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Gait analysis is one of the important areas of research, with applications including 

diagnosis, monitoring, and rehabilitation. Current gait analysis systems, such as those 

used in a laboratory or a clinic, are intrusive, expensive or require carefully tuned settings. 

This thesis presents an accurate low body gait analysis method that is low-cost, non-

intrusive, and requiring no battery-powered sensors or markers. Instead, it conducts gait 

analysis using a Kinect sensor, which has been used in various research areas for its 

capabilities of obtaining full body gait information. 

Our study uses the change in joint positions provided by the Kinect’s virtual 

skeleton frames to extract lower body gait parameters. We propose a simple but efficient 

technique to measure stride and its two component intervals: stance and swing, using 

only the ankle joint of each leg. To measure the ground truth, we also build a wearable 

sensor that can obtain accurate stride information.  

ii 
 



We evaluate our system using two subjects and report their stride duration, 

stance and swing intervals. Our results show that our system has a mean difference less 

than 10ms from the ground truth, with an error of less than 1%.  Our results show that 

looking at the ankle joint alone is sufficient to calculate lower-body gait parameters. 
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Chapter 1 

Introduction 

 

Human gait has been shown to be an important indication of health condition. 

Gait analysis is thus able to give reliable information on the development of various 

diseases: neurological diseases such as Parkinson’s [1] or sclerosis [2], diabetes [3], 

and diseases caused by ageing such as fall risk [4], which have an effect on a large 

number of people. By monitoring and evaluating accurate, reliable gait data over time, 

an early diagnosis of diseases can be developed which will help patients to find the 

best solution. 

A number of methods have been discussed for gait analysis. For example, marker-

based systems usually use Infrared cameras to capture markers placed on the body. These 

systems are only appropriate for laboratory settings because markers, passive or active, 

must be fixed correctly on the body before each capture session. These systems are 

precise, but their cost is very high, and they are hard to move. There are other systems 

that are only found in laboratory settings. These use force plates and are usually 

expensive, and only measures gait parameters of the lower limbs. 

Recently, several studies proposed systems that used wearable sensors [5], [6]. 

Such systems are less expensive, light-weighted, small-size, and mobile. These features 

make them more suitable in home ambulatory measurements. Despite these advantages, 

wearable sensors still have the disadvantage that sensors must be secured and correctly 

placed on the body [7]. In addition, gravity noise and signal drift must be considered [8]. 

Additionally, because of the very little gait information obtainable from a sensor, an array 
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of sensors is used to get comprehensive measurements. In addition, wearable sensor 

systems are intrusive because they need changing due to the various types of subject’s 

routines. Moreover, they need continuous maintenance, such as charging batteries, and 

transferring data. 

Markerless visual gait analysis systems have been discussed by several studies. 

Recognizing individuals through their gaits using one or more RGB cameras has been 

studied by Goffredo and Bouchrika [9]. Leu et. al., worked on extracting the knee-joint 

angles, but stride parameters weren’t obtained; their system requires complex setup and 

calibration of two cameras to produce a 3D image [28]. Both proposed systems are used 

to get lower body gait parameters only. 

In this thesis, a low-cost, non-intrusive system has been suggested to accurately 

calculate some lower gait parameters using Kinect sensors and Software Development Kit 

(SDK). Kinect is a device produced by Microsoft Corporation. It consists of an array of 

sensors including: depth, RGB, IR camera sensors, and an array of speakers all packed at 

an affordable and compact device. Using depth camera, a 3D virtual skeleton of the body 

can be extracted [54]. Virtual Skeleton has 26 joints, each joint has its 3D coordinates that 

can be easily accessed by software. For these capabilities, several researchers have 

proposed to use it for home monitoring and gait analysis. 

The first study that suggested to use Kinect for clinical gait analysis was presented 

by Stone and Skubic [55], [56] where objects at a height equal 50cm or less were located 

using the depth image. They concluded whether the left or the right foot was touching 

the ground using the volume of the objects. Gabel, et al. presented a full body gait 
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analysis system by using information from the whole body to increase accuracy, and 

demonstrated how a rich set of parameters can be extracted. They have also shown that 

their method was robust to changes in the placement of the Kinect sensors and to 

environmental changes [21]. In our proposed system, we improved their work by using 

information from a specific part of the body, instead of the entire body. We used only 

ankle joint on each side of the body to measure some lower gait parameters, which we 

needed to improve the accuracy, because this joint carries out the most required 

information. 

We applied a simple approach to accurately extract lower body gait parameters 

using only ankle joint in order to measure standard foot stride parameters in each leg. 

The proposed system has two phases: detecting and timing. It also requires no training 

and works in real-time. 

Evaluation results show that the proposed system is very accurate when 

compared to the ground-truth based FSR system, and the other previous work [21] and 

[56]. The study suggests that the proposed system is affordable and non-intrusive since, 

in a typical use-case, a Kinect can be placed in a fixed position at home. 
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Chapter 2 

Related works 

 

This Chapter presents a review of some methods and techniques used in human 

gait analysis. There are three main methods that people used for this purpose: image 

processing (IP), floor sensors (FS) and sensors placed on the body or Wearable Sensors 

(WS). Each one of these methods can be classified into various types of techniques 

according to which sensor is used for as we will see. A detailed Classification and 

comparison of existing gait analysis systems has been presented at the end of this 

chapter.   

