Staff View
Temporal patterns of short non-coding RNA modifications and expression

Descriptive

TitleInfo
Title
Temporal patterns of short non-coding RNA modifications and expression
Name (type = personal)
NamePart (type = family)
Naqvi
NamePart (type = given)
Ammar S.
NamePart (type = date)
1984-
DisplayForm
Ammar S. Naqvi
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Grigoriev
NamePart (type = given)
Andrey
DisplayForm
Andrey Grigoriev
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Nam
NamePart (type = given)
Jongmin
DisplayForm
Jongmin Nam
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Bonini
NamePart (type = given)
Nancy
DisplayForm
Nancy Bonini
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Camden Graduate School
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2015
DateOther (qualifier = exact); (type = degree)
2015-05
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
We investigated the function and properties of small RNAs, particularly microRNAs and tRNA-derived fragments (tRFs) with age. We report the characterization of a novel 3'-to- 5' exonuclease, Nibbler (Nbr), that generates differing isoforms of miRNAs in Drosophila.. We developed a robust approach to help identify and characterize 3' heterogeneity in microRNAs controlled by Nbr, which assisted in identifying age- associated traits, including neurodegeneration and lifespan. Subsequently, given the fact Nbr interacts with Ago1 and not Ago2, we observed an accumulation of certain isoforms, which lead us to ask if there were particular patterns and trends that were Ago-specific. Interestingly, we report a novel age-associated change of select isoforms with age that is Ago2 specific. RNA deep-sequencing analysis coupled with experimental evidence reflected an increased loading of miRNA isoforms into Ago2 with age. Essentially, the loss of methylated miRNAs led to accelerated brain degeneration and shortened lifespan. Intriguingly, we also observed and identified Ago-loaded tRFs, which appear to have properties similar to those of miRNAs. We found this class of small RNAs to also display age-associated changes. For the first time, we found that differentially loaded Drosophila tRFs mapping to both nuclear and mitochondrial tRNA genes associating with all 20 amino acids. These tRFs show a number of similarities with miRNAs, including seed sequences, suggesting a similar role and function. Moreover, we further characterized and predicted targets for these tRFs and show a significant enrichment in development and neuronal function, suggesting a role in brain-related processes with age. In sum, we discovered a novel component of the canonical microRNA biogenesis pathway, responsible for the generation of multiple isoforms. We also connected specific age- associated patterns and trends of select microRNA isoforms, which were found to impact proper brain development and lifespan. Moreover, we identified differentially loaded tRFs and elucidated their structures, loading, and expression patterns, which corresponded closely with microRNAs. Finally, we were able to identify tRF seed regions that potentially play a role in brain activity or brain changes with age.
Subject (authority = RUETD)
Topic
Computational and Integrative Biology
Subject (authority = ETD-LCSH)
Topic
Non-coding RNA
Subject (authority = ETD-LCSH)
Topic
Small interfering RNA
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_6516
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (x, 181 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Ammar S. Naqvi
RelatedItem (type = host)
TitleInfo
Title
Camden Graduate School Electronic Theses and Dissertations
Identifier (type = local)
rucore10005600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3H70HNW
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Naqvi
GivenName
Ammar
MiddleName
S.
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2015-05-04 10:37:51
AssociatedEntity
Name
Ammar Naqvi
Role
Copyright holder
Affiliation
Rutgers University. Camden Graduate School
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024