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Two major challenges plague the robust design of stem cell-derived tissues for 

regenerative therapies: (1) the phenotypic and functional heterogeneity inherent in 

stem cell cultures, and (2) the dynamic, long-term nature of stem cell responses to 

microenvironmental cues. Several tools have emerged to precisely characterize how 

stem cells respond to various stimuli and scaffold properties; however, these tools are 

limiting because they are population-based and rely on the detection of markers 

expressed in fully differentiated cells. Thus, methods to characterize individual stem 

cells from a population is key for establishing cell-biomaterial relationships necessary to 

design scalable constructs for tissue engineering applications. 

 This thesis dissertation focuses on the utility of single cell profiling techniques to 

identify the heterogeneity within cell cultures and characterize responses to 

controllable changes in diverse microenvironments. This method relies on the 

quantification of metrics derived from images of cytoskeletal and nuclear proteins that 
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are sensitive to microenvironmental cues that influence cell state. This is achieved by 

pursuing two thesis-specific aims: (1) to utilize single cell biological imaging and machine 

learning techniques to identify cell subtypes in heterogeneous cultures, and (2) to use 

early morphological descriptors of intranuclear mechanotransductive proteins to predict 

long-term stem cell responses to biomaterials. 

 In this study we report that single cell imaging-based profiling of cytoskeletal 

actin and nuclear mitotic apparatus (NuMA), a cell cycle regulating protein, can identify 

different cell phenotypes in heterogeneous stem cell cultures, progenitor cells derived 

from different tissue sections ex vivo, and stem cell responses to a diverse set of surface 

chemistries. We also show that the early (3 day) organization of interchromatin domains 

varies in human mesenchymal stem cells exposed to a variety of growth factor 

combinations and complex topographical microenvironments that induce long-term (> 7 

day) divergent phenotypic outcomes. 

 In summary, the results presented in this thesis dissertation show that single cell 

imaging-based profiling can be utilized to identify cell subtypes and predict 

microenvironment-induced differentiation fates at earlier times and with more 

resolution than current screening assays. This work can help lay the foundation for a 

new generation of single cell-based biomaterial screening tools and cellular phenotyping 

techniques.  
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CHAPTER 1. INTRODUCTION 
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1.1 TISSUE ENGINEERING 

 Tissue engineering is an emerging field that seeks to repair or restore tissues 

tailored to patients with the aim of mimicking the body’s native tissue as closely as 

possible. In its simplest form, tissue engineering seeks to develop scaffolds that provide 

chemical, mechanical, and structural cues for cells to integrate for the creation of neo-

tissues and -organs in vitro or in vivo [1]. The bulk chemistry of these scaffolds typically 

consists of either synthetic polymers (e.g., poly(lactic acid) (PLA), poly(lactic-glycolic 

acid) (PLGA), or polycaprolactone (PCL)) or naturally-derived polymers (e.g., hyaluronic 

acid (HA), chitosan, collagen, or fibrin) [2]. To engineer a wide range of stiffness, shapes, 

porosities, and architectures, many fabrication techniques have been developed [3, 4]. 

However, in order to utilize these scaffolds to their full potential, there is a need for 

robust and quantitative methods of assessing cellular responses to a diverse set of 

scaffold properties. 

 Tissue engineering emerged from concurrent advances in cell biology and the 

field of transplantation. The synergy between the two date back to as early as 1933, 

when Bisceglie and coworkers implanted a polymer membrane with mouse tumor cells 

into the abdominal cavity of a pig, noting that the mouse cells were not killed by the 

pig’s immune system [5]. In 1975, Chick et al. successfully showed that they were able to 

control insulin release of encapsulated pancreatic islet cells by varying glucose levels [6]. 

Since then, technological advances have led to the development of functional tracheas 

[7], bladders [8], and urethras [9], which have been grown in vitro prior to patient 

implantation. 
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The ultimate goal of tissue engineering strategies is to develop scaffolds that 

elicit desired cellular outcomes (e.g., proliferation, differentiation, and/or phenotype 

retention). To accomplish, cell-scaffold constructs can either be assembled in vivo, or in 

vitro. In vivo tissue engineering strategies take advantage of the ability of the recipient's 

native cells to integrate and make an acellular implant functional. The implant is 

fabricated from either natural or synthetic polymers that are permanent, or degrade 

over time [10]. The scaffold provides the chemical cues and mechanical support 

necessary to promote and maintain cellular attachment, growth, differentiation, and 

maintenance of cellular phenotype [11, 12]. To-date, in vivo tissue engineering has been 

utilized in applications including hernia repair [13], sutures [14], and orthopedic devices 

[15, 16]. Due to the lack of a vascular network, most of the work performed involving in 

vivo tissue engineering focuses on the replacement and repair of connective tissues, 

including bone, cartilage, and skin [17]. Without vasculature, there are significant 

oxygen diffusion limitations which restrict the use of in vivo tissue engineering for more 

complex tissues and organs [18]. 

An alternative to the use of acellular scaffolds prior to implantation is the 

application of in vitro tissue engineering strategies [19]. These strategies focus on the 

manipulation of isolated cells in vitro prior to implantation in vivo [20]. The cell-scaffold 

constructs are either maintained in static cultures, or within a bioreactor until the cells 

proliferate and differentiate into a biomaterial construct that features biological and 

mechanical functions of the tissue or organ that it is intended to replace or repair. This 

approach has the potential to address the limitations of in vivo tissue engineering, since 
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it theoretically allows for the creation of a whole living organ ex vivo due to the 

possibility of introducing vasculature and cues that promote angiogenesis [21]. For 

example, using micropatterning techniques, vascular networks can be created and 

integrated into a scaffold system to allow for adequate nutrient and oxygen transfer 

within the cell-material hybrid [22, 23]. More recently, using three-dimensional printing 

of sacrificial carbohydrate cylinders onto hydrogels, Chen et al. were able to perfuse 

endothelial cells which assembled into vasculature networks of various geometries and 

patterns [23]. 

Despite advances of in vivo and in vitro tissue engineering, these strategies are 

far from reaching their full potential. To engineer more complex and reproducible 

constructs, there needs to be an enhanced scale-up of vascularized tissues with carefully 

balanced bioactivity landscapes, which will require a stronger fundamental 

understanding of cell biology and material properties. Additionally, the interactions 

between cells and scaffolds must be well understood and optimized to develop robust 

and functionally active tissue constructs [24]. A recent publication released by Jansen et 

al. conducted a strategic assessment of limiting factors that need to be overcome to 

allow for tissue engineering strategies to possess wide clinical success by the year 2021. 

Using a modified Hoshin process, the answers from a worldwide body of 24 leaders in 

the field of tissue engineering were ranked into 14 critical activity categories. The top 

four included: (1) angiogenic control; (2) stem cell science; (3) molecular biology and 

systems biology; and (4) cell sourcing and cell/tissue characterization [25].  
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While current biomaterial screening assays are informative, they generally 

provide a single readout to assess a population-based response to a test condition. Due 

to the heterogeneous nature of stem cells, a major emerging cell source for 

regenerative therapies, screening methods will require more sophisticated 

measurements based on data-rich readouts that account for multivariate and spatially 

divergent cellular responses within one test condition. This thesis dissertation is focused 

on the goal of advancing improved methodologies rooted in molecular and cellular 

biological readouts to characterize single stem cell responses to biomaterials for their 

use in tissue engineering strategies.  
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1.2 ORTHOPEDIC TISSUE ENGINEERING 

 Within the field of tissue engineering in general and in orthopedic cell 

transplants in particular, there is a significant need for alternative therapies. Bone and 

cartilage-related diseases affect millions of people worldwide. Arthritis is the most 

common cause of disability in the United States, resulting in annual costs exceeding 

$128 billion dollars [26]. The Centers for Disease Control and Prevention estimated that 

between 2007 and 2009, 50 million Americans were diagnosed with arthritis [27]. 

Osteoarthritis, a degenerative disease that results in the decay of cartilage in joints, is 

the most common form of arthritis. In 2008, 51.2 million Americans were living with 

osteoarthritis [28]. Another prevalent degenerative disease is osteoporosis which 

affects over 50% of Americans over the age of 50 [29]. Currently, there are no methods 

that can restore cartilage or bone loss resulting from osteoarthritis or osteoporosis, 

respectively. Treatment options for bone-related cancers are extremely limited as well. 

For example, osteosarcoma is generally treated with adjuvant chemotherapy followed 

by the removal of the primary tumor, resulting in missing bone at the site of surgery 

[30]. 

 Strategies for treating bone defects involve either the transplantation of natural 

bone tissue or synthetic implants. Natural bone tissue is acquired from autografts or 

xenografts. Autografts are beneficial because they run low risk of immunological 

rejection. However, this procedure requires two sites of invasive surgery, and 

permanent tissue loss from the donor site [31]. Xenografts circumvent this; however, 

the demand exceeds the supply of donors and there is the potential of disease 
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transmission and immunologic rejection [32]. To address the limitations of autografts 

and xenografts, metal and ceramic-based implants can be used to fill defects after the 

removal of damaged bone tissue. However, this first-generation of materials have their 

limitations, including a poor material-tissue interface and an inclination towards fatigue 

and corrosion. Since current strategies are limiting, there is a need for a new generation 

of biomaterials capable of restoring damaged and missing bone tissue without any 

adverse side effects. To this end, there has been a growing interest in the generation of 

more advanced biomaterials that induce tissue remodeling, which will be discussed in 

Section 1.2.1 and Section 1.2.2. 

 

1.2.1 Cells 

 Two commonly used cell types in tissue engineering are somatic cells and 

stem/progenitor cells. Somatic cells have been utilized to develop several tissue 

substitutes in vitro including skin [33], cartilage [34, 35], and bone [35]. Although 

somatic cells can be exploited to generate specialized tissues, such as the FDA approved 

therapies Carticel [36] and Apligraf [37], they are not good candidates for regenerative 

therapies since terminally differentiated cells are unable to undergo extensive self-

renewal. Additionally, somatic cells pose two other drawbacks: (1) they are difficult to 

adequately expand for use in engineered tissues [38] and (2) are highly specific, 

restricting their use to tissues from which they originated from. As such, stem cells are 

now being increasingly considered as an alternative cell source, due to their ability of 

self-renewal, and their potential to differentiate into multiple lineages [39, 40]. 
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 Stem cells can be categorized into three types, each with its own set of benefits 

and limitations: (1) embryonic stem cells (ESCs), (2) induced pluripotent stem cells 

(iPSCs), and (3) adult stem cells (ASCs). A cartoon demonstrating these stem cell types 

and strategies used to isolate them can be found in Figure 1.1 below. 

 

 

Figure 1.1: Cartoon of Different Stem Cell Types and Sources 

An overview of the sources and techniques used to generate ESCs, iPSCs, and ASCs. 

Figure is reproduced from [41]. 
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 ESCs are derived from the inner cell mass of a blastocyst, and were first isolated 

in 1998 by Thomson and coworkers [42]. This cell line is advantageous because they are 

pluripotent and under the right culture conditions can proliferate indefinitely while 

maintaining their stemness. However, ESCs are not autologous, and thus may require 

the use of immunosuppressive drugs post-implantation. Additionally, the acquisition of 

ESCs requires the destruction of an embryo, which raises ethical concerns. 

 An alternative stem cell line that has comparable differentiating and self-renewal 

capacity to ESCs are iPSCs, which were first harvested in the Yamanaka laboratory in 

2006 [43, 44]. This was achieved by exposing fibroblasts to a cocktail of four 

transcription factors, resulting in the reprogramming of a small percentage of the 

somatic cells into cells that behave like ESCs. In theory, iPSC populations derived from a 

skin biopsy could be expanded and differentiated into any cell type. However, iPSC 

technology remains fairly immature and much more research is needed before clinical 

applications can come to fruition. 

 Due to the limitations of ESCs and iPSCs in tissue engineering applications, more 

translational advances have been achieved with ASCs. ASCs are a multipotent and 

capable of providing patients with specialized tissues derived from an autologous cell 

source. In bone marrow, ASC populations contain two prevalent cell types: 

hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). HSCs can 

differentiate into blood cell types, including erythrocytes, leucocytes, and lymphocytes 

[45, 46]. In contrast, MSCs have been shown to differentiate into various connective 

tissues including adipocytes, osteoblasts, and chondrocytes [47]. 
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 Human MSCs are traditionally differentiated into osteoblasts in vitro by 

introducing dexamethasone, sodium ascorbate, and β-glycerophosphate to serum-

containing medium [47]. When plated at a low density and cultured with growth 

medium supplemented with osteogenic growth factors, hMSCs will differentiate into 

osteoblasts after several weeks in culture [47, 48]. hMSC-derived osteoblasts are 

characterized by the generation of a calcified extracellular matrix as well as the 

expression of osteoblast-associated messenger RNAs including osteocalcin and 

osteopontin [49]. In lieu of soluble growth factors, several laboratories have discovered 

alternative ways to induce osteogenic differentiation. For example, by inhibiting histone 

deacetylases (HDAC), Jung et al. induced osteogenic differentiation in a dose-dependent 

manner in vitro [50]. HDAC inhibition exposes DNA regions that would normally be 

suppressed, suggesting that epigenetic mechanisms play a large role in the onset of 

osteogenesis. Additionally, genetic modifications to hMSCs that cause them to express 

recombinant bone morphometric protein 2 (BMP-2) or adenovirus runt-related 

transcription factor 2 (RUNX2) have also been shown to increase osteogenic 

differentiation [51, 52]. 

 Inducing osteogenesis via the use of synthetic growth factors or by constituently 

expressing and/or silencing certain genes is not practical for clinical use due to the 

adverse effects these methods may create in vivo, particularly in off-target sites. As 

such, biomaterial-induced osteogenic differentiation presents a more attractive, site-

directed alternative approach. Current biomaterial screening approaches rely on the 

measure of markers, which take several weeks for cells to produce enough of to obtain 
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a reliable readout. Therefore, improved methods to rapidly and accurately characterize 

stem cell interactions with biomaterials at earlier time-points need to be developed. 

One possibility may involve the quantification and assessment of interactions that occur 

shortly after cell attachment and prior to the expression of phenotype-specific markers. 

 During the early stages of osteogenesis, runt-related transcription factor 2 

(RUNX2) is activated. RUNX2 is a transcription factor whose expression has been linked 

with the downstream expression of two pre-osteoblast markers: type I collagen and 

alkaline phosphatase [53-55]. Concurrently, global changes in gene expression and 

organizational changes of cytoskeletal and nuclear proteins occur within the first 3 days 

of osteogenic induction [56, 57]. As osteogenesis continues, undifferentiated MSCs 

become pre-osteoblasts, as defined by high levels of type I collagen and alkaline 

phosphatase. The abundance of these proteins leads to the expression of two more 

transcription factors, distal-less 5 and osterix [58, 59]. The continuous expression of 

distal-less 5 and osterix are largely responsible for the transition from a pre-osteoblast 

to a mature osteoblast. A simplified cartoon showing the osteogenic pathway can be 

found in Figure 1.2 below. 
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Figure 1.2: Simplified Cartoon of Osteogenic Differentiation Pathway 

An overview of some of the transcription factors (denoted by ↑) required for the 

transition from undifferentiated MSC to mature osteoblast along with measurable 

markers (denoted by (+)). 

 

1.2.2 Biodegradable Materials 

 For both in vivo and in vitro tissue engineering strategies, the use of degradable 

biomaterials instead of permanent materials has been of high interest. This is largely 

because an implant engineered with degradable chemistries does not have to be 

removed surgically, thus the safety issues that come with permanently implanted 

devices are not a concern. Degradable biomaterials can either be derived from natural 

polymers (e.g., collagen, fibrinogen, chitosan, starch, and hyaluronic acid (HA) [60-63]), 

or synthesized in the laboratory. Both natural and synthetic degradable biomaterials can 

feature chemical and structural versatility as well as high reproducibility. Material 

properties including density, hydrophobicity, crystallinity, surface roughness, 

topography, and degradation rate can all be controlled and tailored for specific tissue 

engineering applications [64-66]. 
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Poly(lactic acid) (PLA) and poly(lactic-glycolic acid) (PLGA) are the most widely 

studied synthetic degradable polymers. PLA and PLGA have demonstrated 

biocompatibility with relatively non-toxic and non-immunogenic degradation products 

and possess a degradation rate comparable to the healing process of bone wounds [67]. 

However, during the degradation process, there is a significant loss of mechanical 

strength and accumulation of acidic components [68]. To address these concerns, 

chemical changes (e.g., mixing PLA or PLGA with hydroxylapatite or β-tricalcium 

phosphate [69]) and physically increasing the effective surface area by introducing an 

assortment of surface topographies [70] has been investigated. Although these 

modifications have improved polymer properties, the material design and optimization 

protocols rely on a trial-and-error approach, which is laborious and time-consuming. 

Therefore, to more effectively advance the discovery of desirable biomaterial properties 

(e.g., chemical, physical, and mechanical), there is a need for more rational approaches 

to design and optimize scaffolding materials that promote bone regeneration. 

 In addition to PLA and PLGA, the effects of biomaterial properties on cell 

behavior have been investigated with a family of tyrosine-derived polymers developed 

by Kohn and coworkers at Rutgers University. Poly(desaminotyrosyl-tyrosine ethyl ester 

carbonate) (PDTEC) is a highly versatile and degradable polymer system [71]. 

Copolymers of DTE can be copolymerized with desaminotyrosyl-tyrosine (DT), which 

adds a negative charge due to a free caboxylic acid [72], and/or copolymerized with 

poly(ethylene glycol) (PEG), which increases hydrophilicity, water uptake, and decreases 

protein adsorption [73, 74]. Varying the ratio of these three components results in an 
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array of polymer properties, allowing for a wide range of biomedical applications [75, 

76]. For example, by increasing the ratio of DTE to DT, the degradation rate of the 

polycarbonate will increase. Additionally, by increasing the percentage of PEG, the 

polymer will swell in aqueous environments and cell adhesion will decrease due to a 

reduction in protein adsorption. The chemical structure of these tyrosine-derived 

terpolymers from DTE, DT, and PEG are shown in Figure 1.3. 

 

 

Figure 1.3: Chemical Structure of Poly(DTE-co-XX%DT-co-YY%PEG carbonate) 

Molar composition of polycarbonate with (100-XX-YY)% DTE, XX% DT, and YY% PEG. 

Schematic adapted from [77]. 

 

 In addition to chemistry, substrate compliance and topography are two very 

important biomaterial parameters. For example, stem cells cultured on stiff biomaterials 

have a higher tendency of differentiating towards phenotypes native to hard tissues 

(e.g., bone) in vivo [78, 79]. On non-compliant substrates, several studies have cited that 

changes in topography direct stem cell lineage commitment [80-82]. These changes also 

affect the early organization and presence of integrins, focal adhesions, actin, and 

nuclear shape. Leong et al. showed that cells placed in gratings that promoted 
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alignment showed a decrease in expression of several integrin subunits, in addition to 

an increase in actin alignment and focal adhesion polarity [83]. Additionally, 

topography-based regulation of actin also influences nuclear shape and gene regulation 

[84, 85]. These findings suggest that changes in topography not only affect stem cell 

lineage commitment, but changes in morphology as well. 
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1.3 LIMITATIONS OF CURRENT CELL-MATERIAL SCREENING TOOLS 

 Tissue engineering strategies have the potential to integrate with personalized 

medicine by providing customizable constructs that utilize autologous cells to meet 

patient needs. In order for this vision to become reality, a thorough understanding of 

the interplay between cells and scaffold systems needs to be established so that 

techniques to produce controllable cellular proliferation, differentiation, and 

maintenance of phenotype can be developed. Therefore, in addition to developing 

methods of producing state-of-the-art scaffolding materials, the next generation of 

tissue engineering strategies must also rely on the elucidation of stem cell responses to 

extracellular stimuli, including but not limited to scaffold properties and culture 

environments. 

 Scaffolds featuring a diverse range of chemical and physical properties, as well as 

different architectures and topographies yield differences in protein adsorption and cell 

adhesion, resulting in various changes in cellular processes including proliferation, 

differentiation, and extracellular matrix production [70, 86]. Tunable parameters such as 

architecture, hydrophobicity and protein adhesion potential strongly influence cell 

function, differentiation commitment, and phenotypic stability [73, 87, 88]. To date, 

most of the studies conducted to elucidate these mechanisms focus on either the 

detection of lineage-specific markers or gene expression levels of whole stem cell 

populations for a limited number of material conditions. This poses two problems: (1) 

only a small subset from a theoretically infinite number of conditions is being tested, 



17 
 

 

and (2) readouts are data-limited and may not be representative of heterogeneous stem 

cell cultures. 

 As such, scientists have worked on developing methods to expand the number of 

test conditions from several candidate conditions to a much larger, combinatorial design 

of biomaterial libraries [89-91]. Other high-throughput screening methods include: 

extracellular matrix microarrays [92], fluorescence-based polymer screening [93], and 

lab-on-a-chip substrates [94]. Combinatorial libraries and high-throughput screening 

platforms allow for the exploration of thousands of conditions that could be controlled 

both incrementally and simultaneously to expedite the discovery of desired structure-

function relationships. Due to the larger number of conditions screened, there is a 

substantial increase in the probability of finding suitable cell-material interactions that 

would have otherwise gone unnoticed with smaller test sets. 

 Traditional approaches to screen condition-dependent cell outcomes generally 

rely on detecting unitary fluorescence readouts representative of the whole condition. 

Singer et al. argue that gene expression of cell populations is strikingly different than the 

average gene expression of many single cells representative of a cell population [95]. 

Thus, alongside higher-throughput screening tools, there is a growing need to develop 

methods that go beyond traditional characterization approaches and can quantitatively 

profile multiple cellular responses at the scale of single cell resolution. Therefore, a 

desirable high content screening system should allow for single cell analyses and for the 

collection of quantitative readouts to account for population heterogeneity as well as 

single cell responses.  
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1.4 HYPOTHESIS AND AIMS OF THE DISSERTATION 

 Two major challenges plague the robust design of stem cell-derived tissues for 

regenerative therapies: (1) the phenotypic and functional heterogeneity inherent in 

stem cell cultures, and (2) the dynamic, long-term nature of stem cell responses to 

microenvironmental cues. Several tools have emerged to precisely characterize how 

stem cells respond to various stimuli and scaffold properties; however, they are limiting 

because they are population-based and rely on the detection of markers expressed in 

fully differentiated cells. Thus, methods to characterize individual stem cells from a 

population is key for establishing cell-biomaterial relationships necessary to design 

scalable constructs for tissue engineering applications. 

 Cells first respond to their environment by forming focal adhesion complexes 

that anchor to the surrounding matrix. These binding events induce early outside-in 

signaling events that connect the nuclear space to adhesion proteins via the 

cytoskeleton, resulting in structural changes to overall cell shape and various 

mechanoresponsive cytoskeletal and nuclear elements. Thus, we hypothesize that 

quantitative metrics descriptive of cytoskeletal and nuclear proteins involved in outside-

in signaling can be utilized to define cell state mediated by microenvironmental cues. 

 As such, the goal of this thesis is to develop single cell biological imaging and 

machine learning techniques to identify the heterogeneity of stem cell cultures and 

characterize responses to controllable changes in diverse microenvironments. This was 

achieved by pursuing two thesis-specific aims: (1) to utilize single cell biological imaging 

and machine learning techniques to identify cell subtypes in heterogeneous stem cell 
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populations, and (2) to use early morphological descriptors of intracellular 

mechanotransductive proteins to predict long-term stem cell responses to biomaterials. 

Each of these aims requires a thorough understanding and utility of imaging modalities 

and cell biology. Chapter 2 is a review of imaging tools and techniques used to visualize 

cellular proteins, previous progress made in single cell imaging-based profiling, and the 

hypothesized outside-in signaling relevance of proteins used for the thesis work.  

 Chapter 2 lays the foundation and rationale for the studies in Chapter 3, where 

we show that single cell imaging-based profiling of cytoskeletal actin and nuclear mitotic 

apparatus (NuMA) protein can identify single cell phenotypes in different stem cell 

populations. We found that actin organization could identify minute distinctions in the 

phenotypes of human mesenchymal stem cells (hMSCs) cultured on polymeric films 

with varying degrees of poly(ethylene glycol) to modulate osteogenic differentiation. 

Additionally, hMSCs cultured on a platform featuring a hydrophobicity substrate 

gradient were screened and descriptors obtained to correlate substrate variations with 

adipogenic lineage commitment. Further, we demonstrated that NuMA organizational 

features were able to distinguish self-renewing subpopulations of human embryonic 

and induced pluripotent stem cells from heterogeneous populations, which showcases 

our ability to identify heterogeneity, a current challenge that limits the use of stem cells 

in the clinic. 

 In Chapter 4 we apply the quantitative methodologies presented in Chapter 3 to 

identify cell phenotypes in confluent cultures that have potential impact in tissue 

engineering. Since it is not possible to segment single cells in confluent cultures using 
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actin, for the studies in Chapter 4 we used the NuMA protein, a cell cycle regulating 

protein, as our morphometric reporter. As a screening tool, we predicted the 

oncogenicity of a biomaterial library by showing a high-degree of correlation between 

early NuMA metrics and long-term hMSC telomerase activity. Next, we showed our 

method's ability to classify cell subtypes ex vivo by identifying three neural precursor cell 

populations extracted from different murine brain regions that have identical antigen 

expression but divergent proliferation and differentiation profiles. Lastly, to show the 

applicability of recognizing and removing unwanted cells in heterogeneous live cell 

populations, we identified and ablated DNA-damaged cells in a co-culture labeled with 

fluorescently-tagged NuMA. The result was an increase of population viability after 

treatment with a drug that selectively kills DNA-damaged cells. 

 This thesis also examined the role of other nuclear proteins besides NuMA in 

parsing stem cell phenotypes within more complex microenvironments. In Chapter 5 we 

found that the early (3 day) organization of SC-35 speckle domains, which host post-

transcriptional machinery within the interchromatin regions of the nuclear space, vary 

in hMSCs exposed to a variety of growth factor combinations that induced divergent 

phenotypic outcomes. As a biomaterial screening tool, via SC-35 imaging we could also 

classify the extent of 14 day osteogenic differentiation commitment across a series of 

surface patterns, fibrous scaffolds, and micropillar topographies.  

 The results presented in these chapters show that single cell imaging-based 

profiling can be utilized to identify cell subtypes in heterogeneous stem cell cultures and 

predict microenvironment-induced differentiation fates at earlier times and with more 



21 
 

 

resolution than current screening assays. This work can help lay the foundation for a 

new generation of single cell-based biomaterial screening tools and cellular phenotyping 

techniques. 
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CHAPTER 2. SINGLE CELL IMAGING-BASED PROFILING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Sections of this chapter have been reproduced from the following publication: 

 

Liu E, Vega S, Treiser MD, Sung H-J, and Moghe PV. (2011) Fluorescence Imaging of 

Cell-Biomaterial Interactions. In: P Ducheyne, KE Healy, DW Hutmacher, DW Grainger, CJ 

Kirkpatrick (eds.) Comprehensive Biomaterials, vol. 3, pp. 291-303 Elsevier. 
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2.1 INTRODUCTION OF FLUORESCENCE IMAGING OF CELL-BIOMATERIAL 

INTERACTIONS 

 Numerous studies document the potential role of biomaterials in tissue 

engineering and regenerative medicine [96-99]. Biomaterials modulate a wide range of 

cellular phenomena, including cell attachment, spreading, migration, survival, growth, 

differentiation, and immune responses [100-105]. The characterization of chemical and 

mechanical properties of biomaterials is a well-established field of study. However, the 

biological characterization of cellular responses to biomaterials is typified by a large 

number of divergent readouts that are challenged by the lack of standardized conditions 

and objective standards. Methods based on optical imaging, in general, and 

fluorescence microscopy, in particular, have witnessed rapid growth and gained 

widespread acceptance in real-time, high-resolution studies of cell cultures as well as 

high-throughput cell screening assays. Not surprisingly, these advances have inspired 

the application of a new generation of techniques to the field of cell-biomaterial 

interactions. 

 Advances in fluorescence microscopy have heralded the development of single 

cell and intracellular imaging methods. As epifluorescence microscopy became an 

entrenched tool in cell biology laboratories, multilabeled indirect immunofluorescence 

techniques enabled biologists to examine the associations of different antigens within 

the same subcellular compartments [106]. Thereafter, advances in fluorescence in situ 

hybridization (FISH) permitted the localization of individual genes on chromosomes and 

specific mRNAs [107-110]. The more recent introduction of high-resolution confocal and 
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multiphoton microscope systems has made it possible to capture three-dimensional 

images resolving the organization of structures within cells, with speeds in the order of 

milliseconds [111-114]. 

 Fixed cellular images acquired from high-resolution immunofluorescence 

techniques have revealed the remarkable complexity of cellular architecture and 

provided important insights of major cellular structures, including different cytoskeletal 

proteins, the nucleus and its various compartments, and membranous organelles [115-

117]. However, images of fixed and stained cells are static, providing only a brief 

snapshot of the organization and properties of these structures. This drawback has 

inspired scientists to develop fluorescence-based methods with high sensitivity for 

studying specific types of molecules and multi-component complexes in living cells. 

 Some of the first proteins that were tracked via fluorescence imaging were 

cytoskeletal proteins such as actin, paxillin, or vinculin directly conjugated with a 

fluorophore such as X-FITC or X-Texas Red. These fluorophore-conjugated proteins were 

microinjected into cells, resulting in the FITC or Texas Red incorporation into targeted 

endogenous structures [118-120]. More recently, fluorescent imaging technology 

heralded the development of genetically encoded fluorescent proteins that could be 

expressed in cells and organisms through the use of green fluorescent protein (GFP), a 

protein that revolutionized the use of fluororeporters in cell biology [121]. The use of 

GFP-tagged proteins has many advantages, but primary among these is the ability to 

capture more time-resolved images, which enables the tracking of the dynamic 

properties of tagged molecules for extended periods of time.  
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2.2 SINGLE CELL IMAGING-BASED PROFILING: PAST AND PRESENT 

 In an attempt to facilitate the progress of tissue engineering, there has been an 

increased focus on developing novel methods of obtaining information-rich readouts of 

stem cell responses to a diverse set of culture conditions [25]. As such, methods are 

being developed to rapidly screen a number of experimental conditions while increasing 

the amount of information gathered per test condition. By increasing the quantity and 

quality of data, these approaches may accelerate the discovery of desirable biomaterial-

driven cell behaviors for tissue engineering applications. 

