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Dissertation Director: Professor Haym Benaroya

A �rst-principles variational approach is proposed for reduced-order order modeling

of �uid-structure interaction systems, speci�cally vortex-induced vibration. Fluid-

structure interaction has to be taken into account in design and analysis of a large por-

tion of engineering applications, yet a comprehensive theoretical development where

analytical equations are derived from �rst principles is nonexistent. Not only does

there exist much ambiguity concerning the general behavior of such systems, but

the nature of the Lagrangian-Eulerian transformation is yet to be fully understood.

Also, a general variational principle that is purely de�ned in a Eulerian description

is nonexistent. Consequently, the use of variational methods for �uid-structure inter-

action problems has been relatively successful only for simple problems. Moreover,

a review of the literature suggests that the Navier-Stokes (N-S) equations could not

be obtained using a variational principle. This can be avoided by using Jourdain�s

principle (JP). Therefore, we have modi�ed Jourdain�s principle and obtained the
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�rst purely Eulerian variational formulation. Subsequently, by extending the JP for

systems of changing mass, we have shown that the N-S equations can be obtained

via a variational approach. Moreover, having shown that conservative terms of the

N-S equations do not commute with the Eulerian variational operator, a correction

term is obtained that must be added to the classical energy equation in integral form

for Newtonian incompressible viscous �uids. Regarding vortex-induced vibration, an

elastically supported, inverted pendulum that is immersed in a �ow is considered as

a study system. The pendulum is allowed to move transversely to the �ow direc-

tion. This problem has generally been used as a test bed of vortex-induced vibration

models, as it provides a simple geometry, yet possesses the nonlinearity of these phe-

nomena. It is shown that the reduced-order modeling can be done without any ad

hoc assumptions regarding the �uid forcing function. There exists no reduced-order

model in the literature that does not make such assumptions. Based on the theoret-

ical results as well as the reduced-order model, we conclude that the �rst principles

development herein is a viable framework for the modeling of complex �uid-structure

interaction problems such as vortex-induced oscillations.
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Chapter 1

Introduction and Preliminaries

The problem of �uid-structure interaction (FSI) has long been one of the great chal-

lenges in engineering. It is a crucial consideration in the design of many engineering

systems, such as o¤shore structures, aircraft and bridges. While the importance of

the subject has been understood for over a century, it has been only in the past few

decades that e¤orts have been made to analytically model the general behavior of

such systems. Parallel to analytical attempts, many experiments have been devoted

to gathering data and interpreting such interactions. Consequently, analytical dy-

namics modeling of such problems has evolved with coupling to experimental data

resulting in various semi-analytical representations. Generally, attempts have been

made to model vortex-induced vibration (VIV) problems as few degrees of freedom

(DOF) oscillatory models; therefore, they are referred to as reduced-order models.

Regarding the experimental studies on VIV, certain types of structural con�gu-

rations have been preferred in the literature where a rigid solid body with one or

two degree(s) of freedom is immersed in a �ow. While the experiments have been

conducted on variety of solid shapes (and occasionally on �exible bodies), reduced-

order semi-analytical models have been generally developed for single DOF rigid blu¤

bodies, speci�cally for circular cylinders. The most commonly used model, called

the model problem [7], is a type of inverted pendulum that is immersed in a �ow,

rests on elastic supports and can only move transversely to the �ow direction. A

second model is the translating cylinder. Schematic diagrams of elements of two

representative con�gurations of the model problem are shown in Figures 1.2 and 1.1.
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The model problem has been widely used since it possesses a simple geometric

con�guration, and yet, it exhibits the majority of the nonlinear behaviors of VIV

systems. Consequently, the majority of VIV experiments have been conducted on the

model problem. Both in experimental and analytical studies, the �ow is controlled or

considered to be two dimensional for all time, as are the shedding vortices.

The purpose of this work is to present our theoretical development that can im-

prove existing models by deriving reduced order models from �rst principles where

assumptions are explicitly stated. Therefore, experimental observations are not the

main focus this research work. However, few key features observed in the experi-

mental studies are summarized for those who are not familiar with the subject. An

excellent review of the experiments of VIV can be found in [6].

Figure 1.1: A representative con�guration of the model problem: inverted pendulum.

Starting with the stagnant �uid, if the speed of the �ow past the cylinder is
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increased, three di¤erent behavioral regimes are identi�ed: pre-synchronization, res-

onant synchronization and classical lock-in. Pre-synchronization is the �rst regime

where the structure starts oscillating and vortices are �rst observed. The amplitude

of the structural oscillations are low and the vortices�strength are weak to moderate.

Observed in this region is a beating behavior, that is, the amplitude of structural

response increases and decreases gradually as the structure oscillates. Moreover, the

�ow drives the structure in this region.

Figure 1.2: A representative con�guration of the model problem: translating cylinder.

As the average velocity of the �ow is increased, vortices become stronger until

the frequency of the vortex shedding reaches the natural frequency of the structure,

where near-resonant behavior is observed. Thus, the structural response reaches a

maximum and it is called the resonant synchronization region. Similar to the pre-

synchronization region, beating behavior is noticeable but weaker, and the structure

remains driven by the �ow.
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If the velocity is increased further, constant structural oscillation amplitude and

frequency are observed for a range of �ow velocities. This phenomenon is called

the classical lock-in. Unlike the other two regions, the �ow is modulated by the

structure and the vortices observed are the least organized. The existence of three

distinct regimes in the frequency-amplitude response curves of an inverted pendulum

is shown in Figure 1.3.

Figure 1.3: The frequency-amplitude response curves of an inverted pendulum, where
A is the amplitude of oscillations, D is the diameter of the cylinder, Fs is the fre-
quency of oscillations, Fn is the natural frequency of the cylinder, U represents the
�uid velocity. �,, amplitude of oscillation for two independent but identical exper-
imental runs; �, frequency of ocillation and vortex shedding frequency in which VIV
was observed; 3, frequency of vortex shedding where the cylinder was stationary;
I, pre-synchronization; II, resonant synchronization; III, classic lock-in ([1], with
permission from Elsevier).

Also observed in many of the experiments is the existence of hysteresis behav-

ior, that is, the maximum amplitude of the oscillations are larger as the velocity is

increased than when it is decreased, as shown in Figure 1.4. VIV is a complicated



5

Figure 1.4: Oscillation characteristics of a vibrating circular cylinder wit light damp-
ing. n is the frequency of vortex shedding, N is the frequency of oscillations, �Y =D
is the normalized maximum amplitude of oscillation at the reduced velocity U=ND,
and �� denotes the phase angle between the �uid force and the cylinder displace-
men. +, frequency of oscillation; , frequency of vortex-shedding; �, phase angle;
�, amplitude of oscillation ([2] in [3]).

phenomenon. The structural response depends on many factors, such as shedding fre-

quency, Reynolds number, material damping, structural sti¤ness, surface roughness,

cylinder length, density of the �uid and mass of the cylinder, [6] and [8]. Therefore,

reduced-order modeling of VIV has evolved in parallel to experiments in order to

increase our understanding of this phenomenon.

E¤orts to model VIV as reduced-order systems can be divided into two categories:

empirical models and �rst-principles models. Moreover, the empirical models can be

divided into two subcategories: wake-oscillator (wake-body) models and experimental
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force-coe¢ cient models.

The wake-oscillator models are based on the assumption that an immersed struc-

ture in a �ow experiences hydrodynamic forces that are the result of nonlinear oscilla-

tor like systems. Therefore, the aim is to obtain nonlinear �uid force equations from

the experimentally acquired data that can be coupled with the structural equation of

motion (EOM). One of the earliest models is the one proposed by Hartlen and Currie

[9]. They used a van der Pol type �uid oscillator to model the �uid-structure system,

8<: �x+ 2� _x+ x = a!20CL
�CL � �!0 _CL +



!0
_C3L + !20CL = b _x,

(1.1)

where a, !0, and � are the known structural parameters, and the �uid parameters �,

b, and  are found experimentally.

The experimental force coe¢ cient models are single degree-of-freedom (DOF)

models. They only include a single forcing function obtained experimentally. Gen-

erally, the empirical models have relative success in capturing the features of VIV.

However, these models neglect the dynamics of the �ow by only considering the forces

as they are seen by the structure. Therefore, they do not provide much understand-

ing of the physics of the problem. These ad hoc methods are outside of the scope

of this work that is focused on �rst principles models, speci�cally, using variational

principles. Good reviews of the empirical models can be found in [6], [10] and [11].

While variational principles have been known for well over a century, it was not

until 1973 that McIver was among the �rst researchers to propose the use of variational

methods in modeling the �uid-structure interaction problems [12]. Also, the work by

Benaroya andWei in 2000 is one of the earliest attempts to use those methods for VIV

problems [1]. Consequently, the literature on the subject is very limited. Therefore,

we continue this chapter in the next section by reviewing a broader topic, that is, the

application of variational principles for �uid systems.
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Having reviewed the literature in Section 1.1, one main challenge identi�ed is the

relation of variational principles in the Lagrangian frame of reference to the Eulerian

frame of reference. These relations are reviewed in Section 1.2. Then, the relation

between the Lagrangian and the Eulerian variational operators are developed in Sec-

tion 1.3. Afterwards, based on our discussions in Sections 1.2 and 1.3, some of the

challenges that have been faced when applying variational methods to �uid systems

are explained in Section 1.4. Having reviewed and discussed the literature on the

subject, we explain the motivation behind this research work in Section 1.5. Finally,

an outline is provided for the remainder of this dissertation in Section 1.6.

1.1 Variational Principles for Fluid Systems

E¤orts to model �uid dynamics by using variational principles can be traced back

to a work by Millikan in 1929 [13]. He tried to obtain the governing equations of

steady motion of a viscous, incompressible �uid by using Lagrange�s equations. He

started from the balance of energy equation of a control volume. Then, he imposed

the continuity equation to the balance of energy equation by means of Lagrangian

undetermined multipliers. He concluded that it is impossible to obtain the Navier-

Stokes equations for a steady motion of a viscous, incompressible �uid from Lagrange�s

equations unless certain conditions are met. However, Millikan could not �nd realistic

examples where those conditions are violated. We do not encounter these issues in

this dissertation.

Since Millikan�s work, tens of attempts have been made to carry out similar stud-

ies. Next, we review a few of these that are believed to be good representative

works. Later, we use some of these papers to point out the di¢ culties faced in us-

ing variational methods for �uid systems. The challenges in this �eld are extensive.

These papers provide thorough examinations of the subject and present well-explained

derivations that, in part, have helped the development of the current study.
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Another early attempt in applying Hamilton�s principle to a system of particles

is the work by Eckart (1938) [14]. His goal was to obtain the equations governing

electrodynamic motions. He used Hamilton�s principle and imposed Maxwell�s equa-

tions in the form of electromagnetic potentials (as constraints) by utilizing Lagrange

multipliers. The resulting variational equation can be considered for modeling an irro-

tational ideal �uid system if the electromagnetic potentials are replaced with velocity

potentials.

In 1954, Herivel argued that it is hard to imagine how Hamilton�s principle would

follow the same exact rules in the Eulerian description as it follows in the Lagrangian

one [15]. Therefore, one must �rst transform the Lagrangian function to Eulerian

form before imposing the variations. He also explained that Hamilton�s principle can

only be used in the absence of irreversible processes, that is, it can only be applied

to an ideal �uid. Therefore, Herivel used a Jacobian matrix and transformed the

Lagrangian coordinates into the Eulerian frame. Similar to Eckart�s work, he used

Lagrangian multipliers to impose the continuity and the entropy transport equations.

Then, he utilized a speci�c form of Clebsch�s transformation to obtain the velocity po-

tentials. The resulting variational equation was an extension of Hamilton�s principle,

containing Lagrangian variations and Eulerian functions. Compared to the earlier

models, Herivel�s method has the advantage that it can also be used for rotational

motions.

In a later paper, Eckart (1960) discussed that �nding a general variation principle

in a Eulerian representation is very hard, therefore, the Lagrangian approach is prefer-

able [16]. Considering the conservation law in terms of a Lagrangian energy-moment

tensor, he used a Jacobian matrix to backtrack the particles to their initial positions

while normalizing the coordinates with respect to density. Then, he obtained the

Lagrangian equations for the motion of both incompressible and compressible �uids.

Also, he discussed the importance of Clebsch�s transformation when integrating the
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problems involving vorticity equations. Eckart�s model has the disadvantage that it

requires the coordinates of each particle to be speci�ed at least at two di¤erent points

in time.

In a later work, Bretherton (1970) tried to obtain the Eulerian equations of motion

from the Lagrangian formulation of Hamilton�s principle [17]. His main aim was to

clarify some of the inconsistencies in the literature. He considered the fact that there

must exist an inverse mapping function of Lagrangian trajectories that can be used

to trace particle positions to some earlier con�guration. As a result, he assumed

that the density at each instance of time is related to the density at some reference

time via the Jacobian mapping of Lagrangian trajectories to the inverse mapping

function. Having obtained the Eulerian variations as functions of the Lagrangian

virtual displacement, he applied the Eulerian variation to the action integral. The

results were equations containing the Eulerian functions and the Lagrangian virtual

displacements. As an example, Bretherton obtained Kelvin�s circulation theorem

using his variational approach.

Another e¤ort in applying Hamilton�s principle to �uid mechanics problems is the

work by Leech (1977) [18]. He argued that Hamilton�s principle cannot directly be

applied to a control volume as it is de�ned for a system of particles. Also, he discussed

that the variational operator does not commute with the control volume. Rather it

commutes with mass integrals as the integration limits are invariant. Moreover, he

noted that Hamilton�s principle expressed in the form of �
R
Ldt = 0 can only be used

for conservative systems. For nonconservative systems, the original statement of the

principle must be used. Additionally, he assumed that there must exist a function

that maps the instantaneous displacements of �uid particles to a reference state.

Then, he used the Jacobian matrix to map the integrals back to a reference frame - in

the same manner that is usually used to prove Reynolds�transport theorem (RTT).

His manipulations resulted in an integral equation containing the variation of the
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mapping functions. Then, the author suggested that one may use Hamilton�s principle

to optimize an assumed solution. Therefore, a class of displacement functions (called

admissible functions) can be chosen for a problem and their weighting functions can

be optimized using his formula. To elaborate on his method, Leech considered a few

problems. One such problem was the interaction between an incompressible inviscid

�ow and a structure, called the d�Alembert�s paradox, in which d�Alembert proved

that the drag force is zero.

An important approach to modeling �uid dynamics using variational principles

is by McIver (1973) [12]. He presented his extended form of Hamilton�s principle

for problems involving �uid-structure interactions. Having considered Hamilton�s

principle for a system of continuous particles, McIver utilized Reynolds� transport

theorem to modify the principle for a system of changing mass (control volume, CV ).

For a moving control volume, it is customary to consider the relative velocities of the

�uid particles with respect to the control volume. However, McIver considered the

velocity of the control volume with respect to the �uid particles, ur, for which he did

not provide any justi�cation. Perhaps McIver�s aim was to introduce the backtracking

concept that has been used by the previously mentioned authors at this stage of his

formulation. Also, he assumed that the virtual work performed on a control volume is

purely due to the surface tractions at the control surface. Therefore, using the stress

dyadic, ��, he considered the virtual work to be

�W =

Z
CS

�r � �� � n dA, (1.2)

where �r is the virtual displacement, n is the normal vector to the di¤erential surface

element dA, and CS is the control surface. For �uid-structure interaction problems,

the control volume can be chosen in a manner that some portions of the control

surface match the structural surfaces. Denoting the portions of the CS where the
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�ow cannot pass through by CSC (closed CS), and representing the rest of the CS

by CSO (open CS), McIver�s extension of Hamilton�s principle is given by

�

Z t2

t1

(T � �)CV dt+
Z t2

t1

Z
CSO

[�r � �� � n+ � (u � �r) (ur � n)] dAdt

+

Z t2

t1

Z
CSC

�r � �� � ndAdt = 0; (1.3)

where u is the absolute velocity of the �uid particles, T is the kinetic energy and �

is the potential energy.

Equation 1.3 represents a stationary process if the integrand of the second term

always disappears at the CSO, that is,

�� + �uur = 0, or (�� + �uur) � n = 0 at CSO. (1.4)

Therefore, the applicability of McIver�s equation is restricted to the cases where

such a control volume can be distinguished from the physics of the problem, where

the �uid is bounded by the structure. McIver considered two simple problems as

examples, a rocket problem and a �exible pipe problem.

Along similar lines, Xing and Price (2000) modi�ed Hamilton�s principle for non-

linear ship-water interactions [19]. They considered that imposing virtual displace-

ments cause the particles to be virtually transported across an assumed control vol-

ume. They de�ned a general integral function of interest, say H, as

H [�] =

Z t2

t1

Z
CV

F

�
�;
@�

@t

�
dV dt, (1.5)

where � is a continuos di¤erentiable function of displacement, x, and time, t. Denot-

ing the local variation (Eulerian) by �� and the material variation (Lagrangian) by �,

they obtained the local variation of the H function to be
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��H =

Z t2

t1

�Z
CV

��FdV +

Z
CS

F

�
�;
@�

@t

�
(�x � n) dA

�
dt. (1.6)

Therefore, the variation of H is twofold: the Eulerian variation inside the control

volume and the �ux of H due to Lagrangian virtual displacements. Then, their

model was applied to a rigid ship travelling in calm water and in waves. Xing and

Price�s method requires further simpli�cations and assumptions as it contained both

Lagrangian and Eulerian variations.

Benaroya and Wei (2000) considered a more general type of FSI problem where

the �uid contains the structure [1]. They showed that Hamilton�s principle becomes

the balance of energy rates when the con�guration is not known at any time. Similar

to McIver�s approach, they used the RTT to relate Hamilton�s principle to a control

volume. However, unlike the McIver�s use of RTT, they chose the conventional form

of RTT when the relative velocities, ur, are the relative �uid particle velocities with

respect to the control volume. They presented their governing equation as

d

dt
(Tstructure +�structure)CV =

Z
CS

1

2
�u2 (ur � n) dA (1.7)

+

Z
CS

(�pn+ � ) � udA� (m�uidu _u)CV ,

where m�uid is the mass of �uid contained by the CV , p is the pressure, and � is

the shearing force. They explained that the terms on left-hand side of Equation 1.7

are the structural dynamic terms, and the right-hand side terms can be evaluated

experimentally. The result is the acceleration of the structure that can be integrated

twice to obtain the structure�s displacement.

In parallel with their theoretical development, Benaroya and Wei conducted a

series of experiments on the VIV of a circular cylinder in uniform �ow. The cylinder

was free to vibrate transversely to the �ow direction. Having input the experimental

data to Equation 1.7, they showed that their model is successful in predicting the
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frequencies of the structural oscillation as well as in capturing the beating behavior

that is usually observed in VIV. However, the predicted response amplitudes were

roughly half of the experimental values. Their results are shown in Figure 1.5. They

concluded that these di¤erences are most likely due to the choice of control volume. In

their subsequent paper [4], they examined the e¤ect of the choice of the experimental

control volume on the predictions of their model. They found that the predictions

are indeed in�uenced by the selection of control volume. Having obtained a CV

for which the predictions of the model matched the experimental values (shown in

Figure 1.6), they concluded that the control volume must contain both upstream and

downstream sections of the �ow where downstream control surface is far enough from

the structure as to not pass through the vortex formation region, yet not too far as

it will not capture the true kinetic energy �ux due to the dissipation of energy.

Figure 1.5: Predicted (bottom) vs. Experimental (top) amplitudes. Both plots are
in seconds ([1], with permission from Elsevier).

Benaroya and Wei showed that when the con�guration is unknown, which is the
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Figure 1.6: Dong et al. [4] results obtained for the phase-averaged cylinder position
vs. time, where the solid line represents the experimental result and the dotted line
is the computed result for a speci�c control volume (with permission from Elsevier).

case for the majority of �uid and �uid-structure interaction problems, the result of

Hamilton�s principle is not a variational principle. However, the satisfactory results

of their studies motivated the research work by Gabbai and Benaroya to modify the

same approach as to obtain a variational method [7]. The experiments show the

existence of a formation region (cavity) in vicinity of a cylinder that is immersed in

a �ow. They assumed that the energy is evenly exchanged between the cylinder and

the wake in formation region. Denoting the displacement of this cavity by w, they

obtained their variational equation as

Z t2

t1

amcavity _w� _wdt+ �

Z t2

t1

1

2
m _x2dt� �

Z t2

t1

1

2
kx2dt�

Z t2

t1

c _x�xdt

�
Z t2

t1

�W ( _w; �w; x; _x; �x; t) dt� �

Z t2

t1

F (w; t)�wdt = 0, (1.8)

where the overdot denotes d=dt, m denotes the mass, x is the displacement of the

cylinder, k is the structural sti¤ness, c is the structural damping, � is the variational
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operator, t is time, F is the �uid sti¤ness, andW represents instantaneous total work

done by the transverse hydrodynamic force acting on the cylinder, Ffl=st, and by the

viscous and pressure forces inside the cavity, F�=p. Therefore,

�W ( _w; �w; x; _x; �x; t) = �Ffl=st ( _w; �w; _x; �x; t) �x+ F�=p ( _w; �w; _x; �x; t) �w. (1.9)

Then, based on the literature, the authors proposed some general functions of _w, �w,

_x, �x, t, and lift coe¢ cient for Ffl=st and F�=p. They showed that three of the existing

wake-oscillator models are each a speci�c case of their more general model.

As evident from the literature, the e¤orts to apply Hamilton�s principle and La-

grange�s equations to the problems of �uid dynamics have had relative success in

certain cases, mainly ideal �uids. There exist no general variational approaches for

�uid-structure interactions, nor for �uid dynamics problems. One main challenge

arises from relating the variational principles in the Lagrangian frame to the Eulerian

frame. Therefore, we next consider the Eulerian and Lagrangian reference frames and

review the relations between dynamic properties described in these reference frames.

1.2 Eulerian and Lagrangian Descriptions

In classical mechanics, one has two alternative descriptions to observe and analyze

dynamic systems: the Lagrangian description and the Eulerian description. Each of

these observation methods has advantages and drawbacks compared to the other one.

Generally, one exercises care by considering the physics of the problem in order to

understand the convenience of each description on a case by case basis.

The Lagrangian reference frame has long been used in solid mechanics, while the

Eulerian reference frame has been preferred in �uid mechanics. The fact that the

�rst principles of mechanics are de�ned in the Lagrangian reference frame is the main

advantage of this descriptions. Then again, it has been shown that the EOM of �uid
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systems become less complicated in the Eulerian reference frame.

In the Lagrangian frame, also called the particles description or material coordi-

nate, one observes the trajectories of speci�c particles during some interval of time.

Consequently, a set of coordinates, which are usually the initial positions, are tagged

to a set of particles and the resulting EOM are di¤erential equations of the trajec-

tories (paths) of those particles. The Lagrangian trajectories, r, can be expressed

as

r = r (A; t) , (1.10)

where A are the initial positions and t is time. Since A are constant coordinates, r

are coordinates dependent on t.

The Eulerian frame of reference, also called space-�xed coordinates or con�gura-

tion frame, describes a system at some �xed points in space. Unlike the Lagrangian

coordinates, the Eulerian coordinates are not carried by the particles, thus they re-

main unaltered by the physics of the problem. Therefore, the EOM represent the

dynamics of the particles that occupy certain spatial points at some instants of time,

that is, the Eulerian coordinates, x, are independent of time, t.

Generally, the transformation of the �rst principles of mechanics from the La-

grangian frame to the Eulerian description is based on three conditions [5]:

1. The velocity obtained from both frames must be equal to each other at a given

time and a given spatial position. This is very clear since an actual �ow particle

has a unique velocity at any instant.

2. Similar to velocities, the time derivatives of the �uid properties obtained from

either one of the representations must match the other one at a given time and

spatial position.

3. The time derivative of an integral of a function over a moving material volume
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can be related into an integral of that function over an arbitrary control volume

using Reynolds�transport theorem.

The majority of the challenges in applying the �rst principles of mechanics to

systems of �uids is due to the di¢ culties in utilizing the above conditions. These

di¢ culties are explored in more detail in the following sections.

1.2.1 Relating the displacement �elds

The displacement �eld in the Lagrangian frame is de�ned by the particle trajectories,

Equation 1.10. In the �eld of �uid mechanics, they are often referred to as pathlines.

The particles trajectories, as they are treated in the Lagrangian frame of reference,

do not have an exactly equivalent Eulerian concept, as the Eulerian coordinates are

independent of time. The closest concept to pathlines is the existence of a function

that maps the current state of the particles to an earlier con�guration. For conve-

nience, the earlier state can be chosen to be the initial con�guration. Therefore, the

Eulerian mapping function can be expressed as

A = A (x; t) . (1.11)

In order to relate this mapping function to particle trajectories, assumptions must

be made that the mapping from A to r is continuous and unique such that two

adjacent particles will never be separated and neither particle will coexist at the same

position at the same time. These assumptions are the basis of continuum mechanics,

and they require the �eld to be a smooth continuum down to an arbitrarily small

spatial scale. If these assumptions hold, then the relation between A and r can be

expressed by [5]

r = r (A; t) , A = A (r; t) . (1.12)
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The importance of Equation 1.12 will become more clear when considering the

velocity transformation example of next section.

1.2.2 Relating the velocity �elds

As mentioned earlier, the velocities obtained by using any observation frame must

match the real velocity �eld. Denoting the velocity �eld in the Lagrangian frame by

v (A; t) and in the Eulerian frame by u (x; t), then it must be true that

v (A; t) = u (x; t)jx=r , (1.13)

or, alternatively that

u (x; t) = v [A (r; t) ; t]jr=x . (1.14)

In order to make these relations more clear, we consider the following simple

example. We assume that the Eulerian velocity �eld of a one dimensional �ow is

known to be

u (x; t) = ��x+ �t, (1.15)

where � and � are known constants, and the equation is expressed by scalar variables

since the �ow is one-dimensional.

We wish to obtain the Lagrangian velocity �eld. Using Equation 1.13, we can

write

v (A; t) = u (r; t) ) v (A; t) = ��r + �t. (1.16)

Lagrangian coordinates r = r (A; t) are dependent functions of only time, since the

initial positions are �xed. Therefore, the velocity v (A; t) is obtained by di¤erentiating

r with respect to time, resulting in

dr (A; t)

dt
= ��r (A; t) + �t, (1.17)
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which is an ordinary di¤erential equation (ODE). Solving this ODE for r and di¤er-

entiating it with respect to time, the Lagrangian velocity �eld is obtained to be

v (A; t) = ��
�
�

�2
+ A

�
exp (��t) + �

�
. (1.18)

Now, we wish to obtain the Eulerian velocity, Equation 1.15, from Equation 1.18.

In order to utilize Equation 1.14, the mapping function, A, is required. Considering

Equation 1.12, the particles trajectories must be obtained �rst. This is done by inte-

grating Equation 1.18 with respect to time and obtaining the constants of integration

by imposing the initial conditions. The result is

r (A; t) =

�
�

�2
+ A

�
exp (��t) + �

�2
(�t� 1) . (1.19)

The mapping function, A, is the inverse function of Equation 1.19 and it is ob-

tained to be

A (r; t) =

�
� �

�2
(�t� 1) + r

�
exp (�t)� �

�2
. (1.20)

By substituting the mapping function from Equation 1.20 into the Lagrangian

velocity �eld of Equation 1.18 and replacing r with x, the Eulerian velocity �eld

Equation 1.15 is obtained.

In general, for two- or three-dimensional �ow these transformations are not as

easy as the one-dimensional example here, as the di¤erential equations are generally

coupled. Moreover, the velocity �eld must be known in, at least, one of these con�gu-

rations, that is, a problem must be �rst solved. Additionally, the initial positions are

not observable for a �uid system, unlike for solids (for instance in theory of elasticity)

[5].
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1.2.3 Relating the time derivatives of the system properties

Regarding the time derivatives, the following notations have been adopted through-

out this paper: d=dt represents the total derivative of a Lagrangian function, D=Dt

denotes the material derivative of an Eulerian function, and @=@t is the partial deriv-

ative with respect to time.

The Lagrangian trajectories, r (A; t), and velocities, v (A; t), are functions of

initial positions and time. Therefore, their time derivatives are a simple di¤erentiation

with respect to time by holding the initial conditions �xed, that is

v (A; t) =
dr (A; t)

dt
, aL (A; t) =

dv (A; t)

dt
=
d2r (A; t)

dt2
, (1.21)

where aL (A; t) are the Lagrangian accelerations.

Regarding the Eulerian description, functions are space-time dependent on the

Eulerian velocity �eld. As these functions are essentially the system properties ob-

served at �xed points in space, the advection of the properties must also be included.

Therefore, the total derivative is considered to be the material derivative de�ned as

D ( )

Dt
=
@ ( )

@t
+ u � r ( ) . (1.22)

The term material derivative is used since this derivation is aimed to match the

total derivative of a Lagrangian function, that is the material-�xed frame. As an

example, the Eulerian acceleration, a, can be obtained as

a (x; t) =
Du (x; t)

Dt
=
@u (x; t)

@t
+ u (x; t) � ru (x; t) . (1.23)

As mentioned before, a �uid property obtained from any observational frame must

match the unique real property of the system. Therefore, for derivatives of a property
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function, say �, we have

d�L (A; t)

dt
=
D�E (x; t)

Dt

����
x=r

, (1.24)

where �E (x; t) is the Eulerian representation of the Lagrangian function �L (A; t).

1.2.4 Reynolds�Transport Theorem (RTT)

Reynolds�transport theorem is an e¤ective tool to relate an integral over a material

volume (system volume, SV ) to an integral over a control volume. It can be thought

of as the three dimensional form of the Leibniz integral. The RTT can be applied to

a scalar-valued spatial function, say b (x; t). For a �xed control volume, the RTT is

expressed as [20]

d

dt

Z
SV (t)

�b (x; t) dV (t) =

Z
CV

�
D [�b (x; t)]

Dt
+ �b (x; t) [r � u]

�
dV , (1.25)

where � is the �uid density.

The RTT can be applied to a general moving and deforming control volume that

contains a solid system as well as a �uid. The general form of the RTT is given by

d

dt

Z
SV (t)

�b (x; t) dV (t) =

Z
CV (t)

@ [�b (x; t)]

@t
dV (t) +

Z
CS(t)

�b (x; t) [u � n] dA (t) .

(1.26)

When using the RTT, the equations can often be simpli�ed by utilizing the Gauss

(divergence) theorem, that is,

Z
CV

r � F dV =
Z
CS

F � ndA, (1.27)

where F is a vector-valued spatial function. If including a scalar-valued function, say
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h(x; t), it can be shown that Gauss�theorem will become

Z
CV

(F � rh+ hr � F ) dV =
Z
CS

hF � ndA. (1.28)

Considering our discussions in this section, we expect to have a well-de�ned rela-

tion between the Lagrangian variational operator and Eulerian one. However, relating

the Lagrangian variation to Eulerian ones faces additional challenges which are dis-

cussed next.

1.3 Lagrangian and Eulerian Variations

Gelfand and Fomin (1963) used a family of surface transformations and utilized an

interim surface to obtain the relation between the Lagrangian variational operator,

�, and the Eulerian one, ��, as [21, p.168]

� ( ) = �� ( ) + �xi
@ ( )

@xi
. (1.29)

While the reader is encouraged to view the mathematically rigorous derivations

of Gelfand and Fomin, we will obtain this relation from a graphical point of view so

as to clarify the physics of this transformation.

We start by considering a particle i with its known Lagrangian trajectory r =

r (Ai; t), where Ai is the initial position of the particle i. The Lagrangian path

r = r (Ai; t) represents the position of the particle i at time t, which was at the

position Ai at time t = 0. Therefore, r represents the time-varying position of the

particle in the same frame in which Ai was originally observed. Consequently, if Ai

is Eulerian, r is the Eulerian position at time t.

By applying the virtual displacement �r, the particle will be transferred to an
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imaginary path that di¤ers from the actual path by �r for all time. Since �r are ar-

bitrary in�nitesimal vectors that are compliant with system constraints, the resulting

new paths can be thought of as alternative possible trajectories.

