
SCHEDULING AND FLEXIBLE CONTROL OF
WIDE-AREA DATA TRANSPORT SERVICES FOR

END-TO-END APPLICATION WORKFLOWS

BY MEHMET FATIH AKTAS

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Manish Parashar

and approved by

New Brunswick, New Jersey

May, 2015

ABSTRACT OF THE THESIS

Scheduling and Flexible Control of Wide-Area Data

Transport Services for End-to-End Application Workflows

by Mehmet Fatih Aktas

Thesis Director: Manish Parashar

Emerging end-to-end scientific applications that integrate high-end experiments and in-

struments with large scale simulations and end-user displays, require complex couplings

and data sharing between distributed components involving large data volumes and

varying hard (in-time data delivery) and soft (in-transit processing) quality of service

(QoS) requirements. As a result, enabling efficient data coupling is a key requirement

of such workflows. In this thesis, we try to address this in two levels; in data trans-

port level and in data sharing abstraction level. Firstly, we leverage software-defined

networking (SDN) to address issues of data transport service control and resource pro-

visioning to meet varying QoS requirements from multiple coupled workflows sharing

the same service medium. Specifically, we present a flexible control and a disciplined

resource scheduling approach for data transport services for science networks. Further-

more, we emulate an SDN testbed on top of the FutureGrid virtualized testbed and

use it to evaluate our approach for a realistic scientific workflow. Our results show

that SDN-based control and resource scheduling based on simple intuitive service mod-

els can meet the coupling requirements with high resource utilization. Secondly, we

present design and implementation of an asynchronous data sharing framework for ap-

plication couplings over wide-area network. Specifically, presented framework extends

ii

shared space abstractions of Dataspaces, which is a data sharing framework for HPC

applications, to wide-area scale using a NUMA-like architecture and implementation

that leverages advanced data transport technologies like GridFTP and RDMA, and

uses predictive prefetching using Markov based models to bring remote data close to

the application in-time. Finally, our initial results evaluating the performance of the

presented framework show that given some slack time between the data insertion and

retrieval queries, latency due to data transport over wide-area network can be efficiently

masked for realistic scientific workflows.

iii

Acknowledgements

I would like to start by acknowledging my family in Turkey who has always been very

understanding and encouraging during my studies. I would like to thank my advisor

Prof. Manish Parashar for his invaluable guidance, support and encouragement during

the course of this work and throughout my graduate studies. I am thankful to Prof.

Ivan Rodero and Kristin Dana for being on my thesis committee. I also thank my

colleagues in RDI2, particularly Georgiana Haldeman and Alejandro Pelaez, for their

friendship and feedbacks.

The research presented is partially published in [1] and extended version is submit-

ted as a special issue to Future Generation Computer System Journal (FGCS, Elsevier

impact factor 2.6). Presented work is supported in part by the US National Science

Foundation (NSF) via grant numbers ACI 1339036, ACI 1310283, DMS 1228203, and

IIP 0758566; by the Director, Office of Advanced Scientific Computing Research, Office

of Science, of the US Department of Energy through the Scientific Discovery through

Advanced Computing (SciDAC) Institute of Scalable Data Management, Analysis and

Visualization (SDAV) under award number DE-SC0007455; by the Advanced Scien-

tific Computing Research and Fusion Energy Sciences Partnership for Edge Physics

Simulations (EPSI) under award number DE-FG02-06ER54857; by the ExaCT Com-

bustion Co-Design Center via subcontract number 4000110839 from UT Battelle; by

the RSVP grant via subcontract number 4000126989 from UT Battelle; and by an IBM

Faculty Award. The research was conducted as part of the NSF Cloud and Autonomic

Computing (CAC) Center at Rutgers University and the Rutgers Discovery Informatics

Institute (RDI2).

iv

Dedication

To my parents.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Scheduling and Flexible Control of Bandwidth and In-transit Services

for End-to-End Application Workflows . 1

1.1. Introduction . 1

1.1.1. Motivation . 1

1.1.2. Problem Description – Enabling End-to-End Coupled Simulation

Workflows . 2

1.1.3. Overview and Approach . 3

1.1.4. Contributions . 4

1.1.5. Outline . 5

1.2. Background and Related Work . 5

1.3. Scheduling and Flexible Control of Bandwidth and In-transit Services . 7

1.3.1. In-transit Service Model . 8

1.3.2. Data Transport Service Control 10

1.3.3. Resource Allocation . 12

General Overview . 12

Problem Domain-Specific Adaptation 14

Penalty and Utility Functions 16

vi

Deriving models for session penalty and utility 16

Mapping application demands for hard and soft requirements on

the models . 18

1.4. Experiments and Results . 19

1.5. Conclusions and Future Work . 24

2. Wide-Area Data Staging . 30

2.1. Introduction . 30

2.1.1. Motivation . 30

2.1.2. Problem Description . 30

2.1.3. Overview and Approach . 32

2.1.4. Contributions . 33

2.1.5. Outline . 34

2.2. Background and Related Work . 34

2.2.1. Dataspaces . 34

2.2.2. Prefetching . 38

2.3. Extending Dataspaces Abstractions to Wide-Area Scale 41

2.3.1. A conceptual overview of Wide-Area Dataspaces 41

2.3.2. Architecture and Implementation overview 41

2.4. Wide-Area Data placement . 45

2.4.1. Prefetching formulation . 48

2.5. Evaluation . 54

2.6. Conclusions and Future Work . 55

References . 58

vii

List of Tables

1.1. Parameters for the Fusion workflow scenario. 22

1.2. Parameters for the random scenario. 25

viii

List of Figures

1.1. The end-to-end connection is broken into three sub-connections, which

are represented in the Figure by dotted, dashed and dotted-dashed lines. 9

1.2. Illustration of IT-SP operations at producer, consumer and intermediate

host stacks. 9

1.3. Data transport control architecture. Varying-sized squares depict het-

erogeneous processing/storage capacity of intermediate hosts. 10

1.4. DT-OS operations for a single coupling session – an illustration of the

control actions taken to schedule and implement a data walk for a cou-

pling session between source and sink. 12

1.5. Mapping three different coupling types on two dimensional parameter

space of msoft
s vs. mhard

s and x̌softs vs. x̌hards 19

1.6. A schematic of the ECEI data and diagnostics workflow. The diagnos-

tic routines do not change the size of the data, and comply with the

optimization problem formulated in Section 1.3.3. 20

1.7. Schematic overview of the emulation testbed deployed across multiple

VMs. 21

1.8. Two topologies used for the experiments. Filled switches are the ones

with in-transit host connected. 23

1.9. Results for the first set of experiments using the topology in Figure 1.8a. 26

1.10. Results for the second set of experiments using the topology in Figure

1.8b. 27

1.11. Distribution of the allocation of link and host capacities to active cou-

pling sessions after each scheduling run. Every stacked bar corresponds

to allocation to a single session. 28

ix

1.12. Results for the experiments using the random scenario in Table 1.2 and

topology in Figure 1.8b. 29

2.1. Organizational representation of Wide-Area Dataspaces. 32

2.2. Representation of wide-area Dataspaces on one-dimensional circular node-

identifier space (Left). Each Dataspaces stores preceding segment on the

key space over the resources distributed in its locality (Right). 33

2.3. Conceptual view of Dataspaces architecture. 37

2.4. Wide-Area Dataspaces Architecture. DS: Dataspaces, WA: Wide-Area . 41

2.5. Representation of prefetching buffers allocated in the peers of each Datas-

paces. 46

2.6. Decision tree constructed by the prefetcher given observed page access

history H = [a, a, b, b, b, a, a, b, a, a, a] and order of Markov model is 2

and number of accesses to be predicted is 1. 50

2.7. Representation of application key renaming procedure during prefetch-

ing for producer-consumer scenario. Model order k is 2 and number of

prefetched data items l is 1. 54

2.8. Comparison of total get time between w/ (Bottom) and w/o (Top)

prefetching for the scenario of producer-consumer based sharing of 10

data items of same size. Both X and Y-axes are log-scaled. 57

x

1

Chapter 1

Scheduling and Flexible Control of Bandwidth and

In-transit Services for End-to-End Application Workflows

1.1 Introduction

1.1.1 Motivation

As scientific discovery is becoming increasingly data driven, scientific applications are

moving towards end-to-end workflows that integrate coupled simulations with data

sources such as instruments, sensor systems and experiments, and with data analysis

and visualization pipelines to facilitate online knowledge extraction. Furthermore, the

execution of such workflows often involves geographically distributed resources with

runtime interactions, coordination and data exchanges between processes running on

these resources [2, 3].

Scientific workflows typically involve complex couplings between the workflow com-

ponents/services, requiring sharing of large data volumes with varying quality of service

(QoS) requirements, and efficient data transport is a key requirement. Specifically, the

time between when the data is generated at the producer and when it can be consumed

at the consumer can have a significant impact on the execution of the workflow. For

example, slower data delivery can throttle the consumer, or faster data delivery may

require storing the data at the consumer. Some applications may require that data

is delivered at the consumer within a tight time window (for example, data needed

to control an experiment), which adds further requirements on the data transport.

Additionally, there often exists natural mismatches in the way data is represented at

producers and consumers, and the data has to be transformed in a timely manner before

2

it can be consumed. As a result, the data transport has to address multiple challeng-

ing requirements based on data sizes, data production and consumption rates, strict

constraints on data delivery time and data storage, and managing data transforma-

tions between producers and consumers. The data transport medium is also typically

shared by multiple application workflows with possibly competing application specific

coupling requirements, and best-effort solutions, which inherently can not offer service

guarantees, will not be able to achieve high performance when using an over utilized

service medium.

1.1.2 Problem Description – Enabling End-to-End Coupled Simula-

tion Workflows

Emerging scientific applications integrate simulations with data sources such as ex-

periments and instruments, and analysis and visualization pipelines, into end-to-end

workflows. These workflows exhibit different and varying interaction, coordination and

data coupling behaviors, such as:

• Tight Coupling: Coupled processes exchange data very frequently. Therefore,

when tight coupling is dominant and processes are coupled over the network, total

workflow execution time is typically dominated by the data transfer time.

