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ABSTRACT OF THE DISSERTATION

Automatic and Interactive Segmentations Using Deformable and
Graphical Models

by Mustafa Gokhan Uzunbas

Dissertation Director: Dimitris Metaxas

Image segmentation i.e. dividing an image into regions and categories is a classic yet still

challenging problem. The key to success is to use/develop the right method for the right appli-

cation. In this dissertation, we aim to develop automatic and interactive segmentation methods

for different types of tissues that are acquired at different scales and resolutions from different

medical imaging modalities such as Magnetic Resonance (MR), Computed Tomography (CT)

and Electron Microscopy (EM) imaging.

First, we developed an automated segmentation method for segmenting multiple organs

simultaneously from MR and CT images. We propose a hybrid method that takes advantage of

two well known energy-minimization-based approaches combined in a unified framework. We

validate this proposed method on cardiac four-chamber segmentation from CT and knee joint

bones segmentation from MR images. We compare our method with other existing techniques

and show certain improvements and advantages.

Second, we developed a graph partitioning algorithm for characterizing neuronal tissue

structurally and contextually from EM images. We propose a multistage decision mechanism

that utilizes differential geometric properties of objects in a cellular processing context. Our

results indicate that this proposed approach can successfully partition images into structured

segments with minimal expert supervision and can potentially form a basis for a larger scale
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volumetric data interpretation. We compare our method with other proposed methods in a

workshop challenge and show promising results.

Third, we developed an efficient learning-based method for segmentation of neuron struc-

tures from 2D and 3D EM images. We propose a graphical-model-based framework to do

inference on hierarchical merge-tree of image regions. In particular, we extract the hierarchy

of regions in the low level, design 2D and 3D discriminative features to extract higher level

information and utilize a Conditional Random Field based parameter learning on top of it. The

effectiveness of the proposed method in 2D is demonstrated by comparing our method with

other methods in a workshop challenge. Our method outperforms all participant methods ex-

cept one. In 3D, we compare our method to existing methods and show that the accuracy of our

results are comparable to state-of-the-art while being much more efficient.

Finally, we extended our inference algorithm to a proofreading framework for manual cor-

rections of automatic segmentation results. We propose a very efficient and easy-to-use inter-

face for high resolution 3D EM images. In particular, we utilize the probabilistic confidence

level of the graphical model to guide the user during interaction. We validate the effective-

ness of this framework by robot simulations and demonstrate certain advantages compared to

baseline methods.
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Chapter 1

Introduction

This dissertation presents new methods for medical image segmentation. The applications cov-

ered in this dissertation are rather broad, ranging from fully automatic to semi-automatic image

segmentation methods at different imaging modalities, scales and dimensions. In practice, each

application has different requirements and difficulties motivating use of different approaches

fine tuned to the problem. In general, unfortunately, a segmentation method solving a particu-

lar problem cannot solve another problem right away even if the problems look similar. This

actually motivates researchers and engineers to innovate new methods and techniques because

it is generally the first step in any automatic analysis or interpretation of an image. Therefore,

for each application that we focus in this dissertation, we analyze the segmentation task and

the requirements carefully and propose new methods that brings certain advantages towards

accuracy, tractability and efficiency.

We present new methods for 3D organ segmentation from MR and CT images (macro-

scopic), 2D cellular region segmentation and 3D neuron structure extraction from EM images

(microscopic). The purpose of this chapter is to introduce the problems addressed in this disser-

tation and provide a brief description of the main contributions and an outline of the document.

1.1 Image Segmentation

In this dissertation, we focus on two main principles to formulate an image segmentation task.

Our first segmentation task relies on delineation of the boundaries of single/multiple foreground

object(s). It is done by finding a set of boundaries/edges that separates foreground object from

the background. Here, an edge is a surface/contour with a measurable area/length where the

nearby pixels change significantly implying the discontinuity of image intensity values. This
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type of image segmentation targets finding edges and local discontinuities; however many ad-

vanced methods in practice don’t limit themselves to consider only edge information. Many real

world image segmentation problems imply challenges such as low-contrast, diffused bound-

aries, intensity inhomogeneity and high texture variation inside the target object. Fig. 1.1(a)

shows a scenario for segmenting brain structures from MR images and as clearly noticeable,

some structures are almost impossible to identify by considering only edge information. In the

presence of these difficulties, use of other high-level image features such as intensity statistics,

shape information of the target object, texture information has been very popular. When seg-

menting multiple objects simultaneously even more complex information such as relative po-

sition has been shown to be very useful to augment the results. However, all these approaches

come with their own consequences and there are always trade-offs that have to be considered

in terms of maintanenance, applicability, accuracy and speed.

The second segmentation task that we focus in this thesis can be realized by partitioning the

image domain into multiple regions. In this problem, image regions are labelled according to

low level and high level observations (features) and regions with different labels correspond to

distinct objects with connected pixels. In a simple scenario, pixels with the same label should

share similar characteristics like color, intensity, or texture while being discriminative among

different labelled regions. But, sometimes this is not a good assumption to make in practice.

For example, neuron cells on EM images as shown in Fig. 1.1(b) are separated with ambiguous

dark membranes and present similar intensity and texture properties. In this scenario, every

single cell should be labelled differently considering the membranes. However, in many cases,

the observed indicators (e.g dark pixels) are noisy and not easily distinguishable. As can be

seen in Fig. 1.1(b), membranes at some locations look diffused and their contrast is not good

enough to distinguish nearby cells (see a bad partitioning result in Fig. 1.1(c)). Moreover,

there are other entities having similar properties. In such scenarios, in addition to the local

relationships of the pixels, use of global and local higher-order relationships has been shown to

improve the accuracy significantly (see a very good partitioning result in Fig. 1.1(d)).

The key to a successful segmentation application is to use/develop the right method for

the right application. In the literature, there are two principal approaches commonly used to
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(a)

(b) (c) (d)

Figure 1.1: (a) Example for boundary delineation of brain structures from brain MR image.
Notice the variation of contrast for different structures. Red curve captures the boundary of the
high contrast object at all locations; while the green curve cannot match the ground truth (blue)
everywhere. (b) Electron microscopy image showing a difficult scenario for partitioning the
image into meaningful regions (neurons). Notice the dark membranes separating cell regions.
(c) Detection of membranes (white) is challenging due to low contrast, diffused pixel locations
and high texture variation. Also notice other entities (inside the cells) having similar appearance
with the membranes. (d) A nice partitioning to segment neurons accurately.

approach these two different segmentation tasks. They are both formulated as energy optimiza-

tion problems. A gradient descent local optimization method called Deformable Models has

taken great attention in solving the first segmentation task. For the second task, graph based

global optimization techniques called Graphical Models have taken huge attention to solve the

labeling problem in a probabilistic framework. In the next section, these energy optimization

based approaches will be explained in more detail.

1.2 Segmentation via Energy Optimizing

Optimizing an energy function generally means finding the values at which a function reaches

its minimum or maximum value. Energy minimization/maximization has been a key tool in
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image segmentation in the last twenty years. This increasing popularity has mainly been the

result of the successes of Graphical Models and Deformable Models. Deformable Models find

locally optimal segmentation results by deforming an initial physical model (contour/surface).

The model is the optimizer of an energy/cost functional. Graphical Models find globally or

near globally optimal results by solving a graph node labeling problem using graph theory

and probability theory. The discrete labeling configuration is the minimizer of the cost/energy

function. Both categories are able to achieve satisfactory results; however, each model has its

own strengths and weaknesses.

Deformable Models can capture the details of the target object very well if the initialization

is good. First a model is initialized on the image domain, then several driving forces are applied

physically on the model to deform it towards the desired object boundary. The resulting model

is deformed iteratively into the final shape and position via combination of several external

forces computed from the image. The external forces are regularized with internal constraints

to preserve smoothness. These internal forces are computed from the model itself. The balance

between different forces determine the behavior of the model. In an ideal scenario, the model

can converge to a subpixel accurate, natural looking result. However, in general, images are

noisy, finding the best initialization is difficult, and fine tuning effects of external forces is not

very practical. Thus, in practice Deformable Models are usually combined with other methods

which can find good initialization, provide hard constraints to get out of a local minima.

Graphical Models provide probabilistic frameworks to formulate the discrete labeling prob-

lem. In graphical models, graphical representation is an indispensable tool, that allows manipu-

lations on the probability distribution over random variables and encodes conditional dependen-

cies and independencies. This flexibility permits factorization of joint probabilities into simpler

formulations such as unary and pairwise terms. Here, the pairwise term preserves the smooth-

ness of the labeling configuration so that neighboring nodes tend to get same label. The unary

term encodes the likelihood of each node to get certain class labels. In general, minimization

of such an energy functional to find the best labeling configuration is NP-complete or NP-hard.

Only under certain circumstances (suitable graph structure or cost functions), this optimization

problem can be solved in polynomial time, otherwise approximated. These restrictions makes
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Graphical Models prone to segmentation errors. Depending on the chosen parameters the glob-

ally optimal result is not guaranteed to be a good segmentation. For example, a very common

observed undesirable effect in practice is called shrinking bias that is caused because of the

minimization scheme. Also since it is discrete labeling problem based on the connectivity of

the graph structure, they can exhibit blockiness artifacts. Also, as in Deformable Models case,

the finding the right balancing factor between unary and pairwise terms in the energy functional

is still a problem which determines the behavior of the model.

1.3 Segmentation Applications and their Requirements

In organ segmentation task, important point is to achieve accurate, detailed, smooth and natural

looking results. Deformable Models represent the segmentation results as real physical objects

(model) in 2D/3D space. So they have taken huge attention to meet the requirements of organ

segmentation from MR and CT images. Besides their certain advantages, if the initialization is

not good enough, boundaries of the target object is not clear or there is intensity inhomogeneity,

then naive Deformable Model techniques would not be satisfactory. In such scenarios, use of

statistical training information such as shape, relative positioning and appearance of target ob-

ject is very useful if training data is available. In organ segmentation applications, creating and

maintaining training sets is possible since organs mostly present similar properties in a particu-

lar image modality. However, note that, training sets are not always available and maintaining

large sets of accurate training data is not always feasible.

The requirements of neuron structure segmentation from Electron Microscopy images is

different than organ segmentation. Here, the aim is to find groups of pixels (regions) regardless

of their shape and size such that these groupings correspond to neuron cells that are separated by

their membranes. In other words, the 2D/3D image has to be decomposed into multiple regions

that corresponds to neuron cells. For this type of segmentation task, Graphical Models are

better choice due to the fact that, they are able to produce consistent labelings by considering

local judgements of similarity and global consistency of the regions/pixels. Their efficiency

can be improved even further by using superpixel generation methods as pre-processing step.

A superpixel representation greatly reduces the number of nodes in the graph structure by
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replacing the rigid structure of the pixel grid. Superpixel generation algorithms rely upon

spatial location and color/texture distribution of the pixels. Therefore, the features/observations

obtained from superpixels provide better cues for the inference task. They can robustness of

the model. This improvement, makes the use of Graphical Models even more effective for

partitioning of large, high resolution images.

A reliable and accurate segmentation of an image is, in general, very difficult to achieve by

purely automatic means. Also, there is great deal of mistrust from expert users towards fully

automatic image analysis. That’s why, interactive segmentation is an important paradigm in

image processing. Ideally, such an interactive system should be designed as to enable a user to

create excellent segmentation results with a minimal amount of time and effort. The most basic

interactive segmentation methods consist of a drawing application which the user can use to

segment an image by labeling the individual image parts. But, this basic approach is slow and

tedious; thus, there is great demand for algorithms that help the user in segmenting image data.

These algorithms should speed up the segmentation process relying only on sparse annotations

instead of the dense image labeling. In fact, such functionality would be tremendously useful in

life sciences where biologists need to extract and measure objects of interest from microscopic

images.

1.4 Contributions of this Dissertation

The first contribution of this dissertation is combining graphical models and deformable mod-

els into a collaborative framework for multi organ segmentation for cardiac and knee joint bone

segmentation from CT and MR images, respectively. We present a hybrid energy minimization

framework where the deformable models and graphical models are combined in a collaborative

way. In an alternating iterative optimization scheme, two different models are improved at each

step towards more accurate segmentation. Given an initial deforming model (surface/contour),

the parameters of the GM is learned and constrained in a data driven approach. This initializa-

tion actually corresponds to providing initial cues as in classical graph-cut methods [7]. The

deforming model is deformed according to the attraction force computed based on the GM in-

ference. The overall framework takes advantage of these two segmentation paradigms. The
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final results are smooth, natural looking and can capture details while the optimization scheme

is enhanced with globalization aspect of the GM. The proposed hybrid method is designed to

satisfy the following requirements: 1) it can efficiently and effectively segment multiple objects

simultaneously, 2) the resulting segmentations (contours/surfaces) of multiple objects don’t in-

tersect, 3) the iterative model deformation mechanism is robust to local high and low contrast

challenges in cardiac CT images and knee MR images.

The second contribution of this dissertation is to design a multi stage decision strategy for

neuron segmentation from ssT electron microscopy images [8]. We propose a two step classi-

fication mechanism to identify cell membranes between adjacent cells. The first step utilizes a

random forest classifier to predict pixel wise membrane class label with lots of false positives.

The second step utilizes the underlying differential geometric properties of cell membranes in

a biologically inherited framework. This unsupervised technique involves extracting highly

sparse low dimensional representation of the data and characterization of this representation in

a biological context. We solve this contextual characterization problem using a graph based

local optimization scheme. Once the membranes are identified the cells can be separated well

despite the diffused and confusing membrane appearance.

The third contribution of this dissertation is to create a tree structured CRF model to seg-

ment neuron structures from 2D ssTEM [8] and 3D FIBSEM [9] images in a learning fashion.

We use a region (superpixel) based approach where the relationships between the regions are

encoded in a hierarchical tree and this tree is actually the graph of the graphical model. We em-

ploy efficient and exact belief propagation method to solve the inference problem. We design

effective features per regions that help improve the inference accuracy. Because our model is

tree structured, the inference time is very short even for large 3D images. Also, we show that

the accuracy of the results are comparable to the state of the art.

Finally, we propose a method to extend the tree structured CRF model into an active proof-

reading mechanism using the marginals of the graphical model as the confidence level of the

segmentation. Since the computation of marginals on a tree structured graph is very efficient

and exact, we transferred node marginals to boundary marginals and highlighted the least con-

fident boundary locations to ask user input. We designed a tree update schemes to take the user

actions (i.e split and merge) and update the structure of the tree. With this feedback mechanism,
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we provide an interface where the user can reach globally improved accurate results with very

few efforts compared to other baseline approaches.

1.5 Organization

This dissertation is organized as follows. Chapter 2 reviews the two well studied segmentation

frameworks Deformable Models and Graphical Models. In the review of Deformable Models,

we categorize them according the terms used in energy definition as per the improvements upon

several image segmentation challenges. In the review of Graphical Models, we get into details

of two energy optimization schemes that are specified for loopy graphs and acyclic graphs. We

review their essentials and relate them to image segmentation problem. At the end, we provide

a summary and comparison of Graphical Models with Deformable Models, as well.

Chapter 3 introduces the main theory of the proposed collaborative multi object segmenta-

tion framework, evaluates its performance on cardiac and knee joint segmentation and discusses

its limitations and potential extensions. The previous version of this chapter appeared as [10].

Chapter 4 reviews neuron structure segmentation and reconstruction from electron mi-

croscopy images. We introduce recent developments for nanometer scale neuron reconstruction

in the neuroscience field, then, we review its challenges from image processing and machine

learning perspective and finally, we examine the existing machine learning and vision based

approaches.

Chapter 5 and 6, introduce our proposals for image partitioning problem towards neuron

segmentation. In Chapter 5, we propose a multi stage decision mechanism which is inherited

from a contextual grouping idea. We present its performance on ssTEM images, illustrate the

results and discuss its limitations. The previous version of this chapter appeared as [11]. In

Chapter 6, a region-based hierarchical CRF model for image partitioning is explained. We

give its theoretical aspects and evaluate the results on 2D ssTEM and 3D FIBSEM images. We

discuss its limitations and further extensions. Last but not least, we explain a active proofread-

ing method by giving the details of the framework and comparing its results to the state of the

art. The previous version of this chapter appeared as [12]. Finally, Chapter 7 summarizes this

thesis work and discusses the possible directions for future research.
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Chapter 2

Review on Deformable Models and Graphical Models in Computer
Vision

In this chapter, we provide background material relevant to the development of the material in

later chapters. First, we provide background information on energy minimization based seg-

mentation methods. We start by formulating cost functions whose minimum value corresponds

to segmentation. In particular, we review two different function minimization approaches for

continuous and discrete variables. We give the details of Deformable Models and Graphical

Models with an emphasis on local and global optimization techniques. We also compare these

two approaches analyzing their advantages and shortcomings within segmentation applications.

2.1 Energy Minimization in Image Segmentation

In energy optimization based segmentation problems, energy function is usually defined in

terms of variables which represent the segmentation like a contour or pixel label. These vari-

ables are the actual minimizer/maximizer of the cost function. They encode a desired property

of the image and can be continuous or discrete. For the case of continuous variables, these prob-

lems are commonly referred to as deforming an initial continuos contour/surface iteratively to

snap locally on the target boundary. The generic name for this framework is called Deformable

Models.