 Current biological characterization methods generally rely on qualitative 

readouts and lack quantitative and reliable results. To increase the amount of 

information attained per test condition, the pharmaceutical industry has implemented 

high-throughput cell-based screening approaches to assess the efficacy and activity of 

small molecules [122, 123]. These assays utilize a handful of quantitative morphometric 

features to screen biological compounds of potential interest in a high-throughput 

manner. Additionally, recent advances in confocal microscopy, as well as novel image 

processing techniques have made the analysis of cell-biomaterial interactions 

permissive. 

In order to improve upon current characterization methods of cell-biomaterial 

interactions, our laboratory has developed a high content imaging-based platform 

capable of parsing numerical morphological descriptors from images of individual stem 

cells cultured on various microenvironments [56, 57, 124-128]. By combining 

fluorescence imaging, quantitative image analysis, and computational data mining, this 
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approach can provide insights about the organization of various cellular proteins at a 

single cell level. Our laboratory has made several advances in the field of imaging-based 

cellular profiling, and key findings are highlighted in four case studies that utilize 

labeling methods and advanced fluorescence imaging modalities to capture cellular 

interactions with polymeric biomaterials. All case studies used members of a tyrosine-

derived polycarbonate library with generic composition poly(desaminotyrosyl-tyrosine 

ethyl ester carbonate) (Figure 1.3). 

In the first study (Section 2.2.1), epifluorescence microscopy was used to track 

cells tagged with GFP-actin, and confocal microscopy was used to characterize the 

nuclear translocation of GFP-GAPDH when cells were cultured in a library of 

polycarbonate-derived substrates [129]. In the second study (Section 2.2.2), we review 

the application of multiphoton microscopy to visualize cells in three-dimensional 

synthetic biomaterial scaffolds [125]. The third case study (Section 2.2.3) illustrates the 

concept of using high content imaging to identify cell adhesion, spreading, membrane 

modifications, and cytoskeletal organization on biomaterials [127]. In the final study 

(Section 2.2.4), an advanced method combining high-throughput and high content 

imaging platforms is highlighted in terms of its ability to screen cellular responses to 

gradient properties of biomaterials. This case study represents one of the future 

directions in biomaterial design and optimization [126]. 
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2.2.1 Imaging of Cell Cytoskeletal Remodeling and Apoptosis on Biomaterials 

 This case study highlights the role of reactive oxygen species (ROS) in cell 

apoptosis on biomaterials. Polymers derived from the amino acid L-tyrosine were used 

as synthetic matrix substrates [129]. Tyrosine-derived polycarbonates were synthesized 

by copolymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic PEG, 

and negatively-charged DT. These substrates were characterized in terms of their 

intrinsic ability to generate ROS, as well as their ability to regulate intracellular ROS 

production, actin remodeling, and apoptosis in Saos-2 cells (Figure 2.1A). 

 PEG-containing substrates induced both exogenous and intracellular ROS 

production, whereas DT-containing anionic polymeric substrates reduced the 

production of both types, indicating a coupling of exogenous ROS generation and 

intracellular ROS production. The effects of ROS activity on the cytoskeletal actin 

reorganization was probed using a GFP-fluororeporter for actin (Figure 2.1B). In order to 

visualize dynamic changes in actin, live time-lapse imaging of GFP-actin Saos-2 cells was 

performed on a heated chamber perfused with carbon dioxide. Images were taken 

every 3 minutes for 1 hour with a Zeiss fluorescence microscope fitted with a 60X 

objective lens. Six single cells from three independent experiments were imaged in each 

condition. Image contrast and brightness were adjusted to equalize fluorescence 

intensity. Contrast-adjusted images were then filtered utilizing a series of flattened 

filters. Fluorescence pixels were then converted to 8-bit dots with a constant 

thresholding process to allow the individual actin proteins to be segmented. The 8-bit 

dot images provided a higher resolution of actin organization. To measure actin area 
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fraction, 12 single cells were live-imaged at 3 days post-seeding. From the 8-bit dot 

image, a summated dot area, which represents the total actin area, was obtained 

through particle analysis. A ratio of the actin area to the whole cell area was presented 

as an actin area fraction. 

This study showed that the dynamic processes of actin remodeling were 

regulated by biomaterials induced with ROS and played causative roles in cellular 

apoptosis. Briefly, PEG-mediated ROS induction caused nuclear translocation of 

glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, 

confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal 

actin remodeling through β-actin cleavage by caspase-3 into fractins. The fractins 

colocalized to the mitochondria and reduced the mitochondrial membrane potential. 

The remnant cytosolic β-actin was polymerized and condensed, events consistent with 

apoptotic cell shrinkage (Figure 2.1C - 2.1E). The cytoskeletal remodeling was integral to 

the further augmentation of intracellular ROS production. Conversely, the antioxidant 

DT-containing charged substrates suppressed the entire cascade of apoptotic 

progression. It was demonstrated that ROS activity serves as an important role in 

outside-in signaling for cells grown on substrates. The ROS activity couples exogenous 

stress, driven by substrate composition to changes in intracellular signaling. This 

signaling causes cell apoptosis, which is mediated by actin remodeling. 
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Figure 2.1: Imaging of Actin and Functional Reporters During Apoptosis 

(A) Time lapse of GFP-actin Saos-2 cells during apoptosis with apoptosis promoter 

treatment. Morphologic changes over time were observed with and without the 

presence of an antioxidant. (B) Visualization of actin organization (GFP-actin Saos-2 

cells) on various biomaterial substrates with and without the presence of an antioxidant. 

(C) Demonstration of nuclear translocation of GFP-GAPDH (green) to the nucleus (blue) 

during apoptosis. (D) Ratio of GFP-GAPDH signal within the nucleus to the cytoplasm 

was utilized to assess oxidative stress resulting from substrate chemistry. (E) 

Visualization of fractin formation via staining with a polyclonal antifractin antibody. 

Fractins (green) localized to the mitochondria (red). Colocalization (yellow) was more 

evident in PEG-containing samples. ǂ indicates statistical differences. 
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2.2.2 Fluorescence Imaging of 3-D Polymer Scaffolds and Cellular Organization 

 Because confocal imaging of three-dimensional substrates is limited by light 

scattering, MPM was used as an alternative approach to image and quantitatively 

characterize the microsctructure and cell-substrate interactions within microporous 

scaffold substrates fabricated from synthetic biodegradable polymers. 

Poly(desaminotyrosyl-tyrosine ethyl ester carbonate) (PDTEC) and 

poly(desaminotyrosyl-tyrosine octyl carbonate) (PDTOC) were blended, and a 

fluorescent dye was mixed with the blend to visualize the scaffold architecture. The 

porosity of PDTEC/PDTOC blend scaffolds was varied to achieve a distribution of 

microporous and macroporous regions within the porous scaffolds. GFP-engineered 

fibroblasts were seeded onto the scaffolds, which allowed the imaging of both cell 

morphological patterns and the porous scaffolds (Figure 2.2A). The porosity, pore size 

and distribution, strut size, pore interconnectivity, and orientation of both macroscale 

and microscale pores in the three-dimensional scaffolds were effectively quantified and 

validated using complementary imaging techniques. MPM was used to obtain images of 

the scaffold thickness, which was >100 μm, with a high signal-to-noise ratio that 

resulted in reduced bulk photobleaching and eliminated the need for deconvolution 

(Figure 2.2B). In this study, the morphology and cytoskeletal organization in cells 

located inside the scaffold was tracked with high resolution and within the limits of 

penetration of the excitation beam. Thus, this study showed that MPM offers a 

promising integrated platform for imaging cell-material interactions within polymeric 

biomaterial scaffolds. 
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Figure 2.2: Comparison of MPM and CLSM Images of GFP-Fibroblasts in 3-D 

Scaffolds 

(A-B) CLSM and MPM images of GFP-fibroblast cells on 50/50 PDTEC/PDTOC scaffold 

blend. (C) Comparison of experimental maximum signal-to-noise (SNR) ratio of CLSM 

and MPM images of Texas Red doped PDTEC/PDTOC scaffold blends with macro and 

micro pores. * and ** represent a statistically significant difference, p < 0.05, compared 

with 10X and 63X single-photon CLSM images, respectively. 
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2.2.3 Fluorescent Reporter Imaging for Analysis of Cell-Material Interactions 

 Traditionally, mainstream high-throughput cell assays are primarily fluorescence 

intensity-based detection systems such as plate readers and flow cytometers. Such 

cellular assays only focus on bulk changes in intensity of fluorescent probes of whole cell 

or cell lysates. Such cell assays can provide quick readouts but provide much less 

information than can be captured by analyzing cells at the microscopic level. Methods 

such as flow cytometry can render pseudo high content readouts by detecting multiple 

fluorescent probes associated with individual cells. 

A recent study utilized a high content imaging approach to correlate cytoskeletal 

responses of cells to systematically varied chemical changes in biomaterial substrate 

chemistry [127]. Cell-biomaterial interactions were captured utilizing high-resolution 

images obtained with confocal microscopy. Mammalian cell lines (CHO and Saos-2) were 

transfected with GFP fusion proteins to highlight functional and morphological 

responses of the cells. The fusion proteins used in this study were GFP-actin, GFP-

actinin, and GFP-paxillin. Actin, actinin, and paxillin represent cytoskeletal proteins 

involved in both the structural determination of cell shape as well as integrated 

members of a number of biochemical pathways that mediate the outside-in signaling of 

cells. High-resolution images of the GFP-transfected cells in the context of a subset of a 

library of polycarbonates were captured using confocal microscopy. Single cell 

morphometric features (cell descriptors) were then extracted from the images through 

the use of commercially available software Image Pro Plus 5.1 (Media Cybernetics). The 

general feature extraction steps included background subtraction, segmentation of 
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whole cells and individual cytoskeletal proteins (actin), and parametric measurements. 

The extracted cell descriptors contain three categories of subcellular features including: 

(1) cellular morphologic parameters such as area, perimeter, mean radius, mean 

diameter, roundness, protrusions, and protrusion length; (2) reporter localization and 

texture parameters such as heterogeneity of actin stress fibers, clumpiness, average 

fiber length/width, focal adhesions per cell, strength of focal adhesion region, and total 

area of paxillin-rich structures per cell; (3) reporter expression parameters such as 

integrated optical density per cell, and mean fluorescence (Figure 2.3A). 

As an example, the morphological changes of reporter cells in response to 

changes of substrate properties are summarized in the heat map shown in Figure 2.3B. 

A strong statistical difference in descriptor value (Student's t-test, p value → 0) is 

represented by blue, a moderate difference by turquoise, a minor difference by orange, 

and no statistical difference (p value → 1) by red. This study shows how descriptors of 

GFP-tagged proteins in living cells can be used to discern combinatorial variations in 

substrate composition, resulting in significantly richer data sets than analyses conducted 

in fixed samples that provide only one snapshot in time [127]. 
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Figure 2.3: GFP-Tagged Subcellular Reporters on a Subset of Biomaterials 

(A) Confocal micrographs of GFP-engineered Saos-2 cells on two polymeric substrates 

with different backbone compositions leading to differing hydrophobicities. (B) Cell 

responses to a combinatorial variation in substrate properties can be discerned using 

high content imaging of GFP reporters and a heat map representation of variations in 

morphometric descriptors. 

 

A more recent study shows how high content imaging can be used to discern 

early morphological changes in stem cells cultured on synthetic biomaterials [57]. Actin-

based morphology, texture, and intensity descriptors were obtained by single cell 

imaging of human mesenchymal stem cells (hMSCs). The descriptors were reduced in 

dimensionality using multidimensionality scaling (MDS), which combines the large 

number of descriptors into three groupings. The use of such groupings allowed the 
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classification of heterogeneous subpopulations of stem cells within the first 24 hours of 

stem cell culture on biomaterials. The use of high content imaging allowed this 

classification early on, much before biochemical and molecular assays established the 

lineage classification of stem cells toward osteogenic (bone) versus adipogenic (fat) 

lineages. 

 

2.2.4 High Content and High-Throughput Imaging of Cell-Biomaterial 

Interactions 

 Advances in polymeric biomaterial synthesis have allowed for the transition from 

synthesizing a small number of materials to the design and execution of large libraries of 

bipolymer blends derived from systematic combinations of biomaterials [130, 131]. In a 

recent report, a combination of high content imaging and high-throughput screening 

was proposed in the context of cell-biomaterial interactions. The substrate processing 

platform was based on different combinations of polymer blends exhibiting a 

continuous range of chemical and topographical properties on a single 42 mm round 

cover glass. As an example, the tyrosine-derived polycarbonates, PDTEC (E: ethyl) and 

PDTOC (O: octyl) homopolymers and their blends (70/30, 50/50, 30/70 ratio of 

PDTEC/PTDOC by mass), were flow coated on round glass cover slips. The fabricated 

PDTEC/PDTOC blends exhibited well-characterized surface gradients in hydrophobicity 

and surface roughness. Human Saos-2 cells transfected with GFP-tagged farnesylation 

(GFP-f) gene were examined for their responsiveness to the surface texture gradients of 

PDTEC/PDTOC blends. The morphology and organization of Saos-2 cells were examined 
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in real-time using a temperature-controlled chamber on the motorized stage of a 

confocal laser scanning microscope (CLSM). 

The adhesion of Saos-2 cells was rapidly screened via tile scanning and was 

found to be maximized at intermediate regions, characterized by intermediate levels of 

roughness and the steepest roughness gradient (Figure 2.4). Through high content 

imaging, we identified different morphometric parameters of the organization and 

intensity of GFP-f that correlate with the most adhesive substrate compositions 

(chemistry) or with the degree of surface roughness (Figure 2.5). The correlation 

between defined polymer blend parameters and cellular function was obtained. In 

conclusion, this study showed that by quantifying descriptors of GFP-f Saos-2 cells, the 

cellular adhesive responses to texture and compositional variations of polymer blends 

could be dissected via CLSM. 
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Figure 2.4: Cell Attachment Characterization on Roughness Gradient Chip 

(A) GFP-f Saos-2 cells on a roughness gradient chip. (B-C) Quantification of cell 

attachment on the roughness gradient chip. Saos-2 GFP-f cell attachment was plotted 

against the roughness (B) or the local steepness of the gradient (C). 
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Figure 2.5: High Content Imaging of GFP-f Saos-2 Cells on Roughness Gradient 

(A) High-resolution single cell imaging of GFP-f Saos-2 cells on a roughness gradient chip. 

(B) Heat map representation of a pool of cell descriptors along roughness gradients. (C) 

Correlation study of cell descriptors with substrate surface roughness. (D) Correlation 

study of cell descriptors with cell function (adhesion). 
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2.3 CURRENT LIMITATIONS OF PROFILING CELL-MATERIAL INTERACTIONS 

 To-date, imaging-based profiling of cell-biomaterial interactions has only been 

applied to cells cultured on a limited set of conditions, largely restricted to simple, two-

dimensional surfaces. Although considerable progress has been made already, ongoing 

challenges remain in capturing the dynamics of multiple cellular functional readouts and 

signals in physiological and complex biological milieu. A major challenge lies ahead 

regarding imaging of cellular phenomena within three-dimensional microscale scaffolds. 

To apply this imaging-based screening to more clinically-relevant settings, profiling 

techniques need to be adapted so that cell states can be identified in stem cell cultures 

featuring biomaterials with diverse physicochemical and mechanical properties. 

 Dynamic cell-biomaterial interactions result in changes to the organization of 

focal adhesion, cytoskeletal, and many nuclear proteins, which regulate gene 

expression. Although it is well established that cell shape and actin are good indicators 

of cellular phenotype, in confluent populations it is challenging to identify single cells 

using cytoskeletal proteins alone. Additionally, cell shape and actin stress fibers are 

overly sensitive to complex scaffold properties (e.g., substrate compliance, topography). 

As such, there is a need to explore other intracellular fluorescent reporters, particularly 

in the nuclear space that can be identified for single cells within confluent stem cell 

cultures and are sensitive to differentiation-inducing biomaterial properties. In Section 

2.4 we will review several candidate reporter molecules that are involved in the outside-

in signaling cascade that may serve as good markers of cell state induced by interactions 

with complex microenvironments.  



40 
 

 

2.4 OUTSIDE-IN SIGNALING 

 There exists a continuous link between the pericellular matrix and the nucleus 

via cell adhesion complexes and the cytoskeleton [132-136]. Cell adhesion to the 

underlying substrate is initiated via cell membrane receptors establishing contact with 

specific matrix molecules in the surrounding environment. For example, in native tissue, 

the extracellular matrix (ECM) is composed of an intricate combination of collagen, 

elastin, and glycoproteins (e.g., fibronectin and lamin). Immediately following cell 

adhesion, outside-in signaling events trigger changes in the three-dimensional 

organization and ultrastructure of several signaling proteins. There are two facets to 

outside-in signaling: (1) biochemical signal transduction, whose processes include 

phosphorylation cascades and protein translocation to the cell nucleus, and (2) 

mechanotransduction, which refers to processes that convert mechanical stimuli into 

signaling events mediated via cytoskeletal remodeling [137, 138]. Thus, the ECM, 

cytoskeleton, and nucleus are all connected and modulated via mechanical forces and 

other microenvironmental cues. Consequentially, microenvironment-induced outside-in 

signaling result in early (< 3 days) morphological changes that precede long-term (> 10 

days) cellular functions  (Figure 2.6). 

 Given the key role of the nucleus in cellular reprogramming, scientists have 

gained interest in the study of the cell nucleus. Many of the structures within the cell 

nucleus (e.g., nucleoli, chromatin, cell cycle regulating proteins, and interchromatin 

domains) have been identified as regulators of stem cell phenotypes [139-144]. For 

example, the concentration and location of heterochromatin and the presence of 
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transcriptionally active regions in close proximity to interchromatin domains (i.e., SC-35 

domains), have been shown to differ between undifferentiated and lineage committed 

cells [145-147]. In the next sections we will review the biology and potential role in 

outside-in signaling of several molecules that may serve as indicators of 

microenvironment-induced cell state: actin (Section 2.4.1), chromatin (Section 2.4.2), 

interchromatin domains (Section 2.4.3), and nuclear mitotic apparatus (NuMA) protein 

(Section 2.4.4). 

 

Figure 2.6: Simplified Overview of ECM-Induced Outside-In Signaling 

Cell contact with the ECM initiates an immediate outside-in signaling cascade that 

traverses from the ECM to integrins (purple ovals) followed by actin (green), and onto 

lamins and the nuclear space (pink and blue semi-ovals, respectively). This results in 

early (< 3 days) changes to the presence and organization of many cellular structures, 

including actin, chromatin (light brown), cell cycle proteins (e.g., NuMA, green), 

interchromatin domains (e.g., SC-35, red), and nucleoli (black). Outside-in signaling also 

induces downstream (> 10 days) cellular behaviors (e.g., apoptosis, proliferation, 

differentiation, and oncogenicity).  
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2.4.1 Actin 

 Actin is one of the main components of the eukaryotic cytoskeleton. The 

cytoskeleton provides a path for the transmission of ECM mechanical signals from 

integrins onto the nucleus, which is the control center of the cell [148]. Actin is primarily 

involved in integrin mechanical coupling and signal propagation to the nucleus [149-

151]. Actin polymerization is regulated by many signaling molecules, including RhoA and 

Rac1, two central members of the Ras GTPase superfamily [152, 153]. More specifically, 

studies have shown that high levels of GTP-bound RhoA and Rac1 result in the assembly 

of stress fibers and lamellipodia, respectively [154]. Taken together, actin is both 

connected to the microenvironment and is regulated by molecules involved in outside-

in signaling (Figure 2.7A). 

 It has become increasingly evident that cell shape and the formation of 

cytoskeletal stress fibers are regulators of several stem cell states, including cell cycle 

progression and apoptosis. The dependence of cell state on cell shape may be due to 

the link between focal adhesions and changes in cytoskeletal arrangements [155]. 

Integrin clustering is regulated by actin, whereas actin is regulated by integrin-activated 

Rho GTPases [156]. Actin-mediated shape-based activation of RhoA, followed by its 

downstream effector Rho-associated kinase (ROCK) induces changes in cytoskeletal 

actin [133]. Additionally, several studies have shown that changes to actin regulate cell 

cycle progression and apoptotic events [157, 158]. By confining cells to certain shapes 

via micropatterning of adhesive molecules, it was found that cell shape is a prevailing 

factor in the regulation of cell cycle progression [159, 160]. 
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 The role of cell shape, actin, RhoA, and ROCK in controlling stem cell state is not 

limited to cell cycle progression and apoptosis. Cell shape has also been shown to 

preferentially regulate stem cell differentiation into particular phenotypes. McBeath and 

coworkers proposed a detailed mechanism underlying this shape-mediated 

differentiation phenomena [133]. It was shown that spread cells and the upregulation of 

RhoA and its downstream effector ROCK steered undifferentiated hMSCs towards an 

osteogenic (OS) phenotype rather than adipogenic (AD) in mixed AD / OS medium. In 

contrast, hMSCs cultured in conditions that restrict cell shape and confine cells to round 

morphologies are more predisposed towards becoming adipocytes (Figure 2.7B). Cell 

shape and RhoA were needed to trigger osteogenesis; however, only ROCK, regardless 

of cell shape, was able to induce the same response [139]. Thus, actin is related and 

responsive to RhoA and ROCK, which serve as signaling moderators that control 

differentiation programming.  

The role of actin in several cellular processes and signaling events demonstrates 

that it is sensitive to microenvironmental cues. Actin-mediated cell shape induces 

changes in the activity of RhoA and ROCK, amongst other signaling molecules necessary 

for lineage commitment [133, 152]. At the interface between actin and the nuclear 

envelope lie nesprins and emrins, which permit mechanotransductive signaling between 

the nuclear space and the cytoskeleton [161, 162]. Additional interactions between 

actin and the intermediate filament lamin proteins result in tension forces within the 

nuclear space [137, 163]. Additionally, actin connects the nucleus to the pericellular 
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matrix. As such, actin dynamics could affect chromatin as well as several nuclear 

proteins that we will review in Sections 2.4.2 - 2.4.4. 

 

Figure 2.7: Actin Morphology is Dependent of Key Signaling Molecules and 

Yields Divergent Differentiation Outcomes 

(A) Integrin-ECM protein binding results in focal adhesion complexes (FACs), which form 

stress fibers (actin, green; myosin, red). Active (GTP-bound) RhoA increases stress fiber 

contractions and stress fiber formation, which further influences the levels of GTP-

bound RhoA. RhoA and Rac1 are antagonists, and GTP-bound Rac1 induces the 

formation of lamellipodias. (B) Early differences in actin induce divergent phenotypic 

outcomes. Stem cells cultured on ECMs that promote spread morphologies with stress 

fiber formation differentiate towards osteoblasts, as seen by a high degree of ALP signal 

(blue). In contrast, stem cells with low stress fiber formation differentiate towards 

adipocytes, as evidenced by positive staining for intracellular triglycerides (green).  
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2.4.2 Chromatin 

 In order for eukaryotic cells to create protein macromolecules, snippets of DNA 

containing genetic information that codes for proteins must first be exposed to 

transcriptional machinery. This process is largely governed by chemical modifications to 

chromatin complexes, which organize the DNA in the cell's nucleus. These modifications 

either promote a closed chromatin structure (termed heterochromatin), preventing 

transcription, or an open chromatin structure (termed euchromatin), which promotes 

gene transcription [164, 165]. Thus, a lot of information about the cell’s state can be 

garnered by studying the presence, organization, and conformation (heterochromatin 

versus euchromatin) of chromatin domains. 

 Changes to chromatin structures that result in DNA exposure or suppression are 

accomplished via two mechanisms: (1) methylation of DNA or (2) posttranslational 

modifications (PTMs) to histones. DNA methylation results in structural changes to 

chromatin, leading to the silencing or activation of gene transcription [166, 167]. Low 

methylation generally results in euchromatin (open chromatin structure), whereas 

regions of high methylation promote heterochromatin (closed chromatin state) [168]. 

Direct chemical modifications to histone complexes can also induce gene activation or 

silencing. There are many types of posttranslational modifications (PTMs), and their 

mechanism is based on chemical changes to amino acid residues in chromatin 

complexes [169]. PTMs regulate many cellular functions, including the self-renewal, 

pluripotency, and differentiation of stem cells [170-172]. Taken together, it is apparent 

that a lot of information can be gained about the state of the cell by characterizing 
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chromatin structures, as well as the mechanisms that promote regions of euchromatin 

and heterochromatin. 

 

2.4.3 NuMA 

 The nuclear mitotic apparatus (NuMA) protein is a high molecular weight (238 

kDa) molecule featuring head (N-terminus) and tail (C-terminus) domains separated by a 

long amino acid coiled-coil domain [173]. The C-terminus contains a nuclear localization 

signal (NLS) and an amino acid sequence capable of several functions, including the 

binding and bundling of microtubules [174, 175]. Additionally, both globular ends have 

motifs thought to bind DNA [176]. NuMA is essential for the assembly of spindle poles 

during mitosis [177], and is ubiquitously expressed in interphase nuclei. Due to its 

unique characteristics, several studies have been conducted to shed light on additional 

roles NuMA may be involved in, particularly its role in asymmetric cell division and in the 

structural integrity of a nuclear scaffolding matrix [178]. 

 During mitosis, the extent of asymmetry at the metaphase plate is a determinant 

of self-renewal versus lineage commitment for dividing cells [178]. Figure 2.8 shows a 

simplified overview of a parent cell undergoing asymmetric cell division. Centrosomes 

(dark green circles) align at the polarity axis (dashed horizontal red line). Chromosomes 

(dark brown) align at the metaphase plate and are bound to kinetochores (pink circles), 

which are attached to kinetochore microtubules (MTs) (dark green lines). NuMA 

proteins (blue squiggly lines) tether kinetochore MTs to non-kinetochore MTs (light 

green lines). The tethering of the mitotic spindle to one pole of the cell (square box) 



47 
 

 

results in an asymmetric positioning of the metaphase plate (dashed vertical black line). 

Cell polarity is determined by external cues and an adherens junction/Cdc42 complex 

(dark red) [179, 180]. Cortical NuMA (blue squiggly lines) proteins are then recruited to 

the polar region and form a NuMA/LGN/Gα ternary complex that binds to dynein (pink), 

which attaches to astral MTs (gray) from the closest spindle pole, and provides a pulling 

force that results in an asymmetric positioning of the metaphase plate [174, 181]. 

 

 

Figure 2.8: Role of NuMA During Asymmetric Cell Division 

NuMA (blue squiggly line) binds kinetochore (dark green lines) and non-kinetochore 

(light green lines) microtubules, which is essential for spindle assembly. (Inset) External 

cues (red arrow) recruit adherens/Cdc42 complexes (red) and cortical NuMA (blue 

squiggly lines) to a polar end of the cell. Next, NuMA proteins bind to Gɑ and LGN to 

form a ternary complex that links the adherens/Cdc42 complexes to dynein (pink), 

which binds to astral MTs (gray lines) and pulls the centrosome (dark green circle) 

towards one end, resulting in an asymmetric positioning of the metaphase plate.  
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 In addition to its role in mitotic spindle assembly and asymmetric cell division, 

NuMA may also play an important role in the formation and maintenance of a nuclear 

scaffolding matrix. The nucleus is a complex landscape that contains highly condensed 

and organized DNA in the form of chromatin, as well as a vast array of enzymes and 

complexes involved in gene expression and DNA replication / repair [178]. Additionally, 

the nuclear space has discrete interchromatin domains (e.g., PML bodies and SC-35 

domains) and nucleoli [182, 183]. As such, it has been suggested that a nuclear 

scaffolding matrix exists that compartmentalizes these structures within the nucleus 

[184-186]. Nuclear lamins have been identified as part of the nuclear scaffolding matrix 

and are responsive to outside-in signaling from cytoskeletal actin. However, lamins 

reside at the nuclear periphery and therefore are unable to provide the high degree of 

compartmentalization that is observed with nuclear organelles. Due to its physical 

properties and abundance in interphase nuclei, several studies have suggested that 

NuMA may serve as a key member of the nuclear scaffolding matrix. There are over 1 

million copies of NuMA per eukaryotic nucleus [187], and NuMA’s large coiled-coil 

domains are capable of assembling into filaments [188]. Additionally, a recent study 

identified a relationship between nuclear shape and NuMA levels, further enforcing its 

potential role in the formation and maintenance of a nuclear scaffolding matrix [189]. 

 Due to the implications of NuMA protein in proliferation, differentiation, and 

maintenance of a nuclear scaffolding matrix, its morphology may serve as a reliable 

identifier of cellular phenotype. A recent study reported quantifiable differences in 

NuMA between DNA-damaged and non DNA-damaged breast epithelial cells [190]. Liu 
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et al. also showed that the early morphology of NuMA protein can identify different 

differentiation-inducing growth factor culture conditions for single hMSCs [56]. Thus, 

NuMA may serve as a good reporter of single cell phenotypes. 

 

2.4.4 Interchromatin Domains 

 In eukaryotic cells, interchromatin domains contain pre-mRNA splicing 

machinery, comprised of small nuclear ribonucleoprotein particles (snRNPs), 

spliceosome subunits, and other non-snRNP protein splicing factors, which form 

aggregates termed SC-35 domains [191]. To control the pre-mRNA splicing machinery, 

SC-35 domains also contain several kinases and phosphatases that either phosphorylate 

or dephosphorylate factors required for pre-mRNA splicing [192]. Immunofluorescence 

imaging reveals that SC-35 domains appear as 20 to 30 clusters (1 to several microns in 

diameter) that vary in size and shape. Higher resolution studies based on electron 

microscopy show that each SC-35 domain is comprised of a network of granules (20 to 

25 nanometers in diameter) that are connected by thin fibrils [193]. 