• Loose Coupling: Relatively less frequent, asynchronous and possibly oppor-

tunistic data exchanges among the coupled processes. Producer and consumer

progress at different rates, and may have different data representations making

intermediate data transformation necessary.

• Dataflow Coupling: Data flows from producers to consumers using publish/subscribe/notify-

like semantics, for example, in case of data processing and/or analysis pipelines.

Dataflow coupling may often involve strict data transport constraints such as

delivery time, data integrity and reliability.

To meet such complex and varying coupling requirements, it is essential for the

data transport service to be application aware and self-optimizing in that it must

3

autonomously adapt based on dynamic application requirements and resource states.

Meanwhile, the overheads of adaptation and service management on the application

should be acceptable.

In this research, we focus on control and scheduling of data transfer (across network

switches and links) and in-transit service (intermediate staging and processing hosts)

resources to meet varying data transport requirements of differing coupling behaviors,

such as those described above. We assume that the different coupling requirements

of the application workflow are provided to the scheduler before the coupled data is

streamed, as further discussed in Section 1.3.2.

1.1.3 Overview and Approach

The Software Defined Networking (SDN) initiative aims at making network control

simpler and more flexible using well-defined abstractions for forwarding and switch

configuration. A key idea behind SDN is replacing the existing distributed control with

centralized control. This is achieved by implementing network control programs on top

of the network operating system (NOS), which in turn provides the control programs

with a global view of the network and interfaces for communicating with switches,

enabling the control programs to configure the network state.

In this research, we explore how the data transport service can benefit from SDN,

and the capabilities that it provides, such as (1) open and programmable control, (2)

faster innovation at the networking layer, (3) easy customization and optimization of

network resource scheduling via flexible control; all those can be used to enhance data

transport service management. Overall, by leveraging SDN-based networking control,

we propose a framework for data transport service control and scheduling for end-to-end

coupled application workflows.

Our approach for scheduling and flexible control of data transport services is ex-

plained in detail in section 1.3. Here a brief overview of it will be given. Data transport

service for application workflows over wide-area consists of data transfer and in-transit

processing and staging services. We assume no middleware exists to provide data

transport services; data transfer between the data producer and consumer is TCP/IP

4

flow over network switches and in-transit processing/staging takes place at available

intermediate resources intervening the data flow. Network switches and intermediate

resources are distributed and interconnected, and have heterogeneous service capacity

i.e. respectively bandwidth, and processing rate and staging duration. As illustrated

in Figure 1.3, we propose to implement the control plane for these resources on top of

a SDN-Network Operating System (NOS) so that controllers implemented on top of

the control plane have global view of resources and achieves resource management us-

ing flexible API for controlling data transfer and in-transit processing/staging services.

SDN-NOS already provides a flexible API for controlling data transfer so we extend it

to Data Transport-OS (DT-OS) by adding ”right” abstractions and API for in-transit

data processing/staging. We implement a prototype DT-OS by extending a SDN-OS

which is actively used by researchers. Finally, we are presenting a disciplined approach

using convex optimization to allocate resources (i.e. bandwidth, in-transit processing

rate and staging duration) between different data transport sessions and implemented

a scheduler using this approach on top of DT-OS.

1.1.4 Contributions

The goal of this project is to explore the scheduling and control of bandwidth and

in-transit services to address the challenges of data transport service for end-to-end

scientific application workflows. Specifically, we leverage software-defined networking

(SDN) to address issues of data transport service control and resource provisioning to

meet varying QoS requirements from multiple coupled workflows sharing the same ser-

vice medium. The specific contribution of this work is a disciplined resource scheduling

approach for data transport resources that is both application and network aware, and

enables flexible control. The proposed control framework achieves flexibility by using

SDN abstractions for managing the network, and further extending these abstractions

to manage data transport services and schedule data transport resources. We also

develop a model for in-transit data staging and data processing using intermediate re-

sources in the data path using the approach outlined in [3, 4, 5]. Finally, we emulate

an SDN testbed on top of the FutureGrid virtualized testbed and use it to evaluate

5

our approach for an end-to-end Fusion workflow. Our results show that SDN-based

control and resource scheduling based on simple intuitive models can meet the coupling

requirement with high resource utilization.

1.1.5 Outline

The rest of this chapter is organized as follows. Section 1.2 provides some background

and summarizes the related work. Section 1.3 presents our approach for scheduling

and control of bandwidth and in-transit services for end-to-end scientific application

workflows. Section 1.4 describes our emulation testbed and presents the experimental

evaluation of our approach. Section 1.5 concludes the chapter, and outlines ongoing

and future research.

1.2 Background and Related Work

In [3], Bhat et al. use adaptive buffer management based on proactive and/or online

user-defined policies for the QoS management of a self-managing data streaming and

in-transit processing service for Grid-based data intensive workflows. In this work, the

streaming and in-transit processing components work cooperatively (using feedforward

and feedback messages) to meet overall application requirements and constraints. This

solution is similar to our solution in that it uses QoS management to meet user-defined

requirements. However the approach in this work does not address the management of

data transport resources, while our research is founded on scheduling and controlling

of the transport resources. Cooperative management strategies presented in [3] could

be used to extend our framework to work efficiently on a commodity service medium.

Active networking is a communication pattern [6] for tailoring network service to

user requirements as explained in [7]. A network is called active when processing can

be done within the network over active elements such as switches that have processing

capability. Programming active switches according to application specific needs and

taking advantage of packet-based processing within the network has been a key focus of

active networking research. In [8], Lefevre et al. present an active network architecture

6

(A-Grid) that attempts to provide QoS management for Grid data transport services

in addition to other data transport services such as reliable multicast and dynamic

service deployment. Their architecture employs QoS management at intermediate ac-

tive routers, and in principal, it is similar to the opportunistic in-transit processing

employed by our solution. However, our solution makes use of intermediate hosts to do

flow-based processing rather than packet-based processing over active network elements.

Moreover, their solution can only provide QoS management per application, but not

per workflow, because their architecture lacks a global view of the service medium and

of simultaneously running user applications, which is another feature of our solution.

Network resource reservation systems such as ESNET’s OSCARS [9] and Ultra-

Science Net [10] provide on-demand dedicated bandwidth channels to user applications.

They introduce a virtual single-switch abstraction on top of networks which employ

both a bandwidth reservation system and SDN concepts in [11]. The work presented in

this chapter is different but complementary. In this thesis, we presented a disciplined

scheduling of bandwidth and in-transit processing/staging capacity to meet application

requirements for data transport in the context of data-intensive coupled workflows, and

utilized SDN-based centralized control concepts to manage resource states according to

scheduling decisions. Network reservations and virtualization systems can be used in a

complementary manner to improve performance of the scheduling and flexibility of the

resource control that we introduced.

DataCutter [12] is a middleware for filtering scientific data in a Grid environment

which enables application developers to explore and analyze data sets stored in archival

storage systems in a wide-area network. Data processing takes place within distributed

Grid resources to run algorithms for filtering data. These filter-based algorithms are

composed by operations like sort, select and join, which are implemented as batch or

stream-based processing in the framework. Overall, main focus of this work is data

management not data transport – they take data transport into consideration only to

develop heuristics to place computation to resources close to data while the main focus

of our research is about optimizing the efficiency of data transport over wide-area when

it is inevitable. However, they use stream-based processing to offload computation

7

from the data source which is close to opportunistic in-transit processing idea we focus.

Control of data transport services we introduce here can be used on extending stream-

based processing approach used in DataCutter framework.

AutoFlow [13] project aims to meet performance requirements of distributed in-

formation flow applications by achieving awareness between the Grid middleware (in-

cluding Grid data transport services), resource and applications so that behaviors of

interacting elements can be adjusted autonomically based on the runtime states of

their horizontal (e.g. data generator application - processing resource) or vertical (e.g.

network switch - data transport service middleware) peers. This project is more com-

prehensive and aggressive than our project in terms of aiming at achieving inter-aware

operational Grid. Our work is more focused on enabling efficient wide-area workflow

couplings than managing whole workflow execution over the Grid as in AutoFlow.

An active buffering approach is presented in [14] which is mainly about carrying

I/O operations from the data source to third-party computing nodes. Their approach

achieves this by managing the idle third-party idle memory to form a buffering hierarchy

which transports the data to the server side only when the buffer is full and writes data

is written to disk at the server side once the server side memory also gets full. Even

though active buffering does not address challenges with scientific data transport over

wide-area, the idea of using intermediate nodes to stage data in locally available idle

resources is similar to in-transit staging we consider.

1.3 Scheduling and Flexible Control of Bandwidth and In-transit Ser-

vices

In this section, we explore scheduling and flexible control of bandwidth and in-transit

services for end-to-end scientific application workflows, and leverage software-defined

networking (SDN) to address issues of data transport service control and resource provi-

sioning to meet varying QoS requirements from multiple coupled workflows sharing the

same service medium. Specifically, the solution we propose has three key components:

(1) A flow-based in-transit service model, (2) Centralized layered architecture for data

8

transport service control, and (3) Application and network aware resource scheduling

for workflow couplings.

General solution architecture can be summarized as follows. Given a service medium

consisting of interconnected network switches and intermediate resources with hetero-

geneous staging and processing capability, a centralized controller with capability of

managing service medium gets application demands from workflow components (ser-

vice users) for each data transport session and it tries to schedule total bandwidth,

processing and staging capacity between all the active data transport sessions so that

maximum ”cumulative” satisfaction of user demands can be achieved. In the following

subsections, we will detail the three key components of this general solution idea.