The energy functional for Deformable Models always consists in the sum of two terms:

C∗ = argmin
C

Eint(C) + Eext(C) (2.1)

Here, the internal energy Eint serves to impose a smoothness constraint. External energy

Eext depends on the features which are searched for in the image. Its purpose is to push/pull
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(a) (b)

Figure 2.1: A deforming model on a synthetic noisy image. In (a) external forces applied on
the model are shown with their magnitude and direction. In (b) a model is shown after applying
external and internal forces. Notice here, how internal forces preserve the smoothness and
curvature of the model although external forces in (a) tries to drive the model towards edges.
Image resource: [3]

the deformable model towards the salient image features (i.e. termination of line segments,

edges, etc.) [13]. Fig. 2.1 illustrates the effect of external and internal forces on a synthetic

image. The moving model tries to minimize this total energy in a sense that the external en-

ergy is regularized with internal energy while detecting the edges. This is an ill posed problem

and minimum of this energy can be obtained by gradient descent optimization. This optimiza-

tion scheme requires the initialization of the variable C and its update in the steepest descent

direction iteratively.

For the case of discrete variables, these problems are commonly referred to as labeling

problem as they involve assigning the best set of labels to some hidden variables. Graphical

Models combine probability theory with graph theory, the energy function which represents

a probability distribution is minimized using graph based algorithms. The total energy func-

tional for graphical models is usually composed of two main terms: unary and pairwise. The

definition of the function can be given as following:

y∗ = argmax
y

Eunary(x, y) + Epair(yi, yj), i, j ∈ N (2.2)

According the above formula, the estimate y∗ will trade off the of the unary term and pair-

wise term making decisions so that the prediction based on unary are also spatially consistent.

The effects of unary term and pairwise term are illustrated in Fig. 2.2(b) and (c). In general, for
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(a) (b) (c)

Figure 2.2: Example shows segmenting a foreground object from (a) color image; using (b)
only unary term of Eq. 2.2; (c) both unary and pairwise terms. Image source: [4]

arbitrary unary and pairwise terms, solving for y∗ exactly, yields a hard optimization problem.

We will see in the following sections that to solve this problem exactly there will be certain

restrictions for the definition of Epair term and the label space. Also we will see that there are

powerful ways of relaxing these constraints and obtaining approximate solutions for y∗.

In the following sections we will get into more theoretical details for these two different

energy optimization based segmentation frameworks and analyze them individually.

2.2 Deformable Models and Their Use in Medical Image Processing

Deformable models pioneered by Kass et al. [13], are curves or surfaces that move under the

influence of internal and external image forces as formulated in Eq. 2.1. The evolution process

corresponds to an iterative optimization of a variational cost functional. The approach in [13]

represents the boundary between regions as a closed contour and the contour is evolved until it

converges to the boundaries of objects.

There are several different types of Deformable Models methods. The classification can

be done in two ways: the way a model is represented; the way the external term is designed.

There are two different ways of representing a model: explicit landmark based and implicit

level set based. We will get into the details of these representations soon. Beside the variety of

model representation, the main focus of research in deformable models field is on the external

force term F (s) in 2.3 and 2.4. Compared to the graphical models, deformable models allow

to use very complex structured energy terms due to the gradient descent optimization scheme.

So far there have been five categories of external forces defined for deformable models: edge

(boundary) based, region based, statistical prior based, learning based and spatial constraint

based. We will show the details of these approaches and their use case in the following. Before
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(a) (b)

Figure 2.3: Two different model representations: (a) Explicit, landmark based; (b) Implicit
level-set based. Notice the how the iso level of a three dimensional function on the right,
corresponds to the two dimensional contours on the left. Image source: [5]

that, we start by reviewing different model representation methods.

2.2.1 Model Representation

There are two different ways of representing a model: explicit landmark based and implicit

level set based. Fig. 2.3 illustrates them.

Explicit Landmark Representation

In explicit representation the contour or the surface is represented by a finite set of parameters,

e.g. the spatial positions of points on the curve or surface. They are used to reconstruct the

evolving contour/surface by connecting them with line segments [13]. One difficulty of this

approach is keeping connectivity of the points on the surface which are very likely to change

during the evolution. Another consideration is that, the discretization should be fine enough to

reconstruct the surface (see Fig. 2.3(a)). Moreover, if the points come too close together, they

may cross each other if the time step is not adjusted properly. A solution for such problems is

to redistribute the points every few time steps, and add or remove points where this is neces-

sary. However, this task becomes complicated, especially in three dimensions. A more serious

problem arises in the presence of a change in the topology. Generally, the parametric approach

is not capable of handling topology changes, unless special constraints are implemented for

detecting possible splitting and merging of contours [14].

Representing the model parametrically, v(s) = (x(s), y(s)), the energy definition given in

Eq. 2.1 is written more explicitly as:
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E(C) =

∫ 1

0

(
α | C ′

(s) |2 +β | C ′′
(s) |2 +γF (s)

)
(2.3)

where α, β, and γ are real positive constants to weight the smoothness constraints and image

forces, and F is a external energy term which is based on image features. [13]. Here, s

corresponds to image coordinates (x(s), y(s)) and C(s) is the evolving curve parameterized

with spatial coordinate s. The first-order term makes the model move like a membrane and

second-order term makes it move like a thin plate. The internal energy of the model is increased

with large values of α. In such case, it stretches more and more, whereas for small values of α

the energy function becomes insensitive to the amount of stretch. Similarly, with large values

of β the model gets smoother shapes, otherwise the energy becomes insensitive to curves in

the model. When both α and β are small the constraints on the size and shape of the snake

becomes less [13].

Implicit Level Set Representation

Level sets were first introduced by Osher and Sethian in 1988. They use an implicit represen-

tation of the contour to represent the boundaries.They are numerical techniques for tracking

an evolving surface without describing the evolution of the contour itself. They operate on a

function that is defined in one dimension higher and the model is described as the iso-contour

of this function (see Fig. 2.3(b)). In order to model an evolving model, the level set function

depends on time as well as space.

Let φ = φ(s, t) be the level set function. Then the interface C, at any point in time t,

is given as the set of points in space that corresponds to the zero level iso-contour of φ, i.e.

C(t) = x : φ(s, t) = 0. The level set function φ : Ω× [0,∞]→ <, is a scalar valued function

of both space and time variables. Since we restrict our attention to the image segmentation

problem, it is defined on the same rectangular domain as the image Ω ∈ <n.

The Euclidean distance transform is used to embed the shape of model as the zero level

set of a distance function in the higher dimensional space. By definition Ω is bounded since it

refers to the image domain and the model defines a partition of the image domain into three:

region that is enclosed by the model C, interior regionRint and background region Ω−Rout.
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φC(s) =





−D(s, C) if s ∈ Rint,

0 if s ∈ C,

D(s, C) if s ∈ Rout.

where D(s, C) refers to the minimum Euclidean distance between the image pixel location

s = (x, y) and the model C. It gets positive values if the point lies outside the region, and

negative if inside the region. For points that lie on the initial interface, the distance is zero.

Level sets can handle topology changes inherently in any dimension where parametric mod-

els require change in representation for different dimensions. The level set method works

equally well in any dimension. For these reasons, active contour models based on level set

methods have received considerable attention. The works proposed by Caselles et al. [15] and

Yezzi et al. [16] are the first examples of level set based deformable models. They are called

Geodesic Active Contours and Geometric Active Contours, respectively. They drive the curve

(iso level) in the normal direction of contour curvature attracted with a force function. The

energy functional is defined as:

E(C) =

∫ 1

0
F · | C ′

(s) | ds (2.4)

When minimizing the level set function, the front curve deforms along its normal direction

C
′′
, and this speed is controlled by the speed function F . Depending on the choice of the F

function the front of the level set is propagated at a velocity proportional to its curvature in the

normal direction. For the details of the derivation, please see [15] and [16].

There are two concerns associated with the level set representation that need to be ad-

dressed. The main concern is in its computational complexity since it has one dimension higher

than the original shape. This efficiency problem is solved by using only a narrow band around

the zero level of the embedding space as the working domain for segmentation [17]. The other

concern is the validity of the iso level contours after the model is updated. One solutions for

this can be using reinitialization mechanism during deformations [18].
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2.2.2 Designing External Energy Term for Deformable Models

There has been significant amount of effort in the literature to design the F function shown

in 2.3 and 2.4. Different external forces have been proposed to improve the performance of

deformable models. The initial development of deformable models was based on image gradi-

ent. Soon after, regional definitions got into the horizon. More advanced appearance models

followed the simple intensity based models. Then, use of more global constraints such as sta-

tistical priors of appearance, shape and pose become popular due to robustness to occlusion

and low contrast, and noise. More recently, online data driven approaches have shown to be

more robust external driving forces for deformable models when training information is not

available. In the following these categories will be summarized.

Boundary Constrained Deformable Models

For explicit model representation the external term Eext in Eq. 2.3 is designed to attract the

contour points toward edges, which are points of high intensity gradient. The energy functional

is given by

E(C) = α

∫ 1

0
| C ′

(s) |2 ds+ β

∫ 1

0
| C ′′

(s) |2 ds+ γ

∫ 1

0
| ∇I(C(s)) | ds (2.5)

This approach is originally called Snakes and it requires a good initial curve for accurate

segmentation [13]. The reliance on edge information makes the model sensitive to image noise

and to various other image artifacts. For example, the contour may get stuck in local minima

due to strong edges inside or outside the object’s true boundary. To solve these problems,

other deformable model types that are extensions of this initial framework have been proposed.

One important of them targets to increase the attraction range of the original Snakes by using

gradient vector flow [19]. This field is computed as a spatial diffusion of the gradient of an

edge map derived from the image. This computation attracts the contour that is far from the

object via diffuse forces.

The first level set based methods [15, 16] also use gradient based term. The formula shown
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in 2.4 can be written as:

E(C) =

∫ 1

0
F · | C ′

(s) | ds (2.6)

F = g(| ∇I(C(s)) |)

g(∇I) =
1

| 1 +∇I |2

Here, the speed function F depends on the image gradient ∇I and, it is positive in homoge-

neous regions and close to zero at edges. Hence the curve deforms at a velocity proportional to

its curvature in homogeneous areas and stops at strong edges.

Region Constrained Deformable Models

To address the limitations of boundary based approaches, there have been significant efforts

in the literature to integrate region information into deformable models. The difficulties in

parametric models bring us to one of the main advantages of level set methods since they

represent the inner and outer region of the model implicitly. This makes the use of level set

based representation very suitable for designing a region constrained deformable model.

A well-known example for the region modeling cost function is the Mumford-Shah func-

tional [20]. Mumford-Shah functional has emerged before the active contour framework. It

defines the segmentation problem as follows: given an observed image u0, find a decomposi-

tion Ωi of Ω, where Ω ∈ R, such that the segmented image u varies smoothly within each Ωi,

and discontinuously across the boundaries of Ωi. In [21], level set based deformable model so-

lution for a simplified case of the Mumford-Shah functional have been proposed. The image is

assumed to be formed of two regions of piecewise constant intensities of distinct values. In the

energy functional, a fitting term is defined and this fitting term is composed of differences be-

tween mean intensity values and observed intensities inside and outside the segmenting curve.

E(C) =

∫

Rint

| I(s)− cint |2 ds+

∫

Rout

| I(s)− cout |2 ds (2.7)

+ γLength(C) + µArea(Rint)
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where C, cint and cout represent the mean intensities of interior and exterior regions, re-

spectively, and I(s) refers to the image intensity value at pixel s. This approach drives the

model according to the first order intensity statistics assuming the homogeneity of spatial fea-

tures. The advantage of this method compared to edge based method, is being more robust to

noise since intensity statistics provide more global information compared to using only gra-

dient information. Multi-phase version of this approach has been proposed by [22]. In [22],

piecewise-smooth approximations of the Mumford-Shah functional are derived for multiple re-

gions/models in a variational level set framework. The estimation of the region mean intensities

and update of the level sets are computed as alternating steps in an iterative scheme.

In the above approach, the piecewise-constant or piecewise-smooth assumptions limit the

applicability in segmenting objects whose interiors have textured appearance and/or complex

multimodal intensity distributions. More recent approaches focus on more robust region mod-

els. In particular, they estimate intensity/texture statistics of the region inside a deformable

model using parametric (e.g. Gaussian, Mixture-of- Gaussian) or nonparametric methods

[1, 14]. Using these appearance models, the model is deformed such that the statistical co-

herence inside the model is preserved. The parametric appearance models, make assumptions

on the intensity distribution of all pixels inside an object without any training stage. If a Gaus-

sian distribution is assumed, the intensities of an object are parameterized by a mean intensity

µ and a variance σ2.

P (i | h) =
1√
2πσ

exp
−(i− µ)2

2σ2
(2.8)

where i ∈ 0, 1, ...., 255 denotes an intensity value, and h represents pixel intensities inside the

object. If a Mixture-of-Gaussian assumption is made, the object intensities are parameterized

by the means and variances of several component functions, each being a Gaussian.

Other than parametric models, use of nonparametric kernel density estimation [23] is also

very popular [24]. It represents a generalization of the Mixture-of-Gaussian model, where it

does not make assumptions about the number of modes in a distribution. One important ad-

vantage of the nonparametric representation is that it can be approximated directly from pixel

intensities inside a deformable model, requiring no priori parameter knowledge [1], [14]. As
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the model deforms, its interior region (pixels) changes, hence the nonparametric intensity dis-

tribution gets updated automatically. This way, models can capture target regions which have

complex multi-model intensity distributions. On the other hand, the nonparametric kernel den-

sity approximation can not account for the spatial correlation (i.e. context information) between

neighboring pixels, nor the pattern of the basic building blocks such as texture elements. This

limits their applicability in scenarios where the object has highly varying texture or very similar

intensity distribution with the background.

It is also possible to learn the statistics of a known object a priori when training images

are available. The learned prior model can be used to guide the detection and segmentation of

the object. Common ways of learning statistical prior models listed as Principal Component

Analysis (PCA) [25, 26], Kernel PCA [27], isometric feature mapping [28], and local linear

embedding [29]. There are also supervised classification methods that can be used for modeling

appearance. When enough training data with rich set of features and ground truth annotations is

available, popular learning methods such as AdaBoost [30], Support Vector Machines [31] are

Neural Networks [32] can be used. However, one big limitation of the learning based methods

is in the laborious training data collection and annotation process.

Shape Prior Constrained Deformable Models

In deformable model methods, a penalty on the length of the segmenting curves can be thought

as the simplest shape prior for the objects in the scene. However, in many applications, more

information is available particularly, the shape of the objects. As in the case of appearance

modeling, statistical modeling of shape variability can be effectively used to capture variations

in the shape of an object of interest via offline learning [33, 26, 34].

Shape priors constrain the model deformation such that, the deform is toward object bound-

aries with in respect of characteristics of the object’s shape. This probabilistically-encoded

high-level shape knowledge is often more robust for image interpretation; but they require

much effort because they need collection/annotation of training data, alignment/registration of

training examples, and learning of statistics for samples using modeling tools [26, 35].

There are numerous deformable model methods that enforce constraints on the underlying

shapes as in [36, 26]. In [36], the authors find a set of points across a set of training images to
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construct a statistical model of shape variation. In [26], PCA is used to capture the variability of

shapes. These techniques can handle only unimodal, Gaussian-like shape densities. In addition

to the parametric approaches, nonparametric shape densities learned from training shapes have

also been proposed in [35, 37]. In those works, it is assumed that the training shapes are drawn

from an unknown shape distribution and this distribution is estimated by extending a kernel

density estimator to the space of shapes. They construct the energy functional in a Bayesian

framework, using region statistics like mean and variance (likelihood), and estimated shape

distribution term (prior).

Different strategies for the design of the external term of a deformable model help the

minimization of the total energy together with the internal term (i.e. smoothness, area con-

straints). These methods target solving the local minima problem in the presence of spurious

edges, noise, inhomogeneity and occlusion complementarily to prevent the model from leaking

at boundary gaps or getting stuck at local neighborhood. When different terms are combined

together, their weighting factor should be tuned carefully to get the best result.



20

(a) (b)

Figure 2.4: Example graphical models representing joint distribution of three random vari-
ables. Notice the differences on the links: (a) directed; (b) undirected

2.3 Graphical Models

Image segmentation using Graphical Models can be defined as exploiting statistical models to

extract high level information from image. Image observations are related to solutions with

some uncertainty and Graphical Models can provide a full probability distribution over all fea-

sible solutions and the most probable solution could be computed using inference algorithms.

Graphical Models are represented by a set of observation variables and output variables

[6],[4],[38]. They not only define the variables but also the interaction between these variables

for which they provide elegant means.They encode joint or conditional probability distribution

of these variables by means of a graph. A graph comprises nodes that are connected with edges.