 In addition to hosting and controlling pre-mRNA splicing machinery required for 

protein synthesis, SC-35 domains have been observed close to highly active 

transcription sites, despite having little, if any DNA. A recent study has shown that the 

periphery of SC-35 domains contain significantly more euchromatin (open chromatin) 

than heterochromatin (closed chromatin) regions [194]. Within euchromatic regions it 

has also been found that groups of related genes are associated with the same speckle 

[194]. Thus, SC-35 domains form euchromatic domains that recruit and organize related 
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genes along their periphery to initiate gene splicing (Figure 2.9). Consequently, SC-35 

domains have been found to be in close proximity to genes that are highly expressed at 

the onset of stem cell differentiation of several phenotypes including adipocytes [145], 

osteocytes [146], and myocytes [147]. 

 To investigate how the morphology of SC-35 domains is affected by 

transcriptional activity, inhibitors and enhancers of transcription have been introduced 

to cells (Figure 2.9). When transcription is halted via the use of inhibitors, the number of 

SC-35 domains decreases and their shape increases in size and roundness [195, 196]. 

Since the splicing machinery is not necessary in heterochromatin regions, it makes sense 

that low levels of euchromatin result in a decrease in number and increase in size of SC-

35 domains. In contrast, when transcription is enhanced via viral infection, the size of 

SC-35 speckles is reduced, their number increases, and they relocate to euchromatic 

regions [197, 198]. Taken together, the organization of SC-35 domains may serve as an 

indirect measure of early microenvironment-induced gene transcription activity that is 

required for the progression and maintenance of stem cell differentiation.  
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Figure 2.9: SC-35 Domains and Their Localization to Euchromatic Regions 

(A) Regions of high transcription (euchromatic neighborhoods, green squiggly lines)  

aggregate around SC-35 domains (red) in normal interphase nuclei, whereas 

heterochromatin (dark blue squiggly lines) does not localize near SC-35 domains. (B) 

When transcription is halted, chromatin is predominantly in the heterochromatin state 

and SC-35 domains decrease in number and increase in size (large red circles). (C) When 

transcription is enhanced, chromatin is predominantly in the euchromatin state and SC-

35 domains increase in number and decrease in size (red). 
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CHAPTER 3. ACTIN- AND NUMA-BASED IMAGING FOR 

SINGLE CELL PHENOTYPING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Sections of this chapter have been reproduced from the following publication: 

 

SL Vega, E Liu, PJ Patel, AB Kulesa, AL Carlson, Y Ma, ML Becker, PV Moghe. (2012) 

High-Content Imaging-Based Screening of Microenvironment-Induced Changes to Stem 

Cells. Journal of Biomolecular Screening 17:1151-1162. 
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3.1 ABSTRACT 

 Effective screening methodologies for cells are challenged by the divergent and 

heterogeneous nature of phenotypes inherent to stem cell cultures, particularly on 

engineered biomaterial surfaces. In this study, we showcase a high content, confocal 

imaging-based methodology to parse single cell phenotypes by quantifying 

organizational signatures of specific subcellular reporter proteins, and applied this 

profiling approach to three human stem cell types: human embryonic stem cells 

(hESC's), induced pluripotent stem cells (iPSCs), and human mesenchymal stem cells 

(hMSCs). We demonstrate that this method could distinguish self-renewing 

subpopulations of hESCs and iPSCs from heterogeneous populations. This technique can 

also provide insights into how incremental changes in biomaterial properties, both 

physiochemical and mechanical, influence stem cell fates by parsing the organization of 

stem cell proteins. For example, hMSCs cultured on polymeric films with varying degrees 

of poly(ethylene glycol) to modulate osteogenic differentiation were parsed using high 

content organization of the cytoskeletal F-actin. In addition, hMSCs cultured on a self-

assembled monolayer platform featuring compositional gradients were screened and 

descriptors obtained to correlate substrate variations with adipogenic lineage 

commitment. Taken together, high content imaging of structurally sensitive proteins can 

be used as a tool to identify stem cell phenotypes at the single cell level across a diverse 

range of culture conditions and microenvironments. 
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3.2 INTRODUCTION 

 Obtaining purified stem cell-derived tissues for biomedical applications presents 

significant challenges due to the heterogeneity inherent to stem cell cultures as well as 

the dynamic nature of their responses to their microenvironments. Several tools have 

emerged to precisely characterize how stem cells react to various stimuli (e.g., growth 

factors or externally applied forces) and substrate properties [199, 200]. Typical 

screening methods focus on either the detection of lineage-specific markers or gene 

expression levels of whole stem cell populations [201-204], which are difficult to scale 

down quantitatively to single cell levels. In addition, due to the end-point nature of 

these assays, stem cells have to be cultured for several weeks before these methods can 

be applied to assess cellular responses. 

 To further accelerate the pace of stem cell studies in engineered 

microenvironments, high-throughput screening approaches have been developed that 

allow simultaneous analysis of multiple culture conditions within a single test platform. 

Multiple treatment conditions can now be presented on a single plate, allowing a large 

array of combinatorial variations to be concurrently screened [205]. Representative 

high-throughput screening platforms include high-throughput extracellular matrix 

microarrays [92], fluorescence-based polymer screening [93], and lab-on-chip substrates 

[94]. Although these methodologies permit a higher number of conditions to be tested 

in parallel, their ability to parse cellular responses to different stimuli is still limited by 

the end-point nature of biological assays and low stability of imprinted arrays. Thus, a 
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major need exists for the development of profiling tools to screen early cell phenotypic 

responses and predict long-term cell behaviors. 

 With the advent of genomics, gene microarray studies can provide differences in 

gene expression of thousands of transcripts across many conditions [204, 206]. Although 

this increases the amount of information that can be obtained from stem cell cultures, 

the resulting data do not account for the innate heterogeneous nature of stem cell 

populations [95]. Gene expression of cell populations has been shown to be strikingly 

diverse when compared with the average gene expression of many single cells 

representative of a cell population [95]. Methods to distinguish individual cells from a 

population would be extremely advantageous for selecting cells that have potential 

utility in tissue engineering applications. 

 Our laboratory has proposed a high content imaging-based profiling 

methodology that can characterize how cells respond to different microenvironments 

on a single cell level [56, 57, 127, 207]. As a first proof of concept, to characterize cell-

adhesive responses to alterations in substrate topography, Saos-2 cells engineered with 

a green fluorescent protein (GFP) reporter for farnesylation (GFP-f) were cultured on 

substrates of different roughness and subsequently used to relate cell morphology to 

surface properties in a high-throughput manner [207]. More recently, a quantitative 

analysis of the early (24 hour) actin morphology of human mesenchymal stem cells 

(hMSCs) was used to predict downstream osteogenic differentiation [57]. In this study, 

we extended these approaches and applied our high content image analysis to evaluate 

single cell responses of various human stem cell types (adult mesenchymal, induced 
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pluripotent, and embryonic) to extracellular stimuli and various microenvironments. 

Using high-resolution confocal images of biologically relevant nuclear and cytoskeletal 

protein markers, we identified morphometric features that are distinct to culture 

conditions and stem cell subtypes for a given culture group. Specifically, we examined 

the ability of the technique to distinguish between high-dimensional features of the 

nuclear organization in spontaneously differentiation human embryonic stem cells 

(hESCs) at the periphery versus the putatively undifferentiated hESCs at the core of 

proliferating colonies. Similarly, induced pluripotent stem cell (iPSC) subpopulations 

with varying degrees of plasticity were identified. 

 This method also provided insights into how biomaterial properties, both 

physiochemical and mechanical, influence the high-dimensional organization of 

intracellular stem cell proteins. For example, differences in the actin cytoskeletal 

organization of hMSCs cultured on films with varying degrees of poly(ethylene glycol) 

(PEG) were elucidated. In addition, to screen different engineered materials, hMSCs 

were cultured on a self-assembled monolayer (SAM) platform that features a gradient of 

multiple substrate conditions within a single chip. hMSCs cultured in milieu that favored 

adipogenic differentiation featured nuclear mitotic apparatus protein (NuMA) 

signatures that were markedly different from those cultured in conditions that favored 

pluripotency, highlighting the possibility of using high-dimensional organizational 

biology as a probe for phenotypic stem cell screening. 
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3.3 MATERIALS AND METHODS 

3.3.1 Fabrication of SAM Gradients 

 Glass microscope slides were rinsed with ethanol, blown dry with nitrogen, and 

exposed to UV radiation for 15 minutes to create a clean hydroxide surface layer. Slides 

were then rinsed with toluene and immersed in a 2.5% solution of n-

octyldimethylchlorosilane in toluene. SAMs made from n-octyldimethylchlorosilane 

were deposited onto clean oxide surfaces, and the SAM-coated slides were placed on a 

motorized stage beneath the slit aperture of a UV lamp. A range of UV exposure times 

was obtained by decelerating the motion of the stage. The rise in UV exposure time led 

to increasing amounts of ozone-derived oxidation of the n-octyldimethylchlorosilane 

SAM, generating a gradient in surface energy across the slide. 

 

3.3.2 Preparation of Polymer Films Copolymerized with PEG 

 Poly(desaminotyrosyl-tyrosine ethyl ester carbonate)-co-x%PEG polymers were 

dissolved into a 1.5% (v/v) methanol in methylene chloride solvent solution, resulting in 

a 1% (wt/v) polymer solution. Polymer solutions were then spin-coated onto 12 mm 

diameter glass coverslips. Spin coating was conducted at 3000 RPM for 30 seconds. Five 

films of increasing PEG content were prepared: 0%, 2%, 3%, 4%, and 8%. Prepared films 

were stored in a dessicator, and prior to culturing stem cells, films were sterilized with 

UV light for 900 seconds. 
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3.3.3 Cell Culture 

 National Institutes of Health (NIH)-approved hESCs (H9 line) and iPSCs were 

commercially obtained from WiCell Research Institute (Madison, WI). Undifferentiated 

hESCs and iPSCs were routinely maintained under feeder-free conditions on Matrigel-

coated dishes in mTeSR-1 medium (Stem Cell Technologies, Vancouver, BC, Canada), as 

previously described [208]. For immunostaining and high content imaging studies, 

clusters of hESCs or iPSCs were passaged with dispase and plated in mTeSR-1 medium 

onto LabTek (Nunc, Naperville, IL) multiwell chambers. To induce early neural 

differentiation of hESCs or spontaneous differentiation of iPSCs, we switched medium 

24 hours post-plating to N2SFM (Dulbecco’s modified Eagle’s medium [DMEM] / F12 

with L-glutamine, 1% N2 Supplement, 1% nonessential amino acids, 2 μg/mL heparin, 

0.5% penicillin/streptomycin) or to EB20 (DMEM/F12 with L-glutamine, 20% fetal bovine 

serum [FBS], 0.5% penicillin/streptomycin), respectively. Both cultures were maintained 

for 2 to 3 days prior to fixing and staining. 

 hMSCs were obtained from Texas A&M University (College Station, TX). Cells 

were expanded in T-75 flasks in a humidity-controlled environment under 5% CO2 and 

37°C and fed every 3 to 4 days with growth medium (basal culture condition, BA) 

supplemented with commercial SingleQuot’s (catalog number PT-3001; Lonza, Basel, 

Switzerland). Cells were received at passage 1 and used for up to four passages. Cells 

were passaged upon reaching 80% confluence. Osteogenic (OS) and adipogenic (AD) 

induction media were reconstituted as per the manufacturer (Lonza). Mixed AD / OS 

medium was prepared by combining Lonza hMSC AD medium and Lonza hMSC OS 



59 
 

 

medium in a 1:1 ratio. Adipogenic medium in both the AD and mix conditions were 

cycled with a 3 day induction followed by 1 day maintenance. 

 

3.3.4 Stem Cell Staining and Immunocytochemistry 

 Stem cells were first fixed with 4% paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA) for 15 minutes. Then, a 30 minute blocking and permeabilization 

step was performed with a 0.1% Triton X-100 (Sigma, St. Louis, MO) / 5% normal goat 

serum (MP Biomedicals, Solon, OH) solution in phosphate-buffered saline (PBS; Lonza). 

After two washes with blocking buffer (5% NGS in PBS), primary NuMA (ab36999; 

Abcam, Cambridge, UK) antibodies in blocking buffer at a 1:500 ratio were added 

overnight at 4°C. Three 15 minute washes in blocking buffer were then performed. 

Secondary antibodies (Alexa Fluor; Invitrogen, Carlsbad, CA) with different fluorophores 

and corresponding isotype controls in blocking buffer at a 1:250 ratio were added for 2 

hours at room temperature. Three 15 minute washes in blocking buffer were then 

performed. To label the actin cytoskeleton, cells were fixed and stained with Alexa Fluor 

488 phalloidin (Invitrogen) per the manufacturer’s instructions. All samples were 

counterstained with 1 μg/mL DAPI (Sigma) in PBS. Similar staining procedures were 

followed for Oct4 (MAB4401; Millipore, Billerica, MA), Sox2 (MAB4343; Millipore), and 

CD90 (15-0909-42; eBioscience, San Diego, CA). 
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3.3.5 High Content Imaging of Stem Cells 

 All samples were imaged under a 63X immersion objective (NA = 1.3) with a 

Leica TCS SP2 system (Leica Microsystems, Inc., Wetzlar, Germany). Average projections 

of 15 μm thick image sets of hESC and iPSC cultures were acquired from images at 2 μm 

intervals. To image hMSCs in the SAM gradients, tile scans of the cells were taken using 

the NuMA protein and DAPI channels. Since surface hydrophobicity varied from left to 

right, hMSCs attached at different focal planes on the tile. Thus, the entire slide was 

divided into multiple sections spaced 5 mm apart. The full spread of the gradient was 

approximately 35 mm in length, so the imaging was discretized over approximately 

seven tiles. To image hMSCs in PEG-containing films, the films were first mounted onto 

microscope slides with Fluorogel (Electron Microscopy Sciences) prior to imaging. 

 

3.3.6 Numerical Descriptor Acquisition and Analysis 

 Image Pro Plus Version 7.0 (Media Cybernetics, Bethesda, MD) was used for 

image analysis. To isolate regions of interest (ROIs) for single cell descriptor acquisition, 

nuclear and cytoskeletal masks were first made using the DAPI and actin cytoskeleton 

channels, respectively. These masks were then superimposed to either nuclear or 

cytoskeletal channels to isolate signal from NuMA and actin protein channels, 

respectively. 43 numerical descriptors were then extracted for each cell’s NuMA or actin 

protein signal. A list of the 43 descriptors calculated along with their definitions is 

provided in Table 3.1. These descriptors represent quantifiable measurements of 

cytoskeletal and nuclear protein morphology and organization by including shape, 
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intensity, and texture-based features. For single cell-based functional marker expression 

analyses, Oct4, Sox2, and CD90 mean signal intensity values were calculated for each 

cell using cytoskeletal masks as ROIs. 

 Descriptors from two different groups identified by the user (e.g., Oct4-

expressing versus non-Oct4-expressing cells in a heterogeneous population) were 

exported to Matlab (MathWorks, Natick, MA) for analysis (Figure 3.1). First, principal 

component analysis (PCA) was used to linearly reduce 43 descriptors down to three 

principal components. This resulted in a plot in which each point represents a stem cell 

in a three-dimensional space where each axis consists of the combined features of 

either NuMA or actin protein in each analyzed cell. The location of each point is unique 

to the descriptor values for that particular cell. To assess how different the descriptor 

values are across two subpopulations, a support vector machine (SVM) was used to 

calculate sensitivity, specificity, and accuracy using 10-fold cross-validation (Figure 3.1). 

Unless otherwise noted, error reported on SVM classification represents the standard 

deviation for n = 50 pseudoexperiments (number of iterations using original data set). 

 

3.3.7 Statistical Analysis 

 Statistical analysis was performed on morphometric parameters using SPSS 

Version 16.0 (SPSS Inc., an IBM Company, Chicago, IL) and included analysis of variance 

(ANOVA) with Tukey’s honestly significant difference (HSD) post hoc method and other 

multivariate tools. The differences were considered significant for p < 0.05 unless 

otherwise noted. Error bars indicate the standard deviation around the mean. 
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Features Definitions

Angle

Reports the angle between the vertical axis and the major axis of the 

equivalent ellipse. Within the context of this study, it would capture 

randomly oriented versus aligned cell populations.

Area Reports the total actin/nucleus area of each cell.

Polygonal Area Reports the area of the polygon that defines the object's outline.

Area/Box
Reports ratio between the area of each object and the area of the 

imaginary bounding box.

Aspect
Reports the ratio between the major and minor axes of the ellipse with 

the same area, first, and second order moments of the cell.

Axis (major)
Reports the length of the major axis of the ellipse with the same area, 

first and second order moments of the cell/nucleus.

Axis (minor)
Reports the length of the minor axis of the ellipse with the same area, 

first and second order moments of the cell/nucleus.

Box Height
Reports the height of the smallest bounding box that completely 

encompasses the cell/nucleus.

Box Width
Reports the height of the smallest bounding box that completely 

encompasses the cell/nucleus.

Box Ratio Reports the ratio between the Box Width and the Box Height.

Dendrites
Reports the number of 1-pixel thick open branches. Represents the 

number of actin processes stemming from the cell.

Dendritic Length Reports the total length of all dendrites.

Maximum Diameter
Reports the length of the longest line joining two outline points and 

passing through the centroid of the cell/nucleus.

Mean Diameter Reports the average length of the diameters.

Minimum Diameter
Reports the length of the shortest line joining two outline points and 

passing through the centroid of the cell/nucleus.

End Points Reports the number of 1-pixel thick processes stemming from the cell.

Maximum Feret Length Reports the longest caliper length.

Mean Feret Length Reports the average caliper length.

Minimum Feret Length Reports the shortest caliper length.

Fractal Dimension Reports the fractal dimension of the outline of the cell/nucleus.

Cell Area/Total Area
Reports the ratio between the areas of the cell/nucleus to that of the 

entire field of view.

Perimeter
Reports the length of the outline of each cell/nucleus using a polygonal 

outline.

Perimeter 2 Faster but less accurate measure of the perimeter.

Perimeter 3 Reports a corrected chain code length of the perimeter.

Convex Perimeter Reports the perimeter of the convex outline of each cell/nucleus.

Elliptical Perimeter
Reports the perimeter of the ellipse surrounding the outline of each 

cell/nucleus.

Perimeter Ratio
Reports the ratio of the convex perimeter to the perimeter outline of 

each cell/nucleus.

Maximum
Reports the maximum distance between each cell's centroid pixel 

position and its perimeter.

Minimum Radius
Reports the minimum distance between each cell's centroid pixel 

position and its perimeter.

Radius Ratio
Reports the ratio between the Max Radius and Min Radius for each 

cell/nucleus.

Roundness
Reports the roundness of each cell/nucleus determined by the following 

formula: (perimeter2) / (4*pi*area). Circular cells have a roundness of 1.

Size (Length) Reports the feret diameter along the major axis of the cell/nucleus.

Size (Width) Reports the feret diameter along the minor axis of the cell/nucleus.
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Table 3.1: Table of Descriptors Used in Chapter 3 Study 

This table lists a pool of morphological descriptors quantified for each cell. The 

definition of the features and their possible biological relevance are listed. Shape-based 

features based on the ROIs are labeled in blue, intensity-based features are highlighted 

in green, and textural / spatial organizational features are highlighted in red. 

  

Mean Density
Reports the mean intensity of all pixels within a cell/nucleus. Correlates 

to the average amount of fluorescence present within a given area.

Standard Deviation of Density

Reports the standard deviation of the intensity of pixels within a 

cell/nucleus. In the case of actin, this represents the degree to which 

the phalloidin stained cytoskeleton is localized into distinct filaments of 

equal staining intensity. In the case of nuclear proteins, this represents 

the degree to which the proteins are localized into distinct clusters of 

equal staining intensity in the nucleus.

Sum of the Density

Reports the sum of the total intensity values of al pixels within a 

cell/nucleus. Corresponds to the total amount of fluorescence within the 

cell/nucleus.

Integrated Optical Density
Reports the average intensity of each object normalized by the area of 

the cell/nucleus.

Holes
Reports the number of independent contiguous areas with no staining 

within a cell/nucleus.

Hole Area Reports the area of holes within a cell/nucleus.

Hole Ratio
Reports the ratio of the object area excluding holes to the total area of 

the object as determined by Area / (Area + Hole Area).

Margination

Reports the distribution of intensity between the center of the cell and 

the edge of the cell. Describes the relative spatial distribution of actin 

filaments within the cell or nuclear proteins within the nucleus.

Heterogeneity

Reports the fraction of pixels that vary more than 10% from the average 

intensity of the cell.  Describes the degree to which actin filaments or 

nuclear proteins are organized into homogenously stained structures.

Clumpiness

The fraction of heterogeneous pixels remaining in a cell after a binary 

erosion process. Reflects the object texture and the degree to which 

actin filaments are organized into filamentous structures or the degree 

to which nuclear proteins are organized into clusters. 
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Figure 3.1: Imaging-Based Profiling Methodology for Two Subgroups 

A heterogeneous population of stem cells, divided into two subgroups (e.g., high OCT4 

and low OCT4 expression), was immunolabeled with nuclear mitotic apparatus (NuMA) 

protein antibodies and imaged at high-resolution. All 43 morphometric features were 

calculated for each cell based on NuMA shape, intensity of staining, and spatial 

distribution. PCA allows the 43 features of individual cells to be grouped and remapped 

in three-dimensions, such that red and blue dots represent cells from Group 1 and 

Group 2, respectively. Closely related cells are grouped together while distinct cells are 

not. Support vector machine (SVM) classification of the PCA remapping is then used to 

calculate sensitivity, specificity, and accuracy (ACC).  
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3.4 RESULTS 

3.4.1 Overview of Imaging-Based Profiling 

 To acquire morphological information indicative of cell state, several stem cell 

types cultured in various conditions were imaged via confocal microscopy. Fixed cellular 

samples were immunolabeled with antibodies specific to cytoskeletal and nuclear 

proteins, as highlighted in Figure 3.2A, to extract numerical descriptors from reporter 

proteins. First, each image was split into channels corresponding to nuclear and 

cytoskeletal proteins of interest (Figure 3.2B). Next, single cell segmentation was 

accomplished by defining regions of interest (ROIs) for the nuclear and intracellular 

space. To create the nuclear ROIs, DAPI-stained images were subject to a series of image 

processing steps that included Gauss filtering, contrast enhancement, and fluorescence-

based thresholding followed by binarization (Figure 3.2C). Similarly, the actin channel 

was used to create intracellular ROIs. To isolate the reporter protein’s signal at single 

cell level, both nuclear and intracellular masks were superimposed onto nuclear and 

cytoskeletal channels, respectively. 

 Next, 43 numerical shape, intensity, and texture-based descriptors were isolated 

for each cell (Table 3.1 and Figure 3.2D). Numerical descriptors of cells in two distinct 

groups were then obtained and merged into a “feature set” (Figure 3.2E). PCA was then 

employed to reduce the 43 descriptors from stem cells cultured in at least two different 

conditions down to three dimensions, which are derived from a linear combination of 

the original 43 descriptors (Figure 3.2F). These dimensions, termed principal 

components (PCs), are orthogonal from one another and account for most of the 
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variance in the binary data set. Furthermore, to evaluate the subcellular feature 

differences between two selected cell subpopulations, a support vector machine (SVM) 

classifier was used, which utilizes k-fold cross-validation to define test sets and training 

sets for each condition. SVM output sensitivity, specificity, and accuracy for each 

analysis. In addition, a hyperplane that best separates the two populations in the PCA 

domain was generated for visualization purposes. All of the analyses presented were 

conducted using a 10-fold k-fold cross-validation and repeated 50 times (n = 50) to 

acquire reported error in the form of standard deviation. 
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Figure 3.2: Single Cell Imaging, Feature Extraction, and Computational 

Modeling 

(A) Stem cell labeled with actin (green) and NuMA protein (teal). (B) NuMA and actin 

channels separated prior to feature extraction. (C) To define the nuclear space, DAPI 

mask was generated. (D) NuMA protein (teal) channel isolated and 43 descriptors (listed 

in the red dotted rectangle) were computed. (E) To perform binary classification, 

descriptor sets from two different conditions were acquired. (F) PCA used to generate 

combinations of descriptors defining subcellular state of the two conditions. Stem cell 

population parsing efficiency was characterized by calculating sensitivity, specificity, and 

accuracy using SVM classification. Scale bars: (A-C) = 25 μm, (D) = 7.5 μm. 
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3.4.2 hESC Nuclear Features are Reflective of Phenotypic States 

 To realize the potential profiling capabilities of our imaging-based approach, we 

first identified differences in NuMA protein-based nuclear features of two 

subpopulations of hESC cultures: pluripotent and lineage-committed hESCs, as denoted 

by both pluripotency marker Oct4 expression and cellular morphology. hESCs in colonies 

were immunolabeled by antibodies specific for NuMA and Oct4 and were 

counterstained with DAPI (Figure 3.3A). After labeling these colonies, we noticed that 

Oct4 (an hESC pluripotency marker) expression was strongest within the hESC colonies 

(indicative of embryoid bodies), whereas Oct4 expression noticeably weakened away 

from the center of the hESC colonies, as evident from Figure 3.3A. By visual inspection, 

cells expressing low levels of Oct 4 (termed Oct4low) are mainly located outside the cell 

clusters (bulk region of colonies), whereas cells expressing high levels of Oct4 (termed 

Oct4high) reside inside the bulk regions of colonies (Figure 3.3A, third panel).  

 The observed Oct4 expression pattern, as denoted by quantitative mean 

fluorescence intensity (MFI) after image-based analysis, demonstrated a bimodal 

distribution pattern when plotted (Figure 3.3B). A k-means clustering algorithm 

determined the boundaries of the two subpopulations, resulting in an MFI threshold 

value of 45 (validated by manual gating performed on isotype controls, showing a 

baseline MFI = 42 to cover 95% of all negative controls). Tracking the locations of the 

cells over the lifetime of the culture, it was further confirmed that cells with high Oct4 

and low Oct4 regions were located within the colony and outside the colony, 
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respectively. This served as a functional indicator and supervisor of two distinctive 

subpopulations to perform nuclear descriptor analysis and classification. 

 For each cell in the high Oct4 and low Oct4 subpopulations, 43 quantitative 

descriptors of the NuMA protein were acquired. Dimension reduction (PCA) followed by 

a support vector machine (SVM) classifier was used to classify cell subpopulations that 

were outside the colony (low Oct4 regions) versus inside the colony (high Oct4 regions). 

The PCA plot showed that subpopulations expressing high Oct4 (blue circles) and low 

Oct4 (red circles) were in small clusters, suggesting that the measured NuMA 

morphology of hESCs in the subpopulations is highly homogeneous (Figure 3.3C). SVM 

classification of the two populations resulted in a sensitivity of 0.93 ± 0.03, a specificity 

of 0.86 ± 0.06, and an overall accuracy of 0.91 ± 0.01. Our results show that PCA 

together with SVM classification is capable of identifying and parsing differentiating 

versus pluripotent hESCs in culture. 
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Figure 3.3: NuMA Descriptors Dependent on Oct4 Expression in hESC Cultures 

(A) hESCs were immunolabeled with antibodies specific for NuMA (green) and Oct4 

(red) and counterstained with DAPI (blue). Blue and red arrows highlight the NuMA and 

Oct4 signal of hESCs that would be classified as high Oct4 and low Oct4 expression, 

respectively. (B) K-means clustering of Oct4 fluorescence was used to determine low 

Oct4 and high Oct4 subpopulations. (C) PCA plot of numerical NuMA descriptors of low 

Oct4 versus high Oct4 cells shows that cells in each population are distinct based on 

three-dimensional plots of high-dimensional descriptors. SVM statistics yielded 

sensitivity, specificity, and accuracy of 0.93 ± 0.03, 0.86 ± 0.06, and 0.91 ± 0.01, 

respectively. PC, principal component. Scale bars: 100 μm. 
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3.4.3 Nuclear Features of iPSCs Are Unique to Sox2 Expression 

 Next, we expanded the utility of our imaging-based profiling methodology to 

iPSC phenotypes. Differences in nuclear features of iPSCs, based on different degrees of 

pluripotency, were classified. To determine pluripotency, Sox2, a transcription factor 

essential for stem cell self-renewal, was used. iPSCs were immunolabeled for antibodies 

specific for NuMA and Sox2 and were counterstained with DAPI (Figure 3.4A). Sox2 

expression (represented by MFI values) of iPSCs was quantified via imaging-based 

analysis of the red channel, and the MFI cutoff threshold value determined from the 

isotype controls (baseline MFI = 42 to cover 95% of all negative controls) was used to 

identify subpopulations of cells containing high (Sox2high) and low (Sox2low) levels of Sox2 

(Figure 3.4B) in heterogeneous iPSC colonies. 

 For each cell in the Sox2 expression group (Sox2high, n = 75; Sox2low, n = 153), 43 

nuclear descriptors of the NuMA protein were attained. PCA was then used to reduce 

the dimensionality of nuclear features for cell subpopulations that were Sox2high versus 

Sox2low. PCA plot shows that the Sox2high (blue circles) and Sox2low (red circles) 

subpopulations primarily centralized in respective single clusters, inferring that nuclear 

features calculated from the iPSCs were highly homogeneous within the same Sox2 

expression group (Figure 3.4C). In contrast, NuMA-based nuclear features between 

Sox2high and Sox2low subpopulations were found to be distinct, as indicated by the 

hyperplane in Figure 3.4C. SVM classification of the two subpopulations resulted in a 

sensitivity of 0.91 ± 0.05, a specificity of 0.82 ± 0.11, and an overall accuracy of 0.87 ± 

0.03. Similar to our hESC imaging-based analysis, PCA in combination with SVM 
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classification was effective at identifying and parsing pluripotent (Sox2high) iPSCs from 

those with low Sox2 expression, indicative of a low-pluripotency phenotype. 

