
AN EXPERIMENTAL STUDY OF THE

TRIANGLE ALGORITHM WITH EMPHASIS

ON SOLVING A LINEAR SYSTEM

BY HAO SHEN

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Dr. Bahman Kalantari

and approved by

New Brunswick, New Jersey

January, 2015

ABSTRACT OF THE THESIS

An Experimental Study of the Triangle Algorithm

with Emphasis on Solving a Linear System

by Hao Shen

Thesis Director: Dr. Bahman Kalantari

The triangle algorithm, Kalantari [7], is designed to solve the convex hull member-

ship problem. It can also solve LP, and as shown in Kalantari [6] solve a square

linear system. In this thesis we carry out some experimentation with the triangle

algorithm both for solving convex hull problem and a linear system, however, with

more emphasis on the latter problem.

We first tested the triangle algorithm on the convex hull problem and made

comparison with the Frank-Wolfe algorithm. The triangle algorithm outperformed

the Frank-Wolfe for large scale problems, up to 10,000 points in dimensions up to

500. The triangle algorithm takes fewer iterations than the Frank-Wolfe algorithm.

For linear systems, we implemented the incremental version of the triangle al-

gorithm in [6] and made some comparison with SOR and Gauss-Seidel methods for

ii

systems of dimension up to 1000. The triangle algorithm is more efficient than these

algorithms taking fewer iterations.

We also tested the triangle algorithm for solving the PageRank matrix by convert-

ing it into a convex hull membership problem. We solved the problem in dimensions

ranging from 200 to 2200. We made comparisons with the power method. The

triangle algorithm took less iterations to reach the same accuracy.

Additionally, we tested a large scale PageRank matrix problem of size of 281,903

due to S. Kamvar. Surprisingly, the triangle algorithm took only 1 iteration to obtain

a solution with the accuracy of 10−10.

iii

Acknowledgements

Foremost, I would like to express my deep gratitude to my thesis advisor Pro-

fessor Bahman Kalantari for the continuous support during my Master study and

research. His patience, motivation, enthusiasm and immense knowledge really helped

me during the time of research and writing of this thesis. I could not have imagined

having a better advisor and mentor for my master study.

My sincere thanks also goes to my friends Thomas Gibson and Meng Li for

sharing their codes and technical experiences with the triangle algorithm.

Finally, thanks Prof. Richter and Prof. Saraf for their comments during my

defense.

iv

Dedication

In my life, several persons have always been there during those difficult and tiring

times. I would like to dedicate this thesis and everything I do to my parents and my

wife, Ping Wang. I would not be who I am today without the love and support of

my family.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Introduction . 1

2. Review of The Triangle Algorithm . 4

2.1. Basic Concepts of Triangle Algorithm 4

3. Numerical Experiment for Solving The Convex Hull Problem and

Comparison with The Frank-Wolfe Algorithm 9

4. Solving Ax=b Via The Triangle Algorithm 12

4.1. Solving A Linear System with Nonnegative Solution 12

4.2. Solving A General Linear System . 14

4.3. The Incremental Triangle Algorithm 15

vi

5. Numerical Experiment for Solving Ax = b Via The Triangle Algo-

rithm and Comparison with SOR and Gauss-Seidel 18

5.1. Review of Gauss-Seidel . 18

5.2. Review of SOR method . 19

5.3. Numerical Comparison with Triangle Algorithm, Gauss-Seidel and SOR 20

5.4. More Numerical Experiment with tmin 23

6. Solving PageRank Problem via Triangle Algorithm 29

7. Numerical Comparison with Power Method 32

8. Conclusion and Future Work . 36

9. Appendix for Matlab Codes . 38

9.1. Triangle Algorithm for LP Feasibility 38

9.2. Incremental Triangle Algorithm . 45

9.3. Power Method . 52

9.4. Generated Test Data for LP Feasibility 53

9.5. Generated Data for Page Rank Problem 55

9.6. Get Optimal T . 56

9.7. Frank Wolf Algorithm . 59

9.8. SOR and Gauss Seidel . 61

References . 62

vii

List of Tables

5.1. Iterations with Increasing t value . 20

5.2. Ex.1 Triangle VS SOR VS Gauss Seidel 21

5.3. Time Comparison: Triangle vs Optimum SOR vs Gauss-Seidel 22

5.4. Iterations Comparison: Triangle vs Optimum SOR vs Gauss-Seidel . 23

5.5. Iterations with Increasing t value . 25

5.6. Iterations with Increasing t value . 26

7.1. Triangle Algorithm VS Power Method 33

7.2. Triangle Algorithm’s performance for practical data method 34

viii

List of Figures

2.1. Wp = φ (left) and Wp 6= φ (gray area)[7] 5

2.2. Depiction of gaps δ = ‖p− p′‖, δ′ = ‖p′′ − p‖ 7

3.1. n=10,000, Iterations Comparison Triangle Algorithm VS Frank-Wolfe 10

3.2. n=10,000, Time Comparison of Triangle Algorithm VS Frank-Wolfe . 10

5.1. Distribution of iterations with different t values 27

ix

1

Chapter 1

Introduction

Given a set S = {v1, ..., vn} ⊂ <m and a point p ∈ <m, testing if p ∈ conv(S),

the convex hull of S, is called the convex hull decision problem (or the convex hull

membership problem). It is a fundamental problem in computational geometry and

linear programming. One application is the irredundancy problem, that compute

all the vertices of conv(S), [5]. We can also consider the convex hull membership

problems as a special case of linear programming (LP) feasibility problem:

Ax = b,

eTx = 1,

x ≥ 0.

(1.1)

where the column vectors of A are {v1, ...vn} and e is the vector of ones. Conversely,

we can convert an LP feasibility to a convex hull decision problem.

To solve the convex hull decision problem, a simple and natural geometric method,

the triangle algorithm, has been proposed in [7]. In each iteration of the triangle al-

gorithm, we have a current approximation to p, a point p′ ∈ conv(S). Using this,

we select a pivot point vj ∈ S, i.e. such that d(p′, vj) ≥ d(p, vj), where d(., .) is

the Euclidean distance. Then approache p greedily along the direction from current

iterate point to the pivot. If a pivot does not exists we can deduce that p 6∈ conv(S).

2

In next Chapter we describe the triangle algorithm in more detail.

In the experimental section in solving convex hull problem, we implemented the

triangle algorithm and made comparison of its performance with the Frank-Wolfe

algorithm, a gradient decent method when applied to a convex quadratic function

over a simplex. According to our computational results, the triangle algorithm has

better performance than the Frank-Wolfe algorithm when the number of points n is

much larger than the dimension m [9].

Next, we implemented the triangle algorithm for solving a linear system Ax = b

with an invertible square matrix. Solving general linear system of equations is un-

doubtedly one of the most practical problems in numerous aspects of scientific com-

puting. Iterative methods are preferred for large systems, such as Gauss-Seidel and

Successive Overrelaxion(SOR) method. In our studies, we implemented the incre-

mental version of the triangle algorithm, Kalantari [6], to solve Ax = b, where A is an

invertible matrix, and it is not known that the solution x = A−1b is nonnegative. The

justification for doing so lies in the fact that solving the linear system is equivalent

to solving A(x+ te) = b+ tAe, where t is any nonnegative scalar and e is the vector

of ones. Equivalently, the latter system can be written as Ax(t) = b + tAe = b(t),

and for appropriate t the solution x(t) is nonnegative. Then for such value t we have,

0 ∈ conv({a1, ..., an,−b(t)}), where ai is the i-th column of A. In our experimental

work, we implemented the triangle algorithm and solved different linear systems with

dimensions up to 1000 and made comparisons with the Gauss-Seidel and SOR. We

showed that the incremental triangle algorithm can solve the general linear system

Ax = b and outperform the two classical algorithms with less iterations.

Finally, we implemented the triangle algorithm to solve a very popular problem,

3

PageRank problem. A regular PageRank problem can be represented as solving:

Ax = x,

eTx = 1,

x ≥ 0.

(1.2)

We converted the PageRank problem to the following system:

(A− I)x = 0,

eTx = 1,

x ≥ 0.

(1.3)

Set A′ = A− I and b = 0, rewrote the above equations as

A′x = b,

eTx = 1,

x ≥ 0.

(1.4)

In the experimental work, we implemented the algorithm by generating some

random sparse matrix with dimension ranging from 200 to 2200. Moreover, we

implemented the triangle algorithm to solve a practical web data due to S. Kamvar

with a large matrix A that is of size 281, 903∗281, 903. We compared the result with

classic Power method, a popular method for solving the PageRank problem. From

the results, we can conclude that the triangle algorithm takes fewer iterations than

the Power method. We believe that the triangle algorithm offers another option to

solve the PageRank problem.

