AN EXPERIMENTAL STUDY OF THE
TRIANGLE ALGORITHM WITH EMPHASIS
ON SOLVING A LINEAR SYSTEM

BY HAO SHEN

A thesis submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Master of Science

Graduate Program in Computer Science

Written under the direction of
Dr. Bahman Kalantari

and approved by

New Brunswick, New Jersey

January, 2015

ABSTRACT OF THE THESIS

An Experimental Study of the Triangle Algorithm

with Emphasis on Solving a Linear System

by Hao Shen

Thesis Director: Dr. Bahman Kalantari

The triangle algorithm, Kalantari 7], is designed to solve the convex hull member-
ship problem. It can also solve LP, and as shown in Kalantari [6] solve a square
linear system. In this thesis we carry out some experimentation with the triangle
algorithm both for solving convex hull problem and a linear system, however, with
more emphasis on the latter problem.

We first tested the triangle algorithm on the convex hull problem and made
comparison with the Frank-Wolfe algorithm. The triangle algorithm outperformed
the Frank-Wolfe for large scale problems, up to 10,000 points in dimensions up to
500. The triangle algorithm takes fewer iterations than the Frank-Wolfe algorithm.

For linear systems, we implemented the incremental version of the triangle al-

gorithm in [6] and made some comparison with SOR and Gauss-Seidel methods for

1

systems of dimension up to 1000. The triangle algorithm is more efficient than these
algorithms taking fewer iterations.

We also tested the triangle algorithm for solving the PageRank matrix by convert-
ing it into a convex hull membership problem. We solved the problem in dimensions
ranging from 200 to 2200. We made comparisons with the power method. The
triangle algorithm took less iterations to reach the same accuracy.

Additionally, we tested a large scale PageRank matrix problem of size of 281,903
due to S. Kamvar. Surprisingly, the triangle algorithm took only 1 iteration to obtain

a solution with the accuracy of 10719,

1l

Acknowledgements

Foremost, I would like to express my deep gratitude to my thesis advisor Pro-
fessor Bahman Kalantari for the continuous support during my Master study and
research. His patience, motivation, enthusiasm and immense knowledge really helped
me during the time of research and writing of this thesis. I could not have imagined
having a better advisor and mentor for my master study.

My sincere thanks also goes to my friends Thomas Gibson and Meng Li for
sharing their codes and technical experiences with the triangle algorithm.

Finally, thanks Prof. Richter and Prof. Saraf for their comments during my

defense.

v

Dedication

In my life, several persons have always been there during those difficult and tiring
times. I would like to dedicate this thesis and everything I do to my parents and my
wife, Ping Wang. I would not be who I am today without the love and support of

my family.

Table of Contents

[Abstractl ii
[Acknowledgements| iv
Dedicationl v
(List of Tables| viii
[List of Figures| ix
@. TIntroduction|. 1
[2. Review of The Triangle Algorithm|. 4

[2.1. Basic Concepts of Triangle Algorithm|. 4

[3. Numerical Experiment for Solving The Convex Hull Problem and |

[Comparison with The Frank-Wolfe Algorithm| 9
[4. Solving Ax=b Via The Triangle Algorithm| 12
[4.1. Solving A Linear System with Nonnegative Solution|. 12
[4.2. Solving A General Linear System| 14
[4.3. The Incremental Triangle Algorithm| 15

vi

[5. Numerical Experiment for Solving Ar = 6 Via The Triangle Algo- |

[rithm and Comparison with SOR and Gauss-Seidel| 18
h.1. Review of Gauss-Seidell 0000 18
H.2. Review of SOR methodl. 19

[5.3. Numerical Comparison with Triangle Algorithm, Gauss-Seidel and SOR] 20

[.4. More Numerical Experiment with ¢,,;,| 23
[6. Solving PageRank Problem via Triangle Algorithm| 29
[7. Numerical Comparison with Power Method|. 32
8. Conclusion and Future Workl 36
[9. Appendix for Matlab Codes| 38
[9.1. 'Triangle Algorithm for LP Feasibility| 38
[9.2. Incremental Triangle Algorithm| 45
9.3. Power Methodl. 52
[9.4. Generated Test Data for LP Feasibility| 53
[9.5. Generated Data tfor Page Rank Problem| Hh)
9.6. Get Optimal T} 56
[9.7. Frank Wolt Algorithm| 59
0.8, SOR and Gauss Seidell o oo 61
References 62

vil

List of Tables

BT,

Iterations with Increasing t value|

52,

Ex.1 Triangle VS SOR VS Gauss Seidel|

3.

Time Comparison: Triangle vs Optimum SOR vs Gauss-Seidel|

B4

Iterations Comparison: Iriangle vs Optimum SOR vs Gauss-Seidell

B5.

Iterations with Increasing t value|

[5.6.

Iterations with Increasing t value|

71

Triangle Algorithm VS Power Method]

7.

Triangle Algorithm’s performance for practical data method|

viil

List of Figures

R1.W,=¢ (left) and W, # ¢ (gray area)[7]] 5

[2.2. Depiction of gaps d = [[p—p'|[, &' =1{p" =l 7

[3.1. n=10,000, Iterations Comparison Triangle Algorithm VS Frank-Wolte] 10

[3.2. n=10,000, Time Comparison of Triangle Algorithm VS Frank-Woltel . 10

X

Chapter 1

Introduction

Given a set S = {vy,...,v,} C R™ and a point p € R™, testing if p € conv(9),
the convex hull of S, is called the conver hull decision problem (or the convexr hull
membership problem). It is a fundamental problem in computational geometry and
linear programming. One application is the irredundancy problem, that compute
all the vertices of conv(S), [5]. We can also consider the convex hull membership

problems as a special case of linear programming (LP) feasibility problem:

Ax =b,
efr =1, (1.1)
z >0

where the column vectors of A are {vy,...v,,} and e is the vector of ones. Conversely,
we can convert an LP feasibility to a convex hull decision problem.

To solve the convex hull decision problem, a simple and natural geometric method,
the triangle algorithm, has been proposed in [7]. In each iteration of the triangle al-
gorithm, we have a current approximation to p, a point p’ € conv(S). Using this,
we select a pivot point v; € S, i.e. such that d(p',v;) > d(p,v;), where d(.,.) is
the Euclidean distance. Then approache p greedily along the direction from current

iterate point to the pivot. If a pivot does not exists we can deduce that p & conv(S).

In next Chapter we describe the triangle algorithm in more detail.

In the experimental section in solving convex hull problem, we implemented the
triangle algorithm and made comparison of its performance with the Frank-Wolfe
algorithm, a gradient decent method when applied to a convex quadratic function
over a simplex. According to our computational results, the triangle algorithm has
better performance than the Frank-Wolfe algorithm when the number of points n is
much larger than the dimension m [9].

Next, we implemented the triangle algorithm for solving a linear system Ax = b
with an invertible square matrix. Solving general linear system of equations is un-
doubtedly one of the most practical problems in numerous aspects of scientific com-
puting. Iterative methods are preferred for large systems, such as Gauss-Seidel and
Successive Overrelaxion(SOR) method. In our studies, we implemented the incre-
mental version of the triangle algorithm, Kalantari [0], to solve Az = b, where A is an
invertible matrix, and it is not known that the solution x = A~!b is nonnegative. The
justification for doing so lies in the fact that solving the linear system is equivalent
to solving A(z 4 te) = b+ tAe, where t is any nonnegative scalar and e is the vector
of ones. Equivalently, the latter system can be written as Az(t) = b+ tAe = b(t),
and for appropriate ¢ the solution x(t) is nonnegative. Then for such value t we have,
0 € conv({ay, ..., an, —b(t)}), where a; is the i-th column of A. In our experimental
work, we implemented the triangle algorithm and solved different linear systems with
dimensions up to 1000 and made comparisons with the Gauss-Seidel and SOR. We
showed that the incremental triangle algorithm can solve the general linear system
Az = b and outperform the two classical algorithms with less iterations.