As mentioned earlier, the Lagrangian coordinates are time dependent whereas the

Eulerian ones are time independent. Moreover, while the virtual displacement, �r, is

imposed by holding time �xed (�t = 0), yet it gets carried away by the particle. This

is due to the fact that it is imposed in a material frame. Therefore, one must include

the advection e¤ect while acquiring the Lagrangian-Eulerian variational relation.

Figure 1.7: Relating the Lagrangian and the Eulerian variational operators.

Considering the particle i and its real path r, let r� be a possible alternative path

that results by imposing the virtual displacement �r, as shown in Figure 1.7. We are

interested in obtaining the resulting variation of a spatial function, say �(x; t), due to

an imposed �r. In order to consider advection, we assume that the particle will move

on path r� during an in�nitesimal virtual time, say ". Denoting the di¤erence in value
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of � between the virtual position, r� (Ai; t+ "), and actual position, r = r (Ai; t),

by 4�, we have

4� = �(x; t)jr�(Ai;t+")
� �(x; t)jr=r(Ai;t)

. (1.30)

Using an Eulerian position vector, x, we denote the actual position of the particle

by xi, and the virtual position by x�i . Therefore, the displacement vector, 4xi, is

4xi = x�i � xi. (1.31)

Consequently, Equation 1.30 can be modi�ed using Equation 1.31 as

4� = �(xi+4xi; t+ ")� �(xi; t). (1.32)

Applying Taylor expansion about xi and t to the �rst term on the right-hand side

of Equation 1.32, we obtain

4� = �(xi; t)+"
�
@�(x0; t0)

@t0

�
x0=xi
t0=t

+4xi
�
@�(x0; t0)

@x0

�
x0=xi
t0=t

��(xi; t)+HOT , (1.33)

where HOT stands for higher order terms. By de�nition of the variational operator

�� = lim
"!0

4�
"
, (1.34)

therefore,

�� = lim
"!0

(
"

"

�
@�(x0; t0)

@t0

�
x0=xi
t0=t

+
4xi
"

�
@�(x0; t0)

@x0

�
x0=xi
t0=t

+
HOT

"

)
. (1.35)
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By de�nition

�xi = lim
"!0

4xi
"
, (1.36)

and

��� =
@�(x; t)

@t
, (1.37)

since ��� is the local variation of function � for which �xi act as velocity. Therefore,

by taking the limit of Equation 1.35, �� is obtained as

��(x; t) = ���(x; t) + �xi
@�(x; t)

@xi
, (1.38)

which is the same as Equation 1.29.

As it is apparent from Equation 1.38, the Lagrangian variation in Eulerian frame

becomes mixed Lagrangian-Eulerian variations. This is because in the Eulerian de-

scription the coordinates are �xed in space, thus no variation is permitted on the

displacement �eld. Therefore, �xi is an Eulerian representation of a Lagrangian vir-

tual displacement. This introduces major di¢ culties when modeling �uid systems, as

is explained in the next section where some other challenges are also discussed.

1.4 Challenges Faced Using Virtual Displacement

In relating the equations for the solid to the �uid, requiring the relation of the La-

grangian descriptions to the Eulerian one has its own challenges. Initially, these

di¢ culties manifest themselves in relating the Eulerian and the Lagrangian varia-

tional operators, as the Lagrangian concept of virtual displacement does not have an

Eulerian counterpart. Some main challenges are discussed in this section.

Mentioned in our literature review (Section 1.1) was the existence of backtracking

steps required in these type of problems. The reason is clear from the simple example

of velocity transformation in Section 1.2.2. As evident from our analysis (Equations
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1.13 - 1.20), in order to transform the Lagrangian velocities to the Eulerian one,

the mapping function (Equation 1.11) must be known. The mapping function is

also required for virtual displacements which are in many ways similar to velocities.

However, the initial conditions are not observable in the Eulerian description, nor are

they in most �uid dynamics problems. Therefore, one possibility is to guess an ad

hoc mapping function, as explored by Leech [18].

Alternatively, some have chosen to keep the Lagrangian virtual displacements in

the variational formulation and obtain the necessary condition on the control surface

by which the action function assumes stationary values inside the control volume.

This approach will impose additional constraints on the choice of control volume that

generally cannot be made, or at least are not easily distinguished, as was encountered

by McIver [12].

Another challenge encountered by keeping the virtual displacement �r is when the

boundary conditions are expressed in the velocity format, as is generally true for �uid

systems. For many problems in solids mechanics, this di¢ culty has been overcome

by utilizing some generalized coordinates, q, as

�r =
nX
i=1

@r

@qi
�qi, (1.39)

and then, by using the relation
@ _r

@ _qi
=
@r

@qi
. (1.40)

While Equation 1.40 is true for holonomic systems, requiring the velocity �eld to be

integrable, it is not valid for nonholonomic systems [22]. Thus, it cannot be used for

ideal �uids and it has limited applicability for viscid incompressible �uids. Leech dis-

cussed the fact that ideal �uids (inviscid and incompressible) are nonholonomic; while

viscous incompressible �uids can be considered holonomic, the boundary conditions

might not be so [18].
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Moreover, the existence of nonconservative forces (that do perform virtual work)

can reduce the generality of stationary principles as variational methods. It is due to

the fact that generally the contribution of the nonconservative forces in the equations

of motion is not a consequence of the variational operations, but rather it is by the

appropriate choice of the equations representing nonconservative forces. In order to

keep the generality of the variational approach, Bateman (1931) proposed that there

must exist a secondary system that absorbs the energy dissipated by the original sys-

tem, resulting in a set of complimentary equations [23]. This secondary set must not

add any additional restriction to the system, thus, the solution of the complimentary

equations must be a function of the solutions of the original system. However, he

showed that the complimentary equations do not generally meet this requirement for

nonlinear systems, that is, the number of variables required in Lagrange�s function

cannot be reduced. Concluding his paper, Bateman stated:

"The researches of Clark Millikan showed, indeed, that there was no

prospect of the discovery of a function L depending only on the quantities

occurring in the equations of motion and the equation of continuity."

Although this statement leaves very little promise for using stationary principles

for �uid systems, Hamilton�s principle of varying action as stated by

Z t2

t1

(�T + �W ) dt�
NX
i=1

@Ti
@ _r

� �ri

�����
t2

t1

= 0, (1.41)

is not a stationary principle, if

NX
i=1

@Ti
@ _r

� �ri

�����
t2

t1

6= 0. (1.42)

However, it requires that the con�guration be known at two instances of time. When
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modelling �uid systems, the boundary conditions for particle trajectories are gener-

ally nonexistent. In the absence of these conditions, Hamilton�s principle is not a

variational principle, as was shown by Benaroya and Wei [1]. In this dissertation,

Jourdain�s variational principle is proposed as a possible basis for overcoming some

of these di¢ culties.

As evident from our discussions thus far, there exist many di¢ culties in modeling

FSI system which have motivated the current research work. These are summarized

next.

1.5 Motivation Behind This Research

The problem of �uid-structure interaction is a crucial consideration in many appli-

cations from designing aircraft to analyzing the dynamics of blood cells. In fact, the

literature on the subject comprises a substantial portion of the mechanics literature.

Yet, there exists no compelling analytical theory which can explain the nature of this

interaction. In solid mechanics, variational principles and methods are one of the

most e¤ective tools in modeling the dynamics of a system. However, as evident from

our literature review, these methods have had very limited success in modeling �uid

dynamics. Therefore, there exists a need for developing variational methods that can

be used for modeling �uid systems.

Among the FSI problems, VIV is one of the most challenging and the least un-

derstood phenomena, in part due to very complex behavior of the �uid. In order to

make the challenges faced more clear we further discuss the model problem de�ned

earlier, best understood when the cylinder is �xed.

For a �xed cylinder at low Reynolds numbers (Re � 40), the boundary layer

approximation method does not have a known exact solution. At about Re = 40,

the vortices come to exist, thus the �ow becomes unstable, and essentially all our
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understanding of the problem is from experimental observations. It has been found

experimentally that for a �xed circular cylinder, the frequency of the vortex shed-

ding is proportional to the velocity of the free stream and corresponds to a constant

Strouhal number of 0.2 for �ow with Reynolds numbers of 300 to 2� 105 [6]. While

the constant Strouhal number reduces the level of di¢ culty in modeling the �xed

cylinder substantially, no analytical solution is known for this problem.

The level of di¢ culty increases substantially when the structure is free to vibrate.

Consequently, the majority of reduced-order models in the literature are mainly ob-

tained by assuming a class of equation, and then by curve �tting to a set of experi-

mental data. However, in order to set up an experiment, at least a crude governing

equation is required. Moreover, these ad hoc models do not provide any insight into

dynamics of the �uid system. Thus they will not help us to understand the nature of

VIV. Therefore, our aim is to develop a method which is based on �rst-principles to

overcome this di¢ culty.

As mentioned, the work of Benaroya and Wei [1] is one of the earliest attempts

in modeling the VIV problem using �rst principles. Also, their energy equation

resulted in satisfactory results for a speci�c control volume. The energy equation

or conservation of energy law must be independent of the selection of the control

volume. While their justi�cation based on experimental considerations are indeed

valid, the theoretical structural response of amplitude one-half the actual response

poses some questions that if there exists other characteristics of the system which are

not considered by the classical energy equation. The motivation behind the current

research is to also consider the reduced-order modeling using conservation of energy.

Last but not least, there exist no analytical models that do not assume some form

of �uid force function on solid surface to obtain wake-oscillator type equations. The

main motivation for this research work was to overcome this di¢ culty, and to develop

a method which does not require assumptions regarding the lift and/or drag forcing
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functions.

1.6 Dissertation Outline

D�Alembert�s principle, Lagrange�s equations, and Hamilton�s principle all utilize

the concept of virtual displacements. There are many challenges and roadblocks

in applying these principles directly to �uid-dominated systems.

In the following chapters we identify these di¢ culties and introduce to notion of

using Jourdain�s variational principle as a basis for such modeling as it is based on

the idea of a virtual velocity. This has not been done before. Jourdain�s principle is

explored and an extension is obtained for systems of changing mass.

Our main objective is to utilize this variational principle in the derivation of

physically meaningful reduced-order mathematical models for VIV.

In Chapter 2, as a �rst step, beginning with the constitutive relation for a New-

tonian incompressible viscous �uid, and applying Jourdain�s variational principle,

we derive the Navier-Stokes equation. While important in its own right, this result

veri�es our extension of Jourdain�s variational principle.

In Chapter 3, Jourdain�s variational operator is used to derive an energy rate

equation, thus extending the results of Chapter 2. The energy equation results in a

correction term that does not exist in the classical energy equation. The reason for

this is found to be that the �uid acceleration de�ned in the Eulerian reference frame

is not reversible with respect to velocity.

It is also shown that the energy equation corresponds to a variational energy

formulation. Moreover, a modi�ed variational energy equation is obtained which

allows the boundary conditions to be implemented explicitly or implicitly.

In Chapter 4, the energy equation is used to include the structure in the variational

formulation. The result is a single governing equation which can be coupled with the
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experimental data to predict the structural response. The model is compared to

that proposed by McIver. Also, the single governing equation of motion is obtained

for the model problem and is compared with Benaroya and Wei�s model. Moreover,

based on the de�nition of Jourdain�s variational operator and Rayleigh�s dissipation

function, an equation is obtained for cases where the control volume is very close to the

structure. The equation obtained may explain the reason why the classical energy

equation predicted structural oscillations with amplitudes half of that observed in

Benaroya and Wei�s experiments.

In Chapter 5, we propose our methodology for obtaining wake-oscillator type

equations from the variational energy formulation of Chapter 4. Two coupled non-

linear equations are obtained for the model problem. Also, we show how our method

can be combined with dimensional and similarity methods via an example to obtain

a model similar to that of the classical Hartlen and Currie model [9].

In Chapter 6, we conclude our work and explain what can be added to this research

work to help us better understand the nature of VIV.

We include an appendix that outlines the connections between the key variational

principles that embody this work.
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Chapter 2

An Extension of Jourdain�s Principle to Systems
of Changing Mass

As mentioned in the previous chapter, one of the challenges in using D�Alembert�s

principle, Lagrange�s equations, and Hamilton�s principle is that the virtual displace-

ment used in these methods (which is a Lagrangian concept) does not have a well-

de�ned Eulerian counterpart. In principle, this challenge can to be overcome by uti-

lizing Jourdain�s variational principle that assumes the displacement �eld to be frozen

and imposes a set of virtual velocities, instead. However, a review of the literature

suggests that this principle has not been used in modeling �uid dynamic systems or

�uid-structure interaction systems. Regarding the dynamics of solid systems, Jour-

dain�s principle has attracted a very limited number of researchers when compared

with other mentioned methods. Mainly, it has been preferred in the modeling of

nonholonomic systems because the velocities are not integrable.

We start this chapter with a short description of Jourdain�s principle. The relation

between d�Alembert�s and Jourdain�s principles is reviewed in Section 2.2, and some

characteristics of Jourdain�s principle are discussed in Section 2.3. Then, the Eulerian

representation of Jourdain�s principle is obtained in Section 2.4 and it is extended to

systems of changing mass in Section 2.5. In Section 2.6, it is shown that the Eulerian

representation of Jourdain�s principle results in the Navier-Stokes equations for a

general control volume of incompressible viscous �uid. The chapter concludes with a

comparative discussion on the extended Jourdain�s principle.
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2.1 Jourdain�s Principle

In 1909, Jourdain published his variational principle to explain the gap between

d�Alembert�s principle and Gauss�s principle of least constraint (Gibbs-Appell equa-

tions) and the di¤erences in the variational constraints imposed [24]. He considered

the variational constraints to be

�r = �t = 0. (2.1)

Analogous to the other mentioned variational methods, Jourdain�s principle is

based on the dynamic equilibrium relation, and for a system of N particles is given

by the relation

NX
i=1

(mi�ri � F i) � � _ri = 0; where �r = 0, �t = 0, (2.2)

and where mi is the mass of particle i, vector F i is the force acting on particle i, and

� _ri is the variation of the velocity of the particle i (called virtual velocity).

Jourdain showed that his method demands less derivations for nonholonomic sys-

tems when compared with d�Alembert�s and Gauss�s principles. (Jourdain concluded

that his constraints lead to a new method because the di¤erential quotient appears

both before and after the variational operator (�).) However, he did not explain the

physical meaning of his virtual velocities, which do not correspond to any virtual

displacements.

Since the terms in Equation 2.2 are power relations, the equation has also been

referred to as the principle of virtual power (PVP). Repeatedly, Kane�s equations

are also referred to as PVP. To avoid any confusion, we will use the term Jourdain�s

principle (JP).
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2.2 Deriving the Jourdain�s Principle from d�Alembert�s Prin-

ciple

Jourdain�s principle can be derived from d�Alembert�s principle by direct di¤eren-

tiation [25] or by the means of a Taylor series expansion [26]. We choose direct

di¤erentiation as this approach provides the format required when applying the RTT.

D�Alembert�s principle is stated as

NX
i=1

(mi�ri � F i) � �ri = 0, where �t = 0. (2.3)

Di¤erentiation of Equation 2.3 with respect to time yields

NX
i=1

�
d

dt
(mi�ri � F i) � �ri + (mi�ri � F i) �

d

dt
(�ri)

�
= 0, where �t = 0.

(2.4)

Using the commutation rule,

d

dt
(�r)� �

�
d

dt
r

�
= 0, (2.5)

we have

NX
i=1

�
d

dt
(mi�ri � F i) � �ri + (mi�ri � F i) � � _ri

�
= 0, where �t = 0. (2.6)

Now, we can impose Jourdain�s constraints,

�t = 0, �r = 0, and d (�r) 6= 0, (2.7)
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and obtain Jourdain�s principle,

8>>>>>>>>><>>>>>>>>>:

NX
i=1

(mi�ri � F i) � � _ri = 0

�t = 0

�r = 0

d (�r) 6= 0,

(2.8)

where d (�r) is the di¤erential of the virtual displacement �r. Jourdain�s constraints,

expressed by Equation 2.7, assume that a system can have an alternatively possible

velocity �eld at a time instance with the same corresponding displacement �eld.

In order to distinguish between Jourdain�s and d�Alembert�s variational operators,

many authors have used the sign �1 to denote Jourdain�s variation. We prefer to retain

the same notation (�) with Jourdain�s constraints in the remainder of this work where

it will be understood from the context.

2.3 Characteristics of Jourdain�s Principle

As emphasized by Jourdain, his constraints lead to a di¤erent variation principle. Ba-

sically, JP does not share the similarities with the other mentioned virtual principles.

These di¤erences are noted below.

Kövecses and Clenghorn [27] investigated Jourdain�s principle. They proposed

that the position vector, r, can be represented by using its trajectories in both La-

grangian and Eulerian frames. Based on their hybrid parameterization, they show

that unlike the virtual displacements and velocities utilized in Lagrange�s equation,

d�Alembert principle, and Hamilton�s principle, the virtual velocities in JP are not

necessarily in�nitesimal quantities. Also, they pointed out that JP always results in

an alternative possible state, whereas this can only be accomplished by utilizing the

above mentioned methods for holonomic systems.
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While the majority of the limited literature on JP is focused on its application

to nonholonomic systems, an important feature of this principle was revealed by

Papastavridis [25]. While examining the principle and comparing it with Lagrange�s

equations, he showed that Jourdain�s principle is independent of the commutation

rule (2.5). He discussed that if the commutation rule is not valid, then there exists a

vector ��r such that

��r =
d

dt
(�r)� �

�
d

dt
r

�
. (2.9)

By setting ��r 6= 0, Papastavridis proved that Jourdain�s principle results in the

correct EOM. While the reader is urged to consider the discussion by Papastavridis,

we proceed with an interpretation suited for our purposes that results in a simpli�ed

proof of this feature.

Let us consider the relation between Lagrangian variations (�) and Eulerian varia-

tions
�
��
�
as de�ned by Equation 1.38, and impose the Jourdain constraints (�xi = 0).

The result is

��(x; t) = ���(x; t). (2.10)

This is a very important property, as it states that Jourdain�s variation of a spa-

tial function is the same in both Lagrangian and Eulerian descriptions. Using this

property, some of the problems that have been encountered in extending variational

principles for �uid systems can be avoided by using JP.

In order to prove that JP is independent of the commutation rule, we impose

Jourdain�s variational operator to the total derivative of a function. Using Equation

2.10, we can write

�

�
D

Dt
�(x; t)

�
= ��

�
D

Dt
�(x; t)

�
. (2.11)

It has been shown that the Lagrangian variation commutes with time di¤erentiation
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while the Eulerian one does not [19]; that is,

�

�
D

Dt
�(x; t)

�
=

D

Dt
[��(x; t)] (2.12)

��

�
D

Dt
�(x; t)

�
6= D

Dt

�
���(x; t)

�
. (2.13)

Using Equations 2.10-2.13, we have

��

�
D

Dt
�(x; t)

�
= �

�
D

Dt
�(x; t)

�
=

D

Dt
[��(x; t)]

=
D

Dt

�
���(x; t)

�
. (2.14)

Comparing Equations 2.13 and 2.14, the independence of JP with regard to the

commutation rule is proven. In other words, we used Equation 2.12 that implies

�r� = 0, then by imposing the Jourdain constraints, we obtained �r� 6= 0.

2.4 Eulerian-Lagrangian Description of Jourdain�s Principle

In Section 2.2, it was shown that JP can be obtained by di¤erentiating d�Alembert�s

principle, and then imposing Jourdain�s constraints. Similarly, in the following, we

start by manipulating d�Alembert�s principle, and then, apply Jourdain�s constraints.

Therefore, Jourdain�s constraints are kept beside d�Alembert�s principle as shown in

Equation 2.16, where the curly bracket on the left is to remind us that the same

mathematical manipulations must be applied to all those terms. As shown in Section

2.2, all the terms on the right of the bracket together are equivalent to Jourdain�s

principle.

D�Alembert�s principle for a system of N particles can be stated as



38

NX
i=1

d

dt
(mi _ri) � �ri =

NX
i=1

F i � �ri, (2.15)

and by di¤erentiating this with respect to time and imposing Jourdain�s constraints,

JP can be written as8>>>>>>>>><>>>>>>>>>:

d

dt

"
NX
i=1

d

dt
(mi _ri) � �ri

#
=

d

dt

"
NX
i=1

F i � �ri

#
�t = 0

�ri = 0

d

dt
(�ri) 6= 0.

(2.16)

In the above, both sides of the equation are di¤erentiated using the product rule and

use is made of the �ri = 0 constraint.

As mentioned in Section 1.2, the velocity and resultant force observed at a point

in the Eulerian space must be the same as the velocity and forces obtained from the

Lagrangian frame for a particle that occupies that Eulerian point, that is,

v (Ai; t) = u (ri; t) (2.17)

F (Ai; t) = F E(ri; t), (2.18)

where v (= _r) is the Lagrangian velocity and u is the Eulerian velocity (the same

as before), F E is the Eulerian representation of the force F (Ai; t). Note that ri and

r (Ai; t) are two alternative ways to denote the same parameter.

In continuum mechanics, a set of particles is assumed to be continuous in such

a way that two particles do not occupy the same position, and there exist no gaps

unless in isolated points. By the assumption that there exists a unique function that

maps the Lagrangian reference frame to the Eulerian one, the continuum assumptions

are applied to the Eulerian frame. Consequently, the change in the system properties,
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as viewed from a �xed position in space, is assumed to be smooth, continuous and

di¤erentiable, meaning that two consecutive particles occupying a point in space, say

x, are allowed to possess in�nitesimally di¤erent properties.

Also, as discussed in Section 1.2.1, for each particle trajectory there exists an

inverse mapping function to the initial position of that particle (Equation 1.12). While

the initial position is a �xed variable in the Lagrangian frame, it can be selected to

be any position on the path, di¤ering only by the reference times. Let us call any

of these points a possible initial position. Alternatively, by mapping these di¤erent

time references into a speci�c one, there must exist an instantaneous spatial function

whose outcome is the path-history of the particle occupying that space. As a result,

these possible initial positions can be considered to be a spatial function. Therefore,

in the realm of continuum mechanics, we assume that there must exist an Eulerian

smooth, continuous, di¤erentiable function � (x; t) where

r = � (r; t) , (2.19)

and
d

dt
r =

d

dt
� (r; t) =

D

Dt
� (x; t)

����
x=r

. (2.20)

Note that Equation 2.19 becomes Equation 1.11 for a �xed initial position, thus it

can then no longer be di¤erentiated. Also, from Equations 2.17 and 2.20 we have

u (x; t) =
D

Dt
� (x; t) , (2.21)

since v (A; t) = dr=dt.

By substituting Equations 2.17, 2.18, 2.19 and 2.20 into Equation 2.16, Jourdain�s
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principle can be stated as

8>>>>>>>>><>>>>>>>>>:

d

dt

(
NX
i=1

d

dt
[miu (ri; t)] � �� (ri; t)

)
=

d

dt

(
NX
i=1

F E(ri; t) � �� (ri; t)
)

�t = 0

�� (ri; t) = 0

d

dt
(�� (ri; t)) 6= 0.

(2.22)

Note that u, F E, and � are all Eulerian functions, however, Equation 2.22 is a

Lagrangian equation due to the presence of ri (since we are following the particles).

Also, the variational operator � is Lagrangian.

If the set of particles remains continuous for all time, the summation can be re-

placed with integration over the material domain. Therefore, Equation 2.22 becomes

8>>>>>>>><>>>>>>>>:

d

dt

�Z
Vm

d

dt
[�u (r; t)] � �� (r; t)

�
dVm =

d

dt

�Z
Vm

f(r; t) � �� (r; t)
�
dVm

�t = 0

�� (r; t) = 0

d

dt
(�� (r; t)) 6= 0,

(2.23)

where Vm is the material volume, � is the density, and f is the force density. Since all

the functions are Eulerian, only the bounds of integrations are required to evaluate

those integrals. If the material volume is known in the Eulerian description for all

times, then the e¤ect of the Lagrangian paths r inside the domain becomes irrelevant

to the integration and it can be replaced by the Eulerian coordinate x.

Based on the work of Xing and Price [19] on the e¤ect of virtual displacement �x

on an integration over a control volume, we saw that the virtual displacements are

present on the surfaces of the control volume and not inside the domain in Equation

1.6. Considering Jourdain�s constraints, the virtual velocities have no e¤ect on the

control surfaces, con�rming what was stated in the previous paragraph.
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By mapping the system from the Lagrangian frame of reference to the Eulerian

representation, the material volume, Vm, will be mapped to an Eulerian system (ma-

terial) volume, VE (t), so that

dVm (r; t) = det

�
@r

@x

�
dVE (x; t) , (2.24)

where we used the determinant of Jacobian for the mapping.

Thus far, the derivations have been kept general, that is, we did not specify the

compressibility of the material. We next limit our derivation to incompressible �ows,

where the incompressibility condition implies that

det

�
@r

@x

�
= 1, (2.25)

for all times. Therefore, by substituting Equations 2.24 and 2.25 into Equation 2.23,

utilizing Equation 1.24, and then, replacing r for the reason explained after Equation

2.23, Jourdain�s principle for an incompressible set of continuous particles becomes

8>>>>>>>>>>>><>>>>>>>>>>>>:

d

dt

�Z
VE(t)

D

Dt
[�u (x; t)] � �� (x; t) dVE (t)

�
=

d

dt

�Z
VE(t)

f(x; t) � �� (x; t) dVE (t)
�

�t = 0

�� (x; t) = 0

D

Dt
(�� (x; t)) 6= 0,

(2.26)

where by Equation 2.21 u (x; t) = D
Dt
� (x; t); and where d=dt is used to emphasize

that it is a di¤erentiation of a material volume, and D=Dt is used inside the integrand

since the associated function is Eulerian.

Equation 2.26 is still mixed Eulerian-Lagrangian. The variations � are Lagrangian,

and the same set of particles are being followed. In the following section we impose



42

Jourdain�s constraints and convert Equation 2.26 into an equation for a system of

changing mass with the Eulerian variational operator.

2.5 Extended JP for General Control Volume

Jourdain�s principle for a system of particles was obtained in Equation 2.26, which

must be considered together with Equation 2.21. In relating the integrals over the

system volume to those over a control volume, an e¤ective tool is Reynolds�transport

theorem (Section 1.2.4). In the following, each side of Equation 2.26 is considered

separately for simplicity, and is manipulated so as to become applicable to the cases

where general control volumes are considered. The resulting equation is completely

Eulerian.

2.5.1 Left-hand side of Equation 2.26

We start by considering the left-hand side of Equation 2.26, and apply the RTT for

a general control volume as per Equation 1.26,

d

dt

�Z
VE(t)

D

Dt
[�u (x; t)] � �� (x; t) dVE (t)

�
=

Z
CV (t)

@

@t

�
D

Dt
[�u (x; t)] � �� (x; t)

�
dV (t)

+

Z
CS(t)

�
D

Dt
[�u (x; t)] � �� (x; t)

�
[u (x; t) � n] dA (t) . (2.27)

Now by applying the Gauss (divergence) theorem (Equation 1.28) to the right-hand

side of Equation 2.27, where we can the combine the two terms on the right-hand
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side, we obtain

d

dt

�Z
VE(t)

D (�u)

Dt
� ��dVE (t)

�
=

Z
CV (t)

�
@

@t

�
�
Du

Dt
� ��

�
+ u � r

�
�
Du

Dt
� ��

�
+

�
�
Du

Dt
� ��

�
(r � u)

�
dV (t)

=

Z
CV (t)

�
D

Dt

�
�
Du

Dt
� ��

�
+

�
�
Du

Dt
� ��

�
(r � u)

�
dV (t) , (2.28)

where the argument (x; t) is omitted since we recognize that all the functions are

expressed in the Eulerian frame. Moreover, the density � has been pulled out of the

di¤erentiation since for incompressible �ow the density is constant.

By imposing the incompressibility constraint, r � u = 0, and then di¤erentiating

the remaining terms, Equation 2.28 becomes

d

dt

�Z
VE(t)

D (�u)

Dt
� ��dVE (t)

�
=

Z
CV (t)

D

Dt

�
�
Du

Dt
� ��

�
dV (t)

=

Z
CV (t)

�
�
D2u

Dt2
� � �+ �

Du

Dt
� D
Dt
(��)

�
dV (t) . (2.29)

In deriving Equation 2.29, we have not yet imposed Equation 2.7, Jourdain�s con-

straints. Since � is the Lagrangian variational operator, the commutation rule still

holds,
D [� (�)]

Dt
= �

�
D (�)

Dt

�
. (2.30)

Substituting Equation 2.21 in Equation 2.30, we have

D [� (�)]

Dt
= �u. (2.31)

Finally, by applying Jourdain�s constraints as expressed in Equation 2.26, in particular
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�� = 0, and using Equation 2.31, the left-hand side of Equation 2.26 becomes

d

dt

�Z
VE(t)

D (�u)

Dt
� ��dVE (t)

�
=

Z
CV (t)

�
Du

Dt
� �udV (t) , (2.32)

where we realize that �u is a Eulerian variation of the Eulerian velocity. This is

because the Jourdain�s variation of a spatial function is the same in both Lagrangian

and Eulerian descriptions, as was expressed by Equation 2.10. We will not use the

notation �� introduced earlier in the remainder of this dissertation by understanding

that the Lagrangian variational operator becomes the Eulerian operator after impos-

ing Jourdain�s constraints, �� = 0; because the majority of the equations will be

expressed in the Eulerian reference frame.

2.5.2 Right-hand side of Equation 2.26

For the right-hand side of Equation 2.26, the steps are similar to those above, resulting

in

d

dt

�Z
VE(t)

f � ��dVE (t)
�

=

Z
CV (t)

�
@

@t
(f � ��) + u � r (f � ��) + (f � ��) (r � u)

�
dV (t)

=

Z
CV (t)

D

Dt
(f � ��) dV (t) =

Z
CV (t)

f � �udV (t) . (2.33)

2.5.3 New version of Equation 2.26

By substituting Equations 2.32 and 2.33 into Equation 2.26, and by considering Equa-

tion 2.10, the extended Jourdain�s principle for a system of changing mass in a control

volume becomes

Z
CV (t)

�
Du (x; t)

Dt
� �u (x; t) dV (t) =

Z
CV (t)

f (x; t) � �u (x; t) dV (t) , (2.34)
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where all the functions and variations are represented in the Eulerian frame.

We have derived a variational formulation that is expressed purely in the Eulerian

frame. To verify our mathematical manipulations, we derive the Navier-Stokes equa-

tions using Equation 2.34 in the following section.

2.6 Extended Jourdain�s Principle for Viscous Incompress-

ible Fluids

In �uid mechanics, forces acting on a �uid particle are generally divided into three

categories: line forces, body forces, and surface forces [28]. Line forces, also called

surface tension, are the forces observed at an interface layer between gas and �uid

or two immiscible liquids due to intermolecular attractive forces. These forces do not

appear directly in the EOM and they are considered as boundary conditions. Thus,

they are not considered in this work.

Body forces are due to an action at a distance, for instance, gravitational, mag-

netic, and electromagnetic forces. Considering the purpose of the current study, only

gravitational forces might be required. Body forces, F b, can be denoted in terms of

the body force per unit volume (body force density), f b, as

F b =

Z
CV

f bdV . (2.35)

Surface forces, as their name implies, are de�ned on a surface. Considering the

de�nition of the stress tensor, ��, surface force per unit surface area, f s, can be

obtained as

f s = n
T � �� = �� � n, (2.36)

where T denotes transpose and n is the normal vector to the surface of interest.

Therefore, the total surface force, F s, for a control volume can be obtained by using



46

Gauss�theorem (Equation 1.27) as

F s =

Z
CS

f sdA =

Z
CS

�� � ndA =
Z

CV

r � �� dV , (2.37)

where n is the normal vector to the surface of the control volume.