Nodes correspond to the random variables, and edges correspond to direct interactions between

them (see Fig. 2.4 for simple graphical model structures). As known from graph theory, edges

on a graph can exist in two form: directed and undirected. Depending on the type of the edges

(links), Graphical Models can be named as directed graphical models and undirected graphi-

cal models (see Fig. reffig:graphicalModel for illustrations of directed and undirected graphical

models). Directed graphical models are also known as Bayesian Networks and they are useful

for expressing causal relationships between random variables. More information about directed

models can be found in [39, 38]. Undirected graphical models are better suited to capture the

mutual dependence between pair of nodes (random variables). The most common type of

Graphical Models used for image processing are undirected graphical models [6, 4, 38]. The

graph structure can encode the conditional dependence and independence among the random

variables. First we explain the conditional dependency property of directed graphical mod-

els. Graphical models provide efficient representation for conditional distribution of multiple

random variables with the directed links between them. Joint distribution of multiple random
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variables can be expressed as the product of factors that are defined only on a subset of the

random variables. These factors are actually conditional distribution of the subset of random

variables. The graph shown in Fig. 2.5(a) illustrate a directed graphical model that express

conditional distributions among subsets of the random variables. Note that the direction of the

links added to the graph are from the nodes (variables) on which the distribution is conditioned.

The graphical model in Fig. 2.5(a) denotes that the joint distribution is given by the products

(over all of the nodes of the graph) of conditional distribution of each node conditioned on the

parents of that node in the graph. Thus for a graph with N nodes, the joint distribution is given

by

p(X) =

N∏

n=1

p(xn | pan) (2.9)

where pan symbolize the set of parent nodes of xn, and X = {x1, x2, . . . , xn}

The edges on undirected graphical models do not represent conditional distributions but ar-

bitrary non-negative functions. These non-negative functions are defined over sets of variables

that are local on the graph and they are actually the factorization of the joint distribution. The

appropriate notion of this locality is defined by a a graphical concept called clique which is a

subset of nodes that are fully connected. Thus the joint distribution is written as the product of

functions of cliques.

p(X) =
1

Z

∏

C∈C

φC(XC) (2.10)

where C is the set of cliques in the graph and Z is the partition function that normalizes the

p(X).

Z =
∑

x∈X

∏

C∈C

φC(XC) (2.11)

Note here that, there is no assumption on the functions φC(XC) (also named as potentials)

to have a specific probabilistic interpretation except φC(XC) ≥ 0. This simple representation

is called factorization, and it can be made explicit on the graph by introducing additional nodes

for the factors in addition to the nodes representing the variables. This modified graph is called

Factor Graph and Fig. 2.6 illustrates two different factorization of fully connected undirected
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(a) (b)

Figure 2.5: (a) A directed graphical model representing joint probability distribution of three
random variables; (b) An undirected graphical model representing joint probability distribution
of three random variables. Note here that, E is enumeration of possible cliques in this graph:
E → 2{x1,x2,x3,x4}.

(a) (b) (c)

Figure 2.6: (a) A fully connected undirected graph. (b) and (c) Two factor graphs each of
which corresponds to the undirected graph in (a).

graph. Note here that, factorization does not imply any conditional independence. We will

focus on conditional independence later on. Also, we will see in Section ??, there are principled

algorithms that can exploit the factor graph structure to efficiently calculate the local marginal

probabilities or the most probable labels over nodes (this is also called MAP estimation).

Like conditional distributions, conditional independence properties of multiple random

variables play an important role. The probability distributions specified by graphical model

differ by the conditional independence assumptions encoded in the graph. Consider three vari-

ables x1, x2, x3 and suppose distribution of x1 conditioned on x2 and x3 is independent of

x2:

p(x1 | x2, x3) = p(x1 | x3) (2.12)
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(a) (b)

Figure 2.7: (a) Two Bayesian networks showing conditional independence of variables
x1 ⊥ x2 | x3; (b) An undirected graphical model representing the conditional independence
of random variables x1 ⊥ x2 | x3.Theillustrationsareadoptedfrom[6]

Using this, we can also write the joint distribution of x1 and x2 conditioned on x2 as:

p(x1, x2 | x3) = p(x1 | x2, x3) · p(x2 | x3) = p(x1 | x3) · p(x2 | x3) (2.13)

This says that given x3, the variables x1 and x2 are statistically independent. This is represented

with a directed graphical models as shown in Fig. 2.7(a).

Conditional independence property of random variables hold for undirected graphical mod-

els as well. Moreover, it is even possible to determine the independencies by graph separation

operations. Basically, given the graph nodes V composed of sets if nodes V1, V2, V3 ⊆ V , if

any path from a node in V1 to a node in V2 includes at least one node in V3, then x1 ⊥ x2 | x3.

Fig. 2.7(b) illustrates an example for conditional independence of two random variables on an

undirected graph. We will see in Section ?? that, the conditional independencies among random

variables are actually the core of performing inference and learning in graphical models.

2.3.1 Undirected Graphical Models for Image Segmentation

Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) are two types of undi-

rected graphical models that have been widely used for image processing.
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(a)

Figure 2.8: A simple MRF model that captures Markovian assumptions for image labeling
problem. Yi denotes observation and Xi is a random variable denoting state of the pixel i.

Markov Random Fields

MRFs are generative models that models the joint probability of the observations and the labels.

Holding the Markovian property, they model the interactions among random variables within

a selected neighborhood system. In MRFs, image pixels are strongly related to the labels

and due to the Markovian assumption local random variables are assumed to be conditionally

independent of other random variables given the random variables in their neighborhood.These

prior assumptions can be represented via undirected graphs using observed and hidden variables

as shown in Fig. 2.8.

The hidden variables X = {X1, X2, ..., Xm} can take a value from the set of labels

L = {l1, l2, ..., ln} and the variables Yi correspond to the image pixels i ∈ V = {1, 2, ...,m}

values. The neighborhood system N is defined by the sets Ni, ∀i ∈ V , where Ni denotes the

set of all neighbors of the variable xi.

Based on the Hammersley-Clifford theorem [40, 41] if the potential functions are strictly

positive, a MRF model can formulate a joint probability distribution as a Gibbs distribution

which can be factorized into a log linear model.

p(X,Y) =
1

Z
exp−E(X,Y)

E(X,Y) =
∑

i∈V
φi(Xi) +

∑

i∈V,j∈Ni

φi(Xi, Xj) (2.14)

Here, φi(Xi) is called unary potential since it is associated with only one variable while
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φi(Xi, Xj) is called pairwise potential. Ni is the selected neighborhood and Z is a normal-

ization constant (i.e. partition function), which can be calculated by marginalizing over all

random variables in the MRF.

Conditional Random Fields

CRFs can be viewed as MRFs globally conditioned on the data. They are discriminative models

that directly model the posteriori probability distribution of a set of random variables given the

observations. The conditional distribution P (X | Y) over the labelings is a Gibss distribution

can can be written exactly in the same form of MRFs with a slight difference by conditioning

each random variable upon a set of global observations. The potential functions φi(.) map both

clique assignments and observations to nonnegative real numbers.

2.3.2 Inference and Learning for Random Fields

Having defined the factorization of the probability distribution and specified the energy function

now we explain the two important tasks: inference and learning the model parameters. We will

define the different types of learning and inference problems that will be used in later chapters.

The two important inference problems frequently encountered in computer vision applications

are Maximum a Posteriori (MAP) inference and probabilistic inference. In MAP inference,

X∗ ∈ L is estimated which corresponds to maximum probability. In probabilistic inference,

we find the log partition function and the marginal distribution of for each state of random

variables.

For general (loopy) graphs this problem is known to be NP-hard, but for tree structured

graphs the problem can be solved efficiently. For loopy graphs, when solving binary labeling

problem, if special cost functions are used then graph cut [42, 4] algorithms can solve the infer-

ence exactly and efficiently. For multi labeling problems, graph cuts can provide approximate

solutions, as well [43]. We start to explain the belief propagation method which is exact for

acyclic graphs and provides an approximation in the general case.
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Sum-Product Belief Propagation

The sum-product algorithm is a dynamic programing algorithm that can compute the partition

function Z and the marginal distributions for all variables. It was initially designed to work

on tree-structured factor graphs to provide exact solutions but later on modified version of

it, called Loopy Belief Propagation was proposed to find approximate solutions on general

(loopy) factor graphs. It is called a message passing algorithm and it works by passing real

valued functions called messages along the edges between the nodes [44]. Let’s say we want

to compute marginal probability p(Xi). The marginalization is done by summing the joint

distribution p(Xi) =
∑

X/Xi
p(Xj) over all variables except Xi. The joint distribution of

variables X/Xi can be defined in terms of factor graph expression. This actually allows us to

do a mathematical trick by replacing summation and product operations. Graph factorization

provides two type of messages so that these equation can be written more explicitly. They

are shown in Fig. 2.9. The first type is called variable-to-factor (2.9(b)) and the other type is

factor-to-variable message (Fig. 2.9(a)).

The marginal probability equation is given as:

p(Xi) =
∏

s∈Ni


 ∑

X∈Ns/Xi

Ns(Xi, Xs)


 (2.15)

where Ns denotes the set of factor nodes that are neighbors of Xi and Ns represents set of

all variables in the subtree connected to the variable Xi via the factor node s. Ns(Xi, Xs)

represents the product of all the factors in the subgroup. To simplify the Eq. 2.15, we can write

ms→Xi ≡
∑

X∈Ns/Xi

Ns(Xi, X) (2.16)

This gives us the factor-to-variable message definition. So the marginal probability p(Xi) can

be given by the product of all incoming messages arriving at node Xi.

If we take a deeper look into the definition ofNs(Xi, X) we realize that, it can be described
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(a) (b)

Figure 2.9: Message computation on tree structured graphical models for message passing
algorithm. The illustrations are adopted from [6]

by a factor sub-graph and so can itself be factorized into

Ns(Xi, Xs) ≡
∑

X∈Ns/Xi

fs ·
∏

j∈Ns/Xi

mXsj→s (2.17)

Here fs is the factor associated with factor node s. Substituting Eq. 2.17 into 2.16, and using

log-sum-exponential expression, we obtain

ms→Xi = log
∑

X∈Ns/Xi

exp(−fs +
∑

j∈Ns/Xi

mXsj→s) (2.18)

See Fig. 2.9(a) for a visual illustration.

Finally, it is possible to derive an expression for computing the messages from variables

nodes to factor nodes using the same principal (i.e. sub-graph factorization). According to this

factorization, the product is taken over all neighbors of node Xj except for node sj . This is

represented as

mXj→sj =
∏

j∈Ns/sj

msj→Xj (2.19)

See Fig. 2.9(b) for a visual illustration.
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Here message ordering is important since each type of message depends on the previously

computed messages. There are two special cases when messages do not depend on previ-

ous: 1) The variable-to-factor message in which no other factor is adjacent to the variable.

2) The factor-to-variable messages in which no other variable is adjacent to the factor. For

tree-structured factor graphs there always exist at least one such message that can be computed

initially. The computed message in turn enables the computation of other messages.

We can summarize the inference algorithm in three steps: First, the graph is orientated by

choosing one node as the root and the leaf nodes. In the first step, messages are passed inwards:

starting at the leaves, each node passes a message along the edge towards the root node. The

tree structure guarantees that it is possible to obtain messages from all other adjoining nodes

before passing the message on. This continues until the root has obtained messages from all of

its adjoining nodes. When reached to the root, the partition function can be computed [44, 4].

The second step involves passing the messages back starting from the root towards the leafs.

The algorithm is completed when all leaves have received their messages.

Similar to marginal computation, during forward passing and back passing instead of using

summation (marginalization of all variables) if max operation is used (best state is chosen) at

the end of back tracking one can compute the most probable state for every node. This is called

MAP inference and since max operation is used instead of summation, the algorithm takes

name max-product. This algorithms is generalization of viterbi algorithm [6].

Graph Cuts

Graph cuts were used in computer vision for the first time by Greig et al. [45]. It has been

shown that if an Ising model [46] was used for defining the pairwise potentials of a two label

MRF, then an exact MAP solution can be obtained in polynomial time by solving a st-mincut

problem. A restricted class of energy functions on binary variables can be minimized globally

by the binary graph cut method. To do this, the regular bipartite trap of MRF is changed into

an undirected auxiliary graph that contains two extra special nodes, the source s and the sink

t. Also for each edge a non-negative weight is assigned. The minimum s?t cut of the graph

separates the nodes s and t such that it has the smallest overall weight. This optimal solution to

the original energy minimization problem returns the solution for labeling problem.
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The class of binary energy functions can be solved by graph cuts is of the form:

E(Y,X) =
∑

i∈V
µi(Yi, Xi) +

∑

i,j∈N
ϕi,j(Yi, Yj) (2.20)

Here, µi(Yi, Xi) and ϕi,j(Yi, Yj) denote unary and pairwise factors, respectively. The unary

terms are restricted to be non negative while the pairwise terms should satisfy sub modularity

[47]. According to the sub modularity definition, the pairwise factors encourage their adjacent

variables to take the same state.

For multi labeling problem it has been shown that move making local search algorithms

such as α-β- swap and α- expansion approximately global solutions can be obtained. The

α- expansion algorithm is the most popular graph cut algorithm for discrete multi label MAP

inference. In an iterative scheme, for a given label α, the expansion neighborhood allows every

node to either remain in tis current state or to change its state to α. Every single step is actually

a binary labeling problem that finds the optimal solution within the neighborhood of the current

solution.

Parameter Learning for Conditional Random Fields

Instead of specifying a single-fixed model we can introduce free parameters into the model.

Given some training data we can adjust these free parameters to effectively learn a good map-

ping between observation and output variables. This is known as parameter learning and train-

ing the model.

Given an observation y and a parameter vector w, the conditional probability of a labeling

x is

P (X|Y, w) = exp(−E(X|Y, w)− logZ(Y, w)), (2.21)

where Z(Y, w) =
∑

x∈L exp(−E(X|Y,w)) is the partition function. The energy is often

defined as the negative inner product E(x|y, w) = −〈w,ψ(x, y)〉, in which ψ(x, y) is the

concatenation of features of all nodes and edges.

We train the parameter vectorw from a given set of training data {(xn, yn)}, n = 1, . . . , N .
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This can be achieved by minimizing the convex loss function defined as

loss(w) = ‖w‖2 + c
∑N

n=1 [logZ(yn, w)− 〈w, φ(xn, yn)〉]. (2.22)

This optimization problem is called as maximum conditional likelihood estimation and does not

have a close formed solution. But it is convex and we can find the optimal w∗ using gradient

descent which is the most straight-forward technique to numerically solve problem. Starting

with an arbitrary estimate of the w, one iteratively approaches the minimum. For more details

of the parameter learning we refer the reader to [4].

2.4 Comparison of Graphical Models & Deformable Models

We summarize the differences and similarities of Deformable Models and Graphical Models

in Fig. 2.4. The two well studied, popular methods are both energy minimization based, but

they are completely different approaches. One main difference is the domain in which they

are defined. Deformable Models are defined in continuos domain while Graphical Models are

discrete. Correspondingly, DM is continuous domain optimization problem whereas GM is

discrete optimization problem. DM optimization provides locally optimal solutions while GM

optimization returns globally optimal solutions. Both have certain advantages and disadvan-

tages. With DM it is possible to get natural looking fine detailed segmentation surfaces. With

GM methods it is possible to get quick and initialization independent reasonably good results.

In the next chapters, we are going to to show that it is possible to combine them taking ad-

vantage of their pros. Also we will show that for particular applications GMs are preferred

when probabilistic learning tools are desired to arbitrarily partition the image into multiple

parts rather than focusing a particular object in the scene.
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(a)

Figure 2.10: Comparison of Graphical Models and Deformable Models.
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Chapter 3

Collaborative Multi Organ Segmentation by Integrating DM &
GM

Organ segmentation is a challenging problem on which significant progress has been made.

Deformable models (DM) and graphical models (GM) are two important categories of opti-

mization based image segmentation methods. Efforts have been made on integrating two types

of models into one framework. However, previous methods are not designed for segmenting

multiple organs simultaneously and accurately. In this chapter, we propose a hybrid multi or-

gan segmentation approach by integrating DM and GM in a coupled optimization framework.

Specifically, we show that region-based deformable models can be integrated with Markov

Random Fields (MRF), such that multiple models’ evolutions are driven by a maximum a

posteriori (MAP) inference. It brings global and local deformation constraints into a unified

framework for simultaneous segmentation of multiple objects in an image. We validate this

proposed method on two challenging problems of multi organ segmentation, and the results are

promising.

3.1 Introduction

Segmenting anatomical regions from medical images has been studied extensively and it is

a critical process in many medical applications. For MR or CT images, distinct boundaries

between organs may be blurred and ambiguous. Furthermore, the intensity profile of the region

inside the object can represent inhomogeneity. Thus accurate segmentation of these organs

from these images is very challenging. Two important categories of optimization based image

segmentation methods are Graphical Model (GM) based [48, 42, 49] and Deformable Model

(DM) based [13, 50, 51, 52, 53, 24] methods. Both categories are able to achieve satisfactory

results by combining the confidence based on local evidence such as colors and textures and
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the confidence based on global evidence such as the smoothness of the boundary. However,

each model has its own strengths and weaknesses.