Finally, we implemented the triangle algorithm to solve a very popular problem,

PageRank problem. A regular PageRank problem can be represented as solving:

Ax = x,
eng — 1’ (12)
x>0

We converted the PageRank problem to the following system:

(A—1T)x =0,
QTI* — 1’ (13)
xz > 0.

Set A=A — I and b = 0, rewrote the above equations as

Ax =0,
efx =1, (1.4)
x>0

In the experimental work, we implemented the algorithm by generating some
random sparse matrix with dimension ranging from 200 to 2200. Moreover, we
implemented the triangle algorithm to solve a practical web data due to S. Kamvar
with a large matrix A that is of size 281,903 x 281, 903. We compared the result with
classic Power method, a popular method for solving the PageRank problem. From
the results, we can conclude that the triangle algorithm takes fewer iterations than
the Power method. We believe that the triangle algorithm offers another option to
solve the PageRank problem.

In next chapter we will review the basic concepts of triangle algorithm from

Kalantari [7].

Chapter 2
Review of The Triangle Algorithm

2.1 Basic Concepts of Triangle Algorithm

In this section, we make a basic introduction to the triangle algorithm. The
triangle algorithm is a simple iterative algorithm due to Kalantari [7], for testing if
the convex of hull of a set of points in a Euclidean space contains a particular point.

We let || - || denote the Euclidean norm. We begin the theories as follows:

Theorem 2.1.1 (Distance Duality[7]). Let S = {vy,...,v,} C R™, p € R™.

(i):p € conv(S) if and only if given any p' € conv(S), there exists v; such that
' — |l = |lp — vj]|. Such v; is called a p-pivot (or simply pivot).

(11): p & conv(S) if and only if there exists p’ € conv(S) such that ||p'—v;|| < ||p—wvil|,

Vi. Such p' is called a witness.

Each witness certifies that p ¢ conv(S). In [7], it is shown that each witness
actually induces a separating hyperplane. The set W, of all such witnesses is the
intersection of conv(S) and open balls B; of radius ||p — v;|| at v;, where i =1, ..., n,
and forms a convex subset of conv(S5).

The following result shows that when we have a witness, we have an approxima-

tion to the distance of p of the convex hull of S:

Figure 2.1: W, = ¢ (left) and W), # ¢ (gray area)[]

Theorem 2.1.2. Suppose p ¢ conv(S). Let A = min{||p—=z| : x € conv(S)}. Then

any p' € W, satisfies 0.5||p — p'|| <A <||p —p'||.

Definition 1. Given e € (0,1), p' € conv(S) is an e—approzimate solution if ||p’ —

pl| < €eR, where R = max{|p — vi|, ..., [|[p — vnl|}.

Using the characterization theorem (Theorem [2.1.1)), [7] described a simple al-
gorithm, called the triangle algorithm. Given a desired tolerance ¢ € (0,1), and a
current iterate p’ € conv(S), in each iteration the triangle algorithm searches for a
triangle App'v; where v; € S satisfies ||p’ —v;[| > [|[p — v;||. Given that such triangle
exists, the algorithm uses v; as a pivot to "pull” the current iterate p’ closer to p
to get a new iterate p” € conv(S). If no such a triangle exists by Theorem [2.1.1{ p’
is a witness certifying that p is not in conv(S). The triangle algorithm consists of

iterating two steps:

Triangle Algorithm (S = {v1,...,v,}, p, € € (0,1))

Step 0. (Initialization) Let p' = v = argmin{||p — v : v; € S}.

Step 1. If ||p — p/|| < €|lp — v||, output p’ as e—approximate solution, stop.
Otherwise, if there exists a pivot v;, replace v with v;. If no pivot exists, then
output p’ as a witness, stop.

Step 2. Compute the step-size

(p—p)"(v; = 1)

= (2.1)
[v; =PI
Given the current iterate p’ = X a;v;, set the new iterate as:
P =1 —-a)p +aw; = Za v, (2.2)
o = (1 — aw)oy + a,
! ! (2.3)

=(1—an),Vi#j

Replace p’ with p”, a; with o, for all i = 1,...,n. Go to Step 1.

It can be shown that the point p” in Step 2 is the closest point to p on the line
p'v;. Since p” is a convex combination of p’ and v; it will remain in conv(S). The
algorithm replaces p’ with p” nd repeats the above iterative step. Note that a p-pivot
v; may or may not be a vertex of conv(S). Figure demonstrates two consecutive

iterates.

Next, we state the estimate of complexity of the triangle algorithm.

Theorem 2.1.3. (i) Suppose p € conv(S). Given € > 0, py € conv(S), with o9 =

lp—poll < Ro = min{||lp—uv;|| : i =1,...,n}. The number of iterations K. to compute

Figure 2.2: Depiction of gaps 6 = ||p — /||, &' = ||p” — p|
a point pe in conv(S) so that ||p — pe|| < €||p — vs||, for some v; € S satisfies
1

(it) Suppose p & conv(S). Let A = min{||x — p|| : € conv(S)}. The number of
iterations Ka to compute a p-witness, a point pa in conv(S) so that ||pa — vi|| <

lp — vi|| for all v; € S, satisfies

R2

KA - O(F

), R=max{|lp—vil,i=1,...,n}. (2.5)

Note that each iteration of triangle algorithm takes O(mn) arithmetic operations.
Next let us give a stronger version of the distance duality. First, here is the definition

of strict pivot.

Definition 2. Given p’ € conv(S), we say v; € S is a strict pivot relative to p (or

strict p-pivot, or simply strict pivot) if Zp'pv; > 7/2

Theorem 2.1.4 (Strict Distance Duality[7]). Assume p ¢ S, Then p € conv(S) if

and only if for each p' € conv(S) there exists strict p-pivot, v;.

Then, an alternative complexity bound can be stated.

Theorem 2.1.5 ([7]). Assume p € conv®(S), the relative interior of conv(S). Let p,
be the supreme of radii of the balls centered at p in this relative interior. Suppose the
triangle algorithm uses a strict pivot in each iteration. Given € € (0, 1), the number
of iterations of the algorithm to compute pe € conv(S) such that ||p — p.|]| < €R.

R =max{||p —vil|,i = 1,...,n}, satisfies

R* 1
O<—2 In —).
Pp €
In next chapter, we will make a numerical experiment comparison in solving the

convex hull problem with triangle algorithm and Frank-Wolfe algorithm.

Chapter 3

Numerical Experiment for Solving The Convex
Hull Problem and Comparison with The
Frank-Wolfe Algorithm

We will implement the triangle algorithm for the convex hull decision problem
and compare it with the classical algorithm, the Frank-Wolfe algorithm. We let A
to be the matrix whose column vectors are {vy, ..., v, }, e is the vector of ones, and p
the query point. The Frank-Wolfe algorithm for the convex hull decision problem is

quite straightforward, it is based on the following quadratic programming, see [3]:
min{f(z) = (Az —p)T(Az —p) ; o =1, 2 >0} (3.1)

In each iteration, Frank-Wolfe uses O(mn) operations to compute the gradient of
f and chooses a direction to progress, using partial derivatives, see [I]. In contrast,
the triangle algorithm has many options. In one option it goes through all the
column vectors. It moves to next iterations as long as it finds a "perfect” v;. We
do this by checking the angle Zpp;v; and select the smallest one at a current iterate
pr. Therefore, triangle algorithm usually spends much less iteration steps than the
Frank-Wolfe algorithm.