 

 

Figure 3.4: NuMA Descriptors Dependent on Sox2 Expression in iPSC Cultures 

(A) iPSCs labeled with NuMA (green), Sox2 (red), and DAPI (blue). Red and blue arrows 

highlight the NuMA and Sox2 signal of iPSCs that would be classified as having low Sox2 

(Sox2low) and high Sox2 (Sox2high) expression, respectively. iPSCs to the left of the red 

dotted line in (B) were binned as Sox2low and the remainder as Sox2high. (C) PCA plot of 

numerical NuMA descriptors of cells expressing high Sox2 versus low Sox2 expressing 

iPSCs show that cells in each population are morphologically different. SVM statistics 

yielded sensitivity, specificity, and accuracy of 0.91 ± 0.05, 0.82 ± 0.11, and 0.87 ± 0.03, 

respectively. PC, principal component. Scale bars: 25 μm. 
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3.4.4 Polymer Film PEG Content Induces Changes in hMSC Cytoskeleton 

 Next, hMSCs were used as a test case to adapt our high content imaging-based 

method to cultures on synthetic biomaterials with systematically varied hydrophobicity 

and protein adsorption behaviors. To achieve differences in hydrophobicity, 

polyethylene glycol-co-poly(desaminotyrosyl-tyrosine ethyl ester carbonate) copolymers 

with varying degrees of PEG were fabricated into films. Copolymers with higher PEG 

content resulted in decreased hydrophobicity. Several literature accounts suggest that 

PEG has a vital role in various stem cell functions. For example, Briggs et al. showed that 

hMSCs cultured in poly(desaminotyrosyl-tyrosine ethyl ester carbonate) films with low 

PEG content exhibited increased osteogenic marker expression [209]. Higher levels of 

PEG content have also been attributed to highly selective protein adsorption and cell 

motility [73]. Although the influence of PEG content on cell function has been widely 

studied, high content differences in the organization of cytoskeletal proteins such as F-

actin have not been examined. 

 Cells were cultured on tyrosine-derived films with varying weight percentages of 

PEG (termed 2%, 3%, 4%, and 8% versus 0% controls). Representative images of the F-

actin cytoskeleton for each condition show that there are differences in organization as 

PEG content increases (Figure 3.5A), including a decrease in actin stress fibers (green) 

and cell size. To quantify these differences, actin mean intensity (actin signal per unit 

area) and area (size) were acquired and analyzed as traditional low-content features 

(Figure 3.5B). As expected, the overall area exhibited a decreasing trend with increasing 

PEG content due to increasing hydrophilicity and nonfouling polymer film properties; 
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however, a one-way ANOVA yielded no statistical significance (p > 0.05) between the 

various PEG-containing conditions (2% PEG and above). In addition, when comparing 

just the signal intensity across all conditions, no statistical significance was found (0% 

PEG and above). Therefore, using conventional low-content image features such as cell 

area and cell intensity, we were unable to readily distinguish across PEG-containing 

conditions. To identify morphological changes, higher content analyses capable of 

identifying more sensitive changes in morphology are necessary. 

 Using our imaging-based profiling approach, a PCA plot comparing copolymers 

with 2% versus 8% PEG resulted in almost complete separation (0.97 ± 0.01 sensitivity, 

0.87 ± 0.02 specificity, and an accuracy of 0.92 ± 0.01) (Figure 3.5C). Since differences in 

actin morphology can be easily visualized, this supports the validity of our proposed 

classifier. To assess the sensitivity of this classifier, PCA was employed to compare two 

conditions that cannot otherwise be discerned using a low-content approach (Figure 

3.5C- 3.5D). Sensitivity, specificity, and accuracy of copolymers with 4% versus 8% PEG 

yielded values of 0.83 ± 0.02, 0.74 ± 0.02, and 0.78 ± 0.01, respectively. Next, 

classification of condition A (x-axis) versus condition B (points on plot) of all substrate 

combinations was employed, and the resulting accuracy was plotted (Figure 3.5E). Using 

a 10-fold cross-validation, SVM was able to correctly classify differences between most 

conditions with > 80% accuracy and differences between all conditions with > 60% 

accuracy. Sensitivity, specificity, and accuracy with error reported as standard deviation 

of n = 50 pseudoexperiments for all substrate combinations can be found in Table 3.2.  
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Figure 3.5: hMSC Actin Descriptors Dependent on % PEG in Polymer Films 

(A) Representative images of the actin cytoskeleton of hMSCs cultured on films 

copolymerized with different degrees of PEG. (B) Plots of area and signal intensity of the 

actin yield little information about morphological differences across the different PEG-

containing biomaterial conditions (error bars represent standard deviation for n = 30 

cells per condition). (C) PCA plot of actin descriptors of hMSCs cultured in 2% versus 8% 

PEG copolymer films yields almost complete parsing between the conditions. (D) PCA 

plot of two conditions yielding morphologically similar cells, 4% versus 8% PEG 

copolymer films, yields an improved classification of cell populations based on high 

content analysis. (E) Summary of PCA accuracy of condition A (x-axis) versus condition B 

(points in plot) is shown. Scale bar: 25 μm.  
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Table 3.2: SVM Classification Results for hMSCs on PEG-Containing Films 

Sensitivity, specificity, and accuracy for Group 1 (rows) versus Group 2 (columns) can be 

seen, with error reported as standard deviation for n = 50 pseudoexperiments. 
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3.4.5 NuMA Descriptors Discern hMSC Differentiation on SAM Gradients 

 In our last case study, we applied our high content profiling approach to a self-

assembled monolayer (SAM) gradient substrate platform, which allowed us to 

investigate how hMSCs respond to incremental changes of substrate properties. In this 

study, a -COOH / -OH gradient via a "click" biofunctionalization described previously 

[210-212], with a varying molar ratio of -COOH to -OH groups on a functionalized glass 

slide was used (Figure 3.6A). Multipotency of hMSCs cultured on the SAM gradients for 

7 days under adipogenic induction was measured via expression of CD90, a protein that 

decreases in expression when stem cells differentiate to osteoblasts, chondrocytes, or 

adipocytes [213, 214]. CD90 expression across all regions of SAM gradients was low, 

ranging from 5% to 16% across the SAM gradient when compared with naïve stem cell 

controls (Figure 3.6B). As the gradient became more hydrophilic (more -COOH groups, 

less -OH groups), CD90 expression increased along the gradient, suggesting increased 

loss of pluripotency due to the progression of adipogenic differentiation, mediated by 

an increase in substrate hydrophilicity. 

 In parallel, NuMA protein descriptors were acquired for hMSCs cultured in 

adipogenic induction medium on the SAM gradient at 3 days. It is important to note that 

at 3 days, traditional functional markers fail to denote the onset of lineage commitment 

[56]. Confocal images of hMSCs immunolabeled with the NuMA protein were acquired 

in seven locations on the SAM gradient with 5 mm increments. PCA-based nuclear 

feature dimensionality reduction was then used to reduce the dimensionality of nuclear 

features for cell populations compared with that of naïve hMSCs. Figure 3.6C shows a 
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comparison made between the -COOH region 5 mm from the hydrophilic end and 

hMSCs cultured on the SAM chip with basal medium. Further SVM classification was 

performed on cells at each individual location compared with naïve hMSC controls 

(cultured on the SAM chip in basal medium for 3 days). Classification results showed 

that cells cultured on the hydrophilic end (with the lowest level of CD90 expression) 

feature different NuMA protein morphologies versus the naïve hMSC controls, with 

classification sensitivity, specificity, and accuracy of 0.99 ± 0.01, 0.96 ± 0.02, and 0.98 ± 

0.01, respectively. Comparisons between all SAM gradient locations and naïve hMSC 

controls are shown in Figure 3.6D, where an incremental decrease of nuclear difference 

(classification accuracy) was observed on gradient locations ranging from within -COOH 

(hydrophilic)-rich regions to -OH (hydrophobic)-rich regions, with the lowest difference 

value (65%) observed at the hydrophobic end. Sensitivity, specificity, and accuracy with 

error reported as standard deviation of n = 50 pseudoexperiments for all substrate 

combinations can be found in Table 3.3.  
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Figure 3.6: NuMA Organization of hMSCs Cultured on Hydrophobicity Gradient 

(A) Hydrophobicity gradient prepared by increasing levels of ozone-derived oxidation 

resulted in a SAM glass slide featuring a hydrophilic (-COOH rich) region that 

incrementally changes to a highly hydrophobic (-OH rich) end. (B) hMSCs express 

variable CD90 levels along the SAM gradient after 7 days of AD induction. (C) Cells 

cultured on the hydrophilic end (expressing lowest levels of CD90) had different nuclear 

features from the control group, which expressed high CD90 levels and was cultured in 

basal growth medium (with SVM classification results being 0.99 ± 0.01, 0.96 ± 0.02, and 

0.98 ± 0.01 for sensitivity, specificity, and accuracy, respectively). (D) SVM classification 

accuracy demonstrated differences in nuclear features of hMSCs cultured on the SAM 

gradient when compared with naïve hMSC controls. 
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Table 3.3: SVM Classification Results for Several Locations on SAM Gradient 

SVM classification results for adipogenically-induced hMSCs cultured on SAM gradient at 

different locations versus hMSCs cultured in basal medium. Sensitivity, specificity, and 

accuracy for a given location versus a two-dimensional basal control can be seen, with 

error reported as standard deviation of n = 50 pseudoexperiments. 
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3.5 DISCUSSION 

 Typical high-throughput screening approaches are insufficient for examining 

heterogeneous cell cultures as they only provide data on the cell population as a whole. 

This shortcoming is particularly acute for stem cells, including embryonic, induced 

pluripotent, and mesenchymal adult stem cells, which can commonly adopt divergent 

phenotypes as a function of culture time and environmental conditions. We have 

proposed a high content imaging-based platform that is capable of parsing numerical 

morphological descriptors from images of individual stem cells cultured in varied 

microenvironments. By combining integrated fluorescence imaging, quantitative image 

analysis, and computational data mining, this approach can provide insights about the 

organization of various cellular proteins at a single cell level. In this Chapter, we 

demonstrate the potential of high content imaging-based profiling to reveal 

subpopulations across a wide spectrum of stem cell types in different stages of 

development and their responses to a diverse range of material configurations. 

 Our high content analyses of descriptors derived from intracellular reporter 

proteins support the notion that NuMA and actin are sensitive biological markers for 

classifying how cells interact with their environmental milieu. Stem cell signaling events 

are triggered by early cell attachment, for example, when focal adhesions reinforce 

receptor-mediated cell adhesions to adsorbed extracellular matrix (ECM) proteins on 

the substrate [156]. Integrin-mediated mechanotransduction results in changes within 

cytoskeletal structures, which in turn influence the organization of nucleoskeletal 

scaffolding and nuclear proteins, triggering a cascade of signaling pathways that lead to 
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microenvironment-driven cell behaviors, including the switch between cell 

differentiation and self-renewal [215]. Thus, cytoskeletal and nuclear protein 

morphologies were likely influenced by outside-in signaling pathways stemming from 

chemical, physical, and biological changes in the microenvironment. In addition, the 

organization of the NuMA and actin may provide information about cell state. For 

example, the distribution of NuMA is cell cycle-dependent, as it is essential in mitotic 

spindle positioning and asymmetric cell division during mitosis [178]. Actin stress fiber 

thickness, density, and actin-mediated cell shape are all influenced by cell adhesion to 

the underlying substrate [73, 209] and have also been linked with lineage commitment 

[133]. 

 Stem cell culture systems are limited by scalable techniques to discern 

pluripotent hESC and iPSC subpopulations from those that are already lineage 

committed. Pluripotent cells, demarcated by marker expression, exhibit highly 

distinguishable NuMA protein features (high sensitivity and specificity) from 

differentiating stem cells. This suggests that the NuMA protein organization can be used 

as an indicator of the hESC and iPSC phenotype, either pluripotent or lineage 

committed, although the latter has not been explicitly addressed in this study. 

Previously, we have reported that NuMA protein organizational features display 

distinctive patterns when hMSCs undergo osteogenic versus adipogenic differentiation 

[56]. Follow-up studies need to be conducted to assess whether lineage commitment of 

iPSCs and hESCs (e.g., specific cell types from the endoderm, mesoderm, or ectoderm) 

can be similarly captured through profiling of the NuMA protein. The identification of 
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early nuclear morphological signatures predictive of long-term lineage commitment in 

iPSCs and hESCs could significantly enhance the throughput of biomaterial screening 

methods since it typically takes these stem cell lines weeks or even months to 

differentiate into mature phenotypes. 

 In regenerative medicine, stem cells are induced to desirable lineages via the use 

of extracellular stimuli based on soluble factors and engineered substrates with 

controlled surface chemistry and physical properties. We sought to assess whether 

outside-in signaling emanating from synthetically engineered biomaterials translates to 

morphological differences seen in our reporter proteins. As previously shown, hMSCs 

cultured on tyrosine-derived biodegradable scaffolds containing varying degrees of PEG 

exhibited differences in actin stress fiber formation under conditions that induce 

changes in adhesion and differentiation [73, 209]. This suggests that stem cells can 

function as biological probes to discern subtle variations in biomaterial properties that 

dictate stem cell functions. 

 Our high content descriptor-based methods were able to sensitively discern 

differences in morphology resulting from changes in PEG molar fraction of the tyrosine-

derived polycarbonate polymers. Notably, the classification efficiency was lower when 

comparing cell descriptors across conditions with smaller differences in PEG content. 

This could be due to the fact that most of the descriptors used in this study are shape-

based (Table 3.4 and Table 3.5). For each axis (termed PC, principal components) the 

descriptors were identified as influential if the weighting factor was more than half of 

the highest weighting factor in the linear transformation equation. The number next to 
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each PC in Table 3.4 and Table 3.5 represents the percentage of variance that the axis 

accounts for, and the descriptor values represent the weight factors in the linear 

transformation equation; the larger the value, the more influential the descriptor is. 

Higher PEG content results in a decrease in cell size and actin stress fibers. For example, 

texture-based descriptors resolving minute differences in the intracellular actin 

architecture could likely improve the degree of classification. Studies using texture-

based descriptor sets are shown in Chapter 5. 

 

Table 3.4: Top Descriptors for Parsing Between Pluripotent and 

Differentiating Cells 

Blue, green, and red correspond to shape, intensity, and textural/organizational 

descriptors, respectively. 
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Table 3.5: Top Descriptors for Parsing hMSCs on Films of Varying % PEG 

Blue, green, and red correspond to shape, intensity, and textural/organizational 

descriptors, respectively. 

 

 Self-assembled monolayers (SAMs) of alkanethiols have been modified to 

present well-defined and controllable surfaces featuring a wide range of chemical 

properties [216]. Specific modifications in surface chemistry alone can differentially 

modulate hMSC differentiation in a lineage-dependent manner [217]. Due to higher 

ECM protein adsorption at the -COOH rich region (hydrophilic end) of SAM substrates, 

more cells adhered when compared with the -OH rich regions (hydrophobic end), which 

in turn altered the rate of adipogenic differentiation on SAM gradient substrates. The 
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fact that these variations were identified as early as 3 days via NuMA profiling highlights 

the potential application of this platform towards the early detection of differentiation-

inducing materials for biomaterial discovery in regenerative medicine. 

 In summary, we have demonstrated that heterogeneous phenotypes of stem cell 

populations can be captured using high-dimensional organizational mapping of 

intracellular protein reporters. Although the geometries for culture systems explored 

here are restricted to two dimensions, the high content imaging approach could be 

readily extended in the future to cell cultures in varied configurations, ranging from 

three-dimensional scaffolds to hydrogels. Although the data presented here were 

primarily derived from cells fixed and labeled with fluorophores, in theory, this 

approach can be easily applied to reporter cell lines in real-time in lieu of static, fixed 

cells. The high content imaging methods can also be potentially coupled with newer 

technologies for biomolecular screening, such as emerging, single cell gene readout 

assays to enable multimodal cell state analyses, as well as cell sourcing platforms for 

isolating cell subpopulations based on higher dimensional biological features [218]. 
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CHAPTER 4. NUMA ORGANIZATION AS A DETERMINANT OF 

STEM CELL PHENOTYPIC STATES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Sections of this chapter are in preparation for submission as the following 

publication: 

 

E Liu, SL Vega, N Bennett, AB Kulesa, J Bushman, H-J Sung, ML Becker, P-A Vidi, S 

Lelièvre, J Kohn, PV Moghe. NuMA-Based Imaging Platform for Single Cell Phenotyping. 

To be submitted to PLOS ONE, 2014. 
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4.1 ABSTRACT 

 Current methods to identify cell phenotypes rely on population-based assays 

that are only expressed in fully differentiated cells and fail to capture the heterogeneity 

in cell cultures in vitro, and tissues in vivo. Here we present a single cell imaging-based 

methodology to derive quantitative metrics of the nuclear mitotic apparatus (NuMA) 

protein, a key nuclear structural protein with functions in mitosis, chromatin control, 

and DNA repair, to identify subpopulations that are indistinguishable using conventional 

techniques. To demonstrate the versatility of our approach, we apply it to identify 

cellular phenotypes in three distinct applications. First, as a screening tool, we utilize 3 

day NuMA metrics to rank 10 day oncogenic responses of a biomaterial library. Second, 

to showcase our method's ability to classify cell subtypes ex vivo, we identify three 

neural precursor cell populations with identical antigen expression but divergent 

proliferation and differentiation profiles. Lastly, to demonstrate the application of single 

cell imaging-based profiling to increase the population homogeneity in live cell colonies, 

we utilized NuMA descriptors of human embryonic kidney cell (HEK-293) expressing 

fluorescent NuMA to distinguish between HEK-293 cells with and without DNA-damage 

treatment in a mixed population. Ablation of DNA-damaged cells resulted in a 

measurable increase in population viability after treatment with Taxol, a major drug 

used in cancer therapy that selectively kills DNA-damaged cells. In summary, our 

imaging-based approach is a powerful parsing tool for both predicting and 

discriminating cellular phenotypes in vitro and ex vivo, and to purify populations in live-

cell systems.  
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4.2 INTRODUCTION 

 Recent breakthroughs in stem cell biology have the potential to advance tissue 

repair and regeneration after injury or disease [219]. Stem cell signaling programs are 

complex and vary tremendously across different tissues and niche-dependent 

developmental processes. As such, the ability to accurately assess the plasticity of stem 

cells to their environments is extremely challenging [220-222]. Identifying cell 

phenotypes and predicting single cell responses to biomaterials may provide new 

insights into differentiation mechanisms as well as lay the groundwork for new tools to 

purify and test cell cultures. However, current tools to characterize stem cell states are 

suboptimal because they are population-based and data limiting, and therefore unable 

to pinpoint cell phenotypes with single cell resolution. 

 Our group recently reported that minute quantifiable differences in the 

cytoskeleton capture early variations of human mesenchymal stem cell (hMSC) lineage 

commitment prior to detectable phenotypic marker expression [56, 57]. However, the 

use of actin as a reporter sensitive to the cellular milieu has only been challenged for 

fixed cells under non-confluent, two-dimensional environments. As the terminal 

gateway of outside-in signaling and mechanobiology, the nucleus could also hold 

important organizational cues descriptive of stem cell phenotype. Particularly, nuclear 

mitotic apparatus (NuMA) protein, a structure necessary for cell cycle progression in the 

nucleoplasm, may serve as a suitable biological marker for classifying cellular 

phenotypes due to its role in controlling cell fate and chromatin organization [178, 223]. 

Thus, the central premise of our methodology is that early signaling events underlying 
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stem cell differentiation are accompanied by slight changes in nuclear organization that 

can be revealed through high dimensional organizational metrics. When combined with 

in silico data processing techniques, these metrics can help parse stem cell phenotypes 

in a wide range of contexts relevant to the clinic, including ex vivo analyses and novel 

imaging-based live cell purification strategies. 

 In this study we identified nuclear morphologic features of the NuMA protein 

predictive of biomaterial-induced changes in phenotype, and we also identified cell 

subtypes in heterogeneous groupings. Using our high content imaging methodology, we 

identified early subcellular signatures that precede changes in phenotypic marker 

expression and cellular function. The predictive utility of this platform demonstrates 

that early morphological signatures of NuMA in hMSCs can be identified within the first 

3 days of oncogenic transformation on various biomaterials. Similarly, we identified 

oligodendrocyte precursor cells derived from various developing brain tissue contexts ex 

vivo that express similar antigen expression and are thus traditionally indistinguishable. 

Lastly, we found differences in NuMA-based metrics between DNA-damaged and 

normal human embryonic kidney cells (HEK-293) and removed DNA-damaged cells in 

HEK-293 colonies via confocal laser ablation. In summary, these three diverse studies 

highlight the versatility of our imaging-based methodology to screen biomaterials, tissue 

sections, and purify live heterogeneous cell cultures in real-time. 
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4.3 MATERIALS AND METHODS 

4.3.1 Cell Culture 

 Human mesenchymal stem cells (hMSCs) were obtained from commercial 

sources (Lonza; Walkersville, MD). Cells were cultured by following the protocol and 

reagents provided by Lonza (Walkersville, MD). Cells were received at passage 1 and 

used between passages 13-19. The in vitro oncogenic transformation process was 

performed via periodic nickel (II) sulfate (Sigma) treatment [224]. Briefly, 24 hours post-

plating cells were treated with a 36-72 μM nickel sulfate solution in mesenchymal stem 

cell growth medium (Lonza) for 48 hours. The medium was then replaced with basal 

medium for 48 hours, followed by nickel (II) sulfate treatment for 3 days, and ending 

with 3 days in basal medium. Genetically transformed hMSCs (termed TSRs in this 

Chapter) were acquired from Dr. Richard Gorlick. To transform hMSCs to TSRs, hMSCs 

underwent sequential transduction via the introduction of hTERT, inactivation of p53DD 

tumor suppressor gene and activation of K-Ras and C-Myc [225]. The osteogenic and 

adipogenic induction and phenotype characterization of hMSCs were performed 

following previously described protocols [57]. 

 Oligodendrocyte precursor cells (OPCs) were isolated and cultured as previously 

described by Power et al. from P6-P7 rat neonates [226]. Briefly, after removing the 

cerebellum and olfactory bulb, the corpus collosum (CC) was carefully separated from 

the hippocampus, striatum, and cerebral cortices. To obtain cerebral cortex (CX) OPCs, 

the dorsal cortical tissue anterior to the underlying hippocampus was taken after 

carefully removing meninges and separating the hippocampus, corpus collosum, and 
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other ventral and anterior brain tissues. Lastly, to obtain OPCs from optic nerve (ON) 

sections encompassing the region ~1 mm from the eye and ~2 mm prior to the 

convergence of the optic chiasm, the meninges was carefully removed, and sliced with a 

scalpel prior to enzymatic and mechanical tissue separation. 

 For in vitro cell culture after extraction, OPCs were maintained in base medium, 

which consists of DMEM (Invitrogen, 11995) supplemented with Sato-components 

(0.0286% v/v BSA pathocyte, 0.2 μM progesterone, 100 μM putrecine, 0.2 μM sodium 

selinite), 50 μg/mL human apo-transferrin, and 1 μg/mL bovine pancreas insulin. Flasks, 

glass cover slips, and multi-chamber plates used in OPC experiments were coated with 

poly-L-lysine. All components were obtained from Sigma Aldrich unless otherwise 

specified. Following dissection and purification, OPCs were cultured in base medium 

supplemented with 10 ng/mL rhPDGF-AA (Peprotech) at 37°C in a humidified incubator 

with 10% CO2. To assess the percentage of OPCs, immunocytochemistry confirmed > 

99% of cells were positive for A2B5 (Millipore, MAB312, 1:500 dilution) and negative for 

GalC (Millipore, Ab142, 1:500 dilution). 

 Human endothelial kidney cells (HEK-293) cells (Life Technologies) were cultured 

by the following protocol provided by Life Technologies and with commercially available 

reagents. Cells were plated onto cell culture plates coated with 0.1% gelatin solution 

(Millipore) in DMEM supplemented with 10% fetal bovine serum and 0.1 mM MEM non-

essential amino acids (Life Technologies). HEK-293 cells were passaged at 80% 

confluence and plated at a density of 50,000 cells/cm2. 
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4.3.2 Preparation of OPC Samples for Early (4 Hour) NuMA-Based Image 

Analysis 

 Following dissection and processing, OPCs were seeded onto LabTek chamber 

slides (Thermo Scientific, 177402) at densities of 10,000 to 20,000 cells per chamber 

with base medium supplemented with 10 ng/mL PDGF-AA. Cells were allowed to adhere 

for 4 hours, and samples were fixed and stained with antibodies specific for A2B5 and 

NuMA (Abcam, Cambridge, MA), and counterstained with Hoescht. Samples were then 

imaged and subject to image analysis. 

 

4.3.3 Long-Term (10 Day) Clonal Analysis of OPCs 

 The day following isolation and purification, OPCs were plated at a low density in 

T25 flasks (100-250 cells per flask) in base medium supplemented with 10 ng/mL PDGF-

AA for 24 hours to allow for adherence and visual verification of acceptable cell density. 

Next, flasks were either maintained with base medium supplemented with 10 ng/mL 

PDGF-AA for proliferation, or cultured with base medium supplemented with 1 ng/mL 

PDGF-AA and 0.49 nM thyroid hormone (T3/T4) for differentiation. Medium was 

changed on days three and five, and then fixed on day seven with 2% paraformaldehyde 

for 10 minutes. Cells were then stained for A2B5, GalC, and Hoescht. The composition of 

individual clones was ascertained by counting the number of cells (Hoescht positive), 

the number of OPCs (A2B5 positive and GalC negative), and the number of 

oligodendrocytes (A2B5 negative and GalC positive) in individual clones. 
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4.3.4 NuMA Expression in HEK-293 Cells 

 Human embryonic kidney (HEK-293) cells were cultured using previously 

established protocols [227]. Upon reaching 80% confluence, HEK-293 cells were seeded 

onto wells of 8-well glass-bottom LabTek chamber slides at a density of 50,000 cells/cm2 

and allowed to adhere for 24 hours. Next, an mCherry-NuMA plasmid (provided to us by 

Dr. Lelievre's laboratory) was introduced to the cells via polyethylenimine (PEI) 

transfection [228]. Briefly, HEK-293 medium was supplemented with 0.175 μg/cm2 of 

plasmid in PEI at a ratio of 1 μg plasmid per 50 μL PEI for 24 hours and then replaced 

with fresh medium. The optimized protocol yielded > 70% mCherry-NuMA positive HEK-

293 cells. 

 

4.3.5 Etoposide and Taxol Treatments of HEK-293 Cells 

 To generate DNA-damaged and non DNA-damaged HEK-293 cell co-cultures, 

HEK-293 cells were plated onto wells of a 12-well TCPS culture plate at a density of 

50,000 cells/cm2 and allowed to adhere for 24 hours. Next, half of the wells were 

treated with HEK-293 medium supplemented with 1 μM etoposide, a pharmacological 

agent used in cancer chemotherapy, that induces DNA strand breaks in rapidly dividing 

cells [229]. 48 hours post-treatment, DNA and non DNA-damaged HEK-293 cells were 

split and seeded in a 50:50 ratio for co-culture, resulting in a total seeding density of 

50,000 cells/cm2. Dependent on experimental conditions, some HEK-293 cultures 

underwent treatment with Taxol (a drug used in cancer chemotherapy that selectively 

kills DNA-damaged cells [230]). Briefly, HEK-293 cultures were treated with HEK-293 
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medium supplemented with 0.25 μM Taxol for 48 hours. The concentration was 

optimized such that it kills the majority of etoposide-treated cells without affecting 

nontreated HEK-293 cells. To supervise cell tracking, cells that were not exposed to 

etoposide were labeled with CellLight actin-GFP (Life Technologies), per manufacturer's 

instructions. 

 

4.3.6 Immunocytochemistry (ICC) 

 Samples were first fixed with 4% paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA) for 10 minutes. Next, a 1 hour blocking and permeabilization step 

was performed with a 0.1% Triton X-100 (Sigma, St. Lous, MO) / 5% normal goat serum 

(MP Biomedical, Solon, OH) solution in phosphate-buffered saline (PBS) (Lonza). Primary 

antibodies, directed either to proliferation marker Topoisomerase ɑ-II or the nuclear 

mitotic apparatus (NuMA) protein were added at a 1:500 ratio overnight at 4°C, 

followed by secondary antibodies (Alexa Fluor; Invitrogen, Carlsbad, CA) at a 1:250 ratio 

for 2 hours at room temperature. To identify cell nuclei, samples were counterstained 

with 1 μg/mL 4',6-diamidino-2-phenylindole (DAPI) (Sigma) in PBS. 

 

4.3.7 High Content Imaging and Profiling 

 Samples were imaged under a 63X immersion objective (NA = 1.3) with a Leica 

TCS SP2 system (Leica Microsystems, Inc., Wetzlar, Germany). High-resolution images 

were then subject to nuclear feature extraction and dimensionality reduction, as 

previously reported (Figure 4.1) [56]. Once NuMA signal was individually segmented, 
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NuMA descriptors were calculated for each cell (Table 4.1). Next, Principal Component 

Analysis (PCA) was used to visualize the data by mathematically reducing the descriptor 

set into three new dimensions, termed Principal Components (PCs). 

 We quantified nuclear shape and NuMA morphology using a large pool of 

descriptors. Descriptors that were defined included: cell nuclear shape, intensity 

(relating to the expression level of the NuMA protein), and textural/organizational 

(describing the spatial distribution and location of the NuMA protein within the nucleus) 

(Table 4.1). To better visualize the high dimensional dataset, we used Principal 

Component Analysis (PCA) which groups a number of possibly correlated descriptors 

into a smaller set of uncorrelated "integrated descriptors", termed Principal 

Components (PCs). Using this methodology, the higher dimensional descriptor dataset 

was reduced to three new dimensions, each representing a linear combination of a 

group of raw descriptors. To identify differences across conditions, the PCs then 

underwent a classification scheme which utilized a support vector machine (SVM) with a 

randomized two-fold cross validation on individual datasets. Two parameters, sensitivity 

and specificity were calculated using SVM and used to evaluate the performance of the 

classification. Sensitivity represents the proportion of actual positives that are correctly 

identified as such, while specificity measure the proportion of negatives that are 

correctly identified. High classification / prediction is demarcated by high values of 

sensitivity and specificity, while low values of sensitivity and specificity indicate poor 

classification / discrimination between two datasets. 
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 For validation purposes, two data sets with known divergent outcomes were 

compared (Figure 4.2A). To assess how different the descriptor values were across the 

two cell groups, a support vector machine (SVM) classifier was used to calculate 

sensitivity and specificity. For example, a sensitivity and specificity output of 100% 

represents perfect separation between two subpopulations. For prediction purposes, a 

test set was used to compare with positive and negative data sets in the SVM classifier. 