In next chapter we will review the basic concepts of triangle algorithm from

Kalantari [7].

4

Chapter 2

Review of The Triangle Algorithm

2.1 Basic Concepts of Triangle Algorithm

In this section, we make a basic introduction to the triangle algorithm. The

triangle algorithm is a simple iterative algorithm due to Kalantari [7], for testing if

the convex of hull of a set of points in a Euclidean space contains a particular point.

We let ‖ · ‖ denote the Euclidean norm. We begin the theories as follows:

Theorem 2.1.1 (Distance Duality[7]). Let S = {v1, ..., vn} ⊂ <m, p ∈ <m.

(i):p ∈ conv(S) if and only if given any p′ ∈ conv(S), there exists vj such that

‖p′ − vj‖ > ‖p− vj‖. Such vj is called a p-pivot (or simply pivot).

(ii): p /∈ conv(S) if and only if there exists p′ ∈ conv(S) such that ‖p′−vi‖ < ‖p−vi‖,

∀i. Such p′ is called a witness.

Each witness certifies that p /∈ conv(S). In [7], it is shown that each witness

actually induces a separating hyperplane. The set Wp of all such witnesses is the

intersection of conv(S) and open balls Bi of radius ‖p− vi‖ at vi, where i = 1, ..., n,

and forms a convex subset of conv(S).

The following result shows that when we have a witness, we have an approxima-

tion to the distance of p of the convex hull of S:

5

Figure 2.1: Wp = φ (left) and Wp 6= φ (gray area)[7]

Theorem 2.1.2. Suppose p /∈ conv(S). Let ∆ = min{‖p−x‖ : x ∈ conv(S)}. Then

any p′ ∈ Wp satisfies 0.5‖p− p′‖ ≤ ∆ ≤ ‖p− p′‖.

Definition 1. Given ε ∈ (0, 1), p′ ∈ conv(S) is an ε−approximate solution if ‖p′ −

p‖ ≤ εR, where R = max{‖p− v1‖, ..., ‖p− vn‖}.

Using the characterization theorem (Theorem 2.1.1), [7] described a simple al-

gorithm, called the triangle algorithm. Given a desired tolerance ε ∈ (0, 1), and a

current iterate p′ ∈ conv(S), in each iteration the triangle algorithm searches for a

triangle 4pp′vj where vj ∈ S satisfies ‖p′− vj‖ ≥ ‖p− vj‖. Given that such triangle

exists, the algorithm uses vj as a pivot to ”pull” the current iterate p′ closer to p

to get a new iterate p′′ ∈ conv(S). If no such a triangle exists by Theorem 2.1.1, p′

is a witness certifying that p is not in conv(S). The triangle algorithm consists of

iterating two steps:

Triangle Algorithm (S = {v1, ..., vn}, p, ε ∈ (0, 1))

6

Step 0. (Initialization) Let p′ = v = argmin{‖p− vi‖ : vi ∈ S}.

Step 1. If ‖p− p′‖ ≤ ε‖p− v‖, output p′ as ε−approximate solution, stop.

Otherwise, if there exists a pivot vj, replace v with vj. If no pivot exists, then

output p′ as a witness, stop.

Step 2. Compute the step-size

α∗ =
(p− p′)T (vj − p′)
‖vj − p′‖2

(2.1)

Given the current iterate p′ = Σn
i=1αivi, set the new iterate as:

p′′ = (1− α∗)p′ + α∗vj =
n∑
i=1

α′ivi, (2.2)

α′j = (1− α∗)αj + α∗,

α′i = (1− α∗)αi,∀i 6= j
(2.3)

Replace p′ with p′′, αi with α′i, for all i = 1, ..., n. Go to Step 1.

It can be shown that the point p′′ in Step 2 is the closest point to p on the line

p′vj. Since p′′ is a convex combination of p′ and vj it will remain in conv(S). The

algorithm replaces p′ with p′′ nd repeats the above iterative step. Note that a p-pivot

vj may or may not be a vertex of conv(S). Figure 2.2 demonstrates two consecutive

iterates.

Next, we state the estimate of complexity of the triangle algorithm.

Theorem 2.1.3. (i) Suppose p ∈ conv(S). Given ε ≥ 0, p0 ∈ conv(S), with δ0 =

‖p−p0‖ ≤ R0 = min{‖p−vi‖ : i = 1, ..., n}. The number of iterations Kε to compute

7

Figure 2.2: Depiction of gaps δ = ‖p− p′‖, δ′ = ‖p′′ − p‖

a point pε in conv(S) so that ‖p− pε‖ ≤ ε‖p− vi‖, for some vi ∈ S satisfies

Kε = O(
1

ε2
) (2.4)

(ii) Suppose p /∈ conv(S). Let ∆ = min{‖x − p‖ : x ∈ conv(S)}. The number of

iterations K∆ to compute a p-witness, a point p∆ in conv(S) so that ‖p∆ − vi‖ ≤

‖p− vi‖ for all vi ∈ S, satisfies

K∆ = O(
R2

∆2
), R = max{‖p− vi‖, i = 1, . . . , n}. (2.5)

Note that each iteration of triangle algorithm takes O(mn) arithmetic operations.

Next let us give a stronger version of the distance duality. First, here is the definition

of strict pivot.

Definition 2. Given p′ ∈ conv(S), we say vj ∈ S is a strict pivot relative to p (or

strict p-pivot, or simply strict pivot) if ∠p′pvj ≥ π/2

Theorem 2.1.4 (Strict Distance Duality[7]). Assume p /∈ S, Then p ∈ conv(S) if

and only if for each p′ ∈ conv(S) there exists strict p-pivot, vj.

Then, an alternative complexity bound can be stated.

8

Theorem 2.1.5 ([7]). Assume p ∈ conv◦(S), the relative interior of conv(S). Let ρp

be the supreme of radii of the balls centered at p in this relative interior. Suppose the

triangle algorithm uses a strict pivot in each iteration. Given ε ∈ (0, 1), the number

of iterations of the algorithm to compute pε ∈ conv(S) such that ‖p − pε‖ ≤ εR.

R = max{‖p− vi‖, i = 1, ..., n}, satisfies

O(
R2

ρ2
p

ln
1

ε
).

In next chapter, we will make a numerical experiment comparison in solving the

convex hull problem with triangle algorithm and Frank-Wolfe algorithm.

9

Chapter 3

Numerical Experiment for Solving The Convex

Hull Problem and Comparison with The

Frank-Wolfe Algorithm

We will implement the triangle algorithm for the convex hull decision problem

and compare it with the classical algorithm, the Frank-Wolfe algorithm. We let A

to be the matrix whose column vectors are {v1, ..., vn}, e is the vector of ones, and p

the query point. The Frank-Wolfe algorithm for the convex hull decision problem is

quite straightforward, it is based on the following quadratic programming, see [3]:

min{f(x) = (Ax− p)T (Ax− p) ; eTx = 1, x ≥ 0} (3.1)

In each iteration, Frank-Wolfe uses O(mn) operations to compute the gradient of

f and chooses a direction to progress, using partial derivatives, see [1]. In contrast,

the triangle algorithm has many options. In one option it goes through all the

column vectors. It moves to next iterations as long as it finds a ”perfect” vj. We

do this by checking the angle ∠ppkvj and select the smallest one at a current iterate

pk. Therefore, triangle algorithm usually spends much less iteration steps than the

Frank-Wolfe algorithm.

To compare the above two algorithms, we implemented them in Matlab. In the

experiment, we randomly and uniformly generated n points to form S, a query point

10

p, all in m-dimensional unit ball, giving a very dense matrix. We set ε = 10−4

Figure 3.1: n=10,000, Iterations Comparison Triangle Algorithm VS Frank-Wolfe

Figure 3.2: n=10,000, Time Comparison of Triangle Algorithm VS Frank-Wolfe

As we can see in Figure 3.1 and Figure 3.2 , when dimensionm grows, the iteration

steps of Frank-Wolfe algorithm increase significant, while triangle algorithm performs

very well with only a slight increase in the iterations steps. This can be explained by

11

the fact that the triangle algorithm always find the ”perfect” pivot, which minimize

the ∠ppkv to make the iteration steps smallest. And since it need visit all the column

of vectors, the running time does not performed much better than Frank-Wolfe with

the grow of dimension m. In [9], they introduced another improvement on reducing

the running time of each iteration that triangle algorithm moves to the next iterations

as long as it finds a ”good” vj. The triangle algorithm does not need to visit all the n

points and thus spends less time than Frank-Wolfe algorithm in each iteration. And

the triangle algorithm has a better chance for finding a ”good” pivot vj to approach

p efficiently when n increases, see [9]

In summary, the triangle algorithm does well for large scale data set, especially

when the number of points n is much larger than m. And based on our experiments

it is more efficient than Frank-Wolfe algorithm, both in running time the number of

iterations.

