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ABSTRACT OF THE DISSERTATION

Estimating the relationship between a transient effect and

the onset of an acute event: a comparison of the

case-crossover design and cohort design

by CARLIN PATRICK BRICKNER

Dissertation Directors: Dirk Moore, PhD & Shou-En Lu, PhD

The case-crossover design was first published in 1991 as an epidemiological method to

estimate the transient effect of an exposure on an acute event in research where primary

data collection is conducted. Since the inception of the case-crossover design, the quality

and availability of data warehouses has become standard. Health care providers and in-

surers have migrated from recording routinely collected patient information on paper to

using electronic health records which are stored in data warehouses. This development

has enabled researchers to observe the same acute events and exposures of interest in the

traditional case-crossover paradigm at any time the patient is in care without expending

the resources associated with primary data collection. Recent epidemiological studies have

implemented the case-crossover design in situations where the data necessary for a retro-

spective cohort design are readily available. The case-crossover design’s main appeal is

that it implicitly controls for time-invariant characteristics of each patient in the study,

measured or unobserved, by utilizing conditional logistic regression. In a retrospective

cohort, an investigator typically would choose between using a Cox Proportional Hazard

Model or a longitudinal logistic regression model. Since researchers also are interested in

studying the transient effect of an exposure on subsequent acute events in an observational
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setting, and since developments in health information technology have provided researchers

with more plentiful and detailed data than were available when the case-crossover design

originally was proposed, researchers can now select from variety of methods. This thesis

shows how the case-crossover design compares to a time-dependent covariate analysis in a

cohort setting, and provides recommendations when one design preferable over the other.

This thesis makes an important connection between the two designs, and proposes that the

principle of lagged covariates can be applied in the case-crossover design. Furthermore, this

thesis also proposes a two parameter, geometric lag estimation method which can describe

a non-linear, deteriorating effect within the case-crossover design setting.
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Chapter 1

Introduction

In this thesis, a specialized epidemiological study design called the “case-crossover” design

will be considered, in addition to a comparison of its properties to those of the much more

common “prospective” design. To understand the case-crossover design, it is helpful to

consider two other motivating designs. The randomized crossover deign, which is a repeated

response design, where all subjects receive all treatments and the sequence of treatments

is randomized. The effect of the treatment is estimated by comparing within subject

responses, and as a result the self controlled nature of the design allows the estimates to

be more efficient than a randomized treatment design. In a study where the acute event

is rare, randomized studies can be infeasible due to the cost to conduct such a study. In

addition, many times researchers desire to study the effect of an exposure that would be

unethical to randomize to patients.

The other motivating design is the case-control design, which is an epidemiological

design used in retrospective studies. Case-control studies observe subjects who experience

an event and are referred to as a case; patients who did not experience the event are sampled

from the population giving rise to the cases and are referred to as controls. In this analysis,

the outcome is considered fixed and the covariate is assumed to be random, contrary to the

assumptions of a cohort study. The case-control study is a retrospective, follow-up study

which samples the cases and controls from a full census of the target population. The

framework, properties, and methodology of both matched and non-matched case-control

studies have been established primarily due to the work by Breslow and Day [11, 12].

According to the case paradigm, cohort studies should have a case-control counterpart,

and the case-crossover design was proposed as one such counterpart to a cohort study,

where patients cross between periods of exposure and nonexposure [59]. Maclure developed
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the case-crossover design to study the effects of time-dependent exposures on the risk of

an imminent event [59]. The case-crossover design only samples individuals who have

experienced the event retrospectively and is classified as a case only design. It is applied

in settings where the exposure is intermittent, the effect is immediate and transient, and

the outcome is rare and acute. The case-crossover design combines features from both

randomized crossover design and case-control designs; cases serve as their own controls

and outcome-based sampling.

The case-crossover design samples cases from the cohort and deploys a within subject

reference strategy, for which the distribution of exposures are compared between a case-

time to that in a control-time. The case-time is selected by the investigator to capture

an exposure which is hypothesized to elevate the hazard during the time when the event

was observed. The investigator must also match this case-time to one or more reference

periods in which the individual is assumed to be event free. Much of the theoretical work

for the case-crossover design borrows from the work established for matched case-control

studies [59, 62, 65]. Conditional logistic regression is often utilized to obtain an estimate

of the hazard ratio for a one unit change in the exposure, for which any confounders that

do not change over time are implicitly controlled for by the design. McNemar’s odds

ratio may be used when the exposure is a binary indicator. The within subject reference

of individuals, who only experience the event, requires several assumptions, in order for

estimates and inference to be valid. The assumptions include that the baseline hazard

is small or constant, the exposure distribution in any of the time intervals is globally

exchangeable within matched sets, censoring is non-informative, no carryover effects exist

and the within subject correlation structure must be independent in applications where

multiple events occur.

The case-crossover design is most prominently employed in the study of ambient air

pollution and acute health effects[14, 15, 27, 47, 52, 53, 54, 78, 96, 93, 95]. It has also been

used in a wide variety of other applications. Some examples include the association between

anger, anxiety, curiosity and myocardial infarction [65]; cell phone use and automobile

accidents [63, 80] ; emotional stress as a trigger of falls leading to hip or pelvic fractures [66];

alcohol and gout [110]; the effectiveness of condoms and sexually transmitted disease [105];
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Medicare costs attributable to a fall [89]; folic acid antagonist use with birth defects [39];

the effects of vaccination [76]; and nurse staffing and nosocomial infections [43]. The case-

crossover design is also prominently applied in pharmacoepidemiology, where it is common

to explore how changes in medications may trigger an acute event [18, 64, 71, 87, 88, 104].

Several studies have utilized the case-crossover design to study how changes in patient

medication regimen are associated with the risk of an imminent fall [71, 87, 88]. Patient

exposure to medications for these studies were obtained from primary data collection meth-

ods in institutional settings. These studies also provided motivation to conduct a similar

study to a population of home health care patients. Home health care consists of a mix

of skilled nursing and therapy visits in the home, as well as home health aide services,

to a mostly frail, elderly population, requiring post-acute services. The Visiting Nurse

Service of New York (VNSNY) is the largest not-for-profit home health care agency in

the nation. Between 2010 to 2011 there were 192,438 admissions into VNSNY’s certified

home health care program (CHHA). Of these admissions, 4.0% (7840) were documented

in the electronic health record to have fallen at least once while receiving home health

care services. In addition to recording falls, a wide range of patient characteristics, both

the detailed timing of patient medication regimen and baseline patient characteristics, are

recorded in the patient electronic health records. The VNSNY Fall and Medication Data

invoke the research question, “Do changes in patient medication regimen increase the risk

of an imminent fall in a home health care population?”

The VNSNY Fall and Medication Data contains baseline patient characteristics on

both patients who experienced a fall and for those who did not. The case-crossover design,

however, was developed in a primary data collection setting. Applying the case-crossover

design to the VNSNY Medication and Fall Data discards all patients in the cohort who

did not fall, accounting for 96% of the original data. The case-crossover design is a highly

efficient design due to its within patient comparison. However, a design that utilizes the

remaining 96% of the cohort, which the case-crossover design ignores, is likely to obtain

estimates with much better efficiency. Given the data available in the VNSNY Fall and

Medication Data, another approach to study the association of a medication change and

the risk of falling, is to conduct a retrospective study, deploying a Cox hazards with
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time-dependent covariates. The Cox hazard model can obtain estimates for the same

hazard function assumed by the case-crossover design. The case-crossover design and

the Cox hazard model have likelihood functions that share a similar form, but differ in

that the case-crossover design makes with subject comparison and the Cox hazard model

uses information from other patient at risk in the cohort. The Cox hazard model uses a

cohort-based sampling, while the case-crossover design deploys an outcome-based sampling

and reverses the cohort design’s time scale. The purpose of this study is to explore the

performance of both designs and compare performance under different circumstances.

Previous studies, which have explored the association between a medication change and

falling, have only summarized the relationship assuming a simple, on and off relationship

by using just a single parameter describing an elevated risk resulting from the exposure

change amidst a common background risk [71, 87, 88]. This study, however, hypothesizes

that if an association exists it may have a more complicated form than addressed by these

studies. Furthermore, Maclure proposed the case-crossover design with the assumption

that the risk is elevated for a period of time after the exposure change and than dissipates

over a period of time, before returning to a constant, background risk. The second objective

of this study is to propose an approach for estimating an effect in the case-crossover design,

when a non-linear association is present.

This dissertation contains an additional five chapters. In Chapter 2, a literature review

is presented, which covers the methodology of the case-crossover design, similarities to

other designs, examples of application and the relevance of studying medication changes

and the risk of falling. A methodological framework, for both the case-crossover design and

the cohort design using a Cox hazard model, is presented in Chapter 3, along with draw-

ing comparisons of the similarities between the designs. In addition, Chapter 3 provides

an approach to exploring nonlinear transient effects and proposes a method to estimate

a deteriorating effect, using the case-crossover design. Chapter 4 contains an evaluation

of multiple simulation studies deploying both designs concurrently for various scenarios.

Chapter 4 also contains simulations evaluating the proposed estimation method for nonlin-

ear associations. A thorough analysis of the VNSNY Fall and Medication Data is presented

in Chapter 5, which applies the methodology covered in Chapter 3. Finally, Chapter 6
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provides a summary and discussion of this paper and makes recommendations to investi-

gators.



6

Chapter 2

Literature Review

This chapter provides a thorough literature review on the case-crossover design history,

methodology and similarities with other designs. The content and setting of the original

case-crossover design is important to first understand since the original study occurred in a

primary data collection setting. The next section presents the accumulation of knowledge

about the methodology and assumptions of the case-crossover design, followed by a section

reviewing the literature which has covered its similarities to other methodology. Another

section is dedicated to reviewing the settings in which the case-crossover design has been

applied. The second half of the literature review provides a background on fall and medi-

cation research; this includes the relevance, factors known to identify who is likely to fall,

and also the factors which may trigger a fall.

2.1 Case-Crossover Design

At the time the case-cross over design was proposed, it was common belief that myocardial

infarctions occur purely at random over time. Mittleman, Maclure and colleagues sought

to study subject activities in the time leading up to a mycoardial infarction, thus the name,

The Onset Study [59]. As a result, Maclure developed the case-crossover design to study

the transient effect of a time-dependent exposure on an acute event in an observational

setting [59].

Maclure assumed that there is usually a common, constant, background risk of an acute

event. He also assumed that the temporal effect of an exposure, Zit for patient i at time t,

is initiated by a possible induction period followed by an elevated risk that dissipates over

a period of times before returning to the background risk. Maclure proposed the epidemic

curve as motivation for the case-crossover design and is reconstructed in Figure 2.1. By
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Figure 2.1: Illustration of Maclure’s assumed epidemic curve for the case-crossover design
[59]. The curve demonstrates incidence of an acute-onset event (i.e. fall) after observing
a point exposure (i.e. change in medication). The population induction time is indicated
by I(x), and a step function is suggested to estimate the curve through E(x1) and E(x2).
E(x1) indicates the time of highest risk effect period, and E(x2) a more moderate risk
effect period.

fixing the event, and comparing the distribution of exposures at the case and control

times, Maclure used features of both the cross-over and case-control designs to describe

the transient effect of an exposure on an acute event. The case-crossover design estimates

the average incidence rate ratio after observing a one unit increase in the exposure [59].

The case-crossover design is applied to research questions where the exposure is inter-

mittent, the effect of the point exposure’s risk is immediate and transient, and the outcome

is rare and acute. Maclure showed that only cases are required to estimate the transient

effect of an exposure, and because the design is like a matched case-control study, subject

level effects are not estimable. As a result, both measured and unmeasured confounders

and are implicitly controlled for by the design.

Maclure also presented several threats to the validity of the case-crossover design which
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should be considered in practice. Similar to the randomized crossover design, carryover

and period effects must be considered. The case-crossover design is an exploration of a

transient effect, and so any doubt about the duration of the effect should conservatively

be considered during the deployment of the selection of case- and control-times. Failure to

allow ample time for an effect to return to the background hazard in the reference strategy

for the case-crossover design, results in the control time containing the elevated risk and

estimates that are biased towards the null.

The second and third threats to validity pertain to within-individual confounding;

which include the consideration of treatment sequencing and patient assignment, in ad-

dition to the definition of cross-over rules and timing [59]. The case-crossover design

implicitly controls for any confounders that are constant over time. However, since the

case-crossover deploys reference strategies within an individual it is susceptible to time-

dependent confounders. Any additional time-dependent exposures that are associated

with the event and the exposure of interest to the study must also be controlled for in

the case-crossover design in order to obtain unbiased estimates. Careful consideration in

understanding the sequence of how multiple time-dependent confounders are associated

should be considered when deciding on the timing and duration of case- and control-times.

Selection bias is another of Maclure’s threats to validity and should be considered when

determining the reference strategy [59]. Some time-dependent exposures may influence pa-

tient participation in the study. Another type of selection bias may exist if the probability

of observing the exposure is different in the case- versus the control-time. Recall bias results

in pushing estimates away from the null in a case-crossover design. Systematic bias would

exists in a case-crossover design analyzing medication changes and falls if selected control

times stratify the date in which a new drug was released; resulting in the probability of

exposure during the control would be zero. Similar to the assumption in survival analysis,

in which censoring is assumed to be noninformative, the case-crossover design assumes

that drop-outs are independent of the event and exposure. Finally, applying the methods

used for matched studies, such as McNemar’s test or conditional logistic regression, may

provide inappropriate estimates of the effect in the presence of repeated outcomes [59].
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2.1.1 Methodology

Maclure proposed using the Mantel-Haenszel method to estimate relative risk of a binary

exposure change [59]. Marshall and Jackson presented a general maximum likelihood

approach to analyze any type of exposure in the case-crossover design [62]. They derived a

conditional likelihood assuming a proportional hazards model to describe the dependence

between the time-dependent exposure and the risk of the event. Furthermore, they showed

several special cases of applying this conditional likelihood including how the Mantel-

Haenszel estimator approximates the conditional likelihood estimate, in scenarios when the

exposure is continuous, arises from a mixture distribution, or the association is described

by joint effects. Vines and Farrington demonstrated that in order for the conditional

likelihood to be valid, a strong condition assuming the exposures are globally exchangeable

within matched sets [102]. Greenland proposed a general framework and likelihood for

the analysis of case only designs such as case-crossover, case-genotype, and case-specular

studies while also providing an extension to leverage information from traditional controls

into the analysis [31].

Mittleman, Maclure and Robins assessed five different reference strategies in their anal-

ysis of myocardial infarctions in the Onset Study [65]. They assessed the relative efficiency

of estimates obtained from case-crossover designs selecting M = 1, 3, 4, 6, 8, 12, and 25

control times, and found that the efficiency of relative risk estimates varied greatly based

on the selection of M . They presented a calculation for the relative efficiency of esti-

mates obtained by the case-crossover design compared those from a cohort study. This

was based on previously work developed by Breslow and Day for case-control studies [12].

The relative risk of the case-crossover design or the case-control design depends on the

number of cases, number of controls, the probability of exposure for the case and control,

and the relative risk. When the association between the exposure and the event is null,

the relative efficiency of a 1:M case-crossover design achieves 100 · M
M+1 % of that achieved

by the cohort design [65].

Much of the methodological work surrounding the case-crossover design has focused

on the issues that arise in the presence of unmeasured time-dependent confounders or
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underlying trends in the exposure. This may become apparent in pharmacoepidemiology

where the prescription of a therapeutic may indicate a decline in a subjects health status.

Therefore, applying a case-crossover design to a health related event when this situation

exists may result in biased estimates of the transient effect. Another source of bias in

pharmacoepidemiology studies may arise when the health of the population is generally

declining, and as a result, the probability of the exposure is increasing over the follow-

up period. Applying the case-crossover design in this situation would likely mix together

potential causal effects with the natural increase in the exposure.

Suissa was the first to propose an adjustment to the case-crossover design to account

for trends in the exposures [85]. Suissa proposed a method, the case-time-control design,

which adjusts the case-crossover estimates with estimates of bias due to exposure trends.

These estimates of bias due to trends in exposure are obtained by applying the case-

crossover design to comparable set of individuals who did not experience the event [85, 91].

Simulation studies demonstrated that it out performs the case-crossover design in scenarios

where the treatment is correlated with time [1]. Further comparison of the two designs in

applied settings have supported the expectations on performance in practice [39, 43].

Careful consideration has to then be taking into account when selecting control patients,

because a potential imbalance in baseline risk may exists for patients with and without

the event. Failure to do can reintroduce selection bias into the case-time-control design

estimates either away or towards the null [30, 69]. The case-case-time-control design was

proposed as a remedy to the case-time-control design. The case-case-control-design also

sought to select another sample to control for time trends, but proposed to select future

cases instead of patients without the event [103]. This design must assume that there is

no within-subject correlation for patients with multiple events.

Several reference design strategies were proposed in the field of environmental epidemi-

ology to account for trends in the exposure. Exposure trends are of particular importance

when applying the case-crossover design to air pollution studies. Navidi showed that trends

could be controlled for in certain settings by implementing a bidirectional sampling of the

control times in the case-crossover design [69]. That is, a control time is selected both prior
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to and after the event. This is only applicable when the exposure after the event is inde-

pendent of the event, which environmental air pollution is one of the few fields which can

make this assumption. Navidi’s design is a full-stratum design where all days are selected

as control days except for the day of the event. Several other bidirectional designs applied

to environmental studies which built upon Navidi’s full stratum design were proposed.

These include the symmetric bidirectional design, the semisymmetric bidirectional design,

and the time stratified design [7, 57, 70]. Autocorrelated exposures and overlap bias are

additional forms of bias, which must be considered in air pollution studies deploying the

bidirectional reference strategies for the case-crossover design. The presence of autocorre-

lated exposures and overlap bias result in the score function to the conditional maximum

likelihood estimate are not valid since they does not have mean zero [44, 57].

The original case-crossover design was conceptualized and designed for univariate event

data [60]. However, many acute events such as falls, gout attacks, automobile accidents,

and sexually transmitted infections are recurrent in practice [5, 71, 105, 110]. When study-

ing events that are recurrent in nature, it is necessary to account for the within-subject

correlation among the recurrent events. For example, it may be naive to assume that later

falls are independent of earlier medication changes and falls. Hoffman et al. showed that

the Within-Cluster Resampling (WCR) method can be used so that univariate analysis

can be applied to data which randomly selects, with replacement, a single observation

within each cluster and averages the estimates from repeating the sampling and univariate

analysis over large number of iterations [40]. By repeating the sampling a large number of

times, parameters are robust to non-ignorable cluster size. Rieger and Weinberg applied

WCR using conditional logistic regression on clustered binary outcome data in a case-

control design [82]. Luo and Sorock extended the application to the case-crossover design

and used simulations to demonstrate that a single event could be sampled for each subject

along with the corresponding matched sets of case- and control-periods. This allows the

researcher to leave the correlation structure among multiple matched sets within each sub-

ject unspecified [58]. Estimates remain valid when the number of matched sets or events

per subject is related to the outcome. Luo named this application of the WCR method

to case-crossover design as the Within-Subject Pairise Resampling (WSPR). In addition,
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the WCPR is applied to the case-crossover design is the same as weighting estimating

equations to solve for relative risk estimates. This connection was based on Williamson’s

work that showed if the WCR sampling algorithm followed a uniform distribution with a

probability mass of 1
nt̃i

, then weighted estimating equations could be used to estimate the

weighted score function from a pooled analysis approach [109]. Where nt̃i
is the number

of events for subject i.

By definition the acute event in the case-crossover design is rare. When multiple ex-

posures are of interest to the investigator, variable selection poses challenges due to small

sample size in multivariate analysis. Avalos and colleagues were interested in exploring

whether an exposure to any of 89 pharmacotherapeutic classes were related to 422 au-

tomobile accidents among an elderly population [5]. They tackled the issues associated

with an exploration of many potential associations using the lasso and elastic net penalties

when obtaining parameter estimates from the conditional likelihood as a variable selection

method for case-crossover designs. They recommended the use of the lasso and elastic net

over other related methods due to the superior performance in simulation studies and data

analysis, with the exception that they yielded high false positive results in simulations

where the correlation between parameters was negative.

2.1.2 Comparison to Other Designs and Methods

What was thought to be an alternative method to analyze daily environmental exposures

and case-only data, log-linear time series regression models were traditionally used to

estimate the effect of a one unit change in the exposure on the total number of events

[23] . A property of environmental epidemiological studies of air pollutants is that the

exposure, Zt = Zit, is the same for all individuals i at time t. Lu and Zeger showed that

when the exposure is the same for all subjects the estimate obtained from the conditional

logistic regression in the case-crossover design is a special case of the time series log-linear

model [56]. The standard errors obtained in each analysis may be different since the log-

linear model may take overdispersion into account while the case-crossover design assumes

the Poisson variance [56]. Lu and collaborators then used this relationship to recommend

model checking for influential points and overdispersion [55]. The presence of overdisperion
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often indicates the presence of an unmeasured time-dependent confounder.

The self-controlled case series method was proposed as an alternative design to the

case-crossover design to alleviate some strong assumptions made by the case-crossover

[20, 21, 22]. These assumptions include the requirement that the exposure distribution is

stationary and globally exchangeable. The self-controlled case series design is similar to the

case-crossover design in that it only samples cases, and controls for all fixed confounders.

However, it differs from the case-crossover design in that the likelihood is built upon

assuming a Poison cohort model and conditions on the exposure having occurred during the

observation period. Limitations of the design includes the requirement that the exposure

is independent of the occurrence of the event and for non-recurrent events it only works

when the event risk is small over the observation time [107].

Vibound et al. compared the performance of the case-crossover design to a case-control

design in simulations and found that the case-crossover design consistently has lower type I

error for varying exposure incidence rates [101]. For both designs the type I error decreased

with the prevalence of the exposure. In addition, they found that the case-control design

had higher power for relative risk less than eight, but lower power when the relative risk

exceeded eight.

The study by Whang and collaborators used the case-crossover analysis and the Cox

hazards model to distinguish between the short and long term effects of exercise [106].

Other studies have compared results of both methods to assess short term effects of a tran-

sient exposure only. Lepeule and colleagues proposed that a Cox hazards model with time

dependent covariaties could be applied to ecologic studies exploring associations between

short-term air pollution and mortality in lieu of the case-crossover design or time series

analysis [51]. Furthermore, they compared their results applying a Cox hazards model to

an earlier study which utilized a case-crossover design on the same population [24]. Peters

et al. compared a Poisson time series, case-crossover, and Cox hazards model analysis and

observed similar results when exploring the relationship between ambient air pollution and

exacerbation of cardiovascular disease [77].
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2.1.3 Application

The first study to apply the case-crossover design was The Onset Study [65]. The study

identified patients admitted to one of 22 hospitals with a myocardial infarction. The

patients were interviewed and the self reported time of myocardial infarction was recorded

as well as measures of anger, anxiety and curiosity during each of the 26 hours prior to

the onset of the myocardial infarction. The patients also reported there average or usual

annual frequency displays of anger. The case-crossover design was applied to compare the

level of anger two hours prior to the myocardial infarction compared to same two hour

period the day prior. For the anger measurement, another case-crossover design was used

with the usual frequency measurement of anger as the control. The study found that an

exposure above the 75th percentile for anger and curiosity increased the risk of a myocardial

infarction in the following two hours by 1.9 (95%CI=[1.3, 2.7]) and 1.6 (95% CI=[1.1, 2.2])

times respectively. There was not enough evidence (p-value=0.70) to conclude that an

exposure to curiosity in the two hours prior to myocardial infarction was associated with

the event.

One of the most prominent and early applications of the case-crossover design is the

Redelmeier and Tibshirani study of cell phone usage and motor vehicle collisions [80].

Similar to The Onset Study, it is unrealistic to randomize cellular phones to individuals

and wait to observe motor vehicle collisions. Persons included in the study were identified,

along with the date of the collision, if they reported to the Collision Reporting Centre in

Toronto. Individuals only reported to this center if they were in a collision that did not

involve injury, criminal activity, or the transport of dangerous goods. The study concluded

that cellular phone activity increased the risk of a motor vehicle collision by 4.3 (95% CI

= [3.0, 6.5]) times. A similar study published eight years later found that cell phone usage

increased the risk of a crash resulting in hospitalization by 4.1 (95% CI=[2.2, 7.7]) times

[63].

The study of the association of air pollution with various health-related outcomes is a

discipline that commonly deploys the case-crossover design [15]. The ambient exposures
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often studied in this field includes black smoke, carbon monoxide, particular matter, ni-

trogen dioxide, nitrogen oxide, ozone, sulfur dioxide with several health related outcomes

such as mortality, respiratory events, hospitalizations, heart failure, COPD related events

[15]. Particulate matter has been found to increase the risk of heart failure [78], asthma

and other respiratory diseases among children [53, 54, 96], mortality [27, 47, 93], medical

emergency calls [14]. There are several studies, however, which did not find associations

between particulate matter and health related outcomes [52, 95]. Carracedo-Martinez and

colleagues also found that some pollens increased the risk of medical emergency calls [14].

Measures of sulfur dioxide and ozone were found to increase the risk of mortality [47].

The case-crossover design has also recently grown rapidly in its application in phar-

macoepidemiology. A recent systematic review found that since 2008 there have been at

least nine publications on the topic of case-crossover designs in the area of pharmacoepi-

demiology [18]. The most common event used as an outcome in pharmacopidemiology case

crossover design studies is hospitalizations followed by falls and motor vehicle collisions[18].

Other primary outcomes are disease related events such cardiovascular or cerebrovascular

events, which was the most published disease, followed by gastrointestinal, heaptic or renal,

and respiratory events[18].

In a study resembling the motivating example for this proposal, Meuleners et al. applied

the case-crossover design to a database of 616 individuals who were hospitalized after a

motor vehicle crash [64]. The individuals were identified from the database using ICD10

codes, and were linked to a government subsidized prescription medication database. They

found that benzodiazepines, antidepressants and opioid analgesics increased the risk of a

motor vehicle crashes which required hospitalization.

Möller and colleagues conducted a study exploring emotional stress as a trigger of falls

leading to hip or pelvic fractures [66]. They interviewed 137 patients who fell in one of

two hospitals in Stockholm and obtained emotional stress measures which were used as

exposures in the case-crossover design. The authors concluded that anger, sadness and

stress increased the risk of falling by (95% CI=[2.7,54.7]), 5.7 (95% CI=[1.1, 28.7]), and

20.6 (95% CI=[4.5, 93.5]) respectively.

A study deploying the case-crossover design, among two other designs, to study the
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association of therapeutics with the risk of death in a population of Pennsylvancia Medicare

beneficiaries [104]. Estimates from the case-crossover design suggested that exposure to

Lipid lowering, blood pressure regulating, glaucoma, glucose regulating, or osteoporosis

therapeutics decreased the risk of death in the following 30 days. Wang and collaborators

provided additional estimates of risk, which took into consideration the authors concern

of exposure trends and time-dependent confounders. These adjustments resulted in null

results for each medication with the exception of Osteoporosis, which resulted in an increase

risk of death in the following 30 days [104].

The application of the case-crossover design has been applied in many other disciplines.

Some examples include alcohol and gout [110]; the effectiveness of condoms and sexually

transmitted disease [105]; Medicare costs attributable to a fall [89]; and folic acid antagonist

use with birth defects [39]. Another notable study found that nurse to patient staffing levels

at several hospitals is associated with increased risk of infection. Chew and collaborators

found that various measures of inflammatory activation is associated with acute coronary

syndromes [17]. Hambdige and collaborators utilized the case-crossover design to explore

the safety of influenza vaccinations in children of age 6-23 months old. They concluded

that influenza vaccines did not increase the risk for any of the medical related events they

studied, and in several outcomes were preventative [35].

The Nurses’ Health Study followed 121,701 female, registered nurses between the ages

of 30 to 55 years. Baseline information was obtained about medical history, coronary

heart disease risk factors, and life style. The woman were followed up on a biannual

basis via mailed questionnaires that obtained new diagnoses and information on physical

activity from 1986-2000. The level of physical exertion that the individual experienced

right before death was extracted from the medical record or from next of kin. 288 of 84888

who responded to 1980 questionnaire were observed to have experienced a cardiac death.

Whang et. al wanted to understand the risk associated with sudden cardiac death during

moderate to vigorous exertion, and to assess the long-term effects of exercise on sudden

cardiac death. A case-crossover analysis found that the relative risk of cardiac death

during moderate to vigorous exertion was increased by 2.38 [1.23-4.60]. To the contrary,

a proportional hazards model with a time-dependent covariate found that the long term
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effect of moderate to vigorous exercise was inversely related to mortality [106].

2.2 Falls

Injuries are the leading cause of death for individuals over the age of 65, and the leading

type of fatal injury is due to a fall [25]. Falls are also the leading cause of non-fatal injuries

for individuals over the age of 65 [25]. In any given year, it is estimated that about one

third of all community dwelling adults, age 65 or greater, will experience a fall [37, 100].

Between 9-14% of these falls will result in a serious injury[98, 99]. Furthermore, it is

estimated that 65% of the elderly who experience a serious injury when falling will not be

able to get up, and 47% of those who do not experience a serious injury [99]. Particular

consideration should be given to females, who are at 2.48 (2.16, 2.85) times the risk of

experiencing a fracture compared to their male counterparts [111].

Stevens and colleagues estimated that there were 10,300 fatal falls, and 2.6 million

non-fatal falls that required medical intervention in 2000 [89]. The same study estimated

that fatal falls cost 200 million U.S dollars, and that the cost associated with a non-fatal

fall in the twelve months following was 19 billion U.S. dollars in the year 2000 [89]. Bishop

et. al estimated that injuries in the elderly cost Medicare 9 billion U.S. dollars in 1999,

where 67% of these costs were attributable to a fracture [9].

2.3 Risk Factors for Falling

A large body of work has accumulated over the years that has identified factors that are

associated with individuals experiencing a fall in elderly populations. The factor which

research has consistently shown has the strongest relationship with falling, is a previous

fall [41, 72, 99, 100, 108]. Measures of mobility and balance have also been shown to

increase the risk of falling [37, 75, 100, 108]. Hausdorff et al. studied the variation of a

subject’s stride as a predictor of falling in the following twelve months, and found that an

increase of a one standard deviation change in variability increased the odds of falling by

5.3 (1.01, 27.2) [37]. Other factors that have been linked to the risk of falling include age

[75, 108]; dependency in activities of daily living [75]; fear of falling [75]; hearing and vision
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impairment [75, 99]; poor health related quality of life scores [75]; arthritis [72]; parkinson

[72]; and urinary incontinence [100].

There is a large body of research that has found associations that link medication

classifications to patients who experience a fall. Leipzig and collaborators conducted an

extensive literature review of forty non-randomized controlled trials published between

1966 and 1996 and conducted a meta analysis of the results [48]. They found that the

use of any psychotropic medication increases the risk of falling by 1.73 (95% CI= 1.52-

1.97), neuroleptics by 1.50 (95% CI =1.25-1.79), sedatives by 1.54 (95% CI = 1.40-1.70),

any antidepressants by 1.66 (95% CI = 1.40-1.95), tricyclic antidepressant by 1.51 (95%

CI = 1.14, 2.00), and both short and long acting benzodiazepines by 1.48 (95% CI =

1.23, 1.77). More recent studies have been able to reproduce the findings of psychotropic

medications and risks of falling in patients in long term care or psychiatric institutions

[46, 74, 108]. Leipzig et. al also conducted a similar meta analysis of twenty nine studies

to evaluate the evidence that has linked cardiac and analgesic drugs to risk of falling [49].

They found that the use of diuretic increases the risk of falling by 1.08 (95% CI = 1.02-

1.16), type Ia antiarrhythimics, and digoxin by 1.22 (95% CI = 1.05-1.42) times. Leipzig

et. al did not find enough evidence to conclude an association between the following

medications classes and falling: thiazide diuretics, loop diuretics, beta blockers, centrally

acting antihypertensives, ACE inhibitors, calcium channel blockers, nitrates, narcotic and

nonnarcotic analgesics, NSAID, aspirin [49]. Other research has focused on the complexity

of medication regimen, where a popular measure for medication complexity is whether or

not a patient is on five or more medications, which several studies have found associations

with five or more medications and the risk of falling [72, 108].

2.4 Events Triggering a Fall

Recent research has shifted the focus from studying which factors may identify those who

are most likely to fall, to a focus on understanding the events that may trigger a fall.

Neutel et al. found that a new benzodiazepine or antipyschotic drug increases the risk of

falling in the next two days by 11.4 (95% CI = 1.5-89.0) fold, and a change in any drug

increases the risk of an imminent fall by 1.8 (95% CI = 1.0-3.2) times [71]. The study
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applied a 1:1 case-crossover design, deploying a reference strategy that looked for a new

medication during the two days prior to the fall, and compared it to the control-time at

8-9 days prior to the fall. Neutal and colleagues considered two analysis: one, defined the

unit of analysis as falls and assumed that multiple falls per patient were independent; two,

they repeated the analysis only using the first fall [71]. There was not enough evidence to

support that a new central nervous system, cardiovascular, antibiotic or gastrointestinal

drug increased the risk of an imminent fall.

Sorock et al. applied a 1:1 case-crossover design to 158 patients in a long term care

setting and found that changes in central nervous drugs increased the risk of falling within

the next 1-3 days by 3.38 (95% CI =1.20, 9.49) times [88]. This study defined a change in

medication as any new medication, dosage change, as-needed, or discontinued medication.

This association was found by testing several different reference strategies; 1 vs 9, 1-2

vs 8-9, 1-3 vs 7-9, 1-4 vs 6-9 days prior to the fall. An odds ratio of 3.51 (95% CI =

1.05-11.68) was found for a change in central nervous system medications in the 1-2 day

vs 8-9 day comparison, and no associations at the other case-crossover time comparisons.

Sorock justified these findings at 1-3 days prior to the fall based on the 20 hour elimination

half-life for the central nervous system drugs haloperidol and risperidone. Sorock’s study

did not find any relationships when exploring changes in gastrointestinal, hypoglycemic,

antibiotics, cardiovascular, analgesics, and any non-CNS medications [88]. The study

allowed patients to have multiple falls included in the analysis by applying a method to

weight the fall’s contribution by the number of falls the patient experienced [58].

Suto and colleagues found that an initial use of hypnotic, anti-anxiety, antihypertensive,

or antiparkinson drugs increases the risk of falling by 8.42 (95% CI =3.12, 22.72), 4.18

(95% CI = 1.75, 10.02), 3.25 (95% CI =1.62, 6.5) and 2.44 (95% CI =1.22, 4.51) times,

respectively, in a sample of 349 patients in an acute care hospital in Japan [87]. They

applied a 1:3 case-crossover design, fixing the case-time at 0-2 days before the fall and the

control-times at 6-8, 9-11, 12-14 days prior to the fall. Suto et. al justified the selection

of the case-time based on the elimination half-life of the prescribed medication. Suto et.

al did not find any relationship with an initial use of antipsychotic agents, antihistamines,

antidiabetic agents, diuretics, and anti-ulcer agents [87].
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Gribbin et. al applied a self-controlled case series analysis and found that the first

prescription of thiazide increases the incident rate of falling in the subsequent 21 days by

a magnitude of 2.8 (95% CI = 1.7, 4.57) [34]. In addition, they found that risk of falling

22-60 days after the new prescription increased by 1.16 (95% CI = 1.04, 1.30) fold for

beta-blockers and by 1.15 (95% CI = 1.04, 1.28) times for angiotensin-converting enzyme

inhibitors. There was not enough evidence to support an association with angiotensin-II

receptor antagonist or calcium channel blockers.