1.3.1 In-transit Service Model

We have observed that in the packet-based intermediate processing/staging model, by

intercepting network packets on-the-fly, the end-to-end system design arguments are

violated (this has been further discussed in [15], [16] and [17]), which significantly im-

pacts the existing network stack performance. In order to achieve flow-based in-transit

processing/staging over the intermediate hosts, we propose a model that uses switch-

host coordination, which is conceptually similar to the gateway-host coordination in the

Phoebus architecture [18], to break the end-to-end connections into subconnections. A.

Brown et al. in [18] demonstrate that the Phoebus architecture preserves the end-

to-end design arguments within sub-connections, which ensures that the overall data

transport performance is not adversely affected. In the proposed flow-based in-transit

processing/staging approach, end-to-end connections between producers and consumers

are broken into sub-connections at intermediate hosts so that application data at these

intermediate hosts can be treated as a flow rather than packets, as illustrated in Figure

1.1. Autonomic switch-host coordination for creating and managing sub-connections

can be handled by the granular forwarding control of SDN – this is further explained

in Subsection 1.3.2.

The proposed flow-based in-transit processing/staging can be implemented between

the transport layer (TCP) and the application layer using an in-transit service protocol

9

Figure 1.1: The end-to-end connection is broken into three sub-connections, which are

represented in the Figure by dotted, dashed and dotted-dashed lines.

(IT-SP). The IT-SP header enables the flow of service specific information (e.g., the

list of functions that will be opportunistically executed over the data) between the pro-

ducer, the consumer and intermediate hosts. As shown in Figure 1.2, the producer en-

capsulates the application data stream with the IT-SP/TCP header. The intermediate

hosts decapsulate the IT-SP/TCP header and execute programmed processing/staging

pipelines 1 on the data. When the in-transit pipelines finish executing, the resulting

data is encapsulated using the updated IT-SP/TCP header. Finally, the consumer

decapsulates the IT-SP/TCP header and pushes the data to the application layer.

Figure 1.2: Illustration of IT-SP operations at producer, consumer and intermediate

host stacks.

1We have implemented processing rate and staging duration control using the conventional ”Token
Bucket Filter” (TBF) approach used for traffic control on packet-switching networks [19].

10

1.3.2 Data Transport Service Control

In order to manage autonomic switch-host coordination and ensure efficient in-transit

service control for flow-based intermediate processing and staging, our approach is to

extend SDN-NOS to a Data Transport OS (DT-OS) that offers support for in-transit

service management with the help of a controller (scheduler) running above it, as shown

in Figure 1.3. The scheduler contains the control logic that is required to decide on the

appropriate actions necessary to optimize the allocation of resources. Similar to NOS,

DT-OS provides a centralized view of the service medium to the scheduler, and in turn,

the scheduler tells DT-OS what resources to allocate to individual coupling sessions

according to the application requirements. The resulting control architecture consisting

of the DT-OS and the scheduler, preserves the centralized and layered features of the

SDN architecture. Overall, our framework adds two additional abstractions to the

existing SDN abstractions: (1) Switch-host coordination for flow-based intermediate

data processing/staging and (2) Configuration of in-transit processing/staging pipelines

at intermediate hosts.

Figure 1.3: Data transport control architecture. Varying-sized squares depict hetero-

geneous processing/storage capacity of intermediate hosts.

The flow of DT-OS operations for a single coupling session is illustrated in Figure

1.4. The steps include:

• 1-Request: Application sends a request (UDP: sching port), which consists of

11

application requirements. The gateway switch is programmed in advance to for-

ward packets wild-carded with UDP: sching port to the scheduler.

• 2-Scheduling: The scheduler does a feasibility check 2 on the application re-

quirements and then generates rules for data walk route and resource allocation

for the session.

• 3-State setup: DT-OS translates the rules generated by the scheduler into low-

level service state update messages, and sets up forwarding and in-transit service

tables at the switches and intermediate hosts.

• 4-Reply: The scheduler sends a reply (UDP: sching port) over the gateway

switch where the request was initially received, and the switch forwards it to

the initiator of the request (i.e., the source). The reply contains scheduling infor-

mation (e.g., scheduled TCP destination port stream port).

• 5-Data streaming: Once the source receives the reply, it immediately starts

streaming data over IT-SP/TCP: stream port.

In step 3-State setup, DT-OS configures forwarding tables and in-transit service

tables by communicating with switches and intermediate hosts over the control chan-

nels. DT-OS programs the switches to recognize session packets wild-carded with TCP:

stream port, modify destination and/or source IP/MAC addresses and forward them

accordingly, in order to realize the scheduled data walk (over the source-host and host-

sink sub-connections as shown in Figure 1.4). DT-OS also programs the in-transit hosts

to listen on TCP:stream port, and execute scheduled processing/staging pipelines on

the session data and forward it to the next hop.

The scheduler treats every application request as a new coupling session. When there

are multiple active coupling sessions, the scheduler may need to reallocate resources

between them, dynamically update the resource states, and inform the applications

about any changes.

2If application requests cannot be satisfied as is, they are modified appropriately and the application
is notified.

12

Figure 1.4: DT-OS operations for a single coupling session – an illustration of the

control actions taken to schedule and implement a data walk for a coupling session

between source and sink.

1.3.3 Resource Allocation

We have not yet addressed the problem of resource allocation, which can become a bot-

tle neck if not done properly. In this section, we systematically formulate the problem

of optimizing resource allocation as a convex optimization problem, since convex op-

timization problems have unique globally optimal solutions that can be obtained with

several existing efficient, reliable and robust algorithms [20].

General Overview

Service is a generic term we use to describe capabilities provided by the network infras-

tructure, which are data transfer or in-transit data processing and staging. Capacity of

these services is quantified with data transfer rate, processing rate and staging duration.

Resources providing data transport services are network switches, links and in-transit

hosts. Coupling sessions refer to executing coupled simulation workflows that use data

transport services. Every coupling session is a stream of application data over the

scheduled service resources. Scheduling is the primary function of shared service man-

agement, and distributes finite capacity of each data transport service between coupling

sessions.

The objective during scheduling is to maximize cumulative user satisfaction, which

quantifies the satisfaction of user application requirements in terms of resource allo-

cation distribution over the coupling sessions. To define it we use total penalty and

13

utility functions P,U : Rk×N → R which return numerical penalty and utility scores

for a particular resource allocation distribution. Furthermore, we define a penalty and

utility function Ps, Us : Rk → R for each coupling session s, which helps to formulate

total penalty and utility functions as follows:

P (r) = max
s=1,...,N

Ps(r1,s, ..., rk,s)

U(r) = min
s=1,...,N

Us(r1,s, ..., rk,s)

(1.1)

where ri,s denotes allocation of resource i to coupling session s and constitutes an

element in the matrix r ∈ Rk×N , where k is the number of resources and N is the

number of coupling sessions. As promised in the last paragraph, we define scheduling

objective of maximizing cumulative user satisfaction as minimizing the total penalty

and maximizing total utility. Then, the problem of optimizing resource allocation can

be expressed as:

minimize
w.r.t.R2

+

[P (r),−U(r)]

subject to: sum(r[i, :]) ≤ Ci, i = 1, . . . , k,

r � 0.

(1.2)

where Ci is total capacity of resource i. However, defining objective as above transforms

the problem of optimizing resource allocation into a bi-criterion optimization problem,

which generally does not achieve global optimal since the objectives of the combining

functions (total penalty and total utility functions) may be competing. Therefore, we

further fit the bi-criterion optimization problem into a Pareto optimization problem by

scalarizing it using the weighted sum objective as in the following:

minimize
w.r.t.R+

f0(r) = P (r)− γU(r)

subject to: sum(r[i, :]) ≤ Ci, i = 1, . . . , k,

r � 0.

(1.3)

where γ > 0 can be interpreted as the relative weight of total utility relative to total

penalty.

In the next subsections, we define the individual components of the construction we

just described and explain how they all fit together.

14

Problem Domain-Specific Adaptation

Fitting the problem of optimizing resource allocation as formulated in the previous

subsection strips away some important aspects. For example, resource allocation for

coupling sessions assumes end-to-end connectivity, i.e., it assumes that there is a path

from the producer to the consumer, and it abstracts all the aspects of routing involved

in providing this end-to-end connectivity. Another requirement of resource allocation is

data integrity. Guaranteeing data integrity requires some assumptions about the struc-

ture of the produced data. We assume that (1) the produced data is in the form of list

of chunks of uniform size, (2) in-transit processing does not change the size of the data,

and (3) functions operated on data chunks also don’t change the size of the data chunks.

In addition, optimizing resource allocation over all the physical components (network

switches, links and intermediate hosts) for all the coupling sessions using optimization

variable matrix r, which contains allocation of actual resources to individual coupling

sessions, is an overkill. As a result, for each coupling session our framework schedules

network links by selecting one of the available routing paths, and intermediate hosts on

the chosen path, which together form the data walk. Then using convex optimization,

optimal service capacity (bandwidth, processing rate and staging duration) allocation

over the scheduled resources is obtained.

When there are multiple paths available for data transport between the session

producer and consumer, our path selection approach attempts to choose the path which

minimizes the overall discrepancy between the loads on all of the network links and in-

transit hosts in the system. To explain it with an example, suppose a path should be

assigned for a new coupling session and there are some number of available paths. Path

selection algorithm picks a path and assumes the path resources are allocated for the

session and finds the coefficient of variance (the ratio of standard deviation to the mean

value) of fair bandwidth of all the network links and fair processing/staging capacity

of all the in-transit hosts, and repeats this for every available path. Then, finally picks

the path which gives the minimum total coefficient of variance for fair bandwidth and

fair processing/staging capacity. Fair capacity of a resource is calculated by dividing

15

the total capacity with the number of coupling sessions using the resource.

However, simplifying the problem introduces the need of a mapping from the sim-

plified problem of optimizing over the data walks to the more complex problem of

optimizing over the physical resources. Essentially, what we need is a mapping M that

can map the previously defined matrix r (which abstracts the resource allocation over

the physical resources) to a matrix A (which abstracts the service capacity allocation

over the data walks), i.e., we need to construct A and M to fit the equality: A = Mr.

