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Air pollution poses a serious threat to our health and quality of life. Measuring pollution in 

the air we breathe and sharing the results with our peers is an important step in increasing social 

awareness for creating a clean environment. Usually, pollution measurements are conducted using 

expensive monitors at fixed locations. These measurements fail to provide accurate real-time 

pollution information in most of the highly polluted roads. It is desirable to have access to real time 

fine-grained measurements to be able to quickly analyze and identify alarming levels of pollutants.  

Pervasiveness of smart phones with internet connectivity and increased availability of 

personal air quality sensors provide a unique opportunity to develop air pollution conscious 

community of users for collecting and sharing real time air pollution data. In this thesis, we propose 

air quality monitoring through mobile sensors, which are low-power, low-cost, designed to sample 

air pollutants such as carbon mono-oxide, nitrogen oxide, sulphur dioxide, environmental 

temperature, humidity and air pressure and communicate via Bluetooth with a smartphone. We 

built an iOS mobile application that makes use of location services available on the mobile phones, 

to record GPS co-ordinates along with air pollution readings. We built a mobile to cloud replication 

model, data exchange protocol and outlier detection for anomalous sensor readings. We also 

employed spatial database queries to optimize location based pollution data sharing and 

visualization of pollution data overlays on mobile map displays. We evaluated our mobile 

pollution-sensing model against stationary NJ DEP monitor and studied spatial granularity of 
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pollution data. 
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Chapter 1 

Introduction 

Air pollution is an important factor affecting the quality of the lives of millions. Most of 

the pollutants in the air are a result of emissions from cars, trucks, buses, factories, refineries and 

natural occurrences like volcanic eruptions and forest fires. Because people breathe in contaminated 

air, they are exposed to many health risks. Air pollution might cause cancer, premature death, 

developmental disorders to children, harm reproductive systems, result in asthma attacks, or cause 

lung cancer. It may also cause wheezing and coughing, shortness of breath, harm to cardiovascular 

system, increase susceptibility to infections, lung tissue redness, or swelling. US Federal laws like 

Clean Air Act are designed to control and regulate air pollution. It mandates Environmental 

Protection Agency (EPA) to enforce regulations to protect public from air pollution. Both at the 

federal and state level, various stationary air quality monitoring stations are setup at various urban 

and suburban locations to monitor air pollution. Air pollutants like sulfur dioxide (SO2), nitrogen 

dioxide (NO2), carbon monoxide (CO), ozone (O3), lead (Pb) and particulate matter (PM10) are 

continuously measured and monitored. The primary purpose of the data from these monitoring 

stations is to determine the air pollution level to which people are exposed and educate the public 

if unhealthy air pollution levels exist. But these monitoring stations cover only a small fraction of 

the whole populated area in the country.  

Based on the motor vehicle registrations across states, the number of vehicles including 

cars and trucks on the roads increased by 30% in the last ten years [1]. Number of trucks alone 

almost doubled in the last ten years. On an average, a commuter spends more than fifty two minutes 

in travel per day (two way) and in some big cities he/she spends more than four hours per day (two 

way) inside the car [2]. According to US department of transportation, the total length of roads is 

four million miles and two hundred and forty six million vehicles travel on these roads [3]. 

Significant number of communities is built around these roadways. Motor vehicles emit a variety 
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of gases such as Carbon Dioxide (CO2), Carbon Monoxide (CO), Nitrogen Oxides (NO/NO2), 

Particle Matter (PM10) and Ozone, which are by-products that come out of the exhaust systems. 

These emissions contribute significantly to the air pollution and smog especially in big cities. More 

than fifty three thousand people die per year because of these vehicular air pollutants [4].  

Commuters encounter elevated levels of air pollution, especially Carbon Monoxide (CO) 

inside the car. Studies conducted by EPA shows that CO exposures while commuting in big cities 

like Denver, CO or Washington, DC, is three times higher than fixed stations monitor readings on 

CO levels [5]. Depending upon the traffic congestion, stop signs and weather conditions, the CO 

exposure inside the car is highly variable and some commuters are exposed to even higher levels 

of CO. There is a need for accurate real-time air pollution monitoring along the congested roadways 

and inside the car.  Such real-time monitoring and sharing of air pollution information would 

educate commuters on the pollution levels that they are exposed to, and eventually propel the 

communities to develop policies and regulations to achieve a cleaner environment for us to breathe 

and live.  In this thesis, we design a prototype that employs low cost air pollution sensors that 

interfaces with a mobile phone application to enable commuters on roadways to collect and share 

the air quality data inside the car with other commuters. This prototype would lay the foundation 

to build a social community of users that can monitor and share air quality data. 

 

1.1 Current State of Air quality monitoring 

The Clean Air Act requires EPA to set Air Quality Standards for six criteria air pollutants 

commonly found in the US [6]. They are particulate matter, ground-level ozone, carbon monoxide, 

sulfur oxides, nitrogen oxides and lead.  

Particulate matter (PM2.5/PM10):  Particles can be divided into two major groups based on 

size, the bigger particles called PM10 (2.5 to 10 micrometers) and the smaller particles called 

PM2.5 (smaller than 2.5 micrometers).  PM10 mainly constitutes dirt, dust and smoke from 

factories and roads, whereas PM2.5 comprises of metals and toxic organic compounds from 
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automobiles and metal processing. 

 PM2.5, being lighter, can stay in the air longer and travel farther than PM10. When we 

breathe in air, any particles present in the air are also inhaled and easily travel into the respiratory 

system. Because PM2.5 is made up things that are more toxic (like heavy metals and carcinogenic 

organic compounds), PM2.5 can have worse health effects than the bigger PM10. Exposure to 

particulate matter leads to health effects such as asthma, coughing, wheezing, respiratory and 

cardiovascular morbidity and even lung cancer. 

Ozone (O3): Ozone is found at ground level and in upper regions of the atmosphere. Oxides 

of Nitrogen (NO/NO2) reacting with volatile organic compounds (VOC) cause ozone at ground 

level. Warmer regions with increased traffic and industries generate higher levels of ground level 

ozone.  Ozone, when inhaled, can irritate the airways, cause coughing and reduced lung capacity. 

Carbon Monoxide (CO): The combustion cycles of gasoline in motor vehicles emit a 

poisonous, colorless and odorless gas. When humans breathe in CO, it blocks oxygen from reaching 

brain and heart and induce reduced oxygen-carrying capacity in the blood. Sometimes, excessive 

levels of carbon monoxide might even cause death. 

Sulfur Dioxide (SO2): Motor vehicles and power plants emit SO2 when they burn sulfur-

containing fuel like diesel. When inhaled, it causes respiratory ailments such as airways constriction 

and asthma symptoms. 

Lead:  Cars emit lead where unleaded gasoline is not used. Exposure to lead increases 

chances of stroke and heart attack and developmental disorders to children. 

According to “The Global Burden of Diseases, Injuries, and Risk Factors Study for 2010” 

[7], outdoor air pollution contributed to 3.2 million deaths globally in 2010 up from eight hundred 

thousand just ten years ago. As the automobile usage in developing countries like India and China 

is growing at an increased pace, we expect the impact of air pollution on human health to get worse 

in near future. 

With increasing concerns about impact of air pollution on health, EPA is required to monitor 
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and assess air pollution levels across the country. There are around four thousand monitoring 

stations setup across US, which monitor air pollution as part of State and Local Air Monitoring 

Stations (SLAMS) network. For example in the state of New Jersey, there are nineteen stationary 

air-monitoring stations, out of which only six stations report carbon monoxide.  

         

Figure 1-0-1 New Jersey Air Quality Monitoring Stations. Reprinted from http://www.njaqinow.net 

Setting up a stationary air pollution monitoring system and maintenance of such stations is 

expensive and it involves a lot of maintenance overhead because air pollutants need to be sampled, 

measured, recorded, analyzed and shared over long periods and it needs to cover a significant 

geographical area. Usually such air pollution monitoring stations are located around areas of 

significant air pollution like industries and high population density areas like big cities. But the 

approach of having stationary, fixed air pollution monitoring stations has a serious limitation when 

we want to determine the level of the air pollution exposure outside of areas covered by these 

http://www.njaqinow.net/
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stations.  

Various methods are employed at the stationary stations to measure air pollution.  One of 

them is automatic sampling in which samples are measured real-time using chemical luminescence, 

UV fluorescence, IR absorption or Differential Optical Absorption Spectroscopy methods. The data 

is collected from various monitoring sites and recorded for further analysis. The other method is 

active sampling in which a known volume of air is pumped through a filter or chemical collector 

for a period of time and then sample is subjected to laboratory analysis. In general, the concentration 

of a pollutant in air can be estimated by measuring infrared absorption. But most of the time, the 

concentration of air pollutants is so low with the exception of carbon monoxide (CO), that such 

measurement techniques are not applied. Consequently, most of the air pollution measurement 

techniques involve removal of pollutant from the air by making use of nature of high rate of 

diffusion of gases in the air. The easiest way to separate them is pass the gases over a surface where 

one component of the air pollutant is removed or absorbed by chemical reaction into a non-volatile 

component that can be estimated by subsequent chemical analysis.   

Air pollution changes are dynamic, changing almost every hour or even more often. Air 

samples and subsequent measurement of pollution simply give us a snapshot of an index of air 

pollution at a given time and given place. Even though various dispersion models can be used to 

estimate the concentration of air pollutants as they disperse away from the source of emission (e.g. 

cars and Trucks), such models depend on dynamic metrological data such as wind speed, 

temperature, rain/fog etc. and terrain data.  Use of dispersion model is expensive for dynamic 

feedback to commuters and is of very limited value for an average commuter travelling by cars, on 

the road. The commuter would require an instrument, which continuously measures air pollutants 

and he/she would need to interpret the readings that is impractical and it is not economically 

scalable. So, we need an approach and model for measuring real-time air pollution levels at the 

locations travelled by a commuter and share this information with other people who do not possess 

air pollution monitors.  
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1.2 Need for Real-time Air Quality Information 

In our thesis, we narrowed down our focus to the monitoring and sharing of Carbon 

Monoxide (CO) pollution levels. People need to be concerned about air pollution levels, especially 

those with respiratory disorders, heart problems and who have already been exposed to dangerous 

levels of air pollutants such as Carbon Monoxide (CO) need to watch for further exposure of air 

pollution. The side effects of air pollution is not reversible especially for Carbon Monoxide (CO), 

so if exposed to certain levels, we need to be vigilant about any additional exposure to reduce 

chances of any further health risks. Larger exposures of CO can lead to increased levels of toxicity 

in the nervous system, blood vessels and heart, which might result in eventual death. Higher air 

pollution levels irritate airways and induce asthma exacerbations. It would be really beneficial to 

such vulnerable group of people to have a real-time alert system that actively monitors air pollution 

levels and notify users of dangerous exposures of air toxics. Most of us assume that the enforcement 

of motor vehicle catalytic convertors helps reduce levels of CO and other harmful pollutants around 

us. But during cold starts we have a false impression of cleaner air, given that CO is odorless, color 

less, in a cold weather, during cold start, catalytic convertors are ineffective, leading to even 

dangerous levels of exposure such as even more than hundred ppm of CO possible. It takes 

minimum of five minutes for a catalytic convertor to get warmed up to be effective. Also, in heavy 

bumper-to-bumper traffic, the air intake directly pulls from exhausts of adjacent cars. The model 

proposed in this thesis would help educate the commuters of potentially harmful levels of CO. 

Health conscious commuters could make use of such systems to plan for cleaner alternative routes, 

pick different commute times of the day, use public transports, use increased car-pooling and 

thereby reduce levels of traffic congestion during peak hours. This information could also enable 

city planning, industry set ups and to decide on the location of new industries, regulate policies and 

aid in the decision to locate school and residential communities on new community development 

plans. 