A study by Butt et. al used a self-controlled case series design to find that a first

prescription for any type of antihypertensive drugs increases the risk of falling in the

following 45 days is 1.43 (95% CI = 1.19, 1.72) times [13]. Further exploration found

incident rate ratios of 1.33 (0.94, 1.88) for thiazide diuretics, 1.53 (95% CI = 1.12-2.10) for

ACE inhibitors, 1.41 (95% CI = 0.65, 3.05) angiotensin II receptor antagonist/blockers,

1.30 (95% CI = 0.83-2.02) for calcium channel blockers, and 1.58 (95% CI = 1.01, 2.48)

for beta-adrenergic blockers [13].

2.5 Clinical Plausibility for Medications Triggering Falls

Controlling for demographics, medications, physical conditions, mental disorders, and hy-

pertension, Bolton and colleagues found that several psychotropic medications are associ-

ated with the risk of osteoporotic fractures [10]. This study found that the use of selective

serotonin reuptake inhibitors increase the odds of osteoporotic fracture by 1.45 (95% CI

= 1.32- 1.59) times. These findings are reinforced by studies that have found that selec-

tive serotonin reuptake inhibitors decrease bone density [19, 36]. Bolton et. al also found

that benzodiazepines and other monoamine antidepressants increase the risk of osteoportic

fractures, but Lithium medications may actually be protective against fractures with an

odds ratio of 0.63 (95% CI =0.43-0.93) [10].

Diuretics, antidepressants, antiepileptics, antipsychotics, chemotherapeutics, and recre-

ational party drugs have been shown to have an association with hyponatremia [6]. Hy-

ponatremia is a condition in which there is not enough sodium in the body, and has been

shown to increase the risk of falls and fractures in the elderly [81]. This is likely due to
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its effect giving rise to a mild cognitive impairment which results in unsteady gait[6]. In

addition, hyponatremia is likely to cause or magnify osteoporosis, leaving elderly patients

who fall at elevated risks of experiencing a fracture [6].

Berlie and Gardwood reviewed the literature of diabetic medications and falls and

concluded that metformin is associated with vitamin B12 deficiency, which is linked to

neuropathy, and neuropathy is associated with increasing the risk of falls [8]. They also

point out that insulin secretagogues and insulin have been identified as characteristics of

patients that fall, but can’t provide a clinical explanation except that in observational

studies these medications maybe identifying patients with hypoglycemia which results in

reduced balance, strength and gait abnormalities. Furthermore, they reviewed the liter-

ature that has shown that thiazolidinediones are associated with bone density loss and

increased risk of fractures.

2.6 Relevance

Several of the studies reviewed here deployed the case-crossover design in settings utilizing

electronic administrative data [35, 64, 104]. It is presumed that a cohort design could

be constructed from each of these studies respective databases. Similarly, the VNSNY

Medication and Fall Data enables the investigators to observe medication exposures and

potential baseline confounders on all patients. Applying the case-crossover design in this

setting, results in the exclusion of medication information from the patients who did not fall

and is likely to result in substantial loss of efficiency. This literature review has identified

which factors are known to be associated with falling, and can be observed in the VNSNY

Medication and Fall data. An alternative approach to using the case-crossover design

would be to conduct a well known, cohort design utilizing a Cox hazards model with

time-dependent covariates. This model could control for factors that may be assumed to

confound the relationship between falling and medication changes.

The case-time-control design was proposed as a bias adjustment for the case-crossover

design. If information is readily available on individuals in the cohort who did not fall, a

retrospective cohort design using a method such as the Cox hazards model may be more
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appropriate. The comparison of the Cox hazards model to the case-crossover design has

been limited to applied data analysis studies. There is an absence in the research that con-

nects the likelihood and design methodology for each approach. Simulation studies under

different assumptions could provide researchers with valuable information for choosing an

approach to estimating the effect of an exposure on an event.

Most applications of the case-crossover design covered in this literature review assume

that the transient effect of an exposure on an acute event can be summarized by a simple,

linear parameter. This assumption results in a naive estimation of the increased risk if

Maclure’s Epidemic Curve is the underlying true relationship [59]. There is a need to fill

the gap in the case-crossover design literature for how to explore a nonlinear transient effect

in the case-crossover design setting. Furthermore, methods to compare more complicated

associations must be easily available to the investigator.
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Chapter 3

Methods

This thesis proposes to use the principal of distributed lagged variables to model a non-

linear, deteriorating effect within the case-crossover design setting. This thesis also demon-

strates that under certain assumptions, a cohort design using a Cox hazards model with

time-dependent covariates will yield the same log hazard estimate as the case-crossover

design. Furthermore, the case-crossover design is shown to be preferred over the cohort

design in the presence of unobserved confounders. This chapter discusses the methodology,

and assumptions, for obtaining a log-hazard ratio in the case-crossover design and in the

cohort setting.

The first section introduces notation, in the context of the VNSNY Medication and

Fall data, assuming a cohort sample has been observed, and reviews the construction of

the partial likelihood for a Cox hazards model with a single, time-dependent covariate.

The second section adapts the notation to the conditional probability used to develop the

likelihood function for the case-crossover design. The last section, which is broken into

two subsections, proposes a new approach to estimating a non-linear, deteriorating associ-

ation in the case-crossover design setting. First, the concept of distributed lags within the

case-crossover design setting is introduced by extending the simple one parameter relation-

ship, which is defined in the preceding sections, to include two parameters. This model

describes a relationship that is slightly more complicated than an “on-off” relationship.

The distributed lag concept is then extended to include a large, finite, number of lagged

parameters. Finally, a functional form of the lagged parameters is proposed to account for

a non-linear, deteriorating effect of the exposure within the case-crossover design setting.
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3.1 Notation

Consider a cohort of N patients who are admitted into the acute care program at Visiting

Nurse Service of New York (VNSNY) during the calendar years 2010 and 2011. Time from

entry (t = 0) begins with admission into home health care. Each patient is assessed by

a clinician using the Outcome and Assessment Information Set (OASIS). This assessment

tool is required by the Center for Medicare and Medicaid Services. This baseline assessment

enables investigators to observe an array of patient characteristics (e.g. demographical,

clinical, etc.) at the time of entry into home health care. These characteristics are assumed

to be constant over the duration of care and are represented by the vector of covariates X

for patient i. In addition, the medication regimen for each patient is observed on a daily

basis throughout the episode of home health care. The status of a change in medication

regimen for patient i at time t is denoted by the vector of the time-dependent covariates

Zt.

Let T̃i and Ci denote the event time (i.e. time to the first fall) and censoring time of

patient i, respectively. The observed time for patient i is defined by Ti = min(T̃i, Ci) with

a fall indicator

δi =

 1 Ti = T̃i

0 Ti = Ci

(3.1)

where censoring is assumed to be non-informative.

Under the cohort design, assume the relationship between the hazard of falling and the

constant patient characteristics X, and time-varying characteristics Zt, is given by

λ(t) = λ0(t)e
Xγ+Ztβ (3.2)

where γ and β are vectors of coefficients that describe the respective multiplicative effects

of X and Zt. Zt may describe one or more time-varying factors which specify the status

of exposures at time t . For instance, in the VNSNY Medication and Fall data, Zt could

include a continuous measure of medication regimen complexity, indicators of changes in

one of many medication therapeutic classification, or a set of lagged-covariates that account

for carry-over effects, etc.

To describe a simple association between a medication change occurring for patient i
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Figure 3.1: Illustration of simple, “on-off” transient effect

at τi, a single time dependent variable, Zit, may be specified to indicate the change and

its effect, such as

Zit =

 1 t ∈ (τi, τi +∆]

0 t ̸∈ (τi, τi +∆]
(3.3)

where ∆ is the assumed duration of the transient effect of the medication change. This may

be described as an “on-off” relationship, since the background risk is quickly elevated, due

to the change in exposure, before quickly returning to the background risk. This simple

effect can be written with the following hazard function

λi(t) = λ0(t)e
Xγ+βZit (3.4)

with Zit defined by Equation (3.3). Figure 3.1 illustrates this simple, “on-off” transient

effect, described by β, on the baseline hazard in Equation (3.4). This figure assumes that

patient characteristics have no effect (γ = 0), the baseline hazard λ0(t) = 0.01, the effect

of the medication change increase the baseline hazard by 2.25 times, or β = 0.8, for a

duration of ∆ = 1, and then returning to the baseline hazard of 0.01.
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3.2 Cohort Design

The VNSNY Medication and Fall data includes both constant, patient characteristics and

time-dependent covariates. The time-dependent covariates describe medication regimen

changes on both patients who experienced a fall and those who did not. One method to

estimate the immediate effect that a medication change has on falling is to fully utilize the

data of the entire cohort and use a conventional Cox proportional hazards model where

medication changes are treated as time-dependent covariates.

A partial likelihood to estimate β and γ from Equation (3.4) is constructed as

L(β, γ) =
N∏
i=1

[
λ0(t̃i)e

Xiγ+βZit̃i

Σk∈R(t̃i)
λ0(t̃i)e

Xkγ+βZkt̃i

]δi

=
∏

i∈{i;δi=1}

e
Xiγ+βZit̃i

Σk∈R(t̃i)
e
Xkγ+βZkt̃i

(3.5)

where R(t̃i) denotes the risk set of the full cohort at time t̃i, and t̃i denotes the event time

for patient i [42]. The partial log-likelihood is given by

l(β, γ) =
∑

i∈{i;δi=1}

{
Xiγ + βZit̃i

− log
[
Σk∈R(t̃i)

e
Xkγ+βZkt̃i

]}
(3.6)

Then, β and γ are estimated by taking the partial derivative of Equation (3.6) with respect

to β and γ, respectively, and solving the resulting partial score equation U(β, γ) = 0, where

U(β, γ) =

 ∂l(β,γ)
∂β

∂l(β,γ)
∂γ

 =


∑

i∈{i;δi=1}

[
Zit̃i

−
Σk∈R(t̃i)

Zkt̃i
e
Xkγ+βZ

kt̃i

Σk∈R(t̃i)
e
Xkγ+βZ

kt̃i

]
∑

i∈{i;δi=1}

[
Xi −

Σk∈R(t̃i)
Xke

Xkγ+βZ
kt̃i

Σk∈R(t̃i)
e
Xkγ+βZ

kt̃i

]
 (3.7)

The information matrix is obtained by taking the derivative of U(β, γ) with respect to β

and γ. Variance estimates of β and γ can then be obtained by inverting the information

matrix. In practice, estimates and standard errors for β and γ can be obtained by using

coxph function in R [97].

3.3 Case-Crossover Design

Maclure described a sampling method for observational data that matches periods of time

within a subject in order to estimate the association between a time dependent exposure
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and an acute event [59]. The case-crossover design is fundamentally a matched case-

control design, but where times are matched within patient rather than patient-to-patient

matching in the traditional setting. In this sampling strategy, depicted in Figure 3.2, a

time is selected for each patient who has experienced the event, during a period when the

exposure is assumed to be attributable to the event, and is referred to as the case-time or

hazard-time. One or more control-times are then matched to the case-time for the same

subject. The control-times are assumed to occur at time when the patient is assumed to

be event free. Therefore, the event is assumed to be fixed and the exposure is random.

Event

Control Times
Case
Time

Figure 3.2: Illustration of a case-time matched to control-times for the same subject in a
case crossover design

The association is then estimated by comparing the distribution of exposures during case-

and control-times for all matched sets. The case-crossover design is most useful when only

patients who have experienced the event are available to the investigator.

The simplest form of the case-crossover design is a 1:1 case-crossover design. This

design consists of one case-time matched to one control-time. The number of control-times

is often denoted by M , and when M > 1 control-times are used in the design, the study

is called a 1:M case-crossover design. In principle it is possible to select more than one

case-time for each subject, but is rarely applied in practice.

The time scale in the case-crossover design is referenced to the time of the event; this is

a reversal of the time scale used in the retrospective cohort design. A reference strategy is

then carefully designed around this time scale for M + 1 intervals. The reference strategy

is commonly fixed by the investigator based on prior knowledge of the exposure and the

event. In this dissertation, the case- and control-times are always selected in the days prior

to the fall, and m = 0 indexes the case-time which is matched with m = 1, 2, . . . ,M control

times.
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Let the reference times be denoted by the within-patient temporal risk set Wi(t̃i). The

times selected in this risk set are selected apriori by the investigator and reference the

fall time t̃i for patient i. If case- and control-times are assumed to occur sequentially

over the days immediately preceding the fall, the case-time is then said to occur at t̃i

and Wi(t̃i) =
{
t̃i − (M + 1), . . . , t̃i − 2, t̃i − 1, t̃i

}
. This reference strategy is illustrated in

Figure 3.3. The dual x-axis in this plot illustrates how the time scale in the case-crossover

design references the time of the fall, which is a reversal of that used in a retrospective

cohort design (i.e. time from entry).
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Figure 3.3: Illustration of a 1:M case-crossover design with time scales from both case-
crossover and cohort designs

The notation (0) and (m) is introduced to map the case- and mth control-time strata

to the time scale used in the cohort design, or the time from entry. Let Zi(0) denote the

exposure during the case-time for patient i, Zi(1), . . . Zi(M) denote the exposures during

the M control times for patient i, and Ψi = {Zi(0), Zi(1), . . . Zi(M)} denote the unordered

set of exposures for patient i, where Ψ is defined by the reference strategy design. Assume

that falls are rare and λ0(t) is constant or small [102]. It then follows, the conditional

probability that the covariate value during the case-time is precisely, Zi(0) = zi(0), given

that Zi(0) lies in Ψi

P (Zi(0) = zi(0)|T̃ = t̃i,Ψi) =
P (T̃ = t̃i|Zi(0) = zi(0),Ψi)P (Zi(0) = zi(0)|Ψi)∑
j∈Wi(t̃i)

P (T̃ = j|Zij = zij ,Ψi)P (Zij = zij |Ψi)
(3.8)
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The exposure distribution in any M + 1 successive time intervals must be globally ex-

changeable within the matched set Ψ, i.e.

P
(
Zi(0) = zi(0), . . . , Zi(M) = zi(M)

)
= P

(
Ziκ(0) = ziκ(0), . . . , Ziκ(M) = ziκ(M)

)
for all permutations κ of {0, 1, . . . ,M}. Based on the model in Equation (3.4), the condi-

tional probability can then be written as [102]

P (T̃ = t̃i|Zi(0) = zi(0))∑
j∈Wi(t̃i)

P (T̃ = j|Zij = zij)
=

λ0(t)e
Xiγ+βZi(0)∑

j∈Wi(t̃i)
λ0(t)eXiγ+βZij

=
eβZi(0)∑

j∈Wi(t̃i)
eβZij

(3.9)

Expression (3.9) is of the same form as the conditional probability used in a conditional

logistic regression. From this conditional probability, the likelihood function of β can be

constructed as

Lcco(β) =
∏

i∈{i;δi=1}

eβZi(0)∑
j∈Wi(t̃i)

eβZij
(3.10)

The corresponding log conditional likelihood and score function for β is

lcco(β) =
∑

i∈{i;δi=1}

βZi(0) − log

 ∑
j∈Wi(t̃i)

eβZij

 (3.11)

Ucco(β) =
∑

i∈{i;δi=1}

[
Zi(0) −

∑
j∈Wi(t̃i)

Zije
βZij∑

j∈Wi(t̃i)
eβZij

]
(3.12)

respectively, β can be estimated by solving Ucco(β) = 0. Because patient specific charac-

teristics cancel out in the conditional probability in Equation (3.9) , and subsequently in

the conditional likelihood and score function, estimation of β implicitly controls for time

invarying characteristics. However, time-varying confounders must still be controlled for in

any analysis. In practice, the parameter estimates and standard errors can be obtained by

using software that can specify a conditional logistic regression model, such as the clogit

function in the survival package in R [97].

The case-crossover design’s conditional likelihood function in Expression (6.2) has the

same form as the Cox partial likelihood function in Equation (3.6). The product for

each likelihood function is taken over the number of patients who fell. The numerator

is constructed from taking the hazard function in Equation (3.4) at time t̃i for the Cox
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partial likelihood, and at a time where the exposures is attributable (assumed) to the event

t̃i for the case-crossover design for the ith patient who fell. The two likelihood functions are

distinguishable by the risk set used in each functions respective denominator. The risk set

used in the Cox partial likelihood is comprised across other patients in the cohort who are

at risk of falling at time t̃i, including both those who fell and those who did not. Whereas,

the risk set used in the case-crossover design constitutes of times selected within the ith

patient who fell.

A theoretical cohort of patients displayed in Figure 3.4 is used to illustrate the distinc-

tion between the two designs. Eight patients are followed from time of entry to represent

a sample that could be observed in the VNSNY Medication and Fall data. Patients are

followed until each experiences an acute event or is lost to follow-up. In this example,

falls are observed at times t̃i = 1, 2, 3, 4, 5, 6, 7 for patients 1, 2, 3, 4, 5, 6, 7 respectively and

patient 8 is lost to follow up and censored at time ci = 8. In addition, a binary exposure

is observed for patients 1, 3, 4, 7, 8. The across patient risk set for the Cox hazards model

is indicated by the red, dashed lines. The temporal, within subject risk set for the case-

crossover design is drawn in the blue, dotted lines. Patients 1-7 all have a risk set for both

designs. Patient eight contributes to the risk sets in the Cox partial likelihood, but is not

included at all in the case-crossover design since no event was observed.

3.4 Specifiction of a Non-Linear Relationship

Maclure hypothesized that the transient effect resembled the smooth curve plotted in

Figure 3.5. He assumed that all patients have a constant low risk of experiencing the event

until the point exposure occurs; which may or may not be followed by an induction time.

After the induction period, the patient enters a period where he or she is at highest risk.

This risk is then assumed to deteriorate the further in time after the point exposure. A

naive approach to this deteriorating, non-linear relationship would be to force an on-off

relationship by assuming the hazard in Equation (3.4) and time-dependent covariate in

Equation (3.3).

A nonlinear relationship in some cases may be justified by aprori information about the
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Figure 3.5: Illustration of Maclure’s assumed epidemic curve for the case-crossover design
[59]. The curve demonstrates incidence of an acute-onset event (i.e. fall) after observing
a point exposure (i.e. change in medication). The population induction time is indicated
by I(x), and a step function is suggested to estimate the curve through E(x1) and E(x2).
E(x1) indicates the time of highest risk effect period, and E(x2) a more moderate risk
effect period. The naive or “on-off” relationship is overlayed with the thicker red line

relationship between the exposure change and the event. For example, the pharmacokinet-

ical properties of a medication (i.e. absorption, distribution, metabolism, and excretion)

may lead the investigator to assume the risk of falling after an increase in a specific ther-

apeutic medication classification of follows the non-linear deteriorating effect, possibly

resembling Maclure’s epidemic curve illustrated in Figure 3.5 [59]. Forcing the “on-off”

relationship can underestimate the risk during the E(x1) period, and overestimates the

risk during the E(x2) period. This dissertation proposes a new approach to estimate the

curve hypothesized by Maclure within the case-crossover design framework.
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3.4.1 Transient Effect Described by Two Lagged Parameters

Maclure recommended simplifying the epidemic curve in Figure 3.5 by employing a step

function, illustrated by the dashed line, to approximate the hazard over two intervals of

high risk E(x1) and moderate risk E(x2). It would be naive to force a simple “on-off”

relationship for the transient effect resembling Maclure’s epidemic curve by estimating the

effect assuming the hazard function in Equation (3.4). A better model may assume that

the hazard function is described by two covariates, such that

λi(t) = λ0(t)e
β1Z

(1)
it +β2Z

(2)
it (3.13)

where

Z
(1)
it =


0 t ≤ τi

1 t ∈ (τi, τi +∆1]

0 t > τi +∆1

Z
(2)
it =


0 t ≤ τi +∆1

1 t ∈ (τi +∆1, τi +∆1 +∆2]

0 t > τi +∆1 +∆2

(3.14)

where ∆1 is similar to the duration of E(x1), and ∆2 to E(x2), in Maclure’s epidemic curve

in Figure 3.5, and the induction time, I(x), is zero. Notation is then eased by assuming

∆1 = ∆2 = 1, and E(x1) and E(x2) occur sequentially after the time of medication change

τi. Z
(1)
it and Z

(2)
it can then be reexpressed using the lagged covariates Zi,t and Zi,t−1. An

example of this relationship 3.6 and specified by the hazard function

λi(t) = λ0(t)e
β1Zi,t+β2Zi,t−1 (3.15)

where Zi,t and Zi,t−1 represent the status of an exposure change at time t and at one lagged

period prior to t, respectively. Furthermore, these two lagged covariates are defined as

Zi,t =


0 t ≤ τi

1 t ∈ (τi, τi + 1]

0 t > τi + 1

Zi,t−1 =


0 t− 1 ≤ τi

1 t− 1 ∈ (τi, τi + 1]

0 t− 1 > τi + 1

(3.16)

This two-parameter lagged effect is illustrated in Figure 3.6. The baseline hazard is as-

sumed to be 0.01, where the risk is elevated by 2.2 fold at the time of medication change

(i.e. β1 = 0.8), followed by a period where the baseline risk is elevated by 1.5 times (i.e.

β2 = 0.4), and then returning to the baseline hazard.
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Figure 3.6: Illustration of a transient effect described by two lagged covariates in the cohort
setting where β1 = .8, β2 = .4, λ0(t) = 0.01 in Equation (3.15

)

3.4.2 Distributed Lagged Parameters

Building on section 3.4.1, increasing the number of intervals that construct the step function

from two to L is likely to provide better fit to Maclure’s epidemic curve in Figure 3.5. In

this paper L is assumed to be fixed and based on some apriori information. Notation is

again eased by assuming the step intervals are of length one and occur immediately after

the medication change. The hazard function to describe this step function of L intervals

may then be written as

λi(t) = λ0(t)e
β1Zi,t+β2Zi,t−1+...+βLZi,t−(L−1) (3.17)
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where the L lagged covariates are used to specify each step can be written as

Zi,t =


0 t ≤ τi

1 t ∈ (τi, τi + 1]

0 t > τi + 1

Zi,t−1 =


0 t− 1 ≤ τi

1 t− 1 ∈ (τi, τi + 1]

0 t− 1 > τi + 1

...
... (3.18)

Zi,t−(L−1) =


0 t− (L− 1) ≤ τi

1 t− (L− 1) ∈ (τi, τi + 1]

0 t− (L− 1) > τi + 1

Describing the relationship between an outcome and an explanatory variable using its

current and lagged values, as shown in Equation (3.17), is often referred to as a distributed

lag model [2]. Since the parameters of the lags are unrestricted, it is referred to as an

unconstrained distributed lag model [2]. Figure 3.7 shows an example of a such a hazard

function with l = 5 covariates. This example assumes a baseline hazard of 0.01, which the

risk elevated by hazard ratios e.8, e.4, e.2, e.1, and e.05 the five days after the medication

change, and then finally returning to the baseline hazard.

Figure 3.8 illustrates how a 1:M case-crossover design with reference windows of length

five could be applied to the transient effect assumed in Figure 3.7. The presentation of

the transient effect in this plot is the mirror image of that presented for the cohort setting

in Figure 3.7. The reverse image is because the time scale in case-crossover design is in

reference to the time of the fall. The dual axis again shows the difference in time scales

between the two designs under consideration. The solid bordered, gray box immediately

preceding the time of event t̃i = 0 highlights the case-time in the case-crossover design

with l = 1, 2, 3, 4, 5 lagged covariates. The other white boxes denote the 1:M control-times

chosen by the reference strategy design with the l = 1, 2, 3, 4, 5 lagged covariates. For

both reference windows the lagged covariates are enumerated from right-to-left due to the

change in time-scale in the case-crossover design.
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Figure 3.7: Illustration of a transient effect described by five lagged covariates in cohort
setting where β1 = .8, β2 = .4, β3 = .2, β4 = .1, β5 = .05, and λ0(t) = 0.01 in Equation
(3.17)

The previous example motivates the introduction of additional notation. Let ω(m, l)

denote a function that maps the case- or control strata, m, at the lagged effect, l, to the

time from admission t. For example, if a medication change occurs three days prior to the

fall, the lagged variables are parameterized during the case-time as

{
Ziω(0,1) = 0, Ziω(0,2) = 0, Ziω(0,3) = 1, Ziω(0,4) = 0, Ziω(0,5) = 0

}
Similarly, if a medication change happens at l = 4 in the m = 2 control-time the lagged

variables are parameterized as

{
Ziω(2,1) = 0, Ziω(2,2) = 0, Ziω(2,3) = 0, Ziω(2,4) = 1, Ziω(2,5) = 0

}
The conditional likelihood for one-to-M case-crossover design for the hazard in Equa-

tion ( 3.17) can then be constructed as

Lcco(β1, β2, . . . βL) =
∏

i∈{i;δi=1}

eβ1Ziω(0,1)+β2Ziω(0,2)+...+βLZiω(0,l)∑M
m=0 e

β1Ziω(m,1)+β2Ziω(m,2)+···+βLZiω(m,l)
(3.19)
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Figure 3.8: Illustration of a 1:M case-crossover design being applied to a transient effect
deteriorating over five days and assumes a baseline hazard λ0(t) = 0.01 with log hazard
ratios of β1 = .8, β2 = .4, β3 = .2, β4 = .1, β5 = .05
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with log conditional likelihood

lcco(β1, β2, . . . βL) =
∑

i∈{i;δi=1}

[
β1Ziω(0,1) + β2Ziω(0,2) + . . .+ βLZiω(0,L)

− log

(
M∑

m=0

eβ1Ziω(m,1)+β2Ziω(m,2)+...+βLZiω(m,L)

)]
(3.20)

Taking the derivative for each of the L lagged covariates yields the score function

Ucco(βl) =
∑

i∈{i;δi=1}

[
Ziω(0,1) −

∑M
m=0 Ziω(m,l)e

β1Ziω(m,1)+β2Ziω(m,2)+...+βlZiω(m,L)∑M
m=0 e

β1Ziω(m,1)+β2Ziω(m,2)+...+βLZiω(m,L)

]
(3.21)

Estimates for βl can be obtained by solving Ucco(βl). Estimates and standard errors of βl

can be obtained in practice using clogit function in R [97].

The lagged variables in Equation (3.17) are all describing the effect from the same

exposure series. The use of a large number of lags is likely to yield unstable estimates

for small samples. An exploratory analysis of l covariates, assuming the hazard function

in Equation (3.17), may suggest an underlying relationship between the covariates, or

perhaps a scientific explanation exists that warrants constraining the βl coefficients by

some function Θl(Ω). Where Ω is a vector of parameters of size less than l.

Almon was the first to propose constraining the lagged coefficients as a function of the

lag for economic time series [2]. The true relationship as shown in Figure 3.7 resembles

the effect illustrated by the smooth curve proposed in Maclure’s Epidemic Curve in Figure

3.5. This relationship spikes immediately after the medication change and deteriorates

over time. One example of a constrained distributed lag model is the discrete geometric

function, which is commonly used in time-series analysis. A geometric lag function for

discrete lags, can be written as

Θl(β, θ) = βθ(l−1)

When 0 < θ < 1, the effect, β, deteriorates by θ over each time interval. If this constraint
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is applied to Equation (3.17) so that

β1 = β

β2 = βθ

β3 = βθ2

...
...

βL = βθL−1 (3.22)

the hazard function can then be written as

λi(t) = λ0(t)e
βZi,t+βθZi,t−1+βθ2Zi,t−2+...+βθ(L−1)Zi,t−(L−1) (3.23)

The likelihood function for a 1:M case-crossover design for β and θ from the hazard function

in Equation (3.23) is

L(β, θ)cco =
∏

i∈{i;δi=1}

eβZiω(0,1)+βθZiω(0,2)+βθ2Ziω(0,3)+...+βθ(l−1)Ziω(0,l)∑M
m=0 e

βZiω(m,1)+βθZiω(m,2)+βθ2Ziω(m,2)+···+βθ(l−1)Ziω(m,l)
(3.24)

with log-likelihood

l(β, θ)cco =
∑

i∈{i;δi=1}

[
βZiω(0,1) + βθZiω(0,2) + βθ2Ziω(0,3) + . . .+ βθ(l−1)Ziω(0,l)

− log

(
M∑

m=0

eβZiω(m,1)+βθZiω(m,2)+βθ2Ziω(m,2)+···+βθ(l−1)Ziω(m,l)

)]
(3.25)

Taking the derivative of the log-likelihood with respect to both β and θ yields the following

score functions
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Ucco(β, θ) =

 ∂l(β,θ)
∂β

∂l(β,θ)
∂θ



=



∑
i∈{i;δi=1}

[
Ziω(0,1) + θZiω(0,2) + θ2Ziω(0,3) + . . .+ θ(l−1)Ziω(0,l)

−
∑M

m=0

(
Ziω(m,1) + θZiω(m,2) + θ2Ziω(m,3) + . . .+ θ(l−1)Ziω(m,l)

)
� e

βZiω(m,1)+βθZiω(m,2)+θ2Ziω(m,3)+···+βθ(l−1)Ziω(m,l)∑M
m=0 e

βZiω(m,1)+βθZiω(m,2)+βθ2Ziω(m,3)+θ2Ziω(m,3)+···+βθ(l−1)Ziω(m,l)

]

∑
i∈{i;δi=1}

[
βZiω(0,2) + 2βθZiω(0,3) + . . .+ (l − 1)βθ(l−2)Ziω(0,l)

−
∑M

m=0

(
βZiω(m,2) + 2βθZiω(m,3) + . . .+ (l − 1)βθ(l−2)Ziω(m,l)

)
� e

βZiω(m,1)+βθZiω(m,2)+θ2Ziω(m,3)+···+βθ(l−1)Ziω(m,l)∑M
m=0 e

βZiω(m,1)+βθZiω(m,2)+θ2Ziω(m,3)+···+βθ(l−1)Ziω(m,l)

]


(3.26)

Estimates of β and θ can be estimated by solving the score equation, Ucco(β, θ) = 0.

In practice, estimates of β and θ can be obtained by using the quasi-newton method with

the R function optim [79]. This can be done by specifying the log likelihood function

in Equation (3.25) as the function which optim should maximize with respect to β and

θ. This requires the investigator to provide starting values for β and θ. To improve

the convergence properties o teh optimization procedure, a profile likelihood approach is

suggested in practice. The profile likelihood approach fixes one of the parameters in the

log-likelihood as a constant and estimates the other. Denote the constant value of β as βc

and θ as θc. Estimates for β and θ can be obtained via profile likelihood by following this

outline

1. Obtain estimates of β1 and β2 from Equation (3.23). Set initial values for β(0) = β1

and θ(0) = β1

β2
, since initial estimates of β1 and β2 are readily available

2. Repeat r times until convergence
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(a) Estimate θ while assuming β is constant, denoted βc, by maximizing the function

l(θ;βc)cco =
∑

i∈{i;δi=1}

[
βcθZiω(0,2) + βcθ

2Ziω(0,3) + . . .+ βcθ
(l−1)Ziω(0,l)

− log

(
M∑

m=0

eβcθZiω(m,2)+βcθ2Ziω(m,2)+···+βcθ(l−1)Ziω(m,l)

)]
(3.27)

using the optim function where the starting value for θ is θ(r−1) and βc = β(r−1).

Set the resulting estimate from 3.27 to θ(r) = θ̂ .

(b) Estimate β while assuming θ is constant, denoted θc, by maximizing the function

l(β; θc)cco =
∑

i∈{i;δi=1}

[
βZiω(0,1) + βθcZiω(0,2) + . . .+ βθ(l−1)

c Ziω(0,l)

− log

(
M∑

m=0

eβZiω(m,1)+βθcZiω(m,2)+···+βθ
(l−1)
c Ziω(m,l)

)]
(3.28)

using the optim function where the starting value for β is β(r−1) and θc = θ(r).

Set the resulting estimate from 3.28 to β(r) = β̂ .

where the convergence criteria is satisfied once ∥β(r−1) − β(r)∥ < ϵβ and ∥θ(r−1) −

θ(r)∥ < ϵθ for some small ϵβ and ϵθ, where β(r) and θ(r) represent the estimate from

the rth iteration. The respective Hessian matrix for both β(r) and θ(r) is retained on

the last iteration

3. The final estimates of β̂ and θ̂ are β(r) and θ(r), respectively. The standard errors

are obtained by taking the square root of the inverse Hessian matrix from the rth

iteration.

In practice , the logical first step is to determine whether the one parameter model is

sufficient in explaining the effect of the exposure change. A likelihood ratio test can be

constructed to determine if an unconstrained distributed lag model provides a significant

gain over the one parameter model such that

Ho(Nested) : λ(t) = λ0(t)e
βZi,t+βZi,t−1+βZi,t−2+...+βZi,t−(L−1)

HA(Full) : λ(t) = λ0(t)e
β1Zi,t+β2Zi,t−1+...+βLZi,t−(L−1) (3.29)
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where 2 ∗ (loglikelihood(Full)− loglikelihood(Nested)) ∼ χ2
.05(L− 1)

If the previous test rejects the null hypothesis, the next step is to determine whether

the geometric model fits the data as well as the unconstrained distributed lag model. The

expressions in Equation (3.22) details how the geomtric lag hazard function in Equation

(3.23) is nested within the larger L parameter model in 3.17. This allows a formal statistical

test to verify whether the L parameter model provides a significant gain over the two

parameter, geometric distributed lag model. This test can serve to evaluate the goodness

of fit for the two parameter model. Such that a likelihood ratio test can be constructed as

2 ∗ (loglikelihood(Full)− loglikelihood(Nested)) ∼ χ2
.05(L− 2) for the hypothesis test

Ho(Nested) : λ(t) = λ0(t)e
βZi,t+βθZi,t−1+βθ2Zi,t−2+...+βθ(L−1)Zi,t−(L−1)

HA(Full) : λ(t) = λ0(t)e
β1Zi,t+β2Zi,t−1+...+βLZi,t−(L−1) (3.30)

3.5 Conclusion

By showing the derivation for both likelihoods, this section illustrates that the likelihood

for the Cox proportional hazards model with a time dependent covariate has the same form

as the case-crossover design. They differ in that the Cox proportional hazards model uses a

risk set of subjects, while the case-crossover design uses a within-subject risk set. The latter

results in discarding information on those who did not experience the fall. Additionally, the

idea of distributed lag covariates can be used describe a non-linear association. This chapter

also showed how a two-parameter geometric constraint can be added to the distributed lag

when the relationship deteriorates non-linearly after the medication change.
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Chapter 4

Simulations

This chapter demonstrates how the geometric, two-parameter model, proposed in this

thesis, is preferred over a fully parameterized, distributed lag model. In addition, the

two-parameter model is shown to provide significant gain in goodness of fit over the naive

one-parameter model. This chapter also confirms that both designs considered in this

thesis obtain unbiased estimates of the hazard ratio associated with a change in exposure.