12

Chapter 4

Solving Ax=b Via The Triangle Algorithm

In this chapter, we consider solving a linear system via the triangle algorithm as

described in Kalantari [6]. Consider solving Ax = b with A an invertible n× n real

matrix. We let ai denote the i-th column of A. Given a matrix B write conv(B) for

the convex hull of the columns of B.

Definition 3. We say x0 is an ε-approximate solution of Ax = b if

‖Ax0 − b‖ ≤ ερ, ρ = max{‖a1‖, ..., ‖an‖, ‖b‖} (4.1)

4.1 Solving A Linear System with Nonnegative Solution

First, suppose that x = A−1b ≥ 0. We show how to solve this as a convex hull

problem. Next, we solve the general case to relax this condition. Since A is invertible,

Ax = 0 has only trivial solution. In particular, 0 /∈ conv(A).

In [7] Kalantari described an application of the triangle algorithm in computing

an approximate solution of the linear programming feasibility problem. In Kalantari

[6] he describes application of the triangle algorithm in solving a linear system.

Here we explain Kalantari’s approach to solve Ax = b via the triangle algorithm

to compute for any ε ∈ (0, 1), an ε−approximate solution.

13

Proposition 4.1.1. x = A−1b ≥ 0 if and only if 0 ∈ conv([A,−b]).

It follows that solving Ax = b approximately is equivalent to finding an approxi-

mation to 0 in the set conv({a1, ..., an,−b})

Theorem 4.1.2 (Sensitivity Theorem [7]). Let ∆0 = min{‖AX‖ :
∑n

i=1 xi = 1, xi ≥

0}, and ρ = max{‖a1‖, ..., ‖an‖, ‖b‖}. Let ∆′0 be any number such that 0 < ∆′0 ≤ ∆0.

Suppose ε ∈ (0, 1) satisfies ε ≤ ∆′0/2ρ and suppose we have computed

p′ = Aα− αn+1b ∈ conv([A,−b]), ‖p′‖ ≤ ερ. (4.2)

Let x0 − α/αn+1. Then, x0 ≥ 0, and if ε′ = 2(1 + ‖b‖/∆′0)ε, we have

‖Ax0 − b‖ ≤ ε′ρ (4.3)

We can now describe a Two-Phase algorithm to solve Ax=b as a convex hull

problem. Phase 1 of the algorithm attempts to find a witness p′ ∈ conv({a1, ..., an})

that proves 0 is not in this convex hull. Any such witness p′ gives rise to a lower

bound to ∆0 which in turn can be used in Phase 2 of the algorithm an ε-approximate

point in conv([A,−b]).

Two-Phase Triangle Algorithm(A, b, ε0 ∈ (0, 1))

Phase 1. Call triangle algorithm (A, 0, ε) to get a witness p′ ∈ conv(A).

Phase 2. Starting with p′, call triangle algorithm ([A,−b], 0, ε).

14

Theorem 4.1.3 ([7]). Given any ε0 ∈ (0, 1), in order to compute an ε0-approximate

solution (i.e. a solution x0 ≥ 0 such that ‖Ax0 − b‖ ≤ ε0ρ) it suffices to set ∆′0 =

0.5‖p′‖, where p′ is the witness computed in Phase 1 of the Two-Phase triangle

algorithm. Then in Phase 2 of the algorithm it suffices to compute a point p′ ∈

conv({a1, ..., an,−b}) so that

‖p′‖ ≤ ερ, ε ≤ ∆′0
2
min{1

ρ
,

ε0
(∆′0 + ‖b‖)

} (4.4)

Then the number of iterations in Phase 2, Kε, each of cost O(n2) arithmetic opera-

tions, satisfies

Kε = O(
1

ε20

ρ2

∆′20
) (4.5)

4.2 Solving A General Linear System

In this section we describe Kalantari’s method from [6] for solving the general

case of solving square Ax = b with A an invertible matrix, where it is not known if

the solution x = A−1b is nonnegative. Let e = (1, ..., 1)T ∈ <m. Let u = Ae, then

u 6= 0 (Since A is invertible). Let

t∗ = min{t : A(x− te) = b, x ≥ 0}

= min{t : Ax = b(t) = b+ tu), x ≥ 0}
(4.6)

If a value t ≥ t∗ is know we can apply the Two-Phase triangle algorithm to solve

Ax = b(t), x ≥ 0. See [6] In the complexity analysis we use bounds that also depend

upon t. We may restate the complexity result, Theorem 4.1.3, where ‖b‖ and ρ are

replaced with ‖b(t)‖ and ρ(t) = max{‖a1‖, ..., ‖an‖, ‖b(t)‖}, respectively.

Now we may state the following complexity bound.

15

Theorem 4.2.1. [6] Given ε0 > 0, any t ≥ 0, and any lower bound 0 < ∆′0 ≤ ∆0,

the Two-Phase triangle algorithm in

O((
ρ(t)

ε0∆′0
)2) = O((

(ρ+ t‖u‖)
ε0∆′0

)2)

iterations, each of cost O(n2) arithmetic operations, either determines that Ax =

b+ tu, x ≥ 0 is infeasible, or computes x0 satisfying ‖Ax0 − b‖ ≤ ε0ρ.

4.3 The Incremental Triangle Algorithm

The incremental triangle algorithm works as follows. Assume that for a given

t0 ≥ 0 (initially set to zero) we have attempted to compute an ε-approximate solution

for Ax = b, i.e. a vector x0 ≥ 0 such that

‖A(x0 − t0e)− b‖ ≤ ε×max{‖a1‖, ..., ‖an‖, ‖b‖}.

If this satisfied, we are done. If not, then conv([A,−b(t0)]) does not contain the

origin, where b(t0) = b+t0u. Thus by Theorem 2.1.1 the triangle algorithm computes

a witness, i.e.

p′(t0) ∈ conv([A,−b(t0)]) (4.7)

such that the following set of n+ 1 strict inequalities are satisfied:

‖p′(t0)− ai‖ < ‖ai‖, ∀i = 1, ...n (4.8)

and

‖p′(t0) + b(t0)‖ < ‖b(t0)‖. (4.9)

Equivalently, after expanding and simplifying 4.8 and 4.9 we get

‖p′(t0)‖2 − 2p′(t0)Tai < 0, ∀i = 1, ...n. (4.10)

16

‖p′(t0)‖2 + 2p′(t+ 0)T b(t0) < 0 (4.11)

From 4.7 we have

p′(t0) = Aα− αn+1(b+ t0u),
m∑
i=1

α1 = 1, αi ≥ 0, ∀i (4.12)

Letting p′ = Aα− αn+1b, we may write

p′(t0) = p′ − t0αn+1u. (4.13)

Thus,

p′(t0)Tai = p′Tai − t0αn+1u
Tαi. (4.14)

For each t define

p′(t) = p′ − tαn+1u. (4.15)

For i = 1, ...n, define

gi(t) = ‖p′(t)‖2 − 2p′(t)Tai. (4.16)

Also, define

gn+1(t) = ‖p′(t)‖2 + 2p′(t)T b(t). (4.17)

It is easy to verify that for i = 1, ...n we have

gi(t) = t2α2
n+1‖u‖2 − 2tαn+1(p′ − ai)Tu+ ‖p′‖2 − 2p′Tai (4.18)

The coefficient of t2 in gn+1(t) can be shown as:

αn+1(αn+1 − 2)‖u‖2. (4.19)

A formal description of incremental triangle algorithm is given in the following:

17

Incremental Triangle Algorithm (A, b, ε ∈ (0, 1))[6]

Step 0: (Initialization) Let u = Ae, e = (1, ..., 1)T ∈ <m, Let

Ct = conv([A,−(b+ tu)]). Set t0 = 0. Select p′ = Aα− αn+1b ∈ C0.

Step 1: Given p′ = Aα− αn+1b, set x0 = 1
αn+1

α, τ0 according to

E(τ0) = ‖Ax0 − (b+ τu)‖ = min{‖Ax0 − (b+ tu)‖ : t ≥ t0}. (4.20)

Replace t0 with τ0. If E(t0) ≤ ερ, set x′0 = x0 − t0e, stop.