To compare the above two algorithms, we implemented them in Matlab. In the

experiment, we randomly and uniformly generated n points to form S, a query point

10

p, all in m-dimensional unit ball, giving a very dense matrix. We set ¢ = 10~

n=10,000
2000 T T T T T
— — — Frank-Yvolfe Algarithm [
1800 - Triangle Algorithm ,f/ T
-
1600 - R q
i
7

1400 - - B
¢ i
=
ey -
= F
S 1200+ / B
= s
Py -
5 3
= 1000 - s -
£
E
=

800 -

1 1 1 1 1 1 1
150 200 250 300 350 400 450 500
m

Figure 3.1: n=10,000, Iterations Comparison Triangle Algorithm VS Frank-Wolfe

n=10000
&0 T T T T T T

— — —Frank-Walfe Algorithrm
Triangle Algorithm

a0

40

N

time (s)

0 1 I I 1 I 1 I
180 200 260 300 350 400 450 500
m

Figure 3.2: n=10,000, Time Comparison of Triangle Algorithm VS Frank-Wolfe

As we can see in Figure[3.J]and Figure[3.2], when dimension m grows, the iteration
steps of Frank-Wolfe algorithm increase significant, while triangle algorithm performs

very well with only a slight increase in the iterations steps. This can be explained by

11

the fact that the triangle algorithm always find the ”perfect” pivot, which minimize
the Zpprv to make the iteration steps smallest. And since it need visit all the column
of vectors, the running time does not performed much better than Frank-Wolfe with
the grow of dimension m. In [9], they introduced another improvement on reducing
the running time of each iteration that triangle algorithm moves to the next iterations
as long as it finds a "good” v;. The triangle algorithm does not need to visit all the n
points and thus spends less time than Frank-Wolfe algorithm in each iteration. And
the triangle algorithm has a better chance for finding a ”good” pivot v; to approach
p efficiently when n increases, see [9]

In summary, the triangle algorithm does well for large scale data set, especially
when the number of points n is much larger than m. And based on our experiments
it is more efficient than Frank-Wolfe algorithm, both in running time the number of

1terations.

12

Chapter 4
Solving Ax=b Via The Triangle Algorithm

In this chapter, we consider solving a linear system via the triangle algorithm as
described in Kalantari [6]. Consider solving Ax = b with A an invertible n x n real
matrix. We let a; denote the i-th column of A. Given a matrix B write conv(B) for

the convex hull of the columns of B.

Definition 3. We say xq is an e-approximate solution of Ax = b if

[Azo = bl < ep, p=mazx{[lal, ... llanll, |[bl} (4.1)

4.1 Solving A Linear System with Nonnegative Solution

First, suppose that + = A~'b > 0. We show how to solve this as a convex hull
problem. Next, we solve the general case to relax this condition. Since A is invertible,
Az = 0 has only trivial solution. In particular, 0 ¢ conv(A).

In [7] Kalantari described an application of the triangle algorithm in computing
an approximate solution of the linear programming feasibility problem. In Kalantari
[6] he describes application of the triangle algorithm in solving a linear system.

Here we explain Kalantari’s approach to solve Az = b via the triangle algorithm

to compute for any € € (0,1), an e—approximate solution.

13

Proposition 4.1.1. x = A7'b > 0 if and only if 0 € conv([A, —b]).

It follows that solving Ax = b approximately is equivalent to finding an approxi-

mation to 0 in the set conv({ay, ..., an, —b})

Theorem 4.1.2 (Sensitivity Theorem [7]). Let Ag = min{||AX]| : > @z =1,2; >
0}, and p = max{||a1]|, ..., ||an|, |0 }. Let Ay be any number such that 0 < Ay < Ay.

Suppose € € (0,1) satisfies € < Aj/2p and suppose we have computed
P = Aa — au1b € conv([A, =b]), |IP']| < ep. (4.2)

Let ©g — a/apy1. Then, 9 > 0, and if € = 2(1 + ||b]|/A})e, we have
| Az — b]] < ¢p (4.3)

We can now describe a Two-Phase algorithm to solve Ax=b as a convex hull
problem. Phase 1 of the algorithm attempts to find a witness p’ € conv({a1, ..., a,})
that proves 0 is not in this convex hull. Any such witness p’ gives rise to a lower
bound to Ay which in turn can be used in Phase 2 of the algorithm an e-approximate

point in conv([A, —b]).

Two-Phase Triangle Algorithm(A, b, ¢ € (0,1))

Phase 1. Call triangle algorithm (A, 0,¢) to get a witness p’ € conv(A).
Phase 2. Starting with p/, call triangle algorithm ([A, —b], 0, ¢€).

14

Theorem 4.1.3 ([7]). Given any ¢y € (0,1), in order to compule an €y-approzimate
solution (i.e. a solution xo > 0 such that ||Axg — b|| < eop) it suffices to set A =
0.5||p'||, where p' is the witness computed in Phase 1 of the Two-Phase triangle
algorithm. Then in Phase 2 of the algorithm it suffices to compute a point p' €

conv({ay, ..., an, —b}) so that

/

Il < ep, € < Ztmin &

1
RCES Ik (44)

Then the number of iterations in Phase 2, K., each of cost O(n?) arithmetic opera-

tions, satisfies

7y (4.5)

4.2 Solving A General Linear System

In this section we describe Kalantari’s method from [6] for solving the general
case of solving square Ar = b with A an invertible matrix, where it is not known if
the solution z = A~'b is nonnegative. Let e = (1,....;1)T € R™. Let u = Ae, then
u # 0 (Since A is invertible). Let

te =min{t: A(x —te) =b,x > 0}
(4.6)
=min{t: Az =b(t) = b+ tu),x > 0}

If a value ¢ > t, is know we can apply the Two-Phase triangle algorithm to solve
Az = b(t), x > 0. See [0] In the complexity analysis we use bounds that also depend
upon t. We may restate the complexity result, Theorem [£.1.3] where [|b|| and p are
replaced with ||b(¢)|| and p(t) = max{||a1]|, ..., ||anl, ||6(t)||}, respectively.

Now we may state the following complexity bound.

15

Theorem 4.2.1. [6] Given ¢y > 0, any t > 0, and any lower bound 0 < A < Ay,

the Two-Phase triangle algorithm in

o0) 2y _ o Lot
L)) = O3)

iterations, each of cost O(n?) arithmetic operations, either determines that Ax =

b+ tu, x > 0 is infeasible, or computes xy satisfying || Az — || < eop.

4.3 The Incremental Triangle Algorithm

The incremental triangle algorithm works as follows. Assume that for a given
to > 0 (initially set to zero) we have attempted to compute an e-approximate solution

for Ax = b, i.e. a vector xy > 0 such that
[A(zo — toe) — bl| < € x maz{||asl], ..., [[an][, ||0]}-

If this satisfied, we are done. If not, then conv([A, —b(ty)]) does not contain the
origin, where b(ty) = b+tou. Thus by Theorem the triangle algorithm computes

a witness, i.e.