We construct matrix A as:

A =

bw1 bw2 . . . bwN

proc1 proc2 . . . procN

dur1 dur2 . . . durN

n1 n2 . . . nN

where bws, procs, durs represent allocation of bandwidth, processing rate and staging

duration for session s, and ns is a variable to be assigned a value between 0 and 1 by

the scheduler; the higher it is, the more processing work is scheduled to be completed

in-transit for session s. In order to fit A = Mr, we extend each element of r as a tuple

(rbwi,s , rproci,s , rduri,s) such that, if ri is a network link then rproci,s , rduri,s are zero, and if it is

an in-transit host then rbwi,s is zero. So it follows that:

bws = min
∀i|ri∈links

rbwi,s

procs =
∑

i|ri∈hosts

rproci,s

durs =
∑

i|ri∈hosts

rduri,s

where links and hosts are sets of network links and in-transit hosts on the data walk

of session s.

We first set M as a constant per scheduling run (it is recalculated for every new

scheduling run) and set A as the optimization variable using which we can model the

penalty and utility functions Ps and Us in a straightforward manner, as presented in the

next subsection. Based on this problem domain-specific modification, the formulation

16

of the optimization problem defined in the previous subsection now becomes:

minimize P (A)− γU(A)

subject to: A = Mr

A � 0

[n1 n2 . . . nN] � 1

sum(r[i, :]) ≤ Ci, i = 1, . . . , k.

(1.4)

Penalty and Utility Functions

Penalty and utility functions of a coupling session quantify performance of scheduling

in terms of its ability to meet the application requirements. They return penalty or

utility scores given service capacity allocated and application requirements. Following

the methodology suggested in [21], we define a requirement as hard if failing to satisfy

it returns penalty, and as soft if succeeding to satisfy returns utility. In the workflows

we have explored (1) there is a defined optimal time for data arrival, and a performance

penalty is incurred if the data arrives earlier or later than the optimal time – on-time

data delivery is a hard requirement, and (2) applications can benefit from on-the-fly

data processing since it can lead to an earlier completion of workflow execution and/or

reduced resource requirements, i.e., it incurs utility – in-transit processing is a soft

requirement.

Overall, we model session penalty and utility as functions of allocated service ca-

pacity and application demands for hard and soft requirements. Two steps to do this

are as follows:

Deriving models for session penalty and utility

To obtain a convex optimization objective (see equation (1.1) and (1.4)), Ps and Us

must be respectively convex and concave for each session.

Session penalty score with respect to the hard requirement (in-time delivery) can be

modeled as the relative difference of the actual data transport time from the optimal

transport time: |1− transs/opttranss|, where transs is actual transport completion

17

time and opttranss is the optimal transport completion time for session s. Transport

completion time is the sum of data transfer, processing and staging times. Data transfer

time increases multiplicatively with data size and additively with latency, and decreases

multiplicatively with bandwidth, i.e., Ds/bws + Ls where Ds is size of streamed data

and Ls is the latency of the network path. Model for data transfer time is a convex

function of bws since bandwidth is always positive. Data processing time increases

multiplicatively with data size (assuming in-transit processing does not change data

size), in-transit processing complexity, and decreases multiplicatively with processing

rate, i.e., Ds ×Os × (ns)
2/procs where Os is a scalar representing the total processing

complexity calculated as the sum of complexity indexes of all processing tasks. Com-

plexity index of a processing routine is a scale measuring how long it takes to execute a

routine for unit data at unit processing rate and an oracle model for it can be obtained

by running the task on data of varying sizes and interpolating the results. We chose

to use n2s as the percentage of processing tasks completed in-transit to make the pro-

cessing time model quadratic-over-linear function of ns and procs, and thus the model

is convex. This does not disrupt anything since the value of optimization variable ns

is constrained to be between 0 and 1 in equation (1.4), which constraints also n2s in

the same range i.e. if n2s = 0.4, then 40% of the total processing work is scheduled

to be completed in-transit. Finally, total time that the streamed data is staged over

in-transit resources is represented by durs. To summarize, we model data transport

completion time as:

transs =
Ds

bws
+ Ls +Ds ×

Os × (ns)
2

procs
+ durs

However, substituting this model of transs into session penalty model |1− transs/opttranss|

cannot achieve convexity because the absolute function is not non-decreasing. There-

fore, we will introduce a new optimization variable ts for each session s and replace

transs with it to get new convex session penalty model |1− ts/opttranss|, and add a

new inequality to the optimization problem to reflect the relationship between transs

and ts, so that variable ts will trace epigraph of transs:

Ds

bws
+ Ls +Ds ×

Os × (ns)
2

procs
+ durs ≤ ts

18

The gap between ts and transs is nonzero when available service capacity exceeds

the capacity needed to achieve the optimal objective value. This is not an issue in our

case since in data-intensive scientific workflows the network is typically over-utilized by

multiple coupling sessions.

Session utility score with respect to the soft requirement (in-transit processing)

could be modeled simply as the percent of processing tasks completed in-transit, which

we modeled as n2s previously. However, this would violate concavity of session utility

function so instead we use square root of this; ns as the numerical session utility score.

Overall, both session penalty and utility models produce values between 0 and 1

and both roughly represent ratio of two numbers. Therefore, the objective function

formulated in equation (1.4) makes sense since it returns the difference between two

ratios.

Mapping application demands for hard and soft requirements on the models

We will present a way to implement application demands for hard and soft requirements

by setting a few well-understood parameters. To fit application demands on the models

discussed in the previous step, we write session penalty and utility functions as follows:

Ps = max{mhard
s × (|1− ts/opttranss| − x̌hards), 0}

Us = msoft
s × (ns − x̌softs)

where:

• mhard
s : Rate of multiplicative increase in session penalty score per increase in the

relative difference between the actual and optimal transport times.

• x̌hards : Tolerance for in-time delivery; session penalty becomes zero when relative

difference between actual and optimal transport time is less than x̌hards .

• msoft
s : Rate of multiplicative increase in session utility score per increase in per-

cent of processing work done in-transit.

• x̌softs : Demand for in-transit processing; session utility becomes negative (penalty)

when percent of processing work done in-transit is less than x̌softs .

19

x̌hards

x̌softs

Tight

Loose

Dataflow

mhard
s

msoft
s

Dataflow

Loose

Tight

Figure 1.5: Mapping three different coupling types on two dimensional parameter space

of msoft
s vs. mhard

s and x̌softs vs. x̌hards

Overall, session penalty Ps is convex and session utility Us is concave. The reason

we used linear mapping function for session utility rather than piece-wise one as in

session penalty, is to make Us concave. The only effect of this is that x̌softs is a stronger

parameter to increase demand for in-transit processing than x̌hards is to decrease demand

for in-time delivery – if desired, linear mapping function can also be used in penalty

function.

Based on the coupling type, these four configuration parameters must be autonomously

tuned for each session. Figure 1.5 illustrates the relationship between the coupling

types outlined in section 1.1.2 and the four configuration parameters. In short, tight

coupling has more strict time constraints, data flow has more opening for opportunistic

in-transit processing and loose coupling is in the middle between these two. For prac-

tical implementation, the domain of the configuration parameters can easily be limited

and discretized.

1.4 Experiments and Results

To evaluate the framework described in this chapter, we used the ”Plasma Disrup-

tion Analysis” workflow [22] from the KSTAR3 project to develop synthetic use case

3Korea Superconducting Tokamak Advanced Research

20

FFT Upsample-plot

ECEI data Plasma Visualization

Figure 1.6: A schematic of the ECEI data and diagnostics workflow. The diagnostic

routines do not change the size of the data, and comply with the optimization problem

formulated in Section 1.3.3.

scenarios. In this application, plasma disruptions occur due to loss of stability and/or

confinement of tokamak plasmas and cause a fast thermal and/or current quench within

sub-milliseconds, which can damage the expensive (multi-billion dollars) tokamak de-

vice. As a result, finding precursors and early prediction of tokamak operation anoma-

lies is a very active research field. One such research effort is the plasma visualization

diagnostics system designed to provide direct 2D/3D visualizations of the plasma in

a tokamak. Visual plasma images are obtained via monitoring technologies such as

Soft X-Ray (SXR), Microwave Imaging Reflectometry (MIR), or Electron Cyclotron

Emission Imaging (ECEI). Diagnostic routines are then run over the plasma images to

detect precursors of plasma disruption.

For our experiments, we used data, diagnostic and visualization routines for ECEI

(see Figure 1.6) to compose synthetic scenarios consisting of multiple coupling sessions

with varying requirements sharing a service medium. ECEI generates high resolution

2D images of radiated electron temperature, which provide visualization of plasma in-

stabilities – specifically, a 24x8 float matrix image is generated every 2µs, i.e., 5,000,000

images are generated in 10 seconds resulting in ≈ 3.5GB of data. The over reaching

goal of KSTAR is to enable a remote scientist, for example, in the US, to monitor the

plasma visualizations to monitor tokamak stability and to take regulatory actions if

necessary. This requires diagnostic and visualization routines to be run either at US

site or opportunistically over the available intermediate resources.

For our experimentation testbed, we implemented DT-OS by extending POX, which

is a networking software platform [23], and the scheduler by using POX API. Further, we

21

Figure 1.7: Schematic overview of the emulation testbed deployed across multiple VMs.

used CVXPY [24] as the modeling language for the optimization problem for resource

allocation. Finally, we implemented the IT-SP layer on top of TCP at the producer,

consumer and intermediate hosts.

To emulate a coupling session with producer-consumer pairs, network switches-

links, and in-transit hosts in our experiments we used mininet [25]. Running the entire

system on a single machine is convenient but imposes limitation on switching and in-

transit processing capacity. For example, if the machine has 3GHz of CPU, mininet can

switch at most 3 Gbps simulated traffic. Moreover, overall available emulation capacity

is shared by multiple coupling sessions and resources. Therefore, we used multiple

mininets running on different VMs interconnected via GRE tunnels, as illustrated in

Figure 1.7. We then deployed our testbed on a distributed OpenStack cloud as part of

the FutureGrid testbed [26].