 

A. Techniques Used for Gait Analysis: 

Classification of gait analysis techniques is based on the type of devices that used 

to measure information which can be extracted gait parameters. These techniques can 

be classified into three categories: techniques that based on 

1) Image processing (IP). 

2) Floor sensors (FS). 

3) Sensors located on the body, carried by the users (wearable sensors - WS). 

There are many studies that show the validity of these sensors when measuring 

and analyzing the different sides of the human gait. A description of some studies on the 

recent methods used in human gait analysis have been presented in the following 

sections. They are organized according to the three categories as described above. 
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2.1 Image Processing (IP) 

In this system, several types of camera sensors are used to gather information for gait 

analysis. There are some methods that used to collect data for measuring the gait parameters 

such as pixel count to compute the number of dark or light pixels, background segmentation 

which extract the background of the image, or threshold filtering, that converts image into 

white and black. Several researchers have studied this method in order to recognize people 

by the way they walk. The gait recognition algorithm has been proposed for individual 

identification using Dynamic Static Silhouette Templates DSST [11]. Another study proposed 

a new multi-view gait recognition using View Transformation Model (VTM) based on Support 

Vector Regression (SVR) [12]. Chang et al. have investigated gender classification from human 

gaits using GEI (Gait Energy Image) as a discriminative feature, and achieved a good 

performance in real-time [13]. In addition, Arias-Enriquez et al. used the method in the 

medical diagnostic field by presenting a fuzzy system to identify different human gait cycle 

anomalies during the phase of the cycle for knee and thigh using the sagittal plane [14].  

In Muramatsu et al. study, they solved proposed a gait based person 

authentication technique that uses a random view transformation arrangement to 

decrease the accuracy drop due to view changes [15]. A recent study shows promising 

results in gait recognition by considering changes in the subject’s path [16]. 

Currently, one technique of IP methods has become very important which is depth 

measurement, also called range imaging. In this technique a number of techniques used 

to evaluate and get a depth image from a view point [17]. Using these techniques, 

important features of the image with improved and real time process became possible. 
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Several methods have been technologically advanced for this purpose (Figure 2.1), such 

as Time-of-Flight (TOF) [18], camera triangulation (stereoscopic vision), and laser range 

scanner methods [19]. Other studies use infrared thermography [20], and structured light 

[21, 22, and 56]. Four techniques of Image processing are presented as follows:   

 
Figure 2.1: Different technology for Image Processing based system (Borrowed from [10]).  

 

2.1.1 Time-of-Flight Systems (ToF) 

ToF cameras based on intensity modulation deliver information about range, 

amplitude and intensity. The range has derived from the phase shift between the emitted 

and the reflected light, the amplitude values describe the amount of correlation between 

the two, and the intensity relates to the amount of incident active light, which itself 

determined by the object’s distance and reflectivity. An alternative approach is based on 

optical shutter techniques [23] (Figure 2.2). 

The observed scene is lighted with modulated near infrared light (NIL), whereby a 

sinusoidal modulation signal is usually used with some megahertz frequencies. Charge 

coupled device (CCD), complementary metal oxide semiconductor (CMOS) sensors, or a 

combined technology is used to receive the reflected light. Then the phase shift is 

measured in parallel within each pixel. This phase shift is proportional to the distance. 
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Time-of-flight systems for human body gait recognition have been studied by 

Derawi et al., They develop a biometric gait recognition system based on 3D video acquired 

by a Time-of-Flight sensor providing depth and intensity frames to extract gait information 

from the several segments and joints of the body [24]. Recently, a study by Samson et al. 

analyze dynamic footprint pressures with high resolution using a ToF camera [25]. 

 

Figure 2.2: Time-of-flight working principle (Borrowed from [10]). 

 

2.1.2 Stereoscopic Vision 

Stereoscopic vision is found in humans and many animals. Where, both eyes are in 

one plane, and see the same object at the same time. The brain receives two information 

from both eyes and combine them into one picture, taking the slight differences between 

each view as depth to produce 3D picture. This method can be used to determine the depth 

of points in the scene, for example, from the midpoint of the line between their focal points.  

Computer stereo vision is a process to extract 3D information from digital images, 

such as produced by a CCD camera. In traditional stereo vision, two cameras, placed 

horizontally from each other are used to generate two different views of a scene  

(Figure 2.3). By comparing information from two vantage points, 3D information can be 

http://science.howstuffworks.com/life/inside-the-mind/human-brain/brain.htm
http://en.wikipedia.org/wiki/CCD_camera
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extracted by examination of the relative positions of objects in the two panels. This 

technique is based on the creation of a model through the calculation of similar triangles 

between the optical sensor, the light-emitter and the object in the scene. The technique 

is widely used for gait analysis. Liu et al. have represented gait using stereo gait feature, 

and recognized walking humans by their gait [26]. 

 
Figure 2.3: Traditional stereo vision camera.        

 

2.1.3 Structured Light 

This technique uses a projection of a special light pattern such as (grid, beam, plane, 

single dot, and stripes) on a body that we want to recover its 3D shape. In these methods, a 

3D information is extracted by analyzing the deforming recovered projected pattern onto the 

scene with compare to the original one. 2D structured illumination was produced by a special 

light source or projector modulated by a spatial light modulator (figure 2.4 (A)) [27]. One of 

the most widely devices that uses this technique is Kinect sensor (Figure 2.4 (B)). Clark et al. 

used Kinect to create a marker based real time biofeedback system for gait retraining. Gabel 

et al. have calculated stride intervals and arm angular velocities using the virtual skeleton 

provided by Kinect sensor [21]. Another study detects heel strikes by estimating the 
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maximum longitudinal distance between the knees which was estimated with depth images 

from Kinect without using a skeleton [29]. 