P (to) € conv([A, —b(to)]) (4.7)
such that the following set of n + 1 strict inequalities are satisfied:

and
1P (t0) + b(to)ll < [b(to)]|- (4.9)

Equivalently, after expanding and simplifying .8 and [£.9] we get

' (to)||? — 20 (to)Ta; < 0, Vi =1, ..n. (4.10)

I (t) 1% + 20 (¢ + 0)Tb(ty) < 0

From [4.7] we have

P (to) = Aa — a1 (b + tou), Zal =1, a; >0, Vi
i=1

Letting p’ = Aa — o, 110, we may write
P'(to) = p' — toani1u.
Thus,
P (to) a; = p"a; — toan1u’ ;.
For each t define
P(t) =p —tapu.
For i = 1,...n, define
9:(t) = [l O — 20/ (1) " as.
Also, define

Gurn(t) = [P (I + 20 (£)"0(t).
It is easy to verify that for i = 1,...n we have

gi(t) = t*aq y lull* — 2toa (v — ai) u+ 1] — 20

The coefficient of ¢? in g,,1(t) can be shown as:

Qi1 (01 — 2)[ul|*.

Q;

16

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

A formal description of incremental triangle algorithm is given in the following:

17

Incremental Triangle Algorithm (A, b, e € (0,1))[6]

Step 0: (Initialization) Let u = Ae, e = (1,...,1)T € R™, Let
Cy = conv([A, —(b+ tu)]). Set to = 0. Select p’ = Aa — v, 110 € Cy.
1

Step 1: Given p' = Aa — a1, set 9 = T o according to

E(79) = ||Azo — (b+ Tu)|| = min{||Azo — (b+ tu)|| : ¢ > to}. (4.20)

Replace tg with 7o. If E(tg) < ep, set x = xg — toe, stop.
Step 2: If p'(ty) = p’ — anr1tou is a witness with respect to Cy, go to Step 3.
Otherwise, call triangle algorithm([A, —(b + tou)], 0, €) to compute a new iterate
P (to):

P'(to) = p" — Busatou, p" = AB — Buyib € Ct. (4.21)
Replace p’ with p”, a with g, and a1 with §,,1. Go to Step 1.

Step 3: Compute [, the smallest value ¢ such that g;(tf) > 0 for some i =1, ..., n.

Replace to with tj. Go to Step 2.

In next chapter, we will make a numerical experiment in solving linear system
problem Az = b and make a comparison with triangle algorithm, SOR and Gauss-

Seidel.

18

Chapter 5

Numerical Experiment for Solving Ax = b Via The
Triangle Algorithm and Comparison with SOR
and Gauss-Seidel

5.1 Review of Gauss-Seidel

In numerical linear algebra, the Gauss-Seidel method, also known as the Lieb-
mann method, or the method of successive displacement, is an iterative method used
to solve a linear system of equations. Consider a square system of n linear equations

with unknown x

Arx =0

where the matrix A is decomposed into a lower triangular component L, and a
strictly upper triangular component U, so that A = L, + U. The system of linear

equations maybe written as

Lix=b—-Ux (5.1)

The Gauss-Seidel method now solves the left hand side of for x. Using previous

value x on the right hand sid. Analytically, this maybe written as

o = L7 b - Ugh). (5.2)

19

k+1

However, by taking advantage of the triangular form of L,, the element of 2" can

be computed sequentially using forward substitution.

Next, we will introduce another iterative method, called the Successive Overre-

laxation (SOR) method. Here is the idea:

5.2 Review of SOR method

We can derive the SOR Method from the Gauss-Seidel method. First, we can

rewrite the Gauss-Seidel equation as
D2 = b — Lokt — Ua® (5.3)

where D is the diagonal of A, and L is a strictly lower triangular component, U is
defined as before.

So that
" = Db — Lattt — Ush] (5.4)

We can subtract z¥ from both sides to get
aP— o = D7 — La®*t — Da® — U] (5.5)
The idea of SOR Method is to iterate
oo = 2F w2 — 2M) s (5.6)

where

(" — 2¥)qg = Db — La™™ — Da¥ — Ua¥] (5.7)

and generally 1 < w < 2. Notice that if w = 1 then this is the Gauss-Seidel Method.

20

We can write the SOR iterates as
oM = 2F 4+ wD b — La™™ — Da* — UaF) (5.8)

When we solve for z*+1, we get

(4 ép)-l[(iz) D)t b, (5.9)

5.3 Numerical Comparison with Triangle Algorithm, Gauss-

Seidel and SOR

In this section, we will solve general linear system Az = b with incremental tri-

angle algorithm, Gauss-Seidel and SOR. First, let us consider the following example:

Example 1. Consider the 3 x 3 linear system.

4 3 0) —24
3 4 -1 o | =1 =30 (5.10)
0 —1 4 T3 —24

Its solution is x = [3,—12,—=9]. If you directly implement the incremental triangle
algorithm with t = 0, it only takes 2 iterations to find the witness that (0,0) is not
in conv([A, =0b]). From the solution, t, should be located in t, > 12. The following

table show the iterations with increasing t value.

Table 5.1: Iterations with Increasing t value

t value Tterations

21

t =128 77819
t =129 55791

t=13.5 205
t=13.7 262

t =14 384

Based on the result, incremental triangle algorithm only need take 5 iteration step
when t =13, let us describe this t as t,,. The definition of t,m will be given in
generality in @ 1 next section.

The following table shows the comparison results with triangle algorithm, SOR
and Gauss-Seidel method with tol = 10~4, and here initial zo’s of three methods start

from zeros(n,1):

Table 5.2: Ezx.1 Triangle VS SOR VS Gauss Seidel

€ value | Triangle Algorithm | SOR (Yang’s Formula) | Gauss-S

e=10"* 5 10 20

From the above table, the triangle algorithm does less iteration than both SOR and
Gauss-Seidel.

Next let us consider an example of a larger linear system:

Example 2. Consider the linear tridiagonal system:

A is defined as below:

22

Alii)=2; Alii+1)=—1; A+ 1,i)=—1,i=1,...n—1; Aln,n) =2

and b is defined as b= [1,0,...0, 1)

0 T 1
0
2 Ty 1

Comparison of the incremental triangle algorithm with t,,;,, SOR with optimum

w and Gaussian Seidel, for tol = 107% and n = 100 and 1000. Here, the optimum w

of SOR was obtained from Young’s formula [10], tmim = 1073 for incremental triangle

algorithm and the initial guess xo of three methods equal to zeros(n,1). Here are the

result:

Table 5.3: Time Comparison:

Triangle vs Optimum SOR vs Gauss-Seidel

Matriz Size(N)

Incremental Triangle

SOR (Young’s Formula)

Gauss-S (w = 1)

N =100
N = 1000

0.0053
0.0058

0.0762
2/.572

0.7972
> 1250.793

23

Table 5.4: Iterations Comparison:

Triangle vs Optimum SOR vs Gauss-Seidel

Matriz Size(N) | Incremental Triangle | SOR (Young’s Formula) | Gauss-S (w = 1)

N =100 2 236 7004

N = 1000 2 2004 280417

According to the above two tables, we conclude that the running time and number
of iterations of the triangle algorithm is much less than both the SOR method and
Gauss Seidel method.

From the above examples, we can conclude that the incremental triangle algo-
rithm outperforms both SOR and Gauss-Seidel methods in some linear systems, and
the value t,,;, selected in the the triangle algorithm can significantly improve the
performance of the algorithm. Next, we will give more examples to show that how

different ¢ values can affect the performance of triangle algorithm.

5.4 More Numerical Experiment with ¢,,,

Let us start from a simple example to observe how different ¢ values can improve
the performance of the triangle algorithm. Consider testing if p = (0,0)7 lies in the

triangle conv((1,0)T, (=1,0)T, (0,1)T). Solving this via the triangle when ¢ = 0 takes

24

22 iterations to get an approximation with its absolute error less than € = 0.1, see
[4]. This large number of iterations is due to the fact that p is a boundary point of
convex hull. If however p is replaced with a point so that a circle of radius p centered
at p would lie inside the triangle, the complexity of the triangle would improve to
O(p~21Ine). To solve this, first we convert the convex hull problem into Az = b,

xz > 0.