The total active force in a control volume is obtained by integrating the force

density over that control volume,

Z
CV

f (x; t) dV =

Z
CV

f bdV +

Z
CS

f sdA

=

Z
CV

(f b +r � ��) dV . (2.38)

Therefore, the extended Jourdain�s principle can be modi�ed by substituting

Equation 2.38 into Equation 2.34, resulting in the equation

Z
CV (t)

�
�
Du (x; t)

Dt
� f b �r � ��

�
� �u (x; t) dV (t) = 0. (2.39)

In order to expand Equation 2.39 further, we consider the constitutive relation

for Newtonian incompressible �uids, that is,

�� = �p�I + 2� �S, (2.40)

where p is the thermodynamic pressure, �I is the identity tensor, � is the coe¢ cient

of dynamic viscosity, and �S is a symmetric tensor de�ned as

�S =
1

2

�
@ui
@xj

+
@uj
@xi

�
. (2.41)
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Therefore, Equation 2.39 becomes

Z
CV (t)

�
�
Du (x; t)

Dt
� f b (x; t) +rp (x; t)� �r2u (x; t)

�
� �u (x; t) dV (t) = 0.

(2.42)

Since ��u is a nonzero vector, the terms of the integrand inside the parentheses must

add to zero. These are the Navier-Stokes equations. Therefore, the governing EOM

of an incompressible viscous �ow can be obtained from our derived variational for-

mulation.

2.7 Discussion

Our review of the literature states that a purely Eulerian variational method does not

exist. Also, the Navier-Stokes equations have not been obtained using a variational

method. We have done this here.

Considering the derivations presented here, the main reason for the di¢ culties

encountered in the literature can be traced to the Lagrangian-Eulerian relations.

An essential component in relating a Lagrangian function to a Eulerian one is a

mapping function of Lagrangian trajectories. In order to show this dependency, using

Equations 2.29 and 2.33, we can write

Z
CV (t)

�
�
D2u

Dt2
� � �+ �

Du

Dt
� D
Dt
(��)

�
dV (t)

=

Z
CV (t)

�
D

Dt
f � ��+ f � D

Dt
(��)

�
dV (t) , (2.43)

that is, our extension of d�Alembert principle before imposing the Jourdain con-

straints. As it is evident from this equation, the mapping function � is required. In

general, it is not possible to obtain function � from the information available for a

control volume, because Lagrangian trajectories are de�ned by initial conditions that
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are not observable in a Eulerian frame. However, they are required in d�Alembert�s

principle and consequently in Lagrange�s equations and Hamilton�s principle. As we

showed, this problem can be avoided by using JP due to Jourdain�s constraints.

We have shown that Jourdain�s principle can be modi�ed to obtain a purely

Eulerian variational method. Also, it was shown that the Navier-Stokes equations

can be obtained from the extended JP presented here. In our derivations, we did not

make any assumptions, but used Jourdain�s principle and continuum mechanics.

The absence of virtual displacements in our variational formulation might lead

to a more advantageous approach for modeling viscous �uids. A variational function

obtained by imposing virtual displacements is stationary inside an assumed control

volume only if the �rst variation vanishes without any restriction on the second vari-

ation. The works of Millikan [13] and Bateman [23], discussed earlier, con�rm that

a Lagrangian function cannot be found for which the mentioned condition holds.

Therefore, the existence of extrema must be investigated. If the required conditions

to vanish the �rst variation result in restrictions on the second variation, the function

can have an extremum. In general, it is hard to �nd an extremum inside the con-

trol volume. Therefore, investigating the control surface is preferable. However, the

virtual displacements are not reversible on the control surface. Thus the conditions

imposed to vanish the �rst variation no longer hold inside the control volume [29,

p. 42-43], forcing one to try to obtain a function that is stationary, again. Since Jour-

dain�s principle does not use the virtual displacement, it does not have the restriction

on the boundary surfaces, as is evident from our derivations.

One of the main objectives of the current research work is to utilize a variational

principle in reduced-order modeling of VIV problems. In reduced-order modeling,

one tries to reduce the number of degrees of freedom in such a way that the few

resulting EOM can capture the main characteristics of the nonlinear problem. In

a sense, reduced-order modeling can be thought of as averaging over the material
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domain over some time span(s).

An interesting yet challenging problem that might arise is the Stokes drift type

phenomena. Stokes (1847) considered the dynamics of oscillatory waves and showed

that the time average of the Eulerian velocities lag the average of the Lagrangian ve-

locities [30]. The term Stokes drift was later adopted for these di¤erences in velocities.

It is interesting that the information required to obtain Stokes drift is readily available

from the Eulerian velocities [5], that is, such challenges can be avoided by solving the

problem in either one of the descriptions. Therefore, since the variational approach

proposed here is purely Eulerian, unlike the methods available in the literature, it may

have some additional advantages regarding Stokes drift type phenomena. However,

it is too early to make such a conclusion and further investigation is required.

Since the ultimate goal of this research work is reduced-order modeling of the VIV

problem, Equation 2.42 in its current format is not bene�cial to our goal. In the next

chapter such EOMs are derived in an energy framework. This takes us one step closer

to a general equation from which we can extract reduced order coupled di¤erential

equations governing the �uid and the structure.
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Chapter 3

Energy Equation from the Extended Jourdain�s
Principle

Reduced-order modeling of VIV is the focus of the current work. In this chapter,

we look to derive the energy equation for a �uid via Jourdain�s principle. Equation

2.42 obtained in the previous chapter provides us with the well-known Navier-Stokes

equations, which together with the conservation of mass are four coupled ordinary

di¤erential equations. The extended Jourdain�s principle is modi�ed further in this

chapter by considering the de�nition of Jourdain�s variational operator in order to

reduce the number of required equations to one by obtaining a single EOM in an

energy format. Here, we consider the variational formulation of a control volume

containing only �uid particles. Fluid-structure interaction problems are considered

in the next chapter, where a rigid structure is introduced within the �uid �ow.

We start the chapter by reviewing the Reynolds�transport theorem beyond our

discussion in Section 1.2.4. Then, a few relevant ideas on Jourdain�s variational

operator are considered. In Sections 3.3 and 3.4, we explain our methodology for

�nding the energy rate equations directly from Jourdain�s principle for conservative

systems. Section 3.5 focus on the concept of the Rayleigh dissipation function. In

Section 3.6, we derive an energy equation from the extended Jourdain�s principle.

The chapter is concluded with some �nal remarks on energy equations.



51

3.1 Reynolds�Transport Theorem for a Control Volume

In Section 1.2.4, we discussed that the RTT can be utilized to relate the change of

a real-valued spatial function of a control system (Lagrangian concept) to that of

a control volume (Eulerian concept) occupying the same volume at that instant of

time by using Equations 1.25 and 1.26. Recall that the system volume is a volume

containing the same particles for all time, while the control volume is an imaginary

volume of space and not material.

Similarly, the RTT can be used for evaluating the rate of change of a real-valued

spatial function, say b (x; t), of a control volume (not a control system) as [20]

D

Dt

Z
CV

b (x; t) dV =

Z
CV

@

@t
[b (x; t)] dV +

Z
CS

[b (x; t)] (vCS � n) dA, (3.1)

where vCS is the velocity of the control surface element, dA.

The RTT can also be expressed in terms of the relative velocity, ur, de�ned as

ur = u� vCS ) vCS = u� ur, (3.2)

where u is the �uid velocity. Substituting vCS from Equation 3.2 into Equation 3.1,

we obtain
D

Dt

Z
CV

b dV =

Z
CV

@b

@t
dV +

Z
CS

b [(u� ur) � n] dA, (3.3)

which, by applying the divergence theorem, becomes

D

Dt

Z
CV

b dV =

Z
CV

�
@b

@t
+r � (b u)

�
dV �

Z
CS

b (ur � n) dA

=

Z
CV

�
@b

@t
+rb � u+ b (r � u)

�
dV �

Z
CS

b (ur � n) dA. (3.4)

By imposing the incompressibility condition, r � u = 0, on Equation 3.4, the RTT
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for a general control volume is found to be

D

Dt

Z
CV

b dV =

Z
CV

Db

Dt
dV �

Z
CS

b (ur � n) dA. (3.5)

Moreover, if b (x; t) is a function of velocity u, the RTT can be expressed in terms of

ur and vCS, as well. Next, we consider a few notes on Jourdain�s variational operator.

3.2 A Few Notes on Jourdain�s Variational Operator

As mentioned earlier, Jourdain�s variational principle assumes an alternative possible

velocity �eld for the system, while time and displacements are considered to be frozen.

Therefore, the variation of a real-valued function of vectors is de�ned as the resulting

change in the function value due to the imposed virtual velocities, while neglecting

the terms of order higher than one with respect to the velocity. Thus, Jourdain�s

variation of a function  , say � , is de�ned as

� = lim
"!0

1

"
[ (u+ " �u)�  (u)] , (3.6)

where u is the velocity �eld and �u is the variation of the velocity �eld.

From the vector calculus, the derivative (@ =@u, also referred to as an abstract

derivative) of a real-valued function  of vectors u is de�ned [31] by the relation

@ (u+ "w)

@"

����
"=0

� @ 

@u
�w (3.7)

for all w. For a speci�c set of vectors w, Equation 3.7 results in the directional

derivative, that is, the derivative of  in the direction of w. Therefore, by setting
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w = �u in Equation 3.7,

@ 

@u
� �u =

@ (u+ " �u)

@"

����
"=0

� lim
"!0

1

"
[ (u+ " �u)�  (u)] . (3.8)

Comparing Equations 3.6 and 3.8, we obtain

� =
@ 

@u
� �u. (3.9)

Therefore, Jourdain�s variation of a function is equal to its derivative with respect to

velocity in the direction of the virtual velocity. Since �u is a set of arbitrary vectors

that are compatible with the system constraints, the existence of any constraint on

the velocity �eld limits the direction of the variational operator. Thus, the kinematic

constraints do not necessarily impose limitations on the magnitude of �u. However,

the magnitude of �u at a point, say x�, must be small enough so that the function  

be smooth in the neighborhood of radius j�uj about x�.

3.3 Obtaining the Energy Rate Equation in the Lagrangian

Reference Frame

In Section 2.2, it was shown that Jourdain�s principle can be obtained from d�Alembert�s

principle. Hamilton�s principle is also derived from d�Alembert�s principle, bringing it

to a monogenic1 form, which is of great theoretical and practical importance. More-

over, for a general system, Hamilton�s principle leads to a system of simultaneous

1In mathematics, a combinatoric system is a �nite set of rules which together with a �nite set of
promises results in a �nite set of conclusions. If a system is such that for each rule there exists a
single promise and a single conclusion, the system is called monogenic [32]. Therefore, regarding our
discussion here, monogenic means that each force, conservative or non-conservative, corresponds to
a single potential function.
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di¤erential equations of second order called the Lagrangian equations of motion [29,

pp.111-119]. In order to demonstrate our methodology for obtaining the energy rate

equations from Jourdain�s principle, a short review of the derivation of the Lagrangian

EOM is essential.

Consider a Lagrangian function L de�ned as

L = L ( _ri; ri; t) , for i = 1; 2; � � � ; N , (3.10)

where N is the number of particles and ri denote the Lagrangian coordinates of

particle i. The function L is de�ned for a conservative system as

L = T � �, (3.11)

where T is the kinetic energy and � is the potential energy. The function L de�nes

the entire dynamics of the system. Therefore, the action integral in the absence of

nonconservative forces is de�ned as

Z t2

t1

�dL ( _ri; ri; t) = 0, (3.12)

where �dL is the variation of function L, and the subscript d is used to di¤erentiate

between d�Alembert�s and Jourdain�s variational operators.

The variation of a Lagrangian function is, by de�nition, the resulting di¤erence

found by imposing d�Alembert�s virtual displacements �dri on L ( _ri; ri; t) and elimi-

nating the terms with order higher than one with respect to �dri while holding time

frozen, as follows,

Z t2

t1

�dL dt = lim
"!0

1

"

Z t2

t1

�
L

�
d

dt
(ri + " �dri) ; ri + " �dri; t

�
� L ( _ri; ri; t)

�
dt.

(3.13)
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In the Lagrangian frame of reference, the variational operator and time di¤eren-

tiation commute. Thus, Equation 3.13 can be written as

Z t2

t1

�dL dt = lim
"!0

1

"

Z t2

t1

[L ( _ri + " �d _ri; ri + " �dri; t)� L ( _ri; ri; t) ] dt. (3.14)

Applying the Taylor expansion on L ( _ri + " �d _ri; ri + " �dri; t) and neglecting the

terms of order higher than one with respect to �dri, Equation 3.14 becomes

Z t2

t1

�dL dt = lim
"!0

1

"

Z t2

t1

�
L ( _ri; ri; t) + " �d _ri �

@L

@ _ri
+ " �dri �

@L

@ri
� L ( _ri; ri; t)

�
dt

=

Z t2

t1

�
�d _ri �

@L

@ _ri
+ �dri �

@L

@ri

�
dt. (3.15)

Since the algebraic relation between �d _ri and �dri is not known (unless the problem

is solved), Equation 3.15 is not accessible for further analysis. This di¢ culty can be

overcome if the displacements are known at t1 and t2 [29]. Integrating Equation 3.15

by parts as

Z t2

t1

�dL dt =

Z t2

t1

�dri �
@L

@ri
dt+

�
�dri �

@L

@ _ri

�t2
t1

�
Z t2

t1

�dri �
d

dt

�
@L

@ri

�
dt, (3.16)

and since the displacements are assumed to be known at t1 and t2, the virtual dis-

placements are zero and Equation 3.16 becomes

Z t2

t1

�dL dt =

Z t2

t1

�dri �
�
@L

@ri
� d

dt

�
@L

@ri

��
dt. (3.17)

Substituting Equation 3.17 into Equation 3.12, we obtain

Z t2

t1

�
d

dt

�
@L

@ri

�
� @L

@ri

�
� �dri dt = 0, (3.18)

and, since �dri are arbitrary non-zero vectors, the Lagrangian equations of motion is
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obtained by setting the terms inside square brackets equal to zero,

d

dt

�
@L

@ri

�
� @L

@ri
= 0. (3.19)

Since Jourdain�s principle and the Lagrangian equations of motion are connected

to each other via d�Alembert�s principle, we expect that the energy rate equations

can be obtained from Jourdain�s principle. We do this �rst by obtaining the energy

equation for a system described in the Lagrangian reference frame. Afterwards, the

energy equation is obtained for the same system described in the Eulerian frame of

reference.

In Section 2.2, Jourdain�s principle was obtained by di¤erentiating d�Alembert�s

principle with respect to time, and then, by setting the virtual displacement to be

equal to zero. Similarly, we start by considering the rate of a Lagrangian function,

d

dt
L = _L ( _ri; ri; t) , (3.20)

and de�ne the respective action integral as

Z t2

t1

�d _L ( _ri; ri; t) dt = 0. (3.21)
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Substituting � _L instead of �L into Equation 3.13, we obtain

Z t2

t1

�d _L ( _ri; ri; t) dt = lim
"!0

1

"

Z t2

t1

�
_L

�
d

dt
(ri + " �dri) ; ri + " �dri; t

�
� _L ( _ri; ri; t)

i
dt

= lim
"!0

1

"

Z t2

t1

"
_L ( _ri; ri; t) + " �d _ri �

@ _L

@ _ri
+ " �dri �

@ _L

@ri

� _L ( _ri; ri; t)
i
dt

=

Z t2

t1

"
@ _L

@ _ri
� �d _ri +

@ _L

@ri
� �dri

#
dt

= 0. (3.22)

Similar to our approach in Section 2.2, Jourdain�s variational principle in terms of

Lagrangian function L is obtained by imposing the Jourdain�s variational constraint

�dri = 0 on Equation 3.22, resulting in

Z t2

t1

� _L ( _ri; ri; t) dt =

Z t2

t1

@ _L

@ _ri
� � _ri dt = 0, (3.23)

or,

� _L ( _ri; ri; t) =
@ _L

@ _ri
� � _ri. (3.24)

Therefore, the energy rate equation _L ( _ri; ri; t) can be obtained from Jourdain�s prin-

ciple using Equation 3.24. It is important to note that the variation of acceleration

is not considered in the derivation of Equation 3.24 since the acceleration is second

order with respect to �dri. It is emphasized that the only requirement for using Equa-

tion 3.24 is that Jourdain�s variational operator must commute with the di¤erential

operator d=dt.

Next, we consider two simple examples to clarify the procedure.

Example 1 Consider the single degree of freedom mass-spring system shown in Fig-

ure 3.1, where x (t) is the Lagrangian position of the box of mass m and k is the
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sti¤ness of the massless spring.We wish to obtain the energy rate equation by integra-

tion and by using Equation 3.24.

Using Newton�s second law, the equation of motion is

m�x (t) + kx (t) = 0. (3.25)

The acceleration �x (t) can be converted as,

�x (t) =
d _x (t)

dt

=
d _x (t)

dx

dx (t)

dt

=
d

dx

�
1

2
_x2 (t)

�
. (3.26)

Substituting Equation 3.26 into Equation 3.25, it becomes

m
d

dx

�
1

2
_x2 (t)

�
+ kx (t) = 0, (3.27)

and by integrating this equation with respect to x, energy equation is obtained as

1

2
m _x2 (t) +

1

2
kx2 (t) = C, (3.28)

where C is a constant. Finally, the energy rate equation is obtained by di¤erentiating

Equation 3.28 with respect to time as

m�x _x+ kx _x = 0. (3.29)
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Now, we wish to obtain the energy rate equation using Jourdain�s principle. Mul-

tiplying Equation 3.25 by � _x (t), Jourdain�s principle is expressed by

(m�x+ kx) � _x = 0. (3.30)

Expanding Equation 3.30 and using Equation 3.24, we obtain

(m�x+ kx) � _x = m�x� _x+ kx� _x

=
@

@ _x
(m�x _x) � _x+

@

@ _x
(kx _x) � _x

=
@

@ _x
(m�x _x+ kx _x) � _x

= � (m�x _x+ kx _x)

= � _L ( _x; x; t) .

Therefore, in the absence of nonconservative forces, the energy rate equation is ob-

tained as

_L ( _ri; ri; t) = m�x _x+ kx _x = 0, (3.31)

which is the same as the energy rate equation obtained by integration.

This example considered a linear system. The next example considers a simple

nonlinear problem.

Example 2 Consider the simple pendulum shown in Figure 3.2, where the mass m

is supported by the massless rod of the length L, oscillating with angle �. The angle

of oscillation is large enough that the small angle approximation no longer holds. We

wish to obtain the energy rate equations by integrating the EOM as well as by using

Jourdain�s principle.

The equation of motion is obtained from Newton�s second law (Euler�s equation)
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Figure 3.1: The mass-spring system.

to be

mL2�� +mgL sin � = 0, (3.32)

where g is the gravitational acceleration. Converting the acceleration as

�� =
d _�

dt

=
d _�

d�

d�

dt

=
d

d�

�
1

2
_�
2
�
, (3.33)

and substituting it back into Equation 3.32, we obtain

d

d�

�
1

2
mL2 _�

2
�
+mgL sin � = 0. (3.34)

Integration of this equation with respect to � yields to the energy equation

1

2
mL2 _�

2 �mgL cos � = C, (3.35)
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and by di¤erentiating it with respect to time, the energy rate equation is obtained as

mL2�� _� +mgL _� sin � = 0. (3.36)

Jourdain�s variational formulation of the simple pendulum problem is obtained by

multiplying the EOM by � _� as

�
mL2�� +mgL sin �

�
� _� = 0. (3.37)

The energy rate equation is obtained by utilizing Equation 3.24,

�
mL2�� +mgL sin �

�
� _� = mL2��� _� +mgL sin �� _�

=
@

@ _�

�
mL2�� _�

�
� _� +

@

@ _�

�
mgL _� sin �

�
� _�

= �
�
mL2�� _� +mgL _� sin �

�
= � _L

�
_�; �; t

�
.

Therefore,

_L ( _ri; ri; t) = mL2�� _� +mgL _� sin � = 0 (3.38)

is the same result as that obtained from integrating the EOM.

As evident from the two examples, the energy rate equation can straightforwardly

be obtained from Jourdain�s principle by using Equation 3.24. From the variational

point of view, the only requirement is that the commutation rule must hold (note

that we used the commutation rules in our derivation in Equation 3.22).

While the commutation rule holds for a system described in the Lagrangian ref-

erence frame, it does not hold if it is described in the Eulerian reference frame. This

is shown in the following section.
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Figure 3.2: The simple pendulum.

3.4 Obtaining the Energy Rate Equation in the Eulerian Ref-

erence Frame

As mentioned in the previous section, Lagrange�s equation is a monogenic function of

generalized displacements, generalized velocities, and time, as is the rate of Lagrange�s

equation, which contains acceleration terms as shown in the two prior examples. We

saw that the energy rate equations can be obtained from Jourdain�s principle by using

Equation 3.24 if the commutation rule holds.

For the rate of Lagrange�s equation described in the Eulerian frame of reference,

we show next that Jourdain�s variational operator and the material derivative do not

commute by �rst considering the acceleration Du=Dt and obtaining D (�u) =Dt, and

then by �nding � (Du=Dt).

We start with D (�u) =Dt . Since the variation is imposed prior to di¤erentiation,
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we have

D (�u)

Dt
=

@ (�u)

@t
+ (u+ �u) � r (�u)

=
@ (�u)

@t
+ u � r (�u) + �u � r (�u) . (3.39)

The last term on the right of Equation 3.39 is second-order with respect to �u,

thus it must be neglected according to Jourdain�s principle. Therefore, the material

derivative of the virtual velocity is obtained to be

D (�u)

Dt
=
@ (�u)

@t
+ u � r (�u) . (3.40)

Regarding the variation of acceleration � (Du=Dt), we consider the de�nition of Jour-

dain�s variational operator, Equation 3.6, as

�

�
Du

Dt

�
= lim

"!0

1

"

�
D

Dt
(u+ " �u)� D

Dt
(u)

�
= lim

"!0

1

"

�
@

@t
(u+ " �u) + (u+ " �u) � r (u+ " �u)� D

Dt
(u)

�
= lim

"!0

1

"

�
@u

@t
+ "

@ (�u)

@t
+ u � ru+ " �u � ru+ u � r (" �u)

+"2�u � r (�u)� D

Dt
(u)

�
. (3.41)

Taking the limit, the above expression becomes

�

�
Du

Dt

�
=
@ (�u)

@t
+ u � r (�u) + �u � ru. (3.42)

Comparing Equations 3.40 and 3.42 yields

�

�
Du

Dt

�
=
D (�u)

Dt
+ �u � ru, (3.43)

where �u �ru is the non-commuting part of the acceleration in the Eulerian reference
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frame.

Since the commutation rule does not hold in the Eulerian reference frame, Equa-

tion 3.24 cannot be used. This di¢ culty can be overcome if the non-commuting part

is extracted from the rate of Lagrange�s function _L ( _ri; ri; t) as follows.

In order to demonstrate how the non-commuting part can be separated in the

Eulerian reference frame, we consider Newton�s second law as described in the Eulerian

reference frame,
Du (x; t)

Dt
= f (x; t) , (3.44)

where f is the resultant of external loads per unit mass acting at the spatial point

x. Multiplication of Equation 3.44 by the virtual velocity, �u, results in Jourdain�s

principle,
Du

Dt
� �u = f � �u. (3.45)

Regarding the acceleration term, Du=Dt, the commutation rule does not hold

due to �u � ru in Equation 3.43. However, the acceleration term of a system is

reversible (conservative) in the Eulerian reference frame if �u � ru = 0. Therefore,

Du=Dt contains both the conservative (reversible) and nonconservative (irreversible,

non-commuting) terms.

Expanding the left-hand side of Equation 3.45 as,

Du

Dt
� �u = D

Dt
(u � �u)� D

Dt
(�u) � u, (3.46)

and applying Equation 3.43 to the last term on the right, we obtain

Du

Dt
� �u =

D

Dt
(u � �u)�

�
�

�
Du

Dt

�
� �u � ru

�
� u

=
D

Dt
(u � �u)� �

�
Du

Dt

�
� u+ �u � ru � u, (3.47)
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and substituting back into Equation 3.45, we obtain

D

Dt
(u � �u)� �

�
Du

Dt

�
� u+ �u � ru � u = f � �u. (3.48)

Considering Equation 3.48, if the commutation rule holds, �u � ru � u would not be

present (�u � ru = 0). Thus, the remainder of the terms on the left-hand side are

those that are reversible with respect to �u (the terms for which the commutation

rule holds). Therefore, by taking the term �u � ru � u to the right-hand side of the

equation, the left-hand side becomes purely conservative,

conservative termsz }| {
D

Dt
(u � �u)� �

�
Du

Dt

�
� u =

nonconservative termsz }| {
f � �u� �u � ru � u. (3.49)

Using the commutation rule for the conservative terms and rearranging the noncon-

servative terms, Jourdain�s variational principle is obtained alternatively as,

Du

Dt
� �u = (f � ru � u) � �u. (3.50)

Therefore, the energy rate can be obtained for the left-hand side of Equation 3.50 by

using Equation 3.24, having considered the non-commuting part as a nonconservative

force.

The nonconservative terms reduce the generality of variational methods. A com-

monly used tool to overcome this challenge is Rayleigh�s dissipation function (RDF),

which is reviewed in the following section. RDF together with the discussion pre-

sented in this section will be used in our manipulation of the extended Jourdain�s

principle obtained in Chapter 2.
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3.5 Rayleigh�s Dissipation Function

Generally, variational methods are powerful tools for reversible processes (conserv-

ative systems). Regarding non-conservative systems, especially frictional dissipative

systems (viscous �uids), variational methods lose their generality. Frictional (viscous)

forces originate from a transfer of macroscopic into microscopic motions. Therefore,

the number of degrees of freedom needed to describe the motion must be increased to

include the dissipation process in variational formulations requiring statistical princi-

ples [29, p. 359]. However, as mentioned in Section 2.7, Bateman argued that any set

of equations of motion, conservative or nonconservative, corresponds to a variational

principle. In the presence of dissipative forces, there must exist a set of compli-

mentary equations that act as a secondary process absorbing the energy from the

preliminary set [23]. However, Bateman concluded his paper by stating that such

secondary functions may not always be found for a nonlinear system.

Alternatively, the e¤ects of nonconservative forces can be added to a variational

formulation in the same manner that external forces are considered. This method,

which is justi�ed by the law of conservation of energy, reduces the generality of the

variational methods to varying extents depending on the dynamics and properties of

the system. Having added the terms representing the irreversible processes, dissipa-

tion functions may be guessed whose variations represent dissipative forces. If such

functions are to be guessed, it must be noted that those potential functions are not

necessarily unique (the reason is explained in the next paragraph). Alternatively,

dissipation functions may be obtained from experimental data, and then be added to

the variational formulation. Consequently, the EOMs can be obtained by taking the

variation afterwards. Since dissipation functions have dimensions of energy or energy

rate, they might be preferred when it comes to semi-analytical methods.

Variational methods are based on the �rst order approximation with respect to
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a variable. Therefore, corresponding to a nonconservative force, several dissipation

functions may be found that di¤er only in the higher order terms. As long as the

higher order terms do not impose additional constraints on the system, no variational

rule is broken. In a way, the use of dissipation functions along with variational

methods is an approximation method. Thus, a consideration of experimental data

may be a requirement when using dissipation functions.

Regarding the dissipation functions, Rayleigh�s dissipation function is widely uti-

lized in the literature. It has been applied to important types of forces, for instance,

forces due to linear dampers and electromagnetic forces. While our discussion in this

chapter is focused on Rayleigh�s dissipation function, it worth nothing that there have

been many attempts to develop variational methods for nonconservative systems. A

good representative work is the paper by Riewe [33], where he proposed the use of

fractional derivatives for Lagrangian and Hamiltonian mechanics.

Considering the viscous terms of the Navier-Stokes equations (Equation 2.42), the

symmetric part of ru is only included (Equation 2.41) assuming that the rotating

�ow has no e¤ect on shear stress (assuming rigid body rotation). Since the virtual

velocities must be compatible with the system�s constraints (or here, assumption),

the directions of the virtual velocities are constrained to be the same as those of

the actual velocities, otherwise, the rotation caused by �u will perform work on the

system. This is the assumption that Rayleigh�s dissipation function is based on. To

make the last statement clear, we consider next a nonconservative force due to a linear

damper as an example.

For a linear damper, the force is proportional to the velocity components. There-

fore, the component of damping force in x -direction, FCx, can be expressed by

FCx = �Cxux, (3.51)
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where Cx is the damping coe¢ cient associated with x -direction, and ux is the com-

ponent of u in the x -direction. The dissipation function associated with this type of

frictional force is called Rayleigh�s dissipation function, which is expressed as

�C =
1

2

�
Cxu

2
x + Cyu

2
y + Czu

2
z

�
. (3.52)

Di¤erentiation of �C with respect to ux yields the force component in x -direction,

FCx =
@�C
@ux

= �Cxux. (3.53)

Therefore, in vector notation it can be expressed as

F C = ru�C , (3.54)

where ru �C denotes the di¤erentiation of �C with respect to u in direction of u [34,

pp. 22-24], that is

ru�C =
@�C
@u

����
u-direction

. (3.55)

The directional di¤erential of any function � can be obtained using Equation 3.7 by

setting w = u as

ru� � u =
@� (u+ "u)

@"

����
"=0

. (3.56)

Therefore, de�ning � such that ru � = F , the term F � �u in the variational formu-

lation can be replaced by ��, since

�� = ru� � �u, (3.57)

where this is the Rayleigh�s dissipation function in vector notation for a system.

Comparing Equation 3.57 with Equation 3.9, Rayleigh�s dissipation function con-

strains �u to be in the same direction as u for the nonconservative terms at any point



69

in the domain. However, this constraint was already imposed by the assumptions that

were made in obtaining the constitutive relation for Newtonian �uids (see Section 2.6

and [28, pp. 100-103]). The reason is that the proportionality of the viscous force

and ru was the result of observing laminar �ows in the �rst place.

Regarding Rayleigh�s dissipation function, an important note, which is often not

mentioned in textbooks, is that the work (power) of the Rayleigh�s dissipation function

in the variational energy (power) formulation is half of that in the corresponding

energy (power) equation [13, Equations 5 and 6]. In order to make this statement

more clear, we consider the variational energy formulation of a system with frictional

dissipative forces as

�d (T +�� ��Wext) = 0, (3.58)

where �d is d�Alembert�s variational operator, T is the kinetic energy, � denotes

the potential energy, � is Rayleigh�s dissipation function and Wext is the work due

to external loads. Assuming that Equation 3.58 is obtained from the variational

manipulation, the energy equation corresponding to it is obtained by multiplying the

Rayleigh�s dissipation function by a factor of two as,

T +�� 2��Wext = 0. (3.59)

The reason is that the frictional dissipation only depends on the velocity and it is

una¤ected by the displacement. Regarding Jourdain�s variational operator, we have

�
�
_T + _�� _�� _Wext

�
= 0, (3.60)

where the overdot is to denote that the terms have dimensions of power and not

work. Regarding Jourdain�s variational operator, the frictional dissipation remains

una¤ected by acceleration and it is similar otherwise, that is, the power equation
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becomes

_T + _�� 2 _�� _Wext = 0. (3.61)

Next, we use the discussions provided so far in this chapter to modify the extended

Jourdain�s principle derived in the previous chapter. We will refer to both types of

equations expressed by Equations 3.60 and 3.61 as the energy rate equation, assuming

that the reader would distinguish them from each other by �.

3.6 Energy Rate Equation from Extended JP

In Section 2.5, the extended Jourdain�s principle was expressed in Equation 2.34. If we

substitute the forces from the constitutive relations for a Newtonian incompressible

viscid �uid (Equations 2.37 to 2.41), the extended JP for a general control volume

becomes

Z
CV

�
Du

Dt
� �u dV =

Z
CV

�
r �

�
�p�I + �

�
ru+rTu

��	
� �u dV , (3.62)

where rTu = (ru)T and body forces are neglected. If the only body force present is

due to gravity, its potential function can easily be obtained, since gravitational forces

are conservative and independent of the �uid velocity �eld. Regarding the model

problem de�ned in Chapter 1, the gravitational forces can be neglected.