 

(A)                                                            (B) 

Figure 2.4: Structured Light Technique. (A) Stripe indexing using colors (borrowed from 
[27]). (B) KINECT for windows Sensor. 

 
2.1.4 Infrared Thermography (IRT) 

IRT is a method of generating an images depending on temperature of the surface. 

The human body is a natural emitter of infrared ray and the temperature is not similar to 

that of the surroundings. For this characteristic, Dziuban was able to precisely estimate 

the infrared intensity of human body [30]. In addition, a study used this method to 

recognize about 78%–91% of correct human gait patterns [20] (Figure 2.5). 

 

Figure 2.5: IRT image to extract the essential gait features (Borrowed from Xue et al. [20]). 
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A comparison of the four different depth measurement techniques is shown in (Table 

2.1).  The camera triangulation technique can be achieved using regular video cameras, but a 

high computational cost is required due to the stereoscopic calculation algorithms. It is obvious 

that ToF and Infrared Thermography techniques requires more expensive data acquisition 

equipment.  Currently, structured light methods have been used by many people because of its 

low cost, sensors availability, and good accuracy to compare to other image processing 

methods. The accuracy values have been obtained from the literature. 

 

Table 2.1: A comparison among different depth measurement techniques. 

Method Advantages Disadvantages Accuracy  Price 
($) 

Time of 
Flight 

- Requires one camera only. 
- Real-time 3D acquisition 
- Less depending on scene 
illumination 

- Low resolutions 
- Aliasing problem 
- Problem caused by 

reflective surface. 

91% - 
97% [24] 

300 - 
4600 

Camera 
Triangul-

ation 

- Higher resolution. 
- No special conditions in 
terms of scene illumination 

- High computational 
cost 
- Two cameras at least is 
required. 

70% [26] 500 - 
2300 

Structured 
Light 

- Robust and accurate 
measurements of random 
object shape with a wide 
range of materials 

- Able to get geometry and 
texture using same camera 

- Irregular functioning 
with motion scenes 

- Superposition of the 
light pattern with 
reflections 

99% [22] 200 - 
240 

Infrared 
Thermo-
graphy 

- Accurate reliable and fast, 
output 

- Anility to scan a large 
surface area in real-time 

- A very little skill required 
for monitoring 

- High cost of the 
instrument. 

- If the scene is 
separated by 
glass/polythene, the 
system cannot detect 
the inside temperature. 

- Emissivity problems 

78% - 
91% 
[20] 

1250 
- 

2300
0 
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2.2 Floor Sensors (FS) 

Floor Sensors are a technique that the systems is based on sensors placed along 

the floor which is called “force platforms” or instrumented walkways. The gait is 

calculated while the subject is walking on force or pressure sensors and moment 

transducers. An example of floor sensor was built by the University of Southampton as 

shown in (Figure 2.6). The design of the mat is simple, by using a switch made of 

perpendicular wires held apart by foam, which contact when force is applied. Although 

this method gives an accurate result, it costs high, hard to move, and limited to lower 

body gait analysis only. 

 

Figure 2.6: Gait analysis using floor sensors. (a) Steps recognized; (b) time elapsed in each 

position; (c) profiles for heel and toe impact; and finally (d) image of the 

prototype sensor mat on the floor. (Borrowed From University of Southampton). 
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The force applied to the ground when walking, known as Ground Reaction Force 

(GRF) is the feature that distinguishes Floor Sensor based systems from Image Processing 

based systems. Many gait analysis studies used this type of system [31, 32].  Vera et al. reports 

for the first time a comparative calculation of the spatiotemporal information found in the 

step signals to recognize person, which serves to simulate conditions of different potential 

applications such as smart homes or security access scenarios [33]. 

The applied pressure of the body to the ground is calculated as a percentage of weight 

In order to compare the patients’ measurements. This is because pressure varies for the 

duration of stride while the foot is in touch with the ground, where the maximum pressure, 

which could go up to 120%–150% of the patient’s weight, happens when the heel strike the 

ground and when the toes push off to take another stride. 

In order to measure the discriminated force of each region of the foot 

independently over time, a complex sensor matrix systems are used, which may reach up 

to four sensors per cm² to give more important data on the patient’s disease. For instance, 

a commercial force platforms is given by AMTI of Biometrics France as shown in (Figure 

2.7). 

 

 

 

Figure 2.7: Example of AMTI series OR6-7 
Force Plate showing the three forces and 
the three moment components along the 
three measurable GFR axis. (Borrowed from 
AMTI) 



   13 
 

2.3 Wearable Sensors (WS) 

This method of gait analysis uses wearable sensors, in which, several sensors are 

placed on different parts of the body, such as knees, feet or hips In order to measure some 

human gait parameters. This method is described in several recent reviews [34, 35].   

Muro-de-la-Herran et al. have presented a comparison between the advantages and 

disadvantages of Non-Wearable Sensors (NWS), like IP and FS, and Wearable Sensors (WS) 

systems. Different factors, such as cost, power consumption, limitations, and the range of 

measured parameters are considered in the comparison shown in (Table 2.2) [10].  

Table 2.2: Comparison between NWS and WS systems by (Muro-de-la-Herran et al. [10]). 