GM methods can reach the global optimum because of efficient algorithms inspired by the

max-flow min-cut theorem. Although in most cases, the used algorithm such as α-expansion

[43] is still a local search algorithm, one can claim the solution is approximately optimal due

to the extremely large local search neighborhood. The unique solution of GM methods could

achieve reasonably good segmentation quality, but sometimes misses the fine details, which

could be critical in medical context. On the other hand, DM methods, given a reasonably good

initialization, would have the flexibility to deform to nearby local minimum of the energy which

could achieve segmentation with nice details. However, due to the complicated energy model,

DM methods use gradient descent method, and thus could be trapped in local minima that are

very far from the ground truth.

3.2 Motivation

In this chapter, we propose a hybrid model to naturally cope with the multi organ segmen-

tation problem by integrating GM and DM methods. Our main idea is to formulate a multi

label graphical model problem at each iteration, and use the MAP inference result as part of

the gradient (i.e., external forces) of deformable model. Such inference task could be solved

efficiently using α-expansion algorithm [43]. The main advantage of our hybrid model is that

in the multiple labeling graphical model, regions of different labels bring high level constraint

naturally and implicitly to the external forces of deformable models. Therefore, two similar

neighboring regions can still be separated easily, and the resulting regions are more accurate as

per the ground truth. See Figure 3.1 for an illustration and Section 3.5 for more comparisons.

Besides the accuracy and robustness for multi organ segmentation, this proposed model does

not need any offline learning (in contrast to [54]), has few parameter, and contains the advan-

tages of both GM and DM methods. We have applied this proposed method to two challenging

clinical applications, i.e., knee joint bone segmentation and cardiac segmentation, and achieved

promising results.
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Figure 3.1: Top: binary graphical model (left) would produce wrong regions for either labels,
but multi-label graphical model (right) is correct; Bottom: comparison of combining DM with
binary GM (left) and multi-label GM (right).

3.3 Related Work

Several works combining the two models have been introduced in the computer vision and

the medical imaging literature. This approach could be defined as integration of deformable

models with learning-based classification. The general idea is to use graphical model at the

gradient computation step of the deformable model, so that the deforming contour is less likely

to be trapped at local minima that is far from the ground truth. Chen et al. [54] deform the

contour by iteratively solving a graphical model optimization problem. At each iteration, the

graphical model enforces that the deformation should respect priors trained offline and also

should not be too far from the current contour. Huang et al. [2] formulated the 2D segmenta-

tion task as a joint inference problem of contour detection and pixel labeling so that the two

models are tightly coupled. The active contour and the MRF are considered as two different

modules, which are integrated into a graphical model, and the solution is given by a Bayesian

decomposition that decouples computing the deformation and label field inference. Instead of

the MAP inference, the marginals of the graphical model are used as part of the gradient in de-

formable model. Intuitively, their formulation can be seen as a deformable model that is driven

by the probability field estimated with the MRF. It was proposed to overcome the limitations

of edge-based probabilistic active contours.
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However, these methods only use binary labeling when constructing the graphical model,

which cannot be used directly for segmenting multi organs. One could extend these methods

to segment multi organs straightforwardly by constructing a binary graphical model for each

deforming contour. In this setting, the foreground and background labels correspond to the cur-

rent concerned organ and the union of the rest, respectively. Unfortunately, this method would

have difficulty to distinguish the two neighboring regions if they only have slightly different in-

tensity distributions but are very different from the remaining regions (see an example in Figure

3.1).

3.4 Integrating Deformable Models and Graph Cuts

The goal of our segmentation method is to find multiple regions with smooth and closed bound-

aries. We start with the overall energy functional for m models forming a set C as:

E(C) = Eint(C) +
m∑

i=1

Ei
ext(Ci) (3.1)

Here, the first term Eint is the smoothness term (see [13] and [50]) and Ei
ext is the data term

for contour i. In contrast to the classical choice such as the difference from a constant value

[52] or the negative log likelihood of a given distribution [51], we assume a region of interest

(ROI) for contour i is given (Ri), and define the i-th external energy as

Ei
ext(Ci) =

1

V ol

∫∫∫

Ω
(ΦCi(x)− Φ∂Ri

(x))2dx (3.2)

Here Ω is the image domain and V ol is its volume. We denote ΦCi and Φ∂Ri
as the signed

distance functions of the contour and the boundary of the region of interest, respectively. In-

tuitively, minimizing this term would pull the contour, Ci, towards the boundary of ROI, ∂Ri.

Our algorithm minimizes E(C) using gradient descent method. At each iteration, we compute

the gradient ∂E/∂C and evolve the contours accordingly.

At each iteration, we define the ROIs by constructing a mutli-label graphical model de-

pending on the current contours C. The MAP of the graphical model gives us the set of ROIs.

We denote L as a labeling, which assigns to each pixel/voxel a label belonging to the label set
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L = {1, ...,m,m+ 1}, corresponding to regions inside the m contours and the background

(m+ 1). We compute the labeling optimizing the conditional probability

L∗ = argmax
L

{P (L | I,C)} (3.3)

The ROI Ri is then the set of voxels with label li in L∗. Assuming that the image data I

and the deformable models C are conditionally independent given the labeling L, we define the

posterior probability of labeling L:

P (L | I,C) =
P (I,C | L)P (L)

P (I,C)
=
P (I | L) · P (C | L) · P (L)

P (I,C)
(3.4)

=
P (I) · P (L | I)

P (L)
· P (L | C)P (C)

P (L)
· P (L)

P (I,C)

=
P (I) · P (C)

P (L) · P (I,C)
· P (L | I) · P (L | C)

With the assumption that each labeling has equal prior probability, and I and C are fixed

we have

P (L | I,C) ∝ P (L | I) · P (L | C) (3.5)

Here the negative log likelihood of P (L | I) is the same as the energy in conventional

multi-label graphical model, and P (L | C) is the model shape prior, defined as P (L | C) =
∏

j∈V P (Lj |C), where V is the set of all voxels. The shape prior of each individual voxel

P (Lj |C) is inversely proportional to the distance from the model. Let i = Lj , we have

P (Lj | C) = P (Lj | Ci) =





1 if ΦCi(j) ≥ 0,

1− ‖ΦCi
(xi)‖

‖(ΦCi
)‖∞ otherwise

According to the above definition, voxels which are closer to a model are more likely to

belong to the label of that particular model. This leads to the final energy for graphical model

as
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(a) (b) (c) (d) (e)

Figure 3.2: Iterative, model constrained estimation of labels. (a) User provided model initial-
izations and background cues (strokes in magenta). (b-d) multi-phase graph cut results and
states of the deformable models at consecutive iterations. In top row, gray color represents
the label for blue model (left ventricle) and black color represents the label for green model
(right ventricle), white label represents the background. In bottom row, deformable models at
consecutive iterations are shown. (e) Plot of Eext energy values computed at each iterations.

− log(P (L | I,C)) ∝ E(L) =
N∑

j

(
uj(Lj)− log(P (Lj | C))

)
+
∑

p,q∈N
Lp 6=Lq

bpq (3.6)

In the above equation, uj(Lj) is the cost of assigning labelLj to jth voxel and are computed

as ‖Ij − µi‖2/σi where i = Lj , µi and σi are mean and standard deviation of the intensities

inside the region enclosed by Ci. bpq is the typical binary term of MRF and is defined as

(|Ip − Iq|2/σ)× dist(p, q)−1 (3.7)

For more details about construction of the graph and inference method we refer the reader

to [49] and [43]. We solve the MAP inference problem given in Eq. 3.3 using α-expansion

algorithm [43].

3.4.1 Alternating Energy Minimization Scheme

According to the energy function defined in Eq. 3.1, the models are deformed under smoothness

constraints and the attraction force coming from the ROIs. The minimization problem can be
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achieved by using an alternating minimization scheme where we do coordinate descent and split

it into two problems: 1) fix multi phase labeling conditioned on the given models and image

data; 2) locally deform the models minimizing the other energy terms such as smoothness and

image gradient etc. A single deformable model Ci is represented explicitly in terms of splines

(2D) or meshes (3D) as in [1], [55] and deformed according to the deformable model dynamics

explained there. Our segmentation process starts with initialization of the models {C1, ..., Cm}

for the foreground objects and providing markings (seeds) for the background. Before starting

the iterative process, a graph is constructed only once with the desired connectivity (can be 8 in

2D or 26 in 3D) using the initial models and the seeds. The unary and compatibility potentials

along with the model shape constraints are computed for the graph cut. Then we calculate the

labeling according to the minimization of Eq. 3.6. Once we obtain the labels for each pixel,

we select the ROIs that intersect the models, and for each model, we compute driving forces

using the associated ROI (see Eq. 3.2). We continue this alternating process iteratively and at

each iteration after the models are deformed we update the parameters µ, σ and P (Lj | C). We

continue deformation in the same scheme until convergence.

In Fig. 3.2, we demonstrate this process for two foreground object segmentation. Fig. 3.2(a)

shows the user initialized models for the foregrounds (blue and green) and strokes for the

background (in magenta). Fig. 3.2(b-d) top row show the states of MRF labeling at consecutive

steps. One can observe that, as the iterations continue not only the smoothness of the labels are

enhanced but also the accuracy of the labeling gets better and better. Thus, Eext provides more

accurate driving force as the iterations continue. Fig. 3.2(e) shows the energy minimization

process at each iteration which is calculated from Eq. 3.2. According to the plot, it is clear that

the energy computed for each model is monotonically minimized and converges.

3.4.2 Implementation Detail

Multi phase graph cut method is not guaranteed to always return smooth and distinct region

segments for each label, especially when target regions present similar/identical intensity prop-

erties. Due to this similarity, the calculated unaries could be in-distinctive and resulting labeling

would not return structured segments. In such a case, the selected ROI per deformable model
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(a) (b) (c) (d) (e)

Figure 3.3: Label unification and its effect to the segmentation: (a) Example kernel density
estimate of the regions underneath the models. (b)Top row MAP-MRF labeling without unifi-
cation (4 foreground labels). Bottom row, MAP-MRF labeling with unification (2 foreground
labels). (c)-(d) Signed distance maps for two different models with (bottom) and without (top)
unification.(e) Resulting segmentations obtained w/o unification.

would not be accurate enough to drive the model correctly. To tackle this problem we de-

velop an online label unification method which adaptively identifies the labels of the models

to be merged. We do this unification operation according to the Kullback-Leibler divergence

(KL) between the kernel density estimated intensity distributions underneath the models. In

Fig. 3.3(a), the estimated distributions for each model region is shown. In this scenario, ac-

cording to KL score, the algorithm decides to unify the yellow model label with the red model

label, and the light blue label with the dark blue label. With the unification of the labels target

label size becomes 3 including the background. In (b), we compare the resulting labels of multi

phase graph cut w/o using the unification. As seen in the bottom image, the labeled regions

are more smooth relative to the top image. Note that the label set is automatically shrunk to

2 foreground labels but this does not mean that number of models are changed. The models

always select the binary ROI that intersect with itself. Then, the distance map of the ROI is

used in the Eext term as shown in Eq. 3.2. In Fig. 3.3(c) and (d), we show the effect of our

unification mechanism to the deformation force. As seen in the bottom image the distance

map computed for right ventricle and the left atrium are more accurate. Also in Fig. 3.3(e) we

compare resulting segmentations at convergence to demonstrate the effect of our unification

process.
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(a) (b) (c) (d)

Figure 3.4: Experiment on knee joint MR image. (a) Three model initializations and back-
ground cues (strokes) for segmentation of tibia, femur and patella. (b) Result of [1]. (c) Result
of [2]. (d) Result of our method.

Algorithm 1: Alternating minimization scheme.

Initialize the set of contours {C1, ..., Cm} and the background cues as strokes;

while change in the states of {C1, ..., Cm} ) ≤ thres do

· Calculate C̃ using KL divergence KL (C1, ..., Cm);

· Calculate α-expansion parameters for n+ 1 labels. // n is obtained after label

unification;

· Calculate region labeling L based on Eq.3.6, usingP (L | I, C̃);

· Calculate Φ∂Ri
for each contour;

· Deform contours {C1, ..., Cm} locally using traditional speed terms in addition to

the GM based term;

end

With this alternating minimization scheme, we take advantage of the strengths of these two

methods. At each iteration the models are updated locally with globally computed forces and

the global parameters of the MAP-MRF are updated locally. Moreover as the models start

getting close to the actual target object shape, the system reaches convergence very precisely.
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3.5 Experiment & Results

We validate this proposed method on two multi organ segmentation applications. Our method

is compared with two relevant approaches, 1) Metamorphs [1] which integrates texture infor-

mation into deformable models, and 2) a graphical model coupling MRFs and deformable mod-

els [2]. They are evaluated on both MR and CT data sets whose ground truths were manually

annotated by clinical experts. Our algorithm was implemented in MATLAB with C program-

ming extensions. We tested the algorithm on a quad core (3.4 GHz) computer with 8Gb of

memory.

3.5.1 Knee Joint Bone Segmentation

We segment knee joint bones femur, tibia and patella from 23 MR scans. The data scan protocol

consists of 3D DESS scan with water excitation having 0.36x0.36x0.70mm voxel size. The

qualitative comparisons are shown in Fig. 3.4. Due to the intensity heterogeneity inside the

bone structures (particularly in regions close to the cartilage), [1] does not perform well and

stuck in local minima as it uses the local online intensity modeling. Starting from the same

initializations, our method converges to the final state for all 3 organs within 30 iterations

(∼6.5 sec/iter) while [1] stops at the final stage after 18, 23 and 38 iterations (∼8 sec/iter) for

patella, tibia and femur, respectively. For fair comparison, we tune deformation parameters (i.e.

smoothness, image gradient, balloon) for method [1] to achieve the best performance and keep

them exactly same for our method.

To compare with [2], we also carefully selected its parameters in order to obtain the best

results. We observed that the Expectation Maximization approach in [2] performs better than

[1] when updating the attraction force for the deformable models. However, it takes more

iterations due to its narrow band limitation also running time per iteration takes ∼20 sec which

is 3 times the running time of our approach. In addition, our method takes advantage of multi

phase MRF labeling and the ROIs per models are estimated more accurately. Thus, our hybrid

approach gets out of local minima and also avoid possible leakages towards muscle regions.

Segmentation of bone structures from Knee MR images is a critical process for several

diagnoses like surgical knee replacement and cartilage segmentation. In both cases the analysis
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of the structural anatomy of the surface of femur, tibia and patella (knee cap) are very important.

In the surgical operations, the damaged knee joint is replaced with artificial prostheses and

these prostheses should ensure optimal outcome during and after surgery. Also bone-cartilage

interface should be detected very accurately to measure the volume of cartilage tissue.

Organs Methods Volume Overlap Avg. Surface Iter Number
Error [%] Distance [voxel] till convergence

femur [1] 33.32±16.75 12.2±9.42 38
femur [2] 8.6±2.81 6.34±1.99 66
femur Ours 7.34±2.75 4.2±2.42 ∼30 for all

tibia [1] 17.12±5.11 7.32±3.32 23
tibia [2] 7.37±3.17 5.66±4.32 90
tibia Ours 6.27±2.22 3.3±0.57 ∼30 for all

patella [1] 28.12±12.31 7.1±6.19 18
patella [2] 4.23±0.31 1.5±0.19 43
patella Ours 3.9±1.37 1.4±0.32 ∼30 for all

LA [1] 12.12±2.75 2.2±1.32 27
LA [2] 11.89±1.85 2.09±1.2 31
LA Ours 7.12±2.21 1.9±1.45 ∼50 for all

LV [1] 11.32±3.75 4.4±3.42 45
LV [2] 13.45±4.35 4.9±3.57 55
LV Ours 8.12±1.35 3.1±1.52 ∼50 for all

RA [1] 7.32±2.00 2.2±0.54 23
RA [2] 6.13±2.03 2.00±0.54 30
RA Ours 5.88±2.33 1.92±0.32 ∼50 for all

RV [1] 9.32±2.75 3.2±1.42 45
RV [2] 12.98±2.86 4.32±1.22 55
RV Ours 9.12±2.9 3.1±0.42 ∼50 for all

Table 3.1: Quantitative comparisons of our method with two relevant approaches, 1) Meta-
morphs [1] which integrates texture information into deformable models, and 2) a graphical
model coupling MRFs and deformable models [2]. We reported the mean and standard de-
viation of voxel distances between segmented surfaces and ground truth, and volume overlap
errors in proportions for 23 MRI and 15 CT scans.

3.5.2 Cardiac Segmentation

We evaluated our algorithm on segmenting the cardiac structures such as Right Atrium (RA),

Right Ventricle (RV), Left Ventricle (LV), Left Atrium (LA) from a set of 15 CT volumes.
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The data scan protocol consisted of 3D CT scan with 1.0x1.0x1.0mm voxel size. The figure

is shown in the supplementary materials due to page limitation. Compared to [1], our method

performs slightly better in terms of avoiding leakages towards the heart muscle. In addition, the

myocardium between LV and RV is identified better. For the LV case, the papillary muscles are

nicely included into the segmentation owing to the smoothness factor of the graphical model

and the parameter update scheme of the deformation. With our method, all models converge

to the final state within 50 iterations (∼4.9 sec/iter). Compared to [2], our method achieves

better average accuracy of all organs since the background is identified well within the multi-

region labeling scheme. Most significant accuracy differences between [2] and our method are

observed for the RV and LV cases, due to local minima problems.