In addition, it is shown that the case-crossover design is preferred over the Cohort design

in the presence of an unmeasured, baseline confounder.

This chapter presents a series of simulation studies, which can be broken into two

sections: an evaluation of the performance of the case-crossover design compared to the

retrospective cohort design and an assessment of the proposed two-parameter, geometric

lag model. The former assumes that the effect of the exposure on the event follows a linear

relationship, which can be estimated by using a single parameter. The performance of each

design is compared using the following criteria:

• Bias

• Relative efficiency of the case-crossover design compared to the cohort design

• Type I error

• Power

• Coverage probability

The second set of simulations evaluate the performance of the proposed two-parameter

model in the presence of a non-linear deteriorating effect. The goodness of fit for the
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two-parameter model is compared to two other models: a model assuming a naive “on-

off” relationship and a model that is fully parameterized for each time interval over the

assumed duration of the effect. The goodness of fit is assessed by

• Likelihood ratio tests

• AIC

4.1 Comparison of Case-Crossover and Cohort Design

The hazard function in Equation (3.4) is simplified to assume just one possible baseline

patient characteristic, denoted Xi, such that the hazard is

λi(t) = λ0(t)e
γXi+βZit (4.1)

This first set of simulation studies assumes the exposure variable indicates a change in

status, and the effect of the change has a duration of one time interval (i.e. ∆ = 1).

Furthermore, these simulation studies are broken down into five scenarios which invovle

different assumptions about the relationships between the time-dependent exposure, base-

line covariate, and event. The first two scenarios assume that there is no baseline covariate,

and therefore the γXi term is dropped from Equation (4.1). Scenario one assumes that the

time-dependent covariate is independent of the event, while scenario two assumes the ex-

posure is positively associated with the event. These two scenarios are illustrated in Figure

4.1.a and Figure 4.1.b respectively. The third scenario, illustrated in Figure 4.1.c, assumes

that both the baseline covariate and the time-dependent exposure are associated with the

event but are uncorrelated with each other. Figure 4.1.d illustrates the fourth scenario;

this scenario assumes the baseline covariate is associated with both the exposure and the

event, but the exposure is independent of the event. Finally, the fifth scenario, illustrated

in Figure 4.1.e, introduces a setting where the exposure’s relationship is confounded by the

baseline covariate; the exposure is associated with the event and the baseline covariate is

associated with both the event and exposure.

The purpose of introducing the baseline covariate into the simulations for scenarios 3-5

is to provide further evaluation on the performance of both design’s ability to estimate β
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Figure 4.1: Causal diagram illustrating the five scenarios of interrelationships between
three factors: baseline covariate (xi), time-dependent exposure (zit), and the time to event
(T̃i). The five scenarios are described as: a.) the time-dependent exposure is independent
of the event, b.) the time-dependent exposure is associated with the event, c.) both
the baseline covariate and the time-dependent exposure are independently associated with
the event, d.) the baseline covariate is associated with the time-dependent exposure and
the event, but the time-dependent exposure is independent of the event, e.) the baseline
covariate confounds the relationship between the time-dependent exposure and the event
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when the baseline covariate is not observed. The derivation of the Cox proportional hazards

model in Equation (3.6) and the case-crossover design likelihood function in Equation (6.2)

demonstrate that confounders measured at baseline must be controlled for in the Cox

proportional hazards model but not the case-crossover design. As a result, the simulation

studies for scenarios 3-5 demonstrate the implications associated with the investigators

ability to observe and control for the confounder; simulation results labeled ”model 1”

assume that the covariate is observed, whereas those labeled ”model 2” assume that it was

not observed.

Austin outlined a data generating process for the Cox proportional hazards model with

time-dependent covariates by assuming survival times follow an exponential, Weibull, or

Gompertz distributions [3]. The exponential distribution is chosen for all simulations in this

thesis to satisfy the assumptions made by the case-crossover design, this includes assuming

the baseline hazard is constant, and therefore, λ0(t) = λ in Equation (4.1). Following the

guidelines by Austin, the cohort is simulated from the algorithm outlined as follows

1. For scenarios three and four the baseline covariate is simulated from a binomial

distribution. For scenarios four and five, the confounding relationship is setup so

that the probability of observing a change in exposure at any time, denoted Zi·, is

conditional on the status of the binary, baseline covariates. That is, P (Zi· = 1) is not

equal to P (Zi· = 1 | Xi = 1). The baseline covariate and the chance to observe the

exposure change at any time are generated from a correlated, multivariate, binary

distribution using the rmvbin function in the bindata package in R [50].

2. Change of exposure times τi are simulated from a Uniform(0, 60) distribution and

are rounded to replicate the discrete, time scale observed in the VNSNY Medication

and Fall data. For scenarios 4 and 5, no change in exposure time is generated if

Zi· = 0.

3. The cumulative hazard, denoted u, is simulated from Uniform(0, 1) distribution

4. Censoring times, denoted Ci, are simulated from a Uniform(30, 60) distribution.

These censoring times may also censor the time-dependent exposures from step 2 in

addition to the event.
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5. The time-to-event is then calculated from the inverse cumulative hazard function,

which is a function of the random components: the baseline covariate, time-dependent

exposure, and the cumulative hazard such that

T̃ =


−log(u)

λeγXi
−log(u) < λeγXiτi

−log(u)+λeγXi(eβτi−τi)
λeγXi+β −log(u) ∈

[
λeγXiτi, λe

γXi(τi + eβ)
)

−log(u)+λeγXi(1−eβ)
λeγXi

−log(u) ≥ λeγXi(τi + eβ)

(4.2)

6. Using the entire simulated cohort, log hazard estimates for the Cox hazard model is

obtained using the coxph function from the survival package in R [97] .

7. To apply the case-crossover design, the cohort is filtered so that only patients with

an event are included. The data is structured to meet the requirements of several

different case-crossover reference strategies. The case-crossover designs assume that

the case time is fixed immediately prior to the fall and m = 1, . . . ,M control-times

are fixed sequentially in the times preceding the case-time. Reference strategies of

1:1, 1:2, 1:3, 1:5, 1:10, and 1:25 are considered. When the correct number of controls

are not available, because they occur prior to entry, the maximum number of available

control times are selected, where a minimum of one control time is required. Log-

hazard estimates for the conditional logistic regression are obtained using the clogit

function in the survival package in R [97].

The case-crossover assumes that the event is rare and the incidence of falls in the VNSNY

data is 4.4%. As a result, the parameters of the simulation studies are set to achieve

incidence rates of approximately 5% and 10%. These incidence rates will be generated

for cohorts of size 2500, 5000, 10000, 25000, 50000, 100000. All simulations are carried

out for Q = 1000 iterations. The competing methods are evaluated based on measures of

bias, relative efficiency, Type I error, Power, and coverage probability. Relative efficiency

in these simulations is variance of the estimates for the case-crossover design compared to

the Cox proportional hazards model.
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4.1.1 Event is Independent of Exposure

The first set of simulations assume that no baseline covariate exists and the cohort arises

from the hazard function

λi(t) = λeβZit (4.3)

These simulations will generate data and assume that a change in the exposure has no

effect on the risk of an event (β = 0). Simulations set λ = 0.0025 to obtain an incidence of

approximately 10% and λ = 0.00125 for a 5% incidence. The algorithm estimating β for

the conditional logistic regression and Cox proportional hazards model failed to converge

for a few iterations. This only occurred in the smaller cohorts, and is due to the sparseness

of the event and exposure.

The results of simulations assuming no effect are displayed in Table 4.1 and 4.2 for

cohorts with 10% and 5% incidence rates, respectively. Bias is present in the estimates of β

for cohorts of smaller size. The 1:1 case-crossover design slight over estimates β for cohorts

with 500 events or less. This is likely due to the slightly skewed right distribution, shown

in Figure 4.3, as the median estimate is equal to zero at up to four decimal places. For the

cohort with 5% incidence rate among 5,000 patients, the average estimate is substantially

smaller than the true value of zero for the 1:25 case-crossover design and Cox proportional

hazards model; resulting in average estimates of β is -0.09 and -0.10 respectively.

The percentile intervals and standard deviations of the estimate decrease with larger

cohorts size, incidence rates, and the number of matched controls, which can be observed

in Figures 4.2 and 4.4. The type I error rate displayed in Tables 4.1 and 4.2 is calculated

as the number of simulations where the null hypothesis assuming no effect was rejected

assuming a type I error rate of 5%. The Type I error rate is lower than expected for

smaller cohort sizes. This is likely due to the larger standard errors resulting from the

small sample size.

Figure 4.5 displays the gains in relative efficiency for the case-crossover design compared

to the Cox proportional hazards model. The 1:5 case-crossover design applied to cohorts

with 10% incidence rate typically achieve almost 80% efficiency. The highest relative

efficiency measures are observed in the larger cohorts with a 10% incidence rate and largest



49

number of matched controls. A strange pattern of relative efficiency is noticeable among

the different cohort sizes. The standard deviations of the simulation estimates consistently

get smaller with larger N and M , and is shown in Figure 4.4. The relatively efficiency is

calculated from the MSE which is defined as

MSE = (β̂ − β)2 + (SE(β̂))2

The MSE calculation contains the amount of bias summed with the standard error. Figure

4.6 displays a ratio of the bias squared compared to the standard error squared. This plot

shows that while the amount of bias relative to the standard error decreases with larger N,

it tends to be the highest for the Cox and 1:25 case-crossover design for a fixed cohort size,

but a comparison of the ratio in smaller matched case-crossover design varies dramatically

by incidence rate. For larger sample sizes, relative efficiency of the case-crossover design

to the cohort design roughly follows the M
M+1 property derived by Breslow and Day for

case-control studies [12].
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Mean (SD*) Median Type I
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=5000  , # event=474)
  Case−Crossover (1:1)  0.0012 (0.5562)  0.0000 2.80% 0.55  47.54%  99.90% 
  Case−Crossover (1:2) −0.0275 (0.4660)  0.0000 3.30% 0.47  67.49% 100.00% 
  Case−Crossover (1:3) −0.0376 (0.4470) −0.0113 3.80% 0.45  73.09% 100.00% 
  Case−Crossover (1:5) −0.0456 (0.4261) −0.0157 3.80% 0.42  80.07% 100.00% 
  Case−Crossover (1:10) −0.0520 (0.4091) −0.0158 3.00% 0.41  86.48% 100.00% 
  Case−Crossover (1:25) −0.0564 (0.4035) −0.0129 3.50% 0.40  88.58% 100.00% 
  Cox Hazards Model −0.0595 (0.3788) −0.0168 3.30% 0.38 100.00% 100.00% 

  Cohort Size (N=10000 , # event=948)
  Case−Crossover (1:1)  0.0000 (0.3727)  0.0000 4.10% 0.38  50.33% 100.00% 
  Case−Crossover (1:2) −0.0083 (0.3266)  0.0000 4.70% 0.33  65.52% 100.00% 
  Case−Crossover (1:3) −0.0162 (0.3097)  0.0070 4.90% 0.31  72.69% 100.00% 
  Case−Crossover (1:5) −0.0228 (0.2934) −0.0031 4.60% 0.29  80.72% 100.00% 
  Case−Crossover (1:10) −0.0295 (0.2822) −0.0060 4.20% 0.28  86.85% 100.00% 
  Case−Crossover (1:25) −0.0325 (0.2777) −0.0067 4.20% 0.28  89.41% 100.00% 
  Cox Hazards Model −0.0325 (0.2624) −0.0088 4.20% 0.26 100.00% 100.00% 

  Cohort Size (N=25000 , # event=2367)
  Case−Crossover (1:1)  0.0063 (0.2280)  0.0000 4.20% 0.23  49.49% 100.00% 
  Case−Crossover (1:2)  0.0058 (0.1994)  0.0071 4.00% 0.20  64.73% 100.00% 
  Case−Crossover (1:3)  0.0041 (0.1885)  0.0062 4.20% 0.19  72.45% 100.00% 
  Case−Crossover (1:5)  0.0015 (0.1764)  0.0009 3.20% 0.18  82.76% 100.00% 
  Case−Crossover (1:10) −0.0015 (0.1712)  0.0007 4.00% 0.18  87.85% 100.00% 
  Case−Crossover (1:25) −0.0039 (0.1685) −0.0049 3.90% 0.17  90.68% 100.00% 
  Cox Hazards Model −0.0045 (0.1604)  0.0049 4.10% 0.16 100.00% 100.00% 

  Cohort Size (N=50000 , # event=4738)
  Case−Crossover (1:1)  0.0036 (0.1640)  0.0061 6.20% 0.16  47.47% 100.00% 
  Case−Crossover (1:2)  0.0052 (0.1391)  0.0100 3.60% 0.14  65.92% 100.00% 
  Case−Crossover (1:3)  0.0040 (0.1295)  0.0046 4.90% 0.13  76.11% 100.00% 
  Case−Crossover (1:5)  0.0019 (0.1219)  0.0078 4.50% 0.13  85.88% 100.00% 
  Case−Crossover (1:10)  0.0004 (0.1187)  0.0052 4.60% 0.12  90.69% 100.00% 
  Case−Crossover (1:25) −0.0004 (0.1168)  0.0051 4.40% 0.12  93.58% 100.00% 
  Cox Hazards Model −0.0010 (0.1130)  0.0095 5.00% 0.11 100.00% 100.00% 

  Cohort Size (N=100000, # event=9475)
  Case−Crossover (1:1) −0.0009 (0.1143)  0.0000 5.60% 0.12  49.18% 100.00% 
  Case−Crossover (1:2)  0.0012 (0.0994)  0.0075 4.40% 0.10  65.02% 100.00% 
  Case−Crossover (1:3) −0.0001 (0.0924)  0.0039 3.80% 0.10  75.23% 100.00% 
  Case−Crossover (1:5) −0.0009 (0.0876) −0.0016 4.80% 0.09  83.71% 100.00% 
  Case−Crossover (1:10) −0.0020 (0.0842) −0.0003 3.90% 0.09  90.59% 100.00% 
  Case−Crossover (1:25) −0.0021 (0.0834)  0.0023 4.10% 0.09  92.39% 100.00% 
  Cox Hazards Model −0.0026 (0.0801)  0.0016 5.00% 0.08 100.00% 100.00% 

Table 4.1: Results from simulation of a cohort with an incidence of approximately 10% (
λ = .0025) incidence and assuming no transient effect (β = .0). (* Monte Carlo standard
deviation of estimates ** Average of the information based standard error)
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Mean (SD*) Median Type I
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=5000  , # event=243)
  Case−Crossover (1:1)  0.0386 (0.8035)  0.0000 1.24% 0.81  49.80%  96.40% 
  Case−Crossover (1:2) −0.0248 (0.6906)  0.0000 2.94% 0.69  67.48%  98.50% 
  Case−Crossover (1:3) −0.0525 (0.6499)  0.0000 3.55% 0.65  75.80%  98.50% 
  Case−Crossover (1:5) −0.0670 (0.6191)  0.0207 3.76% 0.61  83.11%  98.50% 
  Case−Crossover (1:10) −0.0823 (0.5966)  0.0102 3.76% 0.59  88.85%  98.50% 
  Case−Crossover (1:25) −0.0873 (0.5827)  0.0024 4.16% 0.58  92.82%  98.50% 
  Cox Hazards Model −0.1020 (0.5585) −0.0114 3.64% 0.55 100.00%  98.80% 

  Cohort Size (N=10000 , # event=486)
  Case−Crossover (1:1)  0.0142 (0.5801)  0.0000 3.90% 0.54  45.34% 100.00% 
  Case−Crossover (1:2) −0.0266 (0.4799)  0.0000 3.10% 0.47  66.08% 100.00% 
  Case−Crossover (1:3) −0.0374 (0.4511) −0.0171 3.40% 0.44  74.50% 100.00% 
  Case−Crossover (1:5) −0.0448 (0.4346) −0.0058 3.20% 0.42  79.98% 100.00% 
  Case−Crossover (1:10) −0.0508 (0.4234) −0.0189 3.50% 0.40  83.95% 100.00% 
  Case−Crossover (1:25) −0.0517 (0.4171) −0.0141 3.30% 0.40  86.41% 100.00% 
  Cox Hazards Model −0.0553 (0.3868) −0.0210 3.80% 0.37 100.00% 100.00% 

  Cohort Size (N=25000 , # event=1215)
  Case−Crossover (1:1) −0.0026 (0.3444)  0.0000 5.20% 0.33  41.99% 100.00% 
  Case−Crossover (1:2) −0.0115 (0.2905)  0.0000 4.90% 0.29  58.93% 100.00% 
  Case−Crossover (1:3) −0.0165 (0.2722) −0.0107 4.70% 0.27  66.97% 100.00% 
  Case−Crossover (1:5) −0.0192 (0.2568) −0.0086 4.80% 0.26  75.14% 100.00% 
  Case−Crossover (1:10) −0.0202 (0.2475) −0.0106 4.60% 0.25  80.81% 100.00% 
  Case−Crossover (1:25) −0.0198 (0.2417) −0.0029 4.60% 0.24  84.70% 100.00% 
  Cox Hazards Model −0.0223 (0.2221) −0.0165 4.50% 0.23 100.00% 100.00% 

  Cohort Size (N=50000 , # event=2430)
  Case−Crossover (1:1) −0.0082 (0.2324)  0.0000 3.80% 0.23  48.69% 100.00% 
  Case−Crossover (1:2) −0.0146 (0.2007) −0.0143 4.90% 0.20  65.02% 100.00% 
  Case−Crossover (1:3) −0.0158 (0.1887) −0.0127 4.70% 0.19  73.46% 100.00% 
  Case−Crossover (1:5) −0.0178 (0.1792) −0.0155 4.70% 0.18  81.17% 100.00% 
  Case−Crossover (1:10) −0.0155 (0.1748) −0.0137 4.70% 0.17  85.54% 100.00% 
  Case−Crossover (1:25) −0.0147 (0.1728) −0.0117 5.00% 0.17  87.60% 100.00% 
  Cox Hazards Model −0.0170 (0.1614) −0.0149 4.50% 0.16 100.00% 100.00% 

  Cohort Size (N=100000, # event=4861)
  Case−Crossover (1:1)  0.0003 (0.1603)  0.0000 4.10% 0.16  49.34% 100.00% 
  Case−Crossover (1:2) −0.0034 (0.1421) −0.0063 5.30% 0.14  62.81% 100.00% 
  Case−Crossover (1:3) −0.0036 (0.1327) −0.0055 4.90% 0.13  71.98% 100.00% 
  Case−Crossover (1:5) −0.0052 (0.1260) −0.0038 4.40% 0.13  79.69% 100.00% 
  Case−Crossover (1:10) −0.0045 (0.1227)  0.0002 5.20% 0.12  84.17% 100.00% 
  Case−Crossover (1:25) −0.0047 (0.1204)  0.0009 5.30% 0.12  87.40% 100.00% 
  Cox Hazards Model −0.0062 (0.1125) −0.0035 4.70% 0.11 100.00% 100.00% 

Table 4.2: Results from simulation of a cohort with an incidence of approximately 5% (
λ = .00125) incidence and assuming no transient effect (β = .0). (* Monte Carlo standard
deviation of estimates ** Average of the information based standard error)
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Figure 4.2: Plot of average estimates of log-hazard ratio with 95% percentile intervals
by design, cohort size and incidence rate when assuming a log-hazard ratio of β = 0.8
indicated by the vertical red line.
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4.1.2 Event is Associated with Exposure

Table 4.3 and 4.4 display the results of the simulation assuming an association of β = 0.8

for 10% and 5% incidence rates, respectively. A plot of the average estimate, along with

95% percentile intervals is shown in Figure 4.7. From this figure, there appears to be some

bias in cohorts of smaller sample size. The 1:1 case-crossover design typically over estimates

β; as high as 7.6% for the cohort of size 10000 with a 10% incidence and does reach less

than 1% bias until the sample size for the cohort reaches 100000. The Cox proportional

hazards model and case-crossover designs matching 10 or 25 controls underestimate β.

This observed bias is larger for the cohorts with 5% incidence rates compared to 10%,

and becomes less than 1% for cohorts of size larger than 10,000 for cohorts with 10%

incidence rates and 25,000 for 5%. In the cohorts of small sample size, the 1:3 case-

crossover design appears to be optimal in terms of bias. In these smaller samples, larger

values of M , compared to the 1:3 case-crossover design, increases the degree in which β is

underestimated.

The percentile intervals, plotted in Figure 4.7, are larger for the cohorts with 5%

incidence rates, and narrow with both the size of the cohort and for the number of matched

controls for the case-crossover designs. For each cohort size, the estimate and the percentile

interval of the case-crossover design becomes very similar to that of the Cox proportional

hazards model with time-dependent covariates as M increases. The first 95% percentile

interval for the case-crossover design’s estimate of β that does not overlap zero is the 1:2

reference strategy for the cohort of size 5,000 with a 10% incidence rate, and 10,000 for

a 5%; equivalent to 500 events for both incidence rates. The Cox proportional hazards

model also requires cohorts of size 5,000 and 10,0000 to observe percentile intervals that

do not overlap zero for the respective incidence rates.

The power of each method is calculated as the percentage of simulations that reject the

null hypothesis for these studies which assume the data is generated under the alternative

hypothesis (β = 0.8). As expected, the power increases with sample size and exceeds

80% for the Cox proportional hazards model at 500 events and at 1000 events for the

case-crossover design. 100% of simulations reject the null hypothesis for cohorts once the
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number of events reaches about 2500. Coverage probabilities are higher than expected for

smaller cohort sizes, but are very close to 95% once 1000 events are observed.

The full distribution of the estimate is shown in Figure 4.8 and appears to be mostly

symmetric. Similar to the percentile intervals, the distribution can be seen to narrow

for larger cohort sample size, matched controls, and incidence rates. Figure 4.10 plots

the standard deviation of the estimates. From this plot it can be seen that the standard

deviation of the estimate decreases with larger cohort sample size, matched controls, and

incidence rates. A plot of relative efficiency is shown in Figure 4.10. This plot shows

that gains in relative efficiency accrue with larger numbers of matched controls for the

case-crossover design, but does not appear to be strongly influenced by cohort size.

4.1.3 Baseline Covariate and Exposure are Marginally Associated with

Event

The third scenario, depicted in Figure 4.1.c, introduces a baseline covariate, Xi, into

Equation (4.1). The set of simulation studies in this subsection assume that the baseline

covariate and the time-dependent exposure are independent. That is, P (Zi· = 1) = P (Zi· =

1 | Xi = 1). To obtain an incidence of approximately 10% and 5% for the event, λ is set

to values of 0.0018 and 0.0009 respectively. The results for the cohort of 10% incidence is

shown in Table 4.5 and in Table 4.6 for 5%.

The mean parameter estimates, 95% percentile intervals, and average information

based, standard errors for both the Cox proportional hazards models, assuming the co-

variate is observed and unobserved, are nearly exactly the same across all simulations

for cohorts with sample size greater than 5000. This is expected since Xi is set to be

independent of Zi· in these simulations. The over estimation of β still exist for the 1:1

case-crossover design, but not to the degree of which it was observed in subsection 4.1.2;

a maximum of 4.3% bias for the cohort of size 5000 with a 5% incidence rate. The under-

estimation of β, for both the Cox proportional hazards model and case-crossover designs

with matching strategies of 1:10 and 1:25, is similar to that in subsection 4.1.2. The Cox

proportional hazards model and 1:25 case-crossover design underestimate the log-hazard

ratio by up to 8.6% in the cohorts of size 2500 and incidence rate of 10%.
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=  2500, # event=241)
  Case−Crossover (1:1) 0.8561 (0.6759) 0.8109  17.85% 97.64%  7.01% 0.69  33.13%  97.50% 
  Case−Crossover (1:2) 0.8160 (0.5598) 0.8109  34.73% 97.20%  2.00% 0.54  48.30%  99.90% 
  Case−Crossover (1:3) 0.7854 (0.4912) 0.8109  41.94% 96.90% −1.83% 0.49  62.74%  99.90% 
  Case−Crossover (1:5) 0.7551 (0.4530) 0.7828  45.35% 97.10% −5.61% 0.44  73.77%  99.90% 
  Case−Crossover (1:10) 0.7518 (0.4291) 0.7843  50.75% 96.10% −6.03% 0.41  82.19%  99.90% 
  Case−Crossover (1:25) 0.7470 (0.4146) 0.7890  52.95% 96.10% −6.62% 0.40  88.04%  99.90% 
  Cox Hazards Model 0.7379 (0.3890) 0.7946  58.26% 96.40% −7.76% 0.36 100.00%  99.90% 

  Cohort Size (N=  5000, # event=482)
  Case−Crossover (1:1) 0.8610 (0.4954) 0.8109  44.14% 97.00%  7.62% 0.47  25.68%  99.90% 
  Case−Crossover (1:2) 0.8121 (0.3648) 0.8056  60.00% 96.90%  1.51% 0.37  47.35% 100.00% 
  Case−Crossover (1:3) 0.7955 (0.3272) 0.8044  68.00% 96.10% −0.57% 0.34  58.87% 100.00% 
  Case−Crossover (1:5) 0.7836 (0.3011) 0.7948  72.90% 95.50% −2.05% 0.31  69.50% 100.00% 
  Case−Crossover (1:10) 0.7777 (0.2859) 0.7811  76.70% 95.80% −2.78% 0.29  77.09% 100.00% 
  Case−Crossover (1:25) 0.7752 (0.2721) 0.7858  78.40% 95.80% −3.09% 0.27  85.10% 100.00% 
  Cox Hazards Model 0.7723 (0.2510) 0.7890  83.60% 96.00% −3.47% 0.25 100.00% 100.00% 

  Cohort Size (N= 10000, # event=963)
  Case−Crossover (1:1) 0.8270 (0.3279) 0.8183  75.50% 95.80%  3.38% 0.32  29.13% 100.00% 
  Case−Crossover (1:2) 0.8111 (0.2570) 0.8118  88.80% 95.60%  1.38% 0.26  47.43% 100.00% 
  Case−Crossover (1:3) 0.8042 (0.2322) 0.8031  92.30% 94.90%  0.53% 0.23  58.07% 100.00% 
  Case−Crossover (1:5) 0.7984 (0.2155) 0.8062  94.20% 95.10% −0.20% 0.21  67.44% 100.00% 
  Case−Crossover (1:10) 0.7932 (0.2028) 0.7967  95.80% 94.50% −0.85% 0.20  76.15% 100.00% 
  Case−Crossover (1:25) 0.7922 (0.1956) 0.8003  96.20% 94.60% −0.98% 0.19  81.81% 100.00% 
  Cox Hazards Model 0.7878 (0.1770) 0.8007  97.70% 95.00% −1.52% 0.17 100.00% 100.00% 

  Cohort Size (N= 25000, # event=2414)
  Case−Crossover (1:1) 0.8197 (0.1990) 0.8190  98.80% 96.20%  2.47% 0.20  29.50% 100.00% 
  Case−Crossover (1:2) 0.8092 (0.1588) 0.8155  99.80% 95.50%  1.15% 0.16  46.30% 100.00% 
  Case−Crossover (1:3) 0.8073 (0.1433) 0.8143  99.90% 95.80%  0.91% 0.15  56.85% 100.00% 
  Case−Crossover (1:5) 0.8058 (0.1326) 0.8111 100.00% 95.90%  0.73% 0.13  66.40% 100.00% 
  Case−Crossover (1:10) 0.8026 (0.1233) 0.8089 100.00% 96.10%  0.33% 0.13  76.85% 100.00% 
  Case−Crossover (1:25) 0.8031 (0.1189) 0.8090 100.00% 95.80%  0.39% 0.12  82.63% 100.00% 
  Cox Hazards Model 0.7988 (0.1081) 0.8065 100.00% 96.40% −0.15% 0.11 100.00% 100.00% 

  Cohort Size (N= 50000, # event=4827)
  Case−Crossover (1:1) 0.8089 (0.1435) 0.8051 100.00% 94.20%  1.11% 0.14  29.05% 100.00% 
  Case−Crossover (1:2) 0.8039 (0.1107) 0.8107 100.00% 95.20%  0.49% 0.11  48.78% 100.00% 
  Case−Crossover (1:3) 0.8041 (0.1016) 0.8086 100.00% 96.00%  0.51% 0.10  57.89% 100.00% 
  Case−Crossover (1:5) 0.8019 (0.0939) 0.8046 100.00% 95.80%  0.23% 0.09  67.86% 100.00% 
  Case−Crossover (1:10) 0.8001 (0.0888) 0.8023 100.00% 94.90%  0.01% 0.09  75.77% 100.00% 
  Case−Crossover (1:25) 0.8005 (0.0858) 0.8032 100.00% 95.50%  0.06% 0.09  81.26% 100.00% 
  Cox Hazards Model 0.7986 (0.0773) 0.8025 100.00% 95.50% −0.17% 0.08 100.00% 100.00% 

  Cohort Size (N=100000, # event=9659)
  Case−Crossover (1:1) 0.8017 (0.0977) 0.7996 100.00% 95.60%  0.21% 0.10  30.60% 100.00% 
  Case−Crossover (1:2) 0.7978 (0.0778) 0.8010 100.00% 95.60% −0.27% 0.08  48.18% 100.00% 
  Case−Crossover (1:3) 0.7976 (0.0715) 0.7992 100.00% 95.60% −0.30% 0.07  57.16% 100.00% 
  Case−Crossover (1:5) 0.7967 (0.0651) 0.7977 100.00% 96.20% −0.42% 0.07  68.79% 100.00% 
  Case−Crossover (1:10) 0.7961 (0.0616) 0.7963 100.00% 95.80% −0.48% 0.06  76.86% 100.00% 
  Case−Crossover (1:25) 0.7965 (0.0593) 0.7984 100.00% 95.60% −0.44% 0.06  83.05% 100.00% 
  Cox Hazards Model 0.7957 (0.0540) 0.7973 100.00% 95.80% −0.53% 0.05 100.00% 100.00% 

Table 4.3: Results from a simulation of a cohort with an incidence of approximately 10% (
λ = .0025) incidence and assuming a transient effect lasting one time period (β = 0.8) (*
Monte Carlo standard deviation of estimates ** Average of the information based standard
error)
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=  5000, # event=248)
  Case−Crossover (1:1) 0.7962 (0.6311) 0.8109  15.71% 97.54% −0.48% 0.66  34.22%  97.40% 
  Case−Crossover (1:2) 0.7867 (0.5526) 0.7885  33.70% 96.59% −1.66% 0.53  44.63%  99.70% 
  Case−Crossover (1:3) 0.7788 (0.4889) 0.7802  41.40% 96.70% −2.65% 0.48  57.01% 100.00% 
  Case−Crossover (1:5) 0.7630 (0.4527) 0.7922  46.50% 96.10% −4.63% 0.44  66.51% 100.00% 
  Case−Crossover (1:10) 0.7468 (0.4160) 0.7926  52.30% 96.50% −6.65% 0.41  78.77% 100.00% 
  Case−Crossover (1:25) 0.7378 (0.3969) 0.7775  53.30% 96.70% −7.77% 0.39  86.54% 100.00% 
  Cox Hazards Model 0.7348 (0.3692) 0.7837  58.10% 96.50% −8.15% 0.36 100.00% 100.00% 

  Cohort Size (N= 10000, # event=496)
  Case−Crossover (1:1) 0.8360 (0.4734) 0.8109  45.00% 96.30%  4.50% 0.46  28.73% 100.00% 
  Case−Crossover (1:2) 0.7988 (0.3721) 0.8048  61.20% 95.80% −0.15% 0.36  46.48% 100.00% 
  Case−Crossover (1:3) 0.7921 (0.3292) 0.8019  67.10% 95.90% −0.98% 0.33  59.39% 100.00% 
  Case−Crossover (1:5) 0.7843 (0.3050) 0.7994  72.30% 95.60% −1.96% 0.30  69.22% 100.00% 
  Case−Crossover (1:10) 0.7777 (0.2867) 0.8021  76.50% 95.40% −2.79% 0.28  78.30% 100.00% 
  Case−Crossover (1:25) 0.7729 (0.2749) 0.7943  77.70% 95.40% −3.39% 0.27  85.20% 100.00% 
  Cox Hazards Model 0.7691 (0.2537) 0.7941  82.40% 95.10% −3.86% 0.25 100.00% 100.00% 

  Cohort Size (N= 25000, # event=1238)
  Case−Crossover (1:1) 0.8091 (0.2898) 0.7985  83.60% 94.90%  1.14% 0.28  29.07% 100.00% 
  Case−Crossover (1:2) 0.7920 (0.2223) 0.7946  93.80% 96.90% −1.00% 0.23  49.40% 100.00% 
  Case−Crossover (1:3) 0.7890 (0.2034) 0.7838  95.40% 95.40% −1.37% 0.21  59.03% 100.00% 
  Case−Crossover (1:5) 0.7877 (0.1884) 0.7890  97.10% 95.50% −1.54% 0.19  68.81% 100.00% 
  Case−Crossover (1:10) 0.7864 (0.1758) 0.7905  98.30% 95.00% −1.69% 0.18  79.02% 100.00% 
  Case−Crossover (1:25) 0.7849 (0.1687) 0.7872  98.50% 95.50% −1.88% 0.17  85.83% 100.00% 
  Cox Hazards Model 0.7823 (0.1563) 0.7898  99.30% 95.10% −2.21% 0.15 100.00% 100.00% 

  Cohort Size (N= 50000, # event=2480)
  Case−Crossover (1:1) 0.8019 (0.2057) 0.7964  98.20% 94.70%  0.24% 0.20  30.66% 100.00% 
  Case−Crossover (1:2) 0.7992 (0.1666) 0.8008  99.90% 94.00% −0.10% 0.16  46.69% 100.00% 
  Case−Crossover (1:3) 0.7957 (0.1508) 0.7916 100.00% 94.30% −0.54% 0.14  57.02% 100.00% 
  Case−Crossover (1:5) 0.7950 (0.1390) 0.7957 100.00% 93.80% −0.62% 0.13  67.07% 100.00% 
  Case−Crossover (1:10) 0.7947 (0.1292) 0.7967 100.00% 94.20% −0.67% 0.12  77.70% 100.00% 
  Case−Crossover (1:25) 0.7941 (0.1241) 0.7967 100.00% 94.20% −0.73% 0.12  84.22% 100.00% 
  Cox Hazards Model 0.7911 (0.1139) 0.7934 100.00% 94.90% −1.11% 0.11 100.00% 100.00% 

  Cohort Size (N=100000, # event=4963)
  Case−Crossover (1:1) 0.8024 (0.1410) 0.7982 100.00% 94.70%  0.29% 0.14  29.97% 100.00% 
  Case−Crossover (1:2) 0.8015 (0.1142) 0.8011 100.00% 93.80%  0.19% 0.11  45.67% 100.00% 
  Case−Crossover (1:3) 0.7988 (0.1024) 0.8002 100.00% 94.90% −0.14% 0.10  56.86% 100.00% 
  Case−Crossover (1:5) 0.7989 (0.0945) 0.7985 100.00% 94.30% −0.14% 0.09  66.66% 100.00% 
  Case−Crossover (1:10) 0.7985 (0.0885) 0.7982 100.00% 94.80% −0.19% 0.09  76.02% 100.00% 
  Case−Crossover (1:25) 0.7981 (0.0841) 0.8002 100.00% 95.40% −0.24% 0.08  84.14% 100.00% 
  Cox Hazards Model 0.7962 (0.0772) 0.7992 100.00% 94.70% −0.47% 0.08 100.00% 100.00% 

Table 4.4: Results from a simulation of a cohort with an incidence of approximately 5% (
λ = .00125) incidence and assuming a transient effect lasting one time period (β = 0.8) (*
Monte Carlo standard deviation of estimates ** Average of the information based standard
error)
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Figure 4.7: Plot of average estimates of log-hazard ratio with 95% percentile intervals
by design, cohort size and incidence rate when assuming a log-hazard ratio of β = 0.8
indicated by the vertical red line.
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and incidence rate when assuming a log-hazard ratio of β = 0.8
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The average parameter estimate and respective 95% percentile intervals are plotted

in Figure 4.11. Similar to subsection 4.1.2, percentile intervals that do not overlap zero

again require the cohort to reach a size 5,000 for a 10% incidence rate and 10,000 for

a 5% incidence rate. The 95% percentile intervals decrease with the larger cohort size,

matched controls, and incidence rates. 1000 events are required to obtain excellent power

for all designs except for the 1:1 case-crossover design which obtains more modest power.