Step 2: If p′(t0) = p′ − αn+1t0u is a witness with respect to Ct, go to Step 3.

Otherwise, call triangle algorithm([A,−(b+ t0u)], 0, ε) to compute a new iterate

p′′(t0):

p′′(t0) = p′′ − βn+1t0u, p
′′ = Aβ − βn+1b ∈ Ct. (4.21)

Replace p′ with p′′, α with β, and αn+1 with βn+1. Go to Step 1.

Step 3: Compute t′0, the smallest value t such that gi(t) ≥ 0 for some i = 1, ..., n.

Replace t0 with t′0. Go to Step 2.

In next chapter, we will make a numerical experiment in solving linear system

problem Ax = b and make a comparison with triangle algorithm, SOR and Gauss-

Seidel.

18

Chapter 5

Numerical Experiment for Solving Ax = b Via The

Triangle Algorithm and Comparison with SOR

and Gauss-Seidel

5.1 Review of Gauss-Seidel

In numerical linear algebra, the Gauss-Seidel method, also known as the Lieb-

mann method, or the method of successive displacement, is an iterative method used

to solve a linear system of equations. Consider a square system of n linear equations

with unknown x

Ax = b

where the matrix A is decomposed into a lower triangular component L∗ and a

strictly upper triangular component U, so that A = L∗ + U . The system of linear

equations maybe written as

L∗x = b− Ux (5.1)

The Gauss-Seidel method now solves the left hand side of [5.1] for x. Using previous

value x on the right hand sid. Analytically, this maybe written as

xk+1 = L−1
∗ (b− Uxk). (5.2)

19

However, by taking advantage of the triangular form of L∗, the element of xk+1 can

be computed sequentially using forward substitution.

Next, we will introduce another iterative method, called the Successive Overre-

laxation (SOR) method. Here is the idea:

5.2 Review of SOR method

We can derive the SOR Method from the Gauss-Seidel method. First, we can

rewrite the Gauss-Seidel equation as

Dxk+1 = b− Lxk+1 − Uxk (5.3)

where D is the diagonal of A, and L is a strictly lower triangular component, U is

defined as before.

So that

xk+1 = D−1[b− Lxk+1 − Uxk] (5.4)

We can subtract xk from both sides to get

xk+1 − xk = D−1[b− Lxk+1 −Dxk − Uxk] (5.5)

The idea of SOR Method is to iterate

xk+1 = xk + ω(xk+1 − xk)GS (5.6)

where

(xk+1 − xk)GS = D−1[b− Lxk+1 −Dxk − Uxk] (5.7)

and generally 1 < w < 2. Notice that if w = 1 then this is the Gauss-Seidel Method.

20

We can write the SOR iterates as

xk+1 = xk + ωD−1[b− Lxk+1 −Dxk − Uxk] (5.8)

When we solve for xk+1, we get

xk+1 = (L+
1

ω
D)−1[(

1

ω
D −D − U)xk + b]. (5.9)

5.3 Numerical Comparison with Triangle Algorithm, Gauss-

Seidel and SOR

In this section, we will solve general linear system Ax = b with incremental tri-

angle algorithm, Gauss-Seidel and SOR. First, let us consider the following example:

Example 1. Consider the 3× 3 linear system.
4 3 0

3 4 −1

0 −1 4



x1

x2

x3

 =


−24

−30

−24

 (5.10)

Its solution is x = [3,−12,−9]. If you directly implement the incremental triangle

algorithm with t = 0, it only takes 2 iterations to find the witness that (0, 0) is not

in conv([A,−b]). From the solution, t∗ should be located in t∗ ≥ 12. The following

table show the iterations with increasing t value.

Table 5.1: Iterations with Increasing t value

t value Iterations

21

t = 12.8 77819

t = 12.9 55791

tmin = 13 5

t = 13.5 205

t = 13.7 262

t = 14 384

Based on the result, incremental triangle algorithm only need take 5 iteration step

when t =13, let us describe this t as tmin. The definition of tmin will be given in

generality in 4 in next section.

The following table shows the comparison results with triangle algorithm, SOR

and Gauss-Seidel method with tol = 10−4, and here initial x0’s of three methods start

from zeros(n,1):

Table 5.2: Ex.1 Triangle VS SOR VS Gauss Seidel

ε value Triangle Algorithm SOR (Yang’s Formula) Gauss-S

ε = 10−4 5 10 20

From the above table, the triangle algorithm does less iteration than both SOR and

Gauss-Seidel.

22

Next let us consider an example of a larger linear system:

Example 2. Consider the linear tridiagonal system:

A is defined as below:

A(i, i) = 2; A(i, i+ 1) = −1; A(i+ 1, i) = −1, i = 1, ..., n− 1; A(n, n) = 2

and b is defined as b = [1, 0, ...0, 1]′


2 −1 0

−1
.

. −1

0 −1 2




x1

...

...

xn


=


1

0

...

1


Comparison of the incremental triangle algorithm with tmin, SOR with optimum

w and Gaussian Seidel, for tol = 10−6 and n = 100 and 1000. Here, the optimum w

of SOR was obtained from Young’s formula [10], tmin = 10−3 for incremental triangle

algorithm and the initial guess x0 of three methods equal to zeros(n,1). Here are the

result:

Table 5.3: Time Comparison:

Triangle vs Optimum SOR vs Gauss-Seidel

Matrix Size(N) Incremental Triangle SOR (Young’s Formula) Gauss-S (w = 1)

N = 100 0.0033 0.0762 0.7972

N = 1000 0.0038 24.572 ≥ 1250.793

23

Table 5.4: Iterations Comparison:

Triangle vs Optimum SOR vs Gauss-Seidel

Matrix Size(N) Incremental Triangle SOR (Young’s Formula) Gauss-S (w = 1)

N = 100 2 236 7004

N = 1000 2 2004 230417

According to the above two tables, we conclude that the running time and number

of iterations of the triangle algorithm is much less than both the SOR method and

Gauss Seidel method.

From the above examples, we can conclude that the incremental triangle algo-

rithm outperforms both SOR and Gauss-Seidel methods in some linear systems, and

the value tmin selected in the the triangle algorithm can significantly improve the

performance of the algorithm. Next, we will give more examples to show that how

different t values can affect the performance of triangle algorithm.

5.4 More Numerical Experiment with tmin

Let us start from a simple example to observe how different t values can improve

the performance of the triangle algorithm. Consider testing if p = (0, 0)T lies in the

triangle conv((1, 0)T , (−1, 0)T , (0, 1)T). Solving this via the triangle when t = 0 takes

24

22 iterations to get an approximation with its absolute error less than ε = 0.1, see

[4]. This large number of iterations is due to the fact that p is a boundary point of

convex hull. If however p is replaced with a point so that a circle of radius ρ centered

at p would lie inside the triangle, the complexity of the triangle would improve to

O(ρ−2 ln ε−1). To solve this, first we convert the convex hull problem into Ax = b,

x ≥ 0.


1 −1 0

0 0 1

1 1 1



x1

x2

x3

 =


0

0

1

 (5.11)

Now consider adding tu to both sides of Ax = b, where t is a positive scalar,

u = Ae, e = (1, 1, 1)T , this gives a new LP feasibility problem, Axt = b + tu, where

xt = x+ tu ≥ 0. Its corresponding convex hull problem is to test if for any positive

t, (0, 0, 0)T is interior to

conv([A,−(b+ tu)]) = conv({(1, 0, 1)T , (−1, 0, 1)T , (0, 1, 1)T ,−(0, t, 1 + 3t)T})

Now we transfer the original problem Ax = b satisfies x+ te ≥ 0, rather than x ≥ 0.

For example, if t = 1, solving the above problem via the triangle algorithm gives

an approximate solution within the same error ε = 0.1, in only takes 2 iterations.

In fact, when A is invertible it can be shown that getting an approximate solution

for any positive value t results in a corresponding approximate solution for Ax = b

itself.

Definition 4. Given ε, let tmin be the value of t such that the number of iterations

of incremental triangle algorithm is the smallest.

25

Next, let us see more examples with how tmin improves the performance of triangle

algorithm.

Example 3. Consider an 3× 3 linear system
1 2 1

2 0 4

1 −1 −3



x1

x2

x3

 =


−14

−14

10

 (5.12)

Its solution is x = [−1,−2,−3]T . Similar to Example 1 we also show the iterations

with corresponding t value.