In Section 3.3, it was shown that the energy rate equation can be obtained us-

ing Equation 3.24 for systems described in the Lagrangian reference frame. Also, in

Section 3.4, it was shown that the commutation rule does not hold in the Eulerian ref-

erence frame. However, this di¢ culty was overcome by extracting the non-commuting

term from the acceleration as explained in deriving Equation 3.50. Therefore, using
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the same procedure explained there, Equation 3.62 becomes

Z
CV

�
Du

Dt
� �u dV =

Z
CV

�
r �

�
�p�I + �

�
ru+rTu

��	
� �u dV �

Z
CV

� (ru � u) � �u dV , (3.63)

where the left-hand side of the equation now represents only the conservative terms

and the right-hand side represents the nonconservative terms. Therefore, we continue

our derivation by considering each side of Equation 3.63 separately, and use Equation

3.24 for the conservative and Equation 3.57 for the dissipative terms to obtain the

energy rate equation as follows.

3.6.1 The left-hand side of Equation 3.63

As mentioned earlier, the term on the left-hand side of Equation 3.63 is reversible and

conservative and therefore � andD=Dt commute. Therefore, the energy rate equation

is obtained by using Equation 3.24 and following the same steps as in Examples 1

and 2 as

Z
CV

�
Du

Dt
� �u dV =

Z
CV

�
@

@u

�
�
Du

Dt
� u
��
� �u dV

=

Z
CV

�

�
�
Du

Dt
� u
�
dV

= �

Z
CV

�
�
Du

Dt
� u
�
dV

= �

Z
CV

D

Dt

�
1

2
�u � u

�
dV , (3.64)

where Jourdain�s variational operator commutes with integration over the volume

since it assumes zero virtual displacements, that is, the same particles occupy a control



72

volume before and after imposing the virtual velocities. Note that the same statement

is not true for d�Alembert�s variational operator since the virtual displacements result

in a virtual �ux across the control surfaces.

Equation 3.64 can be modi�ed further as follows. The total kinetic energy of a

control volume, T , is de�ned as

T =

Z
CV

1

2
� u � u dV . (3.65)

The rate of kinetic energy of a control volume can be obtained by using the Reynolds

transport theorem in the form of Equation 3.5 as

DT

Dt
=

D

Dt

Z
CV

1

2
� u � u dV

=

Z
CV

D

Dt

�
1

2
� u � u

�
dV �

Z
CS

�
1

2
� u � u

�
(u� vCS) � n dA. (3.66)

Rearranging Equation 3.66 yields

Z
CV

D

Dt

�
1

2
� u � u

�
dV =

D

Dt

Z
CV

1

2
� u � u dV +

Z
CS

�
1

2
� u � u

�
(u� vCS) � n dA.

(3.67)

Finally, by substituting Equation 3.67 into Equation 3.64, the left-hand side of Equa-

tion 3.63 is obtained as

Z
CV

�
Du

Dt
� �u dV = �

24 D
Dt

Z
CV

1

2
� u � u dV +

Z
CS

�
1

2
� u � u

�
(u� vCS) � n dA

35 .
(3.68)

Equation 3.68 represents the energy rate of the conservative terms of the extended

Jourdain�s principle. The energy rate of the nonconservative terms are obtained in

the following section.
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3.6.2 The right-hand side of Equation 3.63

In this section, we wish to obtain a function � such that

�� =

Z
CV

�
r �

�
�p�I + �

�
ru+rTu

��	
� �u dV �

Z
CV

� (ru � u) � �u dV , (3.69)

where � is a scalar-valued potential function that gives the terms on the right-hand

side of the energy rate equation.

For simplicity, since the manipulations are lengthy, we separate the terms of Equa-

tion 3.69 according to their physical meanings and manipulate each of them in sepa-

rate sections as follows.

Power due to pressure

Considering the term containing pressure, p, we have

Z
CV

�
r �

�
�p�I

��
� �u dV =

Z
CV

�rp � �u dV . (3.70)

Since rp is assumed to be independent of u, it does not vary due to �u. Thus, since

� (rp) = 0, we can write

Z
CV

�rp � �u dV =

Z
CV

[�� (rp) � u� rp � �u] dV

= �

Z
CV

�rp � u dV . (3.71)

We also know that

r � (pu) = u � rp+ p (r � u) = rp � u, (3.72)
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since r � u = 0 for an incompressible �uid. Using Equations 3.70, 3.71 and 3.72, the

volume integral of the pressure term of Equation 3.69 becomes

Z
CV

�
r �

�
�p�I

��
� �u dV = �

Z
CV

�rp � u dV

= ��
Z
CV

�r � (pu) dV

= ��
Z
CS

pu � n dA, (3.73)

where we used the divergence theorem to obtain the last integral.

Substituting Equation 3.73 back into Equation 3.69, we have

�� = �

Z
CS

�pu�n dA+

Z
CV

�
r � �

�
ru+rTu

��
��u dV �

Z
CV

� (ru � u)��u dV . (3.74)

Identifying the external and the dissipative forces

Regarding the second integral on the RHS of Equation 3.74, the integrand can be

modi�ed as follows,

�
r �

�
ru+rTu

��
� �u =

�
ei

@

@xi
�
�
@uk
@xj

+
@uj
@xk

�
ejek

�
� (�u)m em

=

�
@

@xi

�
@uk
@xi

+
@ui
@xk

�
ek

�
� (�u)m em

=

�
@

@xi

�
@uk
@xi

+
@ui
@xk

��
(�u)k

=
@

@xi

��
@uk
@xi

+
@ui
@xk

�
(�u)k

�
�
�
@uk
@xi

+
@ui
@xk

�
@ (�u)k
@xi

=

due to the external shear stressesz }| {
r �

��
ru+rTu

�
� �u

�
�

viscous dissipationz }| {
tr
��
ru+rTu

�
� r (�u)

�
, (3.75)
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where ei are the unit vectors on an orthonormal basis and tr denotes the trace of

a tensor. The index notation used here follows the rules used by Dill [31]. We

will continue our derivation using this notation. Since it is often more convenient

to manipulate the equations considered in this section in various notations, we will

occasionally switch between component, index and vector notations.

Regarding the �rst term on the right of Equation 3.75, r� can be eliminated by

using Gauss�divergence theorem resulting in �
��
ru+rTu

�
� �u

�
� n. Therefore, it

represents the virtual power due to the external shear stresses applied on the control

surface, having compared it with the de�nition of the stress tensor given by the con-

stitutive relation for Newtonian incompressible �uids (Equation 2.40). Consequently,

the second term on the right of Equation 3.75 represents the viscous dissipation of

energy inside the control volume.

Power lost due to viscous dissipation

As discussed in the previous section, the function
�
r � �

�
ru+rTu

��
� �u contains

both the virtual power due to the viscous forces acting as an external shear load

on the control surface and the virtual power due to viscous dissipative forces inside

the control volume. As mentioned earlier, we wish to utilize Rayleigh�s dissipation

function for nonconservative (viscous dissipative) terms. However, applying Equation

3.57 to the last term of Equation 3.75 requires extensive mathematical manipulation

due to the term r (�u).

Alternatively, the amount of derivations can be reduced by obtaining the scalar

potential function of
�
r �

�
ru+rTu

��
��u in direction of u using Equation 3.57 and

then subtracting the scalar potential function of the external loads obtained similarly.

The remaining terms will be Rayleigh�s dissipation function.

We begin with the function �
�
r �

�
ru+rTu

��
�u, and applying Equation 3.56

and obtaining its directional derivative with respect to u in the direction of u, we
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have

ru

�
�
�
r �

�
ru+rTu

��
� u
	
� u

= �
@

@"

��
r �

�
r (u+ "u) +rT (u+ "u)

�	
� (u+ "u)

	����
"=0

= �
@

@"

��
r �

�
ru+ " ru+rTu+ " rTu

��
� (u+ "u)

	����
"=0

= �
@

@"

��
r �

��
ru+rTu

�
+ "

�
ru+rTu

��	
� (u+ "u)

	����
"=0

= �
��
r �

�
ru+rTu

��
� (u+ "u) +

�
r �

�
(1 + ")

�
ru+rTu

��	
� u
	
"=0

= 2�
�
r �

�
ru+rTu

��
� u, (3.76)

or,

ru

�
1

2
�
�
r �

�
ru+rTu

��
� u
�
= �

�
r �

�
ru+rTu

��
, (3.77)

where 1
2
�
�
r �

�
ru+rTu

��
� u � � in Equation 3.57, and therefore,

�

�
1

2
�
�
r �

�
ru+rTu

��
� u

�
= �

�
r �

�
ru+rTu

��
� �u. (3.78)

By expanding the left-hand side of Equation 3.78, we obtain

�

�
1

2
�
�
r �

�
ru+rTu

��
� u

�
= �

�
1

2
�

�
ei

@

@xi
�
�
@uk
@xj

+
@uj
@xk

�
ejek

�
� umem

�
=

1

2
� �

�
@

@xi

��
@uk
@xi

+
@ui
@xk

�
uk

�
�
�
@uk
@xi

+
@ui
@xk

�
@uk
@xi

�

=

external loadz }| {
�

�
1

2
�r �

��
ru+rTu

�
� u
��

viscous dissipation

�
z }| {
�

�
1

2
� tr

��
ru+rTu

�
� ru

��
. (3.79)
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Now we consider the term representing the external shear load in Equation 3.75 and,

using Equations 3.56 and 3.57, we obtain its potential function in direction of u

Z
CV

�r �
��
ru+rTu

�
� �u

�
dV =

Z
CS

�
��
ru+rTu

�
� �u

�
� ndA

=

Z
CS

�
ru

�
1

2
�
��
ru+rTu

�
� u
��
� �u

�
� ndA

=

Z
CS

�

�
1

2
�
��
ru+rTu

�
� u
��
� ndA

=

Z
CV

�

�
1

2
�r �

��
ru+rTu

�
� u
��

dV , (3.80)

where we used Gauss�(divergence) theorem to switch between integration over the

control surface and control volume.

Substituting Equation 3.79 into the left-hand side of Equation 3.75 and replacing

the term representing the external shear load on the right-hand side of Equation 3.75

by Equation 3.80, we obtain

�

�
1

2
�r �

��
ru+rTu

�
� u
��
� �

�
1

2
� tr

��
ru+rTu

�
� ru

��
= �

�
1

2
�r �

��
ru+rTu

�
� u
��
� tr

��
ru+rTu

�
� r (�u)

�
. (3.81)

Therefore, Rayleigh�s viscous dissipation function is obtained by eliminating the term

representing the external shear load from both sides, resulting in

� tr
��
ru+rTu

�
� r (�u)

�
= �

�
1

2
� tr

��
ru+rTu

�
� ru

��
. (3.82)

So far we have obtained the scalar potential functions for the pressure and viscous
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dissipation terms. Substituting Equation 3.82 back into Equation 3.75, we have

�
r �

�
ru+rTu

��
� �u = r�

��
ru+rTu

�
� �u

�
��
�
1

2
�tr

��
ru+rTu

�
� ru

��
.

(3.83)

And introducing Equation 3.83 into Equation 3.74, we obtain the right-hand side of

Equation 3.63,

�� = �

Z
CS

�p u � n dA� �

Z
CV

1

2
� tr

��
ru+rTu

�
� ru

�
dV

+

Z
CV

�r �
��
ru+rTu

�
� �u

�
dV �

Z
CV

� (ru � u) � �u dV . (3.84)

In the following two sections, we obtain the scalar potentials associated with the

remaining terms, that is, the external viscous loads and the non-commuting terms.

Power due to shear forces acting on the control surfaces

For the external viscous shear loads in Equation 3.84, we have

Z
CV

�r �
��
ru+rTu

�
� �u

�
dV

= �

Z
CV

�r �
��
ru+rTu

�
� u

�
dV �

Z
CV

�r �
�
�
�
ru+rTu

�
� u

�
dV . (3.85)

The external loads must remain unchanged with respect to �u since they are the

known parameters of the system, that is, the velocity of the �ow is known at the

control surfaces. Therefore, the second integral on the right of Equation 3.85 equals

zero, resulting in

Z
CV

�r �
��
ru+rTu

�
� �u

�
dV = �

Z
CV

�r �
��
ru+rTu

�
� u

�
dV . (3.86)
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Substituting Equation 3.86 back into Equation 3.84, we obtain

�� = �

Z
CS

�p u � n dA� �

Z
CV

1

2
� tr

��
ru+rTu

�
� ru

�
dV

+ �

Z
CV

�r �
��
ru+rTu

�
� u
�
dV �

Z
CV

� (ru � u) � �u dV . (3.87)

The non-commuting term

The only term left on the right-hand side of Equation 3.63 is the non-commuting part

of the rate of the kinetic energy due to variation of the acceleration (� (ru � u) � �u).

In order to obtain the scalar potential function corresponding to the non-commuting

part, we start by considering the vector identity,

1

2
r (u � u) = u � ru+ u� (r� u)

= ru � u. (3.88)

Therefore, we have

Z
CV

� (ru � u) � �u dV =

Z
CV

1

2
�r (u � u) � �u dV . (3.89)

The scalar-valued function r (u � u) � �u in index notation is

r (u � u) � �u = ei
@

@xi
(ujuj) � (�u)k ek

=

�
@

@xi
(ujuj)

�
(�u)i . (3.90)

For an incompressible �uid, we have

r � u = @ui
@xi

= 0. (3.91)
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Since the virtual velocities must be compatible with the system constraints, for an

incompressible �uid the virtual velocities must be divergence free (solenoidal) as well,

r � �u = @ (�u)i
@xi

= 0. (3.92)

Therefore,
@ (�u)i
@xi

(ujuj) = 0, (3.93)

must also equal zero.

Adding Equation 3.93 to Equation 3.90 yields

r (u � u) � �u =

�
@

@xi
(ujuj)

�
(�u)i +

@ (�u)i
@xi

(ujuj)

=
@

@xi
[(ujuj) (�u)i]

= r � [(u � u) �u] . (3.94)

Substituting Equation 3.94 into Equation 3.89 yields

Z
CV

� (ru � u) � �u dV =

Z
CV

1

2
�r � [(u � u) �u] dV

=

Z
CS

1

2
� (u � u) (�u � n) dA, (3.95)

where we used Gauss�theorem.

Since the velocity of the �ow at the control surfaces are assumed to be known, the

forcing function at the control surfaces was considered to be invariant with respect to

virtual velocity. Similarly, the non-commuting part of the rate of the kinetic energy,

as obtained in Equation 3.95, only represents itself on the control surfaces. Thus,

the term 1
2
� (u � u) in the integrand of Equation 3.95 is invariant with respect to �u.
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Therefore,

Z
CV

� (ru � u) � �u dV =

Z
CS

1

2
� (u � u) (�u � n) dA

= �

Z
CS

1

2
� (u � u) (u � n) dA. (3.96)

When using Jourdain�s variational principle, it is important to recall that Jour-

dain�s virtual displacement does not correspond to any displacement �eld. Therefore,

when the velocity is known, the virtual velocity becomes the actual velocity and not

zero.

Finally, by substituting Equation 3.96 into Equation 3.87, the right-hand side of

Equation 3.63 is obtained as

�� = �

Z
CS

�p u � n dA� �

Z
CV

1

2
� tr

��
ru+rTu

�
� ru

�
dV

+ �

Z
CV

�r �
��
ru+rTu

�
� u
�
dV � �

Z
CS

1

2
� (u � u) (u � n) dA. (3.97)

Having obtained the scalar potential functions associated with the both right-

hand and left-hand sides of Equation 3.63, we combine them and obtain the energy

rate equation in the following section.

3.6.3 Extended JP in terms of energy

Substituting Equations 3.64 and 3.97 into Equation 3.63, the energy rate equation

for a general control volume of Newtonian incompressible viscous �uids is obtained
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as

�

Z
CV

D

Dt

�
1

2
�u � u

�
dV = �

Z
CS

�p u � ndA� �

Z
CV

1

2
� tr

��
ru+rTu

�
� ru

�
dV

+ �

Z
CV

�r �
��
ru+rTu

�
� u
�
dV � �

Z
CS

1

2
� (u � u) (u � n) dA. (3.98)

Alternatively, substituting Equation 3.67 instead of Equation 3.64 yields

�

24 D
Dt

Z
CV

1

2
� u � udV +

Z
CS

�
1

2
� u � u

�
(u� vCS) � ndA

35

=

power due to external loadsz }| {
�

Z
CS

�p u � ndA+ �

Z
CV

�r �
��
ru+rTu

�
� u
�
dV

�

power loss due to viscous dissipationz }| {
�

Z
CV

1

2
� tr

��
ru+rTu

�
� ru

�
dV �

non-commuting term

�

z }| {Z
CS

1

2
� (u � u) (u � n) dA. (3.99)

Equations 3.98 and 3.99 can both be used in modeling �uid dynamic systems and

FSI, as they are essentially similar equations. Their advantages over one another

mainly rely on the choice of the control volume and how the boundary conditions are

implemented.

As mentioned earlier, in order to obtain the energy rate equation corresponding to

a variational energy rate equation, Rayleigh�s dissipation function must be multiplied

by a factor of two. Therefore, the energy rate equation corresponding to Equation
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3.99 is

D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

=

power due to external loadsz }| {Z
CS

�pu � ndA+
Z
CV

�r �
��
ru+rTu

�
� u
�
dV

�

power loss due to viscous dissipationz }| {Z
CV

� tr
��
ru+rTu

�
� ru

�
dV �

non-commuting termz }| {Z
CS

1

2
� (u � u) (u � n) dA. (3.100)

Equations 3.98 and 3.99 are the rate of energy equations. However, for FSI systems,

the boundary conditions on the solid surfaces cannot be easily applied to these equa-

tions. The following section will show that the viscous terms can be modi�ed further

to become more applicable in the FSI and in the VIV cases.

3.7 An Expanded Form of the Energy Rate Equation

Our ultimate goal is the reduced-order modeling of FSI systems, but the energy rate

equation obtained in the previous section (Equation 3.99) is not easily accessible,

mainly, due to two reasons. First, it is not clear how the boundary conditions at the

solid surface can be included. Second, the tensor termrTu provides some challenges,

for example, when changing the variables of the EOM. Therefore, we continue with

our derivation by modifying the viscous dissipation and external load terms in order

to have them in a more meaningful form. Similar to the previous section, the viscous

dissipative forces and external forces are considered separately for convenience, as

follows.
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3.7.1 Viscous dissipation function

In the following, we proceed through a series of manipulations in order to obtain an

alternate expression for the viscous dissipation function.

Regarding the viscous dissipation function, 1
2
� tr

��
ru+rTu

�
� ru

�
, from Equa-

tion 3.75 we have

Z
CV

1

2
� tr

��
ru+rTu

�
� ru

�
dV =

Z
CV

1

2
�

�
@uk
@xi

+
@ui
@xk

�
@uk
@xi

dV . (3.101)

Considering the integrand of the right-hand integral and setting i = 1, 2, 3 and k =

1, 2, 3, we obtain the expansion

�
@uk
@xi

+
@ui
@xk

�
@uk
@xi

=
@uk
@xi

@uk
@xi

+
@ui
@xk

@uk
@xi

=
@ux
@x

@ux
@x

+
@uy
@x

@uy
@x

+
@uz
@x

@uz
@x

+
@ux
@y

@ux
@y

+
@uy
@y

@uy
@y

+
@uz
@y

@uz
@y

+
@ux
@z

@ux
@z

+
@uy
@z

@uy
@z

+
@uz
@z

@uz
@z

+
@ux
@x

@ux
@x

+
@ux
@y

@uy
@x

+
@ux
@z

@uz
@x

+
@uy
@x

@ux
@y

+
@uy
@y

@uy
@y

+
@uy
@z

@uz
@y

+
@uz
@x

@ux
@z

+
@uz
@y

@uy
@z

+
@uz
@z

@uz
@z
, (3.102)
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and by rearranging, it becomes

�
@uk
@xi

+
@ui
@xk

�
@uk
@xi

= 2

�
@ux
@x

�2
+ 2

�
@uy
@y

�2
+ 2

�
@uz
@z

�2
+

�
@uy
@x

�2
+

�
@uz
@x

�2
+

�
@ux
@y

�2
+

�
@uz
@y

�2
+

�
@ux
@z

�2
+

�
@uy
@z

�2
+2

@ux
@y

@uy
@x

+ 2
@ux
@z

@uz
@x

+ 2
@uz
@y

@uy
@z
. (3.103)

Following the procedure by Lamb for an incompressible viscid �uid [35, Article 229],

the incompressibility condition implies that

@ux
@x

+
@uy
@y

+
@uz
@z

= 0, (3.104)

therefore,

2

�
@ux
@x

+
@uy
@y

+
@uz
@z

�2
= 0, (3.105)

as well. By expanding Equation 3.105 as

2

�
@ux
@x

�2
+2

�
@uy
@y

�2
+2

�
@uz
@z

�2
+4

@ux
@x

@uy
@y

+4
@uy
@y

@uz
@z

+4
@ux
@x

@uz
@z

= 0, (3.106)

and subtracting it from Equation 3.103, we obtain

�
@uk
@xi

+
@ui
@xk

�
@uk
@xi

=

�
@uy
@x

�2
+

�
@uz
@x

�2
+

�
@ux
@y

�2
+

�
@uz
@y

�2
+

�
@ux
@z

�2
+

�
@uy
@z

�2
+2

@ux
@y

@uy
@x

+ 2
@ux
@z

@uz
@x

+ 2
@uz
@y

@uy
@z

�4@ux
@x

@uy
@y

� 4@uy
@y

@uz
@z

� 4@ux
@x

@uz
@z
. (3.107)
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Next, we consider the function (r� u) � (r� u) and obtain it in index notation as

(r� u) � (r� u) =

�
ei

@

@xi
� ujej

�
�
�
ek

@

@xk
� umem

�
=

@uj
@xi

@um
@xk

eijpekms�
p
s

=
@uj
@xi

@um
@xk

eijpekmp

=
@uj
@xi

@um
@xk

�
�ik�

j
m � �im�

j
k

�
=

�
@uj
@xi

�2
� @uj
@xi

@ui
@xj

, (3.108)

where e is the permutation symbol, and �ij is the Kronecker delta. Also, in component

format, we have

(r� u) � (r� u) =

�
@uy
@x

�2
+

�
@uz
@x

�2
+

�
@ux
@y

�2
+

�
@uz
@y

�2
+

�
@ux
@z

�2
+

�
@uy
@z

�2
�2@ux

@y

@uy
@x

� 2@ux
@z

@uz
@x

� 2@uz
@y

@uy
@z
. (3.109)

Substitution of Equation 3.109 into Equation 3.107 yields

�
@uk
@xi

+
@ui
@xk

�
@uk
@xi

= (r� u) � (r� u) + 4@ux
@y

@uy
@x

+ 4
@ux
@z

@uz
@x

+ 4
@uz
@y

@uy
@z

� 4@ux
@x

@uy
@y

� 4@uy
@y

@uz
@z

� 4@ux
@x

@uz
@z
. (3.110)
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Also, the function r � [u� (r� u)] in index notation is

r � [u� (r� u)] = ei
@

@xi
�
�
ujej �

�
ek

@

@xk
� umem

��
= ei

@

@xi
�
�
ujej �

�
ek
@um
@xk

ekmses

��
= ei

@

@xi
�
�
uj
@um
@xk

ekmsejspep

�
=

@

@xi

�
uj
@um
@xk

ekmsejsi

�
=

@

@xi

�
uj
@um
@xk

�kmij

�
=

@

@xi

�
uj
@um
@xk

�
�ki �

m
j �

@

@xi

�
uj
@um
@xk

�
�kj �

m
i

=
@

@xi

�
uj
@uj
@xi

�
� @

@xi

�
uj
@ui
@xj

�
=

@uj
@xi

@uj
@xi

+ uj
@2uj
@xi@xi

� @uj
@xi

@ui
@xj

� uj
@2uj
@xi@xj�

@uj
@xi

�2
+ uj

@2uj
@xi@xi

� @uj
@xi

@ui
@xj

. (3.111)

Moreover, we have

r2 (u � u) = (r � r) (u � u)

=

�
ei

@

@xi
� ek

@

@xk

�
(ujej � umem)

=

�
@2

@xi@xk
�ik

��
ujum�

j
m

�
=

@2

@xi@xi
(ujuj)

= 2uj
@2uj
@xi@xi

. (3.112)

Multiplying Equation 3.111 by two and subtracting it from Equation 3.112, we �nd

r2 (u � u)� 2 r � [u� (r� u)] = 2@uj
@xi

@ui
@xj

� 2@uj
@xi

@uj
@xi

, (3.113)
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and then substituting the result (Equation 3.113) into Equation 3.110, we obtain

�
@uk
@xi

+
@ui
@xk

�
@uk
@xi

= (r� u) � (r� u)+r2 (u � u)� 2 r � [u� (r� u)] . (3.114)

Therefore, by substituting Equation 3.114 into Equation 3.99, the viscous dissipation

function can be alternatively expressed as

Z
CV

1

2
� tr

��
ru+rTu

�
� ru

�
dV

= �

Z
CV

1

2
�
�
(r� u) � (r� u) +r2 (u � u)� 2 r � [u� (r� u)]

	
dV . (3.115)

Next, we consider the viscous forces acting on the control surfaces as external

forces.

3.7.2 Power due to external viscous forces

Regarding the viscous forces external to the control volume, we found its scalar po-

tential function (Equation 3.86) to be

�

Z
CV

�r �
��
ru+rTu

�
� u

�
dV . (3.116)
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Since r� can be eliminated by using the divergence theorem, we consider the function�
ru+rTu

�
� u and write it in component notation,

�
ru+rTu

�
� u =

�
@uj
@xi

+
@ui
@xj

�
ujei

=

��
@ux
@x

+
@ux
@x

�
ux +

�
@uy
@x

+
@ux
@y

�
uy +

�
@uz
@x

+
@ux
@z

�
uz

�
i

+

��
@ux
@y

+
@uy
@x

�
ux +

�
@uy
@y

+
@uy
@y

�
uy

+

�
@uz
@y

+
@uy
@z

�
uz

�
j+

��
@ux
@z

+
@uz
@x

�
ux

+

�
@uy
@z

+
@uz
@y

�
uy +

�
@uz
@z

+
@uz
@z

�
uz

�
k. (3.117)

In order to modify Equation 3.117, we consider the two functions r (u � u) and u�

(r� u), and write them in component notation as well. For r (u � u), we have

r (u � u) = ei
@

@xi
(uj uj) = 2

@uj
@xi

uj

= 2

�
@ux
@x

ux +
@uy
@x

uy +
@uz
@x

uz

�
i

+2

�
@ux
@y

ux +
@uy
@y

uy +
@uz
@y

uz

�
j

+2

�
@ux
@z

ux +
@uy
@z

uy +
@uz
@z

uz

�
k, (3.118)

and for u � (r� u) (for index derivation, see Equation 3.111, without considering

"r�"),

u� (r� u) = ui

�
@ui
@xj

� @uj
@xi

�
ej

=

�
uy

�
@uy
@x

� @ux
@y

�
+ uz

�
@uz
@x

� @ux
@z

��
i

+

�
ux

�
@ux
@y

� @uy
@x

�
+ uz

�
@uz
@y

� @uy
@z

��
j

+

�
ux

�
@ux
@z

� @uz
@x

�
+ uy

�
@uy
@z

� @uz
@y

��
k. (3.119)



90

Therefore, from Equations 3.117, 3.118 and 3.119, it can be seen that

r (u � u)� u� (r� u) =
�
ru+rTu

�
� u. (3.120)

From Equations 3.116 and 3.120, the power due to external viscous forces can be

alternatively expressed as

�

Z
CV

�r �
��
ru+rTu

�
� u
�
dV = �

Z
CV

�r � [r (u � u)� u� (r� u)] dV . (3.121)

Thus far, we have obtained extended expressions for the power lost due to viscous

dissipation of energy and for the power of the external viscous forces. Therefore, an

alternative form of the rate of energy equation can be obtained by using those terms

instead, as follows.

3.7.3 An Extended Form of the Rate of Energy Equation

Substituting Equations 3.115 and 3.121 into Equation 3.98, we obtain the energy rate

equation as derived from the extended Jourdain�s principle,

�

Z
CV

D

Dt

�
1

2
�u � u

�
dV

=

external loadingz }| {
�

Z
CS

�p u � ndA+ �

Z
CV

f�r � [r (u � u)� u� (r� u)]

viscous dissipationz }| {
�1
2
�
�
(r� u) � (r� u) +r2 (u � u)� 2 r � [u� (r� u)]

	�
dV

�

non-commuting termz }| {
�

Z
CS

1

2
� (u � u) (u � n) dA, (3.122)
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where the terms of the formr�[u� (r� u)] will cancel each other out, and the terms

r � [r (u � u)] and r2 (u � u), which are identical, can be combined. However, since

these terms represent di¤erent concepts, they are kept separate. The left-hand side of

Equation 3.122 is the summation of the rate of change of kinetic energy (
P

DT
Dt
) for

all points in the domain. For reduced-order modeling, the rate of change of kinetic

energy of the control volume ( d
dt

P
T ) might be of more interest. Also, for a control

volume, in the absence of body forces, the external loads can only be applied at the

control surfaces. Therefore, by replacing the left-hand side integral in Equation 3.122

by its equivalent Equation 3.67 and applying Gauss�divergence theorem (Equation

1.27) to the control volume integral on the right-hand side, Equation 3.122 becomes

�

8>>><>>>:
D

Dt

kinetic energyz }| {Z
CV

1

2
�u � udV +

�ux of kinetic energyz }| {Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

9>>>=>>>;
= �

8<:
Z
CS

external loadsz }| {
f� p u � n + � [r (u � u)� u� (r� u)] � n

viscous dissipationz }| {
�1
2
� [r (u � u)� 2 u� (r� u)] � n

�
dA� 1

2

Z
CV

� (r� u) � (r� u) dV

�

non-commuting termz }| {Z
CS

1

2
� (u � u) (u � n) dA

9>>=>>; . (3.123)
Similar to the previous section, it is important to have in mind that the energy

rate equation corresponding to Equation 3.123 is obtained by multiplying Rayleigh�s
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dissipation function by a factor of two, that is,

D

Dt

kinetic energyz }| {Z
CV

1

2
�u � udV +

�ux of kinetic energyz }| {Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

=

Z
CS

external loadsz }| {
f� p u � n + � [r (u � u)� u� (r� u)] � n

viscous dissipationz }| {
�� [r (u � u)� 2 u� (r� u)] � ng dA�

Z
CV

� (r� u) � (r� u) dV

�

non-commuting termz }| {Z
CS

1

2
� (u � u) (u � n) dA. (3.124)

In Chapters 4 and 5 we will use Equations 3.122, 3.123 and 3.124 for FSI problems.

3.8 Conclusions

In the absence of known particle displacements at two instances of time, Hamilton�s

principle, and consequently, Lagrange�s equations do not result in conservation of

energy directly. As suggested by Lanczos [29] and shown by Benaroya and Wei [1]

for a control volume containing a Newtonian incompressible viscous �uid, an energy

rate equation can be approximated by assuming that the virtual displacements and

actual displacements coincide for all time. This is reviewed in detail in the following

chapter.

In this chapter, we considered that Hamilton�s principle, Lagrange�s equation

and Jourdain�s principle are all derivable from d�Alembert�s principle. We used this

common feature and showed that the energy rate equation can be obtained from Jour-

dain�s principle when the system is described in the Lagrangian frame of reference.

On the contrary, for a system described in the Eulerian reference frame, it was shown
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that the commutation rule does not hold. However, this di¢ culty was overcome by

extracting the non-commuting terms from the acceleration.

Moreover, we used the idea of the Rayleigh dissipation function to obtain the

energy terms. The energy dissipation potential due to viscosity was obtained as

�� =
1

2

Z
CV

�� (r� u) � (r� u) dV + 1
2

Z
CS

�� [r (u � u)� 2 u� (r� u)] � n dA,

(3.125)

which is similar to the dissipation function found by Lamb [35, Article 229]. However,

it is presented here in vector form. The signs in our dissipation function di¤ers from

Lamb�s equation because he considered the vector n to be the inward normal vector,

whereas we take it to be the outward normal.