As seen in Fig 3.5(c), there is overlapping region between Left Atrium and Left Ventricle.

Also the papillary muscles inside Left Ventricle can not be enclosed inside the blood pool due

to the different intensity profile. Accordingly, the walls of the Left Ventricle cannot be captured

well. Similarly, due to the very low contrast, myocardium region between the ventricles can not

be distinguished. It converges to the resulting segmentation in 36 iterations. In summary, [1]

fails handling leakages and getting out of local minima. Fig. 3.5(d) is the result of [43]. As seen

in the figure, although we tune the smoothing factor of the graphical model approach, it results

in too many separate components yielding five different regions. Also separating Left Atrium

from Left Ventricle is not possible with this method. One could use more strong smoothing

factor to avoid spurious white pixels in the target object regions, but this effects other pixels

labels badly since it is global labeling approach.

(a) (b) (c) (d)

Figure 3.5: Quantitative comparisons on the heart CT image. (a) Four model initializations and
background cues (strokes) for segmentation of Right Atrium, Right Ventricle, Left Ventricle
and Left Atrium. (b) Results of [1]. (c) Results of [2]. (d) Results of our method.

Table 3.1 shows quantitative results of our method in both applications. We reported the
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(a) (b)

Figure 3.6: 3D visualization of results using our method; (a) Cardiac four chamber data. (b)
Knee joint bones.

mean and standard deviation of voxel distances between segmented surfaces and ground truth,

and volume overlap errors in proportions. We also visualize 3D results of our method in

Fig. 3.6. In general, our method achieves more accurate results than the other two hybrid

approaches, and is also more efficient.

3.6 Conclusions

In this chapter, we proposed a new hybrid multi object segmentation approach, in which de-

formable models and multi label graphical models are integrated into an alternating optimiza-

tion framework. We integrate multi phase graph cut labeling into deformable model framework

so that it provides the desired speed term for each deformable model to converge to the true

boundary. We provide solutions for potential drawbacks of the two methods by combining the

benefits of them to segment multiple objects efficiently and simultaneously using global and

local constraints. We validated our method on medical images (MR, CT) and real-world im-

ages. As a future direction, we are currently working on speeding up the running time of our

algorithm in 3D. We are planing to use a supervoxel approach which could reduce the graph

cut processing time drastically. We also consider using conditional random fields model for a

learning based multi object segmentation that might possibly use coupled prior information as

well.
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Chapter 4

Review on Neuron Reconstruction from Electron Microscopy
Images

4.1 Introduction

Researchers have been working on mapping of circuit diagrams of nerve systems since 1950s.

It has been argued that detailed maps of synaptic connectivity would be very helpful for under-

standing how the brain causes behavior and how brain malfunctions cause behavioral disorders

[56]. With the recent developments in electron microscopy (EM) technology, people in the

field of neuronal circuit reconstruction, now have the chance to work on very large scale and

high resolution neuronal tissue volumes towards understanding the functionality of neuronal

structures. The advancements in EM technology made the identification of dendrites, synapses

and axons possible. In the last decade, a young topic named Connectomics [57], has shown

significant progress. It provides new insights into the relation between the brain structures and

its function [58]. Modeling this relationship is believed to provide deeper understanding for the

principal reasons of serious brain diseases such as mental illnesses and learning disorders.

To reconstruct neuronal arbors, synapses, and glial cells (this means a complete wiring),

the brain images has to be acquired at nanometer (nm) resolution []. There are two notable

EM imaging techniques that can provide sufficient information for reconstruction of a nervous

system: i) Serial section transmission electron microscopy (ssTEM) is the first step towards ob-

taining a complete neuron wiring diagram and provides potential of bringing a huge impact on

the understanding of the whole nerve system by providing sufficiently high (synaptic) resolu-

tion in tractable amount of time. It can be used for reconstruction of a complete nervous system

of small organisms such as C. elegans or Drosophila larva and delivers anisotropic volume

with large slice thickness [8]. ii) Focused ion beam based serial section (FIBSEM) imaging

is used to acquire sub-volume of adult mouse brain tissue at higher resolutions with isotropic
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resolution in three dimensions [9].

4.2 Challenges in Neuron Segmentation and Reconstruction

Neuron reconstruction from EM images relies on the accurate detection and segmentation of

branchings and mergers of neuronal structures, thus small merge or split errors on membrane

segmentation would make the results useless and the interpretation wrong [59, 60]. The de-

cision for a membrane needs multiple levels of information which come from indicators such

as gradient, texture, intensity and even prior knowledge. This challenges the computer vision

and machine learning community to develop accurate and efficient techniques for neuron cell

segmentation. Currently, there are remarkable progress in detection, segmentation and recon-

struction of neuronal arbors; however, the state-of-the-art methods are not completely sufficient

since the accuracy requirement is extremely high. Segmentation of EM images faces significant

challenges:

• Diffused and low contrasted membranes (see Fig. 4.1(a)).

• Complex appearance within cells (see Fig. 4.1(b)).

• Similar membrane appearance for multiple structures (i.e., mitochondria and vesicles)(see

Fig. 4.1(c)).

• High variation in shape of structures (elongated, twisted) (see Fig. 4.1(d)).

• Very large data size requires efficient methods in terms of space and computational com-

plexity.

With the developments in computer processors and data storage systems, today, it is possi-

ble to acquire large image datasets in the GB-TB range. However, with data sets this size, man-

ual analysis is no longer feasible. The current automated methods cannot solve all the above

mentioned challenges [61, 62]. Therefore, manual or semi-automated interactive systems are

still necessary in practice since Connectomics requires extremely accurate partitioning. In order

to achieve a satisfying quality, human experts have to proofread, namely, manually correct the

results of automated methods. Thus, semi-automated tools which can address large data sets

with reduced user interaction and low complexity are also of huge interest [63, 64, 65, 66, 67].
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(a) (b)

(c) (d)

Figure 4.1: Sample image patches illustrating the challenges of detection and reconstruction
of neurons from electron microscopy images. (a) Weak, cluttered or even no local membrane
evidence at the locations pointed by blue arrows; (b) Complex appearance inside the cytoplasm
of neuron cells; (c) other organelles (i.e., mitochondria (red) and vesicles (green) ) having mem-
branes with similar appearance features; (d) High variation in the shape of neuron structures.
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4.3 Previous Work

Existing attempts at automatic segmentation of neural tissue from EM images can broadly

be divided into two categories. i) Pixel-wise classification based approaches try to identify cell

membranes. ii) Region based approaches start with initial superpixels and merge small regions.

Supervised learning methods have been focusing on neural network and decision forests based

frameworks to achieve accurate boundary detection [68], [69, 70], [71].

In [68], a multi layer convolutional neural network is utilized to classify pixels as fore-

ground and background. Their method presents two critical properties: i) the classification filter

for each layer is obtained directly from the data, and ii) the multiple convolutions throughout

the layers of the network provide an indirect filter effects. In their work the neural network

contains huge number of parameters and therefore is computationally intensive and requires

very large training set.

The approach of [70, 69] is based on a key concept of using nested artificial neural net-

works (ANN). To improve the membrane detection, the performance of ANN can be boosted

by incorporating learned membranes from sequential sections and applying tensor voting based

post-processing. Their method avoids the expensive computation of the filter banks which are

traditionally used to extract pixel-wise features. However their final performance is affected

very badly since they consider only local image feature/information.

In more recent works [72] and [73], a convolutional network is used to generate affinity

graphs for image segmentation. An affinity graph is a graph whose nodes correspond to im-

age pixels, and edges reflect the affinity between them. Graph-based segmentation algorithms

solve the problem by constructing and then partitioning an affinity graph. The error measure

of boundary detection is given by edge misclassification rate of affinity graphs; however this

is not the only criteria directly renders the quality of segmentations produced by partitioning

the affinity graph. In [72], different than previous works, a segmentation performance measure

called Rand Index has been used in the cost function of affinity learning stage. By using a con-

ventional graph partitioning algorithm they find the connected components of the thresholded

affinity graph, and train an affinity classifier that directly minimizes the Rand index of clusters



49

resulting from the graph partitioning. In [73], the affinity weights of a graph is learned by train-

ing a convolutional network. Here, the affinities are estimated by classifying large number of

image features in a gradient descent procedure while adjusting network parameters. Thus this

method needs long training times or fast GPU implementations in practice.

To reduce computation time and the memory consumption of optimization methods em-

ployed on affinity graphs, sparsification of the affinity graph has been used as a solution. Im-

portant examples of this approach can be given as [74, 75, 76, 77, 71, 64, 62, 78, 79, 80]. In

these approaches the nodes of the graph represents superpixels (small regions) and the affinity

is defined as the relationships between regions. These approaches can be divided into two cate-

gories based on the way the relationships are encoded. The first category [74, 75, 76, 77] utilize

regular loopy graphs where spatially connected regions are linked to each other with undirected

edges. These methods come up with approximate inference algorithms such as integer linear

programming and loopy belief propagation. To overcome the errors in boundary misclassifi-

cation, many of them employ procedures based on statistical learning or topology-preserving

constraints. The second group [71, 64, 62, 78, 79, 80] actually use hierarchical representations

of regions. The main difference of these approaches from the first category methods is based

on the assumption that the hierarchy of regions can actually encode the topological constraints

inherently and is content driven. If this assumption is true, than very efficient inference or

classification algorithms can be employed on that hierarchical representation. These efficient

algorithm are very effective when processing immense data.

We have mentioned that custom softwares have been designed for proofreading dense neu-

ron reconstructions [63, 64, 65, 66, 67]. The common property of these approaches is that they

all target reducing manual effort. The way they simplify the interaction process mostly rely on

specific interface and visualization designs such as mapping 2D merge and split operations to

real time 3D reconstructions or highlighting only few region of interest one at a time based on

some defined priorities. These priorities are usually obtained by utilizing learning methods and

represented as confidence measure for user consideration.
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Chapter 5

Multi-Stage Decision Strategy for Neuron Segmentation

In order to extract useful information from EM images, such as segmentation, it is compul-

sory to characterize regions structurally, as well as contextually. For that reason, we propose

a multistage decision mechanism that utilizes underlying differential geometric properties of

objects in a biologically inherited framework. Consequently, we start with an initial feature

selection procedure to select most relevant features to characterize distinct regions, such as

membrane, cytoplasm and outliers. Similar to a topographic map, a random-forest classifier

is employed to highlight mountain ridge like structures, e.g. membranes as well as plateaus,

e.g. cytoplasm. In order to extract the underlying geometry of structures on this topographic

map (especially membrane like structures), principal surface analysis is utilized. This unsuper-

vised technique returns highly sparse yet accurate low dimensional representation of the data

and especially characterizes membrane like regions. A task specific, second stage decision

mechanism is employed to distinguish contextually different mitochondria and cell boundary

membranes. This second stage learning/decision mechanism is based on the appearance, the

initial topographic map with its low dimensional reconstruction and expert supervision on dif-

ferent types of membranes. Initial results on individual EM slices indicate that the proposed

approach can successfully segment objects with minimal expert supervision and can potentially

form a basis for a larger scale volumetric data interpretation.

5.1 Introduction

In 2d stack of ssTEM images, in order to reconstruct neuronal arbors, one requires to iden-

tify the boundary (cytoplasmic membrane) that encapsulates adjacent neurons. Identification

of boundary from EM images is not a trivial task due to artifacts related to the chemical fix-

ation process in the tissue preparation and the limitation in the section thickness as a result
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(a) (b)

Figure 5.1: Illustration of a random forest classifier performance on membrane prediction.
Training is based on two classes: membrane vs. non-membrane. (a) Input image patch; (b)
prediction result. Bright color means higher probability for being membrane.

of anisotropic resolution [Albert Cordona, personal communication]. Extracting the correct

boundary of interest needs grouping relevant boundary components together which are scat-

tered on image domain.

Training a classifier based on the prior knowledge of the shape and the appearance of the

membranes is a common approach to highlight cell boundaries. Such a classifier is ideally

expected to highlight only cytoplasmic membrane regions; however, other elements in a cell

such as vesicles or mitochondria have their own inner/outer membranes, thus make the recog-

nition task more challenging. Fig. 5.1 shows resulting response (b) of a trained random forest

classifier on a sample image patch (a). Here the classifier is trained using two labels cytoplasm

membrane vs. non-membrane. Notice how the membranes of other structures (mitochondria

and vesicles) are equally well highlighted with the actual targeted membrane pixels.

For that reason, in this chapter, we propose a framework composed of two stage decision

mechanisms that can identify accurate cytoplasmic membranes (we will call this as the cell

boundary in the rest of the chapter). First we use random forest classifier to highlight all possi-

ble membrane regions. For each pixel, three membership probabilities are assigned to construct

a multi channeled probability map of the image. Then, we compute a sparse representation of

the image via ridge point detection method to find samples on the ridge of the probability map

that is sufficiently dense to estimate the embedded underlying structure. Next, the sparse ridge

points set is categorized into different classes based on their relative spatial distribution and
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appearance. The spatial distribution and appearance of ridge points are embedded in an affin-

ity graph whose nodes are composed of ridge points and edges are determined via Delaunay

triangulation. The categorization / classification of these nodes is utilized by a second stage

classification followed by a two step label propagation processes in which the nodes are re-

labeled while maximizing the significancy level difference between each label. Finally, the

cytoplasmic regions and their surrounding membranes are segmented on the image domain by

morphological post processing.

5.2 Related Work

There have been efforts on bringing high level contextual information into consideration for

accurate boundary delineation. Graph cut segmentation algorithm is one of the global opti-

mization based solver of the affinity graphs via which, both local, nonlocal and contextual

constraints can be incorporated into optimization. For example, in [81], the flux of the gradi-

ent vector field has been incorporated into graph cut approach as a solution to prevent gaps in

segmentation of thin and elongated boundaries. As a more specific work to ssTEM images,

we refer [82, 83] as instances which uses the flux of gradient vector field in segmentation of

cytoplasmic membranes. They introduce perceptual grouping constraints to complete the gaps

on the membranes. In particular, [83] combines flux of gradient vector field with probability

output of a random forest classifier in a regular graph cut energy (cost) function. The solution

found by graph cut optimization is global. The flux of gradient vector field is thought as the

gap completion regularizer. In this work, choosing correct combination parameters balances

the effect of different energy terms. This method is a solution to the local contrast variation

in membrane pixels; however further manual improvement is needed since the gradient flux

is reported to introduce a large amount of false positives when the image gradient is remark-

ably high at the undesired image regions in addition to the target segmentation borders. Also

applying to large 3D volumes need too much computation power and memory.
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Figure 5.2: The block diagram of our workflow with its training and test parts.

5.3 Membrane Detection and Identification

In this section, we give the details of our approach and also summarize the overall flow via

diagram shown in Fig. 5.2. Briefly, our approach is composed of training and testing sessions.

In the training, two classifiers are built. The first classifier is employed on the pixel domain of

the image while the second is on the intrinsic membrane manifold. Having the two classifiers

prepared, given a test image, first a membrane detection, then the ridge point detection for

low rank representation of the data, graph construction from low rank representation and the

membrane identification on this graph is applied consecutively. Finally, morphology based post

processing is utilized to obtain the ultimate segmentation.

In order to highlight membrane like structures in EM slices, we used random forest classi-

fier [83]. We start with a feature selection procedure to select the most relevant features with

respect to the groundtruth on a training set. Initial pool of features is a mixture of appear-

ance, e.g. edge, min/max intensity and structural, e.g. curvature, filtering responses evaluated

at different scales (in total 243 distinct features). We estimated the mutual information of a

feature [84] with groundtruth and selected the first 4 features (3 different scales of anisotropic

diffusion and Gabor filter response). The total number of the features are arbitrarily selected

based on the visual inspection.

In order to extract accurate boundary from EM images, one needs to distinguish cell bound-

ary from the rest of the elements. However, note that, any element that resamples the cell
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boundary in terms of appearance or structure will also be miss classified. Moreover, cell bound-

aries are not always smooth and might take arbitrary shapes, especially around synapses. Con-

sequently, we approach the recognition task as a three class problem where we highlighted i)

cell boundary, ii) cytoplasm, and iii) ambiguity regions in a training set. Ambiguities are lo-

cations where other membrane types such as mitochondria inner/outer membrane or synapse

locations are present. In fact, the major challenge in boundary decision is to develop efficient

and accurate algorithms for large volumes of data to categorize such ambiguity regions into cell

membrane or cytoplasm. For that reason, we calculate the low rank membrane representation

that accurately governs the underlying biological structure, yet provides sparse representation

of the data.

Fig. 5.3-a shows the result of the random-forest classifier on a sample test image. Each color

depicts the probability of having one class where red, green and blue represent cell membrane,

cytoplasm and ambiguity regions correspondingly. In order to sparsely reconstruct a low rank

representation of the data, we use the membrane probability map (red channel) and estimate the

intrinsic structure of the membranes. Unlike previous approaches that partition the probability

map into arbitrary regions, e.g. super-voxels, our sparse reconstruction of the data inherits the

differential geometric properties of the cell tissue.