Sys. Advantages Disadvantages 

N
on

-W
ea

ra
bl

e 
Se

ns
or

 (N
W

S)
 - Capability to measure gait parameters 

simultaneously from different approaches. 
- Not restricted by power consumption. 
- Allow non-intrusive systems in terms of 

placing sensors on the body. 
- Complex analysis systems give more accurate 

and more calculations capacity 
- Enhanced reproducibility, repeatability and 

less external factor interfering due to 
controlled environment. 

- Real time measurement controlled by the 
expert. 

- Because of limited walking 
space, the gait of the subject 
can be altered. 

- Costly equipment and 
experiments 

- Unable to monitor real life gait 
outdoor the instrumented 
setting. 

W
ea

ra
bl

e 
Se

ns
or

 (W
S)

 

- Transparent analysis and monitoring of gait 
during daily activities and on the long term 

- Low-cost systems 
- Doesn’t need controlled environments Allows 

the system to work in any place. 
- Increasing availability of varied reduced 

sensors 
- Wireless systems enhance usability 
- In clinical gait analysis, supports autonomy 

and active role of patients 

- Due to limited battery life, the 
system is restricted by Power 
consumption. 

- In inertial sensors system, 
complex algorithms are 
required to measure gait 
parameters.  

- Allows analysis of limited 
number of gait parameters 

- Measurements could be 
affected and interfering with 
external uncontrolled noise  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958266/table/t3-sensors-14-03362/
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An overview of some different types of wearable sensors that are commonly used 

by researchers are listed below with some explanation of each type. They include force 

and pressure sensors, gyroscopes accelerometers, Inclinometers, goniometers, 

extensometers, active markers, electromyography, etc. 

 

2.3.1 Force and Pressure Sensors  

Force sensors are widely used to find the value of ground reaction force (GRF) under the 

foot. The sensor returns Voltage or Current proportional to applied force. Pressure sensors are 

used to calculate the force applied to the sensor without considering the components of this force 

on all coordinates. Capacitive, resistive piezoelectric and piezoresistive are the most widely used 

sensors of this type. There are four factors to choose the suitable sensor depending on: sensitivity, 

linearity, the pressure range it stands for, and the pressure range it offers: 

• Capacitive sensors: the principle of these sensors is based on the capacity changes of 

the condenser that depends on different parameters, such as the distance between 

two electrodes. 

• Resistive sensors: These types of sensors are based on their electrical resistance. In 

which the resistance decreases as the weight placed on them increases (Figure 2.8).  

• Piezoelectric sensors: These type of sensors are consist of three deformation meters 

placed perpendicularly each other on a silicone gel. The applied pressure to the sensor 

will deform the gel and the meters compute this deformation. The overall pressure 

can be calculated if the gel characteristics and the deformation meter are known. The 
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reactivity and linearity of these sensors is excellent but because of their big size, they 

are not appropriate for surfaces.   

 
Figure 2.8: FlexiForce piezoresistive pressure sensor. 

 

These types of sensors have been widely used by many wearable gait analysis 

systems in which they add them into instrumented shoes (Figure 2.9). Bae and Tomizuka 

have used Inertial Measurement Units (IMU) sensor in a tele-monitoring system for gait 

rehabilitation [36]. IMU, which has an accelerometer, a gyroscope and a magnetometer, 

is placed in a shoe (figure 2.10), then GRFs measured by the smart shoe and used to 

estimate the gait phases, foot position, stride length, and walking velocity. 

 

 

 

 

 

 

 

 

 

Figure 2.9: Instrumented shoe from Smartxa Project: (a) inertial measurement unit; (b) 
flexible goniometer; and (c) pressure sensors which are situated inside the insole. 
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Figure 2.10: A tele-monitoring system for gait rehabilitation with Smart Shoes and an 
IMU (Borrowed from Bae et al. [36]). 

 

Other studies use baropodometric insoles [37, 38]. In [37], it was found that an 

artificial neural network is able to map the relationship between insole pressure patterns and 

the fore-aft component of the ground reaction force. Whereas in [38] a new technique to 

estimate a comprehensive GRF information has been tested with pressure insoles. 

Howell et al.’s study has shown that the GRF measured by the insole containing 

12 capacitive sensors were highly correlated with the motion laboratory measurements, 

and the %RMS errors were under 10% [39]. Lincoln et al. have created another innovative 

system, using reflected light intensity to detect the proximity of a reflective material, and 

was sensitive to normal and shear loads [40]. 

 

2.3.2 Inertial Sensors  

Inertial sensor is an electronic device consists of both accelerometers and 

gyroscopes to estimate orientation, gravitational forces, velocity, and acceleration of an 

object.  This kind of sensors can be put inside an Inertial Measurement Unit (IMU) (figure 
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2.10). The accelerometer uses the basics of Newton’s Motion Laws, which state that the 

net force applied to a body produces a proportional acceleration. We can measure the 

acceleration by knowing all the forces (calculated by the sensors), and object’s mass.  

It is possible to get the acceleration and angular velocity using 3-axis 

accelerometers and 3-axis gyroscopes. The velocity can be obtained by taking the integral 

acceleration, and we can get the position, as referring to the 3 axes, by integrating the 

velocity. In addition, we can get the flexion angle by integrating the angular velocity. Thus, 

we can find the number of steps in a specific time by analyzing the signals from the 

accelerometers via filtering and classifying algorithms. 