As evident from our derivations, the classical assumption that the rotating �uid

does not e¤ect the shear stress is identical to the Rayleigh�s assumption for obtaining

the dissipation function. Thus, the energy equation obtained is compatible with the

Navier-Stokes equations.

During our derivations, we kept the viscous dissipative terms separate from the

viscous forces external to the control volume. However, an interesting result is ob-

tained if we combined those terms in the variational energy rate equation and the

energy rate equation as follows.

We consider Equation 3.123. Summation of the viscous terms results in

�

8<: D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

9=;
= �

8<:
Z
CS

�
� p u � n +

1

2
�r (u � u) � n

�
dA

� 1
2

Z
CV

� (r� u) � (r� u) dV �
Z
CS

1

2
� (u � u) (u � n) dA

9=; . (3.126)
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Similarly, summation of viscous terms in Equation 3.124 yields

D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

=

Z
CS

[� p u � n + �u� (r� u) � n ] dA

�
Z
CV

� (r� u) � (r� u) dV �
Z
CS

1

2
� (u � u) (u � n) dA. (3.127)

Comparing Equations 3.126 and 3.127, we notice a di¤erence regarding the viscous

terms on their second lines. For many FSI problems where the �uid viscosity is neg-

ligible, the boundary layer approximation method has been widely used in modeling

the �ow [28]. In the boundary layer method, the viscosity is neglected everywhere in

the �uid domain except in the vicinity of the structure. Similarly, if we neglect the

dissipation inside the control volume, the only terms remaining are 1
2
�r (u � u) � n

in Equation 3.126 and �u � (r� u) � n in Equation 3.127. This di¤erence makes

the variational energy rate equation preferable over the energy rate equation when

it comes to reduced-order modeling, since the kinetic energy term can readily be ob-

tained as 1
2
�r (u � u) � n = �

�
r
�
1
2
�u � u

�
� n; whereas the term �u� (r� u) � n in

Equation 3.127 makes the manipulations challenging. This fact and observation will

be utilized in our reduced-order modeling of the model problem in Chapter 5.

Detailed and comparative discussions on the energy equation are put o¤ until we

obtain it for �uid-structure interaction systems in the following chapter, where the

energy equation is derived for FSI with the addition of an internal structure/solid.



95

Chapter 4

Modeling Fluid-Structure Interaction: Single
Governing Equation of Motion

Modeling the dynamics of a system of �uid particles, alone, is a very challenging prob-

lem due to the nonlinear and chaotic behavior of �uids. Considering �uid-structure

interaction (FSI) problems, the di¢ culties increase since the nature of the FSI is not

fully understood. Consequently, there has been no compelling theoretical model that

explains the nature of �uid-structure interaction. Thus, the choice of the boundary

conditions (BCs) on the solid surfaces has remained to some extent just assumptions.

Generally, having obtained a theoretical solution by using a set of assumed BCs, the

applicability of the BCs are examined by a comparison with the experimental results.

Therefore, we begin this chapter with a discussion of boundary conditions.

Regarding �uid-structure interaction and speci�cally vortex induced vibration

(VIV), there exist many empirical models that only include single forcing functions.

In Chapter 1, we referred to these models as experimental force coe¢ cient models.

While these ad hoc models have had relative success in capturing the dynamics of

solid structures, they fail to provide insights into the dynamic behavior of the �uid

systems. Moreover, each structural con�guration requires its own model because

these empirical models use assumed forcing functions and curve �ttings to a set of

data points obtained experimentally.

Unlike empirical models, there have been very few e¤orts to model the VIV prob-

lem using a �rst principles approach. One of the earliest attempts is the work of
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Benaroya and Wei [1] where they extended Hamilton�s principle for the VIV prob-

lem. In this chapter, we use their methodology to obtain a single governing equation

for the VIV problem from the extended Jourdain�s principle and the energy equation

obtained in previous chapters. Consequently, we compare our model with the model

of McIver for FSI, and the model of Benaroya and Wei for VIV.

Benaroya and Wei neglected the viscous dissipation of energy in their extension

of Hamilton�s principle since their experiments found the viscous forces to be of

three orders of magnitude smaller than the kinetic energy �ux. They showed that

their result is a statement of the �rst law of thermodynamics where heat transfer

and dissipation has been omitted. In Section 4.8, we �rst use their derivation and

include the viscous dissipation function (for generality) to obtain the classical energy

equation in integral form for a Newtonian incompressible viscous �uid, and then use

it to explain the limitation of the classical equation. Subsequently, we compare our

equation with the classical one.

In Section 4.10, we explain how the experimental data can be introduced into our

energy rate equation and discuss the di¢ culties we anticipate. In Section 4.11, an

alternative energy equation is proposed for two situations where the use of the energy

equation might face serious challenges. The chapter is summarized in Section 4.12.

4.1 Boundary Conditions at the Surface of Solids

From the time of Newton up to the early 20th century, one topic of intensive discus-

sions has been the boundary conditions on solid surfaces that are interacting with

viscous �uid particles. Many great scientists and engineers, including Navier, Stokes

and Prandtl, have considered the topic. For a long time, there was no general agree-

ment on the type of the required BCs with an exception in the case of a very slow

motion of viscous �uids where the no-slip condition was accepted [36].
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During the past century, many experiments were conducted and compared to the

theoretical and numerical results using the no-slip condition, resulting in an almost

uni�ed agreement on the no-slip condition [37]. Yet, the no-slip condition remains an

assumption since it cannot be proven using a �rst principles approach. The general

understanding is that some intermolecular interactions result in zero relative velocity,

ur, of �uid particles at a solid surface [28, pp. 295-296], that is,

ur = u� v = 0, (4.1)

where u is the velocity of the �uid at the surface of a solid moving with the velocity

v.

Alternatively, another de�nition of the no-slip condition is that the tangential

components of the relative velocity must vanish [38], that is,

ur � t = (u� v) � t = 0, (4.2)

or,

ur � (ur � n)n = 0, (4.3)

where t is the unit tangent vector to the surface of the solid. This condition must be

considered together with the no penetration condition for the normal direction, that

is, no �uid particles can penetrate into the solid.

While the no-slip condition seems to be compatible with many experimental ob-

servations on macroscopic scales, some experiments have shown that it is violated

at microscopic levels for Newtonian �uids. The wetting property of the surface, the

velocity of the �ow, surface roughness and gas bubbles are among the factors shown

to a¤ect the no-slip boundary condition [39], [40], [41], and [42]. More discussion can

be found in [37, p. 1222].
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We continue our derivation by considering the no-slip boundary condition, as it

is widely accepted in the literature. However, before starting our derivations for the

model problem, we describe the control volume of interest in the following section.

4.2 Control Volume De�nition

Generally, care must be exercised in the selection of the control volume, as it greatly

a¤ects the applicability of the analytical formulations. Moreover, if the analytical

formulations are to be coupled with experimental results, choices of the control volume

may be restricted due to experimental limitations, for example, the measurement

equipment used and wind/water tunnel dimensions.

In Chapters 2 and 3, results were obtained for a general control volume, that

is, a control volume that can deform and move. Therefore, the derived variational

formulations did not face any restrictions in the selection of the control volume.

Regarding the FSI and VIV problems, the methodology used in this chapter imposes

a limitation in selecting the CV in that some portions of the control surface must be

comprised of solid surfaces. Since no �uid can cross the solid surface, these control

surfaces are referred to as closed control surfaces, CSC . The other surfaces, where

�uid can cross, are called open control surfaces, CSO.

Since we are interested in reduced-order modeling of the model problem, we start

by de�ning a control volume for the two types of model problem shown in Figures 1.2

and 1.1. While our e¤orts in this chapter are to derive the EOM for a single DOF

rigid body, the same method can be used for modeling a general deformable solid as

well.

Consider the control volume shown in Figure 4.1, where the control surface is

comprised of three section, CSO, CSC , and the surfaces set apart by the distance �.

If � ! 0 and if there exist no singularities between the gap, then the surfaces set
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Figure 4.1: Control volume of interest.

apart by the distance � can be neglected. Also, we assume that both the rectangular

and circular control surfaces move rigidly and independently of each other as shown

in Figure 4.2.

The shape of the open portion of the control volume is selected to be rectangular

for simplicity. Moreover, the rectangular control surface can represent solid surfaces,

for instance, they can be chosen to coincide with a water tunnel�s walls.

So far, we have not considered any solid body in our derivations. In order to

include a solid structure, we start by considering the original statement of Jourdain�s

principle for a system volume.
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Figure 4.2: Selected control volume; rectangular and circular control surfaces can
move independently.

4.3 Extended Jourdain�s Principle for FSI Systems

Jourdain�s variational principle for a set of N �uid and solid particles is (Equation

2.2)
NX
i=1

(mi �ri � F i) � � _ri = 0, where �ri = 0 and �t = 0.

Figure 4.3: A continuous set of �uid and solid particles.

Consider a continuous system of �uid and solid particles as shown in Figure 4.3,
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and assume that the system consists of M �uid particles where M < N . Jourdain�s

principle then becomes

MX
i=1

(mi �ri � F i) � � _ri +
NX

j=M+1

(mj �rj � F j) � � _rj = 0,

where �ri = 0, �rj = 0 and �t = 0. (4.4)

In Section 2.4, it was shown that Jourdain�s principle can be alternatively expressed

as Equation 2.16. Similarly, Equation 4.4 can be written as

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

d

dt

"
MX
i=1

(mi �ri � F i) � �ri +
NX

j=M+1

(mj �rj � F j) � �rj

#
= 0

�t = 0

�ri = 0

�rj = 0

d

dt
(�ri) 6= 0

d

dt
(�rj) 6= 0.

(4.5)

If the set of particles shown in Figure 4.3 is continuous during some time interval,
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then Equation 4.5 can be expressed in integral form as

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

d

dt

Z
Vf

�
�
du (r; t)

dt
� f (r; t)

�
� �� (r; t) dVf

+
d

dt

Z
Vs

�
�s
d _rs
dt
� f s (rs)

�
� �rsdVs �

d

dt

Z
Solid
Surface

f �s (rs) � �rsdAs = 0

�t = 0

�� (r; t) = 0

�rs = 0

d

dt
[�� (r; t)] 6= 0

d

dt
(�rs) 6= 0,

(4.6)

where Vf is the material volume of the �uid particles, Vs is the material volume of

solid particles, �s denotes the density of solid, rs is the Lagrangian position of the

solid particles, f s (rs) denotes the force density (force per unit volume) in the solid

domain at rs, and f
�
s (rs) is the force density of the �uid dynamic forces acting on the

solid surface. Note that f s (rs) does not include any force due to the �uid dynamics.

Also, in deriving Equation 4.6, no constraints are included except those imposed by

Jourdain�s principle.

Regarding the integral over the �uid system in Equation 4.6, the manipulations
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shown in Chapter 2 remain valid for a Newtonian incompressible viscous �uid. There-

fore, the integral over the �uid system can be replaced using Equation 2.42 as

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Z
CV (t)

�
�
Du (x; t)

Dt
� f b (x; t) +rp (x; t)� �r2u (x; t)

�
� �u (x; t) dV (t)

+
d

dt

Z
Vs

�
�s
d _rs
dt
� f s (rs)

�
� �rsdVs �

d

dt

Z
Solid
Surface

f �s (rs) � �rsdAs = 0

�t = 0

�rs = 0

d

dt
(�rs) 6= 0.

(4.7)

In Chapter 3, the energy equation for a general control volume of �uid particles was

obtained in Equations 3.122 and 3.123. Introducing Equation 3.123 into Equation

4.7 results in8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�

8<: D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

loading external to the �uidz }| {
�
Z
CS

f� pu � n + � [r (u � u)� u� (r� u)] � n

viscous dissipationz }| {
�1
2
� [r (u � u)� 2 u� (r� u)] � n

�
dA+

1

2

Z
CV

� (r� u) � (r� u) dV

non-commuting termz }| {
+

Z
CS

1

2
� (u � u) (u � n) dA

9=;
+
d

dt

Z
Vs

�
�s
d _rs
dt
� f s (rs)

�
� �rs dVs �

d

dt

Z
Solid
Surface

f �s (rs) � �rsdAs = 0

�t = 0

�rs = 0

d

dt
(�rs) 6= 0,

(4.8)
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where body forces are neglected for �uid particles.

In deriving Equation 4.8 we have not considered the boundary conditions on

the solid surface. Therefore, we continue our derivation by considering the no-slip

condition.

In order to include the no-slip condition, we consider the second line of Equation

4.8 and divide it to integrals over the closed and the open portions of control surface,

�

Z
CS

f� pu � n + � [r (u � u)� u� (r� u)] � ng dA

= �

Z
CSC

f� pu � n + � [r (u � u)� u� (r� u)] � ng dA

+ �

Z
CSO

f� pu � n + � [r (u � u)� u� (r� u)] � ng dA. (4.9)

Figure 4.4: Schematics of FSI between a rigid solid and a �uid, where F denotes
the resultant of the forces applied to the �uid by the solid structure and F � is the
resultant of forces applied to the solid structure by the �ow.

Considering Figure 4.4, we denote the virtual power corresponding to the resultant

of the forces acting on the closed control surface, F , with �P , and de�ne it as

�P = �

Z
CSC

f� pu � n + � [r (u � u)� u� (r� u)] � ng dA. (4.10)
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Also, denoting the virtual power of the resultant force of �uid dynamic forces applied

to the solid structure, F � by �P �, it is de�ned as

�P � =
d

dt

Z
Solid
Surface

f �s (rs) � �rsdAs

=

Z
Solid
Surface

d

dt
[f �s (rs)] � �rsdAs +

Z
Solid
Surface

f �s (rs) �
d

dt
(�rs) dAs, (4.11)

and by considering the Jourdain�s constraint, �rs = 0, it becomes

�P � =

Z
Solid
Surface

f �s (rs) �
d

dt
(�rs) dAs. (4.12)

Assuming the no-slip condition, and considering that Jourdain�s principle does not

permit any displacement, the particles at the solid surface remain in the same relative

position. Moreover, the shear terms of Equation 4.10 are representative of external

loads and are not dissipative. Therefore, in the absence of dissipative terms, the

power lost by the structure must be absorbed by the �uid and vice versa. Therefore,

�P = � �P �.

Moreover, the virtual velocities must be compatible with system�s constraints,

thus

� _rs = �u, (4.13)

at the closed control surface. Therefore, the �uid external forces and f �s (rs) are

action and reaction forces at any points on the solid surface. Thus, using the terms

for external load from Equation 3.75, f �s is obtained to be

f �s = �pn� + �
�
ru+rTu

�
� n�, (4.14)
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or,

� �

Z
CSC

f� pu � n + � [r (u � u)� u� (r� u)] � ng dA

=
d

dt

Z
Solid
Surface

f �s (rs) � �rsdAs, (4.15)

where n� is the unit vector outward with respect to the solid. Consequently, for the

rigid structure shown in Figure 4.4, F � = �F are action and reaction forces.

Substituting Equation 4.15 into Equation 4.9, we have

�

Z
CS

f� pu � n + � [r (u � u)� u� (r� u)] � ng dA

= � d

dt

Z
Solid
Surface

f �s (rs) � �rsdAs

+ �

Z
CSO

f� p u � n + � [r (u � u)� u� (r� u)] � ng dA,
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and introducing it into Equation 4.8, we obtain

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�

8<: D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

loading external to the �uidz }| {
�
Z
CSO

f� pu � n + � [r (u � u)� u� (r� u)] � ng dA

viscous dissipationz }| {
+

Z
CS

1

2
� [r (u � u)� 2 u� (r� u)] � ndA+ 1

2

Z
CV

� (r� u) � (r� u) dV

non-commuting termz }| {
+

Z
CS

1

2
� (u � u) (u � n) dA

9=;
+
d

dt

Z
Vs

�
�s
d _rs
dt
� f s (rs)

�
� �rsdVs = 0

�t = 0

�rs = 0

d

dt
(�rs) 6= 0.

(4.16)

Equation 4.16 is valid for any control volume of a Newtonian incompressible vis-

cous �uid and any solid body (rigid or deformable). We next continue our derivation

for the model problem which assumes the solid body to be rigid. For a deformable

solid body, similar manipulations need to be performed. However, the stress-strain

relations must be known in order to obtain f s (rs; t).

4.4 Single Governing EOM for the Translating Cylinder

Consider the model problem in the form of the translating cylinder shown in Figure

1.2. One generalized coordinate is required to fully describe the motion of the cylinder.

Let the generalized coordinate be the Lagrangian coordinate xs (t) measured from the

center of the cylinder when it is at rest, perpendicular to the axis of symmetry of the
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cylinder and transverse to the �ow direction.

Setting rs (t) = xs (t) and introducing the force density function, f s,

f s (xs) =
1

Vs
(�C _xs � kxs) (4.17)

into Equation 4.16, we obtain

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�

8<: D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

�
Z
CSO

� p u � n + � [r (u � u)� u� (r� u)] � ndA

+

Z
CS

1

2
� [r (u � u)� 2 u� (r� u)] � ndA+ 1

2

Z
CV

� (r� u) � (r� u) dV

+

Z
CS

1

2
� (u � u) (u � n) dA

9=;
+
d

dt
[(ms�xs + C _xs + kxs) � �xs] = 0

�t = 0

�xs = 0

d

dt
(�xs) 6= 0,

(4.18)

where C is the net support damping constant and k denotes the net support spring

constant. The rigidity of the cylinder is considered in the integration over the solid

volume.

Di¤erentiating the structural terms, we obtain

d

dt
[(ms�xs + C _xs + kxs) � �xs]

=
d

dt
(ms�xs + C _xs + kxs) � �xs + (ms�xs + C _xs + kxs) � � _xs, (4.19)
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and imposing the variational constraint (�xs = 0), we obtain

d

dt
[(ms�xs + C _xs + kxs) � �xs] = (ms�xs + C _xs + kxs) � � _xs. (4.20)

Substituting Equation 4.20 into Equation 4.18 yields

�

8<: D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

�
Z
CSO

f� p u � n + � [r (u � u)� u� (r� u)] � ng dA

+

Z
CS

�
1

2
� [r (u � u)� 2 u� (r� u)] � n

�
dA

+
1

2

Z
CV

� (r� u) � (r� u) dV +
Z
CS

1

2
� (u � u) (u � n) dA

9=;
+ (ms�xs + C _xs + kxs) � � _xs = 0. (4.21)

Similar to the energy rate terms obtained for the control volume of �uid particles, we

seek the energy rate terms corresponding to the structural terms.

Regarding the structural terms, xs is a Lagrangian coordinate, therefore Equation

3.24 can be used to obtain the energy rate equation for the conservative structural

terms,

(ms �xs + k xs) � � _xs = ms �xs � � _xs + k xs � � _xs

=
@ (ms �xs � _xs)

@ _xs
� � _xs +

@ (k xs � _xs)
@ _xs

� � _xs

= � (ms �xs � _xs + k xs � _xs) . (4.22)

Regarding the nonconservative term due to the linear damper, we use Rayleigh�s

dissipation function. Therefore, we consider the function 1
2
C _xs � _xs and obtain its
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directional derivative with respect to _xs and in the direction of _xs as

r _xs

�
1

2
C _xs � _xs

�
� _xs =

1

2
C

@

@"
[( _xs + " _xs) � ( _xs + " _xs)]

����
"=0

=
1

2
C

@

@"

�
_xs � _xs + 2" _xs � _xs + "2 _xs � _xs

�����
"=0

= C _xs � _xs, (4.23)

or,

r _xs

�
1

2
C _xs � _xs

�
= C _xs. (4.24)

Therefore, the variation of the function above can be obtained from the de�nition

(Equation 3.57)

�� = r _xs � � � _xs, (4.25)

as,

�

�
1

2
C _xs � _xs

�
= C _xs � � _xs. (4.26)

Substituting Equations 4.22 and 4.26 into Equation 4.21, the energy rate equation

for the translating cylinder problem is obtained to be

�

8<: D

Dt

Z
CV

1

2
�u � u dV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

�
Z
CSO

f� pu � n + � [r (u � u)� u� (r� u)] � ng dA

+

Z
CS

�
1

2
� [r (u � u)� 2 u� (r� u)] � n

�
dA

+
1

2

Z
CV

� (r� u) � (r� u) dV +
Z
CS

1

2
� (u � u) (u � n) dA

9=;
+ �

�
ms�xs � _xs +

1

2
C _xs � _xs + kxs � _xs

�
= 0. (4.27)

In deriving Equation 4.27, we did not add any constraints with regard to the nature
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of solid-�uid interaction other than action and reaction forces. In order to include the

boundary conditions, we separate the integrals over the control surface into integrals

over its open and closed portions. Regarding the �ux of kinetic energy, we have

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

=

Z
CSC

�
1

2
�u � u

�
(u� vcCS) � ndA+

Z
CSO

�
1

2
�u � u

�
(u� voCS) � ndA, (4.28)

where voCS and v
c
CS are the velocities of the open and closed portions of the control

volume, respectively. The �rst integral on the right-hand side of Equation 4.28 is

equal to zero due to the no-penetration condition, therefore,

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA =

Z
CSO

�
1

2
�u � u

�
(u� voCS) � ndA. (4.29)

Regarding the �uid dissipative forces at the control surfaces, we expand the fourth

integral in Equation 4.27 as follows

Z
CS

1

2
� [r (u � u)� 2 u� (r� u)] � ndA

=

Z
CSO

1

2
� [r (u � u)� 2 u� (r� u)] � ndA

+

Z
CSC

1

2
� [r (u � u)� 2 u� (r� u)] � ndA. (4.30)

Regarding the last integral on the right-hand side, it is not clear whether this term

must be considered at the closed control surface or not. On one hand, we expect the

energy to be dissipated at higher rates near the structure due to the high velocity

gradient. Moreover, the velocity measurements of the �ow are not generally feasible at

the surface of the solid structure. On the other hand, the no-slip boundary condition



112

implies that no energy is lost due to friction because the relative motion between the

�uid and solid is zero. Yet again, the viscous dissipation can be envisioned to be

between the particles at the solid surface and those adjacent to them. Therefore, we

choose to keep the dissipative terms at the closed control surfaces and continue our

derivations.

Regarding the viscous terms, a couple of notes are worth mentioning. First, for

a solid structure that does not move, the dissipative terms at the closed boundary

disappear [35, article 329]. Therefore, one choice seems to be that u in Equation 4.30

can be replaced with ur, especially when experimental data is considered. Second,

the same discussion as that made for dissipative terms applies to viscous forces acting

external to the �uid and one may decide to keep these in the energy equation. How-

ever, the pressure terms are conservative forces for incompressible �uids and they can

be neglected.

Finally, regarding the non-commuting terms, we also consider the no-slip condition

that states that at the closed control surface u = _xs for all time. Replacing u by

_xs at closed surfaces and considering that the commutation rule holds for _xs, the

non-commuting terms disappear. Therefore, in Equation 4.27 we have

Z
CS

1

2
� (u � u) (u � n) dA =

Z
CSO

1

2
� (u � u) (u � n) dA+

Z
CSC

1

2
� (u � u) (u � n) dA

=

Z
CSO

1

2
� (u � u) (u � n) dA. (4.31)

Having speci�ed the boundary condition, the energy equation for the translating cylin-

der problem is obtained by substituting Equations 4.29, 4.30 and 4.31 into Equation
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4.27, resulting in
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+
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2
� (r� u) � (r� u) dV +

Z
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� (u � u) (u � n) dA
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�
= 0. (4.32)

As mentioned in Section 3.5, Rayleigh�s dissipation function must be multiplied by a

factor of two in order to obtain the energy rate equation. Therefore, the energy rate

equation for the translating cylinder problem is
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+ms �xs � _xs + C _xs � _xs + k xs � _xs = 0, (4.33)



114

where we summed the viscous terms at open control surface.

Themodel problem in the form of inverted pendulum is considered in the following

section.

4.5 Single Governing EOM for the Inverted Pendulum

Similar to the translating cylinder problem, the inverted pendulum problem (Figure

1.1) is a single DOF structure. Thus, the single generalized coordinate is selected

to be the angle of rotation of the rigid cylinder � (radian) about its support. Also,

the same assumptions as those made by Benaroya and Wei [1] are used, which are:

three-dimensional e¤ects can be ignored (vortices remain two-dimensional), weight

and buoyancy forces must be included for the structure, and the resultant of all the

forces act at the geometric center of the circular cylinder. Moreover, the horizontal

plane passing through the center of geometry contains the two dimensional vortices.

Therefore, by replacing the last term in Equation 4.16 by
h
I0�� + CT _� + kT � �

(msg �B) L
2
sin �e�] � ��e�, it becomes

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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+

Z
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1
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+
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+
d

dt

��
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2
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e� � ��e�

�
= 0

�t = 0

�� = 0

d

dt
(��) 6= 0,

(4.34)
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where I0 denotes the mass moment of inertia for the circular cylinder about its sup-

port, L is the length of the cylinder, e� denotes the unit vector perpendicular to the

plane of movement of the cylinder, g is the gravitational acceleration, B is the total

buoyancy force (equal to the weight of the displaced �uid), CT denotes the torsional

damping constant, and kT is the torsional sti¤ness constant of the spring.

Similar to our derivation in the previous section, by di¤erentiating the structural

terms with respect to time and imposing the variational constraints, we obtain

d

dt

��
I0�� + CT _� + kT � � (msg �B)

L

2
sin �

�
e� � ��e�

�
=

�
I0�� + CT _� + kT � � (msg �B)

L

2
sin �

�
� _�. (4.35)

Regarding the forces due to acceleration, damping and spring, the derivations are

similar to those shown in the previous section. The results are

�
�
I0�� _� + kT � _�

�
= I0�� � _�, (4.36)

and

�

�
1

2
CT _�

2
�
= CT _� � _�. (4.37)

Also, regarding the weight and buoyancy forces, we use Equation 3.6 and obtain
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L
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�
_�

�
. (4.38)
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Introducing Equations 4.35 to 4.38 into Equation 4.34 and imposing Jourdain�s con-

straints, it becomes
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= 0, (4.39)

where the no-penetration and no-slip boundary conditions are considered in a similar

way as in Section 4.4.

Therefore, multiplying Rayleigh�s dissipation function by two, the energy rate

equation is found to be
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So far, we have obtained our variational formulations of the energy rate equations

for a general control volume of �uid particles (Equation 3.123), a general control

volume enclosing a solid body (Equation 4.16), and the model problems (Equations

4.32 and 4.39). In order to compare our formulations, we next review the works of

McIver [12] and Benaroya and Wei [1] in more detail than done in Chapter 1.

4.6 Comparison withMcIver�s Extension of Hamilton�s Prin-

ciple

As mentioned in Section 1.1, McIver�s attempt was to extend Hamilton�s principle

for systems involving �uid-structure interaction [12]. He speci�cally considered the

FSI system where the �uid is internal to the structure. In this section, we compare

our derivations to those of McIver.

The �rst di¤erence is due to McIver�s assumption that the only virtual work

applied to a control volume is due to the surface traction over the control surfaces

[12, p. 251]. Therefore, McIver started his derivations by assuming that there is no

dissipation of energy due to viscosity. If we had made the same assumption, the terms

marked viscous dissipation would not be present in Equation 3.122.

In his paper, McIver also presented his energy equation in the absence of any

interacting system (similar to systems considered in Chapter 3) as [12, Equation 23]

d

dt
(K + E)O =

ZZ
BO(t)

�
u � �� + �

�
1

2
u2 + e

�
(V � u)

�
� nds, (4.41)

where K is the kinetic energy, E and e denote the potential energy and its density,

respectively; V is the velocity of the control surface, BO (t), and surface element ds.

Neglecting the potential energy terms (as we did) and substituting the terms K and
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��, Equation 4.41 becomes

d

dt

Z
CV

1

2
�u2dV =

Z
CS

�
u �
�
�p�I + �

�
ru+rTu

��
+

�
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2
�u2
�
(vCS � u)

�
� ndA, (4.42)

where we have changed McIver�s notations to match ours to avoid confusion.

For comparison, if we neglect the terms corresponding to viscous dissipation in

Equation 3.99, the energy rate equation becomes

D
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�u2dV

=

Z
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u �
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�p�I + �

�
ru+rTu

��
+

�
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2
�u2
�
(vCS � u) +

�
1

2
�u2
�
u

�
� ndA.

(4.43)

Comparing Equation 4.43 with Equation 4.42, another important di¤erence becomes

clear, that is, the additional term: power due to the non-commuting part of the rate

of kinetic energy,
�
1
2
�u2
�
u. We obtained this term after examining the commutation

rule in the Eulerian reference frame. However, McIver assumed the commutation rule

holds. Moreover, he did not consider the relations between the Lagrangian and the

Eulerian reference frames.

Having neglected the viscous dissipation, McIver extended Hamilton�s principle

by utilizing the Reynolds�transport theorem, and obtained it to be (Equation 1.3)

�

Z t2

t1

(K � E)CV dt+

Z t2

t1

Z
CSO

[�r � �� � n+ � (u � �r) (ur � n)] dAdt

+

Z t2

t1

Z
CSC

�r � �� � ndAdt = 0,
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where K and E are the kinetic and potential energy terms, and �� is the stress dyadic

tensor.

For a system of �uid particles, the particle trajectories cannot be obtained from

the Eulerian observations of a control volume as we discussed in Chapter 1. In order

to overcome this di¢ culty, McIver followed Lanczos [29, pp. 119-124] and replaced

the virtual displacement �r by

�r = udt. (4.44)

For an incompressible �uid, the thermodynamic pressure can be considered to be a

conservative force. As mentioned earlier, he considered the energy equation for a

control volume of �uid particles in the absence of a solid system to be that expressed

by Equation 4.41, and discussed that the energy of the control volume would be

conserved if the control volume is selected such that the terms on the right-hand side

of Equation 4.41 disappear for all time. Therefore, the control surface must satisfy

the relation,

vCS � n = �
u � �� � n
�
�
1
2
u2 + e

� + u � n. (4.45)

If a control volume with this requirement could be found, then the corresponding

extended Hamilton�s principle is expressed by

�

Z t2

t1

(K � E)CV dt+

Z t2

t1

Z
CSO

(
� r�

"
�I � uu

�
�
1
2
u2 + e

�# � �� �n) dAdt = 0, (4.46)
given that the �uid-structure interacting forces are conservative (Equation 4.46 does

not contain any integrals over the closed control system.) Similarly, in Section 4.3, we

discussed that the no-slip condition may justify that the �uid-structure interacting

forces are conservative.

McIver�s extension of Hamilton�s principle is an interesting and noteworthy work.
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However, a few remarks, as follow, merit attention when applying McIver�s formula-

tion to a FSI system, and especially for problems involving VIV.

As mentioned earlier, McIver neglected the viscous dissipation of the energy in-

side the control volume. This simpli�cation reduces the applicability of the assumed

conservation of energy. Moreover, he did not consider the relations between the La-

grangian and the Eulerian frames of reference. While Equation 4.44 seems appropriate

since the virtual velocities are arbitrary, McIver did not consider that r and u are

not described in the same reference frame. Setting � ( ) = dt d ( ) =dt implies that the

variation of a system variable at each instant coincides with that actual variable [29,

p.120]. Thus, Equation 4.44 suggests that the particle trajectories could be found by

integrating the Eulerian velocities. We have discussed the di¢ culties faced in relating

the Lagrangian and the Eulerian velocities in detail in Chapter 1. Moreover, the rela-

tion � ( ) = dt d ( ) =dt imposes additional constraints on the velocity �eld functions,

which are discussed in Section 4.8.