In order to obtain a sparse representation of the data, we utilized nonparametric principal

curve projections [85, 86]. Intuitively, our goal is to find samples on the ridge of the probability

map that is sufficiently sparse to efficiently analyze the data, yet dense enough to estimate the

embedded underlying structure, i.e. curve. In fact, cell membranes are 2D surfaces embedded

in 3D volume, however, we restrict ourself to the estimation of curves in 2D slices due to the

high anisotropy in the data. For that purpose, we used the first and second derivatives of a

ridge regression function jointly in order to find the ridge locations where gradient becomes

orthogonal to the maximal curvature direction1. Fig. 5.3-b shows the overlay of the detected

point locations on the ridge of the cell membrane probability map.

A crucial recognition step in membrane recognition is to analyze the data in the context and

to classify ambiguities in the data into correct elements (cell membrane/cytoplasm). Pairwise

1Maximal curvature direction is defined as the eigenvector of the local Hessian matrix that has the largest abso-
lute eigenvalue. For details see [85].
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(a) (b)

Figure 5.3: (a) Result of 1st stage random forest classifier on a test image. (b) A closer look to
the detected point locations on the ridge of the cell membrane probability map. Note that the
probability map is just the red channel of image in (a). Unit vectors in the tangent space (red)
and the vectors (green) that are orthogonal to the tangents are also rendered.

similarities with the neighboring elements, appearance, and shape are necessary features to de-

cide if an ambiguous location in the data is cell boundary or not. In order to identify different

types of membranes and uncertainty regions, we classify the projected membrane points into

three: isolated (L1), transition (L2) and inner samples (L3) based on their cross-section proba-

bility profiles. This grouping is done via second stage random forest classifier which is trained

on the probability profile along the normal direction of the tangent space of each projection

point. Fig. 5.4 shows common uncertainty regions (dense blue regions) where the recognition

task is not trivial. Fig. 5.4-a displays the 3 channel probability map obtained from the first stage

random forest classifier. Orthogonal profiles of the probability values across isolated, transition

and inner (cell, mitochondria outer and inner membranes with their associated numbers respec-

tively) are overlaid on the probability map on the left. Similarly, membranes in the transition

and inner regions of the synapse location are depicted on the right. In general, membranes

have distinct profiles based on the spatial location in the cell. An isolated sample lies between

cytoplasmic region, whereas a sample in the mitochondria or synapse is encapsulated by blue

channel (uncertainty region). Lastly, a sample in transitional region is on the boundary between

these two.

Motivated by the aforementioned observations, we formulate the membrane identification

problem as a competitive label propagation, operating over a graph network which is well

matched with our sparse representation.
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Figure 5.4: Illustration of feature vectors for the three classes: L1 (1) partition cytoplasm into
distinct clusters; L2 (3, 5) samples are generally observed in uncertainty regions (dense blue);
L2 (2, 4) samples can be found between cytoplasm and synapse/mitochondria transition.

Let V be the set of projection points L := L1
⋃
L2
⋃
L3 and E be the pairwise edges be-

tween them with constructed sparse graph G = 〈V, E〉. Edges between samples are determined

by constrained Delaunay triangulation, where any edges that passes through high probability

cytoplasmic regions are deleted from the graph. In the proposed competitive label propagation

process, two classes: isolated (teal) and inner (yellow) propagate in the network and com-

pete each other to occupy the transition (brown) class nodes. Starting from an initial state

Lt=0 =
⋃
Lt=0
i , i = 1 . . . 3 and Φ(t = 0) the iterative competition model grows a dynamic

front to span all unlabeled nodes (j ∈ L3) in the graph to cover the whole data. The decision

of an unclaimed label at iteration t is defined as the following optimization:

L̃t
3(j) ⇐= arg max

k

{
|(Nk,t(j))|

}
, k ∈ 1, 2

subject to Nk,t(j) ∈ L1 ∪ L2

j ∩Nk,t(j) 6= ∅

Θ(Nk,t(j)) < Φ(t) (5.1)

where optimization is formulated as majority voting in the graph. Here, |(Nk,t(j))| is the car-

dinality of the neighborhood of j having class label k at iteration t. First and second constraints

indicate the propagating front of the competitive voting and the third constraint indicates the

current state decision level Φ(t) at iteration t. In our competitive voting model, state decision

level is a monotonically non-decreasing function and is a measure of anisotropy in the nodes.

More clearly, as the front grows and occupies, unlabeled nodes that are intrinsically similar
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(a) (b)

(c) (d)

Figure 5.5: (a) A classification result via second-stage random forest classifier based on the
features shown in Fig. 5.4. (b) Projection points with their label colormap. Points classified
as cell boundary are shown in blue and the others in yellow. Red points are discarded since
they have no valid connection to other points on the constrained graph. (c) Projection points
rendered with their initial affinity colormap. (d) Projection points rendered with their adjusted
affinities.

to the labeled instances are ideally favored. Estimated low rank representation of the data is

utilized to align the tangent space of an unlabeled instance with a labelled one, hence highlight

the local anisotropy in the graph. In order to align samples, dissimilarity/divergence of samples

from the underlying structure is calculated as the total angle, Θ() between the aligned tangen-

tial spaces. The total angle is calculated as the sum of the interior angles between the tangential

vectors and the edge between nodes. At a given decision level Φ(t), front continues to grow

as long as there exits samples in the feasible set of the above optimization. After a single pass

through all samples in L3, Φ(t) level is relaxed with an arbitrarily selected percentage until

iterative search process described above is finished.

Affinity Propagation and False Positive Removal The competitive label propagation

method returns structurally meaningful elements and recognition task requires interpretation
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of them. For that reason, we analyze the morphology of elements, i.e. mitochondria and

synapse, that are not returned as cell boundary. For this purpose, we employ a region grow-

ing algorithm that distinguish mitochondria from synapse using contextual information such

as shape. The region growing is run on the sparse graph that we previously constructed. We

constructed an affinity measure between nodes as a combination of likelihood and geometrical

terms. Geometrical term is defined as the alignment of the tangential vectors between nodes.

The assignment of likelihood term for cell boundary points (teal) is based on the red channel

of the result of the first stage random forest classifier (see Fig. 5.5-c). The assignment of like-

lihood term for non-cell boundary (yellow) points is done by using an experimentally learned

shape model of mitochondria structure that is obtained in an offline training processes. The

shape model is composed of solidity and curvature [87] properties of the structure of interest.

The shape information of regions under the yellow points are extracted from the binary image

Ibin: Dt→y ≥ Dy→b, where Dt→y is the geodesic distance map from teal points to yellow

points and Dy→t is the opposite. For each connected component in Ibin, a decision tree is used

to decide if it can be a mitochondria. At each node of the decision tree the priori learned range

of solidity (S) and curvature (κ) values are used to give a decision. For each yellow point

enclosed in Ibin, the likelihood is computed as α = (1 − S + κ) · Dt→y. Among the leaf

nodes of the tree, for the candidates that are likely to be mitochondria, a score is computed as

follows: γ = 1 − S + κ. For each yellow point enclosed in the candidate region, the likeli-

hood is computed by weighting the score γ with the continuous normalized geodesic distance

D̄t→y ∈ [0, 1] as: α = γ · D̄t→y.

Before running the region growing, to avoid from capturing false positive non-cell bound-

ary nodes, the affinity values for the nodes that are classified as non-cell boundary (yellow

points) have to be adjusted since the affinities on mitochondria boundaries are very similar to

cell boundaries (see Fig. 5.5-c). In this scheme, new affinities are computed based on a descrip-

tor which is function of both high level shape information e.g. curvature and solidity, of the

underlying regions of the non-cell boundary labeled (yellow) points. In Fig. 5.5-c and d, the

merit of this likelihood adjustment scheme can be observed clearly. Accordingly, the points in

the mitochondria regions are distinguished from synapse regions by adjusting new likelihood

values.



59

(a) (b)

Figure 5.6: (a) Initial set of nodes that are chosen above a very large affinity threshold. Note
that points are rendered with affinity colormap. (b) Final cytoplasmic boundary points obtained
after region growing on the sparse graph.

Figure 5.7: Final segmentation results for an example section from the test set.

Region growing starts from an initial set of nodes (see Fig 5.6-a) which are selected as the

nodes having affinity greater than a very large threshold and iterates until convergence. The

resulting cell boundary points are obtained as shown in Fig. 5.6-b. Given the final cell bound-

ary points, segmentation of encapsulated neurons with morphological post processing steps

is straightforward. Finally, we summarize and visualize the whole pipeline of our membrane

identification based region partitioning approach in Fig. 5.8.

5.4 Experiment & Results

As part of the ”ISBI’12 Segmentation of neuronal structures in EM stacks” challenge, the

method was evaluated on 30 sections from 2d stack of ssTEM images of Drosophila first in-

star larva ventral nerve cord. The microcube measures 2 x 2 x 1.5 microns approximately,

with a resolution of 4x4x50 nm/pixel (see [88] for the details of the data set). We trained our
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Figure 5.8: The visual summary of our framework.

classifiers on arbitrarily chosen 20 sections out of 30 training images. In order to evaluate

the performance, Minimum Splits and Mergers Warping error, Rand error and the Pixel error

were used (see [89] for the details of evaluation metrics). The performance of our method was

reported as: %16.2303,%0.1613 and %10.939 rates for Rand error, Warping error and Pixel

error, respectively for all images in the test set. In Fig. 5.7, example segmentation results on

two sections from the test set are shown.

5.5 Conclusions

We have underlined many challenging facts about the reconstruction of neuron structures from

ssTEM images and proposed a two stage decision mechanism for segmentation of neuron mem-

branes by using both low level (differential geometric) and high level contextual properties

of biological elements. We defined a membrane identification problem which can be solved

over a sparse connectivity graph and proposed an iterative competition based label propaga-

tion method for the membrane identification. We demonstrated results on 30 sections of the

test data of ISBI’12 EM Segmentation Challenge and reported the accuracy of the proposed

method. Future work includes extending current 2D label propagation into 3D with global

optimization extensions.
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Chapter 6

OpTree: Learning Adaptive Watersheds for Neuron Segmentation

In this chapter, we present a new algorithm for automatic and interactive segmentation of neu-

ron structures from electron microscopy (EM) images. Different from our previous approach,

this method aims a globally optimal solution to the image partitioning problem. We propose a

learning based segmentation model providing both automated reconstruction and efficient in-

teractive proofreading mechanism. More specifically, our method selects a collection of nodes

from the watershed merging-tree as the desired segmentation. This is achieved by building a

conditional random field (CRF) whose underlying graph is the merging-tree. The maximum a

posteriori (MAP) prediction of the CRF is the output segmentation. Our automatic algorithm

outperforms state-of-the-art methods. Both the inference and the training are very efficient as

the graph is tree-structured.

The domain of neuron segmentation requires extremely high segmentation quality. There-

fore, proofreading, namely, interactively correcting mistakes of the automatic method is a nec-

essary module in the pipeline. Based on our efficient tree-structured graphical model, we de-

velop an interactive segmentation framework which only selects uncertain locations for a user

to proofread. The uncertainty is measured by the marginals of the graphical model. Only giving

a limited number of choices make the user interaction very efficient. Based on user corrections,

our framework modifies the hierarchical-tree and thus improves the segmentation globally.

6.1 Introduction

We propose a CRF based method whose underlying graph is constructed by the output of wa-

tershed transform [90]. The watershed transform partitions a given image into superpixels by

simulating a water flooding of the landscape of a given scalar function, e.g. the gradient magni-

tude or the likelihood of each pixel being the boundary. These over-segmented regions usually
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(a)

(b)

(c)
(d) (e) (f)

Figure 6.1: (a) The EM image patch; (b) the ground truth; (c) the boundary likelihood map
(dark pixels have high values); (d) the watershed segmentation and its tree, built using the
boundary likelihood map as the landscape function; (e) the watershed segmentation with a
higher threshold; (f) the result of our algorithm.

form a representation of an image that is much more compact than the original pixel grid.

In order to mitigate the over-segmentation effect, one often merges neighboring segments

when the minimal function value along the boundary between them (called the saliency) is

below certain threshold. Considering all saliency thresholds, a hierarchical merging-tree is

constructed [91] in which each leaf node is a segment of the original watershed and each non-

leaf node is a merged segment. A height function can be assigned to each node according to the

minimal saliency threshold at which it disappears (is merged with others). The watershed seg-

mentation at any given threshold can be computed by cutting all tree nodes below the threshold

and taking all leaf nodes of the remaining tree (see Figure 6.1(d) and 6.1(e)).

We use the watershed tree as the underlying graph of our graphical model. The MAP solu-

tion of the graphical model returns a subset of the nodes of this hierarchical tree that cuts the

tree at different height levels or adaptively. In Fig. 6.1, the advantage of this adaptive cut is

illustrated with an EM image segmentation scenario where watershed segmentation fails but

ours doesn’t. We show an EM image patch (a), its target segmentation (b), its boundary like-

lihood map (c) on which watershed is computed. The representations of the watershed merge



63

tree for different cuts and their corresponding segmentation results (e), (d), (f) are also shown.

Running watershed using a certain threshold usually leads to accurate segments at certain area

yet over/under-segmentation at other areas (see Fig. 6.1(d) and 6.1(e)). However; our CRF-

based learning algorithm finds a segmentation of higher quality by selecting different saliency

thresholds at different areas of the image. Essentially, our algorithm learns from training data

how to cut a hierarchical tree adaptively to achieve a better result. See Figure 6.1(f). Our au-

tomatic segmentation method is not only accurate, but also very efficient. The tree structure

of the graphical model allows us to compute exact MAP inference and the marginals very fast.

Our method outperforms state-of-the-art in automatic segmentation of 2D (ssTEM) [92] and

3D (FIBSEM) EM images.

6.2 Related Work

The watershed method and its variations have been used on EM images [64, 75, 76, 77]. They

are graph based algorithms and in these approaches the nodes of the graph represents super-

pixels (watershed catchment basins) while the edges corresponds to the affinities defined as

the relationships between adjacent superpixels. In these works, the problem is formulated as

a labeling problem of the boundaries between adjacent small regions under certain topological

constraints. In [75, 76], an image is represented as an adjacency graph of supervoxels. Edge

weights indicate that how likely the incident regions should be merged. An optimal segmen-

tation makes binary decisions for each edge so as to minimize the total cut weight, subject to

the constraint of producing a topologically consistent solution. The problem is solved using

multi-cut integer linear programming. In these two approaches the quality of the final seg-

mentation depends critically on the edge weights. These edge weights are scalar functions of

some features of the raw data (classifier output, e.g. random forest). So the final result is

sensitive to the classifier performance. Recently, [77] extended this multi-cut approach with a

structured learning paradigm to learn these weights using a cutting planes approaches. In an

iterative learning scheme, a structured loss is used to compare the segmentations obtained from

the current weights to the gold standard to train a structured SVM.
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Besides the loopy graph representation, we emphasize that hierarchical tree based repre-

sentation of superpixels is a popular tool in computer vision. It has been used in many image

labeling tasks as proposed in [93, 94, 79, 95, 96]. The common point of these approaches is us-

ing the hierarchical representation as limiting factor on the solution space so that the inference

tasks are easier to solve. Among these approaches [95], [79] and [96] are designed for image

segmentations while others aims semantic labeling of the pixels.

In [95], the initial set of small regions are grouped into super-regions using a region graph.

The super-regions in-turn form a region-graph that can be segmented again. Successively ap-

plied, a bottom-up tree of regions is computed. This tree-structure allows selection of the

desired segmentation at any desired detail level. In [79], a hierarchical merge tree structure is

used to represent the merging of multiple region hypotheses. They use supervised classifica-

tion techniques to quantify the likelihoods of the hypotheses to be a good segmentation. They

impose topological constraint as post processing (heuristics) to obtain valid segmentations. In

[96], the authors address the requirement of post processing to solve a hierarchical segmenta-

tion problem. In order to avoid heuristics, they provide a framework called hierarchical cuts

that formulates an optimization problem whose global minimum corresponds to segmentation.

They optimize an energy defined as in graph cuts [47]. Their approach has similarities with

our framework in terms of providing globally optimal solutions. However, there is no learning

aspect of it.

Superpixel representation has also been used in agglomerative clustering algorithms as

in[80]. In that paper, an active learning method is employed to learns how to merge water-

shed segments in a hierarchical scheme. Another learning approach [97] learns to construct a

hierarchical tree so that the watershed cut at a certain threshold produces a high quality seg-

mentation. There are many other learning based methods for Connectomics segmentation task.

See [61] and references therein.