Gyroscopes are based on rotational inertia (the property of an object that resists 

any change in rotary motion, which is motion about the axis of an object). Rotational inertia 

of a body can be determined by the moment of inertia. To detect changes in rotation 

direction, gyroscope continuously has to face the same direction as a reference.  

Inertial Measurement Unit (IMU) is a type of sensor that commonly used in gait analysis. 

The study in [41] uses inertial sensors for quantitative gait analysis, both in-lab and in-situ; the 

proposed system served as a tool to facilitate the extraction of certain gait characteristics, namely 

symmetry and normality. Their system was evaluated against 3D kinematic measures of 

symmetry and normality, as well as clinical assessments of hip-replacement patients. Several 

systems that uses this type of sensors were found in diseases that gait disorders are a symptom 

such as Parkinson’s [42]. Tay et al. presented a system that able to monitor the gait of Parkinson 

Disease patients and provide correct biofeedback which can help prevent falls, detect freezing; 

and from social perspective lead to better quality of life. Their system uses two integrated sensors 
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placed on each ankle to track gait activities and a body sensor placed on the cervical vertebra to 

monitor body posture. This body sensor is low cost wearable wireless sensor nodes combined 

from a gyroscope, tri-axial accelerometer, and compass. They were able to measure parameters 

which might be difficult to measure manually, such as maximum acceleration of the patients 

during standing up, and the time it takes from sit to stand [43]. 

The reduction in size of inertial sensor makes it possible to put it on instrumented 

insoles for gait analysis, Bamberg et al. have developed Veristride insoles, which also has 

a special design distributed pressure sensors, Bluetooth for communication and coil for 

inductive recharging system (Figure 2.11). 

 
 
 

 

 
 
 
 
 
 
 
 

 
 
 

Figure 2.11: Instrumented insole: (a) inertial sensor, Bluetooth, microcontroller and 
battery module; (b) coil for inductive recharging; and (c) pressure sensors. 
(Borrowed from Stacy Morris Bamberg, Veristride, Salt Lake City, UT, USA). 

 

2.3.3 Goniometers 

In gait analysis, these types of sensors can be used to measure angles of ankles, 

knees, hips and metatarsals. Goniometers that based on strain gauge work with 

resistance that proportionally changes with sensor flexing (Figure 2.12). When the sensor 
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is flexed, the material forming it stretches and the current will travel through longer path, 

thus its resistance increases. This resistance is proportional to the flex angle. Other types 

include the mechanical or inductive goniometers. 

Recently, digital goniometer has been developed by Dominguez et al. it can be 

used for orthoses design due to its outstanding features such as high resolution, accuracy, 

precision, lightweight, easy donning, and easy operation [44]. These types of sensors are 

commonly placed in instrumented shoes to calculate ankle to foot angles [45]. 

 
Figure 2.12: Flexible Goniometer. 

 

2.3.4 Ultrasonic Sensors 

Ultrasonic sensors (also known as transceivers or transducers if they both send 

and receive) work like radar or sonar principles, which evaluate attributes of a target by 

interpreting the echoes from radio or sound waves respectively. Figure 2.13 shows active 

  

 

 

 

Figure 2.13: Active Ultrasonic sensor. 



   20 
 

 

ultrasonic sensors that generate high frequency sound waves and evaluate the echo 

which is received back by the sensor, measuring the time interval between sending the 

signal and receiving the echo to determine the distance to an object. Passive ultrasonic 

sensors are basically microphones that detect ultrasonic noise that is present under 

certain conditions. 

Ultrasonic sensors have been used to obtain short step and stride length and the 

separation distance between feet, which is important data for gait analysis [46]. Huitema, 

et al. have calculated the swing and stance durations, and stride length using a low cost 

ultrasonic receiver placed on both subject’s shoes, while a transmitter is placed stationary 

on the floor; the calculations of stance and swing durations depend on heel strike and toe 

off events [47]. 

Qi et al. present a low cost ultrasonic system that uses one transmitter and four 

receivers to track movement of the foot in three dimensional space. This system was able 

to extract a comprehensive measurements of stride parameter such as duration, length, 

velocity, cadence, and symmetry. Evaluation Results show that the proposed system has 

an average error of 2.7% for all gait parameters [48]. 

 

2.3.5 Electromyography (EMG) 

Electromyography (EMG) is a method for estimating and recording the electrical 

activity generated by skeletal muscle contraction. Electromyograph is a device used to 

measure EMG, and produce a record called an electromyogram. An electromyograph 
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detects the electrical potential generated by muscle cells when these cells are electrically 

or neurologically activated. The signals can be analyzed to detect medical abnormalities, 

activation level, or recruitment order or to analyze the biomechanics of human or animal 

movement. 

Surface electrodes is a non-invasive method to extract the EMG signal from the 

subject (Figure 2.14), other invasive methods use wire or needle electrodes. Then, the 

calculated EMG signal is amplified, conditioned and recorded in an appropriate format 

for the scientific or clinical purpose. It is known that EMG signal is a complex and very 

small analog signal (10-5 to 5*10-3 Volts) which makes its measurement and recording 

processes hard issue.  

The study of Frigo and Crenna have shown that using surface electromyography 

technique (SEMG) is convenient in non-invasive measurements that related to 

pathophysiological mechanisms, such as paresis, passive muscle-tendon, spasticity. 