Another di¤erence becomes apparent if we start the derivation by neglecting the

viscous dissipation terms with the result expressed by Equation 4.43. Alternatively,

we can neglect the viscous terms left inside the control volume in Equation 3.123,

and obtain the corresponding energy equation to be

�

8<: D

Dt

Z
CV

1

2
�u � u dV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � n dA

9=;
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8<:
Z
CS

f� p u � n + � [r (u � u)� u� (r� u)] � n

�1
2
� [r (u � u)� 2 u� (r� u)] � n

�
dA �

Z
CS

1

2
� (u � u) (u � n) dA

9=; , (4.47)
which is a di¤erent result than that expressed by Equation 4.43.
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For many �uid-structure interaction systems, the dissipation of energy due to vis-

cosity can be neglected. Equations 4.43 and 4.47 both assume that no energy is lost

inside the control volume. Equation 4.43 totally neglects the dissipation while Equa-

tion 4.47 expresses the power added or subtracted from the system at the boundaries

due to external loads corrected with a consideration of viscous dissipation. At the

solid surfaces, there is no di¤erence between the two equations if the no-slip condition

is assumed (if we neglect the dissipation at the solid surfaces, as discussed earlier as

an option).

Therefore, if we neglect the dissipative terms after expanding the energy rate

equation, one more di¤erence with McIver�s model is the presence in our model of

the viscous dissipative terms at both the open and the closed control surfaces.

Modeling �uid-structure interaction is a challenging task. Therefore, the assump-

tions made by McIver may be appropriate in modeling some systems. However, the

selection of control volumes such as speci�ed by McIver is very challenging. It might

be easily recognizable for systems where an approximately laminar �ow is internal to

the structure, but it is ambiguous otherwise. Thus, it is very challenging to compare

McIver�s method with ours any further since McIver�s appropriate control volume

cannot be distinguished without knowing the velocity �eld of the �ow.

Another interesting extension of Hamilton�s principle was by Benaroya and Wei

[1] which is considered in the following section.

4.7 Comparison with Benaroya andWei�s Extension of Hamil-

ton�s Principle

In the previous section, we discussed that the applicability of McIver�s approach

is greatly limited by the constraint it imposes on selecting the appropriate control

volume. Such control volumes might be easily distinguished when the �ow is internal
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to the structure and it is ambiguous for external �ows. Having considered McIver�s

method, Benaroya and Wei [1] took on a more challenging task to extend Hamilton�s

principle for VIV problems where the �ow is external to the structure. As mentioned

earlier, we used their methodology in obtaining the single governing EOM for the

model problem. Thus, a short summary of their work su¢ ces.

Benaroya and Wei started with Hamilton�s principle and applied the Reynolds

transport theorem in order to modify the formulation for systems of changing mass.

They discussed in detail that in the absence of known particle trajectories for the

�uid �ow, stationarity cannot be ensured. Thus, using Equation 4.44 would lead to

the conservation of energy equation. Similar to McIver�s approach, they neglected

the viscous dissipation of energy inside the control volume and obtained the energy

equation

d

dt
(Tstructure +�structure) =

Z
CS

1

2
�u2 (ur � n) dA

+

Z
CS

(�pn+ � ) � udA� (mfluidu _u)CV , (4.48)

where � is the shear stress, T is the kinetic energy, and the potential energy is denoted

by �.

Regarding the translating cylinder problem (Figure 1.2), they derived the govern-

ing EOM to be,

_xs (ms �xs + kxs) + (mfluidu _u)CV =Z
CS

1

2
�u2 (ur � n) dA+

Z
CSO

(�pn+ � ) � u dA+

Z
CSC

(�pn+ � ) � u dA,

(4.49)
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and for the inverted pendulum problem, they derived the governing EOM

_�

�
I0 �� + kT � � (msg �B)
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2
sin �

�
+ (mfluidu _u)CV =Z

CS

1

2
�u2 (ur � n) dA+

Z
CSO

(�pn+ � ) � u dA+

Z
CSC

(�pn+ � ) � u dA,

(4.50)

where they have ignored the structural damping.

Comparing Benaroya and Wei�s results (Equations 4.49 and 4.50) to ours (Equa-

tions 4.33 and 4.40), we notice that the sign of the �ux of kinetic energy in our

equation is di¤erent than theirs. The reason is that Benaroya and Wei used the RTT

to relate the integration over the control system to that over the control volume while

we used the RTT twice; once for the same purpose and once to relate the change of

control volume to itself (See Benaroya and Wei�s Equation 29 and Equation 3.1 of

ours).

Moreover, Benaroya and Wei consider the pressure and shear forces at the closed

surface which we neglect by considering them to be action and reaction forces that do

not appear in the energy equation. Regarding these terms, their equation also di¤ers

from that obtained by McIver.

Additionally, we notice similar di¤erences to those observed in Section 4.6 where

we compared our derivations to those by McIver. Recall that the di¤erences observed

were the dissipation terms and the non-commuting term of the rate of kinetic energy.

Discussed in the following section is an important conclusion that can be made

from the work of McIver and of Benaroya andWei, after which the di¤erences between

our method and McIver�s and Benaroya and Wei�s methods becomes more clear.
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4.8 Limitations of the Classic Energy Equation in Integral

Form

Having reviewed the Hamilton�s extension by McIver, and Benaroya and Wei, we next

consider the energy equation of a control volume containing only �uid again.

In classic �uid mechanics, conservation laws in integral form are generally obtained

by assuming that they are related to the local di¤erential laws via Reynolds�transport

theorem. The energy equation is derived in the similar manner, by setting b =

�
�
e+ 1

2
u2 + gZ

�
in the RTT (Equations 3.1, 3.4 and 3.5), where e is the internal

energy, g is the gravitational acceleration, and Z is the potential for the gravity force

Fi = �@ (gZ) =@xi [43, pp. 100-101]. If the relaxation time of the �uid molecules

is small compared to the time scale of the �ow (which is justi�able for the majority

of FSI systems), thermodynamic pressure becomes independent of velocity [28, p.

100] and e becomes a function of pressure and shear stresses. Therefore, the energy

equation in integral form for a control volume of a Newtonian incompressible viscous

�ow becomes

d

dt
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CS
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dV , (4.51)

where we neglected the gravitational body forces for simplicity, as we have done

throughout this work. If such body forces are required they can be easily considered

by adding
Z

CV

� (�@ (gZ) =@xi)uidV to the right-hand side of Equation 4.51.

Next we obtain the same result by utilizing McIver�s and Benaroya and Wei�s

methods.

As mentioned earlier, Benaroya and Wei [1] extended Hamilton�s principle for

systems of �uid-structure interaction. In the absence of known particle trajectories,
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they followed Lanczos [29] and assumed that the virtual displacements coincide with

the actual displacements of the �uid particles. By assuming that the control volume

contains only �uid particles, we exclude the structural and potential terms from the

Benaroya and Wei formulation and obtain the energy rate equation to be

Z
CV

@

@t
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1

2
�u2
�
dV

=

Z
CS
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(ur � n) dA+
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Z
CSC

(�pn+ � ) �u dA.

(4.52)

In Section 1.1, we mentioned that one of the di¤erences between McIver�s and Be-

naroya and Wei�s extensions of Hamilton�s principle was their interpretation of the

RTT. While Benaroya and Wei utilized the RTT to relate a material volume to a

control volume, McIver�s used the RTT to relate a control volume to a system vol-

ume. Both are essentially the same. However, McIver�s RTT result is the form we

are interested in here ( d
dt

R
( ) dV ).

Therefore, if we use McIver�s method in applying the RTT,

d

dt

Z
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Volum e

( ) dV =
D

Dt
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( ) dV +

Z
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( ) (vcs � u) � ndA, (4.53)

to Hamilton�s principle, and then follow Benaroya and Wei�s approach, we obtain

Equation 4.52 alternatively as
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(4.54)

Benaroya andWei conducted a series of experiments on the VIV of the model problem
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in the form of the inverted pendulum in parallel to their analytical work. From their

experimentally acquired data, they reported that the rate of work done by viscous

forces was found to be three orders of magnitude smaller than the rate of kinetic

energy �ux. Thus, their disregard of the viscous dissipation was justi�ed by their

experimental �ndings. However, an interesting result can be obtained by including the

viscous dissipation, that is, the limitations of the classical energy equation becomes

clear, as follows.

Including the viscous dissipation from Equation 3.75 in Benaroya and Wei�s terms

for work done by non-conservative forces [1, see Section 4.1] as,
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and,
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Equation 4.54 becomes,
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which is the classical energy equation in integral form [43, pp. 100-101]. Note that

Benaroya and Wei mentioned that the result is the �rst law of thermodynamics. Here,

we just added the viscous dissipation term.
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There are no doubts about the generality of Hamilton�s principle. However, we

mentioned that Benaroya andWei obtained their energy equation by using the relation

� ( ) = dt d ( ) =dt and Equation 4.44. Therefore, the applicability of the energy

equation in integral form is limited to the systems where the assumption of Equation

4.44 holds.

As mentioned earlier, for a general system, Hamilton�s principle results in La-

grange�s equations which fully describe the dynamics of a system. Therefore, we

explain the limitation of the mentioned assumption by considering the derivation

of Lagrange�s equation, as shown in Section 3.3. Assuming that the commutation

rule holds for Lagrange�s equation in the Eulerian reference frame, the variation of

L ( _ri; ri; t) is

�dL =
@L

@ _ri
� �d _ri +

@L

@ri
� �dri, (4.58)

as was obtained from Equation 3.15. Since the algebraic relation between �d _ri and

�dri is not known, Equation 4.58 is not accessible for further analysis. When the

con�guration is not known at t1 and t2, a conservation of L equation can be obtained

by setting dt � " and � ( ) = dt d ( ) =dt, as mentioned by Lanczos and used by

Benaroya and Wei. Therefore, Equation 3.15 becomes

d

dt
L =

@L

@ri
� _ri +

@L

@ _ri
� �ri. (4.59)

The Lagrangian function, L, is a function of velocities, displacements and time. Ve-

locities and displacements can be chosen to be the generalized velocities, _qi, and

generalized displacements, qi, as well. Therefore, the time derivative of L is obtained

by using the chain rule as

dL

dt
=
@L

@qi
_qi +

@L

@ _qi
�qi +

@L

@t
, (4.60)
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given that qi and _qi are independent of each other.

Comparing Equations 4.59 and 4.60, the limitations the conservation equation

obtained by assuming dt � " becomes clear. The �rst di¤erence is the absence of

@L=@t in Equation 3.18, meaning that the conservation equation is only valid for

scleronomic systems where @L=@t = 0. The second important note is that for the

chain rule expressed by Equation 4.60 to hold, qi and _qi must be independent of each

other. Since this is not generally true, therefore, the terms of Lagrangian function

L must each be just a function of either qi or _qi and not both. Considering the

de�nition of the Lagrangian function (Equation 3.11), the last statement implies that

the kinetic energy must be a quadratic function of generalized velocity, the potential

energy shall not contain any velocity terms, and _qi cannot have any explicit terms of

qi. These conditions were also mentioned by Lanczos [29, p. 122]; however, we tried

here to make these restrictions more clear. Lanczos adds to these limitations that

this method is not suitable for mechanical systems with gyroscopic terms since the

velocity terms are linear and not quadratic.

It is important to note that neither Hamilton�s principle nor Lagrange�s varia-

tional equations require that the kinetic energy to be a quadratic form. The only

requirement set by these principles for the kinetic energy term is that it must be a

positive-valued function of _qi, qi, t and homogeneous of second order with respect to

_qi [44, p. 23], so that,

T (� _qi; qi; t) = �2T ( _qi; qi; t) , (4.61)

where � is any arbitrary constant.

Another important point is that the classical energy equation in integral form

contains acceleration terms that are una¤ected by the virtual displacements as they

are of second order with respect to �dri. Thus, it is essentially impossible to investi-

gate the irreversibility of the acceleration term in the Eulerian reference frame using

d�Alembert�s virtual displacements. Inherently, this method obtains the conservation



129

of the energy rate of a control volume by retrieving the acceleration from the zero

order approximation of the velocities of the actual particles. The di¢ culties associ-

ated with the last statement, especially when using experimentally acquired data, is

discussed in Section 4.10.

Having discussed the derivation and limitations of the classical energy equation

in integral form, it is compared with the energy equation, obtained in Chapter 3, in

the following section.

4.9 Comparison with the Classical Energy Equation in Inte-

gral Form

In the previous section, it was shown that the classical energy equation in integral

form (Equation 4.51), for a control volume of Newtonian incompressible viscous �ow

and in the absence of body forces, is expressed by

d

dt
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�
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Comparing Equation 4.62 with our energy rate equation, Equation 3.100,
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� (u � u) (u � n) dA, (4.63)

one di¤erence is noticed to be the existence of the non-commuting acceleration term.

Examining the irreversibility of the Eulerian acceleration with respect to Jourdain�s

variational operator in Section 3.4, the non-commuting term was a result of obtaining

the acceleration from the �rst order velocities, as per the de�nition of Jourdain�s vari-

ational operator. Instead, if we choose the zeroth order velocities, the non-commuting

term disappears and the conservative terms of our energy rate equation would match

the classical ones.

Therefore, our energy rate equation essentially assumes that the particle acceler-

ations can be obtained from �rst order approximation of the velocities. On the other

hand, the classical energy equation considers the Eulerian acceleration obtained by a

zeroth order approximation of the velocity �eld as the actual acceleration of the �uid

particles.

Both energy rate equations, ours and the classical one, �rst integrate the kinetic

energy of the control volume and then di¤erentiate it to obtain the rate of kinetic

energy. Therefore, both methods obtain the rate of average kinetic energy in the

Eulerian reference frame. Conservation laws, however, are de�ned in the Lagrangian

reference frame. As mentioned earlier, Stokes [30] calculated the �rst order veloci-

ties and showed that the time average of the Eulerian velocities lags the average of

the Lagrangian velocities for oscillatory waves. Similarly, our energy rate equation
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calculates the rate of change of kinetic energy of a control volume via �rst order

velocities.

Our discussion here with regard to the non-commuting term will become more

clear after the following section where the use of experimental data in the energy rate

equation is considered.

4.10 Coupling the Energy Rate Equation with Experimental

Data

As mentioned earlier, we have followed the methodology proposed by Benaroya and

Wei in this chapter. They suggested that the terms representing the �uid dynamics

in the energy rate equation can be evaluated experimentally, and then the structural

response can be obtained by integrating the energy equation twice. Following their

approach, we assume that the �uid dynamics terms are known. However, the only

known parameter is usually the approximated velocity �eld obtained by particle im-

age velocimetry (PIV) or digital particle image velocimetry (DPIV) methods. Thus,

ru and Du=Dt are not known, however, they can be approximated at the cost of

accuracy.

In PIV or DPIV, generally, a group of physical particles are added in order to track

the �ow. A laser beam is converted to a planar sheet of light with some thickness that

illuminates the particles. Then, a series of images are recorded that are apart from

each other by a su¢ ciently small time. Comparing two consecutive images, there are

various methods that can be used to estimate the displacements of the particles. A

commonly used method is the cross-correlation method, where the images are each

divided into a large number of windows, each containing a certain number of pixels.

Then all the pixels in the �rst frame are correlated with those of the second frame.
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Finally, the cross-correlation estimates the most probable displacement in each win-

dow, and the velocity is obtained by dividing the displacement by the time interval

between the two images [45, pp.277-281]. Therefore, the velocity �eld measured via

PIV or DPIV is partial and incomplete. Consequently, the applicability of the con-

servation equations, which are Lagrangian concepts, depends on how accurately the

Lagrangian parameters can be estimated from the Eulerian incomplete observation.

One of the most sensible way to obtain a conservation law is by using Hamilton�s

principle which requires the con�guration (particle position) to be known at least at

two points in time. Therefore one measure of accuracy of the conservative laws in the

Eulerian reference frame can be chosen to be how accurately they can estimate the

actual (Lagrangian) particle trajectories. An interesting discussion about the e¤ects

of order of approximation on estimating the particle paths using the partially known

Eulerian velocity �eld is provided by Price [5], which is summarized next.

Price considered the velocity �eld of a steady, irrotational vortex in a two dimen-

sional plane by

u = (ur; ua) =
�
0;

c

2�r

�
, (4.64)

where ur denotes the radial component of the velocity, ua is the azimuthal component

of the velocity, c is a constant, and r is the distance from the vortex center.

An irrotational vortex is an idealized �ow with circular streamlines produced by

the convergent �ow into a drain. For an incompressible �uid, the net viscous force

per unit volume is zero. Thus the EOMs of the �ow are the inviscid Euler equations

[28, pp.70, 142-143][5, pp.61-68].

Price chose a representative point (at (x; y) = (0; 1) of Figure 4.5) and assumed

that the Eulerian velocity is known at this point. Then, he estimated the Lagrangian

path of a particle occupying that point at some time, say t0, by using the zeroth order

and �rst-order velocities of the Taylor series. For zeroth order the particle trajectory,
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x0 (t), is obtained by

x0 (t) =

Z
u0dt, (4.65)

where u0 is the zero-order velocity. Similarly, for the �rst order approximation, he

used the velocity

u1 = u0 +ru � x (t) , (4.66)

and estimated the trajectory of the same particle as

x1 (t) =

Z
u1dt. (4.67)

Then, Price computed the exact trajectory of that particle in cylindrical coordinates

and compared them. His results are shown in Figure 4.5.

Figure 4.5: Comparison of the exact particle trajectory with those obtained by Taylor
series up to zeroth and �rst order approximations of the Eulerian velocity [5] (with
permission from Dr. James F. Price of Woods Hole Oceanographic Institution).

Based on the above discussion, let us assume that all the terms in the energy rate
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equations are known except for the rate of kinetic energy term for the irrotational

�ow considered by Price. The particle path can be obtained by integrating the rate

of kinetic energy twice (integrating the acceleration twice). Therefore, the results

obtained from our energy rate equation would match the �rst order approximation

of Figure 4.5, while the classical energy equation would result in the zeroth order

approximation of that �gure. Since the actual path represents the conservation law

in the Lagrangian frame of reference, then we expect that our energy equation would

increase the accuracy of the energy method. Note that we obtain the �rst order term

purely theoretically. The discussion presented here with regard to experimental data

is solely for clarity purposes and does not a¤ect the theoretical developments in this

work.

In deriving the energy equation, we utilized the incompressibility condition,r�u =

0, along with Gauss�theorem to bring the non-commuting term and the viscous dis-

sipative terms from inside the control volume to the control surface. When using

PIV and DPIV, the velocity �eld is obtained partially. There exist di¤erent tech-

niques to estimate the velocity �eld from those partial velocity �elds. However, these

techniques do not necessarily satisfy the incompressibility condition. For many VIV

problems, the shear forces are order(s) of magnitude smaller than the kinetic energy

terms. Thus using Gauss�theorem most likely does not cost much accuracy. However,

regarding the non-commuting terms, care must be exercised and the order at which

the incompressibility is violated must be compared with the kinetic energy terms. If

r � u is signi�cant, then perhaps the non-commuting terms must be brought back

inside the control volume.

In Chapter 1, it was mentioned that the experiments of Benaroya and Wei [1]

and their later experiments with Dong [4] proved that the accuracy of the structural

response obtained using the energy equation depends on the choice of the control

volume, speci�cally, the location of the control surface downstream to the structure.
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The non-commuting term obtained also presents itself on the control surfaces. For the

control surface upstream to the structure, the non-commuting term would disappear

since the �ow is nearly laminar. Therefore, the e¤ect of the non-commuting term

essentially would be on the control surface downstream to the �ow.

The energy equation obtained and utilized by Benaroya, Wei and Dong di¤ers from

ours in the kinetic �ux terms, mainly due to the non-commuting term, and in the

viscous dissipation, as discussed. While we do not have access to their experimental

data, a few remarks are worth mentioning, as follows.

Benaroya, Wei and Dong�s preferred control surface (downstream to structure)

was located at about the position where the vortices are well organized. Thus, per-

haps the non-commuting term and viscous dissipation have cancelled each other out at

that location. Viscosity exhausts the energy of the vortices and makes the streamlines

expand, which at some point causes the zeroth order and the �rst order approxima-

tions almost coincide with the actual path. However, a bit further downstream, the

dissipation would increase as the vortices structure break down to many small eddies

of di¤erent sizes. At this point, since the dissipation scale may be smaller than the

scale of the measurements, the velocities obtained experimentally no longer can be

considered reversible by using the �rst order approximation.

Theoretically, there might exist a way to anticipate the correct energy equation

when the downstream control surface is either close or far from the structure. This

is the focus of our discussion in the following section.

4.11 Energy Equation for CVs with Extreme CSs

In Chapter 3, we obtained the conservative terms of the energy rate equation by ap-

plying Equation 3.24, which assumes the virtual velocity �u to be an arbitrary vector

�eld if no constraints are present. Also, the viscous dissipative terms were obtained
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by utilizing the Rayleigh dissipation function idea that constrained the direction of

�u to that of u. This dual use of �u is possible if the number of degrees of free-

dom a¤ected by viscosity is substantially less than the total number of DOFs. For

example, the relative velocities of some particles are small enough that the viscous

work can be neglected for them. This assumption is a good approximation for the

VIV problem where the majority of the control volume is occupied by fully-structured

vortices. Also, we discussed that the non-commuting term of acceleration is of most

interest for the control surface downstream to the structure. Therefore, regarding the

choice of this control surface, two cases require speci�c consideration: one where it is

very close to the solid structure, and the other where it is very far from the structure.

We refer to these control surfaces as extreme control surfaces.

In VIV experiments, the existence of a formation region (cavity) is observed in

vicinity of the structure and downstream to it [6]. Usually, this formation region con-

tains a stagnation region where the �uid particles become trapped. In the formation

region, the velocity of the �ow is relatively slow. Thus we expect the viscous terms

to be more dominant. Moreover, ru is quite large in vicinity of structural surfaces

(side faces which are nearly parallel to the �ow). Thus the particles experience high

accelerations. Downstream to the formation regions, the vortices become structured

and the scale of dissipation is quite large. Therefore, the kinetic energy terms are

more dominant. Depending on the dynamics of the system, at some point the large

vortices brake down into smaller eddies of di¤erent sizes. Thus the turbulence scale

of dissipation decreases and dissipation becomes more important. However, for a

such control volume the kinetic energy terms are expected to be more dominant since

the control volume still contains the region with structured vortices. If the scale of

dissipation is smaller than what can be measured (due to the resolution of the mea-

surements), the �ow seems dissipative to the experimental observation, that is, some

information is lost.
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In the two cases mentioned, especially for the case where the control surface is

too close to the structure, the conserved terms of the energy equation can no longer

be considered reversible. If we choose not to use a statistical method, an estimate of

energy equation can be obtained from the variational formulation as explained next.

As mentioned earlier, the Rayleigh dissipation function (RDF) constrains the vir-

tual velocities to be in the same direction as the actual velocities, at the points where

dissipation exists. If the dissipation is dominant in a majority of the control vol-

ume, the constraints imposed by viscosity on �u can be envisioned to be distributed

throughout the domain covered by the control volume. Therefore, the virtual ve-

locities corresponding to all of the terms in the extended Jourdain�s principle are

constrained similarly to the viscous terms. Consequently, we can obtain an energy

rate equation by utilizing Equation 3.57 for all the terms (conservative or not) as

follows.

The extended Jourdain�s principle for a control volume of only �uid particles was

obtained (Equation 3.62) as

Z
CV

�
Du

Dt
� �u dV =

Z
CV

�
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�
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Regarding the left-hand side term of Equation 3.62, we wish to �nd a function �left,

such that

��left = ru�left � �u
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� �u dV . (4.68)
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�
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and using the de�nition of directional derivative in direction of u (Equation 3.56), we
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Therefore, by canceling the velocities from both sides,
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Using Equation 4.71, the LHS of Equation 3.62 can be modi�ed as
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By applying the Reynolds�transport theorem in the form of Equation 3.5 to Equation

4.72, the LHS of Equation 3.62 can be expressed as
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We continue our derivation by considering the RHS of Equation 3.62. The pressure

term is independent of velocity and the results remain the same as that obtained by
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Equation 3.73, that is,
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From Equation 3.77 for the terms containing the viscosity, it was shown that
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Substituting Equations 4.73, 4.74 and 4.76 into 3.62 yields
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In order to compare the new energy rate equation with the classical one, we replace

�
�
r �

�
ru+rTu

��
�u by its equivalent from Equation 3.75 and multiply both sides

by two (as mentioned before, Rayleigh�s dissipation function must be multiplied by

two in order to obtain the energy rate equation), and obtain
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Comparing Equation 4.51 and Equation 4.78, we observe that all the terms are iden-

tical but the power due to pressure. The VIV systems are generally pressure driven

�uid-structure interaction [4]. Therefore, Equation 4.78 predicts the structural os-

cillations with amplitudes as high as almost twice that estimated using the classical

energy equation.

It is interesting to note that Benaroya and Wei [1] used their energy rate equation

for the inverted pendulum problem. Their experimental control volume started at

about the structure and mainly contained the formation region. The amplitude of

the structural oscillation predicted from their energy equation was about half of that

observed in their experiments.

Equation 4.78 implies that the viscosity might play a third role in addition to

acting as external loads and to dissipate energy, that is, it can act as a nonholonomic

constraint. Thus, for regions where the viscosity is dominant, the viscous forces may

determine the direction of the motion of the �uid particles. While, as mentioned, this

can explain the results of Benaroya and Wei�s experiments, additional experiments

must be conducted to investigate if this interpretation holds.

Equation 4.77 can be expanded similarly as in Section 3.7 in order to obtain terms

that are more useful when modeling FSI systems. The result is
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In the following section, the chapter is concluded with a summary and few additional
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remarks.

4.12 Summary

In this chapter, we obtained an energy rate equation for FSI systems. As examples we

considered the model problem in the form of a translating cylinder and inverted pen-

dulum. Then, the energy rate equation was compared as best as possible to McIver�s

extension of Hamilton�s principle. Our discussions were limited to the theoretical

aspects, since the required control volume for McIver�s method cannot be easily dis-

tinguished for �ows external to the structure. Also, we compared our formulation of

the energy equation to that of Benaroya and Wei for both model problems.

Moreover, we used Benaroya and Wei�s extension of Hamilton�s principle to show

the limitations of the classical energy equation in integral form. Afterwards, a com-

parison was made between our energy rate equation and the classical one.

Additionally, we considered the di¢ culties that might be faced when using the

experimental data. Two speci�c extreme control volumes were considered and an

energy rate equation was proposed which might be helpful in �nding an estimated

structural response. We anticipate that this equation would be useful for control

volumes very close to the structure. Also, it may be of use when the control surface

is far downstream to the solid structure.

We used Benaroya and Wei�s methodology to extend our energy rate equation for

systems of �uid-structure interaction. This method requires the pressure to be known

at the surface of the structure. PIV and DPIV methods only estimate the velocity

�eld. Thus, the pressure term is problematic. To obtain the pressure, Benaroya and

Wei integrated the Navier-Stokes equation numerically. In our derivations we neglect

the pressure terms by considering them to be action and reaction forces. However,

the pressure remains a requirement for the open sections of the control surface.
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The energy equation obtained here is a reduced-order model for FSI systems. It

obtains the hydrodynamic forces on the structure by approximating the conservation

of energy. For many applications, reduced-order models where two equations are

coupled might be of interest. These models, which often referred to as wake-oscillator

models, are considered in the next chapter.
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Chapter 5

Modeling Fluid-Structure Interaction: Nonlinear
Coupled Equations of Motion

In this chapter, we wish to obtain reduced-order models that are similar to wake-

oscillator models. The main challenge is how to reduce the number of required equa-

tions without neglecting the main characteristics of the system. Reduced-order math-

ematical models are the backbone of our understanding of complex phenomena. The

number of required variables, and consequently the number of required di¤erential

equations, are reduced by considering only certain physical variables and assuming

boundary conditions. Then, the less important variables are neglected by the analyt-

ical formulation. Physical variables are selected based on experimental observations,

having considered their participation in the solution of certain variables of interest.

For example, the structural response is the focus of this research work, making the

variables of interest to be the amplitudes of structural oscillation and the frequency

at which it oscillates. However, this is a two-way street in that are approximate

analytical model is required in advance of even a crude experiment.

Regarding vortex-induced vibration, as mentioned brie�y in Chapter 1, there ex-

ist many parameters that have been found to a¤ect the structural response. Conse-

quently, many di¤erent interpretations of VIV have been made in the literature thus

making it nearly impossible to derive physically-based mathematical models. As men-

tioned earlier, two well-written reviews of VIV experiments are the works by Gabbai

and Benaroya [6] and by Sarpkaya [8]. Readers new to the subject may �nd them-

selves overwhelmed with number of di¤erent �ndings and occasionally contradictory
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observations. The reduced-order models in the literature are mainly based on a set of

assumed equations and curve �tting to a set of experimental data. As a result, it is

nearly impossible to use those models to interpret and understand the vast amount of

experimental �ndings. Therefore, in Section 5.1, we start by proposing a method that

can be applied to the energy rate equation obtained earlier so that wake-oscillator

type models are derived from �rst-principles.

In the previous chapter, we obtained a single degree-of-freedom (SDOF) model for

�uid-structure interaction (FSI) systems. For the model of the previous chapter, the

boundary conditions are important but are not crucial to the modeling process, since

the structural response is estimated via averaging the energy that must be transferred

to the structure. On the other hand, when obtaining a reduced-order model in the

form of the wake-oscillator model, the boundary condition is extremely important as

it essentially determines the nature of the coupling between the governing equations

of motion.

As mentioned in Section 4.1, the no-slip condition is widely accepted in the liter-

ature. However, applicability of the no-slip condition or any other condition must be

justi�ed by a comparison with experimental observations. The no-slip condition, in

its most complete form as expressed by Equation 4.1, satis�es the no-penetration con-

ditions as well. Therefore, for reduced-order models, care must be exercised so that

the reduced number of equations can capture the main characteristics of the FSI. For

example, if the no-slip condition is strongly imposed, then the resulting reduced-order

model most likely cannot model the separation of the vortices from solid structure,

unless additional assumptions are made. Consequently, it might be necessary to re-

lax the no-slip condition to some extent in analytical or numerical modeling. In fact,

the no-slip condition has not been applied in its most complete form in many com-

putational simulations or analytical models of FSI. It is implicitly implemented, for

example, via other constraints in the system [46] or through an assumed force �eld
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[47]. Moreover, the no-slip condition is often explicitly implemented and then is re-

laxed or corrected in some later steps in modeling process [48]. Alternatively, some

authors decided to weakly impose the no-slip condition [38].

Regarding reduced-order models, the di¢ culties increase since they are less �exible

with respect to the choice of boundary conditions. Consequently, a boundary condi-

tion other than the no-slip condition may be required for some problems. Therefore,

we derive the variational energy rate equation without any consideration of boundary

condition in Section 5.2. Then, we continue our derivations by considering the no-slip

condition and implementing it implicitly in Section 5.3 and explicitly in Section 5.4.

This terminology will become clear as we progress.

For reduced-order modeling, dimensional analysis, similarity methods and pertur-

bation techniques have been acceptable methods. They have been used extensively in

modeling �uid systems. However, such analysis may not be accurately performed un-

less experimental data is available for a problem in hand. A good reference regarding

these methods is [49].

Therefore, we use the experimental �ndings of Dong et al. [4] to show the steps

required for obtaining a model similar to the lift-oscillator model of Hartlen and

Currie [9] in Section 5.6. We choose their model since it is one of the earliest and

most successful wake-oscillator models. To accomplish this, we will not use similarity

methods in a traditional way. However, we will make a few assumptions based on

the experimental observations of Benaroya and Wei [1] and Dong et al. [4]. Then, we

conclude the chapter in Section 5.7.

5.1 Coupled Equations of Motion: Conceptual Approach

Having obtained the variation of the rate of the Lagrangian function L in Chapter 4,

we wish to obtain two nonlinear coupled equations that can fully describe the main
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characteristics of the dynamics of a FSI system.

In analytical mechanics, the partial derivatives of the Lagrangian function with

respect to velocities result in a fundamental concept called generalized momentum

[29], pi, de�ned as

pi =
@L

@ _qi
, (5.1)

where _qi is the generalized velocity that can be selected to be either the Lagrangian

or the Eulerian velocities.

The following derivations in many ways are similar to that concept as a result

of the de�nition of Jourdain�s variational operator (Equation 3.9). However, we are

dealing with the rate of the Lagrangian function, _L (or in the Eulerian reference

frame, DL=Dt), instead. Therefore, applying Equation 3.9 would result in the rate

of generalized momenta.