The ultimate goal of Connectomics is reconstructing the wiring diagram of brain at nanome-

ter resolution. Such image data includes billion of nerve cells and their interconnections [98].
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Extremely large size of image volumes requires semi-automatic segmentation approaches be-

cause the complex structure of the massive data makes the automatic detection and identifi-

cation of branching of neurons very difficult. Powerful proofreading tools are crucial for en-

hancing segmentations efficiently and effectively. According to statistical analysis of existing

proofreading tools in [99, 100], correction of automated results by hand requires 120 manual in-

put actions per cubic micron of tissue. This suggests that, conventional interactive segmentation

tools cannot be applied in this domain. One example tool specifically designed for Connectome

Project is Raveler [101]. It is a stand-alone proofreading tool developed by Janelia Farm Re-

search Institute for expert users specific to this domain. It has important visualization features

towards making the interactive work easier and effective especially in 3D; however, more re-

cent studies and projects [102, 99] have shown that proofreading will have to be crowdsourced

in the future. This implies the importance of distributed settings by non-domain-experts and

inexperienced users. In fact, this reminds us the potential of learning based interactive frame-

works that could be easily used by non-expert users (i.e. people on the cloud). Our method that

we explain in this chapter aims such a learning model using tree-structured CRFs which will

be later shown to be a perfect match for efficient interaction. Our model is not the first one that

exploits hierarchical trees. In [79], a hierarchical tree representation is employed similar to our

approach.This method has been developed in parallel to our work and has certain similarities.

Their model is also based on watershed merge tree and besides automatic segmentation, they

also propose an extension for proofreading. However, there are clear differences between the

two models. The main difference between [79] and our method is that their overall pipeline

is composed of two parts: intra-section segmentation and inter-section reconstruction. Their

segmentation method is designed to work in 2D images and it can provide very accurate results

only when combined with a reconstruction step that needs information from adjacent slices.

Our model is generic and can work in 2D and 3D images without any data type specification.

Also, to acquire intra-section segmentation their method uses multiple hypotheses generation

and supervised classification techniques on the merge tree to generate candidate regions. By

evaluating the potentials of candidates and applying consistency constraints they resolve the fi-

nal results. For inter-section reconstruction they use supervised linking procedures. Compared

to our model, their framework includes too many parameters and requires fine tuning to achieve
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good results on a certain test image. On the other hand, our method is composed of a single

elegant graphical model that is naturally parameterless and can be used in any dimension as

features are provided.

6.3 Hierarchical Tree-Derived Segmentation

For any given image, we construct a hierarchical-tree by running watershed algorithm on a

boundary likelihood map, namely, the likelihood of whether a pixel belonging to the boundaries

between neuron cells (Figure 6.1(c) and 6.4(b)). More details can be found in Section 6.6.

Next, we construct a tree-structured graphical model whose underlying graph is the same as

the merging-tree. The problem of computing the optimal segmentation is transformed into the

problem of computing the optimal labeling of this graphical model (Equation (6.3)). In order

to achieve the transformation, we need to build a correspondence between segmentations and

labelings.

Let P = {p1, . . . , pM} be the set of all superpixels corresponding to the leaf nodes of the

tree. We define a segmentation as the decomposition of the set of superpixels into a disjoint set

of segments S. Formally, a segmentation is

S =

{
s1, . . . , sm | si ⊆ P,∀i;

m⋃

i=1

si = P
}

(6.1)

As a special case, the segmentation is the original watershed segmentation when each segment

si contains one single superpixel (see Figure 6.1(d)).

Let S be the space of all possible segmentations. For a given image I , we would like

to find the most probable segmentation argmaxS∈S P (S|I), with a suitably defined posterior

probability P (S|I). Since S is too large to search through, we restrict the solution space to a

smaller subset. Given a hierarchical tree, T , a segmentation S is T -derived if and only if each

segment si ∈ S is a node of T . We call such segmentations tree-derived and our algorithm

search through the space of all T -derived segmentations, denoted by ST ⊆ S.

The correspondence between tree-derived segmentations and the labelings of T is provided

as follows. Let the label set L = {−1, 0, 1}, represent whether each tree node is an under-

segment, a segment or an over-segment. An under-segment node is the ascendant of a set of
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segment nodes. An over-segment node is the descendant of a segment node. For each labeling

y, we take the set of zero-labeled nodes as the corresponding segmentation. In Figure 6.1(f),

colors of the tree nodes represent a labeling. Red, blue and dark colors correspond to−1, 0 and

+1 labels respectively. The corresponding segmentation is shown in the top row.

We are only interested in labelings that derive legit segmentations. Therefore we enforce

certain restrictions on the labelings. For a labeling y and a node v, let Γv(y) be the sequence of

labels along the path from v to the root.

Tree-Segmentation Bijection Theorem. There is an one-to-one correspondence between ST and

the set of labelings YT , such that for any labeling y ∈ YT and any leaf node v,

(1) Γv(y) is monotonically non-increasing;

(2) The zero label appears exactly once in Γv(y);

(3) The first label (label of v) cannot be −1 and the last label (label of the root node) cannot be

+1.

Tree-Segmentation Bijection Theorem Proof. We call a subgraph of T a rooted full subtree T ′,

if

(i) T ′ is a tree;

(ii) T ′ contains the root of T as its own root;

(iii) T ′ is full, namely, each internal node has two children within T ′.

For a segmentation labeling, the leaf nodes of any subtree T ′ is labelled 0 and called tree-

cut, while the root node and other internal nodes are labelled -1. It is straight forward to see

the bijection between the set of segmentation labelings and the set of tree-cuts. Since, the

subgraph using the union of the nodes of T with label -1 and 0 is a rooted full subtree, it

remains to establish a bijection between the set of all rooted full subtrees, TT , and the space of

tree-derived segmentations, ST . Notice that any two nodes of T are either disjoint or nested,

namely, one contains the other. The latter situation is true if and only if the bigger node is on

the path from the smaller node to the root.

We construct a mapping Φ from TT to ST , and then prove it is a bijection. Given a full

subtree T ′ ∈ TT , we define Φ(T ′) as the tree-cut of T ′. To see that Φ(T ′) belongs to ST , we
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need to show two things. First, any two elements of Φ(T ′) are disjoint. Otherwise, the bigger

node must be on the path from the smaller node to the root, and thus cannot be a leaf node of

T ′. Second, for any superpixel vi (a leaf node of T ), there is one element of Φ(T ′) on the path

from its corresponding node to the root, and thus contains vi. Otherwise, the first node along

the path that belongs to T ′ must be an internal node of T ′ with less than two children in T ′.

This is contradictory to the condition that T ′ is full.

It is straightforward to see Φ is injective. We conclude this proof by showing that it is also

surjective. For any tree-derived segmentation S ∈ ST , we construct a subtree T ′ by taking the

union of paths to the root from all elements of S. This T ′ is a subtree containing the root node.

Each leaf of T ′, tree-cut belongs to S. At last, T ′ is full. Otherwise, there is an internal node

of T ′ with a child R ∈ T\T ′. This region R is disjoint from any element of S, contradicting to

the fact that S covers the image domain.

We call labelings within YT segmentation labelings. Conditions in Theorem 6.3 can be

translated into restrictions on labels of nodes and edges. In particular, a labeling y is a seg-

mentation labeling if and only if (1) the root has label yroot ∈ {−1, 0}; (2) any leaf node, v,

has label yv ∈ {0, 1}; (3) for any child-parent pair, (c, p), yc ≥ yp ≥ yc − 1; (4) if yp = yc,

yc 6= 0. To satisfy the restrictions on the labels we enforce certain potentials to be infinity

for the corresponding nodes and edges of the graphical model. In Fig.6.2(a), we illustrate the

node/edge potential constraints for segmentation labelings.

6.4 CRF Inference and Training.

For any given image and hierarchical tree, we construct a graphical model. Let the posterior

probability of a tree-derived segmentation S ∈ ST be P (S | I) = P (y | I, w), where y is the

corresponding segmentation labeling of S. Given an observation I and a parameter vector w,

the conditional probability of a labeling y is

P (y | I, w) = exp(−E(y | I, w)− logZ(I, w)), (6.2)

where Z(I, w) =
∑

y∈Y exp(−E(y | I, w)) is the partition function.
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Figure 6.2: (a) Constraints for segmentation labelings: The root node has infinite potential
for label 1. The leaf nodes have infinite potential for label -1 since it only has labels 0 and 1
feasible. For any internal node si, and its child sk in T , the edge (si, sk) has only (−1,−1),
(−1, 0), (1, 1) and (0, 1) as feasible label combinations. So, an edge potential ψi,k(yi, yk)
is infinite for {(yi = 0, yk = 0), (yi = 0, yk = −1), (yi = −1, yk = 1), (yi = 1, yk =
−1), (yi = 1, yk = 0)} label configurations. (b) We find a tree derived segmentation that best
approximates the ground truth segmentation Ŝ.

The energy is often defined as the negative inner product E(y | I, w) = −〈w, φ(x, y)〉,

in which φ(x, y) is the concatenation of features of all nodes and edges. Note that the feature

vector also depends on y. We compute the MAP, argmaxy∈YT P (y | I, w) whose correspond-

ing segmentation is the predicted segmentation. In prediction, one computes the maximum a

posteriori (MAP) as,

argmaxy P (y | I, w) = argminy E(y | I, w) (6.3)

and the marginals as,

P (yi = ` | I, w) =
∑

y:yi=`

P (y | I, w). (6.4)

Since the graph is tree-structured, computing MAP and marginals can be solved exactly and

efficiently using dynamic programming algorithms. For more general graphs, the inference

tasks are NP-hard [7] and have to be solved approximately [7, 103, 104, 105] unless certain

assumptions of the potential are made [47, 106].

Assuming the Markov properties, the energy E can be factorized into the summation of
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unary potentials and pairwise potentials,

E(y | I, w) =
∑

i∈V
Ei(yi | I, w) +

∑

(i,k)∈E

Ei,k(yi, yk | I, w). (6.5)

Each term corresponds to one type of factor and specifies different roles such as incorporating

observations (features) into the model or enforcing a consistent labeling of the variables. For

details of this representation and the design of the w parameter vector we refer the reader to

[4] and UGM package by Mark Schmidt. For a node/edge, one can forbid a certain label/label

combination by forcing the corresponding potential to be infinite. Thus, we can compute MAP

and marginals only over the set of feasible labelings Y ′ ⊆ Y . This makes it possible to do

training and inference only over Y ′, as we will do in this paper. Fig. 6.2(a) illustrates an

example of node and edge potentials assignment for a constrained label configuration.

We train the parameter vectorw from a given set of training data {(In, yn)}, n = 1, . . . , N .

This can be achieved by minimizing the convex loss function defined as

loss(w) = ‖w‖2 + c
∑N

n=1 [logZ(In, w)− 〈w, φ(In, yn)〉]. (6.6)

Since its convex, we can find the optimal w using gradient descent. The gradient can be com-

puted efficiently as long as the partition function can be computed efficiently. Thanks to the

tree structured factor graph that the partition function can be computed efficiently. We use the

UGM package by Mark Schmidt for the w parameter learning 1.

Next we show how to compute the groundtruth labeling for each training data.

6.5 Computing the Optimal Tree-derived Segmentation.

For each training data, we are given a groundtruth segmentation Ŝ, which may not be tree-

derived. In order to find a groundtruth labeling of this data, we find the tree-derived segmenta-

tion that best approximates Ŝ,

S∗ = argmaxS∈ST score(S, Ŝ) (6.7)

1http://www.di.ens.fr/˜mschmidt/Software/UGM.html

http://www.di.ens.fr/~mschmidt/Software/UGM.html
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(see Fig.6.2(b) for the intuition). For EM images, there are two popular score functions, the

random index (RI) and the variation of information (VOI) [107]. We observe that both functions

can be decomposed into a summation of scores of elements of S: score(S) =
∑

si∈S f(si).

Based on this observation, we provide a polynomial algorithm to compute S∗ using dynamic

programing. For each node of the tree, we compare whether it is better to keep this node as a

single segment or to break it into several segments. If score of a parent node is larger than the

score of its children it is kept as one of the selected nodes. We process all nodes in the post-

order, namely, visit a node only if all its children have been visited. At last, the optimal cost of

the root is the optimal tree-derived segmentation score. See Algorithm 2 for the psudocode.

Algorithm 2: Finding the Optimal Tree-Derived Segmentation Score

forall the v ∈ V do
Compute f(v);

Compute the post-order traversal of the tree, V̂ . A node is visited after its children;
forall the v ∈ V̂ do

if v is a leaf node then
f̂(v) = f(v);
S(v) = {{v}};

else
f̂(v) = max

(
f(v),

∑
u∈children(v) f̂(u)

)
;

if f(v) >
∑

u∈children(v) f̂(u) then
S(v) = {{v}};

else
S(v) =

⋃
u∈children(v) S(u);

return S(root)

6.6 Feature Types and Their Relation To Segmentation Tree

We now describe features for each node si of a hierarchical tree, given their corresponding

image regions and the surfaces that separate adjacent nodes. We define two types of features:

1)regional features and 2) boundary features. The descriptions in this section is for 3D seg-

mentation tasks. A 2D version can be defined similarly.

Regional Features:

For both image types (ssTEM 2D and FIBSEM 3D), we extract regional features using the
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Table 6.1: Features.
No: Regional Features
1 Volume of si.
2-33 32 bins histogram of classifier response values for the pixels of the region of si.
No: Boundary Features
1-19 avg of profiles extracted from the gradient magnitude of the intensity.
20-38 std of profiles extracted from the gradient magnitude of the intensity.
39-57 avg of profiles extracted from the likelihood map.
58-76 std of profiles extracted from the likelihood map.

classifier output (i.e. likelihood map of being cell membrane) of the raw image. Note that

such likelihood map is also used to generate watershed merging-trees. We use two different

classifiers for two different data. For ssTEM images, we used the classifier provided by [108]

as part of the ISBI 2011 Challenge. For FIBSEM image we used a random forest classifier

provided in segmentation tool Ilastik [63]. These classifiers are trained using two class labels,

cell membrane region vs non-cell membrane.

See Table 6.1) for the list of the components of the feature vector that we extracted for each

node. The dimension of regional feature vector per node is 33.

sj sk

si

(a) (b) (c)

Figure 6.3: Boundary features. (a): external boundaries (red) and internal boundaries (blue),
illustrated in 2D; (b) an example normal line segment at a boundary point (purple line), its
profile is extracted using the likelihood map along the line (also shown); (c) normal lines of the
whole external boundary, different colors correspond to boundary patches bewtween the node
and different neighbors.

Boundary Features:

The boundary feature of a node depends on its external boundary, namely, the boundary

of its region. The reason we call it external boundary will be obvious in Section 6.8. See
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Fig. 6.3(a) for an illustration of external boundaries (red). Note that the external boundary of

a node can be decomposed into boundary patches between different superpixels/supervoxels. 2

At every point of the boundary, we extract a normal line segment of a fixed length (19 pixels).

Values of the likelihood map and intensity gradient along this line segment give a detailed

description of this boundary point, called its profile. See Fig. 6.3(b) for an illustration. We

extract profiles of every point on the boundary and use their statistics as the features. See Table

6.1 for more details.

6.7 Experiment & Results

In this section we validate our tree structured graphical model on two datasets. The first data

set is the Drosophila first instar larva ventral nerve cord (VNC) and the second data set is

Drosophila melanogaster larval neuropil. We apply our automated approach to both datasets

and report quantitative evaluations comparing to the state-of-the-art methods. Holistic exper-

iments demonstrate the necessity of structural constraints that are enforced in our graphical

model.

In Section 6.9, we demonstrate our user interface for proofreading. We also show quantita-

tive evidence that our new method improves the efficiency of manual correction.

Drosophila VNC Data Set: The Drosophila first instar larva ventral nerve cord (VNC)

data set [92] contains 60 2D sections of ssTEM images, each of which has 512 × 512 pixels.

The images were acquired using ssTEM at resolution of 4x4x50nm/pixel. This data set was

used in ISBI 2012 EM Segmentation Challenge [109] with the ground truth 2D segmentation

of 30 consecutive images as the training set and the other 30 consecutive images as the testing

set. The ground truth is also publicly available for the training set.

For the 2D segmentation experiment, we trained our automatic algorithm with the 30 train-

ing images, tested on the 30 testing images and submitted our results to the ISBI 2012 EM

Challenge server for evaluation. For tree extraction we used the boundary likelihood map from

[108]. The graphical model training took 167 seconds and the MAP computation during testing

per image was 0.05 seconds. Our method achieved the 2nd place in the competition out of the

2We used the open source software available at http://hci.iwr.uni-heidelberg.de/MIP/Software/cgp.php to extract
boundaries.
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Table 6.2: ISBI 2012 Competition Results
No. Method Rand Index Error Warping Error Pixel Error
1. Human 1 vs Consensus 0.002 0.000005 0.001
2. SCI [79] 0.018 0.000668 0.155
3. Our approach 0.022 0.000807 0.110
4. IDSIA [108] 0.050 0.000420 0.061
5. Human 2 vs Consensus 0.029 0.000228 0.066
6. Human 1 vs Human 2 0.030 0.000385 0.067

box in a single submission. We did not tune any parameter except the initial water level of

the watershed transform. We found 0.02 is good water level choice to generate good enough

over-segment regions. Qualitative examples are shown in Fig. 6.4.

In Table 6.7, we show our scores along with the results of two state-of-the-art methods and

two human tracers. Note that our group name is ”optree-idsia” in the challenge website [109].

In Table 6.7, the first and the fifth entries are the errors between the human tracers and the con-

sensus labels. The consensus labels are the ground truth (as for any regular submission). The

sixth entry shows the errors between the two human tracers that segmented the test set inde-

pendently. The labels from human 1 are considered ground truth and the labels from human 2

are the proposal. The second entry [79] in the table performs slightly better than our approach.

