+1m-1 }   ……….(46) 

In brief, we have here a complete system of equation, which, step by step, offer a 

solution to our scheduling problem. This system of equations is called in mathematics an 

algorithm. The problem of putting machine-shop scheduling on a computer can be solved 

this algorithm on a computer program (by MATLAB). 

In the solution method we have presented, we determined first the schedule of 

P1, then the schedule of P2, and so on. Also, we can use an alternative method of 
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computation which is to begin with the schedule of P1 for the last production period, then 

obtained the schedule for P2 for the last production period, and so on, and complete the 

schedules for all the parts in the last production period. Then we proceed to the last but 

one production period, and determine the schedule there, and so on. The amount of 

computation needed in both methods is the same. However, there may be some 

workable reason to prefer one of the two methods. 

 

The Inclusion of Set-Up Time 

Finally, we will turn our attention to the problem of how to include set-up times 

in our computation. Indeed, since our method of determining order quantities through 

step-by-step computation, we can make a slight modification of our method to include 

set-up time. As an explanation, let us go back to the hypothetical corporation making four 

parts on three machines. We will again compute the order quantity x15. Assume that the 

set-up time for P1 is 0.5 hours on M1 and 1.2 hours on M2. In order to stay within capacity 

we need to change equations (12) and (13) by 

2x15 + 0.5 ≤ 100 ,      4x15 ≤ 150       ..........(47) 

We know that, according to Table 1 we should make 20 of P1 in fifth production 

period. Similarly, we can compute x14 and x13, and in each case apposition must be made 

for set-up time. Next step is that, we must subtract the time required to make P1 from 

the available machine hours. This again must involve both run-time and set-up time. Then 
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we have to compute step-by-step the order quantities for P2, followed by computation 

for P3, and finally for P4. 

 We can include this modification of computation technique into the general 

formulation of our algorithm. For example, equation (25) can be changed by 

𝜎𝜎Rn,1 + Tn,1 (X im – X im-1) ≤ Hnm   ……….(48) 

And the equation (31) can be changed by 

X1m-1 = max { [X1m – min(Hnm – 𝜎𝜎n,1) / Tn,1 ] ; D1m-1 }   ……….(49) 

A similar modification can be done in equation (37). 

We must also modify the formulas that give the load enjoined on different 

machines. For example, equation (38) is replaced by 

Yn,1m = 𝜎𝜎Rn,1 + Tn,1 x1m   ……….(50) 

Indeed the inclusion of set-up times in determining order quantities can be done 

easily. 
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Chapter Three 

Practical Project (MATLAB) 

 

This chapter presents two MATLAB codes to solve our previous numerical 

example as follows:  

%First Method Code 
D = [ 0 0  30 10 20 ; 
      0 5  10 25 20 ; 
      0 20 15 15 20 ; 
      5 35 0  0  0 ]; 
 

CD = [ 0 0  30 40 60 ; 
       0 5  15 40 60 ;  
       0 20 35 50 70 ; 
       5 40 40 40 40 ]; 
 

T = [ 2 3 0 1 ; 
      4 0 2 2 ;  
      0 5 5 2 ]; 
 

H = [ 100 100 100 100 100 ; 
      150 150 150 150 150 ;  
      200 200 200 200 200 ]; 
 

H_org = H; 
x = zeros(4,5); 
 
for k = 1 : 4 
v = [999 999 999]; 
for j = 5 : -1 : 1 
for i=1:3 
   if (T(i,k) ~= 0 && H(i,j) ~= 0 ) 
       v(i) = floor(H(i,j)/T(i,k)); 
   end 
end 
minValue = min(v) 
    if(minValue >= D(k,j)) 
        x(k,j) = D(k,j) 
    end 
end 
 
H1 = T(:,k)*x(k,:); 
H = H - H1 
end 
H_Laber_Hours_Imposed = H_org - H 
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After run the above code, we got the following results: 

minValue = 

    37 
 
x = 
     0     0     0     0    20 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    37 
 
x = 
     0     0     0    10    20 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    37 
 
x = 
     0     0    30    10    20 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    37 
 
x = 
     0     0    30    10    20 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    37 
 
x = 
     0     0    30    10    20 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 