A fundamental concept of variational calculus states that, if  (u; _rs) is a set of

monogenic potential scalar functions satisfying � (u; _rs) = 0, the relation  (u; _rs) =

0 is a conservation equation. Consequently, the corresponding di¤erential equations

can be obtained by using the de�nition of Jourdain�s principle and by choosing u and

_rs to be the independent generalized velocities. Thus,

� =
@ 

@u
� �u+ @ 

@ _rs
� � _rs = 0, (5.2)

where @ =@u and @ =@ _rs are de�ned from Equation 3.8, as

@ 

@u
� �u =

@ (u+ "�u)

@"

����
"=0

� lim
"!0

1

"
[ (u+ " �u)�  (u)] , (5.3)
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and

@ 

@ _rs
� � _rs =

@ ( _rs + "� _rs)

@"

����
"=0

� lim
"!0

1

"
[ ( _rs + "� _rs)�  ( _rs)] . (5.4)

Using Equation 5.2, where  = _L,

� _L =
@ _L

@u
� �u+ @ _L

@ _rs
� � _rs, (5.5)

and considering that � _L = 0, results in

@ _L

@u
� �u+ @ _L

@ _rs
� � _rs = 0. (5.6)

Since �u and � _rs are arbitrary, non-zero vectors, Equation 5.6 results in

@ _L

@u
= 0, (5.7)

@ _L

@ _rs
= 0, (5.8)

that is, six coupled di¤erential equations for a general �uid-solid system.

Regarding the model problem, the results are four coupled equations, Equation

5.8 is a single di¤erential equation (since the structure has a single DOF) representing

the solid structure and Equation 5.7 are three di¤erential equations describing the

�ow.

Consequently, if we use @ _L=@ _rs = 0 to obtain the structural governing equation

and substitute it in Equation 5.6, instead of Equation 5.7, we have

@ _L

@u
� �u = 0. (5.9)
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De�ning the partial scalar potential function � _Lu as

� _Lu =
@ _L

@u
� �u, (5.10)

the coupled set of equations represented by Equations 5.7 and 5.8 becomes

8><>:
� _Lu = 0

@ _L

@ _rs
= 0.

(5.11)

Since _Lu is a set of potential functions satisfying � _Lu = 0, then _Lu = 0 is the

corresponding conservation equation. Therefore, Equations 5.11 become

8><>:
_Lu = 0

@ _L

@ _rs
= 0,

(5.12)

that is, two coupled equations; @ _L=@ _rs = 0 is an ordinary di¤erential equation repre-

senting the participation of the structural terms, and _Lu = 0 is an integral equation

representing the �uid dynamics.

Next, we derive the variational energy rate equation without implementation of

any boundary conditions.

5.2 General Variational Energy Rate Equation for FSI

We start the modeling process from the variational formulation of the FSI without

considering the boundary conditions, as follows. Considering Equation 4.8, we ne-

glect the �uid-structure interaction force density, f �s (rs), and obtain the variational
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formulation in its general form to be

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�

8<: D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

loading external to the �uidz }| {
�
Z
CS

f� pu � n + � [r (u � u)� u� (r� u)] � n

viscous dissipationz }| {
�1
2
� [r (u � u)� 2 u� (r� u)] � n

�
dA+

1

2

Z
CV

� (r� u) � (r� u) dV

non-commuting termz }| {
+

Z
CS

1

2
� (u � u) (u � n) dA

9=;
+
d

dt

Z
Vs

�
�s
d _rs
dt
� f s (rs)

�
� �rsdV = 0

�t = 0

�rs = 0

d

dt
(�rs) 6= 0,

(5.13)

where the boundary conditions are not included. Equation 5.13 can be applied to

any FSI system where a Newtonian incompressible viscous �uid is considered. The

boundary conditions can be included via a variety of methods, explicitly or implicitly.

For the model problem in the form of the translating cylinder, Equation 5.13
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becomes

�

8<: D

Dt

Z
CV

1

2
�u � udV +

Z
CS

�
1

2
�u � u

�
(u� vCS) � ndA

loading external to the �uidz }| {
�
Z
CS

f� pu � n + � [r (u � u)� u� (r� u)] � n

viscous dissipationz }| {
�1
2
� [r (u � u)� 2 u� (r� u)] � n

�
dA+

1

2

Z
CV

� (r� u) � (r� u) dV

+

non-commuting termz }| {Z
CV

r �
�
1

2
� (u � u)u

�
dV

9>>>=>>>;
+ �

�
ms�xs � _xs +

1

2
C _xs � _xs + kxs � _xs

�
= 0, (5.14)

where we used the Gauss�divergence theorem to take the non-commuting term inside

the control volume for the reasons explained in Section 4.10.

Equation 5.14 can also be expressed as

�

8<:
Z
CV

D

Dt

�
1

2
�u � u

�
dV

loading external to the �uidz }| {
�
Z
CS

f� pu � n + � [r (u � u)� u� (r� u)] � n

viscous dissipationz }| {
�1
2
� [r (u � u)� 2 u� (r� u)] � n

�
dA+

1

2

Z
CV

� (r� u) � (r� u) dV

+

non-commuting termz }| {Z
CV

r �
�
1

2
� (u � u)u

�
dV

9>>>=>>>;
+ �

�
ms�xs � _xs +

1

2
C _xs � _xs + kxs � _xs

�
= 0, (5.15)

where we used Equation 3.122 instead of Equation 3.123 for the �uid terms. Equations
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5.14 and 5.15 are similar equations, yet they have some advantages over one another

depending on the selection of the control volume.

Regarding the inverted pendulum problem, the equations are similar. The only

di¤erence is that ms�xs � _xs+ 1
2
C _xs � _xs+kxs � _xs must be replaced with I0�� _�+ 1

2
CT _�

2
+

kT � _� �
�
(msg �B) L

2
sin �

�
_�.

Having obtained the variational energy rate equation for the model problem

(Equations 5.14 and 5.15), we continue by implementing the no-slip condition im-

plicitly and explicitly in the following two sections.

5.3 Reduced-Order Model with an Implicitly Implemented

BC

The applicability of an analytical formulation is greatly a¤ected by the selection of the

control volume. For reasons that will become apparent, we consider a more restricted

form of the control volume shown in Figure 4.2, where the control volume moves

rigidly with the structure. Therefore,

vCS = vstructure. (5.16)

No other requirements are necessary other than some portions of the control surface

must be the solid surfaces. A schematic drawing of this control volume is shown in

Figure 5.1, where the open portion of the control volume is selected to be rectangular

for simplicity.

We denote the velocity of the structure with _xs, therefore,

_xs = vCS. (5.17)

In Section 4.3, we discussed that by excluding the dissipative terms the remaining
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Figure 5.1: The selected control volume where the control volume moves rigidly with
the structure. rs denotes the displacement of structure.

viscous terms together with the pressure represent the external loads on the closed

surface and they can be viewed as conservative action and reaction forces where the

no-slip condition is considered. Therefore, going through the same steps shown there,

Equation 5.14 becomes

�

8<: D

Dt

Z
CV

1

2
�u � u dV +

Z
CV

r �
��
1

2
�u � u

�
(u� _xs)

�
dV

�
Z
CSO

�
� pu � n +

1

2
�r (u � u) � n

�
dA

+

Z
CSC

1

2
� [r (u � u)� 2 u� (r� u)] � n dA

+
1

2

Z
CV

� (r� u) � (r� u) dV +
Z
CV

r �
�
1

2
� (u � u)u

�
dV

9=;
+ �

�
ms�xs � _xs +

1

2
C _xs � _xs + kxs � _xs

�
= 0, (5.18)

where the term
�
1
2
�u � u

�
(u� _xs) is taken inside the control volume, assuming that

the �uid particles can shed from the structure. Thus, the no-slip condition is imple-

mented by neglecting the viscous and pressure force at the solid structure in Equation



153

5.18. The no-penetration condition will be satis�ed by integration over the appropri-

ate control volume.

Having obtained the variational energy rate equation, we wish to obtain two cou-

pled governing equations by using Equation 5.12, via the methodology explained in

Section 5.1. We start by applying Equation 5.3 to Equation 5.18 in order to obtain

the rate of generalized momentum associated with u. However, we are just interested

in the partial scalar potential _Lu. Clearly, the potential terms not containing the �ow

velocity u will drop out and the terms purely expressed by u remain the same. More-

over, the potential functions of both velocities u and _xs remain the same. However,

the last statement is shown mathematically for clarity, as follows.

The only integral containing both velocities u and _xs in Equation 5.18 is

�

Z
CV

r �
��
1

2
�u � u

�
(u� _xs)

�
dV

= �

Z
CV

r �
��
1

2
�u � u

�
u

�
dV � �

Z
CV

r �
��
1

2
�u � u

�
_xs

�
dV , (5.19)

where we expanded the equation. The �rst integral on the right is a function of just

velocity u, thus it remains unchanged.

We apply the Gauss�divergence theorem to the second integral on the right of

Equation 5.19,

�

Z
CV

r �
��
1

2
�u � u

�
_xs

�
dV = �

Z
CS

�
1

2
�u � u

�
( _xs � n) dA. (5.20)

We need to ensure that the variation of the integral on the right-hand side is non-zero.
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Considering the integral on the right-hand side of Equation 5.20, we have

�

Z
CS

��
1

2
�u � u

�
( _xs � n)

�
dA

=

Z
CS

�
�

�
1

2
�u � u

�
( _xs � n)

�
dA+

Z
CS

��
1

2
�u � u

�
� ( _xs � n)

�
dA. (5.21)

Since we are considering the variational operator with respect to u only, we have

� ( _xs � n) = 0. (5.22)

The integrand of the �rst integral on the right-hand side of Equation 5.21 becomes

Z
CS

�
�

�
1

2
�u � u

�
( _xs � n)

�
dA =

Z
CS

(�u � �u) ( _xs � n) dA. (5.23)

Substituting Equations 5.22 and 5.23 into Equation 5.21, we obtain

�

Z
CS

��
1

2
�u � u

�
( _xs � n)

�
dA =

Z
CS

(�u � �u) ( _xs � n) dA

6= 0. (5.24)

Therefore, the term
�
1
2
�u � u

�
( _xs � n) remains in the formulation, and � _Lu is found
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to be

� _Lu = �

8<: D

Dt

Z
CV

1

2
�u � u dV +

Z
CV

r �
��
1

2
�u � u

�
(u� _xs)

�
dV

�
Z
CSO

�
� pu � n +

1

2
�r (u � u) � n

�
dA

+

Z
CSC

1

2
� [r (u � u)� 2 u� (r� u)] � n dA

+
1

2

Z
CV

� (r� u) � (r� u) dV +
Z
CV

r �
�
1

2
� (u � u)u

�
dV

9=; . (5.25)
The equation representing the participation of the �uid dynamic parameters is ob-

tained from Equation 5.12 by setting _Lu = 0.

For the structural terms, we apply Equation 5.4 to the remaining terms of energy

equation (Equation 5.18), which are

�

Z
CV

r �
��
1

2
�u � u

�
(u� _xs)

�
dV+

�

�
ms�xs � _xs +

1

2
C _xs � _xs + kxs � _xs

�
= 0. (5.26)

Considering the structural terms, we have

�

�
ms�xs � _xs +

1

2
C _xs � _xs + kxs � _xs

�
= (ms�xs + C _xs + kxs) � � _xs

= (ms�xs + C _xs + kxs) � _xs, (5.27)
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and for the �ux of the kinetic energy term, we have

�

Z
CV

r �
��
1

2
�u � u

�
(u� _xs)

�
dV

=

= 0z }| {
�

Z
CV

r �
��
1

2
�u � u

�
u

�
dV � �

Z
CV

r �
��
1

2
�u � u

�
_xs

�
dV . (5.28)

Manipulating it by using the Gauss�theorem to obtain

�

Z
CV

r �
��
1

2
�u � u

�
_xs

�
dV = �

Z
CS

�
1

2
�u � u

�
( _xs � n) dA

=

Z
CS

�
1

2
�u � u

�
(� _xs � n) dA

= � _xs

8<:
Z
CV

r
�
1

2
�u � u

�
� exdV

9=; , (5.29)

where ex is the unit vector in direction of _xs. Substituting Equation 5.29 into Equa-

tion 5.28 yields

�

Z
CV

r �
��
1

2
�u � u

�
(u� _xs)

�
dV = � _xs

8<:
Z
CV

r
�
1

2
�u � u

�
� exdV

9=; . (5.30)

Introducing Equations 5.27 and 5.30 into Equation 5.26 as

�� _xs

8<:
Z
CV

r
�
1

2
�u � u

�
� exdV

9=;+ (ms�xs + C _xs + kxs) � _xs = 0, (5.31)

and considering the � _xs is arbitrary, the structural term is obtained to be

ms �xs + C _xs + k xs =

Z
CV

r
�
1

2
�u � u

�
� exdV . (5.32)
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Finally, the coupled equations are obtained from Equations 5.25 and 5.32 to be

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ms�xs + C _xs + kxs =

Z
CV

r
�
1

2
�u � u

�
� exdV ,

D

Dt

Z
CV

1

2
�u � u dV +

Z
CV

r
�
1

2
�u � u

�
� udV

�
Z
CSO

�
� pu � n +

1

2
�r (u � u) � n

�
dA

+

Z
CSC

1

2
� [r (u � u)� 2 u� (r� u)] � n dA

+

Z
CV

1

2
� (r� u) � (r� u) dV +

Z
CV

r
�
1

2
� (u � u)

�
� u dV

=

Z
CV

r
�
1

2
�u � u

�
� _xsdV .

(5.33)

Having obtained the coupled equations for the model problem, next we show that

a di¤erent equation can be obtained by a di¤erent approach towards the boundary

conditions.

5.4 Reduced-Order Model with Explicit Implementation of

the No-Slip Condition

In the previous section, we obtained a reduced-order model by implementing the no-

slip condition implicitly, that is, by assuming the �uid forces at the solid surface have

an equal and opposite reaction. Therefore, they do not a¤ect the total energy of a

system (based on d�Alembert�s principle). Alternatively, in this section, we show that

a di¤erent approach can be used if we wish to keep the interacting forces at the solid

surface. Similar to the previous section, we assume that the no-slip condition holds

(note that Dong et al. [4] did not consider any boundary conditions and yet they

obtained a control volume where the predictions of their analytical model matched
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the experimental observation with very good accuracy). Moreover, we choose the

control volume shown in Figure 4.2. The open portion of control volume can contain

closed surfaces and it may be selected to have other shapes other than the rectangle

shown in that �gure.

The no-slip condition implies that

u� _xs = 0, or, _xs � u = 0, at the solid surface. (5.34)

Therefore, we wish to introduce Equation 5.34 to Equation 5.15. Since the virtual

velocities must be compatible with system constraints and the no-slip condition is

simply a nonholonomic constraint, we have

�u� � _xs = 0, or, � _xs � �u = 0, at the solid surface. (5.35)

From the derivations of the previous chapter and by dimensional consideration, we

can add the zero term

�

Z
CSC

�
1

2
�u � u

�
( _xs � u) � ndA = 0. (5.36)
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Since Equation 5.36 equals zero for all time, we can add it to Equation 5.15 to obtain

�

8<:
Z
CV

D

Dt

�
1

2
�u � u

�
dV +

no-slip conditionz }| {Z
CSC

�
1

2
�u � u

�
( _xs � u) � ndA

loading external to the �uidz }| {
�
Z
CS

f� pu � n + � [r (u � u)� u� (r� u)] � n

viscous dissipationz }| {
�1
2
� [r (u � u)� 2 u� (r� u)] � n

�
dA+

Z
CV

1

2
� (r� u) � (r� u) dV

+

non-commuting termz }| {Z
CV

r �
�
1

2
� (u � u)u

�
dV

9>>>=>>>;
+ �

�
ms�xs � _xs +

1

2
C _xs � _xs + kxs � _xs

�
= 0. (5.37)

Summation of the viscous terms and expansion of the second and last integrals of

Equation 5.37 yields for the problem at hand

�

8<:
Z
CV

�
D

Dt

�
1

2
u2
�
dV +

Z
CSC

�

�
1

2
u2
�
( _xs � n) dA�

Z
CSC

�

�
1

2
u2
�
(u � n) dA

�
Z
CS

�
� pu � n + �r

�
1

2
u2
�
� n
�
dA+

Z
CV

1

2
� (r� u) � (r� u) dV

+

Z
CSC

�

�
1

2
u2
�
(u � n) dA+

Z
CSO

�

�
1

2
u2
�
(u � n) dA

9=;
+ �

�
ms�xs � _xs +

1

2
C _xs � _xs + kxs � _xs

�
= 0. (5.38)

Summing terms of the form
R
CSC

�
�
1
2
u2
�
(u � n) dA and applying Gauss�theorem to
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the viscous terms in the integrand of the forth integral as

Z
CS

1

2
�r

�
u2
�
� ndA =

Z
CV

�r �
�
r
�
1

2
u2
��

dV

=

Z
CV

�r2

�
1

2
u2
�
dV , (5.39)

we obtain,

�
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CV

�
D

Dt

�
1

2
u2
�
dV +

Z
CSC

�

�
1

2
u2
�
( _xs � n) dA+

Z
CSO

�

�
1

2
u2
�
(u � n) dA

+

Z
CV

�
rp � u� �r2

�
1

2
u2
�
� n+ 1

2
� (r� u) � (r� u)

�
dV

+ms�xs � _xs +
1

2
C _xs � _xs + kxs � _xs

�
= 0. (5.40)

Applying Equation 5.12 to Equation 5.40 results in

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ms�xs + C _xs + kxs = �
Z
CSC

�

�
1

2
u2
�
(ex � n) dA,

Z
CV

�
D

Dt

�
1

2
u2
�
dV +

Z
CSO

�

�
1

2
u2
�
(u � n) dA

+

Z
CV

�
rp � u� �r2

�
1

2
u2
�
+
1

2
� (r� u) � (r� u)

�
dV

= � _xs
Z
CSC

�

�
1

2
u2
�
(ex � n) dA,

(5.41)

where the required steps are similar to those of the previous section.

Thus far, we have obtained two possible reduced-order models of the model prob-

lem in the form of translating cylinder. Similar reduced-order models for the inverted

pendulum problem are shown next.
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5.5 Reduced-Order Models: Inverted Pendulum Problem

The required steps for obtaining reduced-order models for the inverted pendulum is

very similar to those of the translating cylinder problem. The following are the results

for the two methods of considering the no-slip condition shown in Sections 5.3 and

5.4.

Implementing the no-slip condition implicitly as was done in Section 5.3, we found

the reduced-order model of the inverted pendulum to be

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

I0�� + CT _� + kT � � (msg �B)
L

2
sin � =

Z
CV

r
�
1

2
�u � u

�
� e�dV ,

D

Dt

Z
CV

1

2
�u � u dV +

Z
CV

r
�
1

2
�u � u

�
� udV

�
Z
CSO

�
� pu � n +

1

2
�r (u � u) � n

�
dA

+

Z
CSC

1

2
� [r (u � u)� 2 u� (r� u)] � n dA

+

Z
CV

1

2
� (r� u) � (r� u) dV +

Z
CV

r
�
1

2
� (u � u)

�
� u dV

= _�

Z
CV

r
�
1

2
�u � u

�
� e�dV .

(5.42)
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Also, implementation of the no-slip condition explicitly as shown in Section 5.4, yields

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

I0�� + CT _� + kT � � (msg �B)
L

2
sin � = �

Z
CSC

�

�
1

2
u2
�
(ex � n) dA,

Z
CV

�
D

Dt

�
1

2
u2
�
dV +

Z
CSO

�

�
1

2
u2
�
(u � n) dA

+

Z
CV

�
rp � u� �r2

�
1

2
u2
�
+
1

2
� (r� u) � (r� u)

�
dV

= � _�
Z
CV

r
�
1

2
�u � u

�
� e�dV .

(5.43)

As evident from Equations 5.33, 5.41, 5.42 and 5.43 depending on our interpreta-

tion of the boundary conditions and on how we choose to implement it, the resulting

reduced order model would di¤er to some extent. Both Equations 5.33 and 5.41 or

any other models obtained by implementing the boundary conditions di¤erently than

those shown can be simpli�ed further by dimensional analysis, similarity methods and

perturbation techniques. However, experimental data and observations are required

for further simpli�cations. In order to show the steps required, we consider the lift-

oscillator model proposed by Hartlen and Currie and show how a similar equation

can be obtained.

5.6 Comparison with Hartlen and Currie�s Method

Our main goal in this research work has been to obtain wake-oscillator type equations,

which we accomplished in the previous sections with Equations 5.33, 5.41, 5.42 and

5.43. As shown, the results are two coupled governing equations, one a di¤erential

equation representing the structure and the other an integral equation representing

the �uid dynamics. However, the wake-oscillator models in the literature are generally

two non-linear coupled di¤erential equations. In order to show that these type of
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equations can be obtained from, as an example, Equation 5.41, we consider the lift-

oscillator model of Hartlen and Currie [9].

In Chapter 1, we mentioned that one of the earliest and the most noteworthy of

the wake-oscillator models is the lift-oscillator model proposed by Hartlen and Currie.

Next, we review their work brie�y, and then, we show how a similar equation can be

obtained from our variational method.

5.6.1 Hartlen and Currie�s lift-oscillator model

Hartlen and Currie considered the model problem in the form of translating cylinder.

Then, they consider an instantaneous lift coe¢ cient, cL, to be a representative variable

for the oscillatory lift force. Therefore, they expressed the governing equation of

motion for the structure as

m�xs + C _xs + kxs =
1

2
�u2DLcL, (5.44)

where D is the cylinder�s diameter and L is the cylinder�s length. Then, the governing

equation was nondimensionalized as

�xr + 2� _xr + xr = a!20cL, (5.45)

where xr is the dimensionless structural displacement, � is a reduced damping coe¢ -

cient, !0 is the dimensionless wind speed, and a is a known dimensionless constant.

Since the structure exhibits oscillatory behavior, they assumed that the lift coe¢ cient

must also behave as an oscillator. Therefore, they sought oscillatory equations in the

form of

�cL + (damping term) + !20cL = (forcing term) . (5.46)
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Based on the nature of VIV systems, Hartlen and Currie discussed that the oscillator

must be a self-exited and self-limited oscillator. Thus, they selected damping terms

such that the resulting equation becomes a van der Pol type oscillator so that Equation

5.46 was modi�ed to

�cL � �!0 _cL +


!0
( _cL)

3 + !20cL = (forcing term) , (5.47)

where � and  are found experimentally. The remaining term is the forcing term,

which was selected arbitrarily to be b _xr, where b is a constant to be estimated experi-

mentally. Therefore, Hartlen and Currie expressed their coupled di¤erential equations

as, 8><>:
�xr + 2� _xr + xr = a!20cL

�cL � �!0 _cL +


!0
( _cL)

3 + !20cL = b _xr,
(5.48)

where only two of the �uid unknown parameters, �, b, and , must be selected in

order to obtain the best �t to an experimental data set.

As it is obvious from the summary above, the model proposed by Hartlen and

Currie does not provide any insights into the �uid dynamics parameters and their

e¤ects on the structural response, but it still is the most noteworthy of all such

approaches. Next, we use our proposed variational method to obtain similar types of

equations.

5.6.2 Reduction of Equation 5.41 to Hartlen-Currie

We start our manipulations with some general assumptions that can be made for

many VIV problems and apply these to the reduced-order model Equation 5.41.

For �uids with very low viscosity, the boundary layer approximation method, pro-

posed by Prandtl, assumes that the viscosity only exists in the vicinity of the solid

structure, and is neglected elsewhere. Considering Equation 5.41, the term �r2
�
1
2
u2
�
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is the sum of both the viscous forces acting as external loads and those dissipating

energy on the surface of structure and on the open control surfaces. Therefore, fol-

lowing Prandtl�s hypothesis, we neglect the remaining dissipative terms inside the

control volume, Z
CV

1

2
� (r� u) � (r� u) dV � 0. (5.49)

Also, we de�ne the kinetic energy density function as

T̂ =

1

2
�u2

�
=
1

2
u2. (5.50)

Substituting of Equations 5.49 and 5.50 into Equation 5.41 results in

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

ms�xs + C _xs + kxs = �
Z
CSC

�T̂ (ex � n) dA,

Z
CV

�
DT̂

Dt
dV +

Z
CSO

�T̂ (u � n) dA+
Z
CV

�
rp � u� �r2T̂

�
dV

= � _xs
Z
CSC

�T̂ (ex � n) dA.

(5.51)

In order to simplify Equations 5.51 further, we consider some experimental observa-

tions of Dong et al. [4].

As mentioned in Chapter 1, Dong et al. performed a series of experiments on

the VIV of the model problem in the form of an inverted pendulum. They found an

optimum control volume for which the analytical model proposed by Benaroya and

Wei [1] predicted the structural response up to an excellent accuracy. The phase-

averaged terms of Benaroya and Wei�s energy rate equation (Equation 4.50) obtained

by their experiments are shown in Figure 5.2, where the �gure depicts the results

for the optimum control volume. Also, the corresponding spectra of the �uid energy

transport terms (of Figure 5.2) are shown in Figure 5.3.
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Figure 5.2: Phase-averaged terms of Equation 4.50 for the inverted pendulum model
where the dark solid line denotes the time rate of change of the �uid kinetic energy
in CV, the light solid line is the �ux of kinetic energy, the dashed lined is the rate of
work done on the cylinder by pressure forces, and the dotted line is the time rate of
change of mechanical energy of the cylinder. The work done by the viscous forces are
included in the �gure, however, they are too small to be visible ([4], with permission
from Elsevier).

Considering Figure 5.3, Dong et al. reported that their careful examination in-

dicates that the �ux of the �uid kinetic energy across the open control surface and

the work done by the pressure correlated with the vortex shedding while the �ux of

the kinetic energy around the cylinder correlated with the cylinder oscillation. We

expected the last statement is a result of the no-slip condition.

These experiments were conducted on an inverted pendulum, while we have con-

sidered the model problem in the form of translating cylinder. However, due to

similarities between the two problem, we assume similar results would be found for

the problem at hand. Moreover, the control volume of their experiments was selected

such that the downstream control surface views the structured vortices, that is, it

was close enough to the structure so that the shed vortices had not yet broken down

to smaller eddies.
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Figure 5.3: Spectra of the energy terms shown in Figure 5.2, where �� corresponds
to the time rate of change of the �uid kinetic energy inside the CV, � � � � � � � is for the
�ux of kinetic energy, ��� is for the rate of work done by pressure on the structure,
- -4- - represents the rate of mechanical energy of the cylinder ([4], with permission
from Elsevier).

Since Dong et al. considered the rate of kinetic energy as
R
CV

@T
@t
dV , we continue

by expanding the �rst integral in the second equation of Equation 5.51 and obtain it

to be 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

ms�xs + C _xs + kxs = �
Z
CSC

�T̂ (ex � n) dA,

Z
CV

�
@T̂

@t
dV +

Z
CSC

�T̂ (u � n) dA+ 2
Z
CSO

�T̂ (u � n) dA

+

Z
CV

�
rp � u� �r2T̂

�
dV = � _xs

Z
CSC

�T̂ (ex � n) dA.

(5.52)

Now we try to formulate the experimental observations of Dong et al. so that they

become applicable to Equation 5.52.

Based on the observation by Dong et al. that the �ux term at the closed surface
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corresponds to the structural oscillation, we assume the relation

Z
CSC

�T̂ (x; t) [u (x; t) � n] dA =
Z
CSC

�T̂

�
x; t+

1

fs

��
u

�
x; t+

1

fs

�
� n
�
dA, (5.53)

where fs (Hz) is the frequency of structural oscillation. Equation 5.53 represents a

boundary condition and since we have two coupled equations it must only be applied

to one of them since the similar term in the other equation would be relaxed due to

this boundary condition. Since the no-slip condition is a boundary condition for the

�uid and not the structure, we make the substitution in the governing equation of

the �uid (second equation) in Equation 5.53. Since the terms
R
CSC

�T̂ (u � n) dA and

_xs
R
CSC

�T̂ (ex � n) dA vary with the same frequency, their superposition also varies

with the same frequency. Therefore,

� _xs �= _xs

Z
CSC

�T̂ (ex � n) dA+
Z
CSC

�T̂ (u � n) dA, (5.54)

where � is a constant with dimension of force and the integrals are evaluated from

the experimental measurements in the vicinity of the structure. This relaxes the

condition on the corresponding term in the structural di¤erential equation. In this

equation,

Z
CSC

�T̂ (x; t) (ex � n) dA �
Z
CSC

�T̂

�
x; t+

1

fv

�
(ex � n) dA, (5.55)

where fv (Hz) is the frequency of vortex shedding.

Considering the second equation in Equation 5.52 and introducing Equation 5.54,

we have

Z
CV

�
@T̂

@t
dV + 2

Z
CSO

�T̂ (u � n) dA+
Z
CV

�
rp � u� �r2T̂

�
dV = �� _xs. (5.56)
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Applying Gauss�divergence theorem to the pressure and viscous terms, we have

Z
CV

�
@T̂

@t
dV + 2

Z
CSO

�T̂ (u � n) dA+
Z
CS

�
pu��rT̂

�
� ndA = �� _xs, (5.57)

so that no pressure or viscous terms are present inside the control volume. Note that

the viscous terms were neglected by the hypothesis of Equation 5.49. Also, Dong et al.

found the rate of work done by the viscous forces to be so small that its corresponding

trace is not visible in Figure 5.2. They also found that the rate of kinetic energy of

the system correlated with the vortex shedding frequency. Therefore,

Z
CV

�
@

@t
T̂ (x; t) dV =

Z
CV

�
@

@t
T̂

�
x; t+

1

fv

�
dV , (5.58)

or,
@

@t

Z
CV

�T̂ (x; t) dV =
@

@t

Z
CV

�T̂

�
x; t+

1

fv

�
dV . (5.59)

Before continuing our derivations, we choose the direction of free-stream �ow to

be the z axis of the Cartesian coordinate system de�ned in Figure 5.4. Therefore,

T̂ (x; t) = T̂ (x; z; t).

Figure 5.4: A schematic diagram of the experiments of Dong et al. where the shedded
vortices are P +S type vortices. For de�nition of vortices names one may refer to [6].
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From Equation 5.57, since no external or dissipative forces are present inside the

control volume, a shed vortex must repeat its pattern periodically as it travels in the

direction of free-stream �ow. Therefore, we have

T̂ (x; z; t) d = T̂ (x; z � cvt; t) , (5.60)

where cv is the velocity of shed vortices.

Considering Equations 5.59 and 5.60 together with Figure 5.2, T̂ (x; t) has the

characteristics of a propagating wave with velocity cv and frequency fv. Therefore,

from the wave equation we have

@2T̂ (x; t)

@t2
� c2vr2T̂ (x; t) , (5.61)

or

r2T̂ (x; t) =
1

c2v

@2T̂ (x; t)

@t2
. (5.62)

Introducing Equation 5.62 to Equation 5.56, yields

Z
CV

�
@T̂

@t
dV +2

Z
CSO

�T̂ (u � n) dA+
Z
CV

rp �udV �
Z
CV

�

c2v

@2T̂ (x; t)

@t2
dV = �� _xs. (5.63)

Based on the experiments of Dong et al., the �ux of the kinetic energy across the

open control volume was found to vary with the frequency of the vortex shedding,

that is,

Z
CSO

�T̂ (x; t) [u (x; t) � n] dA =
Z
CSO

�T̂

�
x; t+

1

fv

��
u

�
x; t+

1

fv

�
� n
�
dA. (5.64)

However, the kinetic energy inside the control volume must also vary with the same

frequency when Equation 5.59 is considered. Moreover, the �ux of the kinetic energy

adds and subtracts energy from the system very similarly to a spring. Since, T̂ (x; t),
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u (x; t) and T̂ (x; t)u (x; t) have the same frequency, and since the solution of the

velocity �eld inside the control volume is a function of the boundary conditions, we

can write Z
CSO

�T̂ (x; t) [u (x; t) � n] dA/
� �

Z
CV

�fvT̂ (x; t) dV , (5.65)

where /
� means they are approximately proportional and the negative sign is intro-

duced to show that the right-hand side is positive when the left-hand side is negative.