This method uses adjacent slices when deciding the labels of each slice. In other words, they

fix inconsistent labelings by introducing constraints in their formulation. However, this ap-

proach can only work for 2D stack images and cannot be used in a fully 3D approach. Note

that, in ssTEM imaging the sectioning thickness is an important parameter and a limitation.

Besides, our approach also has potential to be extended to take advantage of multiple image

sections. The third entry [108] is the membrane detection method that we use as input for the

tree extraction. Our approach improves the membrane detection results by over 2.8 percent.

To demonstrate the necessity of all structural constraints that we enforce in our algorithm,

we ran a holistic experiment on the training set. We compared our method with three baseline

approaches: i) using watershed transformation result at the best water level (WS); ii) using a

classifier trained on node features for prediction of the node labels of the merging-tree (UC);

iii) using a CRF based graphical model without the constraints defined in Theorem 6.3 (UNC).
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Table 6.3: Baseline comparison.
WS NC UNC Optree Optimal

Rand Index 0.05 0.14 0.10 0.023 0.015

In UC and UNC, we used post-processing to ensure the final result are legit segmentations (i.e.

a pixel can get only one label). In the table on the right optree outperforms all baselines in

the Adjusted Rand Index Error. We also present the optimal tree-derived segmentation result

(Optimal), which is achieved when the groundtruth is known. This score is the theoretical

upper-bound of our tree-derived segmentation.

Drosophila Neuropil Data Set: In this experiment we used a large 500x500x500 voxels

isotropic volume generated by focused ion beam milling of Drosophila melanogaster larval neu-

ropil, combined with scanning electron microscope imaging of the milled surface (FIBSEM)

3. The microcube measures 2x2x1.5 microns approximately, with a resolution of 10 nm/pixel.

Relative to the ssTEM data, FIBSEM has a smaller field of view, but yields isotropic resolution

thus is compliant for a full 3D approach. We used the boundary likelihood map from “Ilastik”

[63]. To reduce the watershed tree size, we removed all nodes with height less than 0.05. We

divided the initial volume into 8 250x250x250 sub-volumes. We run experiments for 8 times.

Each time we use one sub-volume for training and the rest for testing. Training took 465

seconds and MAP computation took 0.9 seconds on average. The average Rand Index score

(one minus the Rand Index Error) is 0.9837. Our method performs better than state-of-the-art

[77, 75]. The optimal score of tree-derived segmentations (Optimal) is 0.9923. There is still

room for improvement over the optree segmentation result. In the next section, we show the

result can be improved to the optimal via user interactions, as explained in Section 6.8.

6.8 Active Proofreading for Accurate Neuron Reconstruction

The domain of neuron segmentation requires extremely high segmentation quality. Therefore,

proofreading, namely, interactively correcting mistakes of the automatic method is a necessary

3We would like to thank Harald Hess and C. Shan Xu at Janelia Farm Howard Hughes Medical Institute for
providing the data.
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(a) (b) (c) (d)

Figure 6.4: (a):Intensity image; (b) probability map obtained by a classifier; (c) initial su-
perpixels obtained by applying watershed transform on probability map shown in (b); (d) our
result
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module in the pipeline. Due to the huge volume of the data, the proofreading step is always

painfully inefficient. Based on our CRF model we explained in the previous Sections, we

develop a novel interactive segmentation framework. Our new framework has two advantages.

1. Instead of the whole volume, we highlight only a few locations for a human expert to

proofread. In particular, we highlight locations at which our model has the lowest con-

fidence (cyan and yellow colored pixels in Fig. ??). User input at these location will

improve our model globally. Therefore, much fewer number of user input are required.

2. We develop an efficient algorithm to update our model after each user interaction. When

a user fixes a mistake at one of these locations, our framework modifies the merging tree

accordingly and recomputes the segmentation. The improvement to the segmentation is

global. Together with an efficient tree-structured inference algorithm, our framework is

fast enough for user interaction.

The uncertainty is measured by the marginals of the graphical model. With the hierarchy of

the nodes in the tree structure, node marginals can be transformed to boundary marginals at no

cost. The interactive system considers the boundary marginals to render the boundaries to be

corrected by the user only if the confidence is low. Only giving a limited number of choices

make the user interaction very efficient. Based on user corrections, our framework modifies the

merging tree and thus improves the segmentation globally. Our experiments show that under

the new framework, within fifteen user inputs, the segmentation is improved to the optimal

quality, much faster than classical user interaction frameworks.

The workflow of our interactive segmentation algorithm is as follows. For a given test im-

age, we compute an automatic segmentation using the algorithm presented in previous sections.

Based on marginals of the graphical model, we suggest the user a few locations to proofread,

in particular, the ones at which our model has the least confidence. When a user finds a mistake

in the suggested locations, he/she clicks and corrects it. We modify the hierarchical tree ac-

cordingly and recompute the segmentation on the modified tree. The locations that have been

corrected would not be highlighted anymore since the model is 100% sure about it. This pro-

cess is repeated until the user is satisfied. Recall that to construct a graphical model, we need

a parameter vector w. Throughout the user interaction, we use the same w which is learned in
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the training stage. See Figure 6.5 for the flowchart.

Watershed Final 
Result

Tree 
Modification

Inference
Image Merging

CRF 
Training

Proof 
Reading

MAP
Marginals

w Modified 
Tree

Tree

Figure 6.5: The flowchart of the interactive framework.

The advantage of our tree-structured interactive framework is two-folds. (1) It allows us to

compute marginals efficiently. Based on marginals, we limit the attention of user on a small

set of locations. This is very useful especially considering the huge size of the image. (2)

After each user input, our algorithm improves the graphical model accordingly, and improve

the segmentation globally. Depending on the correction scenario, fixing one location can result

in multiple improvements at other locations due to the global optimization.

Figure 6.6: Boundaries a user have to proofread (blue) in a classical framework. Our system
only highlights a small subset based on the marginals. Cyan boundaries are the candidates to
be marked as split and yellow boundaries are the candidates to be markes as merge.
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Figure 6.7: Transfer of node labels and marginals to internal boundary labeling and marginals.
Dashed line represents a merge label while solid line is a split.
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Figure 6.8: (a) in an example segmentation, there are 16 boundaries in the watershed transform,
including 8 split (solid) and 8 merged (dashed); (b) a tree (nodes on the curved paths are not
shown for clarity); (c) b is labeled merged; (d) b is labeled split.

The basic elements for a user to handle are the elementary boundaries, or in short bound-

aries, between superpixels. For a given segmentation, a boundary b is labeled split if the two

adjacent superpixels belong to two different regions in the tree-derived segmentation. Oth-

erwise, it is labeled merged. See Fig. 6.8(a) for an illustration. The task of segmentation is

equivalent to finding an optimal split/merged labeling to all the boundaries. For a given node

of the tree, we call the union of boundaries enclosing it as the external boundary, as we defined

in Section 6.6. If it is not a leaf node, we call the intersection of the external boundaries of its

two children its internal boundary. See Fig. 6.3(a) for an illustration.

Our CRF generates marginals for nodes of the tree. However, we can easily translate node

marginals into marginals of whether each boundary being split or merged. For a given boundary

b and its two adjacent superpixels/leaf nodes, v1, v2, we find the least common ancestor of

v1 and v2, denoted by va. We call va the containing node of b, because b belongs to the

interior boundary of va. (see Fig. 6.8(b)). The boundary b is split if and only if va is an under-

segment, i.e. has label −1. Therefore, the probability of b being split is equal to the marginal
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P (yca = −1|x,w). Figure 6.7 illustrates all possible labeling scenarios of the interior boundary

of a given node.

At each iteration of the segmentation, we show the predicted segmentation and highlight the

boundaries that we have low confidence of its corresponding label. This gives the user a small

number of options to proofread. In Fig. 6.8, instead of all boundaries only the cyan boundaries

(labeled merged, yet with low merged confidence) and the yellow boundaries (labeled split, yet

with low split confidence). After the user corrects a boundary, the system will update the model

accordingly and present the low marginal boundaries again.

We conclude this section by explaining how to update the tree structure according to user

inputs. As we mentioned before there are two operations i) split and ii) merge that can be

applied on a user selected boundary. Although these two operations are quite different, they

mainly depend on enforcing new saliency values for the selected boundary. Recall the saliency

values of boundaries decide when nodes are merged in the watershed algorith, and thus the

structure of the merged tree. A naive algorithm is as follows. If the operation is merged

(resp. split), we set its saliency value to zero (resp. infinitey). Afterwards, we recompute the

merge tree. In the new tree, the specified boundary will have merged (resp. split) label for any

possible tree-derived segmentation.

However, this operation is very expensive, and thus is not suitable for interative framework.

In this section, we propose a new algorithm which only updates a small portion of the tree.

This new algorithm is much more efficient than the native algorithm and thus can be used in

practice.

Merge: When a user specifies a boundary to be merged, we merge the paths from the two

adjacent leaf nodes to their lowest common ancestor node into a single path (see Fig.6.8(c)).

Algorithm.3 presents how the subtree rooted by the lowest common ancestor of these two leaf

nodes is restructured accordingly. We rebuild the subtree from bottom to top. During the

process we use vr to denote the root of the rebuilding tree. In the end, we replace the subtree

rooted at va by the subtree rooted at vr.

Split: When the user specifies a boundary to be split, we split the path from the least

common ancestor of the split nodes (va) to the root into two paths. The nodes along the original

path are assigned to either of the new paths, depending on their merging situation with other
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Algorithm 3: Merge two nodes v1 and v2

va← the lowest common ancestor of v1 and v2;
Q← all nodes on the paths from v1 and v2 to va, except for va;
Sort Q according to its height function (defined in Section 6.1);
vr ← {v1, v2}; . vr is the root of the tree we are rebuilding;
processed← false; . Bool array: whether a node has been processed;
processed[v1]← true;
processed[v2]← true;
for v ∈ Q do

processed[v] = true;
u← the child of v such that processed[u] = false;
w← the child of v such that processed[w] = true;
v← {vr, u} . v is the parent of vr and u;
vr ← v . update the root vr;

Replace va with vr in the original tree;

nodes. In Fig. 6.8(d), we illustrate this intuition with a toy example. Algorithm.4 presents the

pseudocode. We build two new trees, rooted at vr1 and vr2 from bottom to top. In the end,

these two roots merged into the new root. In order to ensure that these v1 and v2 are always

split, we enforce an extra constraint that the new root could only have label −1.

Algorithm 4: Split two nodes v1 and v2

va← the lowest common ancestor of v1 and v2;
Q← the sequence of nodes on the path from va to root;
vr1← v1; . the roots of the trees we are rebuilding;
vr2← v2; . the roots of the trees we are rebuilding;
for v ∈ Q do

vs← the sibling of v;
f1← the minimum of saliency values of all boundaries between vs and vr1;
f2← the minimum of saliency values of all boundaries between vs and vr2;
i← argminj fj . the subtree to which vs should be merged to;
vri← {vri, vs};

root← {vr1, vr2};

Lastly, these operations can be applied sequencially and operation at one step does not hurt

the results of previous ones. The graphical model keeps the history of the constraints, and

ensures that at any iteration the predicted tree-derived segmentation satisfies all of the previous

contsraints. Moreover, the improvement (or fixation) after a single operation is not limited to

the processed nodes. At one operation, spliting or merging of two nodes affects other tree nodes

in the vicinity and this improves the graphical model accordingly. Since the prediction is global
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among all tree nodes editing one location can fix many other locations in the image domain.

We will show such cases in Section 6.9.

6.9 Experiment & Results

Our interactive system suggests a few boundaries for users to proofread at each iteration. Users

judge by observation whether a boundary is mislabeled and correct it. We run experiments

to show how this method could improve the efficiency of proofreading. We simulate a user

interaction process on a particular 2503 subvolume on which our automatic method has the

worst score. We start from the automatic algorithm result and correct one mislabeled boundary

at each iteration. At each iteration, the simulated user (robot) selects one mislabeled boundary

based on certain strategy. The merging tree is modified accordingly. To illustrate the usefulness

of marginals in the interaction, we implemented two interaction strategies (1) always select the

mislabeled boundary with the highest marginal; (2) randomly select a mislabeled boundary.

In Figure 6.10(a), we compare the results of the two strategies. Correcting high-marginal

boundaries (red curve) clearly improves the results much faster than correcting randomly se-

lected boundaries (blue curve). The former takes about 14 iterations to reach the accuracy

> 98.7 while the latter takes 39 iterations to reach the same accuracy. We also show the op-

timal result (black curve) of tree-derived segmentation as a theoretical upper bound. We also

compare our interactive approach with method by [75] via using interaction strategy 1 where

the mislabeled boundaries with highest marginal are selected. In this method the marginals

are obtained by training a random forest classifier for predicting the split contour probability.

The probabilities are used as the edge weights of a graphical model and they are never updated

during the interaction process. Each iteration took around 6 7 seconds without warm start prop-

erty. We used used same set of features for a fair comparison. As seen in the graph, our method

reaches to its upper bound level with less iterations compared to [75] (green curve) using the

two interaction strategies.

The advantage of our interactive segmentation framework is twofold. First, the interac-

tion is very fast thanks to the efficient model updating algorithm and inference algorithms. In

average, each iteration takes around 1.9 second.
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Figure 6.9: (a): our system only show boundaries with low marginals (yellow if labeled split,
cyan if labeled merged); (b): before user input; (c): after user input, many boundaries are fixed.

Second, marginals which are recomputed after every user input enables users to focus on

the mislabeled contour segment with the most improvement of the score (See Figure 6.8). In

Figure 6.9, we illustrate how one user input can improve the segmentation globally. After a se-

lected boundary (yellow arrow) is corrected, many other boundaries are automatically corrected

(Figure 6.9(a), 6.9(b) and 6.9(c)).

6.10 Conclusion

This paper presents a CRF-based algorithm for neuron segmentation. The tree-structured

graphical model allows us to compute accurate segmentation of 5003 dataset within a sec-

ond. Furthermore, we develop an interactive segmentation framework that takes advantage of

the marginals of the graphical model. The new framework improves the segmentation to the

optimal quality within a small number of user inputs.



84

0 6 12 18 24 30 36 42 48 54 60
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Iterations

R
a
n
d
 I
n
d
e
x
 S

c
o
re

 

 

Our method −Random Selection

OpTree upper bound

Our method −Marginal Selection

Baseline Method −Marginal Selection

(a)

(b)

Figure 6.10: (a) Interaction Simulation; (b) 3D Result.
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Chapter 7

Conclusions

In this dissertation, we proposed new methods for 3D organ segmentation from MR and CT im-

ages (macroscopic), 2D cellular region segmentation and 3D neuron structure extraction from

EM images (microscopic). The first part of our contributions is about combining graphical

models and deformable models into a collaborative framework for multi organ segmentation

from CT and MR images. We presented a collaborative energy minimization framework where

the deformable models and graphical models are combined together. In an iterative optimiza-

tion scheme, two different models are improved in an alternating scheme towards more accurate

segmentation. The overall framework takes advantage of these two segmentation paradigms.

The final results are smooth, natural looking and can capture details while the optimization

scheme is enhanced with globalization aspect of this hybrid framework. The proposed hy-

brid method is designed to satisfy the following requirements: 1) segmenting multiple objects

simultaneously, 2) being robust to local high and low contrast challenges in cardiac CT im-

ages and knee MR images. While satisfying these requirements and having shown success in

these applications, we also address the fact that decoupling the two model are decoupled in the

minimization scheme. Current minimization scheme is based on alternating optimization (i.e.

coordinate descent) and does not theoretically guarantees convergence. However, in practice

we experienced that compared to conventional gradient descent based minimization scheme it

performs better. As future work, we suggest using supervoxel representation instead of pixels

for speeding up in 3D processing. Also, CRFs can be employed to learn the parameters of the

graphical model when training data is available. Lastly, as in conventional Deformable Model

approaches, use of shape prior in addition to graphical model based term could help improve

the convergence rate of the minimization scheme.

The second part of our contributions is about designing a multi stage decision strategy for
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neuron segmentation from electron microscopy images. We propose a two step classification

mechanism to identify cell membranes between adjacent cells. We solve this contextual char-

acterization problem using a graph based local optimization scheme. Once the membranes are

identified the cells can be separated well, despite the diffused and confusing membrane ap-

pearance. We showed promising results and the method is important in terms of scalability

to very large Terabyte data; however, the general approach includes heuristics and depends on

local optimization on a sparse graph. As we presented in Chapter 6 more global solutions are

necessary for more robust segmentation results.

The third contribution of this dissertation is to create a tree structured CRF model to seg-

ment neuron structures from 2D and 3D electron microscopy images in a learning fashion. We

use a region (superpixel) based approach where the relationships between the regions are en-

coded in a hierarchical tree. We employ efficient and exact belief propagation method to solve

the inference problem. We show that the accuracy of the results are comparable to the state

of the art. Last but not the least, we propose a method to extend the learning model into an

active proofreading framework using the marginals of the graphical model as the confidence

level of segmentation. With this feedback mechanism, we provide an interface where the user

can reach globally improved accurate results with very few efforts compared to other baseline

approaches.
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