In our experiments, we used a use-case scenario which we obtained by monitoring

the Fusion workflow, and adapted it appropriately for our virtualized emulation setup,

which operates at a lower bandwidth (e.g. network links of 10Mbps) and processing

rate (e.g. in-transit hosts of 100Mfps). We label the coupling sessions taking place

22

during the workflow execution as tight, loose or dataflow based on the application

characteristics i.e. demand for in-time delivery or in-transit processing for a particular

coupling session. Relevant parameters of the scenario are summarized in Table 1.1,

where arrival time is when application sends the request for the coupling session, data

size is the size of data to be streamed over the coupling session and optimal transport

time is the optimal time for completing data transfer and in-transit processing.

Session

Id

Arrival

Time (sec)

Coupling

Type

Data

Size (MB)

Optimal Transport

Time (sec)

0 0 Loose 20 50

1 10 Dataflow 15 60

2 20 Tight 15 20

3 30 Dataflow 60 80

4 100 Loose 50 100

5 110 Dataflow 50 100

6 120 Dataflow 55 120

7 130 Loose 80 150

8 230 Tight 20 200

9 240 Dataflow 20 200

10 250 Loose 20 50

Table 1.1: Parameters for the Fusion workflow scenario.

We run the experiments on two topologies shown in Figure 1.8. Performance results

of the experiments are presented in Figure 1.9 and 1.10. Figure 1.9a and 1.10a show

that as expected from the coupling models discussed in Section 1.3.3, the amount of

processing completed in-transit is maximum for dataflow couplings and intermediate

for loose and the least for tight coupling sessions. More specifically, session 1-2, 8-9

are dataflow-tight and 4-5 is loose-dataflow coupling pairs and the order for in-transit

processing completed is dataflow > loose > tight. Figure 1.9b and 1.10b show that

the relative error between actual and optimal transport time can be slightly high for

relatively short-duration couplings. This difference is mainly caused by the discrepancy

between the models for data transfer and in-transit processing and the actual values

23

(a)

(b)

Figure 1.8: Two topologies used for the experiments. Filled switches are the ones with

in-transit host connected.

but the average error is approximately 5% which is acceptable for the Fusion workflow

execution. Figure 1.9c and 1.10c show that scheduling overhead is also naturally higher

for relatively short-duration couplings, in this case inherent network link latencies seems

to have most effect on the state setup time, and the average overhead is close to 3%

which does not also disrupt Fusion workflow execution. Moreover, scheduling overhead

can be masked by the application via sending request for data transport earlier than

the actual starting time.

In the experiments, scheduling is initiated by the DTS every time a new request

for data transport received from the application, and each scheduling run uses all the

resource capacities available to achieve its optimization goal (i.e., highest cumulative

satisfaction of application requirements). Figure 1.11 plots the logs of a network link

and an in-transit host loads after every scheduling run; link capacity of 10Mbps and

host capacity of 100 Mfps are fully distributed between active user sessions after every

scheduling. Note that since we assume the network is exclusively used by the scien-

tific workflows and the bandwidth is sliced between different coupling sessions by the

24

scheduler, even though resources are exhaustively used there is no congestion in the

network. This explains why the simple transfer completion model used in Section 1.3.3

works very accurately – the TCP windows rapidly converge to the optimal (allocated

bandwidth) without suffering from congestion.

To show the performance of the introduced scheduling and control approach for a

general use-case scenario, using the topology in Figure 1.8b, we run experiments with

a random scenario where the coupling sessions arrive as a Poisson process of rate 0.04;

one arrival every 25 seconds on average. Independent of the arrival process, every

session is of uniformly one of the coupling types considered in this work; tight, loose

and dataflow. Also independent of the coupling type, every session streams data of size

uniformly distributed between 10MB and 100MB, and has optimal transport time which

is Gaussian given the data size. One realization of such scenario is given in Table 1.2.

Figure 1.12 shows the results. As in Fusion workflow scenarios, bandwidth, processing

rate and staging capacity are distributed for each coupling session to maximize the

specific demands in terms of in-time delivery and in-transit processing. Discrepancies

between modeled and actual transport times are around %5 on average, scheduling

overhead is around %2 on average.

1.5 Conclusions and Future Work

This chapter presented the architecture and design of a scheduling and control frame-

work for data transport service management of data intensive scientific workflows which

is also partially published in [1]. Our framework leverages software-defined network-

ing (SDN) to address issues of data transport service control and resource provisioning

to meet varying QoS requirements from multiple coupled workflows sharing the same

service medium. Furthermore, we addressed both, data transfer and in-transit pro-

cessing/staging services. The presented framework has three key components: (1) A

flow-based opportunistic in-transit processing/staging service model, (2) SDN-based

centralized architecture for data transport service control, and (3) Application and ser-

vice medium aware scheduling. Overall, the framework attempts to address complex,

dynamic and varying data transport requirements of coupled application workflows by

25

Session

Id

Arrival

Time (sec)

Coupling

Type

Data

Size (MB)

Optimal Transport

Time (sec)

0 4 Loose 88 118

1 40 Dataflow 71 106

2 60 Tight 88 145

3 80 Dataflow 67 95

4 220 Loose 30 44

5 238 Dataflow 70 108

6 285 Dataflow 66 122

7 293 Loose 84 125

8 328 Tight 49 80

9 335 Dataflow 62 101

10 376 Loose 53 87

Table 1.2: Parameters for the random scenario.

scheduling bandwidth and in-transit processing/staging capacity. Scheduling is formu-

lated by using intuitive models for data transfer and in-transit processing/staging, and

implemented as a disciplined convex optimization problem.

We also presented an experimental evaluation using an emulated SDN testbed on

top of the FutureGrid virtualized testbed; for the evaluation we used synthetic appli-

cation workflow scenarios (derived from real Fusion simulations workflows and random

processes) to demonstrate that our framework can meet the coupling requirements and

achieve high resource utilization.

Our current work is focused on deploying the framework in a HPC Grid environment

and using it to support real application workflows. We are also working on getting the

optimization problem to work for more complex situations, such as with in-transit

routines which change data size.

26

(a) Size of the total delivered data and the

size of the portions that are opportunisti-

cally processed.

(b) Actual transport time: trans time, op-

timal transport time: opt trans time and

relative error between actual and optimal

transport time: rel-err.

(c) Time between join request-reply: join rtt and schedul-

ing request-reply: sching rtt. Scheduling overhead: over-

head is the relative error between sching rtt and actual

data transport time. Horizontal line: rtt is the round-

trip time between session producer and scheduler due to

network link latencies.

Figure 1.9: Results for the first set of experiments using the topology in Figure 1.8a.

27

(a)

(b)

(c)

Figure 1.10: Results for the second set of experiments using the topology in Figure

1.8b.

28

(a) Distribution of bandwidth allocation for a network link.

(b) Distribution of processing rate allocation for an in-transit host.

Figure 1.11: Distribution of the allocation of link and host capacities to active coupling

sessions after each scheduling run. Every stacked bar corresponds to allocation to a

single session.

29

(a)

(b)

(c)

Figure 1.12: Results for the experiments using the random scenario in Table 1.2 and

topology in Figure 1.8b.

30

Chapter 2

Wide-Area Data Staging

2.1 Introduction

2.1.1 Motivation

Dataspaces provides a shared space abstraction to scientific applications. Shared-space

is modeled as tuple-space which can accessed with flexible interaction interface of

put/pub(key:data) and get/sub(key) – it enables asynchronous coordination and data

sharing between coupled applications. Dataspaces can support only local-couplings

(i.e. couplings on LAN e.g. processes running on two different nodes of a cluster) since

shared-space abstraction is implemented using the memories of local staging nodes.

Depending on the need for computational or storage capacity and resource avail-

ability, applications may have to be run on resources distributed over wide-area. With

this project, we are investigating if we can extend Dataspaces flexible programming

system to enable wide-area couplings (i.e. workflow couplings over WAN). A program-

ming system like Dataspaces for wide-area scenario would enable scientists to work with

large-scale workflows using a simple put/get based API and then can run their applica-

tions over the resources distributed over WAN. Moreover, since Dataspaces framework

achieves high data insertion and retrieval performance via in-memory data staging, ex-

tension of the principles of Dataspaces is promising for wide-area data staging scenario

as well.

2.1.2 Problem Description

Goal of this project is to extend Dataspaces abstractions for in-memory data staging

for enabling efficient coupling between applications running on resources distributed

31

over wide-area. Dataspaces framework has been used in scientific discovery since

2010 [27]. Its flexible API has been proven to be developer-friendly and efficient

over the years in terms of the needs for scientific applications. To mention some

instances of its usage: (1) Couplings between the gyrokinetic PIC edge simulation

code XGC0 and the MHD code M3D-OMP, and also direct numerical simulations

(DNS) code S3D and the data analytics pipeline of the turbulent combustion work-

flow, is implemented using Dataspaces, (2) Dataspaces is an integrated part of Adap-

tive IO System (ADIOS) framework distributed by Oak Ridge National Laboratories

(http://www.olcf.ornl.gov/center-projects/adios/), which is an open source I/O mid-

dleware package that has been shown to be highly scalable (i.e., scales to hundreds of

thousands of cores) and is being used to enable many scientific workflows. Therefore,

first challenge while extending Dataspaces to wide-area would be preserving Dataspaces’

flexible API.

Workflows are composed by multiple applications running independently and co-

ordinating with each other based on their runtime state. Coordination between ap-

plications is required to be handled in a timely manner for the sake of finishing the

whole task workflow is running to solve, as fast as possible by minimizing the duration

that applications stay in the idle state. Equivalently, one can state this requirement

as: scientific applications are required to utilize computational resource capacities ex-

haustively. This translates into the following requirement in data management layer,

which is data transport between peer applications should be fast, robust and efficient so

that computational resources can be exhaustively utilized by the workflow components.