Two sets of sensitivity and specificity values were generated, reported the difference 

between test set and negative control, or test set and positive control. The sensitivity 

and specificity sets were then used to generate a receiver operating curve (ROC), such 

that the area under the ROC (Az) is an estimate of how different the test set (black 

circle) is from the negative (green circle) and positive (red circle) controls (Figure 4.2B). 

By combining the Az values from the two ROC's (test set versus negative control, and 

test set versus positive control), a Parsing Index was derived (Figure 4.2C). The Parsing 

Index estimates the location of the test set (black diamond) with respect to the negative 

(green diamond) and positive (red diamond) controls. 
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Figure 4.1: Image Processing and Feature Extraction from the Cell Nucleus 

Images of cell nuclei labeled with DAPI (blue) were filtered to generate masks in the 

shape of the nucleus. Prior to superimposing masks onto images of fluorescently-labeled 

NuMA (green), there images were background flattened, filtered using a low-pass filter, 

and contrast-enhanced. The segmented NuMA signal was then used to generate over 40 

shape-, intensity-, and texture-based descriptors for each individual nucleus.  
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Table 4.1: List of Nuclear and NuMA Protein Descriptors 

This table lists the pool of nuclear and NuMA protein descriptors quantified for each cell 

nucleus. The definition of the feature and its possible biological relevance is listed. 

Nuclear shape features are highlighted in blue, NuMA intensity-based features in green, 

and NuMA texture/spatial organizational features in red. 

  



101 
 

 

 

Figure 4.2: In Silico Data Processing of NuMA Morphometric Descriptors 

(A) Dimensionality reduction (PCA) is applied to generate combinations of descriptors 

that define the subcellular state of different conditions. Utilizing support vector machine 

(SVM) classification, sensitivity and specificity were calculated and used to evaluate 

classification efficiency. (B) By shifting a hyperplane that best separates conditions A 

and B using PCA, a receiver operator curve (ROC) was generated. The ROC curve 

represents an estimate of how different the test set (black) is from the negative (green) 

and positive (red) controls. (C) Combining the area under the ROC curves (Az) between 

test set versus negative and test set versus positive controls, a Parsing Index is derived 

to assess the relative location of the test set in relation to the trained classifier 

conditions. The Parsing Index values for the test set is between 0 and 1, where 0 and 1 

are the negative (green diamond) and positive (red diamond) controls, respectively. 
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4.3.8 Preparation of Polymeric Substrates for hMSC Transformation Study 

 Tyrosine-derived polycarbonates [231], polymethacrylates [232], and poly(L-

lactic acid) (Resomer L-206) (Boehringer Ingelheim; Ridgefield, CT) were spin-coated on 

a 15 mm cover glass following previously described protocols [129]. The chemical 

structures of these polymers can be found on Figure 4.3, and the list of polymers usesd 

in this study in Table S2. hMSCs were seeded on polymer-coated substrates at density of 

20,000 cells/cm2 and underwent nickel sulfate treatment, as described earlier in this 

section for either 3 or 11 days. At 3 days, cells were immunolabeled with NuMA and 

imaged to calculate the Parsing Index, and at 11 days, cells were subject to a telomerase 

activity functional assay to calculate the Transformation Index, as described in the 

previous section. 

 

4.3.9 Characterization of hMSC Oncogenic Transformation via FISH 

 Fluorescence in situ hybridization (FISH) was used to detect and localize the 

presence of telomerase to assess degree of transformation in hMSC populations. A 

cadmium selenium (CdSe) conjugated qdot probe (5'-NH2(CH2)12-

T*C*T*C*AGTTAGGG*T*T*A*G) was designed to be complimentary to human 

telomerase unit (hTR), an mRNA transcript and a portion of the holo-enzyme (emission 

peak = 594 nm). Using a FISH protocol from the manufacturer (Roche Applied Science 

Inc.), telomerase expression was acquired as mean fluorescence intensity (MFI) per cell 

through image analysis. Next, the extent of oncogenic transformation was interpreted 

as a normalized experimental "Transformation Index", which was determined by 
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calculating the fold change of telomerase expression of hMSCs under carcinogen 

treatment to that of genetically transformed hMSCs (TSRs). The Transformation Index 

ranges from 0 (no transformation) to 1 (fully transformed). 

 

 

Figure 4.3: Chemical Structures of Biomaterials Used in Transformation Study 

Tyrosine-derived polycarbonates (upper left) can be fine-tuned with variations in the 

alkyl ester pendent chain, via addition of a carboxylate group, and/or an addition of 

PEG, resulting in different physical and chemical properties that induce different stem 

cell responses. A polymethacrylate library (upper right) was also utilized. Different 

combinations of HEMA, EHA, TEGMA, and NIPAAM result in differences in stiffness. 

Poly(L-lactic acid) (bottom left) was also included in this study. 
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Table 4.2: Biomaterial Library Used to Rank Effects of NiSO4-Induced 

Oncogenic Transformation  
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4.4 RESULTS 

4.4.1 NuMA-Based Metrics Predict Oncogenicity of Surface Chemistries for 

NiSO4-Treated hMSCs 

 We first applied our high content methodology to identify divergent malignant 

transformation outcomes. This is of particular interest because high levels of 

regenerative activity of stem cells, similar to those elicited by mutagenic factors under 

pathological environments, can result in stem cell transformation [221, 233-235]. We 

designed our first study with biomaterials in mind, particularly in our ability to identify 

the inhibitor effects of a library of surface chemistries on malignant transformation of 

stem cells cultured in the presence of nickel sulfate, a carcinogenic agent shown to 

induce a mutagenic phenotype [224]. 

 Before applying our high content methodology to predict the inhibitory 

oncogenic effects of a biomaterials library, we tested the effectiveness of our approach 

at identifying hMSCs treated with nickel sulfate for 3 days. The mean fluorescence 

telomerase expression of human mesenchymal stem cells (hMSCs) either with or 

without nickel sulfate treatment was indistinguishable at day 3 of culture (Figure 4.4A). 

This was further confirmed by the Parsing Index, which was only 0.01 when using mean 

fluorescence intensity alone. In contrast, by applying our high content nuclear profiling 

methodology we were able to separate the carcinogen-treated hMSC population (black 

cluster) from the nontreated hMSC population (green cluster). The carcinogen-treated 

hMSC population localized between the non-treated and TSR populations (red cluster), 
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and had a 3 day Parsing Index of 0.48, which is significantly higher than the Parsing 

Index using mean fluorescence intensity alone (Figure 4.4B). 

 Next, high content NuMA protein descriptors were utilized to rank-order the 

early susceptibility of hMSCs to transformation when cultured on a set of surface 

chemistries. Twelve distinct substrate biomaterials from a combinatorial polymer library 

were chosen based on their ability to inhibit or accelerate nickel sulfate-induced hMSC 

transformation processes (Figure 4.4C). Comparison of the hMSC telomerase expression 

following an 11 day nickel sulfate treatment demonstrated differential degree of 

transformation, with the 11 day Transformation Index values ranging from 0 to 0.5. 

Using high content nuclear feature extraction and SVM-based classification, an early (3 

day) Parsing Index value was calculated for cell populations on each individual 

biomaterial substrate and plotted against the experimentally observed 11 day 

Transformation Index, resulting in a Pearson correlation coefficient of 0.76 (Figure 

4.4D). These results demonstrate that the NuMA protein descriptors can rank-order the 

extent of oncogenic responses of hMSCs cultured on a library of polycarbonate and 

polymethacrylate-derived biomaterials. 
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Figure 4.4: NuMA Protein Imaging Used to Profile Synthetic Materials for Long-

Term Oncogenic Effects on Stem Cells 

(A) Using telomerase expression, it is not possible to identify hMSCs primed to abnormal 

transformation at 3 days (bar graph), as seen by a Parsing Index value of 0.01 for cells 

exposed to carcinogenic induction. (B) High-content analysis of NuMA reporter is able to 

classify carcinogen-treated hMSCs with a Parsing Index value of 0.48. Additionally, PCA 

plot of 3 day NuMA protein descriptors form three distinct clusters, corresponding to 

hMSCs exposed to BA (green), nickel sulfate treatment (black), or TSRs in growth 

medium (red). (C) 11 day experimental Transformation Index shows that biomaterial 

properties influence degree of transformation, defined by extent of telomerase activity. 

(D) 11 day Transformation Indices (y-axis) are plotted against 3 day predicted Parsing 
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Indices (x-axis) for hMSCs cultured in polymers in (C). This plot shows a high degree of 

correlation between the 11 day Transformation (experimental) and 3 day Parsing 

(predicted) Indices, as seen by a Pearson correlation coefficient of 0.76. 

 

4.4.2 NuMA-Based Metrics Distinguish OPCs from Different Brain Regions of 

Neonatal Rats 

 For our next study we investigated our ability to distinguish cell subtypes 

obtained ex vivo that are indistinguishable using conventional assays but have divergent 

growth profiles in vitro. To do so, we designed an experiment to distinguish antigenically 

identical progenitor cells from different central nervous system (CNS) locations. 

Oligodendrocyte type-II astrocyte cells, also called oligodendrocyte precursor cells 

(OPCs), are progenitor cells in the developing and adult CNS that differentiate into 

myelin, the major component of white matter [236]. OPCs isolated from different 

regions of the CNS have intrinsic differences that govern their timing of myelination in 

vivo, which is retained in vitro and assessed through laborious experiments pertaining to 

clonal differentiation and proliferation profiles [226, 237]. 

 To test the ability of high content imaging and analysis of nuclear features to 

distinguish these behaviorally distinct yet antigenically identical cells (OPCs are 

characterized by a high expression of A2B5, NG2, and PDGFRɑ antigens), precursors 

from the cerebral cortex (CX) and optic nerve (ON) were isolated from neonatal rats and 

analyzed. ON and CX-derived precursors are indistinguishable through surface marker 

staining of A2B5 (Figure 4.5A), yet could be separated based on the analysis of NuMA 
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descriptors between the two sources of isolation, as evidenced by a high classification 

performance (86.8% ± 2.9% sensitivity and 80.7% ± 3.7% specificity, Figure 4.5C). 

 Since OPCs derived from ON and CX have myelination profiles at the extremes of 

the CNS scale, we next applied our methodology to precursors from spatially adjacent 

CNS regions with more proximate in vivo myelination profiles that have not been 

previously distinguished. OPCs from the corpus collosum (CC) are spatially adjacent to 

OPCs from the CX in contrast to OPCs derived from the ON. As expected, OPCs from the 

CC and CX were antigenically identical based on A2B5 expression (Figure 4.5A), whereas 

clonal analysis after 7 days demonstrated that CC precursors were comparatively less 

proliferative and more prone to differentiate than CX precursors (Figure 4.5B). NuMA-

based high content imaging of CC and CX precursors was able to resolve two completely 

separable clusters when visualized in three-dimensional feature space (Figure 4.5C). 

OPCs from CC were distinguishable from CX precursors with very little overlap. SVM-

based classification was performed and results indicated almost complete separation 

between the two clusters, with 94.7% ± 2.5% sensitivity and 91.7% ± 6.9% specificity. 

These findings support the ability of our imaging-based method to distinguish 

antigenically identical yet phenotypically divergent murine OPCs extracted from 

different brain regions. 
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Figure 4.5: NuMA Descriptors Distinguish OPCs from Different Brain Regions 

(A) Simplified diagram of sagittal section of neonatal rat brain and images of OPCs 

stained for A2B5 following isolation from the optic nerve (ON), cerebral cortex (CX), and 

corpus collosum (CC). Precursors from all three brain regions stain positive for A2B5 

with indistinguishable differences in mean fluorescence intensity. (B) Clonal analysis of 

OPCs isolated from ON (black), CX (red), and CC (blue) of neonatal rats. OPCs were 

plated at clonal density and cultured in either proliferation or differentiation medium 

for 7 days. Each densitogram plot represents 100 clones, where the x-, y1-, and y2- axes 

indicate the number of OPCs, oligodendrocytes, and fractional number of clones with a 

particular composition (indicated via brightness of corresponding color), respectively. 
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4.4.3 NuMA Descriptors Parse Between Live HEK-293 Cells with and without 

DNA-Damage Treatment 

 The first two studies showcased our ability to identify divergent material-

induced oncogenic responses, as well as cell phenotypes that are indistinguishable using 

conventional fluorescence-based assays. Even though these studies highlight the utility 

of NuMA-based profiling for material screening and cell phenotyping, these findings 

were only realized on fixed, static cells. This is not adequate for regenerative therapies 

since cells cannot be used after the immunostaining step required for phenotyping. As 

such, we designed a third study to test if our profiling platform can be applied to live 

cells. 

 Here, we generated two populations of human embryonic kidney (HEK-293) 

cells: DNA-damaged, via exposure to etoposide for 48 hours, and controls treated with 

vehicle (Figure 4.6). After treatment both cell populations were labeled with mCherry-

NuMA. Vehicle-treated HEK-293 cells were also labeled with GFP-actin (Figure 4.6A). 

Using PCA, we were able to identify distinct clusters specific to the treatment 

conditions. SVM classification supported this observation with a sensitivity and 

specificity of 89% ± 2% and 87% ± 2%, respectively (Figure 4.6B). Next, we co-cultured 

etoposide and vehicle-treated cells in a 50:50 ratio, and colonies were subject to one of 

three treatment conditions: (1) ablation of vehicle-treated cells (termed Etopo (-) Kill), 

(2) ablation of etoposide-treated cells (termed Etopo (+) Kill), or (3) no ablation of HEK-

293 co-cultures (termed Control) (Figure 4.6C). 
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 To determine the extent to which ablation treatments increased population 

homogeneity, HEK-293 cell colonies were exposed to Taxol, a pharmacological agent 

which selectively kills DNA-damaged cells [238]. We found that Taxol treatment for 48 

hours does not affect population viability for vehicle-treated cells, but significantly 

decreases viability for etoposide-treated cells (Figure 4.6D). Taxol treatment for 48 

hours resulted in 55% viability for Control colonies, and a substantial decrease and 

increase in viability for Etopo (-) Kill (41% viability) and Etopo (+) Kill (63% viability) 

treatments, respectively (Figure 4.6E). This experiment shows that imaging-based 

profiling has the potential to identify subpopulations in heterogeneous cell cultures and 

remove user-defined cell subtypes via confocal laser ablation. By doing so, we show that 

the colonies are either more (i.e., after Etopo (-) Kill treatment) or less responsive (i.e., 

after Etopo (+) Kill treatment) to pharmacological treatments. 
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Figure 4.6: NuMA-Based Metrics can Parse Between Live HEK-293 Cells with 

and without DNA-Damage Treatment 

(A) HEK-293s with DNA-damage treatment [etoposide (+)] and vehicle treatment 

[(etoposide (-)] were labeled with mCherry-NuMA. Etoposide (-) HEK-293s were also 

labeled with GFP-actin. (B) NuMA-based PCA plot shows two distinct clusters 

demarcating etoposide (-) (red) and etoposide (+) (blue) conditions. (C) Schematic 

showing the experimental design workflow. (D) DNA-damage treatment does not affect 

cell viability (top and bottom left images). 48 hour Taxol treatment selectively kills 

etoposide (+) cells (top right image) but does not affect viability in etoposide (-) cells 

(bottom right image). (E) Percentage of remaining cells in co-cultures after ablation and 

48 hour Taxol treatment. Scale bars: (A) 25 μm, (D) 100 μm.  
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4.5 DISCUSSION 

 Our high content imaging-based nuclear profiling methodology is based on the 

higher dimensional variations in organizational nuclear protein markers of single cells 

instead of expression-based phenotypic readouts of whole cell populations. Given the 

resolution of high dimensional feature information, the resulting nuclear features parse 

cell behaviors in multiple domains earlier and more reliably than using conventional 

methods. As one of the four most abundant proteins in the cell nucleus in eukaryotic 

cells, NuMA is closely associated with cell cycle-related events, such as stem cell 

differentiation [141, 162, 239], apoptosis [240], and cancerous progression [241]. As 

such, in this study we utilized nuclear descriptors derived from the NuMA protein, and 

our findings support the premise that the shape and organization of nuclear proteins 

have cell- and tissue-specific signatures. 

 In our first study we investigated the role of biomaterials in influencing cell 

transformation processes. Some polymeric biomaterials, such as p(92%DTE-co-8%PEG 

carbonate), synergistically enhanced nickel sulfate treatment whereas other 

biomaterials, such as p(DTE-co-8%PEG-10%DT carbonate) reduced the effects of nickel 

sulfate in telomerase activity (Figure 4.4A, Table 4.2). The biomaterial-induced 

biological mechanisms responsible for divergent effects of nickel sulfate treatment are 

beyond the scope of this study. However, we suspect that the biomaterials are 

influencing the modulation of exogenous and intracellular production of reactive oxygen 

species (ROS). Several studies have reported a link between ROS and cancer [242-244]. 

In an earlier study we showed that PEG-containing substrates induced both exogenous 
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and intracellular ROS production, whereas negatively charged DT-containing polymers 

had an opposite effect [245]. The role of DT in reducing the effects of nickel sulfate-

induced telomerase activity could be due to the electrostatic attraction of nickel ions to 

the polymer surface, thereby limiting the binding efficiency of nickel ions to cells in 

culture. Therefore, the reduced amount of nickel ions on DT-containing polymer 

substrates could result in a decrease of nickel sulfate-induced DNA-damage, 

subsequently resulting in a decrease in transformation. 

 To increase the applicability of our imaging-based method, for our next study we 

investigated the possibility of identifying cell subtypes acquired from tissues. 

Oligodendrocyte precursor cells (OPCs) derived from different murine brain regions 

exhibit different long-term self-renewal and oligodendrocyte differentiation patterns, 

which mirror myelination dynamics during development in vivo [226]. Although OPCs 

feature divergent behaviors, OPCs isolated from the optic nerve, cerebral cortex, and 

corpus collosum are antigenically indistinguishable. To our knowledge, prior to this 

study there was no effective way of identifying the origin of OPCs at early stages 

without performing long-term differentiation studies. 

 One fundamental limitation preventing the extensive use of stem cells in the 

clinic is the inability to differentiate cells into homogeneous populations of desired 

phenotypes [246, 247]. With the use of differentiation-inducing growth factors, 

populations of hMSCs only achieve upwards of 75% osteoblast and 40% adipogenic 

differentiation [47]. Additionally, the clinical use of cells derived from the central 

nervous system (e.g., neural stem cells) has been limited due to the inability of 
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separating NSCs from other cell types when derived from native tissues [248]. Thus, we 

sought to investigate whether we could identify cell subtypes in a heterogeneous group, 

remove the cells, and determine whether the end result is an increase in population 

homogeneity. We chose HEK-293 cells as our cell line of choice due to their ability to 

easily transfect DNA plasmids. To generate two cell subtypes, one subset of HEK-293 

cells was subject to DNA-damage via etoposide, and the other was treated with a 

vehicle control. Although we identified morphological differences in the descriptors 

between both cell subtypes with high accuracy, we did not use a real-time classifier to 

remove unwanted cells in the treatments. A follow-up study should focus on utilizing 

training set descriptors to implement imaging-based classification in real-time. 

 To identify shape and organizational differences, we first quantified nuclear 

shape and NuMA morphology descriptors (Table 4.1). Then, we used high-dimensional 

reduction methods (i.e., Principal Component Analysis, PCA) to reduce large descriptor 

sets into smaller subsets of three principal components. In PCA, each principal 

component (PC1, PC2, PC3) represents a linear combination of nuclear descriptors. As 

such, it is possible to determine individual descriptors that have the largest 

contributions in each PC. The criterion to determine the most influential descriptors was 

based on the weighting factors of each descriptor in the linear transformation in PCA 

analysis. For each PC, the descriptors were identified as influential if the weighting 

factor was more than half of the highest weighting factor in that transformation 

equation. As a result, by reviewing the weighting factors of each linear combination, a 

subset of nuclear descriptors were identified as influential descriptors. 
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 Following this protocol, a PCA-based dimension reduction was applied to NuMA-

based nuclear descriptors of hMSCs and the transformed phenotypes (Table 4.3). The 

first PC (PC1) accounted for about 40% of the variability of the original nuclear 

descriptor dataset, and was composed of nuclear shape-based descriptors. The second 

and (PC2) and third (PC3) PCs accounted for about 14% and 11% of the variability in the 

original data, respectively, and had descriptors from all three categories (nuclear shape-, 

NuMA expression-, and NuMA spatial distribution-based descriptors). Next, PCA-based 

dimension reduction was performed on nuclear descriptors of OPCs derived from CC, 

CX, and ON (Table 4.4). PC1 accounted for about 50% of the variability of the original 

nuclear descriptor dataset, and was predominantly composed of nuclear shape 

descriptors. PC2 and PC3 accounted for about 15% and 7% of the variability in the 

original dataset and had descriptors that represented all three categories and nuclear 

shape descriptors exclusively, respectively. PC1 for parsing HEK-293 cells either treated 

or not-treated with etoposide accounted for about 54% of the variability, followed by 

PC2 and PC3 which accounted for about 18% and 4% of the variability of the original 

dataset, respectively (Table 4.5). The most influential descriptors in the first two PCs 

were entirely comprised of nuclear shape-based descriptors, and the third PC was a mix 

of intensity- and texture-based NuMA descriptors. 

 These findings show that for all of the case studies, nuclear shape descriptors 

were the most distinct, followed by NuMA intensity and nuclear distribution. For the 

oncogenic transformation study, divergent nuclear shape descriptors match qualitative 

differences observed in the nuclei of naïve hMSCs versus TSRs. In contrast, the 
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morphological differences between OPCs derived from different brain regions and HEK-

293 cell subtypes were much more subtle. An interesting follow-up study would be to 

determine whether or not we can parse cells in these studies using NuMA intensity- and 

texture-based descriptors alone. By using less descriptors, we could identify 

morphological descriptor sets that identify cell subtypes more rapidly and robustly. 

 

 

Table 4.3: Most Influential Descriptors in Parsing TSRs from hMSCs 

Descriptor categories were color-coded as blue, green, and red representing nuclear 

shape-, NuMA expression-, and NuMA spatial distribution-based descriptors, 

respectively. 
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Table 4.4: Most Influential Descriptors in Parsing OPCs from Different Sources 

Descriptor categories were color-coded as blue, green, and red representing nuclear 

shape-, NuMA expression-, and NuMA spatial distribution-based descriptors, 

respectively. 

 

 The proposed method showcases a highly adaptable and versatile technique to 

assess cell phenotypes. While the current study focused on hMSCs, rat brain OPCs, and 

identification of cell subtypes in live HEK-293 cultures using NuMA-based descriptors, 

the application of the technique with additional cell types and fluorescent reporters 

merely requires effective staining of other nuclear proteins, fluorescent imaging 

equipment, and imaging-based feature extraction / data mining software. For example, 

the technique presented here can easily be adapted to probe several proteins to assess 

diverse behaviors, possibly in parallel. A limitation of the first two studies presented in 
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this report is the dependency of fixed cell cultures for NuMA staining. Thus, for our third 

study we implemented the analysis of live cells expressing fluorescently-tagged NuMA in 

order to extend our approach to identify and remove cells in heterogeneous cultures. 

Taken together, single cell phenotyping has been applied to three diverse, clinically-

relevant contexts and has the potential for the study of many other cell types, 

processes, and protein organization.  

 

 

Table 4.5: Most Influential Descriptors in Parsing HEK-293 Cells with and 

without DNA-Damage Treatment 

Descriptor categories were color-coded as blue, green, and red representing nuclear 

shape-, NuMA expression-, and NuMA spatial distribution-based descriptors, 

respectively.  
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CHAPTER 5. INTERCHROMATIN DOMAINS USED TO PREDICT 

STEM CELL DIFFERENTIATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Sections of this chapter are under review as the following publication: 

 

SL Vega, A Dhaliwal, V Arvind, PJ Patel, NRM Beijer, J de Boer, NS Murthy, J Kohn, PV 

Moghe. Organizational Metrics of Interchromatin Speckle Factor Domains: Integrative 

Classifier for Stem Cell Adhesion & Lineage Signaling. Submitted to Integrative Biology, 

2014. 
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5.1 ABSTRACT 

 Stem cell fates on biomaterials are influenced by the complex confluence of 

microenvironmental cues emanating from soluble growth factors, cell-to-cell contacts, 

and biomaterial properties. Cell-microenvironment interactions influence the cell fate 

by initiating a series of outside-in signaling events that traverse from the focal adhesions 

to the nucleus via the cytoskeleton and modulate the subnuclear protein organization 

and gene expression. Here, we report a novel imaging-based framework that highlights 

the spatial organization of subnuclear proteins, specifically the splicing factor SC-35 in 

the nucleoplasm, as an integrative marker to distinguish between minute differences of 

stem cell lineage pathways in response to stimulatory soluble factors, surface 

topologies, and microscale topographies. This framework involves the high-resolution 

image acquisition of SC-35 domains and imaging-based feature extraction to obtain 

quantitative nuclear metrics in tandem with machine learning approaches to generate a 

predictive classification model. The acquired SC-35 metrics led to a > 90% correct 

classification of emergent human mesenchymal stem cell (hMSC) phenotypes in 

populations of hMSCs exposed for merely 3 days to basal, adipogenic, or osteogenic 

soluble cues, as well as varying levels of dexamethasone-induced alkaline phosphatase 

(ALP) expression. Early osteogenic cellular responses across a series of surface patterns, 

fibrous scaffolds, and micropillar topographies were also detected and classified using 

this imaging-based methodology. Complex cell states resulting from inhibition of 

RhoGTPase, β-catenin, and FAK could be classified with > 90% sensitivity on the basis of 

differences in the SC-35 organizational metrics. This indicates that SC-35 organization is 
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sensitively impacted by adhesion-related signaling molecules that regulate osteogenic 

differentiation. Our results show that diverse microenvironmental cues affect different 

attributes of the SC-35 organizational metrics and lead to distinct emergent 

organizational patterns. Taken together, these studies demonstrate that the early 

organization of SC-35 domains could serve as a "fingerprint" of the intracellular 

mechanotransductive signaling that governs growth factor- and topography-responsive 

stem cell states.  
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5.2 INTRODUCTION 

 Human mesenchymal stem cells (hMSCs) are a multipotent autologous cell 

source with significant utility in regenerative therapies due to their in vitro expansion 

and ability to differentiate into numerous connective tissues [47, 249]. Traditional 

strategies to direct hMSC differentiation towards one of the three mesodermal lineages 

(osteocytes, chondrocytes, and adipocytes) rely on the continuous induction by specific 

combinations of soluble growth factors [47]. More recently, stem cell differentiation has 

been achieved by manipulating biomaterial properties, including substrate chemistry 

[250], topography [251, 252], and stiffness [78, 79]. Optimizing these 

microenvironmental cues is of particular interest in regenerative medicine where 

biomaterial substrates may serve as a vehicle for directed cell delivery or as a system for 

tissue formation in vivo. To aid in identifying optimal microenvironments that efficiently 

elicit strategic stem cell phenotypes, high-throughput screening approaches that allow 

for the assessment of up to several thousand conditions within one experiment have 

been developed [91, 253, 254]. However, these approaches rely on population-based 

phenotypic readouts. This is particularly problematic since: (1) these assays fail to 

capture the heterogeneity inherent to stem cell-derived cell populations, and (2) the 

markers being measured are not robustly expressed in stem cells unless they are fully 

differentiated, a process which can take several weeks to manifest. Thus, a major need 

exists for the development of profiling tools to screen early phenotypic responses and 

predict longer-term cell behaviors. 
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 Adherent stem cells interact with their extracellular matrix through cell surface 

receptors, which propagate a cascade of signaling events to the cytoskeleton via focal 

adhesions, and ultimately to the nucleus. Previous studies have shown that the shape of 

the cell is a precursor to stem cell differentiation [133, 251, 255]. We propose the 

premise that the organization of subcellular proteins involved in outside-in signaling, 

particularly those mediating mechanotransductive signaling, are regulated by 

microenvironmental cues during differentiation, and that these minute differences can 

be captured by enhanced content imaging. As a major evidence of this premise, our 

laboratory advanced an imaging-based profiling methodology that allows for the 

dissection of morphologic signatures in the cytoskeleton unique to a particular culture 

condition [56, 57, 128, 256]. Using this approach, early (24 hour) actin morphologic 

signatures of hMSCs were identified and used to predict downstream osteogenic 

differentiation [57]. More recently, this technique was applied to distinguish between 

image-based features of nuclear mitotic apparatus (NuMA) protein organization of 

pluripotent versus spontaneously differentiating embryonic and induced pluripotent 

stem cells [128]. Although these studies have shown that stem cells adopt a higher-

order organization of cytoskeletal and nuclear proteins (NuMA) that can be defined by 

shape, intensity, and texture descriptors, developing methods to discern stem cell states 

on more physiologic and complex biomaterial substrates and scaffolds remains a major 

challenge. In this study, we have proposed a new molecular reporter-based approach to 

profile cell states using more sensitive subnuclear signatures defined by a smaller set of 

descriptors. 
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 Pajerowski et al. demonstrated that differentiating cells undergo progressive 

changes in gene expression, structural reorganization, and nuclear shape [139]. One of 

the goals of this study was to identify highly sensitive nuclear proteins as reporters to 

offer calibrated organizational features via high content imaging. To accomplish this, a 

number of candidate proteins within the nucleoskeletal scaffolding complexes were 

considered, namely RUNX2, lamin, trimethylated H3K4 histone (H3K4me3), EZH2, and 

SC-35. These subnuclear proteins have been implicated in microenvironment modulated 

cell processes such as mechanotransduction, gene regulation, and stem cell 

differentiation (Figure 5.1). EZH2 is a histone lysine methyltransferase that controls 

hMSC osteogenic differentiation via the trimethylation of H3K27 [257]. Lamins are 

essential filaments of the nuclear envelope, and their presence have been associated 

with preferential osteogenic differentiation in hMSCs [258, 259], while RUNX2 is a 

transcription factor that directly promotes osteogenic differentiation [260]. Upon 

methylation, H3K4me3 histone induces a transcriptionally active state for many genes 

involved in stem cell proliferation and differentiation [261]. SC-35 nuclear speckle 

domains host small ribonucleoprotein particles (snRNPs), spliceosomes, and 

transcription factors that function in co-transcriptional modifications of RNA [191]. 