Current ambient air pollution measurement involves measurement of a specific air pollutant 
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present in the immediate environment. EPA has a specific reference method for measuring each air 

pollutant. For example, Carbon Monoxide (CO) requires a continuous non-dispersive infrared 

sensor (NDIR), which is a spectroscopic device used to detect CO level by the absorption of a 

specific wavelength in the infrared (IR) light. NO/NO2 are measured using the rate of 

chemiluminescence reaction with ozone. Ozone is measured using the rate of chemiluminescence 

reaction with ethylene. Particulate Matter (PM2.5 and PM10) is measured using gravimetric 

filtration sampling. Such devices are expensive and best used under laboratory settings. Moreover, 

a detailed manual or automatic sample collection, sample analysis, data recording, data analysis, 

data modeling and pollution forecasting techniques are needed to generate warning and alert 

messages for excessive levels of air pollutants in the air. Such complex devices and analytical 

models are out of reach for a common commuter on the road. This creates the need for a low-cost, 

convenient air quality monitor that common commuters in their car, can easily use to collect and 

share pollution data.  

Electro chemical gas sensors offer an alternative solution to measure and detect harmful 

gases in the atmosphere at a fraction of cost. Electrochemical sensors operate by reacting with a 

specific gas by producing an electrical signal, which is proportional to the gas concentration. An 

electrochemical sensor usually consists of a sensing electrode and a counter electrode separated by 

a thin layer of electrolyte. The specific air pollutant gas passes through a small capillary opening 

and diffuses through a hydrophobic barrier so that a proper amount of gas is allowed to react with 

sensing electrode to produce required electric signal by either oxidation or reduction reaction with 

electrode materials developed for a specific gas. Electrochemical sensors can be used to measure 

Carbon Monoxide (CO), Nitrogen oxides (NO/NO2), Ozone (O3) and Sulphur dioxide (SO2). 

Electrochemical sensors are ideally suitable for real-time air pollution monitoring because of their 

portability and low power consumption. 

There is a multitude of single gas or multi-gas monitors, which employ electrochemical 

sensors, available on the consumer market for personal use. With an ease of operation of on or off 
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switches, these gas monitors display air pollutant levels on LCD displays. They consume less power 

and could last up to two years of operation and cost just a few hundred US dollars. One viable 

option is for commuters to buy these gas monitors and keep them inside the cars. These monitors 

could alert the commuters immediately on being exposed to higher concentrations of toxic air 

pollutants like Carbon Monoxide. There is currently no reliable way to share and alert other 

commuters who might plan on using the same congested streets at the same time. We need a 

solution where few commuters with personal air monitors in their cars could share the air pollution 

data with fellow commuters.  

With the widespread use of smartphones, there is a huge potential of collecting and sharing 

air pollution data among interested users. These smartphones nowadays, come with wide array of 

embedded sensors such as GPS, accelerator, digital compass, microphone and gyroscope. These 

smartphones also have the ability to communicate with external devices with low power Bluetooth 

technology, which enable a wide array of sensing applications in the domains of environmental 

awareness, health, transportation and education. The low-cost, portable gas sensors, combined with 

connectivity of smart phones provides an ideal solution to build a mobile pollution sensing model 

that can be easily utilized to build a social community of commuters that collect and share air 

quality data. 

1.3 Online Social Communities for Real-time Air Quality Monitoring 

We propose to build a social community of users, who share a common interest of raising 

air quality awareness that can employ our mobile pollution sensing to gather and share air quality 

data. In this section, we discuss the advantages of building an online social community. Online 

social communities are held together by a common interest. The common bond that glues an online 

social community together may be a goal, social cause, lifestyle, location or profession. The 

members join an online community to contribute to the common cause or to benefit from the group 

by being a member of the community. Online social communities differ from social networking 

sites like Facebook or LinkedIn because people join social networking sites to maintain existing 
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relationships and establish new ones. Usually on social networking sites, people connect with 

friends, families and with whom they are acquainted, whereas the members of a social community 

may not be related, but held together by a common cause. 

 A unique combination of mobile phones, personal air pollution sensors and online social 

community frameworks offer a perfect opportunity to design a mobile-based online social 

community of people who are interested in monitoring air pollution levels and sharing the air 

pollution information to other interested members of the community to help them avoid dangerous 

air pollution levels. Crowdsourcing air pollution monitoring to a large set of people connected by 

a environmentally conscious group of individuals, not only reduces the cost, it increases coverage 

and enables dissemination of timely, real-time air monitoring feed to a wide array of people who 

might benefit from it. A combination of mobile phones, Bluetooth enabled personal air quality 

monitors, online communities, crowdsourcing, spatial databases, scalable cloud services and 

individuals who are passionate about the air quality presents a solution that can be used to provide 

live air monitor data to millions. 

             

Figure 1-0-2 Online Social Community for Air Pollution Monitoring 

                                    

  

There are a wide variety of challenges in establishing an online social community for real-
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time air pollution monitoring and sharing of information. There are a multitude of different types 

of personal air pollution monitors that are designed for certain gases such as carbon monoxide or 

carbon dioxide. Wide arrays of mobile phones are available from different vendors like Apple 

(iPhone), Google (Android), Microsoft (Windows Mobile) etc. Choosing the right air quality 

monitor that interfaces with every user’s smart phone is a difficult decision.  Even harder problem 

is enticing motivated individuals to participate in a community by convincing them about the 

validity of the data collected and the benefits of the model.  A vast amount of sensor data needs to 

be managed, filtered and disseminated to millions of users in real-time. Any new design of air 

quality monitoring systems should consider the data measured for the purpose of evaluating the air 

pollution effects on people’s health. We need to capture relevant information in accessing human 

exposure to pollutants in terms of time scales, geographical locations, local weather conditions and 

traffic levels. Moreover, such monitoring programs need to be cost-effective with sufficient 

community resources to sustain it. Standardization and harmonization of sensor data quality and 

reference models are important in exchanging and interpreting results. Raw data measured needs 

to be transformed into useful information targeting the needs of all members of the online social 

community. Disseminating air quality information helps the public to educate and raise awareness 

about the health issues related to air pollution. 

1.4  Challenges in Building a Mobile Air Pollution Sensing Social Community 

We need an accurate air pollution sensor that is lightweight, simple to carry, able to monitor 

a wide assortment of air pollutants (CO, NO2, and SO2) inside motor vehicles. It ought to be 

sensitive enough and ready to rapidly distinguish concentration of levels of air pollutants such as 

Carbon Monoxide within the briefest time conceivable. Sensor module, likewise, needs to record 

barometrical readings like temperature, pressure, humidity and so on. The sensor module needs to 

be sturdy and equipped with batteries that can be easily charged using the car charger. It needs to 

have either Bluetooth or wireless communication that is more energy efficient and able to 

communicate live monitor readings to a remote device such a laptop or smart phone. The device 
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needs to have a GPS device or Smartphone should be equipped with GPS mechanism to identify 

geo location co-ordinates. The device or smart phone needs to record these readings with timestamp 

and able to cache data for a duration when the Internet connectivity is not available. When Internet 

connectivity is available it needs to sync up data as soon as possible to a backend service and clean 

up any cached information. The sync up needs to happen as quickly as possible so that live 

monitored data is available to the other community members. We also need to process any outliers 

in data readings and purge those outliers. The backend database should have be able to support any 

spatial queries like "what are readings within two miles of my current GPS location (latitude, 

longitude)". The backend service should be scalable horizontally as the demand for data and 

monitor recordings increase. The data exchange format should be standardized and able to work on 

heterogeneous operating system environments. For consumers of air monitoring data, it needs to 

be easy to use and able to display accurate air quality with current location on map display with 

streets. The online community needs to support registration of members, registration of monitoring 

devices, enable account/profile management and ranking within community based on the 

contribution levels. 

1.5   Thesis  
 

 The purpose of this thesis is to research, analyze existing air quality monitoring 

techniques and controls and build a mobile sensing model and framework to facilitate real time 

monitoring of air quality and disseminate the information to citizens interested in consuming air 

quality data. The key focus is to model an online social community of users who are motivated 

to collect and share air quality data using their mobile phones and portable air pollutant sensor 

devices. The online social community for air pollution sensing would support features like user 

registration, sensor registration, regional subscription for real time air quality data feeds and 

real time map representing pollution data.  

 There is a lot of research and attempts made to build a portable model of air quality sensors. 

These efforts mainly focused on design of wearable sensors that would be used to collect data along 
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with geo location coordinates and process the data using a backend server and provide air quality 

index information to the users. Because the approach involved laboratory built electronic circuit 

boards with electro-chemical sensors and custom back end servers, they lack real time usability, 

flexibility and ability to provide real-time data feeds. They are also usually designed to be mounted 

external to the motor vehicles and are very difficult to use for an ordinary citizen. In this thesis, we 

present a more efficient approach using easy to own low power gas sensors combined with existing 

smart phone technology that connects to scalable cloud based data services. The sensor model 

includes out of shelf electro-chemical sensor, microcontroller and Bluetooth transmitter to connect 

to the smart phone to publish air sensor data. Our model makes use of existing smartphone 

capabilities for efficient data storing and replication to the remote cloud servers. Users are able to 

not only collect but also share such valuable real time pollution data with fellow community 

members. Commuters will be able to get instant valuable air quality information about their 

environment. We expect it would gradually change perceptions about air pollution and would help 

to formulate better air quality control policies.  

Our thesis involves creation of an easy to use iPhone application that can be used to view 

current street level air pollution levels of the current user location. If the user is having a personal 

air pollutant monitor, it can be registered and used to collect and share the air pollution data with 

other community members.  Mobile air pollution monitoring can be used to augment the existing 

stationary air monitoring systems. Mobile air sensors can be used to improve the overall accuracy 

of the air pollution measurement where current data is not available. A good example is highly 

congested roadways during peak travel times. It will be used to measure the air pollution within the 

closed environment inside motor vehicles. Since the costs of electro-chemical gas sensors and smart 

phones are less prohibitive and since computational and power consumption levels are low, we can 

easily realize a practical adaption of such mobile air quality sensing online community.  

1.6  Related Work 

Due to the huge gaps in ground-based static networks of air pollution monitors, there is a 
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necessity to obtain fine-grained air quality data. Various attempts have been made to employ mobile 

sensors in order to achieve this goal. The School Bus Monitoring Study [25] conducted at 

University of California along with NRDC (National Resources Defense Council) highlights the 

health hazards posed to school children by their exposure to diesel pollutants. It also emphasizes 

the urgent need for mobile monitoring of air quality because diesel exhaust is a known carcinogen 

and a cause of respiratory illnesses. An interesting study was conducted by EPA [18] to measure 

air pollutant concentrations inside and outside truck cabs. The study however used measurement 

techniques that involved collecting air samples in the truck and later analyzing them in a lab to 

derive actual air quality values. The setup used in these studies were conducted on stationary trucks 

for a fixed period of time. Our thesis proposes a model that overcomes the challenge of collecting 

gas samples in bags and later analyzing for pollutant levels by the use of electrochemical gas 

sensors. Wireless sensor networks for monitoring personal pollutant exposure [19], indoor air 

quality [17] and hazardous sites [24] have also been proposed. 

In order to bridge the gap between the sampling phase and the analysis phase, researchers 

introduced monitoring approaches using commodity sensors, which can provide real time pollution 

data. N-smarts [20] and CommonSense research conducted jointly by UC Berkeley and Intel 

focused on collecting air quality data by attaching sensors to GPS enabled cell phones. It also 

highlights various challenges with the quality of sensor data from networked mobile sensing units 

such as interference of user behavior, location coverage, calibration accuracy and social aspects of 

mobile sensing and impact on citizen behavior. A custom model was built for the purpose of this 

study. Such models are not readily available for users interested in monitoring air quality data. 

Hence our work focuses on using commercially available off-the-shelf air quality sensors that will 

ensure better adoption and use of our proposed model. 

Work has also been done to evaluate the design issues of sensor boards for air quality 

monitoring [16]. The challenges in preserving privacy of participants of personal sensing have been 

studied [22, 23]. A software framework for data gathering using smart phones has been presented 
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in [21]. Air Quality Egg [27], a project hosted on Xively (formerly Pachube/COSM) has introduced 

a personal pollution-sensing platform. The Air Quality Egg can be installed at certain locations near 

homes to monitor stationary air pollutant levels. Our work proposes a model that is mobile and can 

be used in cars to provide real time air quality data at all the locations travelled by users.  