Table 5.5: Iterations with Increasing t value

t value Iterations

t = 3.1 5651

t = 3.5 628

tmin = 3.98 71

t = 4.0 75

t = 5.0 143

We observe that the iteration steps decreases significantly when t = 3.98, and start

to increase slowly when t keep increasing.

26

Example 4. Consider 4× 4 linear system
0 1 1 0

1 0 1 0

1 1 0 0

0 0 1 1




x1

x2

x3

x4


=


1

6

−1

4


(5.13)

The solution to the system is x = [2,−3, 4,−1]T . Similar to previous examples,

we can choose t∗ in the range t ≥ 3. The iterations with corresponding t value are

shown in the following table:

Table 5.6: Iterations with Increasing t value

t value Iterations

t = 3.70 4613

t = 3.72 2922

t = 3.725 1983

tmin = 3.73 78

t = 3.74 84

t = 3.75 91

t = 3.8 96

t = 3.9 100

t = 4.0 102

27

Figure 5.1: Distribution of iterations with different t values

From the table above, we see similar trend as in Example 3: the iteration steps de-

creases significantly when t is around 3.73, and increases slowly when keep increasing

t.

Through all examples above and other experimental results, we can conclude that

different t values will influence iterations. The value tmin will decrease the number

of iteration to the minimum.

From Figure 5.1, we find that iterations will be huge when the point is on the

margin of convex hull, and it will decrease hugely when t is getting close to the

optimal value, and when t passed the tmin, it increases smoothly. We can use this

property to find try to compute the value tmin in applications. See details in the

algorithm in FindOptimalt.m in the Appendix for Matlab codes.

In addition, we can find an initial value t0 by getOptT.m, then we can make

use this property to find a solution by keep doubling t0, because the iterations will

converge to some number when we keep increasing t value.

28

In general, we have shown that incremental triangle algorithm can solve a general

linear system Ax = b, outperforming SOR and Gauss-Seidel methods. In addition,

with changing parametric values t, we can decrease the number of iterations and

improve the performance. In next chapter, we describe the implementation of the

triangle algorithm for solving the PageRank problem. The triangle algorithm has a

good performance in solving large scale linear systems.

29

Chapter 6

Solving PageRank Problem via Triangle

Algorithm

In this chapter, we will solve the PageRank Problem via the triangle algorithm.

Imagining surfing the Web, going from page to page by randomly choosing an out-

going link from one page to get to the next. This can lead to dead ends at pages

with no outgoing links, or cycles around cliques of interconnected pages with simply

choose a random page from the Web. This theoretical random walk is known as a

Markov chain or Markov process [2]. The limiting probability that an infinitely ded-

icated random surfer visits any particular page is its Page-Rank. A page has high

rank if other pages with high rank link to it.

Let W be the set of Web pages that can be reached by following a chain of hyper-

links starting at some root page, and let n be the number of pages in W . For Google,

the set W actually varies with time, but by June, 2004, n was over 4 billion. Let G

be the n-by-n connectivity matrix of a portion of the Web, that is, gij = 1 if there is

a hyper-link to page i from page j and gij = 0 otherwise. The matrix G can be huge,

but it is very sparse. Its jth column shows the links on the jth page. The number

of non-zeros in G is the total number of hyper-links in W , see [2].

30

Let ri and cj be the row and column sums of G:

ri =
∑
j

gij, cj =
∑
i

gij (6.1)

The quantities rj and cj are the in-degree and out-degree of the j-th pages. Let

p be the probability that the random walk follows a link. A typical value is p = 0.85.

The 1− p is the probability that some arbitrary page is chosen and δ = (1− p)/n is

the probability that a particular random page is chosen. Let A be the n-by-n matrix

whose elements are, see [8]:

aij =


pgij/cj + δ : cj 6= 0

1/n : cj = 0
(6.2)

Notice that A comes from scaling the connectivity matrix by its column sums.

The jth column is the probability of jumping from the jth page to the other pages

on the Web. If the jth page is a dead end, that is has no out-links, then we assign

a uniform probability of 1/n to all the elements in its column. Most of the elements

of A are equal to δ, the probability of jumping from one page to another without

following a link.

Here, the matrix A is the transition probability matrix of the Markov chain. Its

elements are all strictly between zero and one. Its column sums are all equal to one.

It concludes that a nonzero solution of the equation

x = Ax (6.3)

exists and is unique to within a scaling factor. If this scaling factor is chosen so that∑
i xi = 1, then x is the state vector of the Markov chain and is Google Page Rank.

The elements x are all positive and less than one.

31

We can rewrite the equation as

(I − A)x = 0

Set A′ = (I−A) and b′ = 0, we can also regard this problem as convex hull problem.

A′x = b′,

eTx = 1,

x ≥ 0.

(6.4)

We can also use the incremental triangle algorithm to solve this problem. In

the next experimental chapter, we randomly generated the random matrix from

dimension 200 to 2200, and make a result comparison with classic power method,

which shows that triangle algorithm is competed to solve this problem. Finally, we

use the practical web data from Prof. Kamvar, which is 281, 903× 281, 903 matrix.

The experiment shows that triangle algorithm only need take 1 iteration to find the

solution, which is an amazing result.

32

Chapter 7

Numerical Comparison with Power Method

In this section, we will implement triangle algorithm into PageRank problem and

make a comparison with the Power Method. We randomly generate the data based

on the convex combination:

G = αS + (1− α)evT (7.1)

where S is the Stochastic Matrix and Damping factor 0 ≤ α < 1, here we set

α = 0.85. e is column vector of all ones. Personalization vector v ≥ 0, ‖v‖1 = 1.

From 7.1 and G is Stochastic, with eigenvalues:

1 > α|λ2(S)| ≥ α|λ3(S)| ≥ ... (7.2)

We can get the unique dominant left eigenvector:

πTG = πT , π ≥ 0 and ‖π‖1 = 1 (7.3)

Where πi is PageRank of Web page i.

The following is a brief introduction to Power Method:

Power Method

33

Want: π such that πTG = πT

Power Method: Pick an initial guess x0. Repeat

[xk+1]T := [xk]
TG (7.4)

until ”termination criterion satisfied”.

More information can be available in code pagerankpow.m in the Appendix.

Then, we generated the datasets randomly with the dimension from 200 to 2200.

We implemented the both triangle algorithm and Power Method in Matlab with

tolerance 10−4. In each dimension, we repeated 10 times and get average of that.

The experiment results are showed as follows:

Table 7.1: Triangle Algorithm VS Power Method

Dimension n Triangle Iter (Avg) Power Iter (Avg) Triangle Time (s) Power Time (s)

200 1 4.2 0.013261 0.0036568

400 1 4.0 0.027061 0.0078675

600 1 4.0 0.017507 0.0053561

800 1 3.6 0.03037 0.0013188

1000 1 3.0 0.044809 0.0046782

1200 1 3.0 0.062895 0.0080632

1400 1 3.0 0.081302 0.011503

1600 1 3.0 0.10477 0.014961

1800 1 3.0 0.13136 0.018843

34

2000 1 3.0 0.16327 0.023479

2200 1 3.0 0.19548 0.028181

From table 7.1, we observed that triangle algorithm need less iterative steps to

find the solution compared with the Power Method. So we believed that triangle

algorithm is also a good way to solve the Google page rank problem.

Next, to show that triangle algorithm is also a very good method to solve the

practical Google Page Rank problem. we will use the real web data from Prof.

Kamvar’s personal research website(http://kamvar.org/personalized search) with the

dimension 281, 903×281, 903. In the following table, it showed the computation result

for ε from 10−4 to 10−10.

Table 7.2: Triangle Algorithm’s performance for practical

data method

ε Iterative Steps Time (s)

ε = 10−4 1 3765.0395

ε = 10−5 1 3786.4572

ε = 10−6 1 3812.4369

ε = 10−7 1 3812.7181

ε = 10−8 1 3812.3995

ε = 10−9 1 3823.0131

ε = 10−10 1 4905.1076

35

From table 7.2, we found that triangle algorithm had a suprising good perfor-

mance, which only need 1 iterative step to find the solution. This can be explained

by the fact that we always find the optimal pivot for each iteration step so that it

can find the solution in just 1 iteration.

In sum, we concluded that we had found another way to compute the PageRank

problem. The tirangle algorithm is a competed algorithm to compute the large scale

sparse matrix.