1 -1 0 T 0
0 0 1 zo | =10 (5.11)
11 1) \as 1

Now consider adding tu to both sides of Ax = b, where t is a positive scalar,
u = Ae, e = (1,1,1)T, this gives a new LP feasibility problem, Az; = b + tu, where
xy = x 4+ tu > 0. Its corresponding convex hull problem is to test if for any positive

t, (0,0,0)T is interior to
CO’/ZU([A, _(b + tu)]) = COTZ’U({(L 0,]-)Tv <_17 0, 1>T7 (07 L,]-)T7 _(07 6,1+ St)T})

Now we transfer the original problem Ax = b satisfies x + te > 0, rather than = > 0.
For example, if ¢ = 1, solving the above problem via the triangle algorithm gives
an approximate solution within the same error ¢ = 0.1, in only takes 2 iterations.
In fact, when A is invertible it can be shown that getting an approximate solution
for any positive value t results in a corresponding approximate solution for Az = b

itself.

Definition 4. Given €, let t,,;, be the value of t such that the number of iterations

of incremental triangle algorithm is the smallest.

25

Next, let us see more examples with how ¢,,,;,, improves the performance of triangle

algorithm.

Example 3. Consider an 3 x 3 linear system

1 2 1 1 —14
2 0 4 | =1 -14 (5.12)
Its solution is v = [—1,—2, =3|T. Similar to Example |l we also show the iterations

with corresponding t value.

Table 5.5: Iterations with Increasing t value

t value Tterations
t=23.1 5651
t=3.5 628

tinin = 3.98 71
t=4.0 75

t=5.0 143

We observe that the iteration steps decreases significantly when t = 3.98, and start

to increase slowly when t keep increasing.

26

Example 4. Consider 4 x 4 linear system

1 010 T 6
= (5.13)
1100 T3 -1

The solution to the system is x = [2,—3,4,—1]T. Similar to previous evamples,
we can choose t, in the range t > 3. The iterations with corresponding t value are

shown in the following table:

Table 5.6: Iterations with Increasing t value

t value Tterations
t=3.70 4613
t=3.72 2922

t=3.725 1983

tomin = 3.73 78
t=3.74 8/
t=3.75 91
t=3.8 96
t=3.9 100

t=14.0 102

27

5000 T T T T

4500 - =

4000 - B

3500 - B

3000 - =

Iterations
o
o
8
=
I

2000 - =

1500 - =

1000 - =

500 B

Figure 5.1: Distribution of iterations with different t values

From the table above, we see similar trend as in Example [3: the iteration steps de-
creases significantly when t is around 3.73, and increases slowly when keep increasing

12

Through all examples above and other experimental results, we can conclude that
different t values will influence iterations. The value t,,;, will decrease the number
of iteration to the minimum.

From Figure [5.1] we find that iterations will be huge when the point is on the
margin of convex hull, and it will decrease hugely when t is getting close to the
optimal value, and when t passed the t,,;,, it increases smoothly. We can use this
property to find try to compute the value ¢,,;, in applications. See details in the
algorithm in FindOptimalt.m in the Appendix for Matlab codes.

In addition, we can find an initial value ¢y by getOptT.m, then we can make
use this property to find a solution by keep doubling ¢y, because the iterations will

converge to some number when we keep increasing t value.

28

In general, we have shown that incremental triangle algorithm can solve a general
linear system Ax = b, outperforming SOR and Gauss-Seidel methods. In addition,
with changing parametric values t, we can decrease the number of iterations and
improve the performance. In next chapter, we describe the implementation of the
triangle algorithm for solving the PageRank problem. The triangle algorithm has a

good performance in solving large scale linear systems.

29

Chapter 6

Solving PageRank Problem via Triangle
Algorithm

In this chapter, we will solve the PageRank Problem via the triangle algorithm.
Imagining surfing the Web, going from page to page by randomly choosing an out-
going link from one page to get to the next. This can lead to dead ends at pages
with no outgoing links, or cycles around cliques of interconnected pages with simply
choose a random page from the Web. This theoretical random walk is known as a
Markov chain or Markov process[2]. The limiting probability that an infinitely ded-
icated random surfer visits any particular page is its Page-Rank. A page has high
rank if other pages with high rank link to it.

Let W be the set of Web pages that can be reached by following a chain of hyper-
links starting at some root page, and let n be the number of pages in W. For Google,
the set W actually varies with time, but by June, 2004, n was over 4 billion. Let G
be the n-by-n connectivity matrix of a portion of the Web, that is, g;; = 1 if there is
a hyper-link to page ¢ from page j and g;; = 0 otherwise. The matrix G can be huge,
but it is very sparse. Its jth column shows the links on the jth page. The number

of non-zeros in G is the total number of hyper-links in W, see [2].

30

Let r; and ¢; be the row and column sums of G

ri = Zgija G = Zgij (6.1)
j i

The quantities r; and ¢; are the in-degree and out-degree of the j-th pages. Let
p be the probability that the random walk follows a link. A typical value is p = 0.85.
The 1 — p is the probability that some arbitrary page is chosen and 6 = (1 — p)/n is
the probability that a particular random page is chosen. Let A be the n-by-n matrix

whose elements are, see [§]:

0 pgij/c;i+90 1 ¢; #0 (6.2
I/n :¢;=0

Notice that A comes from scaling the connectivity matrix by its column sums.

The jth column is the probability of jumping from the jth page to the other pages

on the Web. If the jth page is a dead end, that is has no out-links, then we assign

a uniform probability of 1/n to all the elements in its column. Most of the elements

of A are equal to J, the probability of jumping from one page to another without
following a link.

Here, the matrix A is the transition probability matrix of the Markov chain. Its

elements are all strictly between zero and one. Its column sums are all equal to one.

It concludes that a nonzero solution of the equation
r=Ax (6.3)

exists and is unique to within a scaling factor. If this scaling factor is chosen so that
>, x; = 1, then x is the state vector of the Markov chain and is Google Page Rank.

The elements x are all positive and less than one.

31

We can rewrite the equation as
(I-—A)x=0

Set A’ = (I — A) and t/ = 0, we can also regard this problem as convex hull problem.

Az =10,
efx =1, (6.4)
x>0

We can also use the incremental triangle algorithm to solve this problem. In
the next experimental chapter, we randomly generated the random matrix from
dimension 200 to 2200, and make a result comparison with classic power method,
which shows that triangle algorithm is competed to solve this problem. Finally, we
use the practical web data from Prof. Kamvar, which is 281,903 x 281, 903 matrix.
The experiment shows that triangle algorithm only need take 1 iteration to find the

solution, which is an amazing result.

32

Chapter 7

Numerical Comparison with Power Method

In this section, we will implement triangle algorithm into PageRank problem and
make a comparison with the Power Method. We randomly generate the data based

on the convex combination:
G=aS+(1-a)e’ (7.1)

where S is the Stochastic Matrix and Damping factor 0 < a < 1, here we set
a = 0.85. e is column vector of all ones. Personalization vector v > 0, ||v]j; = 1.

From and G is Stochastic, with eigenvalues:
1> alX(9)] = alrs(S)] > ... (7.2)
We can get the unique dominant left eigenvector:
G =x", 7 >0and ||x|; =1 (7.3)

Where 7; is PageRank of Web page .

The following is a brief introduction to Power Method:

Power Method

33

Want: 7 such that 777G = 7T

Power Method: Pick an initial guess xy. Repeat
[.CEkJrl]T = [in]TG (74)

until ”termination criterion satisfied”.

More information can be available in code pagerankpow.m in the Appendix.