A similar relationship is observed in the average standard deviation of the log-hazard ratio

estimates in Figure 4.13. The distribution of parameter estimates is displayed in Figure

4.12. The broad distribution of β for the 1:1 case-crossover design appears to be right

skewed for cohorts of smaller sample size. To a lesser extent, is also observed for 1:2 and

1:3 case-crossover designs.

The relative efficiency of the case-crossover design compared to the Cox proportional

hazards model 1 is shown in Figure 4.14. The maximum relative efficiency observed is

about 85% and is achieved by the 1:25 case-crossover design on a sample arising from a

cohort with a 5% incidence rate. Coverage probabilities are also consistent with the results

from subsection subsection 4.1.2.
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=  2500, # event=243)
  Case−Crossover (1:1) 0.8056 (0.6687) 0.6931  17.35% 97.13%  0.70% 0.67  32.55%  97.40% 
  Case−Crossover (1:2) 0.7910 (0.5711) 0.7968  33.23% 96.10% −1.12% 0.54  44.63%  99.90% 
  Case−Crossover (1:3) 0.7687 (0.5104) 0.7809  40.00% 95.70% −3.91% 0.49  55.89% 100.00% 
  Case−Crossover (1:5) 0.7466 (0.4688) 0.7890  45.40% 95.50% −6.68% 0.44  66.23% 100.00% 
  Case−Crossover (1:10) 0.7365 (0.4447) 0.7861  49.80% 94.40% −7.94% 0.41  73.61% 100.00% 
  Case−Crossover (1:25) 0.7309 (0.4309) 0.7657  50.20% 94.50% −8.64% 0.40  78.41% 100.00% 
  Cox Hazards Model 1 − X.i 0.7028 (0.1216) 0.7033 100.00% 96.30%  0.41% 0.13     NA% 100.00% 
                                        Z.it 0.7312 (0.3820) 0.7694  57.10% 95.60% −8.60% 0.36  99.76% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7307 (0.3815) 0.7715  56.90% 95.80% −8.66% 0.36 100.00% 100.00% 

  Cohort Size (N=  5000, # event=485)
  Case−Crossover (1:1) 0.8092 (0.4837) 0.7732  41.44% 95.80%  1.15% 0.46  28.68%  99.90% 
  Case−Crossover (1:2) 0.7826 (0.3832) 0.7908  58.60% 95.40% −2.17% 0.37  45.70% 100.00% 
  Case−Crossover (1:3) 0.7732 (0.3469) 0.7885  65.20% 95.00% −3.35% 0.33  55.77% 100.00% 
  Case−Crossover (1:5) 0.7673 (0.3155) 0.7792  71.00% 95.10% −4.09% 0.31  67.39% 100.00% 
  Case−Crossover (1:10) 0.7652 (0.2947) 0.7825  74.70% 95.20% −4.35% 0.29  77.26% 100.00% 
  Case−Crossover (1:25) 0.7601 (0.2856) 0.7702  75.70% 94.80% −4.99% 0.28  82.23% 100.00% 
  Cox Hazards Model 1 − X.i 0.7017 (0.0900) 0.7051 100.00% 95.80%  0.24% 0.09     NA% 100.00% 
                                        Z.it 0.7557 (0.2592) 0.7715  82.70% 95.30% −5.54% 0.25  99.88% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7556 (0.2590) 0.7696  82.70% 95.40% −5.55% 0.25 100.00% 100.00% 

  Cohort Size (N= 10000, # event=970)
  Case−Crossover (1:1) 0.8068 (0.3352) 0.7828  73.60% 95.30%  0.85% 0.32  28.24% 100.00% 
  Case−Crossover (1:2) 0.7956 (0.2627) 0.8028  88.10% 95.20% −0.55% 0.26  45.98% 100.00% 
  Case−Crossover (1:3) 0.7905 (0.2385) 0.7971  91.20% 95.70% −1.18% 0.23  55.79% 100.00% 
  Case−Crossover (1:5) 0.7877 (0.2189) 0.8002  93.00% 95.20% −1.54% 0.21  66.21% 100.00% 
  Case−Crossover (1:10) 0.7876 (0.2036) 0.7967  94.70% 95.70% −1.55% 0.20  76.53% 100.00% 
  Case−Crossover (1:25) 0.7868 (0.1967) 0.8002  95.60% 95.00% −1.65% 0.19  82.04% 100.00% 
  Cox Hazards Model 1 − X.i 0.7012 (0.0630) 0.7005 100.00% 96.10%  0.17% 0.06     NA% 100.00% 
                                        Z.it 0.7818 (0.1782) 0.7912  96.70% 94.40% −2.28% 0.17  99.93% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7816 (0.1781) 0.7912  96.70% 94.50% −2.30% 0.17 100.00% 100.00% 

  Cohort Size (N= 25000, # event=2424)
  Case−Crossover (1:1) 0.8048 (0.2075) 0.7985  98.90% 93.90%  0.60% 0.20  27.64% 100.00% 
  Case−Crossover (1:2) 0.8001 (0.1616) 0.8028  99.90% 94.90%  0.01% 0.16  45.54% 100.00% 
  Case−Crossover (1:3) 0.7977 (0.1505) 0.8003 100.00% 94.00% −0.29% 0.15  52.50% 100.00% 
  Case−Crossover (1:5) 0.7979 (0.1387) 0.8001 100.00% 94.50% −0.27% 0.13  61.80% 100.00% 
  Case−Crossover (1:10) 0.7980 (0.1275) 0.8015 100.00% 94.90% −0.25% 0.13  73.23% 100.00% 
  Case−Crossover (1:25) 0.7966 (0.1216) 0.8005 100.00% 95.00% −0.42% 0.12  80.45% 100.00% 
  Cox Hazards Model 1 − X.i 0.7001 (0.0411) 0.7001 100.00% 94.40%  0.01% 0.04     NA% 100.00% 
                                        Z.it 0.7920 (0.1091) 0.7947 100.00% 95.20% −0.99% 0.11  99.94% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7920 (0.1091) 0.7948 100.00% 95.20% −1.00% 0.11 100.00% 100.00% 

  Cohort Size (N= 50000, # event=4850)
  Case−Crossover (1:1) 0.8014 (0.1453) 0.7979 100.00% 94.50%  0.17% 0.14  28.03% 100.00% 
  Case−Crossover (1:2) 0.7994 (0.1105) 0.7955 100.00% 95.30% −0.07% 0.11  48.46% 100.00% 
  Case−Crossover (1:3) 0.7981 (0.1026) 0.7996 100.00% 95.60% −0.24% 0.10  56.25% 100.00% 
  Case−Crossover (1:5) 0.7985 (0.0950) 0.7988 100.00% 95.00% −0.19% 0.09  65.53% 100.00% 
  Case−Crossover (1:10) 0.7997 (0.0888) 0.7977 100.00% 94.50% −0.04% 0.09  75.10% 100.00% 
  Case−Crossover (1:25) 0.7997 (0.0851) 0.7979 100.00% 95.30% −0.04% 0.09  81.71% 100.00% 
  Cox Hazards Model 1 − X.i 0.6997 (0.0286) 0.7000 100.00% 96.10% −0.04% 0.03     NA% 100.00% 
                                        Z.it 0.7968 (0.0770) 0.7978 100.00% 95.90% −0.40% 0.08  99.83% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7967 (0.0769) 0.7979 100.00% 95.90% −0.41% 0.08 100.00% 100.00% 

  Cohort Size (N=100000, # event=9706)
  Case−Crossover (1:1) 0.8033 (0.1024) 0.8021 100.00% 94.60%  0.42% 0.10  29.60% 100.00% 
  Case−Crossover (1:2) 0.8014 (0.0815) 0.8026 100.00% 94.60%  0.18% 0.08  46.67% 100.00% 
  Case−Crossover (1:3) 0.8023 (0.0749) 0.8009 100.00% 94.70%  0.29% 0.07  55.22% 100.00% 
  Case−Crossover (1:5) 0.8022 (0.0682) 0.8020 100.00% 95.10%  0.27% 0.07  66.67% 100.00% 
  Case−Crossover (1:10) 0.8023 (0.0637) 0.8023 100.00% 94.40%  0.28% 0.06  76.47% 100.00% 
  Case−Crossover (1:25) 0.8022 (0.0616) 0.8041 100.00% 94.70%  0.27% 0.06  81.76% 100.00% 
  Cox Hazards Model 1 − X.i 0.6997 (0.0204) 0.6996 100.00% 95.50% −0.04% 0.02     NA% 100.00% 
                                        Z.it 0.7994 (0.0557) 0.7993 100.00% 94.30% −0.08% 0.05  99.92% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7993 (0.0557) 0.7996 100.00% 94.20% −0.09% 0.05 100.00% 100.00% 

Table 4.5: Results from simulation of a cohort with an incidence of approximately 10%
(λ = 0.0009), where patient characteristic and exposure are independently associated with
event, γ = 0.7 and β = 0.8 (* Monte Carlo standard deviation of estimates ** Average of
the information based standard error)
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=  5000, # event=249)
  Case−Crossover (1:1) 0.8344 (0.6773) 0.8109  20.59% 97.44%  4.30% 0.67  31.41%  97.60% 
  Case−Crossover (1:2) 0.8125 (0.5909) 0.8109  37.44% 95.20%  1.56% 0.53  41.26%  99.90% 
  Case−Crossover (1:3) 0.7934 (0.5445) 0.7913  43.40% 94.70% −0.82% 0.48  48.61% 100.00% 
  Case−Crossover (1:5) 0.7805 (0.4837) 0.8176  50.30% 93.90% −2.44% 0.44  61.59% 100.00% 
  Case−Crossover (1:10) 0.7627 (0.4461) 0.8106  53.00% 94.70% −4.67% 0.40  72.41% 100.00% 
  Case−Crossover (1:25) 0.7559 (0.4256) 0.7991  55.00% 95.00% −5.51% 0.39  79.53% 100.00% 
  Cox Hazards Model 1 − X.i 0.7021 (0.1313) 0.6991 100.00% 94.50%  0.29% 0.13     NA% 100.00% 
                                        Z.it 0.7526 (0.3795) 0.7972  59.90% 95.00% −5.92% 0.36 100.04% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7524 (0.3796) 0.7958  59.50% 95.20% −5.95% 0.36 100.00% 100.00% 

  Cohort Size (N= 10000, # event=500)
  Case−Crossover (1:1) 0.8307 (0.4750) 0.7985  44.90% 95.20%  3.83% 0.45  27.75% 100.00% 
  Case−Crossover (1:2) 0.8061 (0.3746) 0.8109  64.00% 95.00%  0.76% 0.36  44.61% 100.00% 
  Case−Crossover (1:3) 0.8033 (0.3426) 0.7963  69.70% 95.00%  0.41% 0.33  53.34% 100.00% 
  Case−Crossover (1:5) 0.8031 (0.3118) 0.8102  75.40% 94.10%  0.39% 0.30  64.38% 100.00% 
  Case−Crossover (1:10) 0.7974 (0.2909) 0.8117  79.40% 93.50% −0.32% 0.28  73.98% 100.00% 
  Case−Crossover (1:25) 0.7935 (0.2782) 0.8065  80.20% 94.70% −0.81% 0.27  80.92% 100.00% 
  Cox Hazards Model 1 − X.i 0.7006 (0.0888) 0.7000 100.00% 95.30%  0.08% 0.09     NA% 100.00% 
                                        Z.it 0.7876 (0.2503) 0.8097  84.40% 95.20% −1.55% 0.24  99.97% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7874 (0.2502) 0.8083  84.60% 95.20% −1.58% 0.24 100.00% 100.00% 

  Cohort Size (N= 25000, # event=1250)
  Case−Crossover (1:1) 0.8211 (0.2943) 0.8109  85.60% 94.50%  2.64% 0.28  28.47% 100.00% 
  Case−Crossover (1:2) 0.8057 (0.2320) 0.8184  93.90% 95.00%  0.72% 0.22  45.80% 100.00% 
  Case−Crossover (1:3) 0.8029 (0.2092) 0.8075  96.00% 95.00%  0.37% 0.20  56.32% 100.00% 
  Case−Crossover (1:5) 0.8033 (0.1908) 0.8091  97.50% 94.90%  0.41% 0.19  67.75% 100.00% 
  Case−Crossover (1:10) 0.7993 (0.1803) 0.8074  98.60% 94.10% −0.09% 0.17  75.86% 100.00% 
  Case−Crossover (1:25) 0.7964 (0.1732) 0.8042  98.90% 94.10% −0.45% 0.17  82.15% 100.00% 
  Cox Hazards Model 1 − X.i 0.7002 (0.0556) 0.6984 100.00% 96.10%  0.02% 0.06     NA% 100.00% 
                                        Z.it 0.7940 (0.1571) 0.8055  99.70% 95.10% −0.75% 0.15  99.90% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7940 (0.1570) 0.8057  99.70% 95.00% −0.76% 0.15 100.00% 100.00% 

  Cohort Size (N= 50000, # event=2498)
  Case−Crossover (1:1) 0.8118 (0.2051) 0.8011  99.00% 94.90%  1.48% 0.20  28.18% 100.00% 
  Case−Crossover (1:2) 0.8022 (0.1627) 0.7997  99.70% 94.30%  0.27% 0.16  44.81% 100.00% 
  Case−Crossover (1:3) 0.8006 (0.1463) 0.7997  99.90% 95.40%  0.07% 0.14  55.38% 100.00% 
  Case−Crossover (1:5) 0.8010 (0.1316) 0.8046  99.90% 95.50%  0.13% 0.13  68.47% 100.00% 
  Case−Crossover (1:10) 0.7998 (0.1243) 0.8034 100.00% 94.90% −0.03% 0.12  76.68% 100.00% 
  Case−Crossover (1:25) 0.7979 (0.1200) 0.8024 100.00% 94.90% −0.26% 0.12  82.38% 100.00% 
  Cox Hazards Model 1 − X.i 0.6997 (0.0394) 0.6990 100.00% 96.40% −0.04% 0.04     NA% 100.00% 
                                        Z.it 0.7960 (0.1089) 0.8018 100.00% 95.10% −0.50% 0.11 100.03% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7960 (0.1089) 0.8019 100.00% 95.10% −0.50% 0.11 100.00% 100.00% 

  Cohort Size (N=100000, # event=5000)
  Case−Crossover (1:1) 0.8011 (0.1387) 0.8004 100.00% 95.50%  0.14% 0.14  32.79% 100.00% 
  Case−Crossover (1:2) 0.7986 (0.1142) 0.7976 100.00% 95.00% −0.17% 0.11  48.39% 100.00% 
  Case−Crossover (1:3) 0.7971 (0.1048) 0.7952 100.00% 94.50% −0.37% 0.10  57.40% 100.00% 
  Case−Crossover (1:5) 0.7976 (0.0956) 0.7969 100.00% 94.30% −0.30% 0.09  68.98% 100.00% 
  Case−Crossover (1:10) 0.7971 (0.0901) 0.7963 100.00% 94.20% −0.36% 0.09  77.65% 100.00% 
  Case−Crossover (1:25) 0.7959 (0.0862) 0.7985 100.00% 95.10% −0.51% 0.08  84.86% 100.00% 
  Cox Hazards Model 1 − X.i 0.6999 (0.0291) 0.6991 100.00% 94.50% −0.01% 0.03     NA% 100.00% 
                                        Z.it 0.7955 (0.0795) 0.7984 100.00% 94.20% −0.56% 0.08  99.93% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7955 (0.0794) 0.7981 100.00% 94.40% −0.57% 0.08 100.00% 100.00% 

Table 4.6: Results from simulation of a cohort with an incidence of approximately 5%
(λ = 0.0009), where patient characteristic and exposure are independently associated with
event, γ = 0.7 and β = 0.8 (* Monte Carlo standard deviation of estimates ** Average of
the information based standard error)
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Figure 4.11: Plot of average estimates of log-hazard ratio with 95% percentile intervals
by design, cohort size and incidence rate when assuming a log-hazard ratio of β = 0.8
indicated by the vertical red line.
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Figure 4.12: Distribution of estimate by design, cohort size and incidence rate when as-
suming a log-hazard ratio of β = 0.8 indicated by the vertical red line.
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Figure 4.13: Plot of standard deviation of log-hazard ratio estimates by design, cohort size
and incidence rate when assuming a log-hazard ratio of β = 0.8
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4.1.4 Exposure Has No Association with Event in Presence of Con-

founder

The simulations in this section assume that the time-dependent exposure has no effect, or

β = 0, and is illustrated in Figure 4.1.d. Building on the simulations in subsections 4.1.1

and 4.1.3, the baseline covariate is assumed to be associated with the exposure and the

event. The marginal probability of observing the change in status of the time-dependent

exposure at any time is 0.4, or P (Zi· = 1) = 0.4, prior to taking into account the censoring

mechanism. For patients with the presence of the baseline covariate, or Xi = 1, the

probability of observing a status change in the time-dependent covariate at any time is

0.7, denoted P (Zi· = 1 | Xi = 1) = 0.7.

The results of the simulation studies for cohorts with 10% incidence rates is shown

in Table 4.7 and the results for 5% incidence rates is in Table 4.8. The case-crossover

design obtains average estimates of approximately 0. There is still some degree of over

estimating β for the 1:1 case-crossover design and underestimation for larger M . The

Cox proportional hazards model that assumes the baseline covariate was measured (i.e.

model 1) also obtains average estimates very close to the hypothesized value of zero for

the time-dependent covariate. Whereas, the Cox proportional hazards model that does

not observe the baseline covariate consistently obtains an average estimate ranging from

0.14-0.20; where the degree of bias increases with larger cohort sample sizes.

The average estimates and 95% percentile intervals are plotted in Figure 4.15. The

percentile interval of estimates for the Cox proportional hazards model that does not

observe the confounder in the cohort assuming a 10% incidence rate in 100000 observations

is (-0.02, 0.40). The bias of the Cox hazard model that does not observe the confounder is

further illustrated in the top row of Figure 4.16. The distribution of the log-hazard ratio

shifts to the right as the sample size of the cohort increase. The distribution on the top,

right for the cohort with sample size of 100,000 is almost entirely to the right of the β = 0

assumption indicated by the vertical red line.

The Type I error for the Cox proportional hazards model, for which the investigator is

assumed to not be able to observe the confounder, incorrectly rejects the null hypothesis
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in as little as 10.3% of the time in cohorts with 1000 events and as much as 49.3% of

the simulations where 10000 events are observed. This means in a similar scenario where

the number of events is about 10000, the investigator has a 50% chance of erroneously

concluding a significant effect when there is truly no association in the presence of the

confounder. The case-crossover design and the Cox proportional hazards model which

does observe the confounder, yield Type I error rates around the hypothesized 5% level

and largely obtain unbiased estimates of β.

The relative efficiency of the case-crossover design’s estimate of β compared to the true

Cox proportional hazards model is plotted in Figure 4.18. The 1:5 case-crossover design

achieves more than 80% efficiency relative to the true Cox proportional hazards model for

all sample sizes with 10% incidence rates, and just less than 80% for 5% incidence rate. The

maximum relative efficiency achieved was 92.2% by the 1:25 case-crossover design applied

to the cohort of sample size 25,0000. A plot of the standard deviation for these simulations

studies is presented in Figure 4.21. The standard deviations for these simulations is larger

than any of the respective standard deviations observed in section 4.1.1.
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Mean (SD*) Median Type I
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N= 10000, # event=951)
  Case−Crossover (1:1)  0.0055 (0.5290)  0.0000   4.60% 0.50  45.28% 100.00% 
  Case−Crossover (1:2) −0.0253 (0.4417) −0.0264   3.60% 0.43  64.96% 100.00% 
  Case−Crossover (1:3) −0.0392 (0.4107) −0.0364   4.60% 0.40  75.14% 100.00% 
  Case−Crossover (1:5) −0.0436 (0.3987) −0.0097   4.20% 0.38  79.73% 100.00% 
  Case−Crossover (1:10) −0.0471 (0.3853) −0.0241   4.90% 0.37  85.35% 100.00% 
  Case−Crossover (1:25) −0.0486 (0.3790) −0.0230   4.70% 0.36  88.25% 100.00% 
  Cox Hazards Model 1 − X.i  0.7017 (0.0658)  0.7014 100.00% 0.07     NA% 100.00% 
                                        Z.it −0.0568 (0.3560) −0.0368   4.90% 0.34 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it  0.1428 (0.3555)  0.1613  10.30% 0.34 100.30% 100.00% 

  Cohort Size (N= 25000, # event=2378)
  Case−Crossover (1:1) −0.0018 (0.3082)  0.0000   4.70% 0.30  52.46% 100.00% 
  Case−Crossover (1:2) −0.0128 (0.2621)  0.0000   4.70% 0.26  72.55% 100.00% 
  Case−Crossover (1:3) −0.0169 (0.2483) −0.0088   4.70% 0.25  80.82% 100.00% 
  Case−Crossover (1:5) −0.0208 (0.2408) −0.0091   4.60% 0.24  85.92% 100.00% 
  Case−Crossover (1:10) −0.0258 (0.2349) −0.0151   5.00% 0.23  90.31% 100.00% 
  Case−Crossover (1:25) −0.0261 (0.2325) −0.0122   5.00% 0.22  92.17% 100.00% 
  Cox Hazards Model 1 − X.i  0.7010 (0.0402)  0.6995 100.00% 0.04     NA% 100.00% 
                                        Z.it −0.0284 (0.2232) −0.0208   5.70% 0.21 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it  0.1712 (0.2230)  0.1803  17.80% 0.21 100.21% 100.00% 

  Cohort Size (N= 50000, # event=4760)
  Case−Crossover (1:1)  0.0029 (0.2253)  0.0000   6.60% 0.21  47.83% 100.00% 
  Case−Crossover (1:2) −0.0033 (0.1883)  0.0000   4.80% 0.18  68.45% 100.00% 
  Case−Crossover (1:3) −0.0061 (0.1787)  0.0026   5.00% 0.17  75.97% 100.00% 
  Case−Crossover (1:5) −0.0056 (0.1715)  0.0028   5.40% 0.17  82.51% 100.00% 
  Case−Crossover (1:10) −0.0091 (0.1658)  0.0015   6.00% 0.16  88.27% 100.00% 
  Case−Crossover (1:25) −0.0091 (0.1638)  0.0018   6.20% 0.16  90.43% 100.00% 
  Cox Hazards Model 1 − X.i  0.7012 (0.0284)  0.7010 100.00% 0.03     NA% 100.00% 
                                        Z.it −0.0097 (0.1558)  0.0006   5.70% 0.15 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it  0.1899 (0.1559)  0.2001  29.70% 0.15  99.85% 100.00% 

  Cohort Size (N=100000, # event=9520)
  Case−Crossover (1:1) −0.0008 (0.1570)  0.0000   6.10% 0.15  46.65% 100.00% 
  Case−Crossover (1:2) −0.0024 (0.1300)  0.0000   4.80% 0.13  68.01% 100.00% 
  Case−Crossover (1:3) −0.0034 (0.1248)  0.0000   5.70% 0.12  73.85% 100.00% 
  Case−Crossover (1:5) −0.0019 (0.1201)  0.0002   5.50% 0.12  79.68% 100.00% 
  Case−Crossover (1:10) −0.0044 (0.1155) −0.0018   6.00% 0.11  86.15% 100.00% 
  Case−Crossover (1:25) −0.0048 (0.1136) −0.0016   5.80% 0.11  89.10% 100.00% 
  Cox Hazards Model 1 − X.i  0.7001 (0.0197)  0.6997 100.00% 0.02     NA% 100.00% 
                                        Z.it −0.0031 (0.1072)  0.0019   5.90% 0.10 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it  0.1962 (0.1070)  0.2009  49.30% 0.10 100.47% 100.00% 

Table 4.7: results from simulation of a cohort with an incidence of approximately 10%
(λ = 0.0018), where the patient characteristic is associated with the exposure and the
event, but the event is independent of the exposure (γ = .7 and β = 0) (* Monte Carlo
standard deviation of estimates ** Average of the information based standard error)
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Mean (SD*) Median Type I
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N= 25000, # event=1227)
  Case−Crossover (1:1)  0.0052 (0.4447)  0.0000   5.20% 0.43  44.27% 100.00% 
  Case−Crossover (1:2) −0.0284 (0.3702) −0.0264   4.20% 0.37  63.87% 100.00% 
  Case−Crossover (1:3) −0.0293 (0.3513) −0.0328   3.90% 0.35  70.94% 100.00% 
  Case−Crossover (1:5) −0.0329 (0.3386) −0.0301   4.50% 0.33  76.36% 100.00% 
  Case−Crossover (1:10) −0.0359 (0.3229) −0.0215   3.90% 0.32  83.94% 100.00% 
  Case−Crossover (1:25) −0.0374 (0.3157) −0.0286   4.70% 0.32  87.81% 100.00% 
  Cox Hazards Model 1 − X.i  0.6991 (0.0569)  0.6997 100.00% 0.06     NA% 100.00% 
                                        Z.it −0.0367 (0.2959) −0.0151   4.20% 0.30 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it  0.1616 (0.2947)  0.1809  13.20% 0.30 100.76% 100.00% 

  Cohort Size (N= 50000, # event=2455)
  Case−Crossover (1:1)  0.0085 (0.3006)  0.0000   4.00% 0.30  46.85% 100.00% 
  Case−Crossover (1:2) −0.0109 (0.2533) −0.0114   3.80% 0.26  65.96% 100.00% 
  Case−Crossover (1:3) −0.0113 (0.2433) −0.0045   4.70% 0.24  71.51% 100.00% 
  Case−Crossover (1:5) −0.0144 (0.2320) −0.0055   3.70% 0.23  78.62% 100.00% 
  Case−Crossover (1:10) −0.0159 (0.2229) −0.0111   4.50% 0.22  85.18% 100.00% 
  Case−Crossover (1:25) −0.0146 (0.2182) −0.0123   4.50% 0.22  88.86% 100.00% 
  Cox Hazards Model 1 − X.i  0.6999 (0.0409)  0.6996 100.00% 0.04     NA% 100.00% 
                                        Z.it −0.0131 (0.2057) −0.0049   4.20% 0.21 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it  0.1854 (0.2045)  0.1942  19.10% 0.21 101.16% 100.00% 

  Cohort Size (N=100000, # event=4910)
  Case−Crossover (1:1)  0.0113 (0.2107)  0.0000   5.00% 0.21  48.99% 100.00% 
  Case−Crossover (1:2)  0.0006 (0.1825)  0.0000   4.70% 0.18  65.28% 100.00% 
  Case−Crossover (1:3)  0.0000 (0.1733)  0.0089   5.30% 0.17  72.40% 100.00% 
  Case−Crossover (1:5) −0.0013 (0.1671)  0.0043   5.10% 0.16  77.85% 100.00% 
  Case−Crossover (1:10) −0.0031 (0.1591)  0.0060   5.20% 0.16  85.84% 100.00% 
  Case−Crossover (1:25) −0.0029 (0.1564)  0.0051   4.90% 0.15  88.91% 100.00% 
  Cox Hazards Model 1 − X.i  0.7007 (0.0286)  0.7006 100.00% 0.03     NA% 100.00% 
                                        Z.it −0.0037 (0.1475)  0.0027   6.40% 0.14 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it  0.1949 (0.1469)  0.2011  30.30% 0.14 100.80% 100.00% 

Table 4.8: Results from simulation of a cohort with an incidence of approximately 5%
(λ = 0.0009), where the patient characteristic is associated with the exposure and the
event, but the event is independent of the exposure (γ = .7 and β = 0) (* Monte Carlo
standard deviation of estimates ** Average of the information based standard error)
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Figure 4.15: Plot of average estimates of the log-hazard ratio with 95% percentile intervals
by design, cohort size and incidence rate when assuming a log-hazard ratio of β = 0
indicated by the vertical red line.
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4.1.5 Exposure Has Positive Association in Presence of a Confounder

The final scenario, highlighted in Figure 4.1.e, assumes that the time-dependent exposure

increases the risk of observing the event in the presence of a confounder by a log-hazard

ratio of 0.8. Similar to section 4.1.3, the simulations in this scenario assume P (Zi· = 0.4 and

P (Zi· = 1 | Xi = 1) = 0.7. The results of the simulations in this subsection are displayed

in Table 4.9 and 4.10 for cohorts with incidence rates of 10% and 5%, respectively.

The average parameter estimates of the log-hazard ratio for the time-dependent expo-

sure are generally close to the assumed effect of β = 0.8 for the case-crossover designs.

Similar patterns of bias exist for the case-crossover design in smaller cohorts; the 1:1

design over estimates the log-hazard ratio while 1:10 and 1:25 underestimate. The Cox

proportional hazards model which assumes to have observed the baseline confounder still

underestimates the log-hazard ratio for β by almost 7% for cohorts of size 5,000 with a 10%

incidence ratio and of size 10,000 with a 5% incidence ratio. The Cox proportional hazards

model that does not observe the baseline confounder over estimates β, with average esti-

mates ranging from 0.94-1.00 for the various sample size. This is likely the justification for

the lower coverage probabilities since the distribution of estimates for β have been shifted

up by the bias introduced by the unobserved confounder.

Figure 4.19 contains a plot of the average log-hazard ratio estimates with corresponding

95% percentile intervals. The degree of which not controlling for the confounder in Cox

proportional hazards model 2 is apparent in that the 95% confidence interval does not

contain the hypothesized value for cohorts of size 100,000 with 5% incidence rates and

greater than 50,000 for cohorts with 10% incidence rates. The entire distribution of β when

the confounder is not observed are shown to lie almost entirely above the hypothesized value

shown in the top right of Figure 4.20.

Compared to the simulations presented in sections 4.1.1-4.1.4, the relative efficiency

seems to be generally smaller. This is highlighted by the 1:5 case-crossover design never

exceeding 70% relative efficiency. A plot of relative efficiency is displayed in Figure 4.19.