36

Chapter 8

Conclusion and Future Work

In this thesis, we reviewed the basic conceptions of the triangle algorithm, which

was written by Prof.Kalantari. Then, we made some implementations of trian-

gle algorithm into convex hull problem and a linear system problem. Firstly, we

implemented the triangle algorithm into solving convex hull problem and made a

comparison with Frank-Wolfe algorithm. From the result, the triangle algorithm

outperformed the Frank-Wolfe on large scale problem. Secondly, we implemented

the incremental version of triangle algorithm to solving the linear system Ax = b,

and made some comparison with SOR and Gauss-Seidel methods. The triangle al-

gorithm is more efficient taking fewer iterations than these algorithms. Finally, we

implemented the triangle algorithm into solving the PageRank problem and made

the comparison with Power method. The triangle algorithm took less iterations to

reach the same accuracy. Surprising, the triangle algorithm only took 1 iteration

to solve the Kamvar datasets for large scale PageRank problem whose dimension is

281,903.

We have showed that the triangle algorithm was a competed algorithm to solve

some linear systems. In future, we definitely need implement the triangle algorithm

into more linear system problems. And we can optimize each iteration step to improve

37

the calculation speed. Moreover, we could prove and find the existed the relationship

between the optimal tmin and pivots. Finding the optimal tmin can reduced the time

and iterations significantly via our experiment in this paper.

38

Chapter 9

Appendix for Matlab Codes

9.1 Triangle Algorithm for LP Feasibility

f unc t i on [time , i t e r a t i o n , average] = Tr iang l e v2 (A, b , e p s i l o n)

%Solve convex h u l l problem via Tr iang l e Algorithm

%Given P, a s e t o f po in t s a1 , a2 , . . . , an in m−dimension space

%f i n d whether the t a r g e t po int b i s in the convex h u l l o f P

%I f yes , r e turn the convex combination o f a1 , a2 , . . . , an to r e p r e s e n t b .

format long ;

[˜ , n]= s i z e (A) ;

%%%

%Step 1

%Find R = max{norm(ai−b , 2)} , the s c a l i t y o f the po int s e t .

d i s t = ze ro s (1 , n) ;

R = 0 ;

f o r i =1:n

i f R<norm(A(: , i)−b , 2) R = norm(A(: , i)−b , 2) ; end

d i s t (1 , i) = norm(A(: , i)−b , 2) ;

39

end

f o r i =1:n−1

k = i ;

f o r j=i +1:n

i f d i s t (1 , j)<d i s t (1 , k) k = j ; end

end

temp = d i s t (1 , i) ;

d i s t (1 , i) = d i s t (1 , k) ;

d i s t (1 , k) = temp ;

tempvector = A(: , i) ;

A(: , i) = A(: , k) ;

A(: , k) = tempvector ;

end

A0 = A;

n0 = n ;

%%%

%Step 2

%Set the cen te r po int o f P as the i n i t i a l i t e r a t e

t i c ;

c o e f f i c i e n t = ze ro s (1 , n) ;

f o r i =1:n

c o e f f i c i e n t (1 , i) = 1/n ;

end

40

p = A∗ c o e f f i c i e n t ’ ;

gap = norm(p−b , 2) ;

i t e r a t i o n = 0 ;

sumoperation = 0 ;

sumauxi lary = 0 ;

sumneedhelp = 0 ;

index = 0 ;

un i t v e c t o r = ze ro s (1 , n) ;

bnorm = b ’∗b ;

f requency = ze ro s (1 , n) ;

%%%

%Step 3

%Star t i t e r a t i o n u n t i l l gap i s smal l enough

whi le (gap>e p s i l o n ∗R)

index = 0 ; be s t co s = 0 ;

pnorm = p ’∗p ;

d i f f = (bnorm−pnorm) / 2 ;

gapvector = b−p ;

f l a g = 0 ;

tempinner = p ’∗ gapvector ;

threho ld = 0.14∗ gap ;

41

f o r i =1:n ;

sumoperation = sumoperation +1;

%%%

%Step 4

%Find a pivot , judge the p ivot i s good enough or not

temp = gapvector ’∗A(: , i) ;

i f d i f f<temp

c o s i n e = (temp−tempinner)/ (norm(A(: , i)−p , 2)) ;

i f (bestcos<c o s i n e)

index = i ;

be s t co s = c o s i n e ;

end

i f (cos ine>threho ld)

f l a g = 1 ;

break ;

end

end

end

%%%

%Step 5

%No pivot , r epo r t NO

%Otherwise , c a l c u l a t e the next i t e r a t e , the p r o j e c t i o n o f b l i e s on the

%segment from p to a i

%Update the covex combination f o r next i t e r a t e

42

i f (index == 0)

break ;

e l s e

i f ((f l a g == 0)&&(i t e r a t i o n >20))

%Using a u x i l i a r y p ivot based on the h i s t o r y feedback data

%Assoc i a t e each po int a counter to count the number o f t imes chosen to be

%pivot .

sumneedhelp = sumneedhelp +1;

p ivot = A0∗(frequency ’ / i t e r a t i o n) ;

temp = norm(pivot−p , 2) ;

i f norm(pivot−b,2)<temp

c o s i n e = (pivot−p) ’∗ gapvector /temp ;

i f (bestcos<c o s i n e)

sumauxi lary = sumauxi lary +1;

alpha = bes t co s /temp ;

p = p+alpha ∗(pivot−p) ;

gap = norm(p−b , 2) ;

c o e f f i c i e n t = (1−alpha)∗ c o e f f i c i e n t+alpha∗

(f requency / i t e r a t i o n) ;

A = horzcat (A, p ivot) ;

i f (n==n0)

n = n+1;

a u x c o e f f i c i e n t = frequency / i t e r a t i o n ;

43

e l s e

n = n+1;

a u x c o e f f i c i e n t = [a u x c o e f f i c i e n t ; f requency / i t e r a t i o n] ;

end

f requency = frequency + frequency / i t e r a t i o n ;

i t e r a t i o n = i t e r a t i o n +1;

cont inue ;

end

end

end

i t e r a t i o n = i t e r a t i o n +1;

temp = norm(A(: , index)−p , 2) ;

alpha = bes t co s /temp ;

p = p+alpha ∗(A(: , index)−p) ;

gap = norm(p−b , 2) ;

i f (index<=n0)

un i tv e c t o r (1 , index) = 1 ;

c o e f f i c i e n t = (1−alpha)∗ c o e f f i c i e n t+alpha∗ un i tv e c t o r ;

un i t v e c t o r (1 , index) = 0 ;

f requency (1 , index) = frequency (1 , index)+1;

e l s e

c o e f f i c i e n t = (1−alpha)∗ c o e f f i c i e n t+alpha

∗ a u x c o e f f i c i e n t (index−n0 , :) ;

44

f requency = frequency+a u x c o e f f i c i e n t (index−n0 , :) ;

end

end

end

time = toc ;

average = sumoperation / i t e r a t i o n ;

%%%

%Step 6

%I f gap i s smal l enought , r epo r t YES

i f (index == 0)

d i sp (’ Not in convex h u l l ! ’) ;

e l s e

d i sp ([’ The t a r g e t po int i s in the convex h u l l !

The number o f i t e r a t i o n i s ’ , num2str (i t e r a t i o n) ,

’ and the running time i s ’ , num2str (time) ,

’ and # need help t imes ’ , num2str (sumneedhelp) ,

’ and # of aux i l a ry po in t s i s ’ , num2str (sumauxi lary)]) ;

end

%%

%V e r i f i c a t i o n f o r c o r r e c t n e s s

c o r r e c t = 1 ;

45

xnorm = norm(c o e f f i c i e n t , 1) ;

i f (abs (xnorm−1)>1e−10) c o r r e c t = 0 ; end

[˜ , temp] = s i z e (f i n d (c o e f f i c i e n t <−1e−10)) ;

i f (temp >0) c o r r e c t = 0 ; end

i f (norm(A0∗ c o e f f i c i e n t ’−b,2)> e p s i l o n ∗R) c o r r e c t = 0 ; end

i f (c o r r e c t == 1)

d i sp (’ The s o l u t i o n i s v e r i f i e d to be c o r r e c t ! ’) ;

e l s e

d i sp (’ The s o l u t i o n i s f a l s e ! ’) ;

end

9.2 Incremental Triangle Algorithm

f unc t i on [pprime , e r ro r , i t e r , alpha , x0 , so lEr ro r , xold , f l a g]

= incTr i ang l e2 (A, b , t , t o l)

%

% input A REAL matrix

% pprime REAL s t a r t i n g guess to p

% p REAL r i g h t hand s i d e vec to r

% t o l REAL e r r o r t o l e r a n c e

%

% output pprime REAL approximation to p

% e r r o r REAL e r r o r norm

% i t e r INTEGER number o f i t e r a t i o n s performed

% alpha REAL vecto r o f convex c o e f f i c i e n t s

46

% x 0 s o l u t i o n to Linear system

% xold o r i g n a l s o l u t i o n

% Flag 0 : not in convex hul l ,

% 1 : in convex h u l l

format long ;