Then, we generated the datasets randomly with the dimension from 200 to 2200.

We implemented the both triangle algorithm and Power Method in Matlab with

tolerance 1074,

In each dimension, we repeated 10 times and get average of that.

The experiment results are showed as follows:

Table 7.1: Triangle Algorithm VS Power Method

Dimension n | Triangle Iter (Avg) || Power Iter (Avg) || Triangle Time (s) || Power Time (s)
200 1 4.2 0.013261 0.0036568
400 1 4.0 0.027061 0.0078675
600 1 4.0 0.017507 0.0053561
800 1 3.6 0.03037 0.0013188
1000 1 3.0 0.044809 0.0046782
1200 1 3.0 0.062895 0.0080632
1400 1 3.0 0.081302 0.011503
1600 1 3.0 0.10477 0.014961
1800 1 3.0 0.13136 0.018843

2000 1
2200 1

3.0
3.0

0.16327
0.19548

34

0.023479
0.028181

From table [7.1] we observed that triangle algorithm need less iterative steps to

find the solution compared with the Power Method. So we believed that triangle

algorithm is also a good way to solve the Google page rank problem.

Next, to show that triangle algorithm is also a very good method to solve the

practical Google Page Rank problem. we will use the real web data from Prof.

Kamvar’s personal research website(http://kamvar.org/personalized search) with the

dimension 281,903 x281,903. In the following table, it showed the computation result

for € from 10~* to 1019,

Table 7.2: Triangle Algorithm’s performance for practical

data method

€ [terative Steps || Time (s)
e=10"1 1 3765.0395
e=10"° 1 3786.4572
e=10"6 1 3812.4369
e=10"7 1 3812.7181
e=10"% 1 3812.3995
e=107" 1 3823.0131
e=10"10 1 4905.1076

35

From table [7.2] we found that triangle algorithm had a suprising good perfor-
mance, which only need 1 iterative step to find the solution. This can be explained
by the fact that we always find the optimal pivot for each iteration step so that it
can find the solution in just 1 iteration.

In sum, we concluded that we had found another way to compute the PageRank
problem. The tirangle algorithm is a competed algorithm to compute the large scale

sparse matrix.

36

Chapter 8

Conclusion and Future Work

In this thesis, we reviewed the basic conceptions of the triangle algorithm, which
was written by Prof.Kalantari. Then, we made some implementations of trian-
gle algorithm into convex hull problem and a linear system problem. Firstly, we
implemented the triangle algorithm into solving convex hull problem and made a
comparison with Frank-Wolfe algorithm. From the result, the triangle algorithm
outperformed the Frank-Wolfe on large scale problem. Secondly, we implemented
the incremental version of triangle algorithm to solving the linear system Az = b,
and made some comparison with SOR and Gauss-Seidel methods. The triangle al-
gorithm is more efficient taking fewer iterations than these algorithms. Finally, we
implemented the triangle algorithm into solving the PageRank problem and made
the comparison with Power method. The triangle algorithm took less iterations to
reach the same accuracy. Surprising, the triangle algorithm only took 1 iteration
to solve the Kamvar datasets for large scale PageRank problem whose dimension is
281,903.

We have showed that the triangle algorithm was a competed algorithm to solve
some linear systems. In future, we definitely need implement the triangle algorithm

into more linear system problems. And we can optimize each iteration step to improve

37

the calculation speed. Moreover, we could prove and find the existed the relationship
between the optimal ¢,,;, and pivots. Finding the optimal ¢,,;, can reduced the time

and iterations significantly via our experiment in this paper.

38

Chapter 9
Appendix for Matlab Codes

9.1 Triangle Algorithm for LP Feasibility

function [time,iteration ,average] = Triangle_ v2(A,b,epsilon)

%Solve convex hull problem via Triangle Algorithm

%Given P, a set of points al,a2,...,an in m—dimension space
%find whether the target point b is in the convex hull of P
%If yes, return the convex combination of al,a2,...,an to represent b.
format long;
[T ,n]=size (A);
TISTISITTTSTITISTISISSTISISSTISISTISTISIST IS IS IS TSI TSI TS o
%Step 1
%Find R = max{norm(ai—b,2)}, the scality of the point set.
dist = zeros(1,n);
R = 0;
for i=1:n

if R<norm(A(:,i)—b,2) R = norm(A(:,i)—b,2); end

dist (1,i) = norm(A(:,i)=b,2);

39

end

for i=1:n—-1
k =1;
for j=i+1l:n
if dist(1,j)<dist(1l,k) k = j; end
end
temp = dist (1,1);
dist (1,i) = dist(1,k);
dist (1,k) = temp;
tempvector = A(:,1);
AG 1) = ALK
A(:,k) = tempvector;
end
A0 = A,
n0 = n;
YISSSTSTTTTITTSSSTTTISISSSSTTTI SIS SSTTTIISSSSSTSTTTISSSSSITTTIII o
%Step 2
%Set the center point of P as the initial iterate
tic;
coefficient = zeros(1,n);
for i=1:n
coefficient (1,i) = 1/n;

end

p = Axcoefficient ’;

gap = norm(p—b,2);

iteration = 0;
sumoperation = 0;
sumauxilary = 0;
sumneedhelp = 0;

index = 0;

unitvector = zeros(1l,n);

bnorm = b’xb;

frequency = zeros(1,n);
TISSSSTTTTISTTSSSTTTISSSSSTSTTI SIS SSSTSTI SIS S SIS TSI SSSTSTTIIS o
%Step 3
%Start iteration untill gap is small enough
while (gap>epsilonx*R)

index = 0; bestcos = 0;

pnorm = p’*p;

diff = (bnorm—pnorm)/2;
gapvector = b—p;
flag = 0;
tempinner = p’kxgapvector;

threhold = 0.14xgap;

41

for i=1:n;
sumoperation = sumoperation+1;
WITITITTSTISISISTSIITISISIT IS TSI IS TS ISISTISISIT IS TS TS IS IS IS o
%Step 4
%Find a pivot, judge the pivot is good enough or not
temp = gapvector xA(:,1);
if diff <temp
cosine = (temp—tempinner)/(norm(A(:,i)—p,2));
if (bestcos<cosine)
index = i;
bestcos = cosine:
end
if (cosine>threhold)
flag = 1;
break :
end
end
end
WITITISTTITISISTSIITISISISISTSISISISISTISISISIS TS TS IS ITIS o
%Step 5

%No pivot, report NO

%Otherwise , calculate the next iterate , the projection of b lies on the

%segment from p to ai

%Update the covex combination for next iterate

42

if (index = 0)
break ;
else
if ((flag = 0)&&(iteration >20))
%Using auxiliary pivot based on the history feedback data
%Associate each point a counter to count the number of times chosen to be
%pivot .
sumneedhelp = sumneedhelp+1;
pivot = AO*(frequency ’/iteration);
temp = norm(pivot—p,2);
if norm(pivot—b,2)<temp
cosine = (pivot—p) s« gapvector/temp;
if (bestcos<cosine)
sumauxilary = sumauxilary+1;
alpha = bestcos/temp;
p = ptalphax(pivot—p);
gap = norm(p—b,2);
coefficient = (1—alpha)*coefficient+alphax

(frequency/iteration);

A = horzcat (A, pivot);
if (n=mn0)
n = n+1;

auxcoefficient = frequency/iteration;

43

else
n = n+1;
auxcoefficient = [auxcoefficient;frequency/iteration |;
end
frequency = frequency + frequency/iteration;
iteration = iteration+1;
continue ;
end
end
end
iteration = iteration—+1;

temp = norm(A(:,index)—p,2);
alpha = bestcos/temp;

p = ptalphax*(A(:,index)—p);
gap = norm(p—b,2);

if (index<=n0)

unitvector (1,index) = 1;
coefficient = (1—alpha)xcoefficient+alphasxunitvector;
unitvector (1,index) = 0;

frequency (1,index) = frequency (1,index)+1;
else
coefficient = (1—alpha)xcoefficient+alpha

xauxcoefficient (index—m0,:);

44

frequency = frequency+auxcoefficient (index—n0,:);
end
end
end
time = toc;
average = sumoperation/iteration;

WITISTISTISSTISTISSIISTISSTIISTISSTISTISTIISTo
%Step 6
%If gap is small enought, report YES
if (index = 0)
disp (’Not in convex hull!’);
else

disp (['The target point is in the convex hull!