The maximum relative efficiency observed was 86% for the 1:25 case-crossover design ap-

plied to cohorts of size 100,000 with 5% incidence rate. The standard deviation of these
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estimates are shown in Figure 4.21, and follow the same relationships already observed

in previous simulations. The standard deviation decreases as the sample size, number of

matched controls and incidence rate increase.
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=  5000, # event=482)
  Case−Crossover (1:1) 0.8291 (0.6290) 0.8109  23.24% 97.48%  3.64% 0.61  32.18%  99.40% 
  Case−Crossover (1:2) 0.7940 (0.5153) 0.8109  42.24% 96.70% −0.75% 0.49  47.96%  99.90% 
  Case−Crossover (1:3) 0.7824 (0.4697) 0.8145  49.10% 95.20% −2.19% 0.44  57.71% 100.00% 
  Case−Crossover (1:5) 0.7602 (0.4316) 0.7880  52.40% 94.20% −4.98% 0.40  68.37% 100.00% 
  Case−Crossover (1:10) 0.7594 (0.4079) 0.7986  59.50% 94.70% −5.07% 0.37  76.55% 100.00% 
  Case−Crossover (1:25) 0.7573 (0.3953) 0.8134  61.40% 94.20% −5.34% 0.36  81.50% 100.00% 
  Cox Hazards Model 1 − X.i 0.6996 (0.0896) 0.7037 100.00% 95.50% −0.06% 0.09     NA% 100.00% 
                                        Z.it 0.7448 (0.3577) 0.8045  65.70% 94.70% −6.90% 0.33  99.55% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9437 (0.3569) 0.9989  78.30% 87.50% 17.96% 0.33 100.00% 100.00% 

  Cohort Size (N= 10000, # event=963)
  Case−Crossover (1:1) 0.8060 (0.4342) 0.7621  49.90% 96.30%  0.74% 0.42  27.45% 100.00% 
  Case−Crossover (1:2) 0.7872 (0.3463) 0.7800  66.10% 96.00% −1.60% 0.33  43.14% 100.00% 
  Case−Crossover (1:3) 0.7842 (0.3132) 0.7804  72.10% 95.70% −1.97% 0.30  52.75% 100.00% 
  Case−Crossover (1:5) 0.7751 (0.2795) 0.7939  77.20% 95.80% −3.11% 0.28  66.22% 100.00% 
  Case−Crossover (1:10) 0.7773 (0.2611) 0.7915  80.30% 95.60% −2.84% 0.26  75.92% 100.00% 
  Case−Crossover (1:25) 0.7792 (0.2526) 0.8031  83.40% 96.00% −2.60% 0.25  81.10% 100.00% 
  Cox Hazards Model 1 − X.i 0.6990 (0.0654) 0.6983 100.00% 95.40% −0.14% 0.07     NA% 100.00% 
                                        Z.it 0.7708 (0.2285) 0.7876  87.70% 95.60% −3.65% 0.23  99.08% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9698 (0.2275) 0.9848  95.60% 83.80% 21.22% 0.23 100.00% 100.00% 

  Cohort Size (N= 25000, # event=2411)
  Case−Crossover (1:1) 0.8031 (0.2682) 0.7885  88.40% 93.90%  0.39% 0.26  28.71% 100.00% 
  Case−Crossover (1:2) 0.7977 (0.2102) 0.7950  97.60% 96.10% −0.28% 0.21  46.75% 100.00% 
  Case−Crossover (1:3) 0.7982 (0.1912) 0.7970  98.40% 95.70% −0.22% 0.19  56.53% 100.00% 
  Case−Crossover (1:5) 0.7937 (0.1719) 0.7957  99.00% 95.60% −0.79% 0.17  69.92% 100.00% 
  Case−Crossover (1:10) 0.7963 (0.1628) 0.8005  99.20% 95.30% −0.46% 0.16  77.96% 100.00% 
  Case−Crossover (1:25) 0.7958 (0.1570) 0.7977  99.70% 95.20% −0.53% 0.16  83.76% 100.00% 
  Cox Hazards Model 1 − X.i 0.6998 (0.0407) 0.7008 100.00% 95.10% −0.03% 0.04     NA% 100.00% 
                                        Z.it 0.7886 (0.1448) 0.7948  99.70% 94.90% −1.42% 0.14  98.53% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9878 (0.1437) 0.9906 100.00% 69.30% 23.48% 0.14 100.00% 100.00% 

  Cohort Size (N= 50000, # event=4819)
  Case−Crossover (1:1) 0.8073 (0.1875) 0.7961  99.80% 94.90%  0.91% 0.18  28.47% 100.00% 
  Case−Crossover (1:2) 0.8075 (0.1457) 0.8079 100.00% 94.90%  0.94% 0.15  47.13% 100.00% 
  Case−Crossover (1:3) 0.8061 (0.1315) 0.8072 100.00% 95.70%  0.76% 0.13  57.89% 100.00% 
  Case−Crossover (1:5) 0.8028 (0.1199) 0.8052 100.00% 96.20%  0.35% 0.12  69.54% 100.00% 
  Case−Crossover (1:10) 0.8042 (0.1141) 0.8087 100.00% 95.60%  0.53% 0.11  76.86% 100.00% 
  Case−Crossover (1:25) 0.8027 (0.1101) 0.8082 100.00% 95.50%  0.33% 0.11  82.59% 100.00% 
  Cox Hazards Model 1 − X.i 0.6992 (0.0290) 0.6998 100.00% 94.40% −0.11% 0.03     NA% 100.00% 
                                        Z.it 0.7987 (0.1003) 0.8064 100.00% 96.00% −0.16% 0.10  99.50% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9978 (0.1000) 1.0043 100.00% 45.80% 24.73% 0.10 100.00% 100.00% 

  Cohort Size (N=100000, # event=9632)
  Case−Crossover (1:1) 0.8026 (0.1275) 0.7982 100.00% 95.30%  0.33% 0.13  29.29% 100.00% 
  Case−Crossover (1:2) 0.8026 (0.1026) 0.8051 100.00% 95.70%  0.32% 0.10  45.26% 100.00% 
  Case−Crossover (1:3) 0.8025 (0.0917) 0.8043 100.00% 95.80%  0.31% 0.09  56.60% 100.00% 
  Case−Crossover (1:5) 0.8003 (0.0855) 0.8042 100.00% 95.70%  0.04% 0.09  65.22% 100.00% 
  Case−Crossover (1:10) 0.8010 (0.0797) 0.8050 100.00% 95.60%  0.12% 0.08  75.01% 100.00% 
  Case−Crossover (1:25) 0.8003 (0.0773) 0.8025 100.00% 95.40%  0.03% 0.08  79.76% 100.00% 
  Cox Hazards Model 1 − X.i 0.7002 (0.0198) 0.7006 100.00% 95.70%  0.03% 0.02     NA% 100.00% 
                                        Z.it 0.7978 (0.0694) 0.8000 100.00% 95.50% −0.28% 0.07  98.91% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9972 (0.0690) 1.0005 100.00% 20.70% 24.65% 0.07 100.00% 100.00% 

Table 4.9: Results from simulation of a cohort with an incidence of approximately 10%
(λ = 0.0018), where the patient characteristic is confounding with the exposure and the
event (γ = .7 and β = 0.8), and P (Zi· = 1) = .4 and P (Zi· = 1 | Xi = 1) = .7 (* Monte
Carlo standard deviation of estimates ** Average of the information based standard error)
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N= 10000, # event=496)
  Case−Crossover (1:1) 0.8462 (0.6132) 0.8109  26.63% 97.29%  5.77% 0.61  30.82%  99.50% 
  Case−Crossover (1:2) 0.8012 (0.5046) 0.7885  41.80% 95.60%  0.15% 0.48  45.52% 100.00% 
  Case−Crossover (1:3) 0.7712 (0.4530) 0.7945  48.70% 95.70% −3.60% 0.43  56.49% 100.00% 
  Case−Crossover (1:5) 0.7588 (0.4173) 0.7919  53.80% 95.50% −5.15% 0.39  66.56% 100.00% 
  Case−Crossover (1:10) 0.7547 (0.3894) 0.7839  57.30% 95.70% −5.67% 0.37  76.46% 100.00% 
  Case−Crossover (1:25) 0.7517 (0.3751) 0.7939  60.90% 95.20% −6.03% 0.35  82.39% 100.00% 
  Cox Hazards Model 1 − X.i 0.6941 (0.0925) 0.6953 100.00% 94.60% −0.85% 0.09     NA% 100.00% 
                                        Z.it 0.7464 (0.3415) 0.7942  65.30% 95.00% −6.70% 0.32  99.40% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9432 (0.3405) 0.9845  79.00% 88.40% 17.90% 0.32 100.00% 100.00% 

  Cohort Size (N= 25000, # event=1240)
  Case−Crossover (1:1) 0.8217 (0.3797) 0.8023  64.50% 94.80%  2.72% 0.36  29.27% 100.00% 
  Case−Crossover (1:2) 0.8031 (0.3079) 0.8044  78.30% 93.80%  0.39% 0.29  44.51% 100.00% 
  Case−Crossover (1:3) 0.7953 (0.2803) 0.8034  82.70% 94.40% −0.59% 0.27  53.70% 100.00% 
  Case−Crossover (1:5) 0.7896 (0.2613) 0.8133  87.00% 93.50% −1.30% 0.24  61.82% 100.00% 
  Case−Crossover (1:10) 0.7886 (0.2395) 0.8049  89.60% 93.80% −1.43% 0.23  73.56% 100.00% 
  Case−Crossover (1:25) 0.7863 (0.2285) 0.8017  90.00% 94.70% −1.72% 0.22  80.87% 100.00% 
  Cox Hazards Model 1 − X.i 0.6964 (0.0566) 0.6968 100.00% 94.90% −0.52% 0.06     NA% 100.00% 
                                        Z.it 0.7811 (0.2066) 0.7989  92.80% 94.30% −2.36% 0.20  98.85% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9786 (0.2054) 0.9951  98.00% 80.10% 22.32% 0.20 100.00% 100.00% 

  Cohort Size (N= 50000, # event=2479)
  Case−Crossover (1:1) 0.8025 (0.2619) 0.7922  90.80% 94.10%  0.31% 0.25  28.88% 100.00% 
  Case−Crossover (1:2) 0.7945 (0.2115) 0.7985  97.00% 94.70% −0.69% 0.20  44.32% 100.00% 
  Case−Crossover (1:3) 0.7920 (0.1928) 0.7972  97.70% 94.90% −1.00% 0.19  53.32% 100.00% 
  Case−Crossover (1:5) 0.7902 (0.1767) 0.7924  98.70% 94.60% −1.23% 0.17  63.43% 100.00% 
  Case−Crossover (1:10) 0.7921 (0.1629) 0.7998  99.00% 94.20% −0.98% 0.16  74.72% 100.00% 
  Case−Crossover (1:25) 0.7926 (0.1553) 0.7978  99.20% 94.80% −0.93% 0.15  82.18% 100.00% 
  Cox Hazards Model 1 − X.i 0.6993 (0.0403) 0.6974 100.00% 95.00% −0.10% 0.04     NA% 100.00% 
                                        Z.it 0.7882 (0.1415) 0.7984  99.70% 94.20% −1.47% 0.14  98.95% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9865 (0.1408) 0.9955 100.00% 70.50% 23.31% 0.14 100.00% 100.00% 

  Cohort Size (N=100000, # event=4962)
  Case−Crossover (1:1) 0.8045 (0.1778) 0.7985  99.80% 95.00%  0.56% 0.18  30.14% 100.00% 
  Case−Crossover (1:2) 0.8021 (0.1478) 0.7965 100.00% 94.70%  0.26% 0.14  43.63% 100.00% 
  Case−Crossover (1:3) 0.8011 (0.1310) 0.8011 100.00% 95.90%  0.14% 0.13  55.52% 100.00% 
  Case−Crossover (1:5) 0.7997 (0.1204) 0.8027 100.00% 95.10% −0.04% 0.12  65.78% 100.00% 
  Case−Crossover (1:10) 0.8005 (0.1110) 0.7995 100.00% 95.30%  0.06% 0.11  77.38% 100.00% 
  Case−Crossover (1:25) 0.8000 (0.1062) 0.8024 100.00% 95.30%  0.00% 0.11  84.51% 100.00% 
  Cox Hazards Model 1 − X.i 0.6988 (0.0281) 0.6992 100.00% 94.90% −0.17% 0.03     NA% 100.00% 
                                        Z.it 0.7968 (0.0985) 0.7941 100.00% 95.10% −0.41% 0.10  98.23% 100.00% 
  Cox Hazards Model 2 − Z.it 0.9949 (0.0976) 0.9939 100.00% 48.80% 24.36% 0.10 100.00% 100.00% 

Table 4.10: Results from simulation of a cohort with an incidence of approximately 5%
(λ = 0.0018), where the patient characteristic is confounding with the exposure and the
event (γ = .7 and β = 0.8), and P (Zi· = 1) = .4 and P (Zi· = 1 | Xi = 1) = .7 (* Monte
Carlo standard deviation of estimates ** Average of the information based standard error)
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Figure 4.19: Plot of average estimates of the log-hazard ratio with 95% percentile intervals
by design, cohort size and incidence rate when assuming a log-hazard ratio of β = 0.8
indicated by the vertical red line.
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Figure 4.20: Distribution of estimate by design, cohort size and incidence rate when as-
suming a log-hazard ratio of β = 0.8 indicated by the vertical red line.
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Figure 4.21: Plot of standard deviation of log-hazard ratio estimates by design, cohort size
and incidence rate when assuming a log-hazard ratio of β = 0.8
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4.2 Distributed Lag

This section expands upon the simulations outlined in section 4.1. The simulations in

this section assume that the transient effect resulting from a change in time-dependent

exposure has an effect that lasts more than one time interval. Survival times are assumed

to arise from the hazard function specified in Equation (3.17). The derivations yielding the

function to generate survival times in Equation (4.2) is extended to generate survival times

assuming a distributed lag of effect from the inverse cumulative hazard function given by

T̃ =



−log(u)

λeγXi
, −log(u) ∈ R1

−log(u)+λeγXi(eβ1τi−τi)
λeγXi+β1

, −log(u) ∈ R2

−log(u)+λeγXi(eβ2 (τi+1)−τi−eβ1)
λeγXi+β2

, −log(u) ∈ R3

...

−log(u)+λeγXi

(
eβl (τi+l)−τi−

∑l−1
j=1 e

βj
)

λeγXi+βl
, −log(u) ∈ Rl+1

−log(u)+λeγXi

(
(τi+l)−τi−

∑l
j=1 e

βj
)

λeγXi
, −log(u) ∈ Rl+2

(4.4)

where

R1 = [0, λeγXiτi)

R2 =
[
λeγXiτi, λe

γXi(τi + eβ1 )
)

R3 =
[
λeγXi(τi + eβ1 ), λe

γXi(τi + eβ1 + eβ2 )
)

...

R1+2 =

λeγXi(τi +
l−1∑
j=1

eβj ), λe
γXi(τi +

l∑
j=1

eβj )

 (4.5)

All simulations in this section assume that βl are constrained by the function Θl(β, θ) =

βθ(l−1). The first simulation demonstrates how the simple transient effect reviewed in

section 4.1 can be extended to have an effect described by two parameters. The second

simulation assumes the effect is distributed over a lag of seven time periods.
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4.2.1 Two Lagged Variables

This first simulation assumes that the lag of the effect lasts over two time periods such

that the hazard function is

λi(t) = λ0(t)e
β1Zit+β2Zit−1

The log-hazard ratios over the two time intervals are assumed to be β1 = 0.8 and β2 = 0.4.

The results from these simulated studies are displayed in Table 4.11 for cohorts with an

assumed incidence rate of 10% and in Table 4.12 for cohorts assuming an incidence rate of

5%.

Average estimates for both β1 and β2 both tend to yield results close to the hypoth-

esized values of 0.8 and 0.4 respectively. The patterns of bias still appear to exist for

this simulation: the 1:1 case-crossover overestimates β1 and β2 and the Cox proportional

hazards model, 1:10 and 1:25 matched case-crossover designs underestimate β1 and β2 for

cohorts of smaller sample size. Differing from earlier simulations, the presence of bias ex-

ceeding 1% still exists in cohorts of size 100,000 for β2. The average estimates of β1 and

β2 with corresponding percentile intervals is plotted in Figure 4.23. In this plot there are

two dark red lines that indicate the hypothesized values of 0.8 and 0.4. For smaller sample

sizes, the 1:3 case-crossover designs tend to provide the least amount of bias and as M

increases the magnitude of underestimating β1 and β2 increases. The level of bias intervals

decrease with the higher incidence rate and larger cohort sample sizes. The negative bias

observed in some of these designs may be a result of the skewed left distributions observed

in Figure 4.24.

Similar to the simulations in previous sections, 1000 events are required to observe

power exceeding 80% for β1 assuming a type I error rate of 5%. The ability to detect

a difference for the second lagged parameter is more difficult, requiring about 5000 ob-

servations are required to observe power exceeding 80%. Coverage probabilities for both

variables are consistent with previous simulations.

A plot of relative efficiency is depicted in Figure 4.26. This plot shows similar patterns

to previous simulations: relative efficiency increases with the number of matched controls

and sample size of the cohort. The second lagged parameter has consistently higher relative
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=  2500, # event=244)
  Case−Crossover (1:1) 0.8377 (0.6922) 0.8109 16.67% 97.33%   4.71% 0.70  29.85%  93.60% 
  Case−Crossover (1:1) 0.3966 (0.7427) 0.4055  3.31% 98.40%  −0.84% 0.77  44.80%  93.60% 

  Cohort Size (N=  2500, # event=243)
  Case−Crossover (1:2) 0.8222 (0.5744) 0.8267 32.90% 96.97%   2.78% 0.56  43.35%  99.10% 
  Case−Crossover (1:2) 0.3874 (0.6669) 0.3925 10.29% 97.38%  −3.14% 0.64  55.56%  99.10% 
  Case−Crossover (1:3) 0.7949 (0.5180) 0.7952 39.60% 96.48%  −0.63% 0.51  53.31%  99.50% 
  Case−Crossover (1:3) 0.3606 (0.6242) 0.3939 11.86% 96.58%  −9.85% 0.59  63.41%  99.50% 
  Case−Crossover (1:5) 0.7829 (0.4754) 0.8105 45.93% 95.88%  −2.13% 0.46  63.27%  99.50% 
  Case−Crossover (1:5) 0.3301 (0.5729) 0.3819 15.38% 97.19% −17.48% 0.55  75.29%  99.50% 
  Case−Crossover (1:10) 0.7663 (0.4543) 0.8132 49.45% 95.98%  −4.22% 0.44  69.29%  99.50% 
  Case−Crossover (1:10) 0.3197 (0.5503) 0.3820 15.08% 97.09% −20.09% 0.53  81.61%  99.50% 
  Case−Crossover (1:25) 0.7634 (0.4537) 0.8127 51.46% 95.68%  −4.58% 0.43  69.49%  99.50% 
  Case−Crossover (1:25) 0.3175 (0.5427) 0.3874 15.58% 96.88% −20.64% 0.52  83.90%  99.50% 
  Cox Hazards Model 2 − Z.it 0.7557 (0.3782) 0.7953 59.78% 95.69%  −5.54% 0.36 100.00%  99.70% 
  Cox Hazards Model 2 − Z.it 0.2997 (0.4971) 0.3667 18.25% 96.29% −25.07% 0.46 100.00%  99.70% 

  Cohort Size (N=  5000, # event=487)
  Case−Crossover (1:1) 0.8669 (0.5256) 0.8329 45.29% 95.29%   8.36% 0.48  24.88%  99.80% 
  Case−Crossover (1:1) 0.4087 (0.5212) 0.4055 10.02% 97.19%   2.18% 0.51  40.55%  99.80% 
  Case−Crossover (1:2) 0.8193 (0.3935) 0.8277 59.90% 95.90%   2.41% 0.38  44.39% 100.00% 
  Case−Crossover (1:2) 0.3995 (0.4415) 0.4004 17.50% 96.30%  −0.12% 0.43  56.51% 100.00% 
  Case−Crossover (1:3) 0.7998 (0.3591) 0.8113 66.00% 95.20%  −0.03% 0.35  53.29% 100.00% 
  Case−Crossover (1:3) 0.3808 (0.4132) 0.3807 20.10% 95.30%  −4.80% 0.40  64.51% 100.00% 
  Case−Crossover (1:5) 0.7961 (0.3294) 0.7990 70.90% 95.50%  −0.49% 0.32  63.35% 100.00% 
  Case−Crossover (1:5) 0.3698 (0.3878) 0.3771 21.80% 94.60%  −7.56% 0.37  73.25% 100.00% 
  Case−Crossover (1:10) 0.7912 (0.3150) 0.8120 72.40% 94.60%  −1.10% 0.30  69.29% 100.00% 
  Case−Crossover (1:10) 0.3676 (0.3764) 0.3881 23.40% 94.20%  −8.11% 0.36  77.76% 100.00% 
  Case−Crossover (1:25) 0.7903 (0.3139) 0.8166 73.40% 94.30%  −1.22% 0.30  69.77% 100.00% 
  Case−Crossover (1:25) 0.3669 (0.3724) 0.3819 24.70% 94.40%  −8.27% 0.36  79.42% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7890 (0.2622) 0.8071 83.90% 94.00%  −1.38% 0.25 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.3544 (0.3319) 0.3666 28.90% 94.30% −11.39% 0.31 100.00% 100.00% 

  Cohort Size (N= 10000, # event=974)
  Case−Crossover (1:1) 0.8352 (0.3310) 0.8333 75.50% 96.00%   4.40% 0.33  26.94% 100.00% 
  Case−Crossover (1:1) 0.4083 (0.3474) 0.4055 19.30% 95.80%   2.06% 0.35  39.11% 100.00% 
  Case−Crossover (1:2) 0.8190 (0.2638) 0.8165 88.00% 95.10%   2.37% 0.26  42.43% 100.00% 
  Case−Crossover (1:2) 0.4030 (0.2921) 0.4016 27.30% 96.40%   0.74% 0.30  55.32% 100.00% 
  Case−Crossover (1:3) 0.8093 (0.2385) 0.8125 90.80% 96.50%   1.16% 0.24  51.88% 100.00% 
  Case−Crossover (1:3) 0.4003 (0.2697) 0.3956 32.80% 96.60%   0.06% 0.27  64.89% 100.00% 
  Case−Crossover (1:5) 0.8048 (0.2176) 0.8160 93.00% 96.30%   0.61% 0.22  62.34% 100.00% 
  Case−Crossover (1:5) 0.3975 (0.2552) 0.4005 36.20% 95.80%  −0.63% 0.26  72.46% 100.00% 
  Case−Crossover (1:10) 0.8029 (0.2069) 0.8151 94.80% 95.80%   0.36% 0.21  68.95% 100.00% 
  Case−Crossover (1:10) 0.3952 (0.2462) 0.4091 39.40% 95.10%  −1.19% 0.25  77.88% 100.00% 
  Case−Crossover (1:25) 0.8025 (0.2041) 0.8169 94.70% 95.30%   0.31% 0.21  70.89% 100.00% 
  Case−Crossover (1:25) 0.3949 (0.2423) 0.4052 40.20% 95.50%  −1.26% 0.25  80.38% 100.00% 
  Cox Hazards Model 2 − Z.it 0.8010 (0.1718) 0.8074 97.80% 95.00%   0.13% 0.17 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.3857 (0.2173) 0.3984 47.40% 95.20%  −3.59% 0.22 100.00% 100.00% 

Table 4.11: Results from a simulation of a cohort with an incidence of approximately 10%
( λ = .0025) and effect deteriorating over two time periods (β1 = .8, β2 = .4) (* Monte
Carlo standard deviation of estimates ** Average of the information based standard error)

efficiency compared to the first lagged covariate. The relative efficiency is consistently at or

just beneath 80%. The first lagged factor is typically around 70%. The standard deviation

of estimates is plotted in Figure 4.25. Patterns of the standard deviation for each coefficient

are consistent with the earlier simulation studies. For both incidence rates, the standard

deviation for the second lagged parameter is always larger than the first.
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N= 25000, # event=2434)
  Case−Crossover (1:1) 0.8204 (0.2041) 0.8154  98.90% 95.90%  2.55% 0.20  26.68% 100.00% 
  Case−Crossover (1:1) 0.4038 (0.2139) 0.3891  43.70% 96.00%  0.94% 0.22  41.57% 100.00% 
  Case−Crossover (1:2) 0.8120 (0.1643) 0.8202  99.70% 95.20%  1.50% 0.17  41.18% 100.00% 
  Case−Crossover (1:2) 0.3995 (0.1799) 0.3942  57.90% 95.50% −0.12% 0.18  58.76% 100.00% 
  Case−Crossover (1:3) 0.8058 (0.1468) 0.8107 100.00% 95.90%  0.73% 0.15  51.59% 100.00% 
  Case−Crossover (1:3) 0.4014 (0.1690) 0.4049  64.80% 95.40%  0.35% 0.17  66.60% 100.00% 
  Case−Crossover (1:5) 0.8053 (0.1348) 0.8063 100.00% 96.30%  0.66% 0.14  61.18% 100.00% 
  Case−Crossover (1:5) 0.4018 (0.1602) 0.4065  69.90% 95.40%  0.45% 0.16  74.08% 100.00% 
  Case−Crossover (1:10) 0.8042 (0.1275) 0.8086 100.00% 95.80%  0.52% 0.13  68.39% 100.00% 
  Case−Crossover (1:10) 0.4032 (0.1552) 0.4106  72.40% 94.80%  0.80% 0.16  78.89% 100.00% 
  Case−Crossover (1:25) 0.8040 (0.1260) 0.8022 100.00% 95.20%  0.50% 0.13  69.99% 100.00% 
  Case−Crossover (1:25) 0.4029 (0.1539) 0.4093  73.00% 95.10%  0.72% 0.15  80.24% 100.00% 
  Cox Hazards Model 2 − Z.it 0.8013 (0.1054) 0.7992 100.00% 96.20%  0.16% 0.11 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.3989 (0.1379) 0.4021  81.00% 94.40% −0.26% 0.14 100.00% 100.00% 

  Cohort Size (N= 50000, # event=4866)
  Case−Crossover (1:1) 0.8119 (0.1418) 0.8102 100.00% 95.70%  1.48% 0.14  27.75% 100.00% 
  Case−Crossover (1:1) 0.4060 (0.1510) 0.4055  77.20% 94.70%  1.50% 0.15  38.31% 100.00% 
  Case−Crossover (1:2) 0.8087 (0.1134) 0.8094 100.00% 96.00%  1.09% 0.12  43.40% 100.00% 
  Case−Crossover (1:2) 0.4036 (0.1271) 0.4034  87.70% 94.50%  0.89% 0.13  54.03% 100.00% 
  Case−Crossover (1:3) 0.8059 (0.1032) 0.8029 100.00% 96.00%  0.74% 0.11  52.34% 100.00% 
  Case−Crossover (1:3) 0.4038 (0.1180) 0.4091  90.60% 96.20%  0.96% 0.12  62.69% 100.00% 
  Case−Crossover (1:5) 0.8050 (0.0939) 0.8075 100.00% 96.80%  0.62% 0.10  63.31% 100.00% 
  Case−Crossover (1:5) 0.4030 (0.1113) 0.4067  93.40% 95.80%  0.76% 0.11  70.50% 100.00% 
  Case−Crossover (1:10) 0.8038 (0.0891) 0.8047 100.00% 96.10%  0.47% 0.09  70.27% 100.00% 
  Case−Crossover (1:10) 0.4040 (0.1065) 0.4096  94.80% 95.30%  1.00% 0.11  76.97% 100.00% 
  Case−Crossover (1:25) 0.8035 (0.0883) 0.8028 100.00% 96.20%  0.43% 0.09  71.64% 100.00% 
  Case−Crossover (1:25) 0.4044 (0.1056) 0.4084  95.20% 95.40%  1.10% 0.11  78.35% 100.00% 
  Cox Hazards Model 2 − Z.it 0.8013 (0.0747) 0.8035 100.00% 95.90%  0.16% 0.08 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.4023 (0.0934) 0.4067  97.40% 95.20%  0.56% 0.10 100.00% 100.00% 

  Cohort Size (N=100000, # event=9731)
  Case−Crossover (1:1) 0.8073 (0.1018) 0.8027 100.00% 94.50%  0.91% 0.10  28.91% 100.00% 
  Case−Crossover (1:1) 0.4026 (0.1040) 0.4055  97.00% 97.50%  0.66% 0.11  39.13% 100.00% 
  Case−Crossover (1:2) 0.8053 (0.0827) 0.8067 100.00% 95.20%  0.67% 0.08  43.78% 100.00% 
  Case−Crossover (1:2) 0.4028 (0.0872) 0.4039  99.40% 96.30%  0.69% 0.09  55.70% 100.00% 
  Case−Crossover (1:3) 0.8039 (0.0749) 0.8029 100.00% 94.80%  0.49% 0.08  53.40% 100.00% 
  Case−Crossover (1:3) 0.4040 (0.0820) 0.4047  99.70% 95.50%  1.01% 0.09  63.03% 100.00% 
  Case−Crossover (1:5) 0.8041 (0.0686) 0.8039 100.00% 96.00%  0.51% 0.07  63.77% 100.00% 
  Case−Crossover (1:5) 0.4035 (0.0767) 0.4017  99.80% 95.70%  0.87% 0.08  72.03% 100.00% 
  Case−Crossover (1:10) 0.8030 (0.0646) 0.8033 100.00% 95.70%  0.37% 0.07  71.77% 100.00% 
  Case−Crossover (1:10) 0.4042 (0.0736) 0.4034  99.90% 95.70%  1.06% 0.08  78.19% 100.00% 
  Case−Crossover (1:25) 0.8024 (0.0637) 0.8041 100.00% 95.90%  0.30% 0.07  73.91% 100.00% 
  Case−Crossover (1:25) 0.4047 (0.0729) 0.4035 100.00% 95.70%  1.16% 0.08  79.74% 100.00% 
  Cox Hazards Model 2 − Z.it 0.8002 (0.0547) 0.8001 100.00% 95.80%  0.03% 0.05 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.4033 (0.0651) 0.4059  99.90% 95.80%  0.83% 0.07 100.00% 100.00% 

Table 4.11 (contd.): Results from a simulation of a cohort with an incidence of
approximately 10% ( λ = .0025) and effect deteriorating over two time periods

(β1 = .8, β2 = .4) (* Monte Carlo standard deviation of estimates ** Average of the
information based standard error)
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N=  5000, # event=250)
  Case−Crossover (1:1) 0.8458 (0.6805) 0.8473 17.02% 97.13%   5.72% 0.69  35.08%  94.00% 
  Case−Crossover (1:1) 0.3694 (0.7458) 0.3365  3.19% 98.19%  −7.64% 0.76  41.56%  94.00% 
  Case−Crossover (1:2) 0.8239 (0.6019) 0.8267 34.94% 96.39%   2.98% 0.56  44.84%  99.60% 
  Case−Crossover (1:2) 0.3516 (0.6561) 0.3567 10.74% 97.29% −12.11% 0.63  53.70%  99.60% 
  Case−Crossover (1:3) 0.7941 (0.5429) 0.8216 40.72% 95.09%  −0.73% 0.50  55.12%  99.70% 
  Case−Crossover (1:3) 0.3267 (0.6152) 0.3384 10.73% 96.89% −18.33% 0.58  61.07%  99.70% 
  Case−Crossover (1:5) 0.7790 (0.4914) 0.8071 45.44% 95.79%  −2.63% 0.46  67.28%  99.70% 
  Case−Crossover (1:5) 0.3123 (0.5586) 0.3660 13.04% 96.99% −21.94% 0.55  74.06%  99.70% 
  Case−Crossover (1:10) 0.7594 (0.4620) 0.7974 48.14% 94.98%  −5.08% 0.43  76.09%  99.70% 
  Case−Crossover (1:10) 0.3020 (0.5417) 0.3740 13.24% 97.19% −24.50% 0.52  78.77%  99.70% 
  Case−Crossover (1:25) 0.7598 (0.4513) 0.7957 49.95% 95.99%  −5.02% 0.43  79.74%  99.70% 
  Case−Crossover (1:25) 0.2978 (0.5344) 0.3628 13.74% 96.89% −25.55% 0.52  80.94%  99.70% 
  Cox Hazards Model 2 − Z.it 0.7414 (0.4030) 0.7941 60.82% 95.99%  −7.33% 0.36 100.00%  99.80% 
  Cox Hazards Model 2 − Z.it 0.2832 (0.4808) 0.3493 17.94% 97.49% −29.19% 0.46 100.00%  99.80% 

  Cohort Size (N= 10000, # event=500)
  Case−Crossover (1:1) 0.8521 (0.4983) 0.8109 42.73% 96.59%   6.51% 0.48  27.02%  99.70% 
  Case−Crossover (1:1) 0.4182 (0.5308) 0.4055 10.23% 95.99%   4.55% 0.51  36.50%  99.70% 
  Case−Crossover (1:2) 0.8069 (0.3842) 0.8052 58.30% 96.50%   0.87% 0.38  45.45% 100.00% 
  Case−Crossover (1:2) 0.3849 (0.4360) 0.3993 16.20% 95.70%  −3.78% 0.42  54.11% 100.00% 
  Case−Crossover (1:3) 0.7914 (0.3569) 0.8006 64.00% 95.50%  −1.07% 0.34  52.67% 100.00% 
  Case−Crossover (1:3) 0.3700 (0.4131) 0.3836 18.60% 94.70%  −7.49% 0.39  60.26% 100.00% 
  Case−Crossover (1:5) 0.7838 (0.3270) 0.7804 69.40% 95.00%  −2.02% 0.32  62.75% 100.00% 
  Case−Crossover (1:5) 0.3624 (0.3903) 0.3766 20.80% 94.10%  −9.40% 0.37  67.50% 100.00% 
  Case−Crossover (1:10) 0.7740 (0.3110) 0.7715 72.10% 94.40%  −3.24% 0.30  69.34% 100.00% 
  Case−Crossover (1:10) 0.3556 (0.3741) 0.3699 21.70% 94.60% −11.10% 0.35  73.48% 100.00% 
  Case−Crossover (1:25) 0.7735 (0.3016) 0.7816 73.40% 95.00%  −3.31% 0.29  73.76% 100.00% 
  Case−Crossover (1:25) 0.3517 (0.3662) 0.3682 22.20% 94.60% −12.07% 0.35  76.68% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7602 (0.2590) 0.7720 82.90% 94.40%  −4.97% 0.25 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.3477 (0.3207) 0.3890 26.20% 95.30% −13.07% 0.31 100.00% 100.00% 

  Cohort Size (N= 25000, # event=1251)
  Case−Crossover (1:1) 0.8229 (0.2986) 0.7941 84.50% 95.30%   2.87% 0.29  26.85% 100.00% 
  Case−Crossover (1:1) 0.4045 (0.3175) 0.4055 25.80% 95.30%   1.13% 0.31  37.75% 100.00% 
  Case−Crossover (1:2) 0.8044 (0.2364) 0.8059 92.70% 96.00%   0.55% 0.23  42.84% 100.00% 
  Case−Crossover (1:2) 0.3955 (0.2646) 0.4027 33.60% 95.00%  −1.11% 0.26  54.35% 100.00% 
  Case−Crossover (1:3) 0.8007 (0.2183) 0.8025 95.30% 95.10%   0.08% 0.21  50.25% 100.00% 
  Case−Crossover (1:3) 0.3905 (0.2493) 0.3883 40.20% 95.20%  −2.38% 0.24  61.24% 100.00% 
  Case−Crossover (1:5) 0.7930 (0.2003) 0.7903 96.90% 95.10%  −0.87% 0.20  59.69% 100.00% 
  Case−Crossover (1:5) 0.3873 (0.2371) 0.3831 42.70% 94.30%  −3.18% 0.23  67.71% 100.00% 
  Case−Crossover (1:10) 0.7891 (0.1887) 0.7893 97.50% 94.80%  −1.36% 0.19  67.22% 100.00% 
  Case−Crossover (1:10) 0.3847 (0.2257) 0.3901 44.10% 94.30%  −3.82% 0.22  74.71% 100.00% 
  Case−Crossover (1:25) 0.7893 (0.1853) 0.7908 97.70% 95.20%  −1.34% 0.18  69.73% 100.00% 
  Case−Crossover (1:25) 0.3837 (0.2209) 0.3877 44.70% 94.40%  −4.09% 0.22  77.97% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7899 (0.1547) 0.7985 99.60% 95.00%  −1.27% 0.15 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.3822 (0.1951) 0.3934 53.00% 94.50%  −4.45% 0.19 100.00% 100.00% 

Table 4.12: Results from a simulation of a cohort with an incidence of approximately 5%
( λ = .00125) and effect deteriorating over two time periods (β1 = .8, β2 = .4) (* Monte
Carlo standard deviation of estimates ** Average of the information based standard error)
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

Relative
Efficiency Converged

  Cohort Size (N= 50000, # event=2502)
  Case−Crossover (1:1) 0.8185 (0.2042) 0.8081  99.40% 95.10%  2.31% 0.20  29.02% 100.00% 
  Case−Crossover (1:1) 0.4006 (0.2200) 0.3956  46.10% 95.60%  0.14% 0.22  38.67% 100.00% 
  Case−Crossover (1:2) 0.8088 (0.1686) 0.8030  99.60% 95.50%  1.10% 0.16  42.59% 100.00% 
  Case−Crossover (1:2) 0.3998 (0.1875) 0.3986  58.80% 94.90% −0.06% 0.18  53.20% 100.00% 
  Case−Crossover (1:3) 0.8067 (0.1552) 0.8067  99.80% 94.20%  0.84% 0.15  50.28% 100.00% 
  Case−Crossover (1:3) 0.3968 (0.1734) 0.4028  65.10% 94.10% −0.79% 0.17  62.21% 100.00% 
  Case−Crossover (1:5) 0.8029 (0.1411) 0.8025  99.90% 94.00%  0.36% 0.14  60.77% 100.00% 
  Case−Crossover (1:5) 0.3924 (0.1658) 0.4020  67.30% 94.50% −1.91% 0.16  68.05% 100.00% 
  Case−Crossover (1:10) 0.8017 (0.1335) 0.8022  99.90% 94.10%  0.21% 0.13  67.94% 100.00% 
  Case−Crossover (1:10) 0.3928 (0.1615) 0.3990  70.80% 93.40% −1.79% 0.15  71.70% 100.00% 
  Case−Crossover (1:25) 0.8023 (0.1310) 0.8042  99.90% 93.70%  0.28% 0.13  70.57% 100.00% 
  Case−Crossover (1:25) 0.3936 (0.1587) 0.3989  72.50% 93.50% −1.60% 0.15  74.29% 100.00% 
  Cox Hazards Model 2 − Z.it 0.7982 (0.1100) 0.7995 100.00% 94.40% −0.23% 0.11 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.3905 (0.1368) 0.3930  80.50% 94.10% −2.37% 0.13 100.00% 100.00% 