OpenSense [12], a project run by EPFL and ETH Zurich, Switzerland, aims to study the feasibility 

of installing sensors on the roofs of buses and trams, taking advantage of existing public 

transportation vehicles to form an extensive network of mobile air quality data collection sites. 

Similar pollution sensing network has been tested on the buses in the city of Sharjah, UAE [14]. 

Our thesis aims to bring similar air quality monitoring capability to the hands of all commuters in 

their personal vehicles, which can help to provide very fine grained air quality information to users. 

The Air Project [13] is a public, social experiment in which people are invited to use portable air 

monitoring devices to explore their neighborhoods and urban environments for pollution and fossil 

fuel burning hotspots. Teco Envboard [15] focused on design of sensing platform with commercial 

off the shelf sensors for carbon monoxide, carbon dioxide, ozone and nitrous oxide for 

urban/participatory sensing projects. Another interesting approach discussed in [26], wherein; the 

historical and real-time air quality measurements are used to infer the fine-grained air quality in a 

city. Similar learning techniques could be applied to the data collected by our mobile pollution 

sensing model to predict dispersion of pollutants and air quality in areas where active monitors are 

not available. 

1.7 Summary of Thesis Contributions  

This thesis makes the following contributions: 

• It describes the design of a Mobile Air Pollution sensing Social Community model that 

leverages smart phones to collect and share pollution data. Using a portable air pollutant 

sensor device with Bluetooth connectivity that interfaces with a custom iOS application, our 

model enables collection of air pollutant level data by users in vehicles and sharing it with 

fellow community users in real time.  This also alerts users to avoid areas of dangerous 
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pollution levels. 

• Through a prototype, it compares the fine-grained data collected using Mobile Air Pollution 

sensing model with available data in current stationary air pollution monitoring stations. It 

demonstrates that combined with available data about air quality, data collected using our 

system demonstrates the spatial granularity of the air pollution around us. 

The mobile pollution sensing model was published in  

Real-time Air Quality Monitoring Through Mobile Sensing in Metropolitan Areas.  In 

Proceeding of the 2nd ACM SIGKDD International Workshop on Urban Computing 

(UrbComp’13), August, 2013. 

1.8 Contributors to the Dissertation: 

This section lists the co-authors of the papers from which the materials are used in this 

dissertation and the contributors to this thesis. The mobile pollution sensing application and 

backend prototype was built in collaboration with my advisors Prof. Liviu Iftode and Prof. Badri 

Nath. The calibration of Node devices in Chapter 5 was under the guidance of Prof. Ann Marie and 

experiments conducted in collaboration with Avraham Teitz at United States Environmental 

Protection Agency, Edison, NJ. Mansi Parikh contributed to the method detection limit for Node 

devices, presented in Appendix E.  
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Chapter 2 

 

Mobile Air Pollution Sensing Community 
 
 
 

This chapter describes the design of the mobile air pollution sensing community. In the first 

section, it defines the design goals for a mobile-based air pollution sensor subsystem, and 

subsequently, discusses the associated challenges and strategies. This is followed by a detailed 

description of the various components of the system. 

2.1    Design Goals 
 
 

For realizing a mobile-based air pollution on-line social community, we need to have a very 

lightweight, self-powered sensor module that could detect air pollutants like CO/NO2/SO2 with 

high precision. Sensor module needs to be easy to carry, function continuously and able to maintain 

battery charge for at least a day. The various feeds from different sensor devices need to be shared 

with fellow community members. In order to have an effective air monitoring system, the pollution 

sensing community must achieve the following goals: 

1. The sensor module at minimum, shall detect air pollutants like Carbon Monoxide (CO) with 

high precision and able to function continuously.  

2. The system must interface with mobile smart phones especially iPhone and transfer sensor 

readings. 

3. The mobile application module must be able to collect these sensor readings, time stamp 

them, geo tag them and cache them temporarily until optimum Internet connectivity is 

available and then sync with remote servers. 

4. The mobile application module must be able to display street level maps and pollution levels 

of various pollutants based on user’s current geo location. 

5. Community members must be able to register, maintain account profiles, and register sensors 

modules and share/consume readings. 
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2.2 Design Overview  
 

The design of a mobile-based air pollution on-line community is based on the following 

observations: 

 Most commuters spend a considerable amount of their time inside the car while travelling 

and breathe air circulating inside the car.  

 The pollution levels outside on the roads we travel have a direct impact on the air quality 

inside the car 

 Air pollution levels on highways and roads are dynamic and vary depending on the time of 

the day, traffic levels, atmospheric conditions like wind speed, temperature, humidity etc. 

 Latest developments in electro-chemical gas sensors provides highly sensitive, in-

expensive portable sensors 

 Majority of us carry a smart phone with GPS, Bluetooth and Internet connectivity. 

 Cloud infrastructures like Amazon EC2 provide scalable remote server architecture for 

managing increased demands of client requests and data. 

 Maturity of spatial databases like PostgreSQL with spatial extensions like PostGIS enable 

us to simplify geo location based queries. 

Our design intends to synthesize electro-chemical sensors, smart phones, cloud services and 

spatial databases to enable an air pollution information sharing community of interested users. 

Significant portion of the research was involved in choosing an electro-chemical sensor module, 

building iPhone application, spatial-query enabled web services and analysis of results. Many gases 

such as H2, O2, CO, NO2, NO, O3, SO2 and H2S can be measured with specifically designed 

electrochemical gas sensors. Appropriate materials for sensor, sensor geometry and dimensions are 

critical for optimum performance of gas sensors. Electro chemical properties of the sensor 

materials, geometry and physical dimensions of the sensor device have direct correlation to the 

response time, accuracy, durability, precision, electrical signal quality and sensitivity of the sensor 
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device to the gas under study. For example, in a typical CO gas sensor, the molecules of CO are 

oxidized at the anode surface to produce CO2 [33]. The current generated on the sensing electrode 

is related to the rate of CO reaction. 

CO + H2O  => CO2 + 2 H+ + 2 e- 

                         

Figure 2-0-1 Three Electrodes Electrochemical Sensor. Adapted from “Hazardous Gas Monitors: A 

Practical Guide to Selection, Operation, and Applications”, by Jack Chou, 1999. 

A typical electrochemical gas sensor consists of a filter, membrane, sensing electrode, electrolyte, 

counter electrode and reference electrode. Faraday’s law can be applied to relate the observed 

current i.e. sensor signal to the number of reacting gas molecules which directly relates to the gas 

concentration levels. 

I = nFQC 

Where I is the current (C/s), Q is the rate of gas consumption (m3/s), F is the Faraday Constant 

(9.648 x 104 C/mol), C is the concentration of the analyte and n is the number of electrons per 

molecule participating in the gas reaction. 

 Electro-chemical gas sensors market is well developed now and sensors for electro-active 

gases like CO, NO, NO2, O3, H2S, SO2 are easily available. Typically such gas sensors output 

current. Most of the micro controllers operate with voltages. We need an Analog Front End (AFE) 

to amplify current levels, filter out high/low frequency noise and convert current into voltage levels 
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suitable for a micro controller. Usually, microcontrollers come with analog-to-digital convertor 

circuitry for translating sensor signals into a digital format. Bluetooth transreceiver attached to the 

sensor enables interfacing with the iPhone.  

 

 

Figure 2-0-2 Sensor Architecture Diagram 

There are two options in designing personal sensing device. As part of this project 

(previous work as part of the same project), a custom mobile sensing prototype was built consisting 

of a microcontroller, gas sensors, GPS and a cellular modem which can be mounted on public 

transportation vehicle and can be powered by the vehicle’s battery. In the prototype design, we 

used the Arduino Mega128 microcontroller, SIM5218 cellular modem and PMP 648 GPS receiver. 

MQ-7 Carbon sensor from Hanwei Electronics was used as gas sensor. The cost of assembling such 

unit was around seven hundred dollars and it required a twenty five dollars per month cellular data 

plan. Such a custom sensing model is more suited for installing on public transport vehicles due its 
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size and power requirements.  Hence a different sensing model was needed for everyday commuters 

to carry conveniently in their personal vehicles. The alternative approach is to come up with a 

personal sensing device using an out of shelf product. In this design, we have used a NODE wireless 

sensor platform available for smart devices from Variable Technologies [11] that include an 

electro-chemical sensor with pre-assembled Analog Front End, LMP91000 from Texas Instruments 

and CC2541 as Bluetooth transreceiver.  The device is shown in Figure 2-0-3. The NODE sensor 

platform is customizable with add-on sensor modules. Each device can accommodate two sensors 

on either end of the device. We selected OXA and CLIMA modules to measure carbon monoxide, 

humidity, temperature, ambient light and barometric pressure. Our main criteria for choosing this 

sensor platform were its size and easy to use design. NODE uses Bluetooth connectivity to interface 

with users’ iPhone device to transmit the pollution levels in the environment.  The NODE device 

along with the OXA and CLIMA sensor modules costs about $300. In addition, user’s existing 

iPhone device and data plan or Wi-Fi can be used to transmit data periodically to the server.  

                           
Figure 2-0-3 Variable Technologies NODE Sensor Platform 

 
NODE sensor platform also comes with in-built rechargeable battery which once charged can 

be used for twelve hours. This is very important for continuous streaming of sensor data to the 

iPhone, if required and the battery charge lasts up to fifty four days in standby mode. So, it is very 

convenient to carry around. With USB compatible car charger, it can then be used continuously 
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while driving. Moreover, it is 2.75 inches in length and 1 inch in diameter, weighs about 38 g and 

with a range of 100 m for Bluetooth connectivity, it is highly convenient for mobile sensing 

purposes. It has an OXA sensor attachment, which can be attached to either end of the device. There 

are various OXA sensors available for each type of gas such as CO/NO2/H2S/SO2. For example, 

the OXA CO sensor can measure CO from 0-400 ppm (parts per million) with resolution of 1.5 

ppm and it can operate with a temperature range from -20 C to 50 C that makes it ideal for 

commuters for day-to-day use.  

2.3  Mobile Application Design  

 
As part of this thesis, a custom iOS application, weBreathe, was developed to build the social 

community of mobile pollution sensing users. 

Primary goals of the app: 

 Able to interface with Node sensor platform over Bluetooth 

 Able to interface with iPhone’s location services to collect GPS co-ordinates 

(longitude and latitude) 

 Able to display street level map with pollution level overlay in two hour intervals 

to show pollution trends 

 Able to cache sensor data on the iPhone storage, until optimum Internet connectivity 

is available. 

 Provide users with option of using cellular data or only WIFI to connect to cloud 

services for transmitting data 

 Provide option for consumers that do not have sensor devices but want to view 

pollution data 

 Provide option to participate in the online social community 

 Display community member rank status based on the participation level. 
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Figure 2-0-4 weBreathe iPhone Application Architecture 

weBreathe application architecture consists of a set of view controllers whose main 

purpose is to manage screen flow and UI element interactions. View Controllers interact with a 

custom Restful Web Service client component, which manages all of the data exchanges, and error 

handling with remote cloud based web services. Location services delegate component interfaces 

with iOS location services to get current user location co-ordinates. The Map Kit client component 

closely works with view controllers, restful web service client and view controllers to display 

current street map with pollution level overlays.  The node device driver interacts with Bluetooth 

layer to communicate with the Node sensor module to collect air pollutant concentration levels. 

Local cache manager makes use of SQLite database to temporarily cache sensor readings until they 

are synchronized with the remote web services. 
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2.4      Social Community Design 

Social media refers to interaction among people in which they create, share and/or exchange 

information and ideas in virtual communities and networks [34]. Social media can be functionally 

classified as   

1) Social networks  

2) Social community 

Social networks: the members of a social network are connected to other members by the 

interpersonal relationships they share with them. The primary focus in a social network is the 

people that form the network. 