Equivalently, this requirement can be thought as minimal overhead to the workflow ex-

ecution due to the application couplings where overhead is defined as the total duration

that applications stay in the idle state waiting for the completion of data transport.

Another challenge connected to the minimal overhead requirement discussed in the

previous paragraph is to achieve scalable performance with respect to both data and

problem size of the workflow. This is very crucial for scientific workflow execution

since application couplings are needed to realize over wide spectrum of data size, and

often frequency and requirements of application couplings vary (see SubSection 1.1.2 for

32

more detail). Dataspaces framework achieves scalable data insertion and query/retrieval

performance by using in-memory data staging and novel distributed hash table approach

as further discussed in Section 2.2.

2.1.3 Overview and Approach

Following NUMA-like memory design, we implemented a wide-area Dataspaces ab-

straction by interconnecting multiple Dataspaces instances over WAN as illustrated in

Figure 2.1. This architectural choice is mainly because of the large distance between

each Dataspaces for WAN scenario. In this case, choice of designing the shared memory

abstraction with a UMA-like approach would have required the revaluation of Datas-

paces principles and abstraction, and possibly result in the re-implementation of most

of the framework. NUMA-like architecture allows the design and inner workings of

individual components of the whole system be decoupled from each other; e.g., opti-

mization of data distribution in local (i.e., in each Dataspaces) and wide area scale

(i.e., between Dataspaces instances) can be addressed independently from each other

in terms of semantics and dynamics of the solution.

Figure 2.1: Organizational representation of Wide-Area Dataspaces.

Considering one-dimensional circular node identifier space, individual Dataspaces

instances act like individual staging nodes storing the keys mapped to the segment

of the curve between itself and the predecessor node (Figure 2.2, Left), then each

Dataspaces stages its segment over locally available staging nodes (Figure 2.2, Right).

Since in a typical scenario, the number of Dataspaces to be interconnected would be low,

33

constant-time (i.e., O(1)) peer-to-peer lookup between Dataspaces is feasible. WAN

can negatively affect the performance of data lookup and data transport, which can be

addressed by (1) using local caching of remote queries and predictive queries before the

actual application request to decrease the negative effect of WAN on data lookup, (2)

supporting high-performance data transport technologies and protocols like GridFTP

and RDMA to achieve faster data transport between Dataspaces, and (3) prefetching

remote data to local Dataspaces before the application makes a get request for it. These

three items will be expanded in Section 2.3

Figure 2.2: Representation of wide-area Dataspaces on one-dimensional circular node-

identifier space (Left). Each Dataspaces stores preceding segment on the key space over

the resources distributed in its locality (Right).

2.1.4 Contributions

The goal of this project is to explore NUMA-like architecture for extending Dataspaces

principles and abstractions to wide-area scale, and implement and test performance

of varying policies and strategies for distributed data management in wide-area scale.

Current implementation supports non-blocking Dataspaces API of put/get data and

also additional blocking get. Non-blocking get routine returns no matter if data is

available or not; returns data if available or returns false otherwise, blocking get blocks

the execution of applications until the data is available and finally returns data. Block-

ing get helps application developers to listen for data availability using multi-threaded

programming; a thread to listen data can be created and a callback function may be

34

called once the data is available to the application. Specifically, embracing NUMA-like

architectural choice for designing a big shared memory abstraction to applications, we

implement an O(1) peer-to-peer asynchronous overlay network between Dataspaces in-

stances to carry control messages. Then each Dataspaces communicate with each other

over this control network through a JSON-based control protocol which defines the se-

mantics of data distribution in wide-area scale. Data distribution is managed according

to two following policies (1) Demand-based: If requested data is not available in a local

Dataspaces it is transported and copied into the local one from the remote Dataspaces

where the data is available, if data is not available and a blocking get request is done by

the application, requested data is copied into the local one once it becomes available in

any of the remote Dataspaces instances, (2) Prefetching: Data to be requested next is

predicted using the history of access sequence initiated by the application and prefetch-

ing buffers in the local Dataspaces is filled with predictive data entries. Within our

limited time, we focused on data prefetching strategies and evaluated the performance

of our implementation of a Markov-based prefetching strategy to enable couplings of

Fusion workflow and also random workflows.

2.1.5 Outline

The rest of this chapter is organized as follows. Section 2.2 provides some background

and summarizes the related work. Section 2.3 presents our approach for wide-area

Dataspaces architecture and data prefetching for improved data retrieval time. Section

1.4 describes our experimental setup and presents the experimental evaluation of our

approach. Section 2.6 concludes the chapter, and outlines ongoing and future research.

2.2 Background and Related Work

2.2.1 Dataspaces

Dataspaces is a distributed interaction and coordination substrate for scientific work-

flows [28]. Dataspaces has a client-server architecture; an application using Dataspaces

runs on two components; DataspacesServer and DataspacesClient. Server component

35

runs separately and independently from the user applications on the dynamic set of clus-

ter nodes assigned for staging and provides the shared space abstraction to the client

components. Client components are integrated with the user application and provides

the interfaces for interacting with the server. User application implements application

couplings within the workflow by using this flexible API provided. Dataspaces’ interface

supports non-blocking and re-entrant put and get data operations, which enable the

application to put and get data asynchronously to and from the shared space. As out-

lined in Listing 2.1, put and get operations correspond to dspaces put and dspaces get

routines.

Listings 2.2 and 2.3 show sample data producer and consumer applications using

Dataspaces client component. As the names explain itself, in this sample scenario

producer application is producing and sharing data with the consumer application.

Since data put into the server is shared dspaces lock and dspaces unlock calls guarantee

exclusive access on the data for put and get operations. Additional to the name and the

version of the data, Dataspaces uses a geometric descriptor as the input from application

to dspaces put/get routines to describe the bounding box identifying the range of the

data that application wants to put or get. For example, data put to space can be

identified in 3-dimensional space as the cube with volume diagonal from (0, 0, 0) to (x,

y, z) and consumer application can get only a part of this data (or all of it) e.g., range

identified as the cube with volume diagonal from (x/3, y/3, z/3) to (x/2, y/2, z/2).

/∗ I n s e r t the data s p e c i f i e d by the geometr ic d e s c r i p t o r and

∗ pointed by v a r r e f . ∗/

i n t dspaces put (char ∗ var name , i n t ver s ion ,

<geometr ic de s c r i p t o r >, void ∗ v a r r e f) ;

/∗ Retr i eve the data s p e c i f i e d by the geometr ic d e s c r i p t o r and

∗ pointed by v a r r e f . ∗/

i n t d space s ge t (char ∗ var name , i n t ver s ion ,

<geometr ic de s c r i p t o r >, void ∗ v a r r e f) ;

36

// Request e x c l u s i v e a c c e s s to the s p e c i f i e d data

void d s p a c e s l o c k o n [read / wr i t e] (const char ∗ lock name) ;

// Release the e x c l u s i v e a c c e s s to the s p e c i f i e d data

void dspace s un lock on [read / wr i t e] (const char ∗var name) ;

Listing 2.1: Dataspaces API

. . .

// Some computat ional r ou t in e producing the data

void ∗ v a r r e f = produce () ;

d s p a c e s l o c k o n w r i t e (var name) ;

dspaces put (var name , ver s ion ,

<geometr ic de s c r i p t o r >, void ∗ v a r r e f) ;

d spac e s un l o ck on wr i t e (var name) ;

. . .

Listing 2.2: Data producer example using Dataspaces

. . .

d s p a c e s l o c k o n r e a d (var name) ;

d space s ge t (var name , ver s ion ,

<geometr ic de s c r i p t o r >, void ∗ v a r r e f) ;

d space s un lock on read (var name) ;

// Some computat ional r ou t in e consuming the data

consume (v a r r e f) ;

. . .

Listing 2.3: Data consumer example using Dataspaces

Dataspaces’ architecture is layered and consists of data communication, data storage

37

and data lookup layer as illustrated in Figure 2.3. Data communication layer leverages

standard communication technologies like TCP/IP and also advanced communication

technologies like RDMA for low-latency, high-throughput data transfers. Data com-

munication layer enables asynchronous data transport between application and staging

nodes, and between staging nodes. Data storage layer manages the memory of stag-

ing nodes and creates a shared, unified, in-memory storage space. Data lookup layer

translates geometric descriptors input by the application to DHT indexes and routes

application queries to the nodes responsible for staging the queried space.

Figure 2.3: Conceptual view of Dataspaces architecture.

Dataspaces uses distributed hash table (DHT) for fast data lookup operations. The

principle behind Dataspaces’ DHT system is explained in great depth in [29] which

is the paper introducing framework Squid enabling search in DHT-based systems. In

Dataspaces, index for DHT is derived from the geometric descriptor of the object put

into space by the application. This index is used as the address space of the shared

space and also it is used to map range of data on the staging nodes by the Dataspaces

server. In particular, for multiple dimensional data, Hilbert spaces-filling curve (SFC)

is used to generate to index the data. SFC is basically the trajectory of a point traveling

every point in the multi-dimensional volume without visiting any point twice. In other

words, SFC is a continuous function mapping a multi-dimensional volume to a single-

dimensional one. One important feature of Hilbert SFC, which is the main reason

picked for indexing data put to Dataspaces server, is that it preserves data locality

i.e., points close to each other in multi-dimensional space is mapped to adjacent or

points close to each other in single-dimensional space. To sum up, Dataspaces indexes

multi-dimensional application data with a single-dimensional curve, which is used to

38

map and distribute ranges of data to different staging nodes in the cluster.