  Cohort Size (N=100000, # event=5004)
  Case−Crossover (1:1) 0.8104 (0.1428) 0.8074 100.00% 95.70%  1.29% 0.14  30.91% 100.00% 
  Case−Crossover (1:1) 0.3963 (0.1541) 0.3969  73.60% 95.90% −0.93% 0.15  38.84% 100.00% 
  Case−Crossover (1:2) 0.8081 (0.1192) 0.8042 100.00% 93.60%  1.02% 0.12  44.34% 100.00% 
  Case−Crossover (1:2) 0.3969 (0.1279) 0.3945  87.00% 96.10% −0.78% 0.13  56.32% 100.00% 
  Case−Crossover (1:3) 0.8068 (0.1096) 0.8053 100.00% 93.90%  0.85% 0.11  52.41% 100.00% 
  Case−Crossover (1:3) 0.3962 (0.1198) 0.3945  90.90% 96.20% −0.95% 0.12  64.26% 100.00% 
  Case−Crossover (1:5) 0.8072 (0.0991) 0.8054 100.00% 95.00%  0.90% 0.10  64.22% 100.00% 
  Case−Crossover (1:5) 0.3956 (0.1136) 0.3942  92.70% 95.30% −1.11% 0.11  71.41% 100.00% 
  Case−Crossover (1:10) 0.8055 (0.0936) 0.8075 100.00% 95.50%  0.69% 0.09  71.87% 100.00% 
  Case−Crossover (1:10) 0.3945 (0.1104) 0.3992  93.60% 95.40% −1.38% 0.11  75.66% 100.00% 
  Case−Crossover (1:25) 0.8059 (0.0920) 0.8082 100.00% 95.10%  0.73% 0.09  74.48% 100.00% 
  Case−Crossover (1:25) 0.3949 (0.1086) 0.3986  94.80% 96.00% −1.27% 0.11  78.22% 100.00% 
  Cox Hazards Model 2 − Z.it 0.8020 (0.0794) 0.8014 100.00% 94.10%  0.25% 0.08 100.00% 100.00% 
  Cox Hazards Model 2 − Z.it 0.3933 (0.0960) 0.3993  97.60% 95.80% −1.67% 0.09 100.00% 100.00% 

Table 4.12 (contd.): Results from a simulation of a cohort with an incidence of
approximately 5% ( λ = .00125) and effect deteriorating over two time periods

(β1 = .8, β2 = .4) (* Monte Carlo standard deviation of estimates ** Average of the
information based standard error)
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by parameter, design, cohort size and incidence rate when assuming a log-hazard ratios of
β1 = 0.8, β2 = 0.4 indicated by the vertical dark red lines.
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Figure 4.25: Plot of standard deviation of log-hazard ratio estimates by parameter, design,
cohort size and incidence rate when assuming a log-hazard ratio of β1 = 0.8, β2 = 0.4
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4.2.2 Seven Lagged Variables

The final simulation assumes that the effect of a change in the time-dependent exposure

is distributed over seven time intervals such that the hazard function is given by

λi(t) = λeβ1Zit+β2Zit−1+β3Zit−2+β4Zit−3+β5Zit−4+β6Zit−5+β7Zit−6 (4.6)

This hazard will be referred to as the full model since a parameter is used to estimate the

effect at each time interval. If the constraint Θl(β, θ) = βθ(l−1) is applied to this equation

then the hazard takes the form

λi(t) = λeβZit+βθZit−1+βθ2Zit−2+βθ3Zit−3+βθ4Zit−4+βθ5Zit−5+βθ6Zit−6 (4.7)

Since this function constrains the seven parameters with a function requiring only two

parameters, it will therefore be referred to as the two parameter model. For this simulation

β is assumed to have an initial effect with a log-hazard of 0.8, and then deteriorate by 0.5

over each time interval so that the assumed hazard is

λi(t) = λe0.8Zit+0.4Zit−1+0.2Zit−2+0.1Zit−3+0.05Zit−4+0.025Zit−5+0.0125Zit−6 (4.8)

This hazard function is used to generate the survival times using Equation (4.4). In

addition to the hazards functions in Equations (4.6) and (4.7), a naive model is also fit to

each simulation which assumes the duration of the effect can be estiamted by one parameter

for all seven days after the exposure change, or βi = βj for all i ̸= j. This naive model can

be written as

λi(t)naive = λeβnZit+βnZit−1+βnZit−2+βnZit−3+βnZit−4+βnZit−5+βnZit−6 (4.9)

which can be written as

λi(t)naive = λeβnZit (4.10)

where

Zit =

 1 t ∈ (τi, τi + 7]

0 t ̸∈ (τi, τi + 7]
(4.11)

The results of estimating parameters assuming the full, two parameter, and naive model

are presented in Tables 4.13 and 4.14 for cohorts of sample size 50,000 assuming 10% and
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5% incidence rates respectively. The amount of bias for the first lag in the full model

are on par with earlier simulations results for the cohorts with 25,000. The 1:1 case-

crossover design over estimates the first lag by 2.4%, the second lag at 5.0% and then

underestimates the remaining five lags. The first lag is the only parameter estimate from

the full model with 95% percentile intervals not overlapping zero for either incidence rate.

This is further illustrated by plotting the full distribution of estimates by the lag which is

shown in 4.27. The distributions appear to be mostly symmetric. The distribution for the

first lag is almost entirely above zero, while the other distributions are centered around

the hypothesized value: which approaches zero with larger lags. A significant issue with

the full model is that there is insufficient power to detect differences for lagged parameter

of order higher than two.

The β coefficient in the two parameter model is over estimated by a range of 2.2 to 4%

for different M matched case-crossover designs and the θ coefficient is typically underes-

timated by approximately 8%. The distribution of the parameters estimated in the two

parameter model are displayed in Figure 4.28. The distribution for β is mostly symmetrical

around 0.8. The estimates for the cohort assuming a 10% incidence is more narrow than

the cohort with a 5% incidence rate. There is some indication that the distribution for the

5% estimates is bimodal. The column on the right shows the distribution of θ in Equation

(4.7). The distribution seems to be skewed to the left which may explain whhy the average

estimate of θ is biased towards underestimating the parameter. As M increases for the

case-crossover design, the distribution of θ appears to also become bimodal.

To select which of the three model specifications fit the data best, likelihood ratio

tests and AIC are used for assessment. The two parameter model is a special case of the

full model since Θl(β, θ) = βθ(l−1). Since the two parameter model is nested within the

full model a likelihood ratio test can be conducted where the difference in the degrees of

freedom is five. Table 4.16 shows the results of this test. For both 10% and 5% incidence

rates, the full model is rejected about 5% of the time; as expected the two-parameter model

is a sufficient model compared to full model. A second likelihood ratio test is calculated

for each simulation comparing the full and naive models. Equations and demonstrate how

the naive model is nested within the full model with a difference in six degrees of freedom.
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For the 10% incidence rate, the full model is preferred in at least 97% of the simulations,

and by 72% of simulations assuming a 5% incidence rate. A final likelihood ratio test is

conducted comparing the two parameter model to the naive model; the two parameter

model is the same as the naive model when θ = 1. This likelihood ratio tests prefers the

two parameter model in nearly all of the simulations assuming a 10% incidence and more

than 92% of the simulations assuming a 5% incidence.

An assessment of AIC for each model is also displayed in Table 4.16. AIC assesses

model fit of the model while penalizing the model for using more degrees of freedom. The

average AIC is smallest for the two parameter model for all case-crossover designs, and

the full model is smaller than the naive model for all case-crossover designs as well. In

fact, the two parameter model is selected as the best model in at least 92% of simulations

with a 10% incidence, and the full model comes in second being chosen as the best model

in about 7% of simulations. The naive model is not observed to be the best model in

any of the 1000 simulations assuming a 10% incidence rate. The two parameter model is

still preferred in about 90% of the 5% incidence rate simulations, and the full model is in

second but the naive model has captured best model in almost 3% of the simulations.

For this simulation a Cox proportional hazards model was fit only for the full model

assumption. The Cox proportional hazards model yielded non-overlapping 95% percentile

intervals for both the first and second lags, but each estimate tends to underestimate the

true value. The distribution of the seventh lagged covariate, also shown in Figure 4.28,

may also be bimodal.
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

  Case−Crossover (1:1) − Naive
  lag [1−7] 0.2705 (0.0698) 0.2685  97.10%    NA%     NA% 0.07

  Case−Crossover (1:3) − Naive
  lag [1−7] 0.2702 (0.0595) 0.2694  99.20%    NA%     NA% 0.06

  Case−Crossover (1:5) − Naive
  lag [1−7] 0.2701 (0.0581) 0.2693  99.40%    NA%     NA% 0.06

  Case−Crossover (1:10) − Naive
  lag [1−7] 0.2702 (0.0582) 0.2693  99.40%    NA%     NA% 0.06

  Case−Crossover (1:3) − full
  lag 1 0.8096 (0.1427) 0.8104 100.00% 94.20%   1.20% 0.14
  lag 2 0.4011 (0.1543) 0.4070  74.50% 95.20%   0.28% 0.15
  lag 3 0.2017 (0.1644) 0.1995  24.90% 94.70%   0.85% 0.16
  lag 4 0.0990 (0.1681) 0.1085   8.00% 95.60%  −1.02% 0.17
  lag 5 0.0495 (0.1733) 0.0601   6.00% 95.80%  −1.04% 0.17
  lag 6 0.0233 (0.1736) 0.0302   4.90% 95.40%  −6.61% 0.17
  lag 7 0.0083 (0.1738) 0.0097   5.10% 95.30% −33.54% 0.17

  Case−Crossover (1:5) − full
  lag 1 0.8083 (0.1373) 0.8054 100.00% 94.30%   1.04% 0.13
  lag 2 0.3992 (0.1507) 0.4010  75.70% 95.70%  −0.19% 0.15
  lag 3 0.2005 (0.1605) 0.2018  24.30% 94.90%   0.24% 0.16
  lag 4 0.0982 (0.1661) 0.1090   8.80% 95.60%  −1.80% 0.17
  lag 5 0.0481 (0.1702) 0.0567   5.80% 95.90%  −3.74% 0.17
  lag 6 0.0238 (0.1699) 0.0300   5.10% 96.00%  −4.86% 0.17
  lag 7 0.0092 (0.1711) 0.0084   5.90% 94.80% −26.76% 0.17

  Case−Crossover (1:10) − full
  lag 1 0.8086 (0.1370) 0.8058 100.00% 94.60%   1.08% 0.13
  lag 2 0.3992 (0.1508) 0.3998  75.50% 95.30%  −0.19% 0.15
  lag 3 0.2006 (0.1604) 0.2045  24.40% 94.90%   0.29% 0.16
  lag 4 0.0983 (0.1662) 0.1064   8.90% 95.60%  −1.73% 0.17
  lag 5 0.0481 (0.1702) 0.0568   6.00% 95.70%  −3.77% 0.17
  lag 6 0.0243 (0.1701) 0.0281   5.00% 96.10%  −2.78% 0.17
  lag 7 0.0091 (0.1709) 0.0084   5.90% 95.10% −27.50% 0.17

  Cox Hazards (Time Dep. Covar) − full
  lag 1 0.7984 (0.0792) 0.8003 100.00% 94.90%  −0.20% 0.08
  lag 2 0.3977 (0.0959) 0.4011  97.40% 95.10%  −0.56% 0.10
  lag 3 0.1998 (0.1066) 0.2013  47.90% 95.00%  −0.10% 0.11
  lag 4 0.0946 (0.1171) 0.0990  15.70% 94.80%  −5.38% 0.11
  lag 5 0.0456 (0.1221) 0.0460   9.10% 95.20%  −8.89% 0.12
  lag 6 0.0180 (0.1262) 0.0259   7.00% 94.70% −27.87% 0.12
  lag 7 0.0090 (0.1259) 0.0166   6.00% 94.80% −27.78% 0.12

  Case−Crossover (1:1) − 2 parameter
  beta 0.8206 (0.1670) 0.8183 100.00% 92.00%   2.58% 0.15
  theta 0.4812 (0.1703) 0.5011  84.00% 88.40%  −3.77% 0.14

  Case−Crossover (1:3) − 2 parameter
  beta 0.8131 (0.1389) 0.8085 100.00% 91.50%   1.64% 0.12
  theta 0.4883 (0.1419) 0.5024  89.70% 89.80%  −2.34% 0.12

  Case−Crossover (1:5) − 2 parameter
  beta 0.8111 (0.1340) 0.8060 100.00% 91.50%   1.38% 0.12
  theta 0.4887 (0.1408) 0.4987  91.60% 89.60%  −2.27% 0.12

  Case−Crossover (1:10) − 2 parameter
  beta 0.8113 (0.1337) 0.8059 100.00% 91.50%   1.41% 0.12
  theta 0.4894 (0.1374) 0.5005  91.70% 89.80%  −2.11% 0.12

Table 4.13: Results from simulation of a cohort with an incidence of approximately 10%
( λ = .0025) incidence and assuming a deteriorating effect over seven periods starting at
β = .8 and geometrical decreasing at a rate of θ = .5 (* Monte Carlo standard deviation
of estimates ** Average of the information based standard error)
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Mean (SD*) Median Power
Coverage

Probability Bias
Avg Std
Error**

  Case−Crossover (1:1) − Naive
  lag [1−7]  0.2628 (0.0951) 0.2626  78.30%    NA%      NA% 0.10

  Case−Crossover (1:3) − Naive
  lag [1−7]  0.2613 (0.0809) 0.2610  88.50%    NA%      NA% 0.08

  Case−Crossover (1:5) − Naive
  lag [1−7]  0.2610 (0.0796) 0.2626  89.50%    NA%      NA% 0.08

  Case−Crossover (1:10) − Naive
  lag [1−7]  0.2610 (0.0795) 0.2627  89.10%    NA%      NA% 0.08

  Case−Crossover (1:3) − full
  lag 1  0.8013 (0.1961) 0.8024  98.30% 95.20%    0.16% 0.19
  lag 2  0.3819 (0.2131) 0.3813  44.10% 95.60%   −4.52% 0.21
  lag 3  0.1830 (0.2281) 0.1922  13.70% 96.00%   −8.50% 0.23
  lag 4  0.0952 (0.2418) 0.1094   7.60% 94.70%   −4.81% 0.24
  lag 5  0.0425 (0.2373) 0.0447   4.90% 95.90%  −15.03% 0.24
  lag 6  0.0046 (0.2435) 0.0121   5.40% 94.80%  −81.59% 0.24
  lag 7 −0.0025 (0.2555) 0.0000   5.20% 94.70% −119.71% 0.24

  Case−Crossover (1:5) − full
  lag 1  0.7999 (0.1919) 0.8012  98.20% 94.70%   −0.01% 0.19
  lag 2  0.3813 (0.2084) 0.3836  45.90% 95.20%   −4.68% 0.21
  lag 3  0.1821 (0.2245) 0.1930  14.60% 95.80%   −8.94% 0.22
  lag 4  0.0946 (0.2362) 0.1069   7.40% 94.60%   −5.44% 0.23
  lag 5  0.0409 (0.2326) 0.0522   4.40% 96.30%  −18.21% 0.24
  lag 6  0.0019 (0.2383) 0.0081   5.00% 95.00%  −92.50% 0.24
  lag 7 −0.0050 (0.2496) 0.0028   5.50% 94.20% −139.97% 0.24

  Case−Crossover (1:10) − full
  lag 1  0.7994 (0.1908) 0.8020  98.40% 94.80%   −0.07% 0.19
  lag 2  0.3819 (0.2080) 0.3840  45.30% 95.30%   −4.53% 0.21
  lag 3  0.1822 (0.2242) 0.1908  14.70% 95.90%   −8.90% 0.22
  lag 4  0.0946 (0.2353) 0.1041   7.60% 95.10%   −5.36% 0.23
  lag 5  0.0406 (0.2327) 0.0519   4.60% 96.50%  −18.71% 0.24
  lag 6  0.0012 (0.2376) 0.0044   4.90% 95.20%  −95.36% 0.24
  lag 7 −0.0051 (0.2490) 0.0023   5.70% 94.50% −140.51% 0.24

  Cox Hazards (Time Dep. Covar) − full
  lag 1  0.7960 (0.1079) 0.7962 100.00% 95.30%   −0.50% 0.11
  lag 2  0.3875 (0.1340) 0.3935  79.60% 95.00%   −3.12% 0.13
  lag 3  0.1859 (0.1465) 0.1909  26.50% 95.70%   −7.04% 0.15
  lag 4  0.0881 (0.1591) 0.0991   9.40% 96.30%  −11.90% 0.16
  lag 5  0.0373 (0.1600) 0.0450   5.60% 96.10%  −25.44% 0.17
  lag 6  0.0015 (0.1744) 0.0108   5.00% 95.30%  −93.89% 0.17
  lag 7 −0.0080 (0.1794) 0.0023   4.30% 96.00% −163.79% 0.18

  Case−Crossover (1:1) − 2 parameter
  beta  0.8268 (0.2389) 0.8252  99.40% 91.10%    3.35% 0.21
  theta  0.4560 (0.2346) 0.4830  64.60% 87.80%   −8.80% 0.19

  Case−Crossover (1:3) − 2 parameter
  beta  0.8066 (0.1918) 0.8080  99.90% 91.20%    0.83% 0.17
  theta  0.4666 (0.2074) 0.4831  72.00% 86.70%   −6.67% 0.17

  Case−Crossover (1:5) − 2 parameter
  beta  0.8054 (0.1872) 0.8066  99.90% 91.00%    0.67% 0.16
  theta  0.4660 (0.2062) 0.4809  72.90% 86.10%   −6.80% 0.17

  Case−Crossover (1:10) − 2 parameter
  beta  0.8052 (0.1861) 0.8089  99.90% 91.00%    0.65% 0.16
  theta  0.4660 (0.2057) 0.4820  72.80% 86.50%   −6.80% 0.17

Table 4.14: Results from simulation of a cohort with an incidence of approximately 5% (
λ = .00125) incidence and assuming a deteriorating effect over seven periods starting at
β = .8 and geometrical decreasing at a rate of θ = .5 (* Monte Carlo standard deviation
of estimates ** Average of the information based standard error)
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Figure 4.27: Distribution of estimate from full model displayed parameter, design, cohort
size and incidence rate when assuming a distributed lag effect with constrained parameters
β = 0.8, θ = 0.5 indicated by the vertical dark red lines.
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Full vs 2−parm Full vs Naive 2−parm vs Naive Full 2−parm Naive Full 2−parm Naive
Likelihood Ratio Test (% Reject Null) Average AIC Preferred Model via AIC

  10%
  Case−Crossover (1:3) 5.20% 97.30% 99.90% 6974 6969 6992 7.50% 92.50% 0.00% 
  Case−Crossover (1:5) 4.80% 97.70% 99.90% 7545 7540 7563 7.00% 93.00% 0.00% 
  Case−Crossover (1:10) 4.70% 97.90% 99.90% 7604 7599 7622 7.30% 92.70% 0.00% 

   5%
  Case−Crossover (1:3) 4.80% 72.40% 92.20% 3633 3628 3639 7.40% 89.80% 2.80% 
  Case−Crossover (1:5) 4.40% 73.10% 92.30% 3935 3930 3941 6.80% 90.60% 2.60% 
  Case−Crossover (1:10) 4.50% 73.40% 92.40% 3966 3961 3973 6.80% 90.90% 2.30% 

Table 4.15: Results of likelihood ratio tests and assessment of AIC from simulations of
cohorts with incidence rates of approximately 10% ( λ = .0025) and 5% ( λ = .00125)

Mean (SD) Median
Coverage

Probability Bias

  Case−Crossover (1:5) − 2 parameter
  beta 0.8111 (0.1341) 0.8062 91.40%  1.39% 
  theta 0.4900 (0.1348) 0.4989 90.00% −2.00% 

Table 4.16: Results applying the profile likelihood approach from simulations of a cohort
with an incidence of approximately 10% ( λ = .0025) incidence and assuming a deterio-
rating effect over seven periods starting at β = .8 and geometrical decreasing at a rate
of θ = .5 (* Monte Carlo standard deviation of estimates ** Average of the information
based standard error)
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Chapter 5

Analysis of the VNSNY Medication and Fall Data

This chapter presents an analysis of the VNSNY Medication and Fall data. This thesis

focuses on an exposure which indicates an increase in the number of medications classified

as either an antidepressant or pyschostimulant. The first section provides an overview

of the VNSNY Medication and Fall data and the home health care setting. Section 5.2

conducts an empirical exploration of the patient characteristics present at baseline that

predict the risk of falling during home health care. The factors identified from this section

are treated as confounders in the cohort designs in the following sections.

The remainder of the chapter explores the transient effect of falling resulting from an

increase in antidepressants or pyschostimulants by applying the case-crossover and cohort

designs. The initial approach to this data analysis is based on previous studies which

explored how changes in medications may trigger a fall by deploying the case-crossover

designs [71, 87, 88]. These studies reported several associations for various medication

classifications, but limited their analysis by assuming the effect lasted no more than four

days. This chapter initially follows the methodology of these studies, but then extends

the duration for up to 28 days, and concludes with an exploration of possible non-linear

deteriorating effect.

5.1 Setting

From 2010 to 2011 there were 192,438 admissions into Visiting Nurse Service of New York’s

(VNSNY) certified home health care program (CHHA). Of these admissions, 4.0% (7840),

displayed in Figure 5.1, were documented in the electronic health record to have fallen at

least once while receiving home health care services. The date of the first fall is recorded

in agency systems and is the primary outcome in this study.
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Two Kaplan Meier survival curves are plotted in Figure 5.2: the time to first fall and

time to discharge. From this plot, it can be seen that a majority of patients are discharged

by 60 days from admission. In addition, there are two noticeable points in the time to

discharge curve, these occur at 60 and 120 days. These shifts can be explained by the

Medicare and Medicaid reimbursement rules for home health care services. When a pa-

tient is admitted into home health care, the Center for Medicare and Medicaid Services

requires a registered nurse or physical therapist complete a clinical assessment, known as

the Outcomes and Assessment Information Set (OASIS), and have physician orders justi-

fying that home health care services are necessary for the patient [16]. These requirements

certify a 60 day home health care episode [26]. When the 60 days near completion, the

nurse or therapist must again recertify that the patient requires another 60 days of home

health care services. As a result, many patients are discharged from home health care in

the final days of each sixty day interval.

Figure 5.3 overlays parametric fits to the time to first event on top of the Kaplan Meier

curve. From this plot, the exponential distribution appears to not fit the survival curve

over the entire period. However, nearly 90% of patients are discharged from home health

care by 60 days, and during this period the exponential distribution does appear to fit

the Kaplan Meier curve. The case-crossover design is appropriate since the assumption of

constant or small hazard is valid.

The OASIS assessment comprises of much of the information that is known about the

patient. The OASIS requires the clinician to asses the patient status in several domains

such as: demographics, patient history, home health care diagnosis, living arrangements,

sensory, integumentary, respiratory, cardiac status, elimination, neuro/emotional/behavior,

activities of daily living, instrumental activities of daily living, medications, and care man-

agement. Many of these factors could confound a relationship between a medication change

and fall. The results from the OASIS are stored in the agencies electronic health records

and are stored in an Oracle data warehouse.

The nurse or therapist must also review the medication regimen at start of care and

document into the plan of care. The plan of care requires approval from a medical doctor in

order for the home health care episode to be valid. Any time the home health care clinician
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observes a change in the medication regimen after admission, he or she must document the

updates into the electronic health record. The home health care patient’s time-dependent,

medication regimen is also stored in a data warehouse and is the source for defining the

exposure of interest in this dissertation.

The last component of the electronic health record utilized in this study is the identifi-

cation of falls. The nurse or therapist provide home visits throughout the episode of care.

In any visit, if the patient, care giver, or home health aide inform the nurse or therapist

that the patient has fallen since the last visit, the clinician documents the date of fall into

the patient electronic health record.

The VNSNY CHHA population is located in the New York City greater metropolitan

area. This includes the five boroughs of New York City (i.e Bronx, Brooklyn, Manhattan,

Staten Island, Queens) and Westchester and Nassau counties. The population has a diverse

racial, linguistic, and minority profile. These demographics and other characteristics about

the sample can be observed in Table 5.1. Since this population is home bound and receiving

post acute services, a majority of the population is older than 65. In addition to patient

demographics, Table 5.1 includes factors that are known to increase the risk of falling for

the patient such as risk of falls, frailty, ability to ambulate, transfer, and use the toilet, etc.

Nearly all factors in Table 5.1 are derived from the OASIS , and no time-varying measures

are included in this table. The diagnosis classifications used in this analysis are based on

the chronic conditions in home care work by Murtaugh, Peng and colleagues [68]. Table 5.2

contains descriptive statistics of the medication regimen present at admission into home

health care. These measures are derived from First Databank’s therapeutic classifications.

Tables 5.1 and 5.2 often serve as a first step in a cohort design to describe the char-

acteristics associated with patients who experienced the event; results from this table are

consistent with the research, outlined in Section 2.3, identifying patient characteristics as-

sociated with falling. For example, of those patients who fell while receiving home health

care services, 32.9% were taking medications classified as psychostimulants/antidepressants

at admission compared to 19.0% of those who did not fall. Section 5.2 seeks to identify

which of these baseline factors are associated with a fall.
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No Fall Fall

  Age Group
  18 to 54  16.69% ( 30807)  10.34% ( 811)
  55 to 64  16.16% ( 29835)  12.07% ( 946)
  65 to 74  20.32% ( 37519)  18.32% (1436)
  75 to 84  25.92% ( 47842)  30.24% (2371)
  85 +  20.90% ( 38587)  29.03% (2276)
  missing   0.00% (     8)   0.00% (   0)

  Demographics
  Female  61.49% (113511)  61.68% (4836)

  Borough
  Bronx  15.42% ( 28471)  15.22% (1193)
  Brooklyn  20.02% ( 36960)  13.48% (1057)
  Manhattan  25.25% ( 46612)  28.78% (2256)
  Nassau   6.96% ( 12840)  10.27% ( 805)
  Queens  23.07% ( 42581)  21.91% (1718)
  Staten Is   5.21% (  9613)   4.62% ( 362)
  Westchester   4.07% (  7521)   5.73% ( 449)

  Race
  American Indian or Alaska Native   0.34% (   634)   0.28% (  22)
  Asian   5.72% ( 10565)   4.35% ( 341)
  Black  24.49% ( 45206)  18.69% (1465)
  Hispanic  22.58% ( 41691)  17.92% (1405)
  Pacific Islander   0.55% (  1012)   0.41% (  32)
  White  46.64% ( 86090)  58.64% (4597)
  Unkown   0.00% (     5)   0.00% (   0)

  Language Spoken
  English  66.13% (122068)  76.05% (5962)
  Spanish  16.19% ( 29878)  13.42% (1052)
  Other  17.69% ( 32652)  10.54% ( 826)

  Prior Conditions
  Urinary Incontinence  14.13% ( 26087)  22.51% (1765)
  Idwelling/Suprapubic Catheter   1.19% (  2188)   1.35% ( 106)
  Intractable Pain   8.27% ( 15272)   7.54% ( 591)
  Impaired Decision Making   7.69% ( 14193)  10.42% ( 817)
  Disruptive Behavior   0.84% (  1557)   1.15% (  90)
  Memory Loss   5.34% (  9860)   7.65% ( 600)

  Home Therapies
  Enteral Nutrition   1.36% (  2510)   0.91% (  71)
  Parenteral Nutrition   0.12% (   214)   0.06% (   5)
  Intravenous   1.32% (  2428)   1.05% (  82)

  Risk for Hospitalization
  Decline in Mental, Emotional, Behavioral  11.52% ( 21267)  18.53% (1453)
  Multi Hospitalization  27.98% ( 51643)  34.85% (2732)
  History of Falls  13.65% ( 25197)  33.70% (2642)
  Five or More Medications  64.06% (118249)  72.61% (5693)
  Frailty Indicators  23.28% ( 42983)  31.94% (2504)

  Overall Status
  0−Stable  22.62% ( 41756)  17.36% (1361)
  1−Likely to Stable  58.42% (107836)  57.77% (4529)
  2−Fragile  17.01% ( 31402)  22.46% (1761)
  3−Serious   1.30% (  2399)   1.53% ( 120)
  Unknown   0.65% (  1205)   0.88% (  69)

  Risk Factors
  Smoking   6.27% ( 11573)   6.89% ( 540)
  Obesity  12.86% ( 23738)  12.67% ( 993)
  Alcohol   1.39% (  2563)   1.67% ( 131)
  Drug   0.96% (  1770)   1.19% (  93)

  Lives With
  Alone  24.97% ( 46102)  29.30% (2297)
  Family  31.40% ( 57962)  30.13% (2362)
  Other   3.38% (  6233)   3.95% ( 310)
  Significant Other   0.77% (  1419)   0.61% (  48)
  Spouse  17.26% ( 31857)  18.24% (1430)
  Unknown  22.22% ( 41025)  17.77% (1393)

Table 5.1: Descriptives of Baseline Patient Characteristics
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No Fall Fall

  Availabiity of Assistance
  1−Around Clock  65.50% (120909)  65.60% (5143)
  2−Regular Day   9.80% ( 18092)   9.41% ( 738)
  3−Regular Night   9.18% ( 16952)   9.23% ( 724)
  4−Occassional  13.11% ( 24209)  13.57% (1064)
  5−None Available   2.40% (  4436)   2.18% ( 171)

  Vision Impairment (0−2)
  0−Normal  81.46% (150365)  77.26% (6057)
  1−Partially  17.13% ( 31618)  21.22% (1664)
  2−Severely   1.42% (  2615)   1.52% ( 119)

  Hearing Impairment (0−4)
  0−Adequate  81.73% (150880)  74.83% (5867)
  1−Mild  17.03% ( 31437)  24.09% (1889)
  2−Severely   0.91% (  1674)   1.03% (  81)
  Unable   0.33% (   607)   0.04% (   3)

  Understand Verbal Content (0−3)
  0−Understands  78.71% (145295)  72.97% (5721)
  1−Usually  17.06% ( 31501)  22.92% (1797)
  2−Sometimes   3.17% (  5853)   3.64% ( 285)
  3−Rarely   0.40% (   733)   0.28% (  22)
  Unknown   0.66% (  1216)   0.19% (  15)

  Speech Impairment (0−5)
  0−No Impairment  73.61% (135889)  66.49% (5213)
  1−Minimal  18.64% ( 34414)  24.59% (1928)
  2−Moderdate   4.42% (  8151)   6.30% ( 494)
  3−Severe   1.78% (  3285)   1.81% ( 142)
  4−Unable   0.96% (  1772)   0.59% (  46)
  5−Nonresponsive   0.59% (  1087)   0.22% (  17)

  Frequency of Pain (0−4)
  0−None  36.53% ( 67440)  36.56% (2866)
  1−No Interference Activity  11.12% ( 20532)  10.32% ( 809)
  2−Less than Daily  10.77% ( 19889)  11.01% ( 863)
  3−Daily Not Constant  37.82% ( 69813)  37.32% (2926)
  4−All the Time   3.75% (  6924)   4.80% ( 376)

  Stage of Most Problematic Pressure Ulcer (1−4)
  0−None  94.18% (173851)  91.56% (7178)
  1−Stage I   1.21% (  2228)   2.10% ( 165)
  2−Stage II   2.68% (  4942)   3.66% ( 287)
  3−Stage III   0.90% (  1659)   1.08% (  85)
  4−Stage IV   0.45% (   822)   0.56% (  44)
  Unstageable   0.59% (  1096)   1.03% (  81)

  Status of Most Problematic Stasis Ulcer (0−3)
  0−Newly Epithelialized   0.04% (    76)   0.03% (   2)
  1−Fully Granulating   0.10% (   182)   0.14% (  11)
  2−Early/Partial Granulation   0.37% (   679)   0.59% (  46)
  3−Not Healing   1.28% (  2368)   1.91% ( 150)
  None  98.04% (180974)  97.16% (7617)
  Not Observ   0.17% (   319)   0.18% (  14)

  Status of Most Problematic Surgical Wound (0−3)
  0−Newly Epithelialized   5.30% (  9792)   3.52% ( 276)
  1−Fully Granulating   3.82% (  7054)   2.03% ( 159)
  2−Early/Partial Granulation   6.94% ( 12802)   3.16% ( 248)
  3−Not Healing  10.68% ( 19711)   5.68% ( 445)
  None  70.05% (129319)  83.86% (6575)
  Not Observ   3.21% (  5920)   1.75% ( 137)

  Dyspnea (0−4)
  0−Never  56.52% (104341)  51.30% (4022)
  1−Walk 20ft/Stairs  24.90% ( 45960)  26.19% (2053)
  2−Moderate Exertion  13.78% ( 25431)  16.56% (1298)
  3−Minimal Exertion   3.74% (  6899)   4.78% ( 375)
  4−At Rest   1.07% (  1967)   1.17% (  92)

  Respiratory Treatments
  Oxygen   5.79% ( 10681)   6.28% ( 492)
  Ventilator   0.09% (   174)   0.06% (   5)
  Airway Pressure   0.57% (  1049)   0.50% (  39)

Table 5.1 (contd.): Descriptives of Baseline Patient Characteristics



114

No Fall Fall

  Urinary Tract Infection
  Infection   5.61% ( 10351)   7.56% ( 593)
  None  93.72% (173003)  91.65% (7185)
  Prophylatctic Trt   0.22% (   400)   0.27% (  21)
  Unknown   0.46% (   844)   0.52% (  41)

  When Urinary Incontinence Occurs
  0−Time−Voiding   8.44% ( 15581)  12.55% ( 984)
  1−Occasional Stress   3.74% (  6898)   5.60% ( 439)
  2−Night Only   1.44% (  2662)   2.27% ( 178)
  3−Day Only   0.28% (   526)   0.38% (  30)
  4−Day and Night  14.80% ( 27323)  22.47% (1762)
  No Incontinence  68.36% (126196)  53.53% (4197)
  Urinary Catheter   2.93% (  5412)   3.19% ( 250)

  Bowel Incontinence Frequency
  0−Never/Rarely  86.35% (159400)  81.86% (6418)
  1−Less than 1/week   2.40% (  4432)   4.53% ( 355)
  2−1to3/week   2.93% (  5400)   5.13% ( 402)
  3−4to6/week   1.56% (  2877)   2.18% ( 171)
  4−Daily   3.83% (  7069)   4.23% ( 332)
  5−More than 1 Daily   0.97% (  1782)   0.96% (  75)
  Bowel Ostomy   1.95% (  3593)   1.08% (  85)
  Unknown   0.02% (    45)   0.03% (   2)