Assuming proportionality, we can write

Z
CSO

�T̂ (x; t) [u (x; t) � n] dA = �
Z
CV

��fvT̂ (x; t) dV , (5.66)

where � is a constant to be determined. Substituting Equation 5.66 into Equation

5.63, we obtain

� �

c2v

Z
CV

@2T̂ (x; t)

@t2
dV +

Z
CV

�
@T̂

@t
dV �

Z
CV

2�fv�T̂ dV +

Z
CV

rp � udV = �� _xs. (5.67)

Also, from Gauss�divergence theorem we expect that the term
R
CSC

�T̂ (ex � n) dA in

Equation 5.52 can be related in the following way,

Z
CSC

�T̂ (ex � n) dA/
�

Z
CV

r
�
�T̂
�
� exdV , (5.68)

and, since T̂ (x; t) has the characteristics of a propagating wave,

@T̂ (x; t)

@t
� �cvrT̂ (x; t) . (5.69)
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Equation 5.68 becomes

Z
CSC

�T̂ (ex � n) dA/
� �

Z
CV

1

cv
�
@T̂ (x; t)

@t
dV . (5.70)

Therefore, we assume proportionality and obtain

Z
CSC

�T̂ (ex � n) dA = �
Z
CV


1

cv
�
@T̂ (x; t)

@t
dV , (5.71)

where  is a constant to be determined. It is important to note that in Equations

5.66 and 5.71, constants � and  can more generally be replaced with functions of fv

and fv=cv, respectively.

Substituting Equations 5.67 and 5.71 into Equation 5.52 yields

8>>>>>>>><>>>>>>>>:

ms�xs + C _xs + kxs =

Z
CV


1

cv
�
@T̂ (x; t)

@t
dV ,

� �

c2v

Z
CV

@2T̂ (x; t)

@t2
dV +

Z
CV

�
@T̂

@t
dV �

Z
CV

2�fv�T̂ dV +

Z
CV

rp � udV = �� _xs.

(5.72)

Thus far, we have not considered the pressure terms, since they are perhaps the

most complex and challenging terms. As mentioned in Section 4.8, the pressure is

the thermodynamic pressure and it is assumed to be independent of velocity in the

derivation of the constitutive relation for Newtonian incompressible �uids. Yet, its

distribution is often found to be a function of velocity. For example, for the problems

with steady low speed �ow, the pressure distribution is found via Bernoulli�s equation

to be

p+
1

2
�u2 = p1 +

1

2
�u21, (5.73)
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which leads to de�ning a nondimensional excess pressure, called the pressure coe¢ -

cient Cp,

Cp �
p� p1
1
2
�u21

, (5.74)

where p1 and u1 are the pressure and velocity at in�nity.

While the pressure coe¢ cient was originally de�ned for steady �ow, it has been

used extensively in similarity analysis of complicated non-linear problems. For exam-

ple, it is used to relate the local pressure at a point, p (x), to other parameters of the

nondimensional Navier-Stokes equations via the relation

p (x)� p1
1
2
�u21

= f
�
Fr, Re;

x

l

�
, (5.75)

where Fr denotes the Froude number, Re is the Reynolds number, l is a length scale,

and f ( ) is a function [28].

As evident from Equation 5.72, pressure is an external load to the control vol-

ume. Also, since we are seeking a reduced-order model that can be coupled with

the experiments, a set of experimental velocities is already the result of the pressure

�eld. In Chapter 4, we argued that the classical energy equation is a zeroth order

approximation. Moreover, when deriving our variational energy equation we assumed

that the pressure remains constant with respect to �rst order velocities, and there

seems no reason why we cannot assume it to vary with �rst order velocities. Given

the di¢ culties faced in acquiring experimental data (as mentioned in Section 4.10),

we are encouraged to consider an approximation of pressure at least up to �rst or-

der. However, the zeroth order terms must be neglected since their e¤ects must be

observable from the measured velocities.
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The experiments of Dong et al. found that the work done by the pressure corre-

lated with the rate of kinetic energy, that is,

p (x; t) = p

�
x; t+

1

fv

�
. (5.76)

Also, from Equation 5.74, we expect a relation between pressure and kinetic energy,

p (x; t) = f
h
�T̂ (x; t)

i
, (5.77)

where f is a function to be determined. Moreover, since T̂ (x; t) behaves similarly to

a wave, that is,

p (x; t) = f
h
�T̂ (x; t)

i
= f

�
�T̂

�
x; t+

1

fv

��
= f

h
�T̂ (x� cvt; t)

i
, (5.78)

p itself must be in the form of a wave. Therefore,

@p (x; t)

@t
� �cvrp (x; t) . (5.79)

Consequently, we can say rp (x; t) must be a function of @
@t
T̂ (x; t), that is,

rp (x; t) = � 1
cv
f

�
@

@t
T̂ (x; t)

�
, (5.80)

where f is a vector-valued function to be determined. Substituting Equation 5.80
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into Equation 5.72, we obtain

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

ms�xs + C _xs + kxs =


cv

Z
CV

�
@T̂ (x; t)

@t
dV ,

�

c2v

Z
CV

@2T̂ (x; t)

@t2
dV �

Z
CV

�
@T̂

@t
dV +

Z
CV

1

cv
f

"
@T̂ (x; t)

@t

#
� udV

+

Z
CV

2�fv�T̂ dV = � _xs.

(5.81)

De�ning an instantaneous kinetic energy function for the control volume of an incom-

pressible �uid as

T (t) =

Z
CV

1

2
�u2dV

=

Z
CV

�T̂ dV , (5.82)

and introducing it to Equation 5.81, we obtain

8>>>>><>>>>>:
ms�xs + C _xs + kxs =



cv
_T

�

�c2v
�T � _T + f

�
_T
�
+ 2�fvT = � _xs,

(5.83)

where �, � and  are de�ned by Equations 5.54, 5.66 and 5.71, respectively; f
�
_T
�
is

a function with an order higher than one with respect to _T and an appropriate form

of f
�
_T
�
must be selected based on experimental considerations. Since the sign of

f
�
_T
�
must be positive, Equation 5.83 is a van der Pol type oscillator.

For comparison with Hartlen and Currie, we may assume that f
�
_T
�
is the �rst
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order term of a sine function. Therefore, we select

f
�
_T
�
=

�

�fvc4v
_T 3, (5.84)

where negative sign is eliminated, since f
�
_T
�
must be a positive-valued function, and

� is a constant found experimentally. Therefore, the reduced-order model becomes

8>>>>><>>>>>:
ms�xs + C _xs + kxs =



cv
_T

�

�c2v
�T � _T +

�

�fvc4v
_T 3 + 2�fvT = � _xs.

(5.85)

Having obtained a reduced-order model similar to that of Hartlen and Currie, we

conclude the chapter next.

5.7 Conclusions

In this chapter, we proposed a method, based on the important concept of generalized

momentum in analytical mechanics, that the rate of generalized momenta can be used

to obtain reduced-order coupled governing equations from the variational energy rate

equation derived in Chapters 3 and 4. Depending on the type of equations required,

two possible methods are those expressed by Equations 5.7, 5.8, and by Equation

5.12.

Regarding the model problem, we chose Equation 5.12 and obtained two coupled

equations, one a di¤erential equation and the other an integral equation. Moreover, we

showed the importance of boundary conditions and their implementation by obtaining

two di¤erent possible reduced-order models for each of the model problem (Equations

5.33, 5.41, 5.42 and 5.43).

As mentioned earlier, the wake-oscillator models available in the literature are ad
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hoc models, obtained by guessing a function that can capture some characteristics

of a system. Therefore, they do not provide any insights into the �uid dynamic

parameters that can e¤ect the outcome. As an example, we considered one the most

noteworthy of those models proposed by Hartlen and Currie. Their lift-oscillator

model has proven to capture many features of the structural response. However, it

neglects the �uid dynamics.

As evident from Equation 5.83, the method developed in this chapter has the

advantage that the resulting reduced-order model is expressed in terms of the kinetic

energy of the control volume. Each of the terms in Equation 5.83 has a speci�c

meaning and can be traced back to the energy equation, and even further back to the

Navier-Stokes equation. However, we expect the energy framework presented to be

more bene�cial to the analysis of such systems given that the energy terms are more

meaningful.

As mentioned in Chapter 1, there exist no reduced-order models in the literature

that are obtained without an assumed lift or drag coe¢ cient function. However,

the reduced-order modeling method proposed here does not require any such ad hoc

assumptions. The coupled equations are obtained directly from the energy equation

by using a variational method and it is a �rst principles approach, which was the

ultimate goal of this research work.

In the following chapter, we summarize and conclude our research work.



178

Chapter 6

Conclusions and Future Work

Our review of the literature in Chapter 1 revealed that the classical variational prin-

ciples have had very limited success in modeling �uid dynamic systems. Their ap-

plicability has been mainly limited to the cases where an ideal �uid was considered.

Regarding �uid-structure interaction, and speci�cally vortex-induced vibration,

there have been a very limited number of e¤orts to model these phenomena using a

�rst principles approach. The majority of the e¤orts have been devoted to guessing a

hydrodynamic forcing function which can be curve �t to a set of experimental data.

Consequently, no general conclusions could be made from such models, except those

obtained from experimental observations.

Therefore, in Chapter 1 the main challenges were identi�ed to be:

1. The nature of the Lagrangian-Eulerian transformation has not been fully un-

derstood.

2. The concept of virtual displacements, a Lagrangian concept, does not have an

Eulerian counterpart. Thus, using variational principles based on d�Alembert�s

virtual displacement face serious challenges that have not been overcome. Con-

sequently, there have been no compelling variational methods that can be used

in modeling the behavior of �uid systems or FSI.

3. While the classical energy equation for Newtonian incompressible �uids is ex-

pected to be independent of the choice of control volume, there is a dependency

that requires attention.
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4. There has been no analytical method proposed that can be used to obtain wake-

oscillator type coupled equations without any ad hoc assumptions regarding the

lift or drag forcing functions.

Therefore, we continued our research work with a thorough review of the relations

between the Lagrangian and the Eulerian reference frames so as to clarify some of the

inconsistencies in the literature. Then, we proposed the use of Jourdain�s variational

principle for modeling �uid and �uid-structure interaction systems in Chapter 2, and

extended the principle for it to become applicable for modeling �uid dynamics. This

extension was veri�ed by using it to derive the Navier-Stokes equations. We did

not add any assumptions to those usually made in deriving the constitutive relations

for Newtonian incompressible viscous �uids except to stipulate the existence of the

mapping function, � (x; t), de�ned by

8><>:
r = � (r; t)

d

dt
r =

D

Dt
� (x; t)

����
x=r

.
(6.1)

The mapping function � (x; t) was only required for mathematical consistency so that

Jourdain�s principle could be expressed purely in the Eulerian frame of reference. As

evident from our subsequent manipulations, a speci�c mapping function � (x; t) is

not required.

In Chapter 3, we proposed a method to obtain the energy rate equations from

Jourdain�s principle. Having investigated the commutation rule for the conserved

terms of the Navier-Stokes equations, it was shown that the commutation rule does

not hold, that is, the variation of the Eulerian acceleration does not behave similarly

to the acceleration of the Eulerian virtual velocity. This suggested that the Eulerian

acceleration is not necessarily a representation of the Lagrangian acceleration of par-

ticles. Therefore, we extracted the non-commuting part which resulted in obtaining
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an additional term in the classical energy equation in integral form for Newtonian in-

compressible viscous �uids. We interpreted this to mean that the Eulerian energy rate

of the system does not match the Lagrangian energy rate. This result is extremely

important when it comes to modeling �uid-structure interactions, as the structural

terms are de�ned in a Lagrangian reference frame.

Also, we obtained an expanded form of the energy rate equation. It was shown

that the energy rate equation becomes simpler when it is expressed in a variational

form, since the term u � (r� u) drops out of the equation. We took advantage of

this fact in our reduced-order modeling in Chapter 5.

Having obtained the variational equation in di¤erential and integral form for a

control volume of �uid particles, �uid-structure interaction was considered in Chapter

4. A structure was introduced internal to the �uid and the energy rate equation was

obtained. As examples, we considered the model problem in the form of a translating

cylinder and in the form of an inverted pendulum. In was shown that the result is an

energy rate equation where the �uid dynamic terms can be evaluated experimentally,

and then the structural terms can be found. For example, for the translating cylinder

problem, the relevant equation is (Equation 4.33)

ms �xs � _xs + C _xs � _xs + k xs � _xs =

� D

Dt

Z
CV

1

2
�u � u dV �

Z
CSO

�
1

2
� u � u

�
(u� voCS) � n dA

+

Z
CSO

[� p u � n + �u� (r� u) � n] dA

�
Z
CSC

� [r (u � u)� 2u� (r� u)] � n dA

�
Z
CV

� (r� u) � (r� u) dV �
Z
CSO

1

2
� (u � u) (u � n) dA, (6.2)

where the right-hand side includes terms obtained experimentally. The importance
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of Equation 6.2 is that it provides an equation where each term has a physical mean-

ing and we know all the assumptions used for its derivation. For Equation 6.2, the

assumptions are the existence of the mapping function de�ned by Equation 6.1, the

assumptions made in the classical derivation of the constitutive relations for New-

tonian incompressible viscous �uids, and the no-slip condition that was implemented

implicitly.

Also, in Chapter 4, we compared our results with the models proposed by Benaroya

and Wei and by McIver. Additionally, we used the methodology of Benaroya and

Wei in extending Hamilton�s principle and added the dissipation e¤ect to obtain the

classical energy rate equation. Then, based on the fact that Hamilton�s principle is

a conservative principle, we speci�ed the limitation of the classical formulation of

energy.

Moreover, in Section 4.11 we considered the cases where the control volume is

selected very close to or very far from the structure. In particular, for the case where

the CV is selected too close to the structure, we argued that the viscous terms become

more important as the velocities are lower. Therefore, we assumed all the �uid parti-

cles to be constrained by Rayleigh�s constraints. The energy equation thus obtained

showed that the power due to pressure is twice as important when compared with the

classical energy rate equation, meaning that while the viscous forces are not perform-

ing work themselves they are acting as nonholonomic constraints. This can explain

why the results of Benaroya and Wei�s energy equation were half of that observed

experimentally. However, this remains to be veri�ed by a series of experiments where

the control volume is selected very close to the structure, containing the formation

region. Then, the validity of this idea can be examined.

In Chapter 5, we proposed our ideas on how the reduced-order coupled nonlinear

equations can be obtained using a method similar to the classical utilization of the

generalized momenta. We discussed the importance of boundary conditions to the
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proposed modeling method. As examples, we chose the no-slip condition and imple-

mented it both implicitly and explicitly. It is important to note that no additional

assumptions were made to those mentioned so far in this chapter. Therefore, the

reduced-order modeling could be done without any ad hoc assumptions regarding the

�uid forcing function, and the method remained a purely variational method.

Additionally, in order to show the generality of the method, we chose one of the

most used wake-oscillator models, proposed by Hartlen and Currie, and showed that

their model is a speci�c case of our model. As evident from our results, the reduced-

order model was expressed in terms of the kinetic energy of the control volume where

the contributions of the �uid dynamic parameters were speci�ed. This was the very

goal of this research work.

6.1 Future Work

First of all, the variational approach can be extended for compressible �uids. We

introduced the incompressibility condition via Equation 2.25,

det

�
@r

@x

�
= 1, (6.3)

when mapping the system from the Lagrangian frame of reference to the Eulerian

representation. The derivations prior to Equation 2.25 were kept general. For a

compressible �uid, the determinant of the Jacobian @r=@x can be used as a means to

introduce compressibility into a variational approach. For example, following Eckart

[16], we may utilize
@x

@r
=
1

�
. (6.4)

Many of the manipulations and derivations shown can still be used. However, addi-

tional e¤orts are required for extra terms due to Equation 6.4. Regarding Equation
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6.4, a suggestion can be made that the density at some initial time, say t0, be selected

as a datum, say �0. It can be assumed that the Eulerian and the Lagrangian reference

frames coincide at t0. Then, the reference frames must be normalized accordingly to

ensure one-to-one mapping and derivations can be continued.

Generally, variational methods in integral form are based on a conservative equa-

tion in terms of positive-valued scalar potential functions. In the absence of known

particle trajectories, the conservation of energy may not be fully ensured and the

resulting potential functions are approximations of the conservative process. As men-

tioned in Section 4.8, a method can be used to obtain an approximate conservative

equation from Hamilton�s principle and Lagrange�s equations by assuming that the

virtual displacements match with the actual displacement, that is, by using the rela-

tion � ( ) = dt d ( ) =dt. Similar ideas can also be applied to the approach proposed

in Section 5.1, that is, assuming dt � " and � ( ) � d
dt
( ) for functions described in

the Lagrangian reference frame and � ( ) � D
Dt
( ) for those described in the Eulerian

reference frame, coupled equations can be obtained via the relations

8>>>>><>>>>>:

D

Dt

�
_Lu

�
= 0

@ _L

@ _rs
= 0.

(6.5)

These equations will lead to equations with higher order di¤erentials with respect to

time.

Regarding the �uid-structure interaction and vortex-induced vibration, the most

challenging modeling aspects seem to be the pressure terms. While the independence

of the pressure from the velocity �eld is an assumption made in deriving the con-

stitutive relations, the pressure distribution is generally found to be dependent on

the velocity �eld. It seems that the linear assumption made with regard to the pres-

sure term may not be su¢ cient for modeling complicated phenomena such as VIV.
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From the experimental point of view, obtaining the pressure terms for FSI has been

focused mainly on manipulations of the Navier-Stokes equations and by integrating

these numerically. Regarding incompressible �uids, the thermodynamic pressure and

mechanical pressure must match. Therefore, VIV problems are perhaps a good way to

measure the applicability of an assumed pressure �eld, since its e¤ects are observable

from the structural response. Moreover, Equation 5.81 suggests higher order terms

might be necessary.

The only way to obtain an exact conservative energy equation is by fully under-

standing the nonconservative processes in a system and by knowing the position of all

of the particles, for Hamilton�s principle, at least at two points in time. However, we

discussed in detail the di¢ culties with regard to the Lagrangian-Eulerian transforma-

tion in Chapter 1. One important note there was that to obtain the Eulerian velocities

from the Lagrangian velocity, the inverse of a composite function was required in or-

der to obtain the initial position A(r; t) from the Lagrangian particle paths r(A; t).

Generally, this is impossible in the absence of any information on A(r; t) or r(A; t).

Consequently, the e¤orts in the literature to extend Hamilton�s principle to �uids

could not pass this roadblock, unless the �ow is a steady-state simple laminar �ow

where some assumptions could be made. An interesting way to obtain the inverse

function of an analytic function is by the Lagrange inversion theorem, thus possibly

extending Hamilton�s principle for �uid systems. However, this theorem is often ne-

glected even in text books of mathematics and we could not �nd a good reference to

recommend.

Also, in Section 3.5, we mentioned an interesting work by Riewe [33] were he

proposed the use of fractional derivatives for Lagrangian and Hamiltonian mechanics.

It might be interesting to perform an analysis on the applicability of that method in

extending Hamilton�s principle for �uid mechanics problems.

We believe that there are elements of this work that have broad applicability to
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many engineering problems.



186

Appendix A

Variational Principles and How They are Related

The main important feature of variational principles is that they deal with functionals

instead of functions. Functionals are scalar-valued functions of functions. A varia-

tional principle is an assertion stating that some functional de�ned for all possible

states of a dynamic system reaches its minimum, maximum, or stationary value for

the actual physical state. Functionals are obtained by performing the dot product of

a virtual variable with a set of di¤erential equations, usually Newton�s second law.

Unlike Newton�s second law, the resulting functional is a scalar-valued function al-

lowing scalar variables to be selected to describe the dynamics of a system. These

scalar variables (usually called generalized coordinates, generalized velocities, and

generalized forces) can be de�ned instead of the actual vector variables in modeling

the dynamics of a system [29], [44].

The above statement is true for all the classical variational principles. However,

it is important to note that these characteristics result from di¤erent variational

principles and extend to other principles due to the relations between all of them. In

this appendix, our aim is to show the importance of some of the variational principles

and how they are related. As will become clear, each of the principles considered

is an independent principle. Thus, assumptions must be made when obtaining the

relations.

The following are some key features and the relations between d�Alembert�s prin-

ciple, Jourdain�s principle, Hamilton�s principle and Lagrange�s equations.
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A.1 Newton�s Second Law and d�Alembert�s Principle

Newton�s second law for a set of N particles is

mi�ri = F i �Ri, for i = 1; : : : ; N , (A.1)

where ri is the Lagrangian coordinate of particle i, F i is the external force impressed,

and Ri is the resultant of the reaction forces applied on the particle. If the nature

of the interaction between the particles is not known, Equation A.1 is indeterminate.

This is because the total of 2N unknowns cannot be found with N equations.

To overcome this challenge, d�Alembert�s principle multiplies Equation A.1 by

an arbitrary but reversible virtual displacement �dri that is compatible with system

constraints,
NX
i=1

(mi�ri � F i �Ri) � �dri = 0. (A.2)

Further, d�Alembert�s principle considers the case of ideal constraints for which the

virtual work is zero, that is,
NX
i=1

Ri � �dri = 0, (A.3)

thus, reducing Equation A.2 to

NX
i=1

(mi�ri � F i) � �dri = 0. (A.4)

This equation is d�Alembert�s principle. Equation A.4 implies that the acceleration

of each particle is uniquely determined by the external force applied to it for systems

with holonomic constraints [50]. Moreover, d�Alembert�s principle introduces a new

force, the force of inertia (mi�ri). Therefore, it extends the principle of virtual work

from static systems to dynamic system [29]. D�Alembert�s principle is also important

in that it is the starting principle from which other variational formulations can be
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derived.

The external forces are monogenic di¤erential, meaning that they are derivable

from a single functional. However, the inertial forces must be obtained separately.

A.2 Relation Between d�Alembert�s and Jourdain�s Princi-

ples

In Section 2.2, it was shown that JP can be obtained by di¤erentiating d�Alembert�s

principle with respect to time and then imposing Jourdain�s constraints (�dri = 0

and �dt = 0) as

d

dt

"
NX
i=1

(mi�ri � F i) � �dri

#

=
NX
i=1

�
d

dt
(mi�ri � F i) � �dri + (mi�ri � F i) �

d

dt
(�dri)

�

=
NX
i=1

�
d

dt
(mi�ri � F i) � �dri + (mi�ri � F i) � �d _ri

�

=
NX
i=1

�
d

dt
(mi�ri � F i) � �dri + (mi�ri � F i) � �d _ri

�

=
NX
i=1

(mi�ri � F i) � � _ri. (A.5)

Therefore, substituting Equation A.5 into the time derivative of Equation A.4 results

in Jourdain�s principle,

NX
i=1

(mi�ri � F i) � � _ri = 0, where �r = 0, �t = 0. (A.6)
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A.3 Relation Between Hamilton�s Principle and d�Alembert�s

Principle

We begin with an expansion of d�Alembert�s principle,

NX
i=1

(mi�ri � F i) � �dri =
NX
i=1

mi�ri � �dri �
NX
i=1

F i � �dri

=

NX
i=1

�
mi

d

dt
( _ri � �dri)�mi _ri � �d _ri

�
�

NX
i=1

F i � �dri

=

NX
i=1

�
mi

d

dt
( _ri � �dri)�

1

2
mi� ( _ri � _ri)

�
�

NX
i=1

F i � �dri

= �
NX
i=1

1

2
mi�d ( _ri � _ri)�

NX
i=1

F i � �dri +
NX
i=1

mi
d

dt
( _ri � �dri)

= 0. (A.7)

Introducing the variation of the total kinetic energy,

�dT = �d

NX
i=1

1

2
mi _ri � _ri

=
NX
i=1

1

2
mi�d ( _ri � _ri) , (A.8)

and the total virtual work,

�dW =
NX
i=1

F i � �ri, (A.9)

into Equation A.7 yields

�dT + �dW =
NX
i=1

mi
d

dt
( _ri � �dri) . (A.10)
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Integrating both sides of this equation with respect to time from t1 to t2,

t2Z
t1

(�dT + �dW ) dt =

t2Z
t1

NX
i=1

mi
d

dt
( _ri � �dri) dt

=

t2Z
t1

NX
i=1

mid ( _ri � �dri)

=

NX
i=1

mi _ri � �dri

�����
t2

t1

, (A.11)

results in Hamilton�s principle of varying action,

t2Z
t1

(�dT + �dW ) dt�
NX
i=1

mi _ri � �dri

�����
t2

t1

= 0. (A.12)

If the con�guration is known at t1 and t2, no variation is allowed at t = t1 and t = t2,

resulting in
t2Z
t1

(�dT + �dW ) dt = 0. (A.13)

For a conservative system, �dW = ��d�, where � is the potential energy. Therefore,

Hamilton�s principle for a conservative system becomes,

t2Z
t1

�dLdt = 0, (A.14)

where L is called the Lagrangian function and is de�ned as L = T � �. Therefore,

Hamilton�s principle shows that an integration with respect to time brings the work

done by inertial forces into a monogenic form.

It is important to note that d�Alembert�s principle considers �dri to be a local vir-

tual displacement which is not necessarily integrable. However, Hamilton�s principle

deals with �dri that is smooth and integrable between end times t1 and t2 when the
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con�guration is known. Therefore, these principles essentially deal with alternative

spaces with di¤erences.

More detailed analyses of the problem is given in [26], [29] and [22].

A.4 Obtaining Lagrange�s Equation from Hamilton�s Princi-

ple

As shown in Section 3.3, Lagrange�s equation is obtained from Hamilton�s principle

for conservative systems. The derivations are summarized as follows,

Z t2

t1

�dL ( _ri; ri; t)

= lim
"!0

1

"

Z t2

t1

�
L

�
d

dt
(ri + " �dri) ; ri + " �dri; t

�
� L ( _ri; ri; t)

�
dt

= lim
"!0

1

"

Z t2

t1

[L ( _ri + " �d _ri; ri + " �dri; t)� L ( _ri; ri; t) ] dt

= lim
"!0

1

"

Z t2

t1

�
L ( _ri; ri; t) + " �d _ri �

@L

@ _ri
+ " �dri �

@L

@ri
� L ( _ri; ri; t)

�
dt

=

Z t2

t1

�
�d _ri �

@L

@ _ri
+ �dri �

@L

@ri

�
dt

=

Z t2

t1

�dri �
@L

@ri
dt+

�
�dri �

@L

@ _ri

�t2
t1

�
Z t2

t1

�dri �
d

dt

�
@L

@ri

�
dt

=

Z t2

t1

�dri �
�
@L

@ri
� d

dt

�
@L

@ri

��
dt

= 0. (A.15)

Since �dri are arbitrary vectors, we have

d

dt

�
@L

@ri

�
� @L

@ri
= 0. (A.16)

Equation A.16 is called Lagrange�s equation. Lagrange�s equation has two important

consequences. First, Lagrange�s equation shows that a set of generalized coordinates
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can replace the rectangular coordinates. Second, conservation of energy is a conse-

quence of the Lagrange�s equation. More detailed analyses of the problem can be

found in [26], [29] and [22].

A.5 Obtaining Lagrange�s Equation from d�Alembert�s Prin-

ciple

D�Alembert�s principle is expressed by

NX
i=1

mi�ri � �dri =
NX
i=1

F i � �dri, (A.17)

for a system of N particles. If the system has M degrees of freedom, M generalized

coordinates are required to describe the system. For such systems, the equation of

condition in di¤erential form (not necessarily integrable) is

dri =
MX
j=1

@pi
@qj

dqj + pidt, (A.18)

where pi are any functions of q and t. Therefore, �dri is obtained as

�dri =
MX
j=1

@pi
@qj

�dqj, (A.19)

since �dt = 0. Therefor, the left-hand side of Equation A.17 can be expanded as

NX
i=1

mi�ri � �dri

=

NX
i=1

d

dt
(mi _ri � �dri)�

NX
i=1

mi�ri �
d

dt
(�dri)

=

MX
j=1

d

dt

�
@T

@ _qj
�dqj

�
�

MX
j=1

@T

@ _qj

d

dt
(�dqj)�

MX
j=1

NX
i=1

mi _ri � �dqj
d

dt

@ _ri
@ _qj
, (A.20)
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where T is the kinetic energy, de�ned as

T =

NX
i=1

mi _ri � _ri. (A.21)

For a holonomic system, it can be shown that

@ _ri
@ _qj

=
@ri
@qj
, (A.22)

and
d

dt

@ _ri
@ _qj

=
@ _ri
@qj
. (A.23)

Substituting Equations A.22 and A.23 into Equation A.20 yields

NX
i=1

mi�ri � �dri

=
MX
j=1

d

dt

�
@T

@ _qj
�dqj

�
�

MX
j=1

@T

@ _qj

d

dt
(�dqj)�

MX
j=1

NX
i=1

mi _ri �
@ _ri
@qj

�dqj

=
MX
j=1

d

dt

�
@T

@ _qj
�dqj

�
�

MX
j=1

@T

@ _qj

d

dt
(�dqj)�

MX
j=1

@T

@qj
�dqj

=
MX
j=1

d

dt

�
@T

@ _qj

�
�dqj �

@T

@qj
�dqj. (A.24)

Introducing Equation A.24 into Equation A.17 results in

MX
j=1

d

dt

�
@T

@ _qj

�
�dqj �

@T

@qj
�dqj =

NX
i=1

F i � �dri. (A.25)

Regarding the right-hand side, since F i is monogenic, we have

NX
i=1

F i � �dri =
MX
j=1

�
�@�
@qj

�dqj +Qj�dqj

�
, (A.26)
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where � is the potential energy andQj is the generalized force. Substituting Equation

A.26 into Equation A.25 results in

MX
j=1

�
d

dt

�
@T

@ _qj

�
� @T

@qj
+
@�

@qj

�
�dqj =

MX
j=1

Qj�dqj, (A.27)

or,
d

dt

�
@T

@ _qj

�
� @T

@qj
+
@�

@qj
= Qj for j = 1; 2; : : : ;M , (A.28)

which is Lagrange�s equation.

A more detailed discussion can be found in [24].

A.6 Obtaining Lagrange�s Equation from Jourdain�s Princi-

ple

Jourdain�s principle for a system of N particles is

NX
i=1

mi�ri � � _ri =
NX
i=1

F i � � _ri , where �ri = 0, �t = 0. (A.29)

Similar to the previous section, we assume the system has M degrees of freedom,

therefore,

� _ri =
MX
j=1

@pi
@ _qj

� _qj, (A.30)

since �qj = 0. The left-hand side of Equation A.29 can be expanded as

NX
i=1

mi�ri � � _ri

=
d

dt

"
NX
i=1

mi _ri � � _ri

#
�

NX
i=1

mi _ri �
d

dt
(� _ri)

=
d

dt
(�T )�

MX
j=1

@T

@ _qj

d

dt
(� _qj)�

MX
j=1

NX
i=1

mi _ri �
d

dt

�
@ _ri
@ _qj

�
� _qj, (A.31)
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where T was de�ned in Equation A.21. Introducing Equation A.23 into Equation

A.31 yields
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where we also integrate both sides of the equation with respect to time from t1 to t2.

Integrating Equation A.32 by parts,
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and noting that from the de�nition of Jourdain�s variational operator (Equation 3.9)

�T =
MX
j=1
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� _qj, (A.34)

we obtain,
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Considering the right-hand side of Equation A.29, we de�ne
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Substituting Equations A.35 and A.36 into Equation A.29, we obtain Lagrange�s

equation,

Z t2

t1

MX
j=1

�
d

dt

�
@T

@ _qj

�
�
�
@T

@qj

��
� _qjdt =

Z t2

t1

MX
j=1

�
�@�
@qj

+Qj

�
� _qjdt, (A.37)

or,
d

dt

�
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+Qj for j = 1; 2; : : : ;M . (A.38)

An important conclusion is that

"
�T �
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j=1
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@ _qj
� _qj

#t2
t1

is satis�ed identically regardless of knowledge of the end time con�guration. We

believe that a similar connection is possible with Hamilton�s principle.
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