2.2.2 Prefetching

Prefetching is used as a way of masking the latency of bringing data to the consumer

component. Prefetched data usually gets kept in an intermediate staging area, which

is small (not enough to fit all data of interest) and consequently faster (compared to

the actual storage area) in terms of data insertion, lookup and retrieval, and it is usu-

ally named as cache or buffer depending on the context. Prefetching is heavily used

in hardware or software level in wide range of contexts to improve the overall perfor-

mance of the system. For example, instruction caches are used to speedup execution

in microarchitecture context, link prefetching is used to improve web browsing expe-

rience, prefetch buffers are used within many modern OS to load machine code from

disk into the memory in advance to speedup core operations and many others within

memory, database, and in general, system management context. In this work, predic-

tive prefetching is used to bring remote data to local staging buffer to decrease the time

application experiencing to get data from wide-area Dataspaces.

There is a large literature about prefetching in the microarchitecture and the database

context. One of the most interesting techniques is using data compression techniques

for achieving optimal prefetching, which is introduced in [30] and is explained with good

practical examples in [31]. The intuition is that data compressors typically operate by

postulating a dynamic probability distribution on the data to be compressed. Data ex-

pected with high probability (low entropy) are encoded with few bits, and unexpected

(high entropy) data with many bits. Thus, if a data compressor successfully compresses

the data, then its probability distribution on the data must be realistic and can also be

used for effective prediction. Assuming the prefetching buffer can buffer at most some

given number of pages 1, it is shown in [30] that any optimal character-by-character

compressor for strings can be converted to a prefetcher that has an optimal (minimum)

page fault rate.

1In database context, word page is used to refer to data to be accessed.

39

The cache architecture discussed in [32] represents the commonly used architectural

model for predictive prefetching. It describes a predictive cache that uses associative

memory to recognize access patterns and does online prediction and prefetching ac-

cordingly. Introduced predictive cache consists of two main components: (1) Predictor;

the component that recognizes and learns the pattern in the access sequence and pre-

dicts the next access, (2) Cache replacement manager; the component that applies a

policy for managing the replacement of prefetched objects within the arrival of newly

prefetched objects. As discussed in Section 2.3, we use a similar architecture for pre-

dictive prefetching remote data within wide-area Dataspaces framework.

A predominantly used technique to recognize access patterns and make predictions

accordingly is modeling access sequence as a Markov process. In this approach, set of

pages that can possibly be accessed form the set of Markov states. State transition

probabilities are computed and dynamically updated online using the observed access

sequence. Markov chain and the extracted transition probabilities are then used to find

out likelihood of particular patterns to emerge in the future, which is used to predict

future accesses. Usually a ”hit or miss” 2 cost function is used as the objective to

minimize while optimizing the prediction outcome, which tells to predict the access

pattern with maximum likelihood. Within wide-area Dataspaces framework, we also

use Markov models for predicting future data to be accessed by the application and a

formal description of our formulation will be given in Section 2.3.

Web prefetching (i.e., prefetching links in world wide web (WWW)) is an interest-

ing field to research for getting ideas about prefetching within wide-are shared space

abstraction context. Some similarities between two fields regarding prefetching are as

follows: (1) WWW is a distributed system that provides data in varying formats like

text, image, stream etc. to users via servers all of which are interconnected over WAN.

Wide-area shared space abstraction aims at providing a similar distributed data access

service to applications via multiple Dataspaces instances all of which are interconnected

over WAN, (2) Access sequence in WWW generated by the users is sequence of links

2For hit or miss function C(ε) where ε is error between the true and predicted (or estimated) value
of a parameter, C(ε) = 1 for |ε| > δ for δ > 0 and C(ε) = 0 otherwise.

40

which is similar to tuple space model of Dataspaces in that data is accessed using key

and version numbers. Similar arguments could be made for comparing wide-area shared

space abstraction with large database systems.

Probabilistic models are applied extensively in the field of world wide web for

prefetching links, especially Markov models have been the focus as further discussed in

[33]. First-order Markov models are proposed for using speculative document prefetch-

ing in WWW in [34]. Later it is shown that even though first-order models are good

formulations for recognizing and computing the probabilities for patterns in the access

sequence, they cannot achieve high predictive accuracy because of the usage of limited

information about the past which can be solved by using higher order Markov models

which enable building models looking at as far in the past as enough to make an accurate

prediction. As an example application of higher order Markov models, Ngram model is

employed for mining user behavior patterns in [35] and shown to display better predic-

tive accuracy. However, higher order models result in (1) higher state-space complexity

due to exponentially increasing number of states with the model order, (2) Many states

in higher order model may not find a use case in the test set, which reduces the coverage

of the model; especially short-duration user access sessions can suffer from low coverage

dramatically, (3) Length of the access sequence should be longer to compute transition

probabilities for higher order models which may decrease the predictive accuracy given

a training set of limited size. Low coverage problem of high order Markov models is

solved by ”All-Kth Order Markov Model” introduced in [36] which combines varying

order Markov models for higher predictive accuracy and coverage. However, using mul-

tiple variable-order Markov models increases the state-space complexity even further

which is proposed to be tackled in [37] by selective Markov models in that multiple

varying order Markov models are combined intelligently in a way to keep state-space

complexity low while achieving high predictive accuracy.

41

2.3 Extending Dataspaces Abstractions to Wide-Area Scale

2.3.1 A conceptual overview of Wide-Area Dataspaces

Wide-area Dataspaces (WA-Dataspaces) is a distributed framework which extends flexi-

ble API of Dataspaces to enable application interaction and coordination couplings over

wide-area network. It preserves the semantically specialized (i.e., addressing of the data

is specialized using geometric descriptor by the application as described in SubSection

2.2.1) virtual shared space abstraction of Dataspaces. Goal of WA-Dataspaces is to

provide efficient put data to the space and get data from the space services. Following

NUMA-like design, WA-Dataspaces consists of multiple Dataspaces that can dynami-

cally join the space and are orchestrated to create the virtual shared space abstraction

in that data put and get operations are realized.

2.3.2 Architecture and Implementation overview

WA-Dataspaces has client-server architecture as Dataspaces. It is built on top of Datas-

paces stack and has a layered architecture as illustrated in Figure 2.4. Client compo-

nents are integrated with the user application as in Dataspaces framework, and provide

an API for wide-area data insertion and retrieval similar to Dataspaces API. WA-

Dataspaces server is a combination of Dataspaces server, a Dataspaces client extended

with wide-area data management stack. Server component runs independently from

the user applications and provides the wide-area shared space abstraction to the client

components.

Figure 2.4: Wide-Area Dataspaces Architecture. DS: Dataspaces, WA: Wide-Area

42

As described in SubSection 2.2.1, Dataspaces API is non-blocking in that put or get

operations return immediately to the application. WA-Dataspaces API is almost same

with Dataspaces API except it also provides a blocking get operation, in which appli-

cation thread making a blocking get call is blocked until the requested data becomes

available and then is returned to the application. Blocking get aims to enable applica-

tions to access the data in a more timely and asynchronous manner. For example, if

an application requires a particular data set to advance with a part of the execution,

while doing some other task in the main thread, a listener thread can be created to

make a blocking get for the data of interest which would be used a call back mechanism

to the application once the data becomes available and retrieved from the space. Such

a behavior of listening for a particular data set cannot be possible to implement in

a asynchronous manner with a non-blocking get; a listening loop may be used which

would cause unnecessary burden on both application and the system. As outlined in

Listing 2.4, put and get operations correspond to wa dspaces put and wa dspaces get

routines. In addition, we made the locking operations of Dataspaces API implicit in

the put and get routines so application does not need to worry about exclusive access

to the shared data because it is guaranteed by WA-Dataspaces framework.

/∗ I n s e r t the data to wide−area shared space which i s s p e c i f i e d

∗ by the geometr ic d e s c r i p t o r and pointed by v a r r e f . ∗/

i n t wa dspaces put (char ∗ var name , i n t ver s ion ,

<geometr ic de s c r i p t o r >, void ∗ v a r r e f) ;

/∗ Retr i eve the data o f type var type from the wide−area shared

∗ space which i s s p e c i f i e d by the geometr ic d e s c r i p t o r and

∗ pointed by v a r r e f in a b lock ing or non−b lock ing manner . ∗/

i n t wa dspaces get (bool b lock ing , char ∗ var name , i n t ver s ion ,

<geometr ic de s c r i p t o r >, void ∗ v a r r e f) ;

Listing 2.4: Wide-Area Dataspaces API

43

Most important component of the WA-Dataspaces server is the ”Remote Interac-

tion Manager” (RIManager), which realizes the wide-area shared space abstraction.

RIManager is roughly a Dataspaces client which is extended with the wide-area data

management stack. There are important tasks that RIManager accomplish to achieve

the wide-area shared space abstraction, which are (1) Application-Space coordination,

(2) Inter-Dataspaces coordination. Unlike Dataspaces server component, RIManager

is highly multi-threaded to be able to provide asynchronous and efficient service.

Communication between the user applications and RIManager is implemented by

the ”Local Communication Layer (LCL)” which defines the primitives for exchanging

control messages. LCL is implemented on top of Dataspaces client and it enables

asynchronous communication using custom locking Dataspaces server provides, which

enforces writer/reader synchronization; locks for writing and reading shared data can be

acquired always in order such that write should come before read, and the read should

happen before the next write. This blocking nature of Dataspaces server’s custom

locking enables LCL to implement asynchronous communication primitives.

RIManager connects one Dataspaces to another over a peer-to-peer asynchronous

overlay network which we built on top of TCP/IP, which together with a custom defined

JSON-based communication protocol implements the ”Remote Communication Layer

(RCL)”. RCL is a crucial part of the overall architecture since it defines the com-

munication primitives for control messages and for exchanging them between between

Dataspaces instances. RCL primitives enable asynchronous communication between

multiple Dataspaces instances. Within the same level of architectural hierarchy, ”Wide-

Area Data Transport Layer (WA-DTL)” resides and implements efficient transport of

application data between Dataspaces peers. WA-DTL leverages advanced network tech-

nologies such as RDMA, legacy network stack of reliable data transfer (TCP/IP), and

also a high-throughput data transport stack GridFTP [38]. Unlike LCL, RCL imple-

ments synchronous communication primitives. One main reason for synchronous imple-

mentation of data transport services is to manage resources efficiently such that data

transport resources (e.g., communication ports, RDMA memory) are used whenever it

is required.