Additionally, EMG signals are also able to measure various gait parameters. For example, 

the comparison of EMG plots recorded of joint angular motion and kinematic plot allows 

to see if one set of data able to explain the other; also, it has been shown that the EMG 

amplitude, obtained during gait, proportional with walking speed [49].  

Recently, a study presented by Wentink et al. determined that EMG system 

applied to a prosthetic leg is able to predict the beginning of gait when the prosthetic leg 

is leading. The results was compared with inertial sensors system and found that EMG 
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system able to predict the initial movement up to 138ms in advance of inertial sensors 

system [50]. 

 
 

 

 

 

 

 

 

 

Figure 2.14: Brain query Wireless EMG/EEG/ECG system. 
 

 

 

B. Classification of existing gait analysis systems 

A detailed Classification of the existing gait analysis methods of the three 

discussed approaches have been presented by Muro-de-la-Herran et al. [10]. The 

classification depends on type of methods, application, accuracy, cost and complexity of 

use (Table 2.3).  

The results shows that the approaches that offer detailed analysis of a larger 

number of parameters are the Non-wearable systems (NWS) in a laboratory environment, 

such as marker or markerless based image processing, EMG, floor and inertial sensors. 

Whereas, the modern advances in wearable systems (WS) offer techniques that are cost-

effective, non-intrusive which offer suitable keys for specific diagnostic requirements. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958266/table/t4-sensors-14-03362/
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Table 2.3: Classification of existing gait analysis systems (borrowed from 
Muro-de-la-Herran et al. [10]). 
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Chapter 3 

System Design 

 

The study proposes a low-cost, non-intrusive system that can accurately measure 

a wide range of gait parameters using Kinect sensors and Software Development Kit (SDK). 

Kinect has an array of sensors, including a camera and a depth sensor. In addition to the 

raw depth image, Kinect extracts a 3D virtual skeleton of the body [54]. These capabilities, 

packed at an affordable and compact device, already led several researchers to propose 

its use for home monitoring and gait analysis [21], [29], [55], and [56]. 

We apply a simple approach to automatically and accurately extract lower body 

gait parameters. Specifically, we extract standard foot stride parameters using the 3D 

virtual skeleton.  Our technique uses information from only one joint to measure stride 

duration and its two components: swing and stance intervals. 

Empirical evaluation shows that our results are very accurate when compared to 

reference measurements such as those of FSR sensors, and other previous work. In 

addition, the proposed method is affordable and non-intrusive since, in a typical use-case, 

a Kinect can be placed in a fixed position at home. 

 

3.1 Method 

The study uses a technique that exploits a “virtual skeleton” produced by Kinect 

sensors and software (Figure 3.1).  Only two joints, out of 26 joints that the skeleton frame 

offers, have been used in order to measure stride duration parameters. These are the 

ankle joints of both left and right legs. 
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In order to detect and measure stride duration and its two components: stance 

and swing durations, two phases have been proposed: the detection phase and the 

timing phase. In the “detection phase”, a difference in the horizontal position of the 

ankle joint between the current skeleton frame and the previous one during gait cycle 

is continuously calculated and compared to a predefined threshold value to see 

whether the foot has moved or not. The outcome of this phase is fed to another phase, 

the “timing phase”, to clean the signal from any random values that may have 

occurred during the stance state, as we will see later, and to estimate the stride 

duration parameters.  

 

 

Left Ankle 
Joint 

Left Foot 
Joint 

Figure 3.1: Virtual Skeleton produced by Kinect sensors and software. 
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3.2 Subjects and Kinect Setup 

The Kinect sensor was placed at an angle of 90 degrees with the middle of the path 

line, at a height of 50cm above the floor to capture an image of a walking subject along 

the path. During system setup, a subject was instructed to walk at a normal pace back 

and forth to choose the best threshold for the “detection phase”. The sensor used here is 

that of a Microsoft Kinect for Windows V2 (Figure 3.2), with the Kinect SDK v2.0 and 

Microsoft Visual Studio professional 2013 / C#. 

 

 

Figure 3.2: Microsoft Kinect for Windows V2. 

 

We follow the standard practice (see, for example, [2], [4], [6], and [21]) and define 

stride time as the time from the initial contact of one foot with the ground to the subsequent 

contact of the same foot with the ground (Figure 3.3). Each stride (gait cycle) is composed of 

a stance state, where the foot is on the ground, followed by a swing state where the foot is 

swung forward. The heel and toe events are fed to the “timing phase” to measure the stride 

duration parameters. Whenever the heel signal and/or toe signal is “pressed”, we assume 

that the state is STANCE. If neither signal is pressed, the state changes to SWING. 
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3.3 Stride Detection and Partitioning (Detection Phase) 

As stated previously, the Kinect sensor and its SDK provide a 3D virtual skeleton. 

The virtual skeleton consists of the positions of 26 joints (such as the wrists, knees, ankles, 

head and torso). Each joint has its own coordinate (X, Y, Z) which can be obtained from 

skeleton frames. Kinect provides approximately 30 skeleton frames per second. Only one 

joint in each leg has been used to detect gait cycle components, which is the ankle joint, 

since that the ankle joint coordinates are the most changing during the gait cycle (Figure 

3.3). Although, the foot joint (Figure 3.1) has the same effect as the ankle joint, 

experimental evaluation has shown that its coordinates have more random changes than 

the ankle joint coordinates. The experiments have also proved that the most accurate 

stride, stance, and swing durations were calculated when using the ankle joint only. 