H = 
   100   100    40    80    60 
   150   150    30   110    70 
   200   200   200   200   
200 
 
minValue = 
    20 
 
x = 
     0     0    30    10    20 
     0     0     0     0    20 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    26 
 
x = 
     0     0    30    10    20 
     0     0     0    25    20 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    13 
 
x = 
     0     0    30    10    20 
     0     0    10    25    20 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    33 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    33 
 
 

x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0     0     0     0     0 
     0     0     0     0     0 
 
H = 
   100    85    10     5     0 
   150   150    30   110    70 
   200   175   150    75   100 
 
minValue = 
    20 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0     0     0     0    20 
     0     0     0     0     0 
 
minValue = 
    15 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0     0     0    15    20 
     0     0     0     0     0 
 
minValue = 
    15 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0     0    15    15    20 
     0     0     0     0     0 
 
minValue = 
    35 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0    20    15    15    20 
     0     0     0     0     0 
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minValue = 
    40 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0    20    15    15    20 
     0     0     0     0     0 
 
H = 
   100    85    10     5     0 
   150   110     0    80    30 
   200    75    75     0     0 
minValue = 
    15 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0    20    15    15    20 
     0     0     0     0     0 
 
minValue = 
     5 

x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0    20    15    15    20 
     0     0     0     0     0 
 
minValue = 
    10 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0    20    15    15    20 
     0     0     0     0     0 
 
minValue = 
    37 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0    20    15    15    20 
     0    35     0     0     0 
 

minValue = 
    75 
 
x = 
     0     0    30    10    20 
     0     5    10    25    20 
     0    20    15    15    20 
     5    35     0     0     0 
 

H = 
    95    50    10     5     0 
   140    40     0    80    30 
   190     5    75     0     0 
 
 
 
 
 
H_Laber_Hours_Imposed 
= 
     5    50    90    95   100 
    10   110   150    70   120 
    10   195   125   200   200 
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%Second Method Code 
 
CD = [ 0 0  30 40 60 ; 
       0 5  15 40 60 ;  
       0 20 35 50 70 ; 
       5 40 40 40 40 ]; 
 
T = [ 2 3 0 1 ; 
      4 0 2 2 ;  
      0 5 5 2 ]; 
 
H = [ 100 100 100 100 100 ; 
      150 150 150 150 150 ;  
      200 200 200 200 200 ]; 
 
H_org = H; 
 
X = zeros(size(CD)); 
   
for k = 1 : 4 
    v = [999 999 999]; 
    for j = 5 : -1 : 2 
        X(k,5) = CD(k,5) 
        for i=1:3 
            if (T(i,k) ~= 0 && H(i,j) ~= 0 ) 
                v(i) = floor(H(i,j)/T(i,k)); 
            end 
        end 
        minValue = min(v) 
        X(k,j-1) = max(X(k,j)-minValue, CD(k,j-1)); 
    end 
  x = [X(k,1) X(k,2)-X(k,1) X(k,3)-X(k,2) X(k,4)-X(k,3) X(k,5)-X(k,4)] 
    H1 = T(:,k)*x; 
    H = H - H1 
end 
X 
H_Laber_Hours_Imposed = H_org - H 
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After run the above code, we got the following results: 
 
X = 
     0     0     0     0    60 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    37 
 
X = 
     0     0     0    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    37 
 
X = 
     0     0    30    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    37 
 
X = 
     0     0    30    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    37 
 
x = 
     0     0    30    10    20 
 
H = 
   100   100    40    80    60 
   150   150    30   110    70 
   200   200   200   200   200 
 
 

X = 
     0     0    30    40    60 
     0     0     0     0    60 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    20 
 
X = 
     0     0    30    40    60 
     0     0     0    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    26 
 
X = 
     0     0    30    40    60 
     0     0    15    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    13 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
 
minValue = 
    33 
 
 
x = 
     0     5    10    25    20 
 
H = 
   100    85    10     5     0 
   150   150    30   110    70 
   200   175   150    75   100 
 

X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0     0     0     0    70 
     0     0     0     0     0 
 
minValue = 
    20 
 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0     0     0    50    70 
     0     0     0     0     0 
 
minValue = 
    15 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0     0    35    50    70 
     0     0     0     0     0 
 
minValue = 
    15 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0    20    35    50    70 
     0     0     0     0     0 
 
minValue = 
    35 
 
x = 
     0    20    15    15    20 
 
H = 
   100    85    10     5     0 
   150   110     0    80    30 
   200    75    75     0     0 
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X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0    20    35    50    70 
     0     0     0     0    40 
 
minValue = 
    15 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0    20    35    50    70 
     0     0     0    40    40 
minValue = 
     5 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0    20    35    50    70 
     0     0    40    40    40 
 
minValue = 
    10 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0    20    35    50    70 
     0    40    40    40    40 
 
minValue = 
    37 
 
x = 
     5    35     0     0     0 
 
H = 
    95    50    10     5     0 
   140    40     0    80    30 
   190     5    75     0     0 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0    20    35    50    70 
     5    40    40    40    40 