 In this study, we employed high content image acquisition of various nuclear 

proteins in tandem with machine learning modeling to evaluate single cell responses of 

hMSCs to microenvironmental cues. hMSCs were cultured in different engineered 

microenvironments comprised of different topographies (i.e., patterns, fibers, 

micropillars) and soluble growth factors (Figure 5.1). In the course of our screening of 
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the panel of markers, we report that SC-35 is a highly responsive organizational 

reporter. We then focused subsequent experiments on investigating and validating the 

utility of SC-35 domain organization to predict osteogenic stem cell differentiation in 

hMSCs cultured across a series of more complex substrates, including surface patterns, 

fibrous scaffolds, and micropillar topographies.  
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Figure 5.1: Workflow Highlighting Utility of Nuclear Imaging-Based Profiling 

Cellular interactions with their microenvironment (e.g., mechanical cues, physical cues, 

soluble cues) modulate nuclear protein organization through signaling cascades as well 

as cytoskeletal-nuclear links, which regulate nuclear programs such as activation of 
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transcriptional factors (e.g., RUNX2), posttranslational histone modifications (e.g., EZH2 

and trimethylated H3K4 / H3K27), and RNA processing (e.g., SC-35 dynamics) that direct 

gene expression and cell fate. In this study, hMSCs were cultured on different substrates 

in the presence of adipogenic (AD), osteogenic (OS), or basal medium (BA) for 3 days, 

and high-resolution images were acquired using confocal microscopy. High content 

analysis was then done to compute Haralick texture descriptors that define the spatial 

organization of several nuclear reporters. This set of descriptors was then dimensionally 

reduced using Principal Component Analysis (PCA). Subsequently, the principal 

components were taken as an input for a classifier that used machine learning 

approaches based on a J48 decision tree algorithm to classify cells exposed to different 

conditions. The predictive classification model was validated by correlations with 14 day 

endpoint assays. Using this framework, we can go through several iterations to analyze 

changes in nuclear reporter organization and thus screen and identify 

microenvironmental cues that elicit desired phenotypic responses.   
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5.3 MATERIALS AND METHODS 

5.3.1 Cell Culture 

 Human mesenchymal stem cells (hMSCs) were obtained from Texas A&M 

University (College Station, TX). Cells were cultured in a humidity-controlled 

environment under 5% CO2 and 37°C and fed every 3 to 4 days with basal growth 

medium (BA) supplemented with fetal bovine serum (FBS) (10% v/v) and penicillin-

streptomycin (0.1% v/v). Cells were received at passage 1 and used for up to 5 passages. 

hMSCs were expanded in BA medium, and upon reaching 60% confluence trypsinized 

and plated according to experiment-dependent conditions. 

 Osteogenic differentiation (OS) was induced by culturing hMSCs in BA medium 

supplemented with L-ascorbic acid-2-phosphate, dexamethasone (dex), and β-

glycerophosphate [47]. Adipogenic differentiation (AD) was induced with BA medium 

supplemented with dex, indomethacin, and 3-isobutyl-1-methyl-xanthine for induction, 

and adipogenic maintenance medium was composed of BA supplemented with insulin 

[47]. Adipogenic medium in AD conditions was cycled with 3 days induction followed by 

1 day maintenance. hMSCs were plated at optimal differentiation-inducing densities of 

10,000 cells/cm2, 21,000 cells/cm2, and 5,000cells/cm2 for BA, AD, and OS conditions, 

respectively. Unless otherwise stated, cells were allowed to adhere for 6 hours in basal 

growth medium, followed by a media change with appropriate induction medium. 
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5.3.2 Fabrication of Surface Textures 

 Surface patterns were fabricated using phase separation of two immiscible 

polymers via demixing using principles previously reported [262]. Varying ratios of 

poly(desaminotyrosyl-tyrosine ethyl ester carbonate) (PDTEC) and polystyrene (PS) were 

dissolved in tetrahydrofuran (THF) to create a 2% (w/v) polymer solution. Polymer 

solutions were spin-coated onto 12 mm glass coverslips at 4,000 RPM for 30 seconds, 

resulting in a thin film of phase-separated PDTEC and PS. Six different surface pattern 

topographies were created by varying the PDTEC:PS ratio (100:0, 80:20, 60:40, 40:60, 

20:80, 0:100). Cyclohexane was used to remove PS, resulting in PDTEC polymeric surface 

patterns varying in degree of PDTEC polymer continuity. Coverslips were vacuum dried 

overnight to remove residual cyclohexane. Lastly, prior to culturing hMSCs, films were 

stored in a dessicator, sterilized with UV light for 900 seconds, and washed three times 

with phosphate buffered saline (PBS) (Lonza). 

 

5.3.3 Fabrication and Characterization of Microfibrous Scaffolds 

 Fibrous scaffolds were fabricated using an electrospinning apparatus. Low 

viscosity solutions of PDTEC were prepared in a volatile solvent as tabulated in Table 5.1 

below. The needle of the syringe containing the solvent was maintained at a positive 

charge (+keV) and placed 6 cm from the collecting rotating mandrel that was 

maintained at a negative charge (-keV). The flow rate of the polymer solution was 

controlled by a syringe pump. The micrometer-sized fibers were deposited on the 

mandrel as the solvent evaporated from the solution streaming out of the syringe. The 
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alignment of these fibers was controlled by the speed of the mandrel; higher speeds 

resulting in higher orientation. The diameter of the fibers was controlled by the viscosity 

of the polymer solution by changing the polymer concentration (from 14% to 18% w/v). 

Higher viscosity resulted in larger diameter fibers in the scaffold [51]. Polymer solution 

compositions and the electrospinning conditions are summarized in Table 5.1. 

 

 

Table 5.1: Summary of Electrospinning Parameters for Fibrous Scaffolds 

 

5.3.4 Fabrication of  Micropillars 

 Topographies were designed and fabricated using previously published methods 

[91]. Briefly, micropillar patterns were generated by utilizing an algorithm that randomly 

selected parameters for: (1) size of pattern, (2) number and distribution of primitive 

shapes (i.e., triangles, circles, and rectangles), and (3) size and degree of alignment of 

primitives. The micropillar designs were then etched to a silicon wafer which was used 

to generate a silicon master. Hot embossing of polystyrene films (250 μm thick) was 

then performed by sandwiching between the silicon master and an Obducat UV Sheet 

Polyester (100 Micron 10638). Imprinting was carried out at 80°C at a pressure of 30 

bars for 10 minutes. After cooling, assembly was demoulded and micropillars were 

detached using a wafer saw. 
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5.3.5 Fluorescence- and Immuno-staining for Confocal Imaging 

 hMSCs were fixed with 4% paraformaldehyde (Electron Microscopy Sciences) for 

15 minutes. Next, samples were blocked and permeabilized using a 0.1% Triton X-100 

(Sigma) / 5% normal goat serum (MP Biomedicals) solution in PBS. After two washes 

with blocking buffer (5% NGS in PBS), primary antibodies specific to proteins of interest 

were added at different concentrations overnight at 4°C. After three 15 minute washes 

in blocking buffer, secondary antibodies (Alexa Fluor; Invitrogen) with different 

fluorophores and corresponding isotype controls in blocking buffer at a 1:250 ratio were 

added for 2 hours at room temperature. To label the actin cytoskeleton, cells were fixed 

and stained with Alexa Fluor 488 phalloidin (Invitrogen) per the manufacturer's 

instructions. All samples were counterstained with 5 μg/ml Hoescht (Sigma) in PBS and 

stored at 4°C until imaging. To acquire high-resolution images, samples were imaged 

under a 63X objective with a Leica TCS SP2 system (Leica Microsystems). 

 

5.3.6 Analysis of Nuclear Protein Organization 

 To analyze the organization of nuclear proteins, 26 texture-based Haralick 

features were acquired for each cell. First, images underwent intensity-based 

thresholding to create nuclear ROI masks for each nucleus in a given image, based on 

Hoescht DNA staining. Next, Haralick descriptors were obtained using a Matlab 

algorithm. A complete list of the calculated Haralick descriptors with their definitions is 

provided in Table 5.2. These descriptors are quantifiable measurements of texture 

features that represent the spatial organization of the nuclear proteins. The 26 
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descriptors were linearly reduced to a minimum number of eigenvectors that account 

for 95% variance of the data by performing principal component analysis (PCA) using 

Weka (Waikato Environment for Knowledge Analysis), an open-source machine learning 

software. PCA transformed data was exported and plotted in Matlab (MathWorks, 

Natick, MA) to obtain a PCA plot where each point represents a stem cell in three-

dimensional space, and where each axis represents a computed principal component. 

Therefore, each point is represented by a unique set (x, y, z) of principal components 

(eigenvectors). 

 To illustrate differences between the various subpopulations, a predictive 

classification model was made using J48 decision tree analysis in the Weka software. J48 

generated a C4.5 pruned decision tree, where tree pruning is used as a tool to correct 

for potential over fitting. The best performing classification tree was generated by using 

the experimental data as the training set. The quality of the tree is reported in terms of 

the percent of correctly classified instances, precision (positive predictive value), and 

recall (sensitivity). 

 Briefly, precision = TP / (TP+FP) and recall = TP / (TP+FN), where: true positives 

(TP) are the number of instances correctly classified as belonging to the positive class, 

false positives (FP) are the number of instances incorrectly classified to the positive 

class, and false negatives (FN) are the number of instances not classified to the class but 

belong to the class. Precision is also defined as the number of instances that truly have 

class X among all those which are classified as class X. 
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Table 5.2: List of the 13 Haralick Texture Features Used in Chapter 5 

Descriptors were calculated using two different pixel groupings (termed C1, C2) 

resulting in 26 Haralick texture features in total. The features are divided into four 

groupings: entropy (red), correlation (blue), granularity (purple), and inertia (green), 

which represent a measure of speckle homogeneity, elongation, size, and distribution 

with respect to nuclear centroid, respectively. The potential biological relevance for 

each feature is also listed. 

 

5.3.7 Assessment of Cell Differentiation 

 To quantify differentiation, hMSCs cultured in induction medium were either 

fixed or lysed at 14 days. Fixed cells were stained for alkaline phosphatase (ALP) (fast 

blue RR, Sigma) or intracellular triglycerides (AdipoRed, Lonza) per the manufacturer's 
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instructions. Samples were then counterstained with Hoescht to identify osteogenic- 

and adipogenic-positive cells. Lysed samples were either used to determine ALP 

concentrations using an ALP activity assay per manufacturer's instructions 

(QuantiChromTM), or the relative gene expression of ALP (Qiagen, ALP) or lipoprotein 

lipase (Qiagen, LPL), as previously reported [263]. 

 

5.3.8 Inhibition of RhoGTPase, FAK, and β-Catenin 

 Rho was specifically inhibited using cell permeable C3 transferase (Cytoskeleton, 

Denver, CO) and FAK was inhibited using FAK inhibitor 14 (SantaCruz Biotechnology, 

Dallas, TX). β-catenin was inhibited using cell permeable FH535 (SantaCruz 

Biotechnology, Dallas, TX) [264, 265]. hMSCs were cultured in an 8-well LabTek chamber 

slide at a cell density of 8,000 cells per well and allowed to attach overnight (~12 hours) 

in basal medium, before media in the wells was replaced with serum-free medium 

containing 0.5 μg/ml C3 transferase for 4 hours, or 1 μM FAK inhibitor 14 for 1 hour, or 

15 μM FH353 for 1 hour. After pre-treatment, media was changed with induction 

medium containing the inhibitor. Adipogenic medium in AD conditions was cycled with 3 

day induction followed by 1 day maintenance. Basal and osteogenic media were cycled 

every 3 days. Cell proliferation was analyzed 3 days post induction (time of descriptor 

analysis) using Alamar Blue assay (Life Technologies) using manufacturer's instructions. 
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5.3.9 Statistics 

 Statistical analysis of morphometric parameters included analysis of variance 

(ANOVA) with Tukey's honestly significant difference (HSD) post hot method and other 

multivariate statistical tools. The differences were considered significant for p < 0.05 

unless otherwise noted. Error bars indicate the standard uncertainty around the mean. 
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5.4 RESULTS 

5.4.1 Nuclear Proteins as a High Content Screen to Parse Stem Cell 

Differentiation 

 To screen for nuclear proteins whose early (3 day) organization is influenced by 

cell differentiation, hMSCs were cultured for 3 days and 14 days in either basal growth 

medium (BA), adipogenic (AD), or osteogenic (OS) differentiation medium prior to 

immunostaining for several nuclear reporters, namely RUNX2, lamin, H3K4me3, EZH2, 

and SC-35 domains (Figure 5.2A). The organization of the prescribed nuclear proteins 

was analyzed by performing a high content analysis on high-resolution images obtained 

at 3 days wherein 26 Haralick texture descriptors were computed to define the 

organization. Independently, we confirmed that hMSCs cultured in AD medium 

differentiated to adipocytes and stained positive for AdipoRed at 14 days, whereas 

AdipoRed was undetected in cells cultured in BA and OS culture conditions (Figure 5.2B 

and Figure 5.3). Additionally, hMSCs cultured in OS medium exhibited osteogenic 

differentiation and had significantly more (p < 0.01) fast blue staining as compared to 

cells cultured in BA and AD conditions for 14 days (Figure 5.2B). 
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Figure 5.2: SC-35 Organization as a Screen to Parse Stem Cell Differentiation 

hMSCs were cultured in AD, OS, or BA medium and (A) fixed and immunolabeled for a 

panel of either gene-modifying (H3K4me3, EZH2, RUNX2) or mechanoresponsive (lamin, 

SC-35) proteins 3 days post-plating. (B) hMSCs cultured in AD, OS, or BA medium for 14 

days were stained for intracellular triglycerides (AdipoRed) and alkaline phosphatase 

(ALP) to identify % of adipocytes and osteoblasts, respectively. (C) 3 day analysis of 

nuclear proteins yields differences in sensitivity, precision, and % of correctly classified 

events. (D) PCA plot of SC-35 reporter shows that the three conditions cluster into three 

distinct groupings (blue = OS, black = AD, red = BA). (E) Decision tree analysis of PCA-

derived principal components show that hMSCs parse well (> 95%). Scale bar: 5μm. * 

indicates statistical significance (p < 0.01). 
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Figure 5.3: Osteogenic and Adipogenic Differentiation of hMSCs 

hMSCs were cultured in AD, BA, or OS medium for 14 days. Osteogenic differentiation 

was analyzed using Fast Blue staining assay (blue) and adipogenic differentiation was 

analyzed using the AdipoRed assay (green). Images were taken using a fluorescent 

microscope at 10X magnification, and analysis was performed by counting number of 

nuclei expressing differentiation signal and dividing by total cell nuclei count. 

 

 

Figure 5.4: Fluorescence Intensity of hMSCs in BA, AD, or OS for 3 Days 

* represents statistical significance (p < 0.01). 
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 Based on our 3 day analysis of average fluorescence of nuclear proteins between 

cells exposed to BA, AD, and OS induction conditions, no significant differences were 

observed in intensity with the exception of SC-35 domains (Figure 5.4). The SC-35 

fluorescence intensity of hMSCs cultured in the OS condition was significantly higher (p 

< 0.01) than in hMSCs cultured in AD and BA conditions (Figure 5.4). Furthermore, 

significant upregulation (p < 0.05) of SC-35 gene expression in osteogenic-inductive 

conditions was detected and a significant decrease (p < 0.05) in SC-35 expression during 

adipogenic induction for 24 hours by performing microarray analysis (Figure 5.5). 

 To identify differences in nuclear protein organization in response to growth 

factor induced differentiation, 26 numerical texture-based descriptor sets were 

computed after high content analysis for each nuclear protein within each condition. 

Principal component analysis (PCA) was then performed to dimensionally reduce the 

descriptors to vectors that account for > 95% variance in data, followed by decision tree 

classification of the principal components. By utilizing this approach, we observed that 

the organization of the panel of reporters studied was influenced during differentiation 

to differing degrees (Figure 5.2C). Interestingly, the organizational metrics of SC-35 were 

most sensitive to differentiation and led to maximum parsing between BA, AD, and OS 

treated cells (Figure 5.2C, 5.2D). The decision tree classification of principal components 

defining SC-35 organization resulted in > 95% correct classification between cells 

exposed to BA, AD, and OS culture media. The predictive model generated had a 

precision and sensitivity (recall) of 96% and 95%, respectively (Figure 5.2D, 5.2E).  
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 The principal components computed in the analysis and the decision tree 

classifier results for the various nuclear proteins are shown in Figures 5.6 - 5.10. Based 

on these findings, we selected SC-35 as a robust discriminant of stem cell lineages and 

further explored its organizational behavior as a function of osteogenic factors and 

microenvironmental cues. The decision tree classifier results and complete principal 

component vectors for the analysis using SC-35 organizational descriptors are shown in 

Figure 5.10. 

 

 

Figure 5.5: SC-35 Gene Expression of hMSCs Cultured in AD or OS for 3 Days 

SC-35 gene expression relative fold change of hMSCs cultured in AD and OS for 3 days 

compared against 24 hours BA shows an increase and decrease in SC-35 gene expression 

in OS and AD conditions, respectively. * indicates statistical significance (p < 0.01). 
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Figure 5.6: EZH2 Organization Results of hMSCs Cultured in BA, AD, and OS for 

3 Days 

(A) Principal Component Analysis (PCA) transformed data is plotted to depict cells in 

three-dimensional descriptor space. (B) Output of classifier using decision tree analysis 

shows an overall precision of 92.7%. 

 

 

Figure 5.7: RUNX2 Organization Results of hMSCs Cultured in BA, AD, and OS 

for 3 Days 

(A) Principal Component Analysis (PCA) transformed data is plotted to depict cells in 

three-dimensional descriptor space. (B) Output of classifier using decision tree analysis 

shows an overall precision of 81.4%. 
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Figure 5.8: Lamin Organization Results of hMSCs Cultured in BA, AD, and OS 

for 3 Days 

(A) Principal Component Analysis (PCA) transformed data is plotted to depict cells in 

three-dimensional descriptor space. (B) Output of classifier using decision tree analysis 

shows an overall precision of 71.3%. 

 

 

Figure 5.9: H3K4me3 Organization Results of hMSCs Cultured in BA, AD, and 

OS for 3 Days 

(A) Principal Component Analysis (PCA) transformed data is plotted to depict cells in 

three-dimensional descriptor space. (B) Output of classifier using decision tree analysis 

shows an overall precision of 42.3%. 
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Figure 5.10: List of SC-35 PCs and Descriptors of hMSCs Cultured in BA, AD, or 

OS Medium 

List of principal components (V1, V2, V3, V4) with corresponding descriptors and linear 

weights that account for > 95% of the variance between hMSCs exposed to BA, AD, or 

OS induction medium for 3 days by evaluating 26 Haralick texture features of the SC-35 

nuclear reporter. 
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5.4.2 High Content Analysis of SC-35 Descriptors Discern Dex-Induced Bone 

Predisposition within 3 Days 

 Next, we investigated the effect of increasing concentrations of dexamethasone 

(dex), an osteogenic growth factor [48], on alkaline phosphatase (ALP) expression and 

SC-35 organization. Levels of 14 day osteogenic differentiation following increased 

concentrations of dex were measured by normalizing number of cells expressing ALP to 

total cell count (Figure 5.11A). As expected, at 14 days there was a positive correlation 

between increasing dex levels in the medium and percentage of ALP positive cells in the 

cell subpopulations. However, at 3 days, confocal images of immunolabeled SC-35 

domains of cells exposed to varying concentrations of dex showed no observable 

differences in organization (Figure 5.11B). Quantification of individual morphometric 

features for cell nucleus (i.e., average intensity, nuclear roundness) yielded no 

observable trends at 3 days as well (Figure 5.11C), confirming that conventional imaging 

tools failed to parse these lineage variations. 

 Using our high content imaging-based algorithm, 26 nuclear texture features 

defining SC-35 organization within cells cultured in ɑ-MEM, and low, medium, and high 

dex, were calculated and dimensionally reduced using PCA. A clear separation was 

observed between the four subpopulations of cells in the PCA plot (Figure 5.11D). The 

PCA plot showed that each of the subpopulations centralized in respective single 

clusters, indicating that SC-35 texture-based features were highly conserved within the 

same treatment condition. The predictive decision tree model was further able to 

correctly classify the cells with a precision of 94% and sensitivity of 93% (Figure 5.11E). 
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The decision tree classifier results and complete principal component vectors are shown 

in Figure 5.12. 

 

 

Figure 5.11: SC-35 Domain Descriptors Distinguish Dex-Induced ALP 

Expression within 3 Days 

hMSCs were cultured in ɑMEM supplemented with increasing levels of dex (low = 0.1 

μM, med = 0.5 μM, high = 1 μM), resulting in (A) an increasing percentage of ALP-

positive cells after 14 days in culture. (B) Under the same culture conditions, 

representative SC-35 images, (C) average signal intensity of SC-35 (bars in plot), and 

nuclei roundness (dots in plot) are unable to discern differences between the different 

treatment groups at 3 days. However, 3 day analysis using 26 Haralick descriptors is 

capable of discerning differences between increasing dex conditions, confirmed by (D) 
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distinct cluster formation in PCA plot and (E) decision tree analysis, which shows that 

93.3% of cells can be correctly classified using our approach. Scale bar: 10 μm. 

 

 

Figure 5.12: List of PCs and Descriptors of hMSCs Cultured in Varying Dex 

Concentrations 

List of principal components (V1, V2, V3) with corresponding descriptors and linear 

weights that account for > 95% of the variance between hMSCs exposed to BA, low, 

medium, and high concentrations of dex for 3 days by evaluating 26 Haralick texture 

features. 
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5.4.3 SC-35 Descriptors Discern Surface Topography-Induced Osteogenic Fates 

within 3 Days 

 hMSCs were cultured on films prepared using different ratios of 

poly(desaminotysoryl-tyrosine ethyl ester carbonate) (PDTEC) to polystyrene (PS), thus 

achieving three distinct surface topographies: flat, continuous, and discontinuous 

(PDTEC islands and glass pits) (Figure 5.13A). Culturing hMSCs in osteogenic induction 

medium for 14 days on these topographies resulted in significant differences in the 

percentage of ALP positive cells (Figure 5.13B).  

 hMSCs cultured on continuous surfaces yielded the highest percentage of ALP 

positive cells (72% ± 2%) whereas cells cultured on discontinuous surfaces had 

significantly less osteogenic cells (52% ± 4%) when compared to the control flat surface 

(63% ± 2%). These findings show that the substrate topography patterns sensitively 

modulate osteogenic differentiation. 

 To predict these downstream effects, we sought to investigate how SC-35 

organization is affected by the engineered substrates after 3 days in culture. 

Representative SC-35 images for each condition show that there are no observable 

differences in SC-35 domains at 3 days for hMSCs cultured on the different surface 

topographies (Figure 5.13A). However, high content analysis of SC-35 organization 

illustrated that cell populations cultured on continuous, discontinuous, and flat surfaces 

were separated in the three-dimensional principal component space (Figure 5.13C). 

Decision tree analysis generated a predictive classification model that was able to 

differentiate between cells cultured on the three different topographies with 91% 
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precision and correctly classified instances (Figure 5.12D). The associated principal 

component vectors and the decision tree classifier generated are included in Figure 

5.14. 

 

 

Figure 5.13: SC-35 Descriptors Discern Differences in Surface Topography-

Induced ALP Expression within 3 Days 

hMSCs were cultured on three distinct surface topographies: flat, continuous, or 

discontinuous for either 3 or 14 days. (A) 3 day representative images of SC-35 domains 

of hMSCs cultured in different surface topographies show no observable differences 

between the conditions. However, hMSCs cultured for 14 days under the same 

conditions (B) show significant differences in percentage of ALP positive cells. hMSCs 

cultured in the continuous surfaces are significantly more fast blue positive than the 

control condition (flat), and the discontinuous surfaces feature hMSCs that have 
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significantly less fast blue positive cells than the control condition. (C) PCA plot of 3 day 

SC-35 domain descriptors show that flat, continuous, and discontinuous surface 

patterns can be parsed with a good degree of separation. (D) This is independently 

verified using decision tree analysis. Scale bar: 10 μm. * indicates statistical significance 

(p < 0.01). 

 

 

Figure 5.14: List of PCs and Descriptors of hMSCs Cultured on Different Surface 

Patterns 

List of principal components (V1, V2, V3) with corresponding descriptors and linear 

weights that account for > 95% of the variance between hMSCs cultured on surface 

topographies of different degree of continuity (flat, continuous, discontinuous) for 3 

days by evaluating 26 Haralick texture features. 
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5.4.4 3 Day SC-35 Descriptors Distinguish Bone Predisposition Outcomes in 

Response to Fibrous Scaffold Features 

 To further highlight the utility of our approach to predict osteogenic 

differentiation on diverse materials, hMSCs were cultured on fibrous scaffolds featuring 

fibers of two different sizes (small, large) and orientations (aligned, random) (Figure 

5.15A). Electrospinning settings were optimized so that the fiber diameters were similar 

(~2 μm for small, ~5.5 μm for large) for both randomly-oriented and aligned fibers 

(Figure 5.15B). hMSCs were cultured in BA medium for 14 days and osteogenic 

differentiation was assessed by measuring ALP activity normalized to cell count (Figure 

5.15C). ALP activity was significantly lower (p < 0.01) for hMSCs cultured on the small 

fibers versus large fibers, irrespective of orientation, while the cells cultured on 

randomly-oriented, larger fibers had the highest ALP activity. 

 As illustrated in the PCA plots, our results show that using high content analysis 

of SC-35 domains at 3 days, cells cultured on small versus large randomly-oriented or 

large fibers could be parsed (Figure 5.15D, 5.15F). The predictive classification models 

made using J48 decision tree analysis to classify cells cultured on small versus large 

fibers had a precision (positive predictive value) and recall of 88% for random fibers, and 

> 77% for aligned fibers (Figure 5.14E, 5.14G). Complete principal component vectors 

and the decision tree classifier results are included in Figure 5.16 and Figure 5.17. 
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Figure 5.15: SC-35 Descriptors Discern Fibrous Scaffold Topography-Induced 

ALP Expression within 3 Days 

hMSCs were cultured in BA medium on (A) fibrous scaffolds featuring fibers of two 

different sizes and orientations. SEM micrographs of electrospun scaffolds of two sizes 
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(small, large) and fiber orientations (aligned, random) were used to (B) quantify fiber 

diameters and show that fiber orientation does not significantly affect fiber diameter. 

Small fibers are distinctly smaller (~2 μm) than the large fibers (~5.5 μm). (C) hMSCs 

cultured on these fibrous scaffolds for 14 days show distinct ALP activity profiles. High 

content analysis of SC-35 descriptors at 3 days show that hMSCs cultured on (D-E) small 

versus large randomly-oriented fibers and (F-G) small versus large aligned fibers can be 

identified, as confirmed by (D-F) distinct clusters in PCA plots and (E-G) decision tree 

classification analysis results of PCA-derived principal components. Scale bar: 10 um. * 

indicates statistical significance (p < 0.01). 

 

 

Figure 5.16: List of PCs and Descriptors of hMSCs Cultured on Small versus 

Large Random Fibers 

List of principal components (V1, V2, V3) with corresponding descriptors and linear 

weights that account for > 95% of the variance between hMSCs cultured on small and 

large randomly-oriented fibers for 3 days by evaluating 26 Haralick texture features. 
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Figure 5.16: List of PCs and Descriptors of hMSCs Cultured on Small versus 

Large Aligned Fibers 

List of principal components (V1, V2, V3) with corresponding descriptors and linear 

weights that account for > 95% of the variance between hMSCs cultured on small and 

large aligned fibers for 3 days by evaluating 26 Haralick texture features. 
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5.4.5 Analysis of SC-35 Descriptors can Track hMSC Differentiation on 

Micropillars within 3 Days 

 hMSCs were cultured on micropillars featuring distinct topographies prepared 

using fabrication methods reported by Unadkat et al. in 2010 [91]. From a large array of 

topographical feature combinations, four micropillar patterns with varied features 

(termed TopoA-D) were selected to further analyze the SC-35 organizational differences 

in cultured hMSCs. These distinct topographies were observed to be osteoinductive and 

induced osteogenic differentiation to varied extents. Culturing hMSCs for 14 days in 

basal medium on these topographies resulted in significant differences in percentage of 

ALP positive cells (Figure 5.18B). hMSCs cultured on TopoA had the highest percentage 

of ALP positive cells (56% ± 5%), and a statistically significant (p < 0.01) decreasing trend 

was observed with TopoB (44% ± 3%), TopoC (34% ± 1%), and TopoD (20% ± 3%). hMSCs 

cultured on flat surfaces in basal medium were used as a negative control and had 0% 

ALP positive cells, while cells cultured in presence of 1 μM dex had 78% ± 2% ALP 

positive cells (data not shown). 

 To track hMSC phenotypic changes at early time points, we sought to investigate 

the influence of micropillar topography on SC-35 organization 3 days post cell culture 

using high content textural analysis. Representative confocal images for each condition 

show that there are no observable differences in SC-35 domains at 3 days for hMSCs 

cultured on the different micropillars (Figure 5.18A). On the other hand, as illustrated in 

the PCA plot, cell populations cultured on the most osteogenic (TopoA) versus the least 

osteogenic (TopoD) micropillars could be parsed from each other, as well as the two 
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intermediary conditions (TopoB versus TopoC) (Figure 5.18C) using high content analysis 

of SC-35 organization. Decision tree analysis generated a predictive classification model 

that was able to differentiate between cells cultured on four different micropillar 

topographies with 83% sensitivity and 84% precision (Figure 5.18D). Interestingly, cells 

cultured in the two conditions that induced the least ALP (TopoC and TopoD) showed 

the most distinct changes in SC-35 organization. 14% of cells cultured in TopoC were 

incorrectly classified as belonging to TopoA, which elicited a significantly higher 

percentage of ALP positive hMSCs. Similarly, classification of cells cultured in TopoD, the 

least ALP-inducing condition, binned 80% correctly and classified 20% of the cells as 

belonging to TopoB, which induced a significantly higher percentage of ALP positive 

hMSCs (Figure 5.18D). Complete principal component vectors are described in Figure 

5.19. 
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Figure 5.18: SC-35 Descriptors can Identify ALP Expression on Micropillars 

within 3 Days 

hMSCs were cultured on a subset of micropillars (termed TopoA - TopoD) derived from a 

much larger library of topographies. (A) Cells show no substantial qualitative differences 

in SC-35 organization after 3 days in culture, although at 14 days (B) hMSCs cultured in 

the same conditions displayed significant differences in percentage of ALP positive cells. 