Figure 3.3: Gait cycle 
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The proposed technique uses the change of two coordinates of the ankle joint: 

the X and Z coordinates, but not the Y coordinate. The reason is that the change along the 

Y coordinate is so small that the Kinect sensor cannot detect during the gait cycle (Figure 

3.3). Since most of the change during the gait cycle occurs along the X coordinate, the Z 

coordinate, in this study, is limited to finding the suitable threshold window. This 

threshold window plays an important role in heel strike and toe off detection. 

The gait is said to be in a stance state if the toes and/or the ankle joints are touching 

the floor. In our proposed method, if the difference between the X-coordinates of the ankle 

joint at the current frame and the previous one is less than the window value, then the joint 

is considered in a “stance state”. Else, it is considered in a “swing state”. The purpose of 

using a threshold window, here, is that even if the joint doesn’t move, the difference 

between its coordinates at two successive frames will not equal zero, due to the limited 

accuracy of the Kinect sensor.  The threshold window W has been calculated as follows: 
 

𝑊𝑊 = �
𝑆𝑆
𝑍𝑍
� 

 
𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 
𝑆𝑆 ∶ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. 
𝑍𝑍 ∶ 𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑡𝑡𝑡𝑡 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚). 

 

 

The window “W” is reversely proportional to the “Z-coordinate” of the ankle joint 

because the remote subject, from Kinect sensor, produces a smaller change along the X-

coordinate. The parameter “S” has been added, which can be changed manually, to give 

a sensitivity control over the threshold W that is suitable for the “detection phase”. During 

the detection phase, if we decrease “S” (“W” approaches to zero), then the state will 
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always randomly change between the stance and swing states, even if the joint does not 

move due to the limited accuracy of the Kinect sensor. On the other hand, a higher “S” 

results in a higher “W”, and hence, the small movements of the ankle joint would not be 

detected, and this will reduce the accuracy of the stride duration parameters. The best 

way for choosing the value of “S”, for the first time only, is by tuning it until we get an 

acceptable result in comparison to our ground truth (FSR sensors). So, as explained 

earlier, if the following condition is true, we detect either a heel strike or a toe off event, 

then, during the “timing phase”, the stance duration is measured. Otherwise, the swing 

duration of the current gait cycle will be measured: 

|𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛| < 𝑊𝑊 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 
𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛  ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑋𝑋 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜  ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑋𝑋 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  
 

3.4 Stride Duration Calculation (Timing Phase) 

The main problem of the gait signal that come from the “detection phase” has been 

shown in (Figure 3.4(A)). As shown in the figure, the signal is instable during stance state due to 

the unpredictability of the changes in the coordinates that is produces by Kinect. This is 

manifested during the stance duration by the signal’s random wondering between the “stance” 

state and the “swing” state, although the ankle joint is fixed and within the threshold window. 

On the other hand, the signal, during swing duration, is quite stable because the technique 

applied during the detection phase considers any change of ankle position greater than the 

threshold window to be an indication of a swing state. One of the solutions is to increase the 

threshold window. But this will also reduce the accuracy of the swing and the stance durations.  



   30 
 

 

 

 

 

 

 

 

 

 

 

A flowchart of both of the “detection phase” and the “Timing phase” has been 

presented in (Figure 3.5). The way that the “detection phase” works has been discussed 

earlier. The “timing phase” provides a real time solution that overcomes the instability 

problem of the stance state and works as follows: 

 The stance duration is accumulated in “StAcc” from two sources: real stance timer 

value “StVal” itself, and the incorrect swing timer value “SwVal” (if its value is less than the 

swing threshold “SwThr”). Once the swing timer value “SwVal” exceeds a specific swing 

threshold (SwThr), the final values of the stance and the swing durations will be ready to be 

saved in the stance file “StFile” and the swing file “SwFile”, respectively. The swing threshold 

value was selected to be (250 milliseconds) assuming that human beings cannot walk faster.  

After saving the stance and the swing durations, the value of “StAcc” is set to zero to be used 

again in the next gait cycle calculations, and so on. Figure (3.4 (B)) shows the signal after the 

“timing phase”. The accuracy of the results are evaluated in the next chapter. 

Figure 3.4: Stance duration problem and its solution. Where gait signal is captured 
(A) After detection phase and before Timing phase; (B) After Timing phase. 
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Figure 3.5: Flowchart to measure stride duration parameters: Stance and Swing duration. 
(A) Detection phase (shaded with red) and (B) Timing phase (shaded with blue). 
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Chapter 4 

Evaluation Results 

 

In this chapter stride parameter measurements have been extracted from the 

proposed Kinect based system. The accuracy has been compared with measurement 

results obtained from another system based on FSR sensors (worked as ground truth). 

 

4.1 Validation Setup with FSR sensors 

Readings from wearable sensors have been used as “ground truth” to evaluate our 

system accuracy. Sensor readings were sampled by custom hardware and sent to a PC via 

USB cable that fixed on the body using strips so it has no effect on KINECT vision. Both Kinect 

skeleton frames and FSR readings were synchronized and recorded at the same time. 

Two Force Sensitive Resistors (FSR® 402 and FSR® 406) were placed inside insole 

of a sandal (Figure 4.1), so it will not affect the normal pace of walking subject. One FSR 

sensor (FSR® 406) was placed under the heel to capture the heel strike. The second FSR 

sensor (FSR® 402) was placed underneath the great toe joint to capture the time when 

the foot is being lifted off the ground (toe off event). 