[˜ ,w]= s i z e (A) ;

c = ones (w, 1) ;

u = A∗c ;

bnew = b+t∗u ;

S = [A −bnew] ;

[m, n]= s i z e (S) ;

%E = eye (n) ;

E = spar s e (1 : n , 1 : n , 1) ;

p = ze ro s (m, 1) ;

pprime = (sum(S ’) / n) ’ ;

counterTol = 1 .0 e10 ;

S0 = S ; % Fixing S0

i t e r = 0 ; % i n i t i a l i z a t i o n

% t =1;

% step 0 : i n i t i a l guess

47

e r r o r = norm(p − pprime) ;

alpha = (1/n)∗ ones (n , 1) ;

[z , ˜] = s i z e (alpha) ;

x0 = alpha (1 : z−1 ,1)/ alpha (z) ;

s o l E r r o r = norm(A∗x0−(b+t∗u)) ;

counter = 0 ;

t i c ;

whi l e e r r o r > t o l && s o l E r r o r > t o l % i t e r a t i v e s t ep s

f l a g = 0 ;

beta = [] ; index = [] ;

b e t a i = 1 ; i ndex i = 1 ;

[˜ , n] = s i z e (S) ;

f o r i =1:n % step 1 : f i n d p ivot

%

% Using the law o f co s ine s , t h i s b lock o f code w i l l generate a s e t

% o f ang l e s b e t a i cor re spond ing to each o f the candidate p ivo t s

%

i f norm(pprime − S (: , i)) >= norm(p − S (: , i))

% Law o f Cos ines

48

a = norm(pprime − S (: , i)) ;

B = norm(p − S (: , i)) ;

c = norm(p − pprime) ;

% Generating the s e t o f b e t a i and marking the i n d i c i e s

% in the s e t index

beta (be ta i) = acos ((aˆ2 + c ˆ2 − Bˆ2)/(2∗ a∗c)) ;

index (i ndex i) = i ;

f l a g = 1 ;

% increment ing p o s i t i o n in index and beta ar rays

be ta i = be ta i +1;

i ndex i = index i +1;

e l s e i f norm(pprime − S (: , i)) < norm(p − S (: , i))

%ignore ver tex that does not s a t i s f y cond i t i on

cont inue ;

end

end

% Check f o r w i tnes s

i f f l a g == 0 ;

d i sp (’ Witness was found . P i s not in the convex s e t o f S ’)

break ;

end

%

49

% The s e l e c t i o n o f the i d e a l p ivot per i t e r a t i o n w i l l be based

% on the ang le which i s both the minimum of the s e t {beta}

%

[˜ , c index] = min (beta) ;

%

% This checks the prev ious and previous−prev ious v e r t i c i e s

% I f the re i s a pattern , t h i s code w i l l c r e a t e an a u x i l l a r y

% vertex de f ined to be the average o f the two v e r t i c i e s the

% i t e r a t e i s o s c i l l a t i n g between

%

% %

% % This c a l c u l a t e s and moves the i t e r a t e to a new l o c a t i o n

% % step 2 : update alpha

% %

i c = index (c index) ;

i f i t e r == 0

ipp = i c ;

v = S (: , i c) ;

e = E(: , i c) ;

e l s e i f i t e r == 1

ip = i c ;

v = S (: , i c) ;

e = E(: , i c) ;

50

e l s e

i f i c == ipp

ipp = ip ;

ip = i c ;

counter = counter + 1 ;

e l s e

counter = 0 ;

ipp = ip ;

ip = i c ;

end

i f counter > counterTol

%

% This code execute s the a u x i l l a r y p ivot po in t s by tak ing the average

% of two p ivo t s that the i t e r a t e o s c i l l a t e s between c y c l e s . I t a l s o

% updates the standard b a s i s vec to r matrix to proper ly update the

% alpha c o e f f i c i e n t s vec to r

%

v = (S (: , ip) + S (: , ipp)) / 2 ;

S = [S v] ;

e = (E(: , ip) + E(: , ipp)) / 2 ;

E = [E e] ;

e l s e

v = S (: , i c) ;

e = E(: , i c) ;

51

end

end

%

% Updates the alpha vec to r and gene ra t e s a new i t e r a t e

%

beta = (p−pprime) ’∗ (v−pprime)/(norm(v−pprime) ˆ 2) ;

alpha = (1−beta)∗ alpha + beta∗e ;

pprime = S0∗alpha ;

%

% Updates the approximate s o l u t i o n to the system o f equat ions

% given the alpha c o e f f i c i e n t s o f the augmented matrix [A −b]

%

x0 = alpha (1 : z−1 ,1)/ alpha (z) ;

s o l E r r o r = norm(A∗x0 − (b+t∗u)) ;

e r r o r = norm(p − pprime) ; % update e r r o r

i t e r = i t e r + 1 ; % update i t e r a t i o n s

% t = t +1;

end

time = toc ;

e = ones (w, 1) ;

xold=x0−t∗e ;

% i f f l a g == 0 ;

52

% disp (’ Witness was found . P i s not in the convex s e t o f S ’)

% e l s e i f f l a g == 1 ;

% disp (’P i s in the convex s e t o f S ’)

% end

% END incTr i ang l e .m

9.3 Power Method

f unc t i on [time , i t e r a t i o n] = pagerankpow (A, b , e p s i l o n)

% PAGERANKPOW PageRank by power method .

% x = pagerankpow (G) i s the PageRank o f the graph G.

% [time , i t e r a t i o n] = pagerankpow (A, b , e p s i l o n)

% counts the number o f i t e r a t i o n s .

% Link s t r u c t u r e

[˜ , n] = s i z e (A) ;

R = 0 ;

f o r i =1:n

i f R<norm(A(: , i)−b , 2)

R = norm(A(: , i)−b , 2) ;

end

end

53

t i c ;

% Power method

x = ones (n , 1) / n ;

i t e r a t i o n = 0 ;

gap = norm(A∗x−x , 2) ;

whi l e (gap>e p s i l o n ∗R)

gap = norm(A∗x−x) ;

x = A∗x ;

i t e r a t i o n = i t e r a t i o n +1;

end

time = toc ;

i f (gap<e p s i l o n ∗R)

di sp ([’ The number o f i t e r a t i o n i s ’ , num2str (i t e r a t i o n) , ’ and the running time i s ’ , num2str (time)]) ;

e l s e

d i sp (’No s o l u t i o n ! ’) ;

end

9.4 Generated Test Data for LP Feasibility

f unc t i on [A, b] = TestData (m, n)

54

A = randsphere (n ,m, 2 5 0 0) ;

A = A’ ;

A = A+2500∗ones (m, n) ;

alpha = ze ro s (1 , n) ;

f o r i =1:n

alpha (1 , i) = random (’ uni f ’ , 1 , n) ;

end

sum = 0 ;

count = 0 ;

f o r i =1:n

i f (alpha (1 , i)>0)&&(alpha (1 , i)<(m+1))

sum = sum+alpha (1 , i) ;

count = count +1;

e l s e

alpha (1 , i) = 0 ;

end

end

f o r i =1:n

alpha (1 , i) = alpha (1 , i)/sum ;

end

55

b = A∗alpha ’ ;

9.5 Generated Data for Page Rank Problem

f unc t i on [A,G, b] = Gmatrix v4 (n)

%Randomly generate ad jacent matrix with value 0 or 1

%X = sprand (n , n , 0 . 0 5) ;

X = sprand (n , n , 0 . 5) ;

f o r i =1:n

f o r j =1:n

X(i , j) = round (X(i , j)) ;

end ;

end ;

%Normalize the adjacent matrix by column

f o r i =1:n

norm1 = sum(X(: , i)) ;

i f (norm1>0)

X(: , i) = X(: , i)/ norm1 ;

e l s e

X(: , i) = ones (n , 1) / n ;

end ;

end

56

alpha = 0 . 8 5 ;

G = alpha∗X+(1−alpha)/n∗ones (n , n) ;

b = ze ro s (n , 1) ;

A = G−eye (n) ;

9.6 Get Optimal T

f unc t i on t=getOptT (A, b)

%How to get t

%method1 max

t=max(abs (b))/max(max(abs (A))) ;

%method 2 norm

% t=norm(b)/norm(A) ;

t=c e i l (t) ;

%End getT .m

format long ;

%Get the i n t i a l t

t o ld=getOptT (A, b) ;