Social community - Social community is a group of people that connect for a common 

cause. The common interest is what holds its members together. The members of a social 

community may be from all walks of life and have no relationship amongst each other [35]. 

We propose to build such a social community with the common goal of getting firsthand 

information about the air pollution around them and sharing it with others in the community. 

Studies about online social communities indicate that the key to building a successful e-community 

relies on user experiences and perceptions about the group that want to join. People need to believe 

that they get some value by joining an e-community. There should be a positive return of investment 

for the time and energy an individual contributes to the online community. Our design of air 

pollution online community model is based on the following principles [47]. 

a. Perceived Benefit - We want to motivate the individuals to join the online-community 

because there is clear advantage of obtaining real time information about the air pollution around 

them and this information is easily accessible from a simple touch on their iPhone. Our design also 

focuses on individuals who have strong desire to improve the air quality and do not mind investing 

a few hundred dollars on a Node sensor device and contribute to sharing air pollution information 

with others. We also focused on creating an intuitive and easy to use application with clean user-

friendly user interface. 
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b. Group Cohesion - Our design focuses on building a group cohesion based on location 

based air pollution data. The contributors who own the sensors have substantial influence in 

contributing to real time data. We designed a ranking system, which adds points based on the 

amount of the air pollution data shared with others. We want to influence the feeling of belonging 

to the community by establishing a shared goal of creating a cleaner environment for us and for the 

future generations. The membership to the group is made simple with a simple user registration 

with minimal personal profile data collection. 

 

Figure 2-0-5 Online Social Community Design 

c. Sustainability - The sustainability of an online community depends on fostering broad 

citizen participation in the implementation. We want to build a community, which is inclusive of 

diverse members like consumers and producers of air pollution information.  We want to build an 

open source client application and server components that can be hosted and supported by various 

community members and further developed to support various sensor devices. We also focused on 
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protecting privacy of user locations and restricting sharing of user profiles. Our design focuses on 

members taking full ownership and responsibility of air pollution data they share. 

2.5      Cloud Services Design 
 

For the backend to our application, we needed a reliable server infrastructure to store, 

process and push data to clients. We explored various options available for this purpose. Setting up 

our own hosting server was one of the options, but it involves infrastructure and maintenance costs. 

This was also not a very scalable option. Also a dedicated administrator would be required to 

monitor and maintain the physical server.  

 

Figure 2-0-6 Cloud Services Architecture 

We would need to address connectivity, security and scalability in our infrastructure. 

Another option was to use the readily available cloud infrastructure. Cloud web services provide 

reliable, scalable infrastructure needed to deploy web solutions with least administration costs. We 

want to design our remote web services to provide resizable compute capacity in the cloud so that 

multiple virtualized instances can be provisioned to scale up or down capacity as the community 

usage grows/shrinks. We have chosen Amazon Elastic Compute Cloud (EC2) to provide cloud-

hosting services. Amazon EC2 allows using web service interfaces to manage virtual operating 

system instances, configure network security permissions and run multiple instances depending 

upon the client request loads. We have adopted Representational State Transfer (REST) Web 

services as they provide an easier-to-use, resource-oriented model to expose backend data services 
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for sharing air pollution data. Our implementation follows four basic design principles 

 Use of HTTP methods (GET/POST/PUT/DELETE) to establish one-to-one mapping 

between create, read, update and delete operations. 

 Increase scalability by being stateless because stateless server-side components are less 

complicated to design, write and distribute across load-balanced servers. 

 Simplified resource representations using directory structure-like URIs 

 Use JavaScript Object Notation (JSON) to transfer data as this reduces parsing overhead 

and data mapping between data transfer objects 

In order to simplify development of RESTful Web Services, we have used Java based Jersey Web 

Services open source framework deployed on an open source Java Servlet container, Apache 

tomcat. For storing sensor readings along with geographic location co-ordinates, we have used 

PostGIS that is a spatial database extender for PostgreSQL object-relational database. PostGIS adds 

support for geographic objects allowing location based SQL queries.  The PostGIS implementation 

makes use of lightweight geometries and indices, which are optimized to reduce disk and memory 

usages, thereby improving query performance. 

2.6 Pollution Sensing Inside Motor Vehicles  

According to the report by the International Center for Technology Assessment (CTA), 

levels of some air pollutants such as carbon monoxide (CO) are up to ten times higher inside 

vehicles than at fixed monitoring stations [28]. The variations depended on the pollutant, the type 

of road, the level of traffic and the type of vehicle being followed. Surprisingly, the study also finds, 

due to the vehicle ventilation systems, the Particulate Particle (PM) pollution levels are 20-40% 

lower inside the cars. 

A highly polluting vehicle such as a heavy-duty diesel truck that is directly in front of a 

motorist accounts for 50% pollution inside the car. Pollution inside the car was worse during 

freeway rush hours and also while the car is driven in slow moving right lanes. 
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For the individual commuter, monitoring using a personal NODE device would facilitate 

identifying dangerous pollution levels inside the car and take precautionary measures like rolling 

down the windows during lesser traffic to increase air circulation.  

 

Figure 2-0-7 Node Sensor Setup Inside Car 

Studies conducted by EPA in the 1970s [29] shows that the pollutants in motor vehicles 

find their way into their interiors. On many occasions, the pollutant levels inside cars are more than 

those outside the vehicle. The pollution levels inside the cars are higher when traveling on heavily 

congested roads or passing through busy intersections or while following diesel trucks or buses and 

older cars. It is clear from the studies that pollution levels inside the cars are due to the exhaust 

from other vehicles in the immediate vicinity.  Based on a 1998 California Air Resources Boards 

study [30], it is clear that especially very fine particle matter (PM) levels are higher inside car than 

that of outside. Even though car's ventilation and air conditioning systems filter out larger particles, 

passengers inside the car usually exposed very dangerous fine particles. As per studies by the 

researchers from the Department of Environmental Health, Harvard School of Public Health [31], 

the average in-car CO level is nearly 97% of the car exterior CO level average and was 3.9 times 

the average for the ambient air CO level recorded by the remote CO monitoring sites. In the studies 

CO levels inside the car ranged from 1 to 32 ppm, with an average of 11.3 ppm. CO levels 
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immediately exterior to the car range from 6 to 22 ppm with an average of 11.7 ppm. But the CO 

readings from nearby fixed monitoring sites showed a range from 1.7 to 5.5 ppm with an average 

of 2.9 ppm. 

As per the model proposed by Flachsbart and Ah Yo (1989) [32] on commuter exposure to 

CO, the total mass of CO within the vehicle interior is equal to the balance of the CO entered, 

exited, emitted and reacted within the area volume inside the vehicle. The model predicts commuter 

exposure to CO inside a car by exponentially diffusing CO concentrations just outside the car and 

by exponentially decaying initial CO concentration that was already inside the car.  

  Average CO Exposure of the commuter = Observed CO Concentration on the roadway 

          + (difference between CO concentration already present within the 

             vehicle and Observed CO Levels immediately outside the vehicle) 

             * (1-e tr/T) * (T/tr)  

Where e = 2.71828 and T is the time constant in seconds and tr is the time the vehicle spends within 

the roadway. The roadway CO concentration is dependent on traffic speeds, ambient temperature, 

and types of vehicles present on the road, vehicle speed and number of vehicles present on the road. 

Even though the actual commuter exposure to CO and other air pollutants is very dynamic and 

varies depending on roadway CO concentration, our thesis focus is to share and communicate a 

typical commuter exposure to CO concentrations to fellow commuters who would be travelling 

under the same roadways and under nearly identical traffic situations. 

2.7 Spatial Query Design 
 
 

Spatial data is one that describes either a location or shape, for example, roads, house location, 

rivers, municipalities, and lakes. Spatial data, in simpler terms, is represented as points, lines and 

polygons. For example, roads can be represented as lines. Spatial data can be used to model 

relationships between spatial objects like proximity, adjacency and containment. In conjunction 

with other data, spatial data allows to model a complex spatial relationship. Spatial databases like 
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PostgreSQL with PostGIS extension allow us to treat spatial information as any other database 

object. PostGIS allows us to use simple SQL expressions to determine spatial relationships like 

distance, containment and perform spatial operations like intersection, area and union.  

In our thesis, all of the sensor readings are collected along with longitude and latitude co-ordinates 

from iPhone location services. The GPS co-ordinates are stored as a spatial data type of point. 

 

 

 

In our model, the pollution data is collected when the user uses a sensor inside the car and 

Figure 2-0-8 Spatial Design 
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travelling along the roadways. With the optimum time interval between successive sensor readings, 

the GPS co-ordinates would closely map the shape of the roadways. The pollution information in 

our design is conveyed to the user on a roadway map using Apple's MapKit interface. The pollution 

data points are drawn over the map as polyline overlays. Because the map can be zoomed and 

navigated around by the user, we use the maximum view port area co-ordinates and perform a 

spatial intersect query to get all the GPS co-ordinates for which we have pollution data available 

within a certain time frame (last two/four/six/eight hours) that lie within the rectangle area visible 

on the map.  

 

Air Quality 
Index Levels of 
Health Concern 

Numerical 
Value 

Meaning 

Good 0 to 50 
Air quality is considered satisfactory, and air pollution 
poses little or no risk 

Moderate 51 to 100 

Air quality is acceptable; however, for some pollutants 
there may be a moderate health concern for a very small 
number of people who are unusually sensitive to air 
pollution. 

Unhealthy for 
Sensitive Groups 

101 to 150 
Members of sensitive groups may experience health 
effects. The general public is not likely to be affected. 

Unhealthy 151 to 200 
Everyone may begin to experience health effects; 
members of sensitive groups may experience more 
serious health effects. 

Very Unhealthy 201 to 300 
Health warnings of emergency conditions. The entire 
population is more likely to be affected. 

Hazardous 301 to 500 
Health alert: everyone may experience more serious 
health effects 

Figure 2-0-9 EPA AQI Color coding 

 
We developed a web service which would return a JSON array of pollution data along with 

GPS co-ordinates given the max/min latitude and longitude values. The web service first creates 

spatial envelope making use of area to be shown on the map by making use of ST_Envelope 

function which returns a geometry object representing the bounding box defined by the corner 

points. It then selects all of the pollution data points which intersects with the bounding box by 

applying spatial intersects operator. This approach greatly reduces the amount of data exchange 

and limits the data points to what can be reasonably viewed by the user using the map display. The 

pollutant concentration levels are color coded as per EPA guidelines, as shown in Figure 2-0-9 [8] 
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for the air quality index calculated from the data points.  It makes it easier for people to understand 

quickly unhealthy air pollution levels they might experience along the roadways they are travelling. 

For example, color green denotes the air pollution poses little or no risk while red denotes the air 

pollution levels may be unhealthy for everyone. 

  



32 

 

 

Chapter 3 

 

Implementation 
 
 
 

This chapter describes the implementation details of the real-time mobile pollution sensing 

online social community. In the opening section, the hardware components used in the 

implementation are described. This is followed by the implementation details of the iPhone 

application. It then describes the various modules used to implement server side components of the 

online social community.  

3.1  Hardware 

Our key decision was to choose a commonly available gas sensor device, which is inexpensive, 

easy to handle and use and one that also provides accurate real-time sensor readings. We have 

chosen variable tech’s Node sensor OXA module as a preferred choice of gas monitoring device. 

Very easy to attach OXA modules are available for Carbon Monoxide (CO), Nitric oxide (NO), 

Nitrogen Oxide (NO2), Chlorine gas (Cl), Sulfur Dioxide (SO2) and Hydrogen Sulfide (H2S)[3]. 

The other end of the node device can be attached with Clima Module that can measure temperature 

and humidity. Node device is especially very lightweight, inexpensive, easy to carry and ideal for 

quick adaptation by the social community members. The node sensor can be used as it is inside the 

car. For outside of car, we have built a prototype with easy to assemble components along with 

Node sensor.  