3 day SC-35 domain descriptors are capable of identifying differences between the 

micropillar culture conditions, as seen by (C) PCA plots demarcating distinct groupings 

between the conditions with largest difference in ALP positive cells (TopoA versus 

TopoD), as well as intermediate ALP positive conditions (TopoB versus TopoC). (D) 

decision tree classification analysis results of PCA-derived principal components. Scale 

bar: 10 μm. * indicates statistical significance (p < 0.01) with respect to TopoA (most 

osteogenic) condition. 
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Figure 5.19: List of PCs and Descriptors of hMSCs Cultured on Micropillars 

List of principal components (V1, V2, V3, V4) with corresponding descriptors and linear 

weights that account for > 95% of the variance between hMSCs cultured on four 

different micropillar topographies for 3 days by evaluating 26 Haralick texture features. 
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5.4.6 Pharmacological Inhibition of Signaling Molecules Governing 

Osteogenesis Results in Quantifiable Alterations in SC-35 Organization 

 To elucidate the crosstalk between adhesion signaling and SC-35 organization, 

the roles of several molecules, namely RhoGTPase, FAK1, and β-catenin were specifically 

inhibited using 0.5 μg/ml C3 transferase (C3), 1 μM FAK inhibitor, and 15 μM FH353, 

respectively. At the mentioned inhibitor concentrations, the cell viability was not 

significantly affected at time of SC-35 organization analysis which was performed 3 days 

post culturing cells in osteogenic induction medium (Figure 5.20A). hMSCs were 

cultured in OS induction medium in the presence of inhibitors for 14 days and 

osteogenic differentiation was assessed by staining for ALP. As expected, treatment with 

pharmacological inhibitors resulted in almost no ALP positive cells at 14 days (Figure 

5.20B).  

 At 3 days, RhoGTPase inhibition drastically reduced polymerized actin fibers in 

the cells, whereas treatment with FAK and β-catenin did not significantly influence actin 

polymerization or cell morphology (Figure 5.21A). Interestingly, PCA plot of 3 day 

assessment of the SC-35 organization showed good separation between the different 

inhibition treatment groups (Figure 5.21B). This is supported by decision tree analysis, 

which shows almost 95% of cells are correctly classified (Figure 5.21C). Complete 

principal component vectors and the decision tree classifier generated are shown in 

Figure 5.22. 
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Figure 5.20: Pharmacological Inhibitors Do Not Affect Cell Viability 

(A) Fold change in relative fluorescence units shows that the use of pharmacological 

inhibitors at working concentrations did not significantly affect cell viability. (B) hMSCs 

cultured for 14 days in OS medium supplemented with the inhibitors results in minimal 

ALP production with respect to the no treatment (NT) control. 
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Figure 5.21: Classification of hMSCs Treated with Different Inhibitors Using 

SC-35 Descriptors 

Rho was specifically inhibited using 0.5 μg/mL C3 transferase (-Rho), FAK was inhibited 

using 1 μM FAK inhibitor 14 (-FAK), and β-catenin was inhibited using 15 μM FH535. (A) 

3 days post culturing cells in presence of inhibitors and OS medium, changes in cell 

morphology were visualized through staining for actin (phalloidin), DNA (Hoeschst), and 

SC-35 (anti-SC-35 antibodies). (B) Subsequently, high content analysis was performed 

for SC-35 organization and 26 Haralick texture descriptors were evaluated. The 

descriptors were dimensionally reduced via PCA to principal components that account 

for 95% of the variance and the principal components were plotted to visualize the cell 

distribution. (C) Cells treated with different inhibitors were classified using J48 decision 

tree analysis and the output of the classifier has been presented. Scale bar: 10 μm. 
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Figure 5.22: List of PCs and Descriptors of hMSCs Cultured with 

Pharmacological Inhibitors 

List of principal components (V1, V2, V3, V4) with corresponding descriptors and linear 

weights that account for > 95% of the variance between hMSCs cultured in OS medium 

supplemented with pharmacological inhibitors for RhoA, β-catenin, and FAK for 3 days 

by evaluating 26 Haralick texture features. 
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5.4.7 Tracking Microenvironment-Mediated Osteogenic Differentiation Using 

Haralick Texture Features of SC-35 Domains 

 On the basis of our findings, we propose a model for tracking microenvironment-

modulated osteogenic differentiation using SC-35 as a surrogate marker (Figure 5.23). 

According to this model, microenvironmental cues investigated in this manuscript 

including soluble growth factors, fibrous scaffolds, patterned substrates, and 

micropillars steer hMSCs towards osteogenic differentiation by 14 days by influencing 

early cytoskeletal dynamics and intracellular signaling pathways mediated by Rho, FAK, 

and β-catenin. These signaling cascades induce changes in the transcriptional 

machinery, thereby modulating the gene expression and SC-35 organizational dynamics. 

Our model proposes that the effect of microenvironmental cues on stem cell phenotype 

be tracked using SC-35 organizational metrics at 3 days (Figure 5.23).  

 In this study, the organization of SC-35 domains in hMSCs exposed to the various 

conditions presented was quantified by using Haralick texture features, which resolve 

higher-order organizational features [266]. Based on neighboring pixel intensity within 

confocal images, 13 different Haralick texture features were computed (Table 5.2) using 

two different pixel grouping (termed C1 and C2), resulting in 26 Haralick texture 

features in total, which were dimensionally reduced using PCA. The principal 

components were then taken as inputs for a J48 decision tree classifier to create a 

predictive classification model (Figure 5.6 - 5.10).  
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Figure 5.23: Tracking Microenvironment-Modulated Osteogenic 

Differentiation Using SC-35 

Cell-material interactions induce osteogenic differentiation by modulating actin 

dynamics and signaling cascades mediated by RhoA, FAK, and β-catenin signaling. These 
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signaling cascades direct changes in the transcriptional machinery that regulate the 

gene expression and cell phenotype. Our study indicates that SC-35 organizational 

dynamics are sensitive to these changes and can be used to track osteogenic lineage 

commitment at early time-points in response to cell-material interactions. 

 These descriptors can be sub-classified into four groupings: entropy, correlation, 

granularity, and inertia, which represent a measure of speckle homogeneity, elongation, 

size, and distribution with respect to nuclear centroid, respectively. The potential 

biological relevance for each feature has been listed in Table 5.2. The contribution of 

individual descriptors was evaluated by measuring information gain with respect to each 

condition, using the Weka machine learning software. The top 10 descriptors were 

ranked on the basis of information gain and listed for each condition in Table 5.3 and 

Table 5.4. Our attribute evaluation indicated that granularity and entropy descriptors 

were the most informational texture descriptors accounting for changes in the SC-35 

organization in response to soluble cues. Interestingly, the most informational SC-35 

organizational Haralick descriptors were different for hMSCs cultured on the distinct 

topographical platforms. Correlation and granularity descriptors had the maximum 

information gain about SC-35 organizational dynamics in hMSCs cultured on surface 

topographies featuring different degrees of continuity (patterns), while entropy and 

variance descriptors were most informational about SC-35 dynamics in hMSCs cultured 

on the micropillars. In contrast, on fibrous scaffolds, entropy descriptors provided 

maximum information gain about SC-35 organizational changes (Table 5.4).  



167 
 

 

 These findings show that interactions of hMSCs with different 

microenvironmental cues lead to specific and distinct emergent patterns of SC-35 

descriptors that govern the divergent osteogenic differentiation traits as early as 3 days. 

 

 

Table 5.3: Summary of Most Significant Haralick Features Across Growth 

Factor Conditions 

Summary of most significant Haralick features across different growth factor conditions 

(i.e., adipogenic, osteogenic induction medium, and varying levels of dexamethasone). 

The features are divided into four groupings: entropy (red), correlation (blue), 

granularity (purple), and inertia (green), which represent a measure of speckle 

homogeneity, elongation, size, and distribution with respect to nuclear centroid, 

respectively. 
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Table 5.4: Summary of Most Significant Haralick Features Across Different 

Topographies 

Summary of most significant Haralick features across different topographies (i.e., 

surface texture, fibrous scaffolds, micropillar topographies). The features are divided 

into four groupings: entropy (red), correlation (blue), granularity (purple), and inertia 

(green), which represent a measure of speckle homogeneity, elongation, size, and 

distribution with respect to nuclear centroid, respectively. 
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5.5 DISCUSSION 

 In this study, we have developed and demonstrated the applicability of an 

integrated framework based on high content image informatics to develop predictive 

classification models that can discern and classify changes in cell state in response to 

cell-microenvironment interactions.  

 First, different nuclear proteins (i.e., SC-35, EZH2, RUNX2, lamin, and H3K4me3) 

were screened to determine how their nuclear organization was influenced at early 

time-points upon initiation of growth factor-induced differentiation. Our results showed 

that SC-35 organization was maximally influenced early on (3 days) during the 

differentiation process. By employing the algorithm presented in this paper, SC-35 

organization could be used to generate a predictive model to classify cells exposed to 

basal, osteogenic, and adipogenic induction media with a positive predictive value of 

96%. Further, using SC-35 organization metrics hMSCs exposed to different 

concentrations of soluble cues, specifically dexamethasone (dex), an osteogenic 

differentiation factor, could be parsed with > 90% precision and sensitivity. This 

correlated with an upregulation of SC-35 genes during osteogenic induction (Figure 5.5). 

 These findings show that SC-35 domains are highly sensitive to activation via 

growth factors that steer hMSCs towards distinct lineages. Several accounts of literature 

suggest that spliceosomes within the SC-35 domains aggregate at the active 

transcription sites of genes regulating the differentiation of several lineages, including 

adipogenesis [145], osteogenesis [146], and myogenesis [147]. When transcription is 

halted via the use of pharmacological inhibitors, splicing factors aggregate into large, 
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round speckles [195]. In contrast, when transcription is high, the accumulation of 

splicing factors is reduced, and they redistribute to nucleoplasmic transcription sites 

[198]. Another notable property of SC-35 domains is that the domains reside in 

interchromatin regions, which contain little or no DNA [193]. Consequentially, the 

organization of SC-35 domains may serve as an indirect measure of global chromatin 

changes regulated by outside-in signaling which links focal adhesions, actin, and the 

nuclear space. 

 Biomaterial topography effectively regulates stem cell differentiation by 

modulating cell-shape [251]. Thus, we sought to elucidate the degree to which SC-35 

organization was sensitive to three variable osteogenic microtopographies: surface 

patterns, fibrous scaffolds, and micropillars. Surface-induced phase separation can be 

utilized to produce well-defined, easily replicated, and well-characterized surfaces 

presenting a wide range of topographical features [262]. Here, this fabrication method 

was adapted to construct surfaces with three distinct patterns: flat, continuous ridges, 

and discontinuous islands and pits. Our results indicate that osteogenic differentiation is 

enhanced by hMSCs sensing continuous surfaces. This correlates with previous studies 

where osteogenic differentiation mediated by β-catenin signaling has been shown to be 

regulated on grooved surfaces [267]. Furthermore, using SC-35 organization nuclear 

metrics, the influence of surface topography on osteogenic differentiation could be 

predicted with > 90% precision and sensitivity. 

 Next, we applied our high content imaging methodology to predict the 

differentiation potential of hMSCs cultured on microfibrous scaffolds prepared by 
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electrospinning [83, 268, 269]. Electrospun fibrous scaffolds were chosen since they 

have wide applicability for bone tissue engineering applications [270-272]. Fibers with a 

larger diameter of 5 μm induced significant osteogenic differentiation in hMSCs (p < 

0.01) as compared to fibers with a smaller diameter of 2 μm, indicating that the 

variations in the chosen fiber scaffold geometries modulate osteogenic differentiation. 

These results are consistent with electrospun fiber geometries reported to regulate 

osteogenic differentiation [273]. By exposing hMSCs to various growth factors and 

topographies, we have demonstrated that the onset of osteogenic differentiation on a 

diverse set of culture conditions can be predicted by mapping early SC-35 organizational 

features. 

 There has also been an increased interest in characterizing the role of bulk 

substrate properties on the differentiation of stem cell populations. In the context of 

bone, biomaterials with high elastic modulus featuring different topographical patterns 

have been investigated [274]. Previously, an algorithm-based approach was developed 

to produce chips featuring over 2,000 micropillars in efforts to identify topographies 

that maximize mitogenic and osteogenic responses [91]. This study identified "hit" 

surfaces that corresponded to high alkaline phosphatase expression without the 

presence of osteogenic growth factors, but the methods presented relied on a 

population-based readout at a late time-point (10 days) that may not account for 

potential heterogeneous responses within a particular topographical condition. 

 As such, we applied our methodology to classify hMSCs cultured on a subset of 

micropillars chosen from a library of 2,176 distinct, randomly designed surface 
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topographies using methods previously published [91]. We chose topographies based 

on their ability to induce varying percentages of ALP positive cells without the presence 

of dex after 14 days in culture. Using our high content analysis, we correctly identified 

individual cells as belonging to either of four micropillars. Using the classification 

algorithm based on SC-35 organization, we could predict topography-induced ALP 

expression as well as quantitatively identify differences in cell state within a culture 

condition, for example, cells cultured in TopoD, the least ALP-inducing condition, were 

parsed 80% correctly as cells on TopoD and 20% as cells on TopoB, which induced a 

significantly higher percentage of ALP positive hMSCs. This is of particular interest when 

performing studies with cell lines that are innately heterogeneous. 

 Microenvironmental cues, specifically soluble factors, topography, and substrate 

surface functionality, have been shown to modulate hMSC differentiation through β-

catenin [267, 275], FAK [276, 277], and RhoGTPase [278], which are key signaling 

molecules that direct osteogenic differentiation [133, 279, 280]. Surface topography 

modulates Wnt and β-catenin signaling through primary cilia structure [267], and 

increased Wnt/β-catenin is observed in hMSCs cultured on rough topographies [281]. 

Recently, FAK has been implicated in the modulation of hMSC differentiation by 

microenvironmental cues such as substrate surface functionalities [276] and 

microtopographies [277], where RhoGTPase has been shown to regulate osteogenesis 

through fiber geometries [278]. FAK and RhoA have also been shown to positively 

regulate osteogenesis [282] and negatively regulate adipogenesis of hMSCs using 

induction medium [283]. 
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 An initial microarray analysis of hMSCs cultured in osteoinductive medium for 24 

hours showed a significant increase (p < 0.05) in RhoA and FAK gene expression as 

compared to cells cultured in basal medium, which correlated with a significant 

upregulation (p < 0.05) of SC-35 gene expression (Figure 5.24). To obtain a more 

comprehensive understanding of how SC-35 organization is regulated during 

differentiation, we investigated the influence of β-catenin, FAK, and RhoGTPase-

mediated signaling on SC-35 domains. Using our algorithm, SC-35 organization was 

highly sensitive to specific inhibition of these molecules. Changes in cell state upon 

inhibition of β-catenin, FAK, and RhoGTPase could be detected and classified with > 95% 

precision using our SC-35 imaging-based methodology. This suggests a possible 

mechanism for how SC-35 organization is responsive to osteogenic differentiation via 

osteogenic signaling molecules. 

 In summary, our results indicate that microenvironmental cues affect key 

signaling molecules, which modulate both the early organization of SC-35, as well as 

long-term stem cell lineage commitment. 
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Figure 5.24: Microarray Analysis of RhoA, FAK, and β-Catenin Expression in 

hMSCs Cultured in BA, AD, and OS Media 

hMSCs were cultured in differentiation medium for 24 hours, and the relative gene 

expression of RhoA, FAK, and β-catenin for hMSCs cultured in AD or OS medium was 
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analyzed with respect to BA using microarray analysis at 24 hours. Statistical analysis 

was done using ANOVA where the gene expression in cells cultured in AD or OS medium 

was statistically compared to gene expression in the BA condition. * indicates statistical 

significance (p < 0.01). 

 

5.6 CONCLUSIONS 

 In conclusion, we have advanced a methodology based on high content imaging 

of SC-35 organization in the nucleoplasm, in concert with machine learning approaches, 

for predictive modeling of hMSC differentiation mediated by various 

microenvironmental cues (differentiation medium, soluble factors, and substrate 

topography). The SC-35 parsing approach could successfully detect and classify hMSC 

differentiated phenotypes on different surface topographies and microfiber geometries 

(fibrous scaffolds and micropillars). Further, SC-35 organization can capture changes in 

cell state modulated by signaling molecules involved in osteogenic differentiation, 

specifically RhoGTPase, FAK, and β-catenin. Such a predictive model may elucidate 

emergent lineage restrictions in more complex microenvironments and also provide in 

silico informatics of stem cell lineages on biomaterials that steer stem cells toward 

strategic, regenerative phenotypes. 

  



176 
 

 

CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS 
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6.1 RESEARCH SUMMARY 

 The overarching goal of this thesis dissertation is to develop single cell biological 

imaging and machine learning techniques to identify the heterogeneity of stem cell 

cultures and characterize responses to controllable changes in diverse 

microenvironments. These objectives help address two significant needs that limit the 

use of stem cells in regenerative therapies today: (1) improved methods of identifying 

the phenotypic and functional heterogeneity inherent in stem cell cultures, and (2) 

classification of long-term stem cell responses to microenvironmental cues at earlier 

times than current screening methods. 

 The development and application of the imaging-based methodology presented 

in this thesis dissertation is predicated on the notion that the cell's pericellular matrix 

propagates signals from the outside-in that result in structural changes to cell shape and 

various mechanoresponsive cytoskeletal and nuclear elements. These biological 

observations reported by many laboratories, in conjunction with in silico data processing 

techniques, gave us the tools and motivation to test our central hypothesis: quantitative 

metrics descriptive of cytoskeletal and nuclear proteins involved in outside-in signaling 

can define cell states mediated by microenvironmental cues. 

 In this thesis dissertation we report that single cell imaging-based profiling of 

cytoskeletal actin and nuclear mitotic apparatus (NuMA) protein can identify single cell 

phenotypes in different stem cell populations. We found that actin organization could 

identify minute distinctions in the phenotypes of human mesenchymal stem cells 

(hMSCs) cultured on polymeric films and substrate gradients that induce varying 
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degrees of osteogenic and adipogenic differentiation. We also demonstrate that NuMA 

organizational features were able to distinguish self-renewing subpopulations of human 

embryonic and induced pluripotent stem cells from heterogeneous populations, 

showcasing our ability to identify heterogeneity, a current challenge that limits the use 

of stem cells in the clinic. 

 Next, we apply our imaging-based methodology to identify phenotypic and 

functional heterogeneity in three diverse applications that have potential impact in 

tissue engineering. As a screening tool, we predict the oncogenicity of a biomaterial 

library by showing a high-degree of correlation between early NuMA metrics and long-

term hMSC telomerase activity. As a classification tool, we identify three neural 

precursor cell populations extracted from different murine brain regions ex vivo that 

have identical antigen expression but divergent proliferation and differentiation profiles. 

Lastly, as a cell sourcing tool, we use mCherry-NuMA metrics of live cells to identify and 

remove unwanted DNA-damaged cells in co-cultures, resulting in an increase of 

population viability after pharmacological treatment with an agent that targets DNA-

damaged cells. 

 This thesis dissertation also shows that single cell imaging-based profiling is 

capable of identifying long-term stem cell responses to microenvironmental cues at 

earlier times than conventional methods. We report that the early (3 day) organization 

of SC-35 domains, which host post-transcriptional machinery within the interchromatin 

regions of the nuclear space, vary in hMSCs exposed to a variety of growth factor 

combinations that induced divergent phenotypic outcomes. As a biomaterial screening 
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tool, we could also classify via SC-35 imaging the extent of 14 day osteogenic 

differentiation commitment across a series of surface patterns and fibrous scaffolds. A 

subset of osteogenic-inducing biomaterials derived from a much larger combinatorial 

library of micropillar topographies were also explored setting the stage for the 

exploration of thousands of conditions within one experiment, expediting the discovery 

of desired structure-function relationships. 

 In summary, the work presented here shows that single cell imaging-based 

profiling can be utilized as a robust screening platform to identify cell subtypes in 

heterogeneous stem cell cultures and predict microenvironment-induced differentiation 

fates at earlier times and with more resolution than current screening assays.  

 In order to advance this work, several limitations must be addressed. The 

intracellular mechanisms that direct observed condition-dependent changes in 

morphology are not well understood. We hypothesize that actin mediates outside-in 

signaling from the microenvironment onto the nucleus. As such, studying dynamic 

changes to actin in response to microenvironmental cues will enhance our 

understanding of these mechanisms (Section 6.2.1). Additionally, although our imaging-

based profiling tool provides us with information-rich single cell readouts, it is time-

consuming. Thus, by implementing microscopy-based profiling approaches of adherent 

cells to flow-based systems, a screening tool can be developed that is both high content 

and high-throughput (Section 6.2.2).  
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6.2 FUTURE DIRECTIONS 

6.2.1 Actin Morphology and Signaling Kinetics: A Systems Biology Approach 

 The cellular microenvironment (soluble growth factors, biomaterial properties) 

directly affects stem cell morphology and differentiation. Biomaterials exhibiting a wide 

range of physicochemical properties have been investigated for potential use in guiding 

stem cell adhesion, proliferation, and differentiation [284, 285]. Although these studies 

have identified preferred biomaterial-induced stem cell behaviors, cellular signaling 

pathways initiated by these culture conditions are not well understood. To clarify these 

mechanisms, computational models have been used to aid in identifying intracellular 

interactions at the genomic level, with nominal success [286-289]. One of the most 

recent and comprehensive "first draft" whole-cell computational models conceived 

includes all molecular interactions of the 525 gene Mycoplasma genitalium. Despite the 

small size of the M. genitalium genome, the model is highly complex, consisting of 28 

submodels constructed using various computational methods [290]. 

 Due to the genomic, proteomic, and metabolic complexity of stem cells and 

progenitor cells, a whole-cell computational model using computational tools currently 

available is not feasible. This thesis dissertation postulates that actin acts as the 

mediator of signal propagation from the pericellular matrix to the nucleus. To support 

this hypothesis, quantifying temporal changes of actin and signaling molecules known to 

directly influence cytoskeletal organization is more sensible than a whole-cell 

computational modeling approach. RhoA and Rac1, two central members of the Ras 

GTPase superfamily, regulate the assembly of stress fibers and lamellipodia, respectively 
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[154, 291]. By determining the interplay between GTPase proteins and actin 

morphology, we will have a stronger grasp on why particular cytoskeletal and nuclear 

morphological features identify cell phenotypes and precede microenvironment-

induced differentiation. 

 To probe the dynamic interactions between actin and GTPase proteins, three 

studies are proposed: (1) time-course study to determine when (< 3 day) actin 

descriptors capture morphological differences between two divergent culture 

conditions, (2) quantification of temporal changes in GTPase expression using time-

points determined in (1), and (3) study effects of pharmacological perturbations (e.g., 

the inhibition or activation of actin polymerization) on actin dynamics. Preliminary data 

from these studies shows that single cell profiling of actin descriptors can identify stem 

cells cultured in conditions resulting in divergent phenotypic outcomes at much earlier 

times than the 3 days we report in this dissertation. Additionally, we found a lag 

between condition-dependent changes in RhoA expression and actin organization.  

 To fortify the role of cytoskeletal and nuclear descriptors as early identifiers of 

cell state, future work needs to focus on how these proteins change temporally in 

response to controlled perturbations in the culture environment. Results from these 

future studies will help develop improved single cell imaging-based profiling tools to 

identify cell subtypes and characterize cellular responses to biomaterials with potential 

utility in regenerative medicine. 
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(1) Actin morphology time-course study. 

 hMSCs were cultured on 12 mm glass coverslips in BA growth medium, and 

fixed/stained for actin at various time-points post-plating. Qualitative observations of 

the actin morphology show a high level of lamellipodia formation around the periphery 

of the cells at 30 minutes post-plating (Figure 6.1A). As culture time progresses, cells 

spread, and actin stress fibers begin to form (Figure 6.1B - 6.1C). From these preliminary 

observations we expect high Rac1 expression at early time-points (i.e., within the first 3 

hours post-plating). Then, after 3 hours we expect RhoA expression to increase, while 

Rac1 expression decreases, until they each reach steady-state by 3 days post-plating. 

 

 

Figure 6.1: Evolution of Actin Polymerization of an hMSC for 3 Days 

 

 Following the same culture protocol, we cultured hMSCs for 24 hours in basal 

medium, switched to either adipogenic (AD) or osteogenic (OS) induction medium, and 

fixed/stained for actin at various time-points. Figure 6.2 shows representative actin 

images of hMSCs in AD (left images in panel) and OS (right images in panel) induction 

medium for 1, 3, and 6 hours. To determine when actin descriptors begin to parse these 

two divergent culture conditions, single cell imaging-based profiling was utilized to plot 

a normalized descriptor distribution for each time-point (plot in Figure 6.2). We found 
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that the descriptors between AD and OS culture conditions began to diverge in as little 

as 3 hours after treatment.  

In this dissertation we show that 3 day morphological descriptors can accurately 

identify phenotypic outcomes from culture conditions across a wide range of growth 

factor and biomaterial conditions. Although our approach can classify differentiation 

outcomes much sooner than conventional assays, the results from this preliminary 

study suggest that morphological differences arise even faster than the 3 days that we 

report.  

 

 

Figure 6.2: Actin Dynamics Show Progressively Divergent Descriptor Sets 

(Figure Panel) hMSCs were cultured in BA medium for 24 hours and then medium was 

switched to AD or OS medium and fixed/stained for actin at different time-points. 
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(Graph) Descriptor analysis shows that actin morphology can parse between the AD and 

OS culture conditions in as little as 3 hours. Light blue box denotes time frame of 

interest based on these preliminary results. The differences in descriptors between the 

two culture conditions persist for the remaining time-points. 

 

(2) Quantification of temporal changes in GTPase expression. 

 To determine whether differences in actin morphology in as little as 3 hours 

post-AD and OS media treatments (Figure 6.2) also corresponds to changes in GTPase 

expression, we repeated the study and in lieu of fixing/staining for actin, lysed the cell 

cultures and used Western Blotting to determine RhoA expression (Figure 6.3). Western 

Blot bands at 3 hour and 6 hour time-points of hMSCs cultured in AD or OS medium 

show that RhoA expression is comparable between both AD and OS conditions at 3 

hours. However, at 6 hours there is a drop in RhoA expression in the AD condition, and 

an increase in the OS condition. Even though we found descriptor differences at 3 hours 

after AD and OS treatment, RhoA expression only changed at the 6 hour time-point.  

One possibility for this observation could be that condition-dependent changes 

in actin morphology precede RhoA expression. This speculation contradicts previous 

findings that suggest RhoA expression is a precursor of actin polymerization [133]. Due 

to the dynamic nature of actin and GTPases it is possible that they both affect each 

other simultaneously. To decouple actin morphology and GTPase expression, 

pharmacological agents could be introduced to affect actin (i.e., polymerize or 

depolymerize) and/or RhoA (i.e., inhibit or enhance expression) independently.  
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Figure 6.3: RhoA Expression Undergoes Temporal Media-Dependent Changes 

(A) hMSCs cultured in AD or OS induction medium for either 3 or 6 hours. (B) Relative 

fold-change (using an osteogenic control) shows no significant changes between AD and 

OS culture conditions at 3 hours, but at 6 hours a significant decrease and increase in 

RhoA expression for AD and OS conditions, respectively. 

 

(3) Effects of pharmacological perturbations on actin dynamics. 

 In order to develop perturbation protocols to decouple RhoA expression from 

actin morphology, hMSCs were cultured on 12 mm glass coverslips, and C3 transferase, 

a RhoA inhibitor, was introduced to the cell cultures. Next, the actin cytoskeleton was 

qualitatively observed at different time-points (Figure 6.4). 30 minutes after introducing 

the inhibitor, actin was not significantly disrupted. However, polymerized actin was 

significantly affected after 3 and 6 hours post-RhoA inhibition. This lag in response 
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coincides with the time it took to observe changes in actin morphology in response to 

AD and OS treatments in as little as 3 hours (Figure 6.2) and differences in RhoA 

expression observed at 6 hours (Figure 6.3). Taken together, these preliminary findings 

show that: (1) actin morphology can be affected by differentiation-inducing soluble cues 

in as little as 3 hours post-induction, (2) RhoA expression by these same cues is different 

in as little as 6 hours post-induction, and (3) pharmacological inhibitors have the 

potential to decouple actin and GTPase proteins to better understand the role of actin 

dynamics in identifying the predilection for cellular phenotypes. 

 

 

Figure 6.4: Preliminary Pharmacological Inhibitor Study 

hMSCs were exposed to 2 μg/mL of C3 transferase, fixed/stained with Texas Red 

phalloidin, and imaged at several time-points (30 minutes, 3, and 6 hours post-plating). 
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6.2.2 High Content and High-Throughput Profiling of Live Cell Cultures 

 One fundamental limitation preventing the extensive use of stem cells in the 

clinic is the inability to differentiate cells into homogeneous populations of desired 

phenotypes [246, 247]. With the use of differentiation-inducing growth factors, 

populations of naïve human mesenchymal stem cells (hMSCs) only achieve upwards of 

75% osteoblast and 40% adipogenic differentiation [47]. Additionally, the clinical use of 

neural stem cells (NSCs) has been limited due to the inability of separating NSCs from 

other cell types when derived from native tissues [248]. By reducing heterogeneities 

nascent to hMSC and NSC populations, mature cell phenotypes could be isolated and 

expanded to allow for their use in regenerative therapies. 