FSR sensors are based on their electrical resistance. They are used to measure the 

ground reaction force GRF under the foot and return a voltage, ranged between (0V ~ 5V), 

proportional to force applied. Recorded FSR sensor values are affected by differences in 

weight, foot anatomy, and shoe type. Hence, a threshold value is used such that all the 

reading above the threshold considered that there is a force applied to the sensor while all 

the reading under this threshold will be considered there is no force applied to the sensor.  
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4.2 Subject and Kinect sensor installation 

Two subjects were asked to walk at a normal pace back and forth along a path line 

of about 3M. Kinect sensor was placed 50cm above the floor and perpendicular to the 

path line that beyond about 2.7M (Figure 4.2). Each subject was asked to walk 25 times 

along the path line for each side of the body. Hence 4 sessions have been recorded.  

For each time, the subject walked 3 complete strides. First stride has been neglected 

because of the error that may occur due to start walking initialization, therefore; two valid 

strides were considered. Hence, 50 strides for each side of the subject’s body have been 

recorded and used to measure stride duration components. 

Figure 4.1: In-shoe FSR sensor. 



   34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Evaluation Results 

Evaluating the accuracy of the proposed method has been done by comparing 

extracted parameters from the Kinect based system with the reference values taken from 

FSR based system. Both systems were working simultaneously during detecting and 

recording each side of the subject. This will give more accurate comparison between two 

systems results.   

The summary of the results of measuring stride durations is presented in (Table 

4.1). For different components of a stride, the table shows the following statistics: (1) the 

average duration as measured by the pressure sensor (Avg), (2) the average difference 

Figure 4.2: Subject and Kinect sensor installation 
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between the duration measured by the pressure sensor and the duration measured by 

the Kinect sensor (Mean-diff), (3) the standard deviation between the two measurements 

(Std-diff), (4) the error percentage between the two measurements. The number of 

events is (N=50). All but the last and error columns are reported in milliseconds. 

Table 4.1 shows that the results of gait parameters generated by “detection 

phase” followed by “Timing phase” are very accurate. The Mean-diff (or bias) is especially 

small (less than 1% when measuring stride duration). Both the bias and the standard-

deviations in the experiment are smaller than the corresponding values reported in [21, 

Table I], [56, Table I]. 

 

 

Table 4.1: Results of Stride Duration and both Swing and Stance intervals compared to 
FSR sensors. The unit of measurements is a millisecond. 

 

Interval 
Subject 1 Subject 2 

N 
Avg Mean

-diff 
Std-
diff Error Avg. Mean

-diff 
Std-
diff Error 

Left stride 1279 4 38 0.31% 1254 7 34 0.56% 50 
Right stride 1244 -3 32 0.24% 1347 2 35 0.15% 50 
Left stance 819 5 53 0.61% 833 -1 41 0.12% 50 

Right stance 822 -5 40 0.61% 875 -7 45 0.80% 50 
Left swing 460 -1 47 0.22% 421 8 40 1.9% 50 

Right swing 422 2 45 0.47% 471 9 47 1.9% 50 
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Chapter 5 

Summary and Future Works 

 
In this thesis, a new method has been presented for lower body gait analysis using 

Kinect sensor. Unlike the system proposed by [21] that uses training phase, with huge 

database taken from the entire body joints, our system is able to measure lower body gait 

parameters in real time without any training phase using information from ankle joint 

only. 

The study proposed two phases in order to measure stride duration parameters: 

“Detection phase” and “Timing phase”. Using ankle joint coordinates as the input to 

“detection phase”, we could detect heel strike and toe off events which is required to 

generate a gait cycle. The "detection phase” continuously calculate the difference 

between x-coordinate of ankle joint taken from two successive skeleton frames of Kinect. 

If the difference is less than a predefined threshold, then the gait is in stance state, else, 

the gait is in swing state. The generated gait signal (output of “detection phase”) is fed to 

the “Timing phase” to extract stride parameters: stance and swing intervals, but first the 

gait signal is cleared from any random noise that may occur during stance state. 

The study demonstrated accurate measurements of Stride duration and its two 

components: stance and swing intervals. A wearable sensors using FSR sensors have been 

used as “ground truth” to evaluate the model accuracy. The results showed that the 

proposed method improves the accuracy presented by [21] and [56] both in terms of 

having a smaller bias and in having smaller variance. The sensor used is affordable and 
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small, thus allowing installation in domestic environments. Also, using only ankle joint to 

extract stride durations, comparing to entire body joints used by [21], proved that this 

joint has almost all required information for stride parameter measurements, and the 

process overhead will be much small and could be achieved in real time. 

For a future works, it is necessary to use the depth (Z-coordinate) combined with 

the horizontal coordinate (X-coordinate) to measure stride parameters while the subject 

walking in curved or cyclic path instead of a straight path that proposed in our system. To 

do this, we will need to contribute foot ankle also. Since, the Kinect sensor will not be 

able to detect the coordinates of ankle joint precisely while the subject walking towards 

the sensor, while foot joint is still visible. 

Additional important gait parameters can be added to current study such as stride 

length and velocity of the subject. The stride length can be found by measuring the 

distance between two heel strike positions. This can be done by mapping the position of 

the ankle joint from a pixel on the screen to its corresponding meters in the ground. The 

velocity of the subject can be found by dividing stride length by stride duration. Since, the 

current study offers stride duration. The velocity of the subject can be found in real time 

if we depend on current and previous ankle location. 
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