  Cognitive Functioning (0−4)  
  0−Alert  70.10% (129410)  59.55% (4669)
  1−Prompting  20.84% ( 38465)  29.52% (2314)
  2−Some Asst   6.08% ( 11228)   8.53% ( 669)
  3−Consderable Asst   2.16% (  3995)   2.14% ( 168)
  4−Dependent   0.81% (  1500)   0.26% (  20)

  Confusion (0−4)
  0−Never  58.75% (108458)  47.73% (3742)
  1−New Situation  32.92% ( 60762)  41.35% (3242)
  2−On Awakening   0.74% (  1363)   1.34% ( 105)
  3−Day and Evening   5.18% (  9565)   7.60% ( 596)
  4−Constantly   2.08% (  3848)   1.90% ( 149)
  Nonresponsive   0.33% (   602)   0.08% (   6)

  Anxious (0−3)
  0−None  67.81% (125173)  61.56% (4826)
  1−Less than Daily  18.57% ( 34288)  20.69% (1622)
  2−Daily, not Constant  11.99% ( 22137)  15.64% (1226)
  3−All of the Time   1.13% (  2080)   1.91% ( 150)
  Nonresponsive   0.50% (   920)   0.20% (  16)

  Cognitive, Behavioral, Psychiatric Symptoms
  Memory Deficity   6.45% ( 11911)   9.76% ( 765)
  Impaired Decision Making   9.50% ( 17542)  12.65% ( 992)
  Verbal Disruption   0.69% (  1273)   1.17% (  92)
  Physical Aggression   0.32% (   594)   0.42% (  33)
  Disruptive   0.47% (   867)   0.59% (  46)
  Delusional   0.55% (  1016)   0.61% (  48)

  Frequency of Disruptive Behavior
  0−Never  95.70% (176668)  93.57% (7336)
  1−Less than 1/month   1.33% (  2447)   1.68% ( 132)
  2−1/month   0.16% (   298)   0.37% (  29)
  3−Several/month   0.55% (  1020)   0.70% (  55)
  4−Several/week   0.85% (  1561)   1.35% ( 106)
  5−Daily   1.41% (  2604)   2.32% ( 182)

  Grooming (0−3)
  0−Able  34.20% ( 63134)  21.91% (1718)
  1−Utensil Asst  34.93% ( 64489)  36.57% (2867)
  2−Assistance  23.39% ( 43169)  33.71% (2643)
  3−Dependent   7.48% ( 13806)   7.81% ( 612)

  Dress Upper Body (0−3)
  0−Able  24.66% ( 45531)  12.79% (1003)
  1−Clothing Laid Out  33.42% ( 61691)  31.25% (2450)
  2−Assistance  33.27% ( 61419)  46.34% (3633)
  3−Dependent   8.64% ( 15957)   9.62% ( 754)
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  Dress Lower Body (0−3)
  0−Able  18.87% ( 34831)   8.53% ( 669)
  1−Clothing Laid Out  18.62% ( 34365)  15.37% (1205)
  2−Assistance  48.35% ( 89261)  57.33% (4495)
  3−Dependent  14.16% ( 26141)  18.76% (1471)

  Bathing (0−6)
  0−Able   9.39% ( 17341)   2.36% ( 185)
  1−Use of Device  10.79% ( 19912)   6.16% ( 483)
  2−Intermittent Asst  26.13% ( 48227)  22.96% (1800)
  3−Requires Presence  30.99% ( 57202)  44.29% (3472)
  4−Bedside/Sink   5.89% ( 10878)   4.85% ( 380)
  5−Bedside/Sink with Asst   9.84% ( 18169)  12.40% ( 972)
  6−Dependent   6.97% ( 12869)   6.99% ( 548)

  Toilet Transferring (0−4)
  0−Able  53.29% ( 98376)  38.98% (3056)
  1−Assistance  34.36% ( 63434)  45.62% (3577)
  2−Bedside   4.72% (  8715)   7.77% ( 609)
  3−Bedpan   1.02% (  1882)   1.80% ( 141)
  4−Dependent   6.60% ( 12191)   5.83% ( 457)

  Toilet Hygiene (0−3)
  0−Able  44.68% ( 82470)  31.96% (2506)
  1−Supplies  29.55% ( 54549)  31.93% (2503)
  2−Assistance  18.02% ( 33260)  28.32% (2220)
  3−Dependent   7.76% ( 14319)   7.79% ( 611)

  Transferring (0−5)
  0−Able  23.26% ( 42940)  10.48% ( 822)
  1−Minimum Asst  62.32% (115034)  69.53% (5451)
  2−Bear Weight No Pivot   8.38% ( 15464)  14.46% (1134)
  3−No Pivot with Asst   3.29% (  6075)   4.23% ( 332)
  4−Bedfast, Turn   0.79% (  1463)   0.66% (  52)
  5−Bedfast   1.96% (  3622)   0.62% (  49)

  Ambulation (0−6)
  0−Able  14.14% ( 26094)   3.35% ( 263)
  1−One Hand Device  23.98% ( 44267)  17.55% (1376)
  2−Two Hand Device  36.73% ( 67806)  43.32% (3396)
  3−Assistance  17.10% ( 31560)  27.87% (2185)
  4−Chairfast, Wheel   2.24% (  4133)   2.88% ( 226)
  5−Chairfast, no Wheel   4.45% (  8210)   4.48% ( 351)
  6−Bedfast   1.37% (  2528)   0.55% (  43)

  Feeding (0−5)
  0−Able  43.75% ( 80769)  34.31% (2690)
  1−Some Asst  49.49% ( 91355)  59.07% (4631)
  2−Assistance   5.39% (  9944)   5.82% ( 456)
  3−Orally and Nasog Tube/Gastr   0.42% (   778)   0.31% (  24)
  4−Nasog Tube/Gastrostomy   0.79% (  1464)   0.42% (  33)
  5−Unable   0.16% (   288)   0.08% (   6)

  Ability to Plan and Prepare Light Meals
  0−Able  16.01% ( 29558)   9.01% ( 706)
  1−Not Regular Basis  40.95% ( 75587)  37.13% (2911)
  2−Unable  43.04% ( 79453)  53.86% (4223)

  Ability to Use Telephone
  0−Fully Capable  77.08% (142296)  69.86% (5477)
  1−Special Phone   6.45% ( 11915)   8.15% ( 639)
  2−Placing Calls Diff   5.22% (  9635)   7.87% ( 617)
  3−Limited   4.32% (  7982)   6.96% ( 546)
  4−Listen with Asst   2.69% (  4973)   3.37% ( 264)
  5−Unable   3.75% (  6918)   3.42% ( 268)
  No Phone   0.48% (   879)   0.37% (  29)

  Oral Medications (0−3)
  0−Able  50.33% ( 92911)  36.39% (2853)
  1−Preparation  27.76% ( 51239)  34.55% (2709)
  2−Reminders  10.07% ( 18597)  14.53% (1139)
  3−Unable  10.85% ( 20028)  13.75% (1078)
  No Meds   0.99% (  1823)   0.78% (  61)
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  Injectable Medications (0−3)
  0−Able   9.78% ( 18046)   8.33% ( 653)
  1−Preparation   3.16% (  5841)   3.34% ( 262)
  2−Reminders   1.31% (  2411)   1.67% ( 131)
  3−Unable   7.37% ( 13605)   8.06% ( 632)
  No Meds  78.38% (144695)  78.60% (6162)

  ADL Assistance
  0−No Assistance Needed  20.76% ( 38328)   9.35% ( 733)
  1−Caregiver Currently Providing  59.61% (110044)  63.35% (4967)
  2−Caregiver Needs Training   6.17% ( 11395)   9.13% ( 716)
  3−Caregiver Unlikely   4.05% (  7467)   5.19% ( 407)
  4−Unclear   2.93% (  5417)   3.97% ( 311)
  5−No Caregiver   6.47% ( 11947)   9.01% ( 706)

  IADL Assistance
  0−No Assistance Needed   7.93% ( 14631)   3.04% ( 238)
  1−Caregiver Currently Providing  74.92% (138302)  75.13% (5890)
  2−Caregiver Needs Training   4.84% (  8932)   6.56% ( 514)
  3−Caregiver Unlikely   2.90% (  5346)   3.24% ( 254)
  4−Unclear   2.83% (  5217)   3.43% ( 269)
  5−No Caregiver   6.59% ( 12170)   8.61% ( 675)

  Medication Administration
  0−No Assistance Needed  45.66% ( 84288)  33.55% (2630)
  1−Caregiver Currently Providing  45.71% ( 84380)  55.66% (4364)
  2−Caregiver Needs Training   3.50% (  6463)   4.59% ( 360)
  3−Caregiver Unlikely   1.58% (  2912)   1.63% ( 128)
  4−Unclear   1.28% (  2366)   1.81% ( 142)
  5−No Caregiver   2.27% (  4189)   2.76% ( 216)

  Medical Procedure Treatments
  0−No Assistance Needed  69.37% (128055)  71.88% (5635)
  1−Caregiver Currently Providing  15.25% ( 28157)  13.12% (1029)
  2−Caregiver Needs Training   5.83% ( 10767)   5.23% ( 410)
  3−Caregiver Unlikely   3.62% (  6675)   3.71% ( 291)
  4−Unclear   2.68% (  4948)   2.49% ( 195)
  5−No Caregiver   3.25% (  5996)   3.57% ( 280)

  Management of Equipment
  0−No Assistance Needed  89.29% (164833)  88.33% (6925)
  1−Caregiver Currently Providing   8.26% ( 15256)   8.75% ( 686)
  2−Caregiver Needs Training   1.24% (  2290)   1.48% ( 116)
  3−Caregiver Unlikely   0.39% (   729)   0.37% (  29)
  4−Unclear   0.36% (   664)   0.54% (  42)
  5−No Caregiver   0.45% (   826)   0.54% (  42)

  Supervision and Safety
  0−No Assistance Needed  59.21% (109297)  47.60% (3732)
  1−Caregiver Currently Providing  34.78% ( 64201)  43.47% (3408)
  2−Caregiver Needs Training   2.73% (  5041)   4.15% ( 325)
  3−Caregiver Unlikely   0.72% (  1330)   0.97% (  76)
  4−Unclear   0.99% (  1835)   1.45% ( 114)
  5−No Caregiver   1.57% (  2894)   2.36% ( 185)

  Advocacy or Facilitation
  0−No Assistance Needed  27.07% ( 49966)  20.88% (1637)
  1−Caregiver Currently Providing  65.62% (121130)  69.89% (5479)
  2−Caregiver Needs Training   2.44% (  4502)   3.10% ( 243)
  3−Caregiver Unlikely   0.87% (  1613)   0.94% (  74)
  4−Unclear   1.65% (  3055)   2.32% ( 182)
  5−No Caregiver   2.35% (  4332)   2.87% ( 225)

  Skin Ulcer
  0−None/Asymptomatic  91.30% (168535)  87.98% (6898)
  1−Well Controlled   0.11% (   206)   0.18% (  14)
  2−Controlled with Difficulty   5.58% ( 10304)   7.67% ( 601)
  3−Poorly Controlled   3.01% (  5553)   4.17% ( 327)

  Hypertension
  0−None/Asymptomatic  33.23% ( 61350)  31.58% (2476)
  1−Well Controlled  10.30% ( 19017)  11.07% ( 868)
  2−Controlled with Difficulty  46.73% ( 86267)  46.76% (3666)
  3−Poorly Controlled   9.73% ( 17964)  10.59% ( 830)
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  Diabetes
  0−None/Asymptomatic  65.80% (121461)  64.38% (5047)
  1−Well Controlled   3.61% (  6669)   3.80% ( 298)
  2−Controlled with Difficulty  23.90% ( 44125)  24.87% (1950)
  3−Poorly Controlled   6.69% ( 12343)   6.95% ( 545)

  Arthritis and Musculoskeletal Diseases
  0−None/Asymptomatic  80.91% (149351)  83.10% (6515)
  1−Well Controlled   1.64% (  3023)   2.14% ( 168)
  2−Controlled with Difficulty  15.46% ( 28530)  11.98% ( 939)
  3−Poorly Controlled   2.00% (  3694)   2.78% ( 218)

  Heart Failure
  0−None/Asymptomatic  85.78% (158353)  83.66% (6559)
  1−Well Controlled   0.83% (  1536)   1.06% (  83)
  2−Controlled with Difficulty   9.11% ( 16825)  10.40% ( 815)
  3−Poorly Controlled   4.27% (  7884)   4.89% ( 383)

  Chronic Pulmonary Disease
  0−None/Asymptomatic  84.26% (155535)  83.23% (6525)
  1−Well Controlled   1.75% (  3239)   1.72% ( 135)
  2−Controlled with Difficulty  10.80% ( 19945)  11.86% ( 930)
  3−Poorly Controlled   3.18% (  5879)   3.19% ( 250)

  Acute Myocardial Infarction; CIHD
  0−None/Asymptomatic  81.86% (151121)  80.45% (6307)
  1−Well Controlled   2.04% (  3772)   2.50% ( 196)
  2−Controlled with Difficulty  12.91% ( 23838)  13.43% (1053)
  3−Poorly Controlled   3.18% (  5867)   3.62% ( 284)

  Cardiac Dysrhythmia
  0−None/Asymptomatic  88.49% (163354)  86.58% (6788)
  1−Well Controlled   1.60% (  2957)   1.68% ( 132)
  2−Controlled with Difficulty   7.91% ( 14596)   9.30% ( 729)
  3−Poorly Controlled   2.00% (  3691)   2.44% ( 191)

  Stroke or Late Effects of CVA
  0−None/Asymptomatic  91.49% (168880)  87.97% (6897)
  1−Well Controlled   0.48% (   877)   0.54% (  42)
  2−Controlled with Difficulty   6.11% ( 11270)   8.42% ( 660)
  3−Poorly Controlled   1.93% (  3571)   3.07% ( 241)

  Dementia
  0−None/Asymptomatic  92.26% (170314)  89.91% (7049)
  1−Well Controlled   1.17% (  2164)   1.70% ( 133)
  2−Controlled with Difficulty   5.32% (  9822)   6.58% ( 516)
  3−Poorly Controlled   1.24% (  2298)   1.81% ( 142)

  Neurological Diseases Other than Alzheimer's
  0−None/Asymptomatic  95.54% (176369)  91.26% (7155)
  1−Well Controlled   0.37% (   681)   0.60% (  47)
  2−Controlled with Difficulty   2.93% (  5412)   5.46% ( 428)
  3−Poorly Controlled   1.16% (  2136)   2.68% ( 210)

  Alzheimer's or Other Cerebral Degeneration
  0−None/Asymptomatic  97.36% (179717)  96.70% (7581)
  1−Well Controlled   0.34% (   626)   0.32% (  25)
  2−Controlled with Difficulty   1.80% (  3319)   2.26% ( 177)
  3−Poorly Controlled   0.51% (   936)   0.73% (  57)

  Cancer
  0−None/Asymptomatic  93.45% (172500)  92.81% (7276)
  1−Well Controlled   0.23% (   429)   0.37% (  29)
  2−Controlled with Difficulty   3.90% (  7206)   4.03% ( 316)
  3−Poorly Controlled   2.42% (  4463)   2.79% ( 219)

  Depression
  0−None/Asymptomatic  91.72% (169317)  87.02% (6822)
  1−Well Controlled   1.84% (  3397)   3.00% ( 235)
  2−Controlled with Difficulty   5.53% ( 10212)   8.58% ( 673)
  3−Poorly Controlled   0.91% (  1672)   1.40% ( 110)

  Peripheral Vascular Disease
  0−None/Asymptomatic  96.64% (178388)  95.92% (7520)
  1−Well Controlled   0.32% (   595)   0.42% (  33)
  2−Controlled with Difficulty   2.35% (  4345)   2.82% ( 221)
  3−Poorly Controlled   0.69% (  1270)   0.84% (  66)
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  Chronic Hepatic Renal Disease
  0−None/Asymptomatic  91.64% (169174)  90.27% (7077)
  1−Well Controlled   0.78% (  1437)   0.93% (  73)
  2−Controlled with Difficulty   5.87% ( 10838)   6.63% ( 520)
  3−Poorly Controlled   1.71% (  3149)   2.17% ( 170)

  AIDS/HIV
  0−None/Asymptomatic  99.02% (182795)  99.11% (7770)
  1−Well Controlled   0.08% (   153)   0.08% (   6)
  2−Controlled with Difficulty   0.70% (  1296)   0.51% (  40)
  3−Poorly Controlled   0.19% (   354)   0.31% (  24)
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  Medication Regimen
  Anti−Ulcer And Other Gi Drugs  37.52% ( 69266)  42.54% (3335)
  Anti−Diarrheals   0.89% (  1634)   1.36% ( 107)
  Antispasmodics, Anticholinergics   3.60% (  6649)   5.89% ( 462)
  Bile Therapy   0.43% (   803)   0.50% (  39)
  Laxatives  31.67% ( 58454)  33.00% (2587)
  Psychotropics  12.10% ( 22345)  17.33% (1359)
  Muscle Relaxants   2.77% (  5107)   4.16% ( 326)
  Antiparkinson Agents   3.07% (  5662)   6.16% ( 483)
  Cns Stimulants   0.68% (  1249)   0.99% (  78)
  Psychostimulants/ Antidepressants  18.98% ( 35030)  32.93% (2582)
  Amphetamine Preparations   0.10% (   188)   0.18% (  14)
  Anti−Obesity Preparations, All Others   0.02% (    37)   0.04% (   3)
  Antihistamines   4.38% (  8079)   4.86% ( 381)
  Bronchodilators  15.51% ( 28632)  17.41% (1365)
  Antitussives−Expectorants   1.12% (  2062)   1.19% (  93)
  Cough And Cold Preparations   0.55% (  1011)   0.59% (  46)
  Adrenergics   0.28% (   519)   0.64% (  50)
  Nasal And Otic Preparations   1.88% (  3468)   2.16% ( 169)
  Opthalmic Preparations   6.39% ( 11787)   7.58% ( 594)
  Tetracyclines   0.82% (  1509)   0.85% (  67)
  Penicillins   3.73% (  6891)   2.77% ( 217)
  Strptomycins   1.02% (  1879)   1.24% (  97)
  Sulfonamides   3.25% (  5996)   3.39% ( 266)
  Erthromycins   1.30% (  2408)   1.29% ( 101)
  Cephalasporins   4.03% (  7440)   3.09% ( 242)
  Antibiotics, Other   6.56% ( 12116)   6.34% ( 497)
  Antibacterials, Urinary   2.58% (  4763)   2.86% ( 224)
  Antineoplastics   2.68% (  4952)   3.38% ( 265)
  Antiparasitics   2.26% (  4171)   2.40% ( 188)
  Antimalarials   0.52% (   966)   0.66% (  52)
  Antivirals   3.27% (  6043)   3.06% ( 240)
  Tb Preparations   0.41% (   760)   0.20% (  16)
  Trimethoprim   0.03% (    53)   0.08% (   6)
  Vaginal Cleansers   0.00% (     1)   0.00% (   0)
  Antibacterials And Antiseptics, General   0.08% (   149)   0.06% (   5)
  Diagnostics   0.01% (    10)   0.00% (   0)
  Analgesics, Narcotic  34.06% ( 62870)  28.78% (2256)
  Analgesics, Non−Narcotic, General  46.17% ( 85237)  49.80% (3904)
  Antiarthritics  11.39% ( 21034)  12.65% ( 992)
  Anesthetics Gen Inject   0.00% (     2)   0.00% (   0)
  Anesthetics Local/ Topical   2.10% (  3882)   2.86% ( 224)
  Sedative, Barbituate   0.21% (   386)   0.54% (  42)
  Sedative, Non−Barbituate   6.80% ( 12552)   9.82% ( 770)
  Anticonvulsants  15.87% ( 29304)  24.54% (1924)
  Antinauseants   5.86% ( 10825)   6.96% ( 546)
  Corticotropins   0.00% (     4)   0.01% (   1)
  Glucocorticoids  10.63% ( 19623)  12.67% ( 993)
  Mineralocorticoids   0.32% (   582)   0.85% (  67)
  Aldosterone Antagonists   3.22% (  5945)   4.31% ( 338)
  Antidotes   0.09% (   175)   0.29% (  23)
  Thyroid Preparations  12.20% ( 22523)  16.03% (1257)
  Anti−Thyroid Preparations   0.40% (   743)   0.43% (  34)
  Iodine Therapy   0.01% (    10)   0.00% (   0)
  Diabetic Therapy  29.39% ( 54255)  31.22% (2448)
  Anabolics   0.01% (    24)   0.03% (   2)
  Androgens   0.11% (   196)   0.20% (  16)
  Estrogens   0.32% (   596)   0.40% (  31)
  Progesterone   0.08% (   141)   0.11% (   9)
  Oral Contraceptives   0.06% (   107)   0.03% (   2)
  Other Hormones   0.48% (   892)   0.73% (  57)
  Lipotropics  44.29% ( 81756)  48.97% (3839)
  Cholesterol Reducers   0.34% (   630)   0.47% (  37)
  Digestants   0.05% (   101)   0.03% (   2)
  Protein Lysates   0.08% (   152)   0.08% (   6)
  Enzymes   0.60% (  1114)   0.82% (  64)

Table 5.2: Descriptives of Medications Present at Baseline: First Databank’s Therapeutic
Classification
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No Fall Fall

  Rauwolfia Preparations   0.00% (     2)   0.00% (   0)
  Other Hypotensives  43.10% ( 79568)  44.27% (3471)
  Vasodilators: Coronary   6.36% ( 11738)   7.92% ( 621)
  Vasodilators: Peripheral   0.01% (    10)   0.00% (   0)
  Digitalis Preparations   5.03% (  9278)   6.53% ( 512)
  Xanthene Derivatives   0.28% (   523)   0.27% (  21)
  Cardiovascular Preparations, Other  55.86% (103114)  62.12% (4870)
  Anticoagulants  29.95% ( 55286)  31.85% (2497)
  Hemostatics   0.01% (    25)   0.01% (   1)
  Diuretics  29.29% ( 54071)  33.75% (2646)
  Vitamins, Fat Soluble   7.19% ( 13270)   9.54% ( 748)
  Vitamins, Water Soluble   9.70% ( 17911)  12.82% (1005)
  Multivitamins  14.28% ( 26353)  16.73% (1312)
  Folic Acid Preparations   7.83% ( 14456)   9.92% ( 778)
  B Complex With Vitamin C   0.12% (   222)   0.20% (  16)
  Vitamin K Preparations   0.30% (   551)   0.15% (  12)
  Infant Formulas   0.00% (     8)   0.01% (   1)
  Electrolytes And Misc  19.98% ( 36889)  24.15% (1893)
  Hematinics  13.14% ( 24247)  14.27% (1119)
  Biologicals   0.02% (    35)   0.03% (   2)
  Coal Tar   0.00% (     3)   0.00% (   0)
  Emollients Protectives   0.64% (  1190)   0.89% (  70)
  Fungicides   3.09% (  5713)   3.30% ( 259)
  Dermatologicals, All Others   0.40% (   737)   0.74% (  58)
  Hemorrhoidal Preparations   0.10% (   187)   0.11% (   9)
  Oxytocics   0.00% (     0)   0.01% (   1)
  Parasympathetic Agents   5.79% ( 10692)   8.67% ( 680)
  Unclassified Drug Products  21.63% ( 39934)  27.68% (2170)

Table 5.2 (contd.): Descriptives of Medications Present at Baseline: First Databank’s
Therapeutic Classification
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5.2 Identifying Baseline Risk Factors in Full Cohort Setting

Unlike the case-crossover design, the score function for the Cox partial likelihood in Equa-

tion (3.7) contains the matrix of characteristics present at baseline, which are denoted by

Xi. All confounders must be controlled for in the Cox proportional hazards model in order

to obtain an unbiased estimate of β. While it is possible that unmeasured confounders

exist, the OASIS assessment provides a comprehensive list of factors that describe the

patients health status at admission into home health care. The inclusion of all observed

baseline factors would result in a complicated Cox proportional hazards model with a large

number of degrees of freedom. Therefore, a more parsimonious model is sought through a

variable selection analysis resulting in a subset of baseline factors that are associated with

falling. The analysis in this section follows previous work, on the same population, by

Rosati and colleagues to identify the factors associated with patients who are hospitalized

[84].

All factors displayed in the descriptive analysis displayed in Table 5.1 and the ther-

apeutic medication classifications in Table 5.2 are assumed to be candidate predictors of

falling. The VNSNY Medication and Fall data set is randomly split into two data sets.

70% of patient are allocated to a training data set for which variable selection and param-

eter estimation will be conducted. The remaining 30% of the sample is held out to assess

the model fit.

A Cox proportional hazards model, predicting the time to the first fall during home

health care, is developed by using the elastic net shrinkage penalty to select and estimate

the coefficients of predictors [112]. Shrinkage methods have been shown to have superior

performance over traditional stepwise methods in both simulations and empirical data and

are underutilized in applied settings [67, 90]. Shrinkage methods alleviate two issues that

occur in traditional maximum likelihood methods: estimation and variable selection in the

presence of multi-collinearity, and over fitting the model to the training data set. Parameter

estimates can still be obtained and are interpreted just as the coefficients in a Cox hazards

model via maximum partial likelihood. The elastic net mixing parameter is fixed at 0.5 and

the complexity parameter considers range of possible values. The complexity parameter
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was chosen that yielded the model within one standard error of the model that achieved

the minimum partial likelihood deviance. Standard errors are estimated from 10-fold cross-

validation. This analysis was completed using the R function glmnet.cv from the glmnet

package in R [45, 73]. The factors identified as predictors of falls experienced during

home health care by the elastic net were also used in a Cox proportional hazards model

where parameter estimates were approximated using traditional (i.e. unpenalized) partial

likelihood using coxph function in the survival package in R [97]. Results from the Cox

proportional hazards model estimated from the elastic net and traditional partial likelihood

are both displayed in Table 5.3.

Using parameter estimates obtained from the training data set, predictions are made

on the hold-out data set and compared to the actual outcome. Figure 5.4 displays time-

dependent Receiver Operating Characteristic (ROC) curves of both models extrapolated

on the 30% hold out data. Time points of 4, 13, 34, and 60 are fixed to obtain area under

the curve (AUC) estimates of 0.694, 0.694, 0.693, and 0.691 for the elastic net and 0.702,

0.699, 0.696, and 0.697 for the traditional estimation respectively. Times 4, 13, 34 are the

inter-quartile range and median times of falling, and 60 marks the end of the first CMS

home health care episode. Slight improvements in the AUC for the traditional estimation

over the elastic net can be explained by the additional degrees of freedom allowed to enter

into the model.

The strongest predictor of a fall during home health care, as expected, is the history of

falling. The elastic net estimates the hazard of falling is 2.05 higher for patients who have a

history of falling compared to those who don not. There are several other notable, strong,

positive predictors of falling. Caucasians are at 1.36 times the risk of falling as patients

of race other than Caucasian or African Americans. An indicator that no surgical wound

is present increases the hazard of falling by 33%. Patients who are admitted into home

health care after a surgical procedure are considered post-acute restorative and are less

likely to be frail [68]. Patients that require a two hand device or assistance to ambulate

are at 21% or 31% higher risk than those who do not. Patients with a home health

care diagnosis classified as a neurological disease, other than Alzheimer’s, with symptoms

that are considered to be poorly controlled increase the baseline hazard by 1.36 fold.
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The therapeutic medication classifications which yield the strongest hazards ratios include

psychostimulants/antidepressants, barbituates, anticonvulsants, mineralocorticoids, and

antidotes which have hazard ratios of 1.36, 1.34, 1.25, 1.47, and 1.62 respectively. These

associations are describing the effect of the presence of a medication at admission and not

the transient effect of a medication change.
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Log−Hazard Ratio Hazard Ratio
log−hazard
(Std.Error)

Hazard Ratio
(95% CI) p−value

Elastic Net Traditional Partial Likelihood

  Language Spoken
  Spanish (ref)
  English  0.21 1.24  0.27 (0.06) (1.17,  1.47) 0.0000
  Other −0.16 0.85 −0.20 (0.06) (0.72,  0.93) 0.0020

  Age Group
  18 to 54 (ref)
  55 to 64 −0.09 (0.06) (0.82,  1.03) 0.1363
  65 to 74 −0.03 (0.06) (0.87,  1.08) 0.5878
  75 to 84  0.00 1.00  0.05 (0.05) (0.94,  1.16) 0.4030
  85 +  0.05 (0.06) (0.94,  1.18) 0.3831

  Race
  Other (ref)
  Black −0.02 0.98 −0.11 (0.05) (0.80,  0.99) 0.0364
  White  0.31 1.36  0.29 (0.05) (1.22,  1.47) 0.0000

  Prior Conditions
  Urinary Incontinence  0.09 1.09  0.11 (0.04) (1.04,  1.20) 0.0017

  Risk for Hospitalization
  Decline in Mental, Emotional, Behavioral  0.15 1.17  0.23 (0.04) (1.16,  1.35) 0.0000
  Multi Hospitalization  0.05 1.05  0.06 (0.03) (1.00,  1.13) 0.0387
  History of Falls  0.72 2.05  0.70 (0.03) (1.89,  2.13) 0.0000
  Frailty Indicators  0.09 1.09  0.09 (0.03) (1.03,  1.16) 0.0054

  Understand Verbal Content 
  0−Understands (ref)
  1−Usually −0.07 (0.04) (0.87,  1.00) 0.0637
  2−Sometimes −0.11 (0.08) (0.76,  1.05) 0.1724
  3−Rarely  0.02 (0.27) (0.60,  1.74) 0.9503
  Unknown −0.05 0.95 −0.74 (0.35) (0.24,  0.95) 0.0344

  Stage of Most Problematic Pressure Ulcer 
  0−None (ref)
  1−Stage I  0.06 1.06  0.13 (0.10) (0.93,  1.38) 0.2010
  2−Stage II −0.02 (0.09) (0.82,  1.18) 0.8544
  3−Stage III −0.18 (0.15) (0.63,  1.11) 0.2146
  4−Stage IV −0.08 (0.19) (0.64,  1.34) 0.6662
  Unstageable  0.12 (0.14) (0.85,  1.50) 0.3873

  Status of Most Problematic Surgical Wound 
  0−Newly Epithelialized (ref)
  1−Fully Granulating −0.07 (0.12) (0.73,  1.18) 0.5383
  2−Early/Partial Granulation −0.06 (0.11) (0.77,  1.16) 0.5659
  3−Not Healing −0.09 (0.09) (0.76,  1.10) 0.3276
  None  0.29 1.33  0.30 (0.08) (1.17,  1.57) 0.0001
  Not Observ  0.00 (0.12) (0.79,  1.27) 0.9896

  Bowel Incontinence Frequency
  0−Rare or Never (ref)  0.04 (0.05) (0.94,  1.14) 0.4705
  1−Less than 1 to 3/wk  0.04 (0.05) (0.94,  1.14) 0.4705
  2−4to6/week  0.00 (0.10) (0.82,  1.22) 0.9757
  3−Daily  0.11 (0.08) (0.96,  1.31) 0.1570
  4−Bowel Ostomy −0.13 0.87 −0.44 (0.13) (0.49,  0.84) 0.0010
  5−More than 1 Daily  0.11 (0.14) (0.84,  1.49) 0.4364

  Cognitive Functioning 
  0−Alert (ref)
  1−Prompting  0.04 1.04  0.07 (0.04) (1.00,  1.15) 0.0576
  2−Some Asst −0.02 (0.06) (0.87,  1.10) 0.7228
  3−Consderable Asst −0.01 0.99 −0.14 (0.12) (0.69,  1.09) 0.2260
  4−Dependent −0.19 0.82 −0.76 (0.30) (0.26,  0.85) 0.0125

  Anxious 
  0−None (ref)
  1−Less than Daily −0.08 (0.04) (0.86,  0.99) 0.0238
  2−Daily, not Constant  0.01 (0.04) (0.93,  1.10) 0.7633
  3−All of the Time  0.07 1.07  0.23 (0.10) (1.03,  1.53) 0.0246
  Nonresponsive −0.06 (0.32) (0.50,  1.76) 0.8457

  Little Interest/Pleasure
  0−Not at all (0−1) (ref)
  1−Several days (2−6) −0.11 (0.05) (0.81,  0.99) 0.0336
  2−More than half (7−11)  0.17 1.19  0.18 (0.10) (0.97,  1.47) 0.0894
  3−Nearly every day (12−14)  0.01 (0.15) (0.76,  1.35) 0.9480
  8−Other Asmnt−Further Eval −0.21 (0.13) (0.63,  1.05) 0.1141
  9−Other Asmnt−No Further Eval  0.01 (0.07) (0.88,  1.16) 0.8706
  No Screening  0.25 (1.51) (0.07, 24.85) 0.8692
  Nonresponsive −0.21 (0.37) (0.40,  1.67) 0.5732

Table 5.3: The first set of columns use elastic net penalty, the second contains traditional
Cox partial likelihood estimates. References for non-mutually exclusive conditions is the
absence of that particular condition, these items are categorized under: prior conditions,
risk for hospitalization, cognitive, behavioral, psychiatric symptoms, medication regimen
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Log−Hazard Ratio Hazard Ratio
log−hazard
(Std.Error)

Hazard Ratio
(95% CI) p−value

Elastic Net Traditional Partial Likelihood

  Down, Depressed Hopeless
  0−Not at all (0−1) (ref)
  1−Several days (2−6)  0.07 1.08  0.19 (0.05) (1.10,  1.34) 0.0001
  2−More than half (7−11)  0.10 (0.10) (0.91,  1.35) 0.3011
  3−Nearly every day (12−14)  0.12 (0.14) (0.85,  1.48) 0.4062
  8−Other Asmnt−Further Eval
  9−Other Asmnt−No Further Eval
  No Screening −0.25 (1.51) (0.04, 15.04) 0.8670
  Nonresponsive  0.43 (0.36) (0.75,  3.14) 0.2413

  Cognitive, Behavioral, Psychiatric Symptoms
  Delusional −0.08 0.93 −0.33 (0.18) (0.50,  1.03) 0.0696

  Grooming 
  0−Able (ref)
  1−Utensil Asst  0.02 1.02  0.05 (0.04) (0.96,  1.14) 0.2674
  2−Assistance  0.00 (0.05) (0.91,  1.10) 0.9715
  3−Dependent −0.02 (0.08) (0.84,  1.16) 0.8325

  Bathing 
  0−Able (ref)
  1−Use of Device  0.24 (0.11) (1.03,  1.58) 0.0259
  2−Intermittent Asst  0.26 (0.11) (1.05,  1.61) 0.0144
  3−Requires Presence  0.11 1.12  0.38 (0.11) (1.19,  1.82) 0.0005
  4−Bedside/Sink  0.31 (0.12) (1.08,  1.73) 0.0101
  5−Bedside/Sink with Asst  0.16 1.17  0.48 (0.12) (1.29,  2.03) 0.0000
  6−Dependent  0.36 (0.13) (1.11,  1.86) 0.0058

  Toilet Transferring 
  0−Able (ref)
  1−Assistance  0.02 1.02  0.05 (0.04) (0.97,  1.14) 0.2260
  2−Bedside  0.03 1.03  0.09 (0.07) (0.96,  1.24) 0.1986
  3−Bedpan  0.14 1.15  0.30 (0.11) (1.08,  1.68) 0.0089
  4−Dependent −0.17 0.84 −0.24 (0.11) (0.64,  0.96) 0.0212