[pprime1 , e r ror1 , i t e r 1 , alpha1 , x01 , so lError1 , xold1 , f l a g 1]

= incTr i ang l e2 (A, b , to ld , 1e−1);

%Get the new t and gap = 1

tnew = to ld +1;

57

[pprime2 , e r ror2 , i t e r 2 , alpha2 , x02 , so lError2 , xold2 , f l a g 2]

= incTr i ang l e2 (A, b , tnew , 1e−1);

i f f l a g 1==0 | | f l a g 2==0

di sp (’ not in convex hul l ’) ;

end

n=3;

whi l e n>0 && i t e r 1 > i t e r 2 && f l a g 1==f l a g 2

to ld = tnew ;

[pprime1 , e r ror1 , i t e r 1 , alpha1 , x01 , so lError1 , xold1 , f l a g 1]

= incTr i ang l e2 (A, b , to ld , 1e−1);

tnew = tnew + 1 ;

[pprime2 , e r ror2 , i t e r 2 , alpha2 , x02 , so lError2 , xold2 , f l a g 2]

= incTr i ang l e2 (A, b , tnew , 1e−1);

n=n−1;

end

tnew = to ld ;

t o ld = tnew−1/2;

[pprime1 , e r ror1 , i t e r 1 , alpha1 , x01 , so lError1 , xold1 , f l a g 1]

= incTr i ang l e2 (A, b , to ld , 1e−2);

58

[pprime2 , e r ror2 , i t e r 2 , alpha2 , x02 , so lError2 , xold2 , f l a g 2]

= incTr i ang l e2 (A, b , tnew , 1e−2);

k=2;

e r r o r =1;

whi l e k>0 | | e r ro r>1e−4

i f i t e r 1 >= i t e r 2

to ld =(to ld+tnew) / 2 ;

[pprime1 , e r ror1 , i t e r 1 , alpha1 , x01 , so lError1 , xold1 , f l a g 1]

= incTr i ang l e2 (A, b , to ld , 1e−3);

e l s e i f i t e r 1 < i t e r 2

d i f f = tnew−t o ld ;

tnew=to ld ;

t o ld=tnew−d i f f ;

[pprime1 , e r ror1 , i t e r 1 , alpha1 , x01 , so lError1 , xold1 , f l a g 1]

= incTr i ang l e2 (A, b , to ld , 1e−3);

[pprime2 , e r ror2 , i t e r 2 , alpha2 , x02 , so lError2 , xold2 , f l a g 2]

= incTr i ang l e2 (A, b , tnew , 1e−3);

end

k=k−1;

e r r o r = abs (to ld−tnew) ;

end

59

[pprime1 , e r ror1 , i t e r 1 , alpha1 , x01 , so lError1 , xold1 , f l a g 1]

= incTr i ang l e2 (A, b , to ld , 1e−3);

[pprime2 , e r ror2 , i t e r 2 , alpha2 , x02 , so lError2 , xold2 , f l a g 2]

= incTr i ang l e2 (A, b , tnew , 1e−3);

9.7 Frank Wolf Algorithm

f unc t i on [time i t e r a t i o n] = FrankWolf (A, b , e p s i l o n)

[˜ , n]= s i z e (A) ;

R = 0 ;

f o r i =1:n

i f R<norm(A(: , i)−b , 2) R = norm(A(: , i)−b , 2) ; end

end

t i c ;

i t e r a t i o n = 0 ;

un i t v e c t o r = ze ro s (n , 1) ;

x = ones (n , 1) / n ;

gap = norm(A∗x−b , 2) ;

c = A’∗b ;

whi l e (gap>e p s i l o n ∗R)

i t e r a t i o n = i t e r a t i o n +1;

60

temp = A’ ∗ (A∗x)−c ;

[˜ , i] = min (temp) ;

un i t v e c t o r (i , 1) = 1 ;

temp = uni tvec to r−x ;

tempvector = A∗temp ;

tempnorm = tempvector ’∗ tempvector ;

i f (tempnorm<1e−10)

break ;

end

alpha = (b−A∗x) ’∗ tempvector /tempnorm ;

i f (alpha >1) alpha = 1 ;

e l s e i f (alpha<1e−10)

break ;

end

end

x = x + alpha∗temp ;

un i t v e c t o r (i , 1) = 0 ;

gap = norm(A∗x−b , 2) ;

end

time = toc ;

i f (gap<e p s i l o n ∗R)

di sp ([’ The t a r g e t po int i s in the convex h u l l !

The number o f i t e r a t i o n i s ’ , num2str (i t e r a t i o n) ,

61

’ and the running time i s ’ , num2str (time)]) ;

e l s e

d i sp (’ Not in convex hul l ’) ;

end

%%%

%V e r i f i c a t i o n f o r c o r r e c t n e s s

c o r r e c t = 1 ;

xnorm = norm(x , 1) ;

i f (abs (xnorm−1)>1e−10) c o r r e c t = 0 ; end

[temp , ˜] = s i z e (f i n d (x<−1e−10)) ;

i f (temp >0) c o r r e c t = 0 ; end

i f (norm(A∗x−b,2)> e p s i l o n ∗R) c o r r e c t = 0 ; end

i f (c o r r e c t == 1)

d i sp (’ The s o l u t i o n i s v e r i f i e d to be c o r r e c t ! ’) ;

e l s e

d i sp (’ The s o l u t i o n i s f a l s e ! ’) ;

end

9.8 SOR and Gauss Seidel

f unc t i on [x , r e s u l t] = sor (A, b ,w, max ite , t o l)

D=diag (diag (A)) ;

L=t r i l (A)−D;

U=t r i u (A)−D;

62

[m, n]= s i z e (A) ;

x=ze ro s (n , 1) ;

f o r i t e r =1: max ite

xprev=x ;

x=(D+w∗L)\ (w∗b−(w∗U+(w−1)∗D)∗x) ;

e r r o r=norm(x − xprev) / norm(x) ;

r e s u l t (i t e r , :)= [i t e r e r r o r] ;

i f (e r r o r <= t o l)

break ;

end ;

%Yong ’ s optimal formula

D=diag (diag (A)) ;

J = D\(D − A) ; e = e i g (J) ;

r=max(abs (e)) ;

w = 2/(1 + s q r t (1 − r ˆ 2)) ;

63

References

[1] K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe

algorithm. July 2008.

[2] Department of Methematics, North Carolina State University, Raleigh, USA.

The Mathematics Behind Google’s PageRank.

[3] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res.

Logist Quart., 3(1956):95–110.

[4] T. Gibson and B. Kalantari. Experiments with the triangle algorithm for linear

systems. 23rd Annual Fall Workshop on Computational Geometry, City College

of New York, October 2013.

[5] J. E. Goodman and J. O’Rourke, editors. Discrete Mathematics and its Appli-

cations. Chapman Hall Boca Raton, 2004.

[6] B. Kalantari. Solving linear system of equations via a convex hull algorithm.

arxiv.org/pdf/1210.7858v1.pdf, 2012.

[7] B. Kalantari. A characterization theorem and an algorithm for a convex hull

problem. Annals of Operations Research, 2014.

64

[8] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive methods for the computation

of pagerank. July 2012.

[9] M. Li and B. Kalantari. Experimental study of the convex hull decision problem

via a new geometric algorithm. 23rd Annual Fall Workshop on Computational

Geometry, City College of New York, October 2013.

[10] D. M. Young. Iterative solution of large linear systems. Academic Press, 1971.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Review of The Triangle Algorithm
	Basic Concepts of Triangle Algorithm

	Numerical Experiment for Solving The Convex Hull Problem and Comparison with The Frank-Wolfe Algorithm
	Solving Ax=b Via The Triangle Algorithm
	Solving A Linear System with Nonnegative Solution
	Solving A General Linear System
	The Incremental Triangle Algorithm

	Numerical Experiment for Solving Ax=b Via The Triangle Algorithm and Comparison with SOR and Gauss-Seidel
	Review of Gauss-Seidel
	Review of SOR method
	Numerical Comparison with Triangle Algorithm, Gauss-Seidel and SOR
	More Numerical Experiment with tmin

	Solving PageRank Problem via Triangle Algorithm
	Numerical Comparison with Power Method
	Conclusion and Future Work
	Appendix for Matlab Codes
	Triangle Algorithm for LP Feasibility
	Incremental Triangle Algorithm
	Power Method
	Generated Test Data for LP Feasibility
	Generated Data for Page Rank Problem
	Get Optimal T
	Frank Wolf Algorithm
	SOR and Gauss Seidel

	References