3.2 weBreathe iPhone Application  
 



33 

 

 

 The primary goals of weBreathe iPhone application are ease of use and to provide timely, 

accurate pollution information along the roadways. The first step in using the application is user 

registration. The user profile consists of email address, password, node device id, pollutant sensor 

type (CO/NO/NO2/H2S/CO2/CL2) and user preference to share sensor data using cellular data 

plan or WIFI connection and option to select if user is interested in viewing pollution data for the 

current user location or only for a certain zipcode. User sensor device registration is an optional 

feature available. In the map display, user has an option to display last 8 hours of pollution data 

with 2 hours intervals. weBreatheNavigationController class manages showing various 

ViewControllers like LoginViewController, MapViewController and RegistrationViewController. 

MainTabBarController presents tab bar with three options map, monitor and profile. 

MonitorViewController class has the responsibility of interfacing with NodeDevice via 

VTNodeManager Class and transmits pollution readings to the remote web service using RestClient 

class. Depending upon the data sync option selected by the user and the available Internet 

connectivity, the sensor readings are temporarily stored in the local SQLite database using the class 

SensorReadingDAO.  

Reachability class monitors change in Internet connectivity. NSTimer class is used to 

schedule data synchronization activity at a predefined interval. Node device driver is used to 

Figure 3-0-1 weBreathe iPhone Application User Interface Screens 
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interface to the Node device over Bluetooth connectivity. VTCoreLocationController class is 

responsible for getting GPS location updates. 

 

 

Figure 3-0-2 weBreathe Class Interaction Diagram 

 
RestClient gets map display pollution data in JSON format from the remote web service and 

interfaces with MapViewController to display map overlays of pollution levels. 

3.3 weBreathe Web Services 

To record sensor readings, we have developed a RESTful webservice called 

Sensor_ReadingService, which takes in an array of JSON objects representing node sensor 

readings. In order to simplify the development of RESTful webservice, we have used Jersey 
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RESTful Web Services framework. Jersey is an open source framework, which supports 

developing java web services using JAX-RS apis. A JAX-RS resource is an annotated plain java 

object that provides resource methods that are able to handle HTTP requests for URI paths that the 

resource is bound to.  In our case, the resource exposes a single resource method that is able to 

handle HTTP POST requests, is bound to /Sensor_Readings URI path and can process an array of 

Sensor_Reading objects represented in "application/json" media type. 

 

Figure 3-0-3 weBreathe WebServices Class Interaction Diagram 

TimeAdapter, DateAdapter and BlobAdapter classes are used to marshal and unmarshal time, date 

and image objects in the JSON payload. Sensor_ReadingDAO class manages all of the PostgreSQL 

database queries for saving sensor readings. Sensor_Reading class is the data transfer object (DTO) 

representing a sensor pollution reading collected. UserManagerServlet supports all of the social 

community functionalities like user registration, login, update user profile, map view based sensor 

readings queries etc. 
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Chapter 4 
 

Optimization 

 
 
 
 
This chapter discusses various optimization techniques implemented in the mobile pollution 

sensing online social community model. In the initial section, it lays down the goals of the 

optimization process and explains what we intend to achieve by these optimization techniques. 

Then, it briefly describes the details of the challenges and the solutions engineered to overcome 

these challenges. Results of the optimization are then described to save network data usage, 

smartphone battery power, amount of storage needed to store readings, map display efficiency and 

timely sharing of pollution data with other online social community members. In the final section, 

we explore a simple outlier elimination model to filter out temporal spikes in sensor readings. 

4.1    Goals  

In order to be an effective online social community for sharing pollution data, the model 

should provide timely, accurate pollution information to its community members. Since the key 

component in the model is the mobile application, it needs to be easy to use, provide a simpler user 

interface to display pollution data along the roads. The client application must perform efficiently 

on the iPhone platform by consuming least possible amount of battery power. There are two larger 

groups of online social community users, consumers and producers of pollution data. Producers are 

those members who carry the Node sensor devices inside their car and use the iPhone application 

to measure the pollution levels as they travel and transmit data to the remote web services. 

Consumers are those users who just use the iPhone application to know about the pollution levels 

along the roadways they travel.  For producers, the application needs to incur least amount of cost 

for cellular data transfer. For consumers, the pollution map display should have high performance 

and responsiveness with least amount of data transfer to reduce network overhead and battery 

power consumption.  Finally, the system should detect any temporary changes in sensor readings 
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and remove outlier values.  

Our main goals for optimization can be listed as follows: 

 Efficient data transfer.  

 Reduced network data transfer cost. 

 Highly responsive map display with pollution overlay. 

 Reduce energy consumption of iPhone battery. 

 Removal of temporal spikes in sensor readings. 

4.2 Data Transfer Optimization 

 Amount of data transferred between the iPhone device and the remote server impacts 

battery power and data usage cost. Since most users of the weBreathe application might have 

limited cellular data plan, our application is designed to use lower cost alternatives for network data 

transfer. When the user is registering a Node device, user is given a choice to transfer sensor data 

over 3G or only over Wi-Fi network. If the user has chosen Wi-Fi option, the data collected from 

sensor is temporarily cached in the local SQLite database on the device, if there is no Wi-Fi network 

available. The application receives notification from the iOS operating system if the network 

interface changes to Wi-Fi. Once the device is connected to Wi-Fi, the application transfers sensor 

readings in batches to reduce load on the server and as well as optimize battery energy usage. If the 

user chooses to use 3G/4G cellular data plan, the gathered data is transferred in batches every 5 

minutes.  The 3G download and upload rates for the various Cellular providers is shown below [9]. 

 

  Download(mbps) Upload(mbps) 

ATT 2.62 0.85 

Sprint 0.59 0.56 

T-Mobile 3.384 1.44 

Verizon 1.05 0.75 

      

Average 1.911 0.9 
Figure 4-0-1 3G Speeds (mbps) for Major US Cellular Providers 
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According to Apple specifications, iPhone 4S has a Lithium-Ion battery with a capacity of 1420 

mA-h. At 3.7 volts, it translates into 5.254 Watt-hours and could support Internet activity for up to 

six hours. IPhone 4S consumes 0.875 W (5.254/6) per hour for Internet activity. On an average of 

1.9 mbps download rate, iPhone 4S could download 858 MB data per hour and at 0.9 mbps upload 

rate, it could upload 405 MB data per hour.  weBreathe iOS application uses 300 bytes of data per 

sensor reading and could upload 1350000 readings per hour (405 MB/300 bytes). Our design 

balances to reduce the overhead associated with establishing a TCP socket connection and tearing 

it down, amount of data that can be transmitted in a single upload, time it takes to upload and 

processing overhead associated with large number of JSON array objects at the web services layer. 

If we assemble an array of 25 such sensor readings as an array of JSON objects and upload it during 

a single HTTP request, it takes 7.5 KB of data transferred in 66 milliseconds.  We arrived at twenty 

five array size based on the calculations involving maximum number of readings possible if the 

user  

 

 

 

 

 

 

 

 

 

travels at maximum of 65-75 mph and if we collect readings for every 0.25-mile interval. The 

iPhone system turns off Wi-Fi and cell radios when it detects a lack of activity. It is more energy 

efficient to transmit data in a shorter amount of time than continuously over longer periods of time.  

Figure 4-0-2 weBreathe Energy Usage Analysis 
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Based on energy analysis using XCode instrumentation, there is direct correlation between data 

upload and energy usage. It is clear that smaller increases in energy usage are associated with 

smaller burst of data upload. Further data transfer optimization can be achieved by increasing time 

interval between data uploads and increasing batch size. But this would degrade the real time 

pollution data availability to other community members. 

4.3 Data Transfer Cost Optimization 

On an average, 3G cellular data plan cost $10 per 1GB of data transfer. If an average 

weBreathe application user monitors pollution data for eight hours per day for thirty days and if 

7.5 K data is transmitted at the rate of every 5 minutes, the user would normally use 21.6 MB of 

cellular data plan, which translates to 21.6 cents of expense per month. We have implemented gzip 

algorithm to compress the sensor readings before it gets transmitted to the server. Tomcat server 

and Jersey Framework are custom configured to enable gzip compression support using jersey 

plugins. weBreathe iPhone application connects to tomcat server and notifies server that it supports 

gzip “Content-Encoding:gzip” and sends compressed data using gzip algorithm. Tomcat server 

acknowledges gzip support and decompresses input data using gzip.  

  

GZIP compression works by finding similar strings within the JSON payload and replacing 

those strings temporarily to make overall payload smaller. This type of compression is well suited 

Figure 4-0-3 weBreathe uses gzip Compression to Reduce Data Plan Cost 
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for the JSON payload because the key values are often repeated in a collection of sensor readings. 

GZIP employs deflate data compression algorithm that uses a combination of the LZ77 algorithm 

and Huffman coding. We have found with maximum gzip compression ratio used, the data payload 

size is reduced by 90%. The 7.5k JSON payload mentioned above, is reduced to 768 bytes, thereby 

reducing the cost of data plan usage by 90%, hence reducing the cost to almost 2 cents per month. 

GZIP compression also reduces the battery energy consumption considerably because it 

transmits reduced amount of data per sync up cycle.  

4.4 Pollution Map Display Optimization 

 The user interface to convey air pollution information along the roadways is the map 

display at the street level. We have used the MKMapView object to display the pollution data over 

the map view. User can zoom in or zoom out and move around the map display. The pollution 

information is dynamically retrieved from the remote web service. Each pollution record contains 

GPS coordinates (longitude, latitude) and pollutant AQI index. We have used MKPolyline object 

to connect these pollution coordinates as polyline with color-coding based on the AQI value. 

MKPolyline overlays over the roadways, thereby providing a graphical display of pollution levels 

to the user.  The optimization techniques employed involves the following 

1. Instead of displaying every point, combine nearby points based on pollution level 

2. Use background threads to load data and display in batches 

3. Display only those points that are visible on the map display 

4. Cache overlays and reuse to reduce memory footprint. 

We have evaluated Douglas-Peucker algorithm [45] to combine nearby points. The 

algorithm starts an edge with first and last points of the polyline; the remaining points are tested 

for the closeness to the edge. If there are points further away than specified tolerance level from 

the edge, then the point furthest from it is added to the polyline. This creates a new approximated 

polyline. Using recursion, this process continues for each point of the polyline until all points of 

the original polyline are processed.   
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In order to limit the number of points that can be displayed over the map, we have used 

spatial query with the PostGIS function ST_Intersect to retrieve points that are contained within 

the map max and min co-ordinates. It greatly improved the map display performance and reduced 

the amount of data that is retrieved from the webservice, thereby further optimizing energy 

efficiency of the application. MKOverlay objects are cached in memory and reused, thereby 

reducing the amount of memory needed to display pollution data as the user scrolls around the map 

display.  

We also evaluated various GPS location update optimization techniques such as turning 

off location manager services when the user is not moving and reactivating location manager 

updates based on local accelerator movements.  

4.5 Outlier Detection 
 

Because of the initial settling time required for the various electrochemical gas sensors, 

they might show abnormal AQI values. It is important to detect such outlaying sensor readings. 

Usually such outliers are considered noise and thus need to be discarded in order to obtain a reliable 

pollution reading. One of the simplest outlier detection algorithms is Chauvenet's criterion [46], 

which uses the mean and standard deviation calculated from the sample to determine a "normal" 

range for values. Any value outside of this range is deemed an outlier. 

The problem with Chauvenet's criterion is it assumes normal distribution of data values. 

Unfortunately, in our case, the pollution data varies by location and various environmental factors. 

One reasonable assumption we could make is pollution data follows a normal distribution in a 

specific geo location area, for example, area with in a zip code. We have adapted Chauvenet's 

criterion because of its simplicity but we limited our outlier removal based on the geo location 

points contained within the geometrical area of a zip code. For this we have used geo spatial 

database containing all zip codes in US and used ST_Contains PostGIS spatial query to retrieve all 

of the sensor readings obtained within an area covered by a zip code and applied Chauvenet's 
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criterion to remove any outlier data. The outlier processor is implemented as part of server process 

that wakes up every three hundred seconds and runs in the background to mark any outliers. When 

data is retrieved from the app for diplay, the outliers are not pushed. 