The number of iteration is ', num2str(iteration),

) b

and the running time is ’, num2str(time),

b

and # need help times ’, num2str(sumneedhelp),

and # of auxilary points is ', num2str(sumauxilary)]);

end

TISTTTTSITTSSTTTTSITTISITSTSS IS TSI TISITTSISITTSSo
%Verification for correctness

correct = 1;

Xnorm =

norm(coefficient ,1);

if (abs(xnorm—1)>le—10) correct = 0; end

-

if (temp >0) correct

, temp |

size (find (coefficient <—le—10));

= 0; end

if (norm(AOxcoefficient ’—b,2)>epsilon*R) correct = 0; end

if (correct =— 1)

disp ('The solution is verified to be correct! 7);

else

disp ('The solution is false! 7);

end

9.2 Incremental Triangle Algorithm

45

function [pprime, error, iter, alpha, x0, solError xold, flag]

%o
%o
%
%o
%o
%
%o
%o
%o
%o

incTriangle2 (A, b, t, tol)

input

output

A
pprime

p
tol

pprime
error
iter

alpha

REAL matrix
REAL starting guess to p
REAL right hand side vector

REAL error tolerance

REAL approximation to p
REAL error norm
INTEGER number of iterations performed

REAL vector of convex coefficients

46

% x_0 solution to Linear system
% xold orignal solution

% Flag 0: not in convex hull,

% 1: in convex hull

format long;

[~ W= size(A):
¢ = ones(w,1);
u = Axc;

bnew = b+tx*u;

S = [A —bnew |;

[m,n]=size (S);
%E = eye(n);
E = sparse(l:n,1:n,1);

p = zeros(m,1);
pprime = (sum(S’)/n)’;

counterTol = 1.0el10;

SO = S; % Fixing SO
iter = 0; % initialization
% t=1;

% step 0: initial guess

47

error = norm(p — pprime);
alpha = (1/n)*ones(n,1);
[z,7] = size(alpha);

x0 = alpha(l:z—1,1)/alpha(z);

solError = norm (Axx0—(bt+t*u));

counter = 0;

tic;

while error > tol && solError > tol % iterative steps
flag = 0;
beta = []; index = [];

for i=1:n % step 1: find pivot
%
% Using the law of cosines, this block of code will generate a set
% of angles beta_i corresponding to each of the candidate pivots
%
if norm(pprime — S(:,i)) >= norm(p — S(:,1))

% Law of Cosines

%

48

a = norm(pprime — S(:,1));

B = norm(p — S(:,i));

¢ = norm(p — pprime);

% Generating the set of beta_i and marking the indicies
% in the set index

beta(betai) = acos((a"2 + ¢"2 — B"2)/(2xaxc));

index (indexi) = 1i;

flag = 1;
% incrementing position in index and beta arrays
betai = betai+1;

indexi = indexi+1;

elseif norm(pprime — S(:,1i)) < norm(p — S(:,1))
%ignore vertex that does not satisfy condition
continue ;
end
end
% Check for witness
if flag = 0;
disp (' Witness was found. P is not in the convex set of S’)
break ;

end

%o
%o
%o

%o
%
%o
%o
%
%o
% %o
% %
%0 Yo
% %o

49

The selection of the ideal pivot per iteration will be based

on the angle which is both the minimum of the set {beta}

[7, cindex] = min(beta);

This checks the previous and previous—previous verticies
If there is a pattern, this code will create an auxillary
vertex defined to be the average of the two verticies the

iterate is oscillating between

This calculates and moves the iterate to a new location

step 2: update alpha

ic = index(cindex);
if iter = 0

ipp = ic;

v =S(:,ic);

e = E(:,ic);
elseif iter =1

ip = ic;

v =29S(:,ic);

%
%o
%o
%o
%o
%o

50

else
if ic = ipp
ipp = ip;
ip = ic;
counter = counter 4+ 1;
else
counter = 0;
ipp = ip;
ip = ic;
end

if counter > counterTol

This code executes the auxillary pivot points by taking the average
of two pivots that the iterate oscillates between cycles. It also
updates the standard basis vector matrix to properly update the

alpha coefficients vector

v = (S(:,ip) + S(:,ipp))/2;

S =[S v];
e = (E(:,ip) + E(:,ipp))/2;
E=[E el
else
v =8(:,ic);

o1

end

end
%
% Updates the alpha vector and generates a new iterate
%

beta = (p—pprime) *(v—pprime)/(norm(v—pprime)" 2);

alpha = (1—beta)*xalpha + betaxe;

pprime = SOxalpha;
%
% Updates the approximate solution to the system of equations
% given the alpha coefficients of the augmented matrix [A —b]
%

x0 = alpha(l:z—1,1)/alpha(z);

solError = norm (Axx0 — (bt+t*u));

error = norm(p — pprime); % update error
iter = iter + 1; % update iterations
% t = t+1;
end
time = toc;
e = ones(w,1);

xold=x0—txe;

% if flag = 0;

52

% disp (" Witness was found. P is not in the convex set of S’)
% elseif flag = 1;

% disp ('P is in the convex set of S’)

% end

% END incTriangle .m

9.3 Power Method

function [time,iteration] = pagerankpow (A,b,epsilon)

% PAGERANKPOW PageRank by power method .

% x = pagerankpow (G) is the PageRank of the graph G.
% [time ,iteration] = pagerankpow (A,b, epsilon)

% counts the number of iterations.

% Link structure

R = 0;
for i=1:n
if R<norm(A(:,i)—b,2)
R = norm(A(:,1)-b,2);
end

end

93

tic;

% Power method
x = ones(n,1)/n;
iteration = 0;

gap = norm (Axx—x,2);

while (gap>epsilonx*R)

gap = norm (A*xx—x);

x = Axx;

iteration = iteration—+1;
end
time = toc;

if (gap<epsilon#R)

disp (['The number of iteration is ’, num2str(iteration), ’ and the run

else

disp (’No solution!’);

end
9.4 Generated Test Data for LP Feasibility

function [A,b] = TestData(m,n)

o4

A = randsphere (n,m,2500);
A=A
A = A+2500%o0nes (m,n);
alpha = zeros(1,n);
for i=1:n
alpha(1,i) = random(’unif’ ;1 ,n);

end

sum = 0;
count = 0;
for i=1:n
if (alpha(1,i)>0)&&(alpha(1l,i)<(m+1))
sum = sum+talpha (1,1i);
count = count+1;
else
alpha(1,i) = 0;
end

end

for i=1:n
alpha(1,1) = alpha(1,i)/sum;

end

b = Axalpha ’;

9.5 Generated Data for Page Rank Problem

function [A,G,b] = Gmatrix_v4(n)

%Randomly generate adjacent matrix with value 0 or 1
%X = sprand (n,n,0.05);
X = sprand(n,n,0.5);

for i=1:n
for j=1:n
X(i,j) = round(X(i,j));
end ;

end ;