H_Laber_Hours_Imposed = 
     5    50    90    95   100 
    10   110   150    70   120 
    10   195   125   200   200 
 
 
%%%%%%%%%%% 
X = 
     0     0     0     0    60 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
= 
    37 
 
X = 
     0     0     0    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
= 
    37 
 
X = 
     0     0    30    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
= 
    37 
 
X = 
     0     0    30    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
     0     0     0     0     0 
 
= 
    37 
 
x = 
     0     0    30    10    20 
 
H = 
   100   100    40    80    60 

   150   150    30   110    70 
   200   200   200   200   200 
 
 
X = 
     0     0    30    40    60 
     0     0     0     0    60 
     0     0     0     0     0 
     0     0     0     0     0 
 
= 
    20 
 
X = 
     0     0    30    40    60 
     0     0     0    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
 
= 
    26 
 
X = 
     0     0    30    40    60 
     0     0    15    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
 
= 
    13 
 
X = 
     0     0    30    40    60 
     0     5    15    40    60 
     0     0     0     0     0 
     0     0     0     0     0 
 
= 
    33 
 
 
x = 
     0     5    10    25    20 
 
H = 
   100    85    10     5     0 
   150   150    30   110    70 
   200   175   150    75   100 
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Chapter Four 

Conclusion 

 
In this research, we have formulated the non-linear programming problem of how 

to compute production order quantities that satisfies demands, stay within machine 

abilities, and minimize costs of both set-up and inventory. Also, we have depicted a 

computation technique that computes the production order quantities that satisfies 

demands and stay within machine hours, but that could not necessarily minimize the 

combined costs of set-up and inventory. We want to say that these production order 

quantities still could not necessarily form a realizable production schedule. At first, it may 

be possible that because of the specific sequence in which these parts have to be made 

not all the available hours on machines can be used. If we have 40 hours of work in a week 

for specific machine, and all this work has to be carried out during Thursday and Friday, 

then we would have unrealizable schedule. The problem of scheduling includes a detailed 

report of when each specific part goes on each specific machine. This scheduling problem 

is extremely difficult. There are no general method prepared for solving scheduling 

problem for job-shop kind of production. 

It is significant to appreciate also that the solution of scheduling problem can be 

formulated just if the statistical nature of the problem is known. Indeed, it is known for 

practical production people that schedules are seldom satisfied as they are determined. 

There are usually troubles that happen in a plant, which makes it unwieldy to deal with 
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schedules in detail. Machines wrack, workers may be truant, raw materials may be not 

available or may be late, the paperwork necessary for performing production may not be 

ready, or the tools needed to make apart may not be available. These different troubles 

form a fundamental element of the real problem of scheduling and must be involved in a 

study of the scheduling problem. We know that the scheduling problem is actually a 

problem in statistical-decision theory, and can be considered as a widely generalized form 

of the so-called Theory of Waiting Lines. There has been some progress here. 

In this research, we have dealt with the cost of both carrying inventory and set-

ups. However, we could know that these are just some of costs included in production, 

and also may be these cost are not the most paramount ones. Productive people have to 

improve schedules that include stable work on both machines and people. This is very 

important because overtime or night-shift operations are expensive and because, also, 

even during slack periods manpower must usually be kept intact. 

One more important remark is the ability to quote schedules and satisfy these 

schedules. The cost of long lead-time, and the cost of not satisfying schedules is difficult 

to evaluate and even more difficult to integrate into a computation technique. We know 

that the entire question of costs is an open one and that more action will have to be done 

in this field before important result are gotten. It will be possible to improve a technique 

that leads to optimum production schedules only after a true measurement of efficacy of 

production plans has been obtained. 
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We know that the conventional economic-lot-size formula has just a limited use 

in production. In this research, we made a simple step in expanding the conventional 

economic-lot-size formula by involving some of the ability limitations of production and 

programming the problem by MATLAB. 
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