We believe zip code pollution data normalization is a reasonable assumption to remove 

any outliers and Chauvent’s criterion proves to be an efficient algorithm to remove temporal spikes 

in sensor readings. 

4.6 Speed Based Sensor Reading  

Speed based data gathering involves enabling data collection only when the user is moving 

above a predetermined speed. In the situation where the iPhone automatically pairs with Node to 

start collecting data, we would want to avoid scenarios where the Node is static but the application 

repeatedly collects pollution data for the same location. Tracking the speed will determine the user 

in motion on the street and thus enforce data collection when device is in a vehicle travelling on 

the road. iOS Location Services (GPS) provide Speed parameter along with latitude and longitude 

values. Based on this speed value, we dynamically calculate the number of readings to be collected 

per time unit based on the assumption that we need pollution level readings at constant distances 

(for example, one reading per 0.25 mile). If the user is travelling at sixty miles of hour, we need to 

sample sensor readings at fifteen seconds interval so that we gather one pollution level reading 

every 0.25-mile.  
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Chapter 5 
 

Evaluation 
 

The purpose of this chapter is to discuss the evaluation of various components of mobile 

pollution sensing social model and to discuss the results from comparing pollution data from the 

mobile model with NJ DEP (Dept. of Environmental Protection) stationary central monitors. It 

starts with the goals of the evaluation approach. Then, it describes the data flow samples from 

various components, starting from node sensor to the iPhone application, then to the back end server 

and then back to an iPhone for consumption. It also illustrates calibration techniques used to arrive 

at baselines for CO sensors at EPA laboratory. Then, it describes the details of the field study from 

data captured using the mobile pollution-sensing model at and around NJ DEP stationary monitor 

at Newark, NJ.  The results of the evaluation are then analyzed for accuracy and timeliness. In the 

final section, we explore the advantages of using such dynamic mobile sensing model and how it 

could augment the existing DEP stationary sensors. 

5.1     Goals  

For a mobile-based pollution model to be effective, the Node gas sensor should be sensitive 

enough to accurately detect varying pollutant levels in the atmosphere. The gas sensor should also 

have shorter settling times and they must be quick to detect pollutant gas levels as early as possible 

so that commuter is alerted in a timely fashion. The pollution data should also be available in real 

time to other users who are travelling on the same road or location. The application should perform 

efficiently to save battery power on the mobile device, reduce storage requirements on the server 

and optimize the amount data exchanged over the network. It should also be scalable to support 

thousands/millions of social community users. Our evaluation goal is to try to address these 

objectives to validate the feasibility and practicality of mobile sensing model. 

The main goals of evaluation are: 
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1. Validate real time responsiveness of data exchange and sharing among other users. 

2. Provide effective use of resources such as battery power, network bandwidth, storage and 

processing time. 

3. Assure effectiveness of outlier detection. 

4. Ensure accuracy and precision of Node sensors by calibration against standard gases 

5. Field study of NJ DEP stationary central gas monitor vs. mobile pollution sensing monitors. 

  

5.2 Real-time Responsiveness 
 

In our model, exchanging real time pollution information with other users is vital for its operational 

success. Efficient data exchange and optimized network and data usage reduces the time lag 

between data generation and data consumption. The model has two modes of operation, monitoring 

and pollution map view modes.  

Pollution Map View mode has the following set of operations 

    1. User Registration (One time) 

    2. Login 

    3. Pollution Map view 

Monitoring mode has the following set of operations 

    1. User Registration (One time) 

    2. Device Registration (One time) 

    3. Baseline Calibration of Node Sensor (One time) 

    4. Login 

    5. Pollution Monitoring 

We measured the performance of each operation based on the system clock time on the 

mobile device. The clock time includes CPU time, network round trip time and server processing 

time.  Baseline calibration is performed using Node application named NodeOXA and it would 

take 5 mins an average per device for one time calibration of the baseline. Upon calibration, the 
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baseline value is stored in the ROM memory of the Node device itself and can be queried by Node 

API. Based on the device logs, the average time for each of the operation is shown on the graph 

below 

 

             
Figure 5-0-1 Execution Time for Operations 

 

The execution time is dependent on various factors like network speed, load on the server and 

number of the concurrent users etc. We estimate each operation to take less than 1 sec under normal 

operating conditions and real time sharing of pollution data could happen within couple of seconds 

of uploading the data to other community users. 

 

5.3 Outlier Detection 
 

Outliers are deviant sensor readings away from the normal level of CO PPM expected in a 

certain geo location. Outliers could occur due to various reasons. In our prototype, we observed, 

the outlier readings are mainly due to initial settling time required for the gas sensor. When the 

monitoring is turned on in the node sensor, it starts with very high PPM readings and within a 

couple of minutes, it settles down and starts giving normal readings. We also observed it happens 

every time monitoring is turned off and turned on again. The other occasions we see sudden spikes 

in readings are when the sensor exposed to sudden high levels of CO, for example a heavy truck 

passing by and cold start of motor vehicles. The purpose of our study is not only to identify outliers 
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and also arrive at an approach to manage them. We want to flag outliers due to sensor's initial 

settling at the client level and other types of outliers at the centralized back end server. Based on 

heuristic, we arrived at an initial settling count of readings that can be safely ignored when the node 

sensor is turned on for monitoring. We have designed a background process that periodically wakes 

up (every 5 minutes) and analyzes the latest readings recorded per geo location. In our case, we 

have chosen to use the geo location area covered by a US zip code. We have pre-populated all of 

the zip codes and its spatial dimensions (shape files) from census.gov website into our POSTGIS 

database table. 

We have used Chauvenet’s criteria as the basis for outlier detection. 

Algorithm for zip code based spatial query for outlier detection: 

1. Get all of readings recorded since the last run 

2. Get a list of zip codes by applying spatial query ST_Contains to check if the longitude and 

latitude of the reading location falls within the zip code spatial dimensions. 

3. Calculate the average and standard deviation of the all of the readings for each of the zip 

code. 

4. Calculate complementary error function erfc [ reading – average/std dev]. 

5. If the erfc value is less than 0.5 (1.96 std dev), flag the reading as outlier in the database. 

 

 

Figure 5-0-2 Outlier Detection 
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Any value marked as outlier is not displayed on the pollution map but the reading is retained in the 

database for further analysis. 

For example for the zip code of 07095, the outliers are marked in the outliers region as 

shown. 

As shown above in the figure 5-0-2, the outliers are illustrated with a color red. When the node 

device is turned on, the initial settling values are identified as outliers and not displayed on the 

pollution map. The intermitted spikes in values are correlated with turning on and off of the node 

device.  

When outlier batch job is run, it picks up all of the new readings since its last run and applies 

the outlier detection algorithm for each of the zip code region that readings geo co-ordinates fall 

under. For example, the reading id 365204 with a ppm value of 13.879 is marked as an outlier for 

the zip code 07095 because it is more than 1.96 standard deviations of the other readings for the 

zip code location. The server log indicating outlier detected is included in Appendix A. 

 

5.4 Data Flow Illustration 
 

weBreathe iPhone application uses iOS Bluetooth framework to connect to the node sensor. 

Once it is connected, the user turns on monitoring by selecting the monitor button. Once the monitor 

button is selected, the application requests Node sensor to stream CO pollution readings at a 

predefined time interval (in units of 10 milliseconds). For example, weBreathe application uses 100 

units as sense interval which means it requests updates every second. weBreathe application uses 

node API shared library to interface with node sensor. All of the API communication is based on 

call back mechanism. For example, when the Node module is ready for communication, it calls 

nodeDeviceIsReadyForCommunication method. Our iPhone application initializes Node device, 

queries for CO baseline reading, queries for all of the sensor modules on the device and once it 

receives callback, it refreshes the user interface with type of gas sensor modules and CLIMA 

module details for getting humidity and temperature details.   
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weBreathe application collects a predefined set of readings and uploads the readings as a gzip 

compressed JSON array to the backend server as a HTTP post. The phone log in Appendix B 

illustrates sensor data capture and transmission. 

Due to the compression technique, we could see the original payload size of 5576 bytes is 

reduced to 594 bytes which around 90% savings in the data transmission. For example, in the 

picture shown, the storing of reading took four hundred ninety five milliseconds to execute. Our 

backend server (IP Address 165.230.44.85) runs a tomcat server at port 8080. Our server clock is 

skewed by -751 seconds than the mobile phone. The J2EE application Sensor_ReadingsService 

uses UserManagerServlet to record readings. The Server access log in Appendix C shows the client 

IP address, type of request, result of the request and how many milliseconds it took to complete the 

request. 

 

Figure 5-0-3 Map View and Response Data Illustration 
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The map view includes a server request specifying longitude and latitude of map view port corners, 

date, start and end time of the readings.  For example, the http post request illustrated in Appendix 

D retrieves the readings bounded by the map view co-ordinates on the date of July, 12, 2014 

between the hours 9 am to 8 pm. Based on the network performance profiling, such a request returns 

135 K of data in less than six hundred milliseconds.  The map view results don’t contain any outlier 

data because the query filters out outlier readings. By limiting the number of readings to the geo 

location boundaries of the map view port, we are able to optimize the retrieval and map rendering 

performance to less than one second.  

 

5.5 Calibration of Node Sensors 
 

 

Calibration is the process of evaluating and adjusting the precision and accuracy of 

measurement equipment [36].Calibration of low-cost gas sensors improves overall accuracy of the 

sensor performance under ambient environmental conditions. Calibration of sensors helps reduce 

any error in readings, which are differences between actual values and sensor response values. Any 

such errors can be identified during the calibration process, and then used to compensate the sensor 

readings to arrive at actual ambient values. 

Baselining: 

Traditionally, calibration of gas sensors involves a two-step process [43]. The first step is 

zero calibration or baselining, followed by span calibration. Zero calibration or baselining involves 

recording [44] raw or PPM sensor reading in an atmosphere free of target gas, which in our case is 

an atmosphere free of CO. An electrochemical sensor's baseline is the difference in electrochemical 

current measured between the sensing and reference electrodes when exposed to zero gas [37].  
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Figure 5-0-4 Lab Setup for Baselining of Nodes 

In Rutgers Environmental Science lab, a sealed container with valves, to ensure constant 

pressure within the enclosure, was used for the experiment. A CO free environment was created 

within the container by introducing argon gas for approximately fifteen minutes.  This simulated a 

0 ppm of CO environment. The raw values measured by the CO sensor in this simulated 0 ppm 

environment were noted, using the Node+OXA application, as the baseline, as shown in Fig 5-0-5. 

This same experiment was performed across six available Node sensors and was repeated seven 

times for each of the Nodes. Node sensor stores the baseline raw value in its memory so that it can 

be retrieved using Node API interface for PPM calculations in the mobile app. We also derived 

method detection limit, as shown in Appendix E, to ensure that the readings were not due to sensor 

noise and to establish the lowest CO concentration that can be measured using Node sensors. 
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Figure 5-0-5 N+Oxa app for Baselining 

Calibration: 

The next step in calibration is span calibration, in which premixed calibrated gases are 

exposed to sensor and statistical methods in calibration are applied. In our study, six baselined 

Node sensors were used for the span calibration. We conducted the calibration experiments in EPA 

(Environment Protection Agency) lab in Edison, NJ. The baselined Nodes ensured that the sensors 

were capturing the most precise CO readings in ppm. Another larger enclosure to contain the Node 

sensors was used for this experiment. Different concentrations of CO gas were introduced into this 

chamber through a multigas calibrator- Environics Series 6100  Computerized Multi-Gas 

Calibration System and allowed to stand for 20 minutes. The calibration set up is shown in Fig 5-

0-6 and Fig 5-0-7. The values captured from weBreathe application for CO level in ppm, 

temperature and humidity were recorded and regression analysis was performed.[39]  (As shown 

in fig 5-0-8). 
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Figure 5-0-6  Calibration set up in EPA lab – Multi Gas Calibrator 

 

 

 

 
Figure 5-0-7 Calibration set up in EPA lab – Enclosure with Nodes 

 

The calibration data collected from the above tests were used to derive the actual CO value 

in ppm from the values the Node sensors reported [38]. The calibration of two of the Nodes is 

represented in the Figure 5-0-9 and Figure 5-0-10 below. 
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Figure 5-0-8 Regression Analysis of Calibration Data 

 

 
Figure 5-0-9 Linear regression Node 472A55E8BD60 
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Figure 5-0-10 Linear regression Node C4CFF5431C24 

 

Measurements gathered from Node devices were corrected by the inverse of the calibration 

curve. From plotting the data and applying linear regression statistics, the calibration equation (i.e., 

the gradient and the intercept) is used to estimate the concentration of CO in field studies [40]. 