%Normalize the adjacent matrix by column
for i=1:n

norml = sum(X(:,i));

if (norml>0)

X(:,i) = X(:,1)/norml;

X(:,1) = ones(n,1)/n;

end

95

o6

alpha = 0.85;
G = alphaxX+(1—alpha)/n*ones(n,n);
b = zeros(n,1);

A = G-eye(n);

9.6 Get Optimal T

function t=getOptT (A,b)
YHow to get t

Y%methodl max

t=max (abs (b)) /max(max(abs(A)));

Y%method 2 norm
% t=norm(b)/norm(A);

t=ceil (t);

%End getT .m

format long;

%Get the intial t

told=getOptT (A,b);

[pprimel, errorl, iterl , alphal, x01, solErrorl , xoldl , flagl |
= incTriangle2 (A, b, told, le—1);

%Get the new t and gap = 1

tnew = told-+1;

o7

[pprime2, error2, iter2 , alpha2, x02, solError2 6 xold2,flag2]
= incTriangle2 (A, b, tnew, le—1);

if flagl==0 || flag2==0

disp (’not in convex hull 7);
end
n=3;

while n>0 && iterl > iter2 && flagl=—flag?2

told = tnew;

[pprimel, errorl, iterl , alphal, x01, solErrorl h xoldl , flagl |
= incTriangle2 (A, b, told, le—1);

tnew = tnew + 1;

[pprime2, error2, iter2 , alpha2, x02, solError2 6 xold2,flag2]
= incTriangle2 (A, b, tnew, le—1);

n=n-—1;
end
tnew = told;
told = tnew—1/2;
[pprimel, errorl, iterl , alphal, x01, solErrorl , xoldl , flagl |
= incTriangle2 (A, b, told, le—2);

o8

[pprime2, error2, iter2 , alpha2, x02, solError2 6 xold2,flag2]

= incTriangle2 (A, b, tnew, le—2);

k=2;
error =1;
while k>0 || error>le—4
if iterl >= iter2
told=(told+tnew)/2;
[pprimel , errorl, iterl , alphal, x01, solErrorl h xoldl , flagl |
= incTriangle2 (A, b, told, le—3);
elseif iterl < iter2
diff = tnew—told;
tnew=told ;
told=tnew—diff;
[pprimel , errorl, iterl , alphal, x01, solErrorl h xoldl , flagl |
= incTriangle2 (A, b, told, le—3);
[pprime2, error2, iter2, alpha2, x02, solError2 6 xold2,flag2 |
= incTriangle2 (A, b, tnew, le—3);
end
k=k—1;
error = abs(told—tnew);

end

99

[pprimel, errorl, iterl , alphal, x01, solErrorl xoldl , flagl |
= incTriangle2 (A, b, told, le—3);
[pprime2, error2, iter2, alpha2, x02, solError2 6 xold2,flag2|
= incTriangle2 (A, b, tnew, le—3);

9.7 Frank Wolf Algorithm

function [time iteration] = FrankWolf(A,b,epsilon)

[T ,n]=size (A);

R = 0;
for i=1:n
if R<norm(A(:,i)—b,2) R = norm(A(:,i)—b,2); end

end

tic;

iteration = 0;
unitvector = zeros(n,1);
x = ones(n,1)/n;

gap = norm (Axx—b,2);

¢c = A'xb;
while (gap>epsilonx*R)

iteration = iteration-+1;

end

temp = A’ (Axx)—c;

" ,1] = min(temp);
unitvector (i,1) = 1;
temp = unitvector —x;

tempvector = Axtemp;
tempnorm = tempvector s« tempvector;
if (tempnorm<le—10)

break ;
end
alpha = (b—Axx)’s«tempvector/tempnorm;
if (alpha >1) alpha = 1;
else if (alpha<le—10)

break;

end
end
x = x + alphaxtemp;
unitvector (i,l) = 0;

gap = norm (Axx—b,2);

time = toc;

if (gap<epsilonxR)

disp (['The target point is in the convex hull!

Y

The number of iteration is ', num2str(iteration),

60

b b

, num?2str(time)]);

I

and the running time is
else
disp ("Not in convex hull ");

end

61

TWITSSTTSSTISTISTTSSITSTISTISSTISSIIS T IS TS SIS SIISTISTISST SIS SIS ST IS TS SIS ST

%Verification for correctness
correct = 1;
xnorm = norm (x,1);
if (abs(xnorm—1)>1le—10) correct = 0; end
[temp,] = size(find (x<—1le—10));
if (temp >0) correct = 0; end
if (norm(Axx—b,2)>epsilon*R) correct = 0; end
if (correct = 1)

disp (’The solution is verified to be correct! ’);
else

disp (’The solution is false! 7);

end

9.8 SOR and Gauss Seidel

function [x ,result] = sor(A, b,w,max_ite ,tol)
D=diag(diag(A));
L=tril (A)-D;

U=triu (A)-D;

[m,n]=size (A);
x=zeros (n,1);
for iter=1:max_ite
Xprev=x;
x=(D+wxL) \ (wkb—(wsU+(w—1)xD)*x) ;
error=norm(x — xprev) / norm(X);
result (iter ,:)= [iter error |;
if (error <= tol)
break ;

end ;

%Yong’s optimal formula
D=diag(diag(A));

J=D\(D - A); e = eig(J);
r=max(abs(e));

w=2/(1 4 sqrt(1 — r"2));

62

1]

63

References

K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe

algorithm. July 2008.

Department of Methematics, North Carolina State University, Raleigh, USA.
The Mathematics Behind Google’s PageRank.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res.
Logist Quart., 3(1956):95-110.

T. Gibson and B. Kalantari. Experiments with the triangle algorithm for linear
systems. 23rd Annual Fall Workshop on Computational Geometry, City College
of New York, October 2013.

J. E. Goodman and J. O’'Rourke, editors. Discrete Mathematics and its Appli-

cations. Chapman Hall Boca Raton, 2004.

B. Kalantari. Solving linear system of equations via a convex hull algorithm.

arziv.org/pdf/1210.7858v1. pdf, 2012.

B. Kalantari. A characterization theorem and an algorithm for a convex hull

problem. Annals of Operations Research, 2014.

64

[8] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive methods for the computation

of pagerank. July 2012.

[9] M. Li and B. Kalantari. Experimental study of the convex hull decision problem
via a new geometric algorithm. 23rd Annual Fall Workshop on Computational

Geometry, City College of New York, October 2013.

[10] D. M. Young. Iterative solution of large linear systems. Academic Press, 1971.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Review of The Triangle Algorithm
	Basic Concepts of Triangle Algorithm

	Numerical Experiment for Solving The Convex Hull Problem and Comparison with The Frank-Wolfe Algorithm
	Solving Ax=b Via The Triangle Algorithm
	Solving A Linear System with Nonnegative Solution
	Solving A General Linear System
	The Incremental Triangle Algorithm

	Numerical Experiment for Solving Ax=b Via The Triangle Algorithm and Comparison with SOR and Gauss-Seidel
	Review of Gauss-Seidel
	Review of SOR method
	Numerical Comparison with Triangle Algorithm, Gauss-Seidel and SOR
	More Numerical Experiment with tmin

	Solving PageRank Problem via Triangle Algorithm
	Numerical Comparison with Power Method
	Conclusion and Future Work
	Appendix for Matlab Codes
	Triangle Algorithm for LP Feasibility
	Incremental Triangle Algorithm
	Power Method
	Generated Test Data for LP Feasibility
	Generated Data for Page Rank Problem
	Get Optimal T
	Frank Wolf Algorithm
	SOR and Gauss Seidel

	References