 Currently, two types of imaging-based cell sorting platforms are prominently 

used in cell sorting applications: laser capture and microdissection (LCM) and 

fluorescence-activated cell sorting (FACS). LCM is a microscopy technique used for 

purifying cell subtypes from heterogeneous tissue sections or live cell cultures [292]. 

This is accomplished by either cutting out a "raft" of polyethylene terephthalate (PET) 

membrane directly under cells of interest, or by utilizing laser ablation to remove 

unwanted cells. In contrast, fluorescence-activated cell sorting (FACS) is a technique that 

utilizes the principle of flow-based cytometry to isolate a homogeneous cell population 

of interest from an otherwise heterogeneous sample [293]. Live cells in suspension are 

passed through a detector at a rate exceeding thousands of cells per second, which 

allows the user to set gating criteria for several detector channels (i.e., forward scatter, 

side scatter, and fluorescence) [294]. Individual cells that pass through the detectors are 
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charged if they meet user-specified criteria. Based on the charge of the cell, the cells can 

then be sorted into separate groupings [293]. 

 Unfortunately, several shortcomings are associated with sorting cells from 

heterogeneous populations via LCM and FACS. Since LCM is microscopy-based, it can be 

adapted to provide sorting criteria based on high content information. Although rich in 

information about cell state, this method has low throughput in comparison to flow-

based systems. In contrast, FACS is extremely high-throughput (capable of sorting up to 

thousands of cells per second), but the sorting criteria is low in information (i.e., forward 

scatter, side-scatter, and a handful of spectral bands) in comparison to the capabilities 

of LCM, which can be tailored to acquire hundreds of morphological descriptors per cell. 

 In order to address the limitations of current cell sorting systems, future work 

needs to focus on combining the rapid screening of FACS with the information-rich 

capabilities of LCM. To test the effectiveness of a single cell imaging-based system that 

is both high-throughput and high content, it is necessary to discover new cell subtype-

specific descriptors using high content (i.e., LCM) and high-throughput (i.e., FACS) 

sorting systems, and culture and differentiate isolated cell subtypes to assess sorting 

efficiency. Two candidate high content and high-throughput screening tools, 

respectively are proposed: laser capture and microdissection (LCM) and fluorescence-

activated cell sorting (FACS), which will be discussed in more detail below. 
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(1) High content cellular profiling: laser capture and microdissection (LCM) 

 For the LCM portion of this study, hMSCs fluorescently labeled with actin, NuMA, 

and SC-35 will be cultured on PET membrane slides (Zeiss). These cultures will be 

treated with a 50:50 solution of adipogenic/osteogenic induction medium. Next, using 

the LCM microscope's (Zeiss PALM) CCD camera, images of the live cell cultures will be 

acquired, and a Matlab-based script will be used to identify regions of interest (ROIs) to 

extract single cell morphologic descriptors in real-time. These descriptors will serve as 

test sets for a classifier that will determine whether or not cells are designated to be 

ablated (Figure 6.5B). To assess the efficacy of this sorting strategy, hMSCs will be 

cultured for 14 days and differentiation assays will be used to compare differentiation 

relative to a no-treatment group. Using LCM, we were able to selectively remove one 

cell from a population, without affecting surrounding cells, as seen in a proof-of-concept 

demonstration summarized in Figure 6.6. 

 

Figure 6.5: Schematic of LCM Workflow 

(A) hMSCs labeled with fluorescent reporters (e.g., actin, green; NuMA, red) cultured on 

PET membranes are subject to laser ablation based on descriptors of reporter proteins. 
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(B) Descriptors from reporter proteins are acquired, and compared to an existing 

database of lineage-specific descriptors. If cells are categorized as phenotype of interest 

(e.g., osteoblast, OS), then no action is taken; otherwise, cell nucleus is ablated 

(denoted by red X's in (A)). 

 

 

Figure 6.6: Zeiss PALM used to selectively ablate MSCs 

hMSCs were cultured on a PET polymer and then imaged with a Zeiss PALM LCM 

microscope (top image). A cell was selected (yellow circle) and then the laser was used 

to remove the cell, while keeping the other cells intact (bottom images). 
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(2) High-throughput cellular profiling: fluorescence-activated cell sorting (FACS) 

 For the FACS portion of the study, cell cultures of two distinct subtypes (e.g., 

neurons and astrocytes) will be fixed and immunolabeled with reporter proteins (e.g., 

actin and NuMA). Cells will be placed in suspension, and FACS will be used to identify 

cell subtype-specific differences in detector channel readouts (e.g., granularity, 

fluorescence) (Figure 6.7A). This gating criteria will be used to categorize and separate 

cell subtypes in heterogeneous cultures (e.g., tissue sample consisting of neurons and 

astrocytes) engineered with our reporter proteins (Figure 6.7B). Post-FACS treatment, 

cells will be cultured and assayed for phenotype-specific markers to determine the 

effectiveness of this sorting approach. 

 One of the key findings of this thesis dissertation is the ability to attain 

information-rich datasets to identify cell subtypes and predict biomaterial responses of 

individual cells. However, one of the caveats is that using conventional microscopes the 

screening process is time-consuming. Flow-based systems are amongst the fastest 

systems available for single cell analysis. Therefore, by combining the principles of 

microscopy and flow, microenvironment-sensitive morphologic descriptors can be 

derived from single cell imaging of cells in suspension resulting in a profiling system that 

is both accurate (high content) and rapid (high-throughput). 
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Figure 6.7: Schematic of FACS Workflow 

(A) Cells cultured in conditions known to elicit differences in morphology and function 

(e.g., cell subtypes A and B) will be fixed and immunolabeled for proteins of interest 

(e.g., actin, NuMA). Cells will then be suspended and flowed through FACS to identify 

differences in detector channel readouts (e.g., forward- and side-scatter). (B) Next, live 

heterogeneous cell cultures will be suspended and flowed through FACS. Based on 

gating criteria identified in (A), cells will be sorted into subtypes A and B, and then 

replated. 
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6.3 CLOSING THOUGHTS 

 A major caveat to imaging-based cellular profiling in general is that cell reporters 

are labeled (i.e., exogenous fluorophores and endogenous genomic modifications), 

which may have adverse effects on cell behavior. Further, these labeled cells cannot be 

deployed in a therapeutic workflow. Thus, it is worthwhile to explore options that are 

minimally invasive to cells in culture. For example, Coherent Anti-Stokes Raman 

Scattering (CARS) spectroscopy is a non-invasive technique capable of imaging 

intracellular macromolecules including proteins, lipids, and nucleic acids [295, 296]. The 

CARS methodology works by applying vibrational bands at specific molecular 

frequencies capable of identifying spectral bands specific to various macromolecules. 

Using non-invasive methods like CARS, live cells can be "digitally stained" in real-

time with image sensitivity comparable to imaging resolutions achieved by fluorescence 

microscopy. By combining the imaging-based methodology presented in this 

dissertation with CARS-based imaging, it is possible to identify cellular responses to an 

array of microenvironmental cues on live cells without the introduction of fluorescent 

probes. Due to a mutual interest in this objective, our laboratory is actively collaborating 

with Dr. Cicerone’s laboratory, which is one of the pioneer labs in CARS technology at 

NIST. To-date, our collaboration has resulted in a joint publication that highlights the 

ability of CARS-based imaging in identifying hMSCs cultured in either AD, BA, and OS 

induction media [296]. Future work in imaging-based label-less cellular profiling has the 

potential to track single cells, identify phenotypes in heterogeneous cultures, and 

predict cellular responses to biomaterials, all without perturbing the cells.  
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CHAPTER 7. APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Sections of this chapter have been reproduced from the following publication: 

 

Liu E, Vega S, Treiser MD, Sung H-J, and Moghe PV. (2011) Fluorescence Imaging of 

Cell-Biomaterial Interactions. In: P Ducheyne, KE Healy, DW Hutmacher, DW Grainger, CJ 

Kirkpatrick (eds.) Comprehensive Biomaterials, vol. 3, pp. 291-303 Elsevier. 
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7.1 TOOLS AND TECHNIQUES FOR CELLULAR IMAGING 

7.1.1 Epifluorescence and Deconvolution Microscopy 

 Epifluorescence microscopy, also referred to as wide-field fluorescence 

microscopy (WFM), is the most commonly used fluorescence microscopy method in life 

sciences. Fluorescence microscopy allows visualization of cell morphology, 

cellular/subcellular compartments as well as cellular markers of disease (e.g., cancer 

versus normal cells) or phenotype (e.g., stem cell lineage). The optics of an 

epifluorescence microscope are illustrated in Figure 7.1. Briefly, light of a specific 

wavelength (usually in the ultraviolet or blue, green regions of the visible spectrum) is 

generated by passing multispectral light from an arc-discharge lamp or other source 

through a wavelength-selective bandpass filter (excitation filter). Selected wavelengths 

passed by the excitation filter are then reflected from a dichromatic mirror or 

beamsplitter through the microscope objective to expose the specimen with intense 

light. If the specimen fluoresces, the emission light gathered by the object passes back 

through the dichromatic mirror and is subsequently filtered by another bandpass filter 

(emission filter), which blocks the unwanted excitation wavelengths. Emitted light is 

then collected by a detector such as a CCD camera. 

 The application of an array of fluorophores has made it possible to identify cells 

and subcellular components with a high degree of specificity amidst nonfluorescing 

material. Through the use of multiple-fluorophore labeling, different probes can 

simultaneously identify several target molecules. Conventional epifluorescence 

microscopy can also be used to visualize three-dimensional samples from a series of 
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two-dimensional images taken at different focal planes. The drawback of this method is 

that light emitted from planes above and below the in-focus regions are also captured in 

each optical section. This is because the entire specimen is illuminated by the excitation 

light source, which causes the whole sample to emit fluorescence in the form of 

radiated light that is collected by the CCD camera (detector). This results in a reduction 

of both lateral resolution and depth discrimination. 

 

 

Figure 7.1: Schematic of an Epifluorescence Microscope System 

  

 In order to remove unwanted out-of-focus information from each two-

dimensional image in the series, deconvolution, based on the underlying physics of 

image information, can be used to improve the quality of images. Deconvolution 
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methods determine how much out-of-focus light is expected for the optics in use and 

then seeks to redistribute this light to its points of origin in the specimen. In order to 

restore the original 'clean' image from the convolved 'blurred' three-dimensional image, 

mathematical algorithms are utilized to segregate the original distribution of point 

sources that gave rise to the specimen image. Widely used methods include: nearest 

neighbors, wiener filters, linear least squares, nonlinear least squares, maximum 

likelihood, blind deconvolution, and Lucy-Richardson deconvolution [297-301]. In 

general, there is no 'universally optimal' deconvolution algorithm. Methods that require 

more computing power yield better image restoration results. However, the advent of 

confocal and more recently two-photon imaging has limited the use of deconvolution-

based methods. 

 

7.1.2 Confocal Microscopy 

 The name 'confocal' originates from the configuration based on the use of point 

illumination and a pinhole in an optically conjugate plane in front of a detector to 

eliminate out-of-focus information. Excitation light that is focused on the specimen by 

the object is initially passed through a small aperture, often a slit or a pinhole. 

Fluorescence emissions that originate from above or below the plane of focus are then 

blocked by a second aperture or slit in front of the detector. The smaller the second 

aperture, the higher the rejection rate of out-of-focus light and the thinner the resulting 

optical sections. Thin optical sections have greatly improved contrast and axial 
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resolution, but they are obtained at the expense of overall specimen brightness or signal 

strength. 

 There are two major approaches to achieve confocal microscopy using 

commercial instruments: point scanning confocal laser scanning microscopy (CLSM) and 

spinning disk confocal microscopy. CLSM is the most widely used confocal microscopy in 

life sciences; the basic principle is illustrated in Figure 7.2. An excitation laser source is 

scanned across the specimen in a point-by-point raster pattern. The emitted light is then 

collected by the object, passed through a small pinhole, and detected by a 

photomultiplier tube (PMT). The output from the PMT is assembled into an image and 

displayed by the computer. 

 

 

Figure 7.2: Schematic of a Laser Scanning Confocal Microscope System 
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 CLSM has many advantages. It allows for extremely thin optical sectioning of 

specimens, permitting the imaging of structures and intracellular features in greater 

detail than conventional epifluorescence microscopy. The drawbacks of CLSM are that 

these systems compromise detectable fluorescence in order to deliver their high degree 

of confocality. Because of the pinhole's small apertures, a large amount of light gets 

rejected, thus detectable emissions from the specimen must be bright enough to be 

captured through the use of high numerical aperture (NA) objectives. The use of intense 

lasers addresses the low-light emission problem. However, the intensity of the laser 

light causes photobleaching in fluorescent probes and phototoxicity in the specimen 

itself. Additionally, CLSM's point-by-point acquisition technique is time consuming, 

making this system less capable of recording short-time biological events. For example, 

acquiring a 1024 by 1024 high-resolution single optical section image from most laser 

scanning confocal microscopes requires approximately 0.5 to 1 second. This is not rapid 

enough to capture certain dynamic cellular phenomena, in particular, intracellular 

dynamics such as the visualization of calcium ion transients that occur in 1/10th to 1/5th 

of a second [302-304]. 

 The speed limitations imposed by CLSM can be overcome by using the second 

approach used to achieve confocal microscopy: a spinning disk confocal system. An 

array of beams can be used in parallel, which make it potentially useful for higher speed 

image acquisition in comparison to CLSM. The inherent parallelism of a spinning disk 

confocal system avoids fluorophore saturation, enabling higher levels of excitation to be 

used [305-308]. The spinning disk is also called the Nipkow spinning disk confocal 
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system, named after Paul Nipkow, who first proposed the principle of generating images 

using an array of pinholes in 1883 [305]. 

 Figure 7.3 shows a diagram of the Nipkow spinning disc system. A conventional 

light source (mercury or xenon arc lamp) or laser passes through an excitation filter 

before being directed onto a spinning Nipkow disk in which 20,000 - 200,000 pinholes 

are arranged in spirals of constant pitch [308]. As light falls on one side of the disk, a 

subregion corresponding to about a thousand pinholes is illuminated and imaged. A 

partial rotation of a Nipkow disk (ranging from 1,800 to 5,000 RPM) scans the sample; 

the induced fluorescence (reflected light) produced by the specimen is collected by the 

objective lens and reflected off a beam splitter to highly reflective mirrors which amplify 

the collected light to the conjugate apertures on the other side of the spinning disk. Thin 

in-focus fluorescence from the specimen passes through the conjugate apertures and a 

barrier filter before being detected. In contrast, out-of-focus light from the specimen 

does not have a conjugate aperture to pass through, and is blocked by the disk. The 

time taken to traverse the field of view is so short that images can be seen in real-time 

by an eyepiece or acquired using a camera that is synchronized with the rotation of the 

disk [305-308]. 

 Many of the biological applications using microscopy entail imaging living 

specimens or deep tissues. The complex nature of cellular materials means that the 

passage of light is affected in ways that cannot be accurately modeled, resulting in 

image quality falling well below theoretical resolution limits. Different imaging systems 

are not equally affected by this decrease in spatial accuracy as the focal plane moves 
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further from the sample. CLSM is generally more tolerant to increasing working distance 

than wide-field microscopy systems, where out-of-focus light poses a major challenge. 

Absorption and scattering of light also contribute to the reduction in image quality, 

particularly, in thicker three-dimensional specimens, although these factors become less 

pronounced with increasing excitation wavelengths. The typical spatial limit of 

penetration of confocal microscopy for highly scattered cells and tissue samples is about 

200 nanometers [113, 309, 310], which may limit imaging of living specimens or deep 

tissues. This is one of the main reasons multiphoton imaging (MPM) is the imaging 

technique of choice for three-dimensional tissue imaging. 

 

 

Figure 7.3: Schematic of a Spinning Disk Confocal Microscope System 
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7.1.3 Multiphoton Microscopy 

 Multiphoton microscopy (MPM) presents a major advantage over confocal 

microscopy because of deeper tissue penetration (in the order of millimeters), more 

efficient light detection, reduced photobleaching/phototoxicity, and enhanced spectral 

accessibility and flexibility [111-114, 311, 312]. The term MPM is a generic term for the 

following techniques: two-photon excitation (TPE) microscopy, three-photon excitation 

microscopy, second-harmonic generation MPM, and third-harmonic generation MPM 

[114]. All of these techniques use nonlinear excitation to generate fluorescence limited 

to a thin raster-scanned plane. With the advent of ultrafast (in the order of 

femtoseconds) pulsating lasers, such as Ti:Sapphire and Nd:YLF lasers, MPM, TPE 

microscopy in particular, has become a viable tool to monitor complex biological 

samples. 

 The phenomenon of TPE arises from simultaneous absorption of two photons in 

a single quantized event [114]. Since the energy of a photon is inversely proportional to 

its wavelength, the two absorbed photons must have a wavelength of about twice that 

required for one-photon excitation. For example, a fluorophore that normally absorbs 

blue light (~488 nanometer wavelength) can also be excited by two photons of infrared 

light (~960 nanometer wavelength). Since TPE depends on simultaneous absorption, the 

resulting fluorescence emission varies with the square of the excitation intensity. In 

order to produce a significant number of two-photon absorption events, photon density 

must be ~1 million times that required to generate the same number of one-photon 

excitations. 



203 
 

 

 In a MPM microscope, TPE is generated by focusing a single pulsed laser through 

the microscope optics. As the laser beam is focused, the photon density increases as it 

approaches the focal plane and the probability of two photons interacting 

simultaneously with a single fluorophore increases. The laser focal point is the location 

with highest probability along the optical path where the photons are crowded enough 

to generate significant occurrence of TPE. Figure 7.4 illustrates the generation of TPE in 

a fluorophore-containing specimen at the microscope focal point and peripheral areas. 

Above the focal point, the photon density is not sufficient for two photons to pass 

within the absorption cross-section of a single fluorophore at the same instant. 

However, at the focal point, the photons are so closely spaced that it is possible to find 

two of them within the absorption cross-section of a single fluorophore simultaneously. 

 

Figure 7.4: Schematic of a Multiphoton Microscope System 
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 The narrow localization of TPE to the illumination focal point is the basis for the 

technique's most significant advantages over confocal microscopy. In a conventional 

confocal microscope, although fluorescence is excited throughout the specimen's entire 

illuminated volume, only signals originating from the focal plane pass through the 

confocal pinhole, allowing background-free images to be collected. By contrast, TPE only 

generates fluorescence at the focal plane, and since no background fluorescence is 

produced, a pinhole is not necessary. 

 Dramatic differences between the excitation regions of confocal and TPE 

microscopy results in divergent photo bleaching patterns in each method. The laser of a 

confocal system excites fluorophores above and below the focal plane, contributing to 

the bleaching observed in these extensive areas. In contrast, TPE only occurs at the focal 

plane; therefore, bleaching is confined to this area. 

 The most powerful advantage of TPE is the ability to provide superior optical 

sectioning at greater depths in thick specimens than conventional CLSM or WFM due to 

the effect of three factors: (1) absence of out-of-focus absorption allows for more of the 

excitation light photons to reach the desired specimen region, (2) red and infrared light 

scatters less light at shorter wavelengths, and (3) the effects of light scattering are less 

detrimental in TPE than in conventional CLSM systems. Further comparisons between 

multiphoton and confocal microscopy can be found in Table 7.1. 
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Table 7.1: Comparison of Wide-Field, Confocal, and Multiphoton Microscopy 

 

 It should be noted that the image resolution obtained with TPE is not better than 

that achieved in a well-aligned confocal microscope in spite of the advantages of TPE 

mentioned earlier. The utilization of longer excitation wavelengths actually results in a 

larger resolution spot. If a biological structure cannot be resolved in an ideal confocal 

microscope, it will similarly not be resolved in a TPE laser scanning microscope. It is also 

important to note that imaging thin specimens using TPE microscopy does not 

necessarily benefit significantly over conventional CLSM. The reason is that slightly 

increased photobleaching may occur in the focal plane when using TPE over CLSM in 

thin specimens, although total photobleaching in a thick specimen is greatly reduced in 

TPE when compared to CLSM. 

 Despite the advantages of MPM in three-dimensional tissue imaging, the depth 

of penetration and image quality are limited by the ability to effectively label thick 
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samples such as tissues. Introducing fluorescence labels into tissues becomes 

increasingly difficult at greater depths. One way to overcome this difficulty is by 

expressing GFP within transgenic animals and imaging with TPE mode in vivo, where 

conventional immunolabeling deep into tissue organs is barely accessible [312]. 

 

7.1.4 FRET and TIRFM 

 Fluorescence Resonance Energy Transfer (FRET), a widespread technique in 

molecular biology and biophysics, has been typically used to screen molecular 

conformation, molecular proximity, protein-protein interactions, and biosensing in cell 

biology [313-315]. More recently, FRET has been adapted to quantitatively analyze 

parameters of cell adhesion-related phenomena, such as molecular changes in matrix 

proteins, bonds between integrins and ligands, and changes in the crosslinking density 

of hydrogel-based extracellular matrix analogs [316]. 

 FRET is an interaction between the electronic excited states of two dye 

molecules. Excitation is transferred from a donor molecule to an acceptor molecule 

without the emission of a photon. The emission spectrum of the donor must overlap the 

excitation spectrum of the acceptor; the extent of this overlap determines the FRET 

efficiency. Furthermore, donor-acceptor transition dipole orientations must be 

approximately parallel [312, 314, 315, 317]. FRET's intermolecular separation depends 

on the inverse sixth power of the distance, so it falls off rapidly with distance, usually in 

the order of 10 nanometers which is comparable to dimensions of biological 

macromolecules. When FRET occurs, the fluorescence of the donor molecule is 
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quenched, the emission of the acceptor fluorophore is sensitized, and the donor lifetime 

is reduced. Therefore, FRET has a direct effect on rates of donor photobleaching and 

acceptor fluorescence depolarization. There are several ways that FRET can be 

measured depending on which of the consequences is being monitored. These methods 

are based on: quenching of donor fluorescence, sensitized emission of acceptor 

fluorescence, reduction in donor lifetime, and depolarization of acceptor fluorescence. 

 Because energy transfer is limited to distances of < 10 nanometers, the detection 

of FRET provides valuable information about the spatial relationships of fusion proteins 

on a subresolution scale. Moreover, it gives us a powerful tool for measuring the 

proximity of molecular species at a level beyond the resolution of any optical 

microscope. 

 Another high-resolution imaging approach that has been recently adapted to 

study cell-biomaterial interactions is Total Internal Reflectance Fluorescence Microscopy 

(TIRFM). TIRFM has gained popularity in the study of cellular processes and single 

biological molecules. Briefly, it utilizes an evanescent field generated in the lower 

refractive index medium during total internal reflection. Light from the fluorescent 

molecules can then be collected by an objective lens and recorded using a detector such 

as a CCD camera [318]. The chief advantage of this method is the thinness and 

exponential decay of the illumination. 

 Currently, TIRFM can be broken down into two categories: prism-type TIRFM and 

objective-type TIRFM. Prism-type TIRFM makes use of a prism made of higher refractive 

material than the biological sample. Light at an acute angle travels through the prism, a 
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refractive index-matched immersion fluid, and the sample's coverslip until finally 

reaching the interface between the sample and the coverslip, where it undergoes total 

internal reflection. Since the prism is on the coverslip, prism-type TIRFM usually requires 

illumination and the light collection to come from opposite sides of the microscope. In 

contrast, objective-type TIRFM uses a high-NA objective lens instead of a prism to 

introduce light at a supercritical angle, which is implemented either through the use of 

an opaque disk in the conjugate back focal plane of the microscope (to block all 

subcritical angles of light), or by focusing a laser beam off-axis towards the back focal 

plane of the objective lens. Light focused at the back focal plane by either method is 

then redirected towards the sample with angles dependent upon the position of the 

focused beam with angles of excitation increasing with distance from the center of the 

back focal plane. 

 TIRFM has a wide range of applications in cell and molecular biology, particularly, 

for viewing single molecules anchored to planar surfaces and to study the position and 

dynamics of molecules and organelles in living culture cells near the contact regions 

with glass substrates [319]. In the biomaterials community, TIRFM has been applied to 

study cell adhesion-related responses on biomaterials, such as changes in the contact 

area and adhesion strength on biomaterial surfaces, analysis of bond strength, and real-

time measurement of cell/substrate separation distances following exposure to flow 

[320, 321]. 

 Despite the simplicity of TIRFM, it provides remarkably good optical sectioning 

equal to or better than any other technique. However, its utility is limited to the study of 
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fluorescent molecules within 100 nanometers of the sample's coverslip. Thus, it cannot 

be applied to study cell-biomaterial interactions in three-dimensional scaffolds or thick 

tissue sections. 

 

7.1.5 Flow Cytometry 

 In conventional flow cytometers, cells suspended in solution are passed through 

a detector at a rate exceeding thousands of cells per second [294, 322]. For each cell 

that passes, a detector is capable of acquiring several channels of information, which 

include: forward scatter, side-scatter, and several spectral bands [294, 323]. With the 

advent of fluorescence-activated cell sorting (FACS), the information attained by 

standard flow cytometers can be utilized to purify cell populations based on user-

specified criteria from an otherwise heterogeneous cell sample [293]. More recently, 

with the integration of CCD camera technology, optical filtration, and digital computing, 

the combination of these traits for more advanced imaging-based cellular profiling are 

beginning to be realized [324]. 
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7.2 FLUORESCENCE-BASED PROBES FOR CELLULAR PROFILING 

 The high-resolution imaging methods presented Section 7.1 would not be 

possible without the use of fluorophores. Fluorophore-tagged markers are capable of 

identifying specific molecular targets and have been used for numerous applications, 

including the observation and analysis of various cell-biomaterial interactions. In this 

section, an overview of three different fluorophore markers is discussed: fluorophore-

tagged antibodies, quantum dot-based probes, and fluorescent proteins. 

 

7.2.1 Fluorophore-Tagged Antibodies 

 Immunostaining is a general term in biochemistry that applies to any use of an 

antibody-based method to detect a specific protein in a sample. Tagging of a 

fluorophore to an antibody improves the visualization of the antigens or antigen 

epitopes where the antibody binds. Antibodies can come in different varieties known as 

isotypes or classes. There are five antibody isotypes: IgA, IgD, IgE, IgG, and IgM [325]. 

They are each named with an 'Ig' prefix that stands for immunoglobulin, another name 

for antibody, and differ in their biological properties, functional locations, and ability to 

deal with different antigens. Due to their high specificity, IgGs are the most common 

antibody isotype for their immunostaining applications. The Ig monomer is a 'Y'-shaped 

molecule that consists of two identical heavy chains and two identical light chains. Each 

chain is composed of structural domains termed Ig domains. While the arms of Y-shaped 

antibodies have antigen-recognition sites, the root of these antibodies, where the heavy 

chains reside, provide a site to tag a fluorophore. 
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 There are two ways to detect target protein molecules. A directly labeled 

fluorophore-conjugated primary antibody can be used to detect a target protein; this 

immunostaining technique is known as the direct method. Alternatively, a broader 

species-specific fluorophore-labeled secondary antibody is used to detect and attach to 

a primary antibody bound to a target protein; this is known as the indirect method [115, 

326-329]. Both methods have their respective advantages and disadvantages. The direct 

method is simpler, more convenient, and less prone to artifacts than the indirect 

method. Although the indirect method is more cumbersome, it offers better signal 

amplification. This is achieved by several fluorophore-conjugated secondary antibodies 

binding to a single primary antibody. Moreover, secondary antibodies with fluorophores 

at various excitation/emission spectra are readily available from commercial sources, 

which make it easier to select probes for multicolor imaging applications. 

 

7.2.2 Quantum Dot-Based Probes 

 Quantum dots (qdots) are nanoscale semiconductors and defined as particles 

with physical dimensions smaller than the exciton Bohr radius [330]. Metal and 

semiconductor nanoparticles, usually composed of groups II-VI or II-V elements, with 2 

to 6 nanometers in diameter, have been used extensively due to their similarity in 

physical size to biological components such as nucleic acids and proteins [331]. 

Quantum dots have been used in the following applications: FRET analysis, gene 

technology via qdot-conjugated oligonucleotide probes, fluorescent labeling of cellular 

proteins, tracking of cellular movement, pathogen and toxin detection, in vivo imaging, 
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and tumor biology research [314, 330, 332-340]. Despite the growing impact of qdots, 

there are several barriers that need to be overcome, such as cytotoxicity and alteration 

of cell functions that accompanies the cellular uptake of qdots. 

 

7.2.3 GFP and Variants 

 GFP was originally derived from the jellyfish Aequorea Victoria [341]. It has 238 

amino acid residues and a green fluorophore which is comprised of only three amino 

acids: Ser65-Tyr66-Gly67. The stable protein structure is formed by beta sheets, which 

feature conformations that make up an 11-stranded drum-like structure [121]. The 

stability of GFP allows it to withstand pH levels ranging from mildly acidic (pH = 5.5) to 

extremely basic (pH = 12) and can also resist temperatures of up to 65°C. GFP has major 

and minor excitation peaks at wavelengths of 395 and 475 nanometers, respectively. 

Several modifications have been made from the original GFP, most notably the 

reduction of the dual excitation peaks of 395 and 475 nanometers down to one 

excitation peak of 488 nanometers, which is in the visible blue-light range. The emission 

peak of original and modified GFP is detected at 509 nanometers, which is in the visible 

green region of the electromagnetic spectrum [121, 341]. XFP variants with spectra that 

range from blue to red (shown in Table 7.2) can be used for live cell imaging. 

 In order for biomaterial scientists to utilize GFP fusion proteins to capture 

cellular and subcellular responses to biomaterials, the construction and expression of 

GFP can be easily accomplished via standard molecular biology techniques. By 

introducing GFP into host cells, one can visualize GFP-tagged whole cells, subcellular 
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organisms, and cytoskeletal structure/organization. This form of targeting allows the 

microscopist and the biomaterial scientist alike to study cellular behavior by observing 

GFP-tagged proteins and capture information at a level that was previously inaccessible, 

both spatially and temporally [342]. Apart from aforementioned GFP-based markers, 

phytochromes, light-sensitive photoreceptors, along with other proteins in the 

phytochrome signaling network, have been utilized to reversibly control the 

translocation of proteins to the cell membrane [343]. 

 

 

Table 7.2: List of Common Fluorescence Proteins 
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