Applying the calibration curve on values collected from Node sensor eliminates instrument 

bias provides accurate values when the sensor is deployed in the field. The actual values of CO in 

ppm derived for two of the Node sensors were as follows, from inversing the calibration graph: 

NODE-472A55E8BD60 :  actual_value =  (Node reading - 0.3472)/1.0774 

NODE-C4CFF5431C24 :  actual_value =  (Node reading + 0.2674)/1.1596 

 

5.6 Study of Mobile Sensing Model Data in Comparison to Stationary Central 

Monitor 
 
  

The calibrated Nodes were used for a field study conducted to compare our mobile pollution 

sensing model with existing central air pollution monitors. The objective of our field study is to 
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demonstrate spatial granularity of pollution data along the roadways. As part of this analysis, we 

conducted a field study of pollution data collection using Node sensors inside a car, windows 

closed, as a typical commuter would do, driving along the road ways. We compared our results to 

pollution levels reported by a certified stationary monitor.  

The Department of Environmental Protection in New Jersey (NJ DEP) has various central 

monitoring stations located across the state of NJ to monitor and predict air quality. These central 

monitoring stations have sensors for monitoring pollutants such as CO, O3, SO2, NO2 and PM 

2.5[41]. The reports from these stations are available for public consumption via email, website or 

mobile application. 

For our study, we chose the stationary monitoring station located at Newark Firehouse at 

Newark, NJ since it has a CO monitor that we could compare against and the location was easily 

accessible.  

The primary goals of the study are 

1. Compare central monitoring station data with data gathered from mobile pollution sensing 

social model. 

2. Evaluate the precision and accuracy of data collected from mobile pollution sensing social 

model, using statistical analysis 

3. Analyze spatial granularity of data at various distances at and around the stationary 

monitoring station. 

  Our study procedure involves collection of data at various roadways near the stationary 

monitor, apply calibration error correction to derive true CO concentration and analyze the data 

using statistical tools.  

 The first step in our study was to visit the NJ DEP Newark Firehouse monitoring station and collect 

readings by: 

-       Standing right next to the NJ DEP monitoring station with 3 Nodes and 3 iPhones running  
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Figure 5-0-11 NJ DEP Newark Firehouse Monitoring Station 

weBreathe application 

-       Driving along the streets adjacent to the NJ DEP monitoring stations with two Nodes placed 

near vent inside car using weBreathe application on two iPhones 

-       Driving along streets that were approximately 0.5 miles away from the NJ DEP monitoring 

station with two Nodes placed near vent inside car using weBreathe application on two iPhones 

-       Driving along streets that were approximately 2 miles away from the NJ DEP monitoring 

stations with two Nodes placed near the vent inside car using weBreathe application on two 

iPhones. 

The next steps for evaluation of data collected were (represented in Fig 5-0-13, Fig 5-0-14, 

Fig 5-0-15 and Fig 5-0-16 below): 

-       Applying calibration function on data collected from Nodes. 
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-       Splitting data collected into segments of 60 second intervals so there were greater than thirty 

                                    

Figure 5-0-12 weBreathe iOS app Displaying Pollution Levels Around NJ DEP Station 

  

samples in each segment across three Nodes(if sample size is large (n>=30), then the sample 

standard deviations can be used to estimate the population standard deviation)[42]. This enables us 

to study the distribution of pollution data among monitors and distribution across distance. 

-       Calculating the mean CO level for each segment of data  

-       Calculating standard deviation and margin of error for each set of data, averaged over a time 

period of 60 seconds and over the same distance from central monitor 

-       Plotting the NJ DEP monitor CO level to compare against the pollution data captured from 

mobile pollution sensing model 



59 

 

 

 
Figure 5-0-13 Mobile Pollution Sensing Data at NJ DEP Monitoring Station 

 

 

 

 

 

 

 
Figure 5-0-14 Mobile Pollution Sensing Data at Immediate Vicinity of NJ DEP Monitoring Station 
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Figure 5-0-15 Mobile Pollution Sensing Data at 0.5 mile Distance from NJ DEP Monitoring Station 

 

 

 
Figure 5-0-16 Mobile Pollution Sensing Data at 2 mile Distance from NJ DEP Monitoring Station 

 

 

 

Conclusions from field study: 

- Calibration against standard gases and linear regression analysis applied to data 

demonstrates accuracy of data collected 

- Data collected from mobile pollution sensing model demonstrates spatial granularity of air 

pollution along roadways 
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Figure 5-0-17 Map summarizing spatial granularity of pollution data 

 

- Mobile pollution sensing model effectively captures the spatial granularity of pollution 

data and provides timely representation of air pollution to commuters. 
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Chapter 6 

 

Future Directions 
 

In this chapter, we present several areas of further research that can be explored in order to 

expand the work proposed by this thesis. We first discuss how we need to device appropriate sensor 

maintenance techniques to ensure the quality of data. We then discuss how we can apply some 

mechanisms to address privacy concerns of users sharing pollution data. This is followed by 

discussion of the various enhancements and optimizations that could be incorporated into the iOS 

application and backend server to personalize usage of the app as well as adding additional features 

to improve the efficiency and effectiveness of the data provided to users. Subsequently, we present 

how this model can be effectively used as the means to conduct various studies related to air 

pollution. We then discuss how the mobile pollution sensing model could lay a foundation for 

cleaner route guidance as well as eventually be incorporated in the larger scope of vehicular 

networks. 

6.1 Sensor Maintenance  

The calibration techniques mentioned in section 5.5 will ensure the quality of data 

measured using the mobile pollution-sensing model. But subsequent periodic calibrations are 

required to ensure quality of measured data using the mobile platform[48] . We need to arrive at 

techniques to enable members of the mobile pollution sensing social community to periodically 

calibrate their devices against a reference-calibrated device. Sensor decay, where the sensor 

degrades with time, is another issue to be addressed. We could use techniques where the mobile 

app will runs regular checks to ensure that the sensor is performing accurately and give alerts when 

recalibration of sensor or replacement of sensor is required. 

6.2  User Privacy  

Since our model involves sharing the air quality information along the streets on a map, we 
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need to address any privacy concerns of users participating in our model. This would be addressed 

as the amount of data coverage is improved by high level of participation from the members since 

it will be difficult to track the routes of any particular participant collecting pollution data. Applying 

techniques such as removing the first and the last mile in the readings gathered will ensure that 

even if there are few users collecting pollution data in a certain location, it will not be feasible to 

see the precise locations that the user travelled. 

6.3   iOS Application and Backend Improvements 

  Cumulative exposure alert: The application could be improved by the calculation of 

cumulative pollutant exposure of user in a day. As per the EPA standard, 36 FR 8186[10] CO 

exposure standards were set at 9 parts per million (ppm), as an eight hour average, and 35 ppm, as 

a one hour average, neither to be exceeded more than once per year. The average driver is not aware 

of the extent of cumulative exposure to air pollutants. Especially, for a user that spends a lot of time 

travelling on the roads, this would prove to be very valuable information. The application could 

calculate the cumulative exposure of the user and alert users. 

Social networks integration: Social network integration could be added to the iPhone 

application enabling the user to share pollution data or pollution map snapshot posting over 

Facebook or Twitter like applications. This would not only motivate the users to collect more data, 

but also encourage friends and followers on these social networking sites to connect, collaborate 

and share air quality data.  

Multiple device support: Currently our social model and iOS application supports the use 

of Node sensors. This can be easily expanded to enable usage of multiple gas sensors from different 

vendors. The app could be customized based on the sensor device that it is paired with. 

Redundant data elimination: On the backend server, we could implement further 

optimization by tracking multiple users collecting data on the same road segment within the same 

time frame and enable push notifications to the devices from the server to stop collecting duplicate 

data. When it is detected that the user has moved to a new road segment, the monitoring could be 
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restarted. These optimizations would further reduce redundant data usage and also conserve energy. 

Multiple reading: A different approach that could be taken to handle multiple data points 

from the same road segment would be to utilize the multiple readings to arrive at the most accurate 

pollution level for that region. Removal of outliers from readings for same region would verify the 

accuracy of the pollution data. 

 Archive historic data: Another possible optimization on the server database would be to 

archive any stale data. Say all the readings that are more than a day old could be compressed and 

archived. Also, an eight hour average of pollutant level could be extracted from historic data and 

used to demonstrate pollution trends for various road segments. 

 Incorporate EPA data: The data presenting in the application is the pollution data collected 

from participating users of the social community alone. Incorporating data collected from various 

other air pollution monitoring systems can broaden the coverage. The EPA, for instance, maintains 

a repository of ambient air quality data in the Air Quality System (AQS). We could include a 

backend service to regularly pull the AQS data incorporate it with the data collected from the social 

community. The weBreathe app can then display the data from AQS for regions where no 

participating users have collected air quality data. 

6.4 Data Studies 

 Using the mobile pollution-sensing model presented in this thesis, air pollution data could 

be collected for various studies. How air quality is affected by meteorological factors such as wind 

speed, temperature, humidity, pressure and climatic factors could help in creating prediction models 

for air pollution. Further studies could be conducted to find correlation between traffic patterns, 

vehicle speed and air pollution. Studies could be conducted to model the pollution propagation 

from point of emission and distribution to nearby locations. An interesting study could be 

conducted to compare the pollution levels inside the car with the ambient pollution level just outside 

the car.  

Machine learning techniques could be applied to predict future pollution levels based on 
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historic data collected using the mobile pollution-sensing model. Such predictive models can be 

used to make future city and roadway grid planning decisions. A user study can be conducted to 

analyze how the air quality information provided by our model impacts the behavior of users. It 

would be interesting to note how many commuters actually take alternate clean routes at the cost 

of additional travel times. 

6.5 Green Routing 

 The launch of solutions such as Car-Play by Apple is a clear indicator of how connected 

vehicles would be in the near future. The addition of air pollutant sensors incorporated within motor 

vehicles does not seem a distant possibility. The vehicles in-built sensor technology combined with 

solutions such as Car-Play and ubiquitous Internet connectivity would enable us to provide highly 

accurate, real-time air pollution data with extensive coverage. We would be able to easily assimilate 

the air quality data over traffic maps to enable route guidance based on cleaner routes. An 

interesting study could be conducted on human behavior to analyze how often commuters actually 

choose to take a cleaner route by compromising travel time. Another approach to available pollution 

data is that altruistic citizens might even avoid heavily polluted streets so they can avoid causing 

higher pollution. 
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Chapter 7 

 

Conclusion 
 
 

In this thesis, we introduced the design and implementation of a mobile pollution sensing 

social community to enable the gathering and sharing of air quality data. We proposed a model that 

overcomes the shortcomings of current pollution monitoring methodologies. The design of the 

model involved selection of an appropriate device to measure pollutant levels and interfacing it 

with a smart phone application. By connecting a cloud service to a mobile application, we presented 

the feasibility of a real time pollution collection and sharing social model. By applying various 

optimization techniques at the application and web service level, we were able to make the model 

highly efficient and cost effective. 

The key conclusions of this thesis are: 

 Real time pollution information sharing is practical with adoption of mobile-cloud 

integration 

 Highly efficient location data management can be achieved with the aid of spatial data 

model 

 Optimized use of mobile battery energy is feasible with data compression and efficient 

location based data exchange 

 We could use the model to collect data for both internal and external to motor vehicles 

 Simple online social community model can be realized with two groups of members, 

consumers and producers. 