  Toilet Hygiene 
  0−Able (ref)
  1−Supplies −0.06 (0.04) (0.87,  1.02) 0.1397
  2−Assistance  0.03 1.03 −0.06 (0.05) (0.86,  1.05) 0.2818
  3−Dependent −0.01 0.99 −0.20 (0.10) (0.68,  0.99) 0.0402

  Transferring 
  0−Able (ref)
  1−Minimum Asst  0.09 1.10  0.09 (0.05) (0.99,  1.21) 0.0920
  2−Bear Weight No Pivot  0.20 1.23  0.25 (0.07) (1.12,  1.47) 0.0004
  3−No Pivot with Asst  0.15 (0.10) (0.95,  1.42) 0.1493
  4−Bedfast, Turn −0.07 (0.20) (0.64,  1.37) 0.7300
  5−Bedfast −0.42 0.66 −0.82 (0.23) (0.28,  0.69) 0.0003

  Ambulation 
  0−Able (ref)
  1−One Hand Device  0.45 (0.09) (1.32,  1.87) 0.0000
  2−Two Hand Device  0.19 1.21  0.63 (0.09) (1.57,  2.22) 0.0000
  3−Assistance  0.27 1.31  0.70 (0.09) (1.68,  2.41) 0.0000
  4−Chairfast, Wheel  0.33 (0.12) (1.09,  1.78) 0.0078
  5−Chairfast, no Wheel  0.44 (0.12) (1.21,  1.98) 0.0005
  6−Bedfast  0.46 (0.24) (0.99,  2.56) 0.0571

  Feeding 
  0−Able (ref)
  1−Some Asst −0.09 (0.03) (0.86,  0.97) 0.0049
  2−Assistance −0.01 0.99 −0.21 (0.08) (0.70,  0.94) 0.0053
  3−Orally and Nasog Tube/Gastr −0.16 (0.24) (0.53,  1.36) 0.4929
  4−Nasog Tube/Gastrostomy −0.41 (0.21) (0.44,  1.01) 0.0536
  5−Unable −0.36 (0.50) (0.26,  1.87) 0.4750

  Oral Medications 
  0−Able (ref)
  1−Preparation  0.05 1.05  0.02 (0.04) (0.94,  1.12) 0.5933
  2−Reminders −0.08 (0.06) (0.83,  1.03) 0.1675
  3−Unable −0.06 (0.06) (0.83,  1.06) 0.3215
  No Meds  0.05 (0.16) (0.76,  1.44) 0.7824

  ADL Assistance
  0−No Assistance Needed (ref)  0.13 (0.06) (1.01,  1.28) 0.0309
  1−Caregiver Currently Providing  0.13 (0.06) (1.01,  1.28) 0.0309
  2−Caregiver Needs Training/Unclear  0.01 1.01  0.20 (0.07) (1.06,  1.40) 0.0063
  3−Caregiver Unlikely/No Caregiver  0.21 (0.07) (1.08,  1.41) 0.0019

Table 5.3 (contd.):
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Log−Hazard Ratio Hazard Ratio
log−hazard
(Std.Error)

Hazard Ratio
(95% CI) p−value

Elastic Net Traditional Partial Likelihood

  Medication Administration
  0−No Assistance Needed (ref)  0.02 1.02  0.06 (0.04) (0.98,  1.16) 0.1642
  1−Caregiver Currently Providing  0.02 1.02  0.06 (0.04) (0.98,  1.16) 0.1642
  2−Caregiver Needs Training/Unclear  0.05 (0.07) (0.92,  1.21) 0.4638
  3−Caregiver Unlikely/No Caregiver −0.15 0.86 −0.30 (0.08) (0.63,  0.86) 0.0001

  AIDS/HIV
  0−None/Asymptomatic (ref)
  1−Well Controlled  0.03 (0.45) (0.43,  2.49) 0.9412
  2−Controlled with Difficulty −0.44 0.64 −0.87 (0.20) (0.28,  0.63) 0.0000
  3−Poorly Controlled  0.16 (0.25) (0.73,  1.90) 0.5116

  Cancer
  0−None/Asymptomatic (ref)
  1−Well Controlled  0.38 (0.22) (0.95,  2.25) 0.0823
  2−Controlled with Difficulty  0.12 1.13  0.32 (0.07) (1.21,  1.57) 0.0000
  3−Poorly Controlled  0.16 (0.09) (0.99,  1.39) 0.0713

  Depression
  0−None/Asymptomatic (ref)
  1−Well Controlled  0.01 1.01  0.14 (0.08) (0.98,  1.35) 0.0868
  2−Controlled with Difficulty  0.04 (0.05) (0.94,  1.15) 0.4447
  3−Poorly Controlled −0.24 (0.13) (0.61,  1.00) 0.0537

  Neurological Diseases Other than Alzheimer's
  0−None/Asymptomatic (ref)
  1−Well Controlled  0.23 (0.18) (0.89,  1.78) 0.1997
  2−Controlled with Difficulty  0.09 1.09  0.22 (0.07) (1.08,  1.44) 0.0023
  3−Poorly Controlled  0.31 1.36  0.49 (0.09) (1.36,  1.97) 0.0000

  Stroke or Late Effects of CVA
  0−None/Asymptomatic (ref)
  1−Well Controlled  0.05 (0.18) (0.74,  1.50) 0.7811
  2−Controlled with Difficulty  0.04 1.04  0.17 (0.05) (1.07,  1.31) 0.0008
  3−Poorly Controlled  0.01 1.01  0.21 (0.08) (1.05,  1.45) 0.0106

  Chronic Hepatic Renal Disease
  0−None/Asymptomatic (ref)
  1−Well Controlled  0.36 (0.14) (1.10,  1.87) 0.0086
  2−Controlled with Difficulty  0.04 1.04  0.19 (0.06) (1.09,  1.35) 0.0005
  3−Poorly Controlled  0.07 1.07  0.31 (0.09) (1.13,  1.64) 0.0009

  Skin Ulcer
  0−None/Asymptomatic (ref)
  1−Well Controlled  0.14 (0.34) (0.59,  2.22) 0.6887
  2−Controlled with Difficulty  0.06 1.06  0.19 (0.07) (1.06,  1.37) 0.0037
  3−Poorly Controlled  0.13 (0.08) (0.97,  1.34) 0.1066

  Arthritis and Musculoskeletal Diseases
  0−None/Asymptomatic (ref)
  1−Well Controlled  0.04 (0.10) (0.86,  1.26) 0.6909
  2−Controlled with Difficulty −0.13 0.88 −0.22 (0.04) (0.74,  0.87) 0.0000
  3−Poorly Controlled  0.04 (0.09) (0.88,  1.23) 0.6120

  Medication Regimen
  Antispasmodics, Anticholinergics  0.03 1.03  0.11 (0.06) (1.00,  1.25) 0.0587
  Antiparkinson Agents  0.03 1.03  0.04 (0.07) (0.90,  1.20) 0.5961
  Psychostimulants/ Antidepressants  0.30 1.36  0.32 (0.03) (1.29,  1.47) 0.0000
  Strptomycins  0.01 1.01  0.28 (0.12) (1.04,  1.67) 0.0222
  Sedative, Barbituate  0.29 1.34  0.66 (0.18) (1.36,  2.75) 0.0002
  Sedative, Non−Barbituate  0.07 1.07  0.14 (0.05) (1.05,  1.26) 0.0027
  Anticonvulsants  0.22 1.25  0.26 (0.03) (1.22,  1.39) 0.0000
  Glucocorticoids  0.03 1.03  0.09 (0.04) (1.01,  1.18) 0.0343
  Mineralocorticoids  0.39 1.47  0.56 (0.14) (1.32,  2.34) 0.0001
  Aldosterone Antagonists  0.02 1.02  0.14 (0.07) (1.01,  1.32) 0.0342
  Antidotes  0.48 1.62  0.84 (0.24) (1.45,  3.69) 0.0005
  Cardiovascular Preparations, Other  0.00 1.00  0.03 (0.03) (0.98,  1.10) 0.2578
  Vitamins, Water Soluble  0.01 1.01  0.06 (0.04) (0.98,  1.15) 0.1354
  Folic Acid Preparations  0.00 1.00  0.06 (0.05) (0.97,  1.17) 0.1769
  Dermatologicals, All Others  0.09 1.10  0.33 (0.15) (1.03,  1.88) 0.0309
  Unclassified Drug Products  0.00 1.00  0.03 (0.03) (0.97,  1.09) 0.3790

Table 5.3 (contd.):
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Figure 5.4: Time-dependent ROC curve analysis of model performance on the validation
data set. Plots (a) and (b) are from automated variable selection using elastic net shrinkage,
and plots (c) and (d) use the variables identified in the elastic net but estimates are obtained
via traditional Cox partial likelihood . Plots (a) and (c) plot the area under the curve versus
time, while plots (b) and (d) plot the time-dependent ROC curve.
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5.3 Design Comparison

This study explores the potential for the risk of falling to elevate over the days following

an increase in the number of psychostimulant or antidepressant. This section compares

results from the case-crossover design and the Cox proportional hazards model in the

cohort design to the VNSNY Medication and Fall data. The time-dependent covariate in

the full cohort design is defined as an indication when the number of medications classified

as a psychostimulants or antidepressants increases. This indicator requires information on

the number of medications present on the prior day, therefore, time of entry for this study

occurs on day two of home health care. As a result, 1318 day one falls are eliminated from

both designs.

Both designs explore several durations in which the effect is assumed to last. This

covariate is specified in Equation (5.1), and varying durations of the effect are explored at

∆ = 1, 2, 3, 4, 5, 7, 14, 21, 28 for both designs.

Zit =

 1 t ∈ (τi, τi +∆]

0 t ̸∈ (τi, τi +∆]
(5.1)

The results of the case-crossover design and the cohort design applying a Cox proportional

hazards model are displayed in Table 5.4. Both designs consider the following hazard

function

λ(t) = λ0(t)e
Xγ+βZit (5.2)

where X contains the baseline factors identified by Section 5.2. These factors are treated

as covariates in the specification of the Cox proportional hazards model and are implicitly

controlled for in the case-crossover design.

The case-crossover design applies a 1:5 matching scheme, where a minimum of one

control is required to be included. For assumed durations of the effect of 1,2,3,4,5,7, the

first day of the first control reference window is forced to be seven days apart from the first

day of the case window. This imposes a same day of the week comparison, and eliminating

any seasonality that may exists on different days of the week [71]. The case-crossover design

is forced to drop falls when atleast one entire control-time is not available after admission.

An illustration of the case-crossover design reference strategies is displayed in Figure 5.5.
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Figure 5.5: Dual axis plot illustrating the application of several case-crossover design
reference strategies applied to VNSNY medication and falls data. The minimum time of
fall is plotted with the corresponding reference strategy assuming varying durations of the
effect. The red dotted line plots the number of events available for each case-crossover
design

This plot shows the minimum required time for a fall to be included in the analysis for

each reference strategy. The minimum number of days to be included in the analysis is 9,

10, 11, 12, 13, 15, 29, 43, 57 for ∆ = 1,2,3,4,5,7,14,21,28, respectively. For each increase

in length of the assumed effect, the more falls are dropped from the analysis. This is also

plotted on the second x-axis in Figure 5.5 for the corresponding design. Only 68.9% of the

6522 falls available for the cohort design remain for the assumed duration of one day, and

as little as 14.7% of the falls for a duration of 28 days since the minimum time for inclusion

of a fall is 57 days from admission. Choosing ∆ is difficult in the case-crossover design.

The varying number of observations available changes with delta and makes goodness of

fit measures incomparable (e.g. AIC, BIC, etc.).

The case-crossover design provides no evidence to support an association between an
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(days) log−hazard Hazard Ratio(95% CI) p−value Falls Remaining log−hazard Hazard Ratio(95% CI) p−value AIC Efficiency
Duration Case−Crossover Design Cohort Design with Cox Hazards Model Relative

1 0.54 (0.44) 1.71 (0.72, 4.06) 0.2205 68.87% (4492) 0.68 (0.38) 1.97 (0.94, 4.14) 0.0722 145044 74.05
2 0.45 (0.34) 1.57 (0.81, 3.05) 0.1814 66.31% (4325) 0.63 (0.28) 1.87 (1.09, 3.23) 0.0237 145043 67.58
3 0.59 (0.27) 1.80 (1.06, 3.05) 0.0288 63.65% (4151) 0.72 (0.22) 2.06 (1.34, 3.17) 0.0009 145039 66.21
4 0.60 (0.23) 1.82 (1.16, 2.86) 0.0093 61.12% (3986) 0.85 (0.18) 2.33 (1.64, 3.32) 0.0000 145031 61.50
5 0.51 (0.22) 1.67 (1.09, 2.55) 0.0185 58.77% (3833) 0.79 (0.17) 2.21 (1.59, 3.06) 0.0000 145031 59.43
7 0.53 (0.20) 1.70 (1.15, 2.50) 0.0076 54.69% (3567) 0.78 (0.15) 2.18 (1.64, 2.90) 0.0000 145027 53.89
14 0.41 (0.20) 1.51 (1.01, 2.26) 0.0427 33.73% (2200) 0.64 (0.12) 1.89 (1.50, 2.38) 0.0000 145029 33.00
21 0.36 (0.21) 1.43 (0.94, 2.18) 0.0914 22.69% (1480) 0.54 (0.11) 1.72 (1.40, 2.12) 0.0000 145034 24.88
28 0.34 (0.24) 1.40 (0.88, 2.23) 0.1555 14.72% ( 960) 0.60 (0.10) 1.82 (1.51, 2.19) 0.0000 145026 15.97

Table 5.4: Analysis of an increase in psychostimulants/antidepressants and falls where
the assumed duration in which the effect is specified by one time-dependent variable.
Case-crossover design analysis of durations 1,2,3,4,5,7 fix the case- and control times to
be separated by one week. The Cox proportional hazards model includes all covariates
selected in by the elastic net procedure shown in Table 5.3, log-hazard estimates for these
parameters are suppressed to isolate the effect of increase in medication. The estimates
from Cox proportional hazards model includes 6522 falls.

increase in the number of psychostimulants or antidepressants and the risk of falling as-

suming a window for the effect of length one or two. The p-values for assumed durations of

3, 4, 5, 7 suggest there is strong evidence to reject the null hypothesis assuming no effect.

There is still moderate evidence (p-value=0.0427) that there is an increased effect when

the duration is extended to a 14 day window, but only 33.7% of the original number of

falls are used in the conditional likelihood for this estimate. When the effect is extended

to 21 and 28 days both estimate a hazard ratio of approximately 1.4, however, both fail to

reject the null hypothesis of no effect assuming a type I error rate of 5%. In order to allow

enough time for a reference strategy for 21 and 28 time intervals, the number of falls used

in the designs drops to less than 22.7% of the falls used by the cohort design.

The same assumed durations of the effect are explored for the Cox proportional hazards

model with the time dependent covariate, defined in Equation (5.1), and patient character-

istics X from Equation (5.2). All factors identified by the elastic net model shown in Table

5.3 are included in the model, but parameter estimates are suppressed to ease presentation

in Table 5.4 by isolating the time-dependent covariate. There is weak evidence to sup-

port the hypothesis that an increase in the number of psychostimulants or antidepressants

increases the risk of falling during the following day. For every other assumed duration

the Cox proportional hazards model finds strong evidence to support a hazard ratio with

point estimates ranging from 1.87 to 2.33. Since each Cox proportional hazards model uses
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the same number of falls when constructing the partial likelihood, the Akaike Information

Criterion (AIC) can be used to compare models by selecting the model that minimizes the

AIC. The AIC is minimized for the assumed duration of seven days, which estimates the

effect of an increase in the number of psychostimulants or antidepressants as 2.18 (95%

CI; 1.64, 2.90).

Throughout the analysis the Cox proportional hazards model provides much smaller

confidence intervals; due to smaller standard errors resulting from a larger risk set. The

smaller standard errors are consistent with the findings from the simulation studies. The

relative efficiency of the Case-crossover design, assuming a duration of seven days, is 56%

of that obtained in the Cox proportional hazards model.

The estimates from the cohort design consistently estimate a larger log-hazard than

the case-crossover design. The closest estimates occurs at a duration of three days, where

the cohort design point estimate is 23% larger than the case-crossover design. The largest

observed difference occurs at 28 days, where the cohort design is 76% higher, but at this

duration the case-crossover design is only using 14.7% of the cohort falls. At durations

of 2,4,5,7,14,21, the cohort design estimate is 40%-54% larger than the case-crossover

design. There are several possible explanations for why the Cox proportional hazards

model estimates are different than the case-crossover design. First, the case-crossover

design disregarded 42.7% to 88.8%.

One explanation could be due to the association between the increase in medications

and the risk of falling is different during early days of home health care. One way to

explore the impact of removing earlier falls in the case-crossover design is to also remove

the same falls from the Cox proportional hazards model in the cohort design. The results

of dropping the same falls is shown in the left set of columns in Table 5.5. Dropping falls in

the Cox proportional hazards model actually increases estimates of the log-hazard for all

assumed durations of the effect. Hence, contrary to explaining why the Cox proportional

hazards model in 5.4 are higher than the case-crossover design.

Another explanation is the possible presence of an unmeasured confounder in the full

cohort design that is not observed in the VNSNY Medication and Fall data. It is difficult

to assess whether an unmeasured confounder can explain for the difference in log-hazard
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Duration (days) log−hazard Hazard Ratio(95% CI) p−value log−hazard Hazard Ratio(95% CI) p−value
 Drop Early Falls  Time Dependent Covariate Only

Cohort Design

1 0.92 (0.38) 2.50 (1.19, 5.25) 0.0155 0.87 (0.38) 2.38 (1.13, 4.99) 0.0220
2 0.80 (0.29) 2.22 (1.26, 3.91) 0.0058 0.81 (0.28) 2.26 (1.31, 3.89) 0.0033
3 0.95 (0.22) 2.58 (1.66, 4.00) 0.0000 0.91 (0.22) 2.48 (1.62, 3.81) 0.0000
5 0.98 (0.18) 2.67 (1.89, 3.79) 0.0000 0.97 (0.17) 2.65 (1.91, 3.67) 0.0000
7 0.99 (0.16) 2.70 (1.99, 3.67) 0.0000 0.96 (0.15) 2.61 (1.96, 3.47) 0.0000

14 0.71 (0.16) 2.04 (1.49, 2.79) 0.0000 0.81 (0.12) 2.24 (1.78, 2.82) 0.0000
21 0.68 (0.16) 1.97 (1.43, 2.72) 0.0000 0.71 (0.11) 2.04 (1.66, 2.51) 0.0000
28 0.59 (0.19) 1.80 (1.24, 2.62) 0.0020 0.76 (0.09) 2.13 (1.77, 2.57) 0.0000

Table 5.5: Sensitivity analysis of cohort design. The first series of analysis drops the same
falls as the corresponding case-crossover design assuming the same duration of the effect.
The series of analysis on the right do not control for any baseline covariates and only
includes the time-dependent exposure

estimates between the two designs. It is possible to examine the impact of including the

baseline covariates in the Cox proportional hazards model. The right set of columns in

Table 5.5 does not include any baseline covariates. The impact of only having the time-

dependent covariate for the a change in antideperessant or pychostimulant medications

results in larger hazard ratio estimates. These larger estimates likely suggest that some of

the factors identified by the elastic net regression are positively correlated with the increase

in antideperessant or pychostimulant medications and the probability of falling. An un-

measured confounder that is positively correlated with both the event and the medication

increase could account for the difference in log-hazard estimates observed in Table 5.4.

The final and most likely explanation for the difference in estimates of the hazard ratio

between the two designs may be explained by the reference strategy of the case-crossover

design. The Cox-hazards model observes strong evidence that the duration of the effect

may last up to or possibly exceed 28 days. The cohort design identified the seven day

window as the the best model, but the other models may indicate that the transient effect

may dissipate over the following weeks. The case-crossover design examining the effect

over seven days fixes the control time to the immediately preceding seven day period. If

the true effect of the medication lasts longer than seven days, then by defining the control

window during a time where a carry over effect exists will bias estimates towards the null

hypothesis. The difficulty in accounting for carry over effect for this length of time in the

case-crossover design is the loss of an extraordinary amount of falls from the analysis given
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the short time line of a typical 60-day home health care episode.

5.4 Exploration of a Nonlinear Effect

The cohort design in Section 5.3 identified that analysis assuming an effect lasting for seven

days was the best model according to AIC. The case-crossover design also found strong

evidence that the seven day window was associated with the event while using 54.7% of

the falls. To further explore the transient effect in the first seven days after the medication

change in more detail the following model is assumed

λ(t) = λeXγ+β1Zit+β2Zit−1+β3Zit−2+β4Zit−3+β5Zit−4+β6Zit−5+β7Zit−6 (5.3)

Results from this model are shown in the column labeled Model 7 in Table 5.6. This

table shows that there is no evidence to support β5, β6, β7 are not equal to zero. These

parameters are removed one-by-one until model four is selected since it minimizes the AIC.

There is some, but weak evidence (p-value=0.09) to support an association at a lag of four

days after the medication change. There is strong evidence (p-value=0.01) that a change

in medications increase the log-hazard ratio for falling by 1.19 fold three days after the

medication change. The first two days after the medication changed yielded small estimates

of the hazard ratio with no evidence to support rejecting the null hypothesis (p-value =

0.75 and 0.74 respectively). This may suggest that there is an incubation period for the

effect that does not manifest until three days later.

A likelihood ratio test is constructed testing the hypothesis

Ho : λ(t) = λ0(t)e
Xγ+βZit

HA : λ(t) = λeXγ+β1Zit+β2Zit−1+β3Zit−2+β4Zit−3+β5Zit−4+β6Zit−5+β7Zit−6 (5.4)

where the null hypothesis assumes a constant effect lasting for seven days. This test yields

a p-value=0.8438, which fails to reject the null hypothesis. Therefore, the case-crossover

design concludes that the effect of the medication increase is constant over the seven days

after the medication change. For illustration purposes, the constraint Θl(β, θ) = βθ(l−1) to

Equation (5.3) confirms the results of the likelihood ratio test. This analysis estimates the

log-hazard estimate β̂ = 0.53 (95%CI; 0.48, 1.02) and θ̂ = 0.95 (95%CI; 0.56, 1.36). The
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Table 5.6: Results from seven day distributed lag case-crossover design
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(days) Estimate Hazard Ratio p−value Cox Hazards Hazard Ratio p−value Efficiency
Lag Case−Crossover Cox Hazards Relative

1−7 0.45 (0.35) 1.57 (0.78, 3.14) 0.2047 0.79 (0.15) 2.19 (1.65, 2.91) 0.0000 16.82% 
8−14 0.88 (0.43) 2.42 (1.05, 5.56) 0.0381 0.41 (0.20) 1.51 (1.03, 2.22) 0.0359 21.46% 

15−21 0.10 (0.42) 1.11 (0.49, 2.51) 0.8097 0.21 (0.24) 1.24 (0.77, 1.99) 0.3851 34.01% 

Table 5.7: Results from analysis with three lagged covariates defined as seven day intervals.
Case-crossover design has allowed for one additional week for possible carry-over effect

confidence interval for θ̂ implies that θ can be assumed to equal one, and suggests that the

effect is constant and β̂ is consistent with the results form Table 5.4.

The results from Table 5.4 suggests that the effect may last longer than seven days. A

final analysis considers the hazard in Equation (5.5)

λ(t) = λeXγ+β1Zi,t∗+β2Zi,t∗−1+β3Zi,t∗−2 (5.5)

where the special notation t∗ is introduced since the lagged covariates are now expressed

as seven day intervals of time such that

Zit∗ =


0 t ≤ τi

1 t ∈ (τi, τi + 7]

0 t > τi + 7

Zi,t∗−1 =


0 t ≤ τi + 7

1 t ∈ (τi + 7, τi + 14]

0 t > τi + 14

Zi,t∗−2 =


0 t ≤ τi + 14

1 t ∈ (τi + 14, τi + 21]

0 t > τi + 21

(5.6)

The pattern of the lagged seven day covariates in Table 5.7 for the Cox proportional haz-

ards model appear to follow the geometric lag relationship. The hazard of falling increases

by 2.2 (95% CI; 1.65, 2.91) in the first week after observing an increase in antidepressants

or psychostimulants medications. The risk subsides some what during the second week

after the increase, but the risk of falling is still elevated by 1.51 (95% CI; 1.03, 2.22) times.

During the third week following the medication increase there is very weak evidence (p-

value 0.39) that there may still be some elevated hazard of falling with a hazard ratio of



136

1.24 (95% CI; 0.77, 1.99), but with the 95% confidence interval overlapping one the effect

is minimum.

Due to the design reference strategy, the case-crossover design in Table 5.7 only has

18.8% (1223) of the falls available in the cohort design. The effect estimated by the case-

crossover design does not follow the same deteriorating effect that the Cox proportional

hazards model observed. A likelihood ratio test comparing a naive model over ∆ = 21

days, to the three variable, seven day interval model such that

Ho : λ(t) = λ0(t)e
Xγ+βZit∗

HA : λ(t) = λeXγ+β1Zi,t∗+β2Zi,t∗−1+β3Zi,t∗−2 (5.7)

fails to reject the null hypothesis (p-value=0.64). Because this case-crossover design is

using so few falls and since a robust set of baseline factors are controlled for in the Cox

proportional hazards model, the effect described by the cohort design is believed to most

accurately describe the effect of the medication change.
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Chapter 6

Summary and Discussion

This thesis establishes an important connection between the “prospective” cohort design

and the case-crossover design. By making this connection, this thesis demonstrates that

the concept of distributed lag models can be applied to the case-crossover design to es-

timate non-linear effects. It also shows that the translation of distributed lag variables

from the “prospective” cohort design to the case-crossover design provides a mirror image

interpretation of the association. Lagged covariates from the case-crossover design can

be “reflected” for interpretation under the “prospective” paradigm. Finally, this thesis

introduces a geometric, distributed lag, estimation method to the case-crossover design,

which provides a parsimonious, two-parameter estimation in the presence of a non-linear

deteriorating effect.

The simulations prove that the geometric, two-parameter, model provides unbiased

estimates, but coverage probabilities are less than desirable due to underestimated standard

errors. Other studies have found that distributed lag models underestimate standard

errors [61, 94]. Investigators are recommended to report bootstrapped standard errors to

avoided inflated type I errors [94]. Furthermore, it has been shown that the likelihood

ratio tests or AIC and BIC criteria can be used to assess competing model specifications,

but likelihood ratio tests may favor the more constrained model [29, 94]. The results of

the distributed lag analysis for the two competing designs in the VNSNY Medication and

Fall data provide some what different results. The Cox proportional hazards model results

are consistent with a geometric lag over three weeks, but the unconstrained distributed lag

for the case-crossover design suggests something more attune to a quadratic relationship.

Almon also presented the polynomial distributed lag model, which could be considered

in future work [2]. In this analysis, the results from the case-crossover design are not
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considered informative or representative of the true effect due to the excessive loss of data.

Simulations and the VNSNY Medication and Fall data analysis both assume that the

effect deteriorated or can be described by unconstrained distributed lag model with L

lagged variables. In all instances, L is fixed by the investigator. In practice, however,

the investigator should consider other methods, such as the use splines, for exploring the

non-linear relationship. Let the interval [ξi(M)b, ξi(M)e] denote the beginning and end times

of the M th strata from the case-crossover design, and let the time from medication change

in reference to the event, or end of the control interval, be defined as

µi(M) =

 ξi(M)e − τi, τi ∈ [ξi(M)b, ξi(M)e]

0 τi /∈ [ξi(M)b, ξi(M)e]
(6.1)

Then, a conditional likelihood for a linear spline which divides the time from medication

change into k knots at a, b, c, ... is constructed as

Lcco(βk) =
∏

i∈{i;δi=1}

e
β1(µi(0)−a)

+
+β2(µi(0)−b)

+
+β3(µi(0)−c)

+
+...∑M

m=0 e
β1(µi(M)−a)

+
+β2(µi(M)−b)

+
+β3(µi(M)−c)

+
+...

(6.2)

where

(u)+ =

 u u > 0

0 u ≤ 0
(6.3)

Gasparrini has recently presented a general statistical framework for modeling dis-

tributed lag non-linear models [29]. He uses the notation s(z, t) to specify an exposure-

response curve in terms of exposure history of z evaluated at time t such that

s(z, t) =

L∑
l=lo

f(xt−l) ∗ w(l) (6.4)

He has demonstrated this framework in Cox proportional hazards models, but can be

applied to various study designs and regression models and has code available in the R

package dlnm [28]. The next steps following the work of this thesis is to incorporate

Gasparrini framework into the case-crossover design in future work.

The simulation studies in this thesis are believed to be the first to evaluate the case-

crossover design using a time-to-event data and under the case paradigm; the population

giving rise to the cases are also included in the comparative cohort design. This thesis shows
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that the case-crossover and the “prospective” cohort design obtain unbiased estimates of

the log-hazard ratio when the sample size is sufficient. In smaller sample sizes, however, the

1:1 and 1:2 case-crossover designs tend to over estimate the magnitude of the log-hazard

ratio when an effect truly does exist, while the Cox-hazards model and the case-crossover

design, matching 10 or 25 controls, typically underestimates the log-hazard ratio. In the

simulations presented in this thesis, the 1:3 case-crossover design results in estimates with

the least amount of bias when the number of events is 500 or less. Further analysis of the

simulations show that the number of discordant pairs for the conditional logistic regression

is very small, yielding only about 6 per simulation for 5000 cohort and 10%.

Bias in conditional logistic regression has been thoroughly documented for sparse data

sets [32, 33, 38, 92]. Sun et al. also observed bias in simulations applying conditional

maximum likelihood to 1:1 and 1:2 matched case-control studies with small sample size [92].

The authors have attributed the overestimation to the asymptotic properties of conditional

maximum likelihood and have suggested corrective methods to obtain unbiased estimates

in small sample sizes [92]. Heinze and Puhr have observed bias of similar magnitude

for 1:4 matched-case-control data [38]. The simulations in this dissertation are based on

Austin’s guidelines generating survival times to simulate Cox proportional hazards models

with time-varying covariates [3]. Austin and colleagues have recently published a series

of simulation studies similar to those in this dissertation. He observed bias for a time-

varying variable exceeding -20% for cohorts with 5% incidence and a treatment prevalence

of 10% [4]. Furthermore, Austin also observed that this negative bias was still present but

converged to 0 with larger treatment prevalence and incidence rates.

This thesis has also provides evidence to conclude that the case-crossover design is

preferred over the Cox proportional hazards model when unmeasured confounders are

present at baseline. When a baseline factor is present and correlated with the exposure

and the event, the Cox hazards model over-estimates the log-hazard ratio by up to 25%

compared to the true value. When the exposure is assumed to be independent of event,

the bias inflates empirical Type I errors reaching up to 50% when the nominal type I error

is 5%. Erroneously concluding a drug has a side effect, such as falling, could have serious

implications. Such type I errors may result in physicians and patients being reluctant to
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take a drug because of potential side effects even though it has real therapeutic value.

In settings where the investigator is able to observe all confounders, the Cox propor-

tional hazards model approach is preferred because of its superior efficiency compared to

the case-crossover design. When β = 0, the relative efficiency achieved in the case-crossover

design compared to the cohort design follows the relative efficiency = M/(M+1) rule estab-

lished by Brewslow and Day for matched case-control designs [11, 12]. A 1:5 case-crossover

design is at the limits of what the authors consider feasible in practice. In addition, the

larger the number of matched controls can expose the case-crossover design to other forms

of bias associated with increasing the within subject time frame for reference strategy.

When M increases, the effect of capturing trends in the exposure or non-constant hazards

will be magnified when otherwise may be assumed to have minimal effect. Even though the

Cox proportional hazards model is consistently preferred in terms of efficiency, an assess-

ment of relative efficiency should take into consideration the cost associated with obtaining

data on patients who did not experience the event.

A major disadvantage to the case-crossover design in VNSNY Medication and Fall data

set is the amount of data discarded due to limitations of the reference strategy. On top of

losing efficiency, loss of data presents complications when assessing competing models or

exploring the duration of the effect. By increasing the assumed duration, the length of the

case- and control- windows must be increased, and as a result additional observations are

discarded. Goodness of fit criteria, such as AIC or BIC, are incomparable between case-

crossover designs when number of events used in the conditional likelihood are different.

The duration of the effect observed in the analysis of the VNSNY Medication and Fall data

was unanticipated and presents another issue when applying the case-crossover design to

this data. Previous case-crossover design studies have only considered transient effects

resulting from a medication change that lasted days, and the effect observed by the Cox

hazards analysis suggested the effect may last as long as three weeks after the medication

change. Selecting control-times and not appropriately accounting for the carry-over effect

will bias results towards the null. If the full cohort is available in practice as it is here, the

Cox hazard model may serve as a diagnostic method for determining how long the carry

over effect may last. The combination of the relative short follow-up time and the duration
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of the effect for this particular medication classification suggests that the case-crossover

design is not applicable to the VNSNY Medication and Fall data.

The Cox proportional hazards model was preferred in a majority of the simulation

studies and in the VNSNY Medication and Fall data. Still, there are several reasons why

the investigator may still want to consider the case-crossover design. First, it may still be

preferable in some settings since it is able to implicitly control for confounders that do not

change over time. Obtaining data on potential confounders may not be as convenient and

complete in other applications. It could also be preferable when there is a substantial cost

to obtaining data. The investigator may also want to avoid applying the Cox proportional

hazards model because it requires checking the proportional hazards assumption for each

individual covariate. This assumption could be violated, or the exercise of checking each

covariate may be daunting when a study is controlling for a larger number of covariates.

Finally, the time of origin may be difficult to define in many applications. The Cox hazards

model is not the only approach to exploring the type of associations with medication

changes and the risk of falling. Many researchers may wish to use other methods such as

a longitudinal logistic regression with time-varying variables [83, 86].

6.1 Limitations and Future Work

Future work may consider studying the effects of violating several assumptions made about

the time-to-event data generated in the simulation studies. First, the exposure distribution

in these studies were assumed to be independent and constant. The case-crossover design’s

estimates will be biased when the exposure of interest tends to either increase or decrease

for all patients in the study [85] . The self-controlled, case series method, described in

Chapter 2, is another epidemiological design methodology proposed as an alternative to the

case-crossover design and is able to account for secular trends in the exposure [20, 21, 22].

Future work may consider introducing a trend to the exposure and include the case series

analysis in the time-to-event simulations. If the trend is consistent in both patients who

experience the event and those who do not, it is hypothesized that the Cox proportional

hazards model should be able to take trends into account while yielding superior efficiency

over the case series design.
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Future work may also explore the effect on the case-crossover design when censoring is

informative. In addition, these studies only considered the time to the first fall even though

patients can experience more than one fall. Recurrent events within the case-crossover

design has already been explored by [58], but future work may compare their methodology

to how the Cox proportional hazards model can take within subject correlations into effect.
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