 Mobile pollution sensing model captures spatial granularity of pollution data. 

In this current day and age, smartphones are an integral part of our lives and put immense 

computing power and connectivity in the hands of users, thereby opening up a world of 

opportunities. Leveraging this technology to connect citizens with the common interest of air 
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pollution awareness provides a highly practical solution to gather fine-grained air quality data. 

The increased adoption rate of this social community would translate into making the pollution 

data highly accurate and precise.  

The applications of the data collected from our model is innumerous, starting from users 

utilizing it to guide their travels every day, to sensitive commuters avoiding more polluted 

routes. On a larger scale, the data could prove valuable in making informed decisions even for 

establishing schools or residential communities. This model opens the doors for exploring 

innovative opportunities to create a cleaner world. 
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Appendix A 

Server Logs Indicating Outlier Detection 
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Appendix B 

Phone Logs Illustrating Sensor Data Capture and 

Transmission 
 

2014-07-01-09:19:10 Current Sense interval = 100.000000 
2014-07-01-09:19:10 Current Batch size = 10 

2014-07-01-09:19:10 Internet connection 3G available 

2014-07-01-09:19:10 Internet connection 3G available 
2014-07-01-09:19:10 Internet connection not available 

2014-07-01-09:19:10 Internet connection 3G available 

2014-07-01-09:19:10 notifiedThatNodeDeviceIsReady 
2014-07-01-09:19:12 nodeDeviceIsReadyForCommunication 

2014-07-01-09:19:13 nodeDeviceDidUpdateModuleSubTypes called 

2014-07-01-09:19:13 OXA baseline = 0.199435 
2014-07-01-09:19:13 nodeDeviceDidUpdateModuleSubTypes called 

2014-07-01-09:19:13 OXA baseline = 0.199435 

2014-07-01-09:19:14 Before Monitor Battery level 95.00 
2014-07-01-09:19:14 Speed on location update= 1.88 

2014-07-01-09:20:37 Raw reading = 0.199976 

2014-07-01-09:20:37 ppm = 1.723120 
  

2014-07-01-09:20:38 Raw reading = 0.199806 

2014-07-01-09:20:38 ppm = 1.622736 
  

2014-07-01-09:20:39 Raw reading = 0.200707 

2014-07-01-09:20:39 ppm = 1.707382 
  

2014-07-01-09:20:40 Raw reading = 0.200215 

2014-07-01-09:20:40 ppm = 1.687971 
  

2014-07-01-09:20:41 Raw reading = 0.200369 

2014-07-01-09:20:41 ppm = 1.700468 

  

2014-07-01-09:20:42 Raw reading = 0.200198 
2014-07-01-09:20:42 ppm = 1.678569 

  

2014-07-01-09:20:43 Raw reading = 0.200218 
2014-07-01-09:20:43 ppm = 1.662803 

  

2014-07-01-09:20:44 Raw reading = 0.199210 
2014-07-01-09:20:44 ppm = 1.452895 

  

2014-07-01-09:20:45 Raw reading = 0.199921 
2014-07-01-09:20:45 ppm = 1.401922 

  

2014-07-01-09:20:46 Raw reading = 0.200202 
2014-07-01-09:20:46 ppm = 1.410717 

  

2014-07-01-09:20:46 Original Payload  = 
[{"environment_Light":0,"reading_PPM":1.72312,"reading_interior_exterior_flag":"E","reading_travelling_vehicle_type":

"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-

74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At
mospheric_Pressure":0,"device_Name":"NODE-

472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200323,"reading_Time":"0

9:20:37","aqi":19.580906,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 
09:20:37"},{"environment_Light":0,"reading_PPM":1.622736,"reading_interior_exterior_flag":"E","reading_travelling_ve

hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-

74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At
mospheric_Pressure":0,"device_Name":"NODE-

472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200271,"reading_Time":"0

9:20:38","aqi":18.440187,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 
09:20:38"},{"environment_Light":0,"reading_PPM":1.707382,"reading_interior_exterior_flag":"E","reading_travelling_ve

hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-

74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At
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mospheric_Pressure":0,"device_Name":"NODE-

472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200314,"reading_Time":"0
9:20:39","aqi":19.402073,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 

09:20:39"},{"environment_Light":0,"reading_PPM":1.687971,"reading_interior_exterior_flag":"E","reading_travelling_ve

hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-
74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At

mospheric_Pressure":0,"device_Name":"NODE-

472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200304,"reading_Time":"0
9:20:40","aqi":19.18149,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 

09:20:40"},{"environment_Light":0,"reading_PPM":1.700468,"reading_interior_exterior_flag":"E","reading_travelling_ve

hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-
74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At

mospheric_Pressure":0,"device_Name":"NODE-

472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200311,"reading_Time":"0
9:20:41","aqi":19.323505,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 

09:20:41"},{"environment_Light":0,"reading_PPM":1.678569,"reading_interior_exterior_flag":"E","reading_travelling_ve

hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-
74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At

mospheric_Pressure":0,"device_Name":"NODE-

472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.2003,"reading_Time":"09:2

0:42","aqi":19.07465,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 

09:20:42"},{"environment_Light":0,"reading_PPM":1.662803,"reading_interior_exterior_flag":"E","reading_travelling_ve

hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-
74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At

mospheric_Pressure":0,"device_Name":"NODE-

472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200291,"reading_Time":"0
9:20:43","aqi":18.895489,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 

09:20:43"},{"environment_Light":0,"reading_PPM":1.452895,"reading_interior_exterior_flag":"E","reading_travelling_ve
hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-

74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At

mospheric_Pressure":0,"device_Name":"NODE-
472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200183,"reading_Time":"0

9:20:44","aqi":16.510172,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 

09:20:44"},{"environment_Light":0,"reading_PPM":1.401922,"reading_interior_exterior_flag":"E","reading_travelling_ve
hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-

74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At

mospheric_Pressure":0,"device_Name":"NODE-
472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200157,"reading_Time":"0

9:20:45","aqi":15.930936,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 

09:20:45"},{"environment_Light":0,"reading_PPM":1.410717,"reading_interior_exterior_flag":"E","reading_travelling_ve
hicle_type":"car","device_ID":"5DD8F0C0-49BD-67AA-B895-BBDAA916CE2D","gps_Longitude":-

74.360055,"reading_ID":"0","environment_Temperature":0,"gps_Latitude":40.512153,"gas_Type":"CO","environment_At

mospheric_Pressure":0,"device_Name":"NODE-
472A55E8BD60","reading_travelling_flag":"y","username":"aaa@aaa.com","reading_Raw":0.200162,"reading_Time":"0

9:20:46","aqi":16.030872,"environment_humidity":0,"gps_Speed":1.88,"reading_Date":"2014-07-01 09:20:46"}] 

2014-07-01-09:20:46 Original Payload size = 5576 
2014-07-01-09:20:46 Compressed Payload size = 594 

2014-07-01-09:20:46 Compressed Payload  = <1f8b0800 00000000 0203ed98 5fabda30 18c6bfca e8f56979 f33ff16a 

ad753038 3b4736ef c62841b3 1ab0d5b5 d14dc6f9 ee8b1e8f 76630585 42bde845 2124799f e44d7e3c 49faf577 60ca9dad 
d665614a 973dda7c e982113c 0495d10b 5be6d974 fa2918a1 486082f0 a5d696ce 54765d65 e6d7a9f0 7da5f360 144c824b 

2757e99d 59ad0ec5 9d59daf9 ca646ebf 31bed75c 57bedfc2 ececdc64 1f535fc3 d2547e80 31845425 69c8451c 8789542c 

4c92348e 15e2e309 4e7d48be a9b3c775 995bb75d 78a150d0 887000c6 2ea31ee5 c0f76de6 3533c5c6 54da6d2b 73cceea8 
a3dd4986 42c41046 8cf8065d 67b3d749 8e9fff11 895db1ae 374b9fef 3c9b56a6 aedfd44e 893ce9e2 10f7f49c 4e422a70 

ccd84426 2987ff2f c969c1f6 be755b9b aa7c0dd6 5abff75f 345f178d b0cffaa7 1f28c200 04934bf5 cc1e6340 8d308c88 

f001fa87 f5bba522 264101ff 7bfacb6d 6117d6ed cf0bf065 63cce2b0 b9525e34 53ed0e9a 18100d41 8480de9d e55f1eae 
8485632c 081f68e9 9d162c50 1b2df24c 8b8c2805 2445a7b4 c8eb6911 20881cbc e50ebc05 d1365a54 c35b2860 bf639dd2 

a26ef016 295493ea 8196be68 81365a28 34684112 51d5252c 5efd066b 01cae500 cb1d584b db414451 03167fbb 61c03aa5 

05dd602d 4232ae06 5afaa7a5 8d15dc60 0504e5dd a2826f40 8563d99c e6804a5f 375cd56a 2ca471c3 f54b4765 b7c710b9 
9e16cab0 9fc0404b efb420d9 6a2df44c 0bf7e900 12b8535a e80db400 5278780f dd012d4c b4d1c2ce b4b04811 50a4d37f 

2d5efe7a 5a100824 065afaa7 85e3365a 78c35bfc bb4976ec 2d3c78f9 f607759b 039ec815 0000> 

2014-07-01-09:20:47 StoreReading Post Execution time: 495.561004 
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Appendix C 

Server Logs Illustrating Response Time 
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Appendix D 

Map View Request 
http://165.230.44.85:8080/Sensor_ReadingsService/UserManagerServlet?action=gmviewreadings 
&minlon=-74.2440043975464&minlat=40.70013456990322&maxlon=-74.17096248165285&maxlat=40.72622295425412 

&readingdate=07-12-2014&starthour=9&endhour=20 

 

 

[{"gas":"CO","ppm":"2.824876070022583","aqi":"32.10086441040039"," 

longitude":"-74.24118041992188","latitude":"40.70498275756836"},{"gas":" 
CO","ppm":"7.760548114776611","aqi":"83.60547637939453","longitude":"-74 

.23893737792969","latitude":"40.70518112182617"},{"gas":"CO","ppm":"2. 

8160240650177","aqi":"32.00027084350586","longitude":"-74.23956298828125 
","latitude":"40.70512008666992"},{"gas":"CO","ppm":"7.0171051025390625" 

,"aqi":"76.1710433959961","longitude":"-74.23731994628906","latitude":" 

40.70551300048828"},{"gas":"CO","ppm":"5.920352935791016","aqi":"65. 
20352935791016","longitude":"-74.23735046386719","latitude":"40. 

70552444458008"},{"gas":"CO","ppm":"5.655942916870117","aqi":"62. 

55942916870117","longitude":"-74.23636627197266","latitude":"40. 

70577621459961"},…] 
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Appendix E 

Method Detection Limit 
BlueRadios119268 B04C05A4400B C4CFF5431C24 CA6151F81433 472A55E8BD60 CA6151F81031 

0.199496 0.202128 0.199137 0.200871 0.199807 0.200649 

0.199679 0.202134 0.199135 0.200893 0.199979 0.200738 

0.199587 0.202121 0.199057 0.201023 0.199823 0.200634 

0.199612 0.202281 0.199468 0.200851 0.199727 0.200763 

0.199425 0.202198 0.199176 0.200929 0.199633 0.200792 

0.199479 0.202089 0.199054 0.200903 0.199565 0.200678 

0.199493 0.202096 0.19894 0.200837 0.199435 0.200659 

7.97E-09 4.61E-09 2.72E-08 3.87E-09 3.29E-08 3.83E-09 

sum of variances above:  8.03772857142846 × 10^-8   

pooled variance:   1.3396214285705 × 10^-8   

pooled standard deviation:  0.000115742    

T value at 5 degrees of freedom and a=.01: 3.365   

calculated MDL: *0.00038947188410109    

*rounded at the end of all calculations    

       

Steps to Calculate the MDL     

The formula is:  
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