44

Since at runtime space is not aware of future application actions, default data place-

ment policy of WA-Dataspaces is inserting the data put by the application to the local

Dataspaces server. As discussed further in Section 2.4, data is moved between Datas-

paces instances with demand and/or predictive prefetching. ”Remote Data Lookup

Layer (RDLL)” implemented on top of RCL and WA-DTL extends Dataspaces’ data

lookup principles and operations to wide-area scale by managing the metadata. Meta-

data in this case is the availability and the location. RDLL associates every data element

put into space with the id of the local Dataspaces data is inserted with default behavior.

Once the data is moved or copied to other Dataspaces instances metadata is updated

accordingly and shared with every peer. ”Remote Query Engine (RQE)” builds on top

of RDLL and provides a simple API for both asynchronous and synchronous data query

over the wide-area shared space. Using this API of RQE, RIManager implements O(1)

data lookup which checks and returns the availability and the location of the queried

data in a very fast manner (i.e., constant time). To briefly describe how O(1) data

lookup is implemented by RIManager, whenever a new data element is put into space,

availability and location information relevant to the data is broadcasted to all Datas-

paces peers which update their state accordingly. This way, metadata for data lookup

always becomes locally available for fast data lookup operations. In case an application

queries for an unavailable data set and makes a blocking get request, every Dataspaces

instance is programmed to transport the data to the Dataspaces local to the application

once it becomes available.

Consistency models for shared distributed memory systems are essential to achieve

predictable results for memory operations [39]. Consistency of the shared data is en-

sured by these models which are basically offline contracts between the system and

the programmer. Dataspaces employs a high-level consistency model in two levels: (1)

Data communication layer ensures coherency of shared data by DHT created from the

geometric descriptors of the data, (2) DHT does not govern the dynamics of data access

which may create coherency issues (e.g., two applications using Dataspaces, using the

same data descriptor, one may want to write and the other may want to read at the

same time, or both may want to write simultaneously) which is addressed by locking

45

operations as described in SubSection 2.2.1. Currently, WA-Dataspaces does not em-

ploy any consistency model beyond Dataspaces’ consistency model which ensures data

coherency within Dataspaces servers; we assume applications are aware of the lack of

consistency model for wide-area shared space scenario and should avoid the following

operations for data shared between applications coupled over wide-area (i.e., applica-

tions are running on sites remote from each other): (1) Overwriting a data set put into

the space by another application, (2) Multiple writing by using the same data descriptor

simultaneously. While this assumption of application developer awareness is not unrea-

sonable and can be accommodated by the application but addressing data coherency

inside the framework can potentially increase the practicability and overall efficiency

of the framework (e.g., wide-area data placement policies discussed next SubSection

would be required to change with the consistency model employed).

2.4 Wide-Area Data placement

Default behavior of WA-Dataspaces framework is to initially place the data to the

Dataspaces server which is local to the application putting the data. Therefore, if a

remote application makes a get request for a particular data, if it is (or when it is

in case of blocking get request) available in a remote Dataspaces server, it is copied

to the Dataspaces server which is local to the application requesting it. This default

behavior of data fetching from a remote site based on the application demand is called

demand-based fetching. Even though, demand-based prefetching alone enables applica-

tions to implement asynchronous interactions over wide-area, it is inefficient in terms

of enabling the interaction since it reflects the overhead of data movement to the ap-

plication execution i.e., the time between get request and data retrieval is large due to

slow data transport. This is bad for performance especially in the case of workflows

requiring application coupling over WAN with large data because bulk data transport

over WAN is inherently slow and in this case execution time mostly gets dominated

by the data transport time. Overhead due to data transport between remote and local

servers is impossible to eliminate when the difference between the time that a particular

data is put and get request is made, which we will call as slack time, is small. In this

46

section, we will consider the case interesting from research perspective in which slack

time is enough for moving data close to application before the application makes a get

request for it.

The optimal strategy in this case would be to replicate the data to all of the Datas-

paces servers once it is put into space so that when a get request is made, the data

would be locally available. However, staging capacity at each site may be different and

not enough for staging all the data in each Dataspaces server. Especially considering

that scientific applications usually work on big data, in-memory staging capacity of

modern clusters are usually not enough to stage all of the application coupling data

within memory and even though one site may have enough memory available it is very

unlikely that all the sites workflow is running on will meet this requirement. As dis-

cussed in SubSection 2.2.2, size-limited prefetching buffers (or cache) can be used for

hiding the latency of data access by bringing the data of interest close to the consumer

before the consuming state actually starts (i.e., in-time). In our case, every Dataspaces

server has a prefetching buffer to its every peer (see Figure 2.5), which tries to hide the

wide-area data transport latency by effective prefetching.

Figure 2.5: Representation of prefetching buffers allocated in the peers of each Datas-

paces.

The goal of prefetching is to keep the buffer filled with the correct data in the right

time. Here we will use database terminology in that page will be used for data elements

and page fault defines the event when the page is not available in the local buffer once

a get request is made for it (like cache miss). Rephrasing the research problem, limited

47

size of the prefetching buffers should be filled with the correct pages which are going

to be requested soon. Finding out which page to prefetch is a prediction problem.

It is shown in [30] that a prefetcher designed by converting character-based data

compressors is optimal for a Markov source in the sense that minimal page fault rate is

achieved as the number of observed page accesses goes to infinity. Source in this context

used as the generator of page accesses. As presented in [31], converting a character-

based data compressor to a pure prefetcher can be done quite simply. For example,

an algorithm called LZ is introduced for prefetching which is based on the character-

based version of the Lempel-Ziv algorithm [40] for data compression. LZ prefetcher is

basically using the probability model built by an encoder which is using the Lempel-Ziv

algorithm on the observed access sequence, and prefetching is done for the page which

is maximizing the likelihood of being the next access in the sequence.

Although LZ prefetcher has a practical implementation and it is theoretically opti-

mal in the limit [41], algorithm cannot converge to probability model which is giving the

optimal prediction fast enough. In WA-Dataspaces scenario, we can say by inspecting

the behavior of HPC applications that fast convergence is rather more important than

optimal prediction in the long run since usually number of couplings to be executed over

wide-area is much lower compared to other applications of prefetching such as web link

prefetching or instruction caching. Also the penalty of a page fault is high due to slow

data transport over wide-area i.e., workflow execution usually stalls until the required

data is retrieved to continue with the next computational task. Following a similar mo-

tivation, it is suggested in [31] to use a prefetcher which is obtained by converting from

prediction-by-partial-match (PPM) data compressor rather than Lempel-Ziv, which is

shown to perform better for ”ill-case scenarios” with short data access observance pos-

sibility. PPM algorithm is nothing but an implementation of prediction by high-order

Markov model, which we also use (see SubSection 2.4.1) in formulating the prefetching

problem for WA-Dataspaces.

48

2.4.1 Prefetching formulation

Here we will give a formal description of the problem formulation for prefetching using

Markov models as promised in SubSection 2.2.2. Let alphabet be the set of page ids

that a page access sequence can consist of. We will generally denote page ids using

characters such as A = {a, b, c}. Prefetching problem is predicting the next page access

Pn+1 given an observed access sequence H = [p1, p2, . . . , pn] where Pn is a random

variable representing the nth page access in the sequence and with value pn ∈ A.

A first-order Markov model suggests that probability of a particular value that next

page access takes Pr{Pn+1 = pn+1} depends only on the last observed page access

Pn = pn; Pr{Pn+1|Pn, . . . , P1} = Pr{Pn+1|Pn}. A kth-order Markov model suggests,

next page access depends on last k observed page accesses; Pr{Pn+1|Pn, . . . , P1} =

Pr{Pn+1|Pn, . . . , Pn−k+1}.

PPM algorithm presented in [31] builds a kth-order Markov and then makes the pre-

diction in favor of the page value which maximizes the value of Pr{Pn+1|Pn, . . . , Pn−k+1}:

p̂n+1 = argmax
pn∈A

Pr{Pn+1 = pn|Pn = pn, . . . , Pn−k+1 = pn−k+1} (2.1)

where p̂n+1 is the predicted value of Pn+1. Given the access sequenceH = [p1, p2, . . . , pn],

probability model is built by computing the conditional probabilities of Pn given the

values of last k page accesses by using the frequency of observed patterns in H as

follows:

Pr{Pn+1 = pn+1|Pn = pn, . . . , Pn−k+1 = pn−k+1}

= frequency of ”pn−k+1, . . . , pn, pn+1” in H

=
number of ”pn−k+1, . . . , pn, pn+1” in H

number of ”pn−k+1, . . . , pn” in H

(2.2)

To predict multiple pages that may be accessed in close future, conditional proba-

bility of l pages to be accessed given last k observed using the unordered set of random

variable P̂ = P̂n+l, . . . , P̂n+1 where P̂n+i’s for i ∈ [1, l] are random variables representing

the predicted pages to be accessed within next l access steps. Important thing to note

is P̂ is unordered e..g, for l equals to 3, predicted set of pages a, b, c and permutations

of it are equal. Set of pages to be prefetched can be determined by maximizing the

49

conditional probability Pr{P|Pn, . . . , Pn−k+1} as follows:

p̂ = argmax
p∈Al

Pr{P = p|Pn = pn, . . . , Pn−k+1 = pn−k+1} (2.3)

where Al is the l−ary cartesian power of set A and p̂ is the predicted set of l pages.

As in the case for predicting only the next page access, given the access sequence

H = [p1, p2, . . . , pn], probability model can be built by computing the conditional prob-

abilities of P given the values of last k page accesses by using the frequency of observed

patterns in H as follows:

Pr{P = p|Pn = pn, . . . , Pn−k+1 = pn−k+1}

= frequency of ”pn−k+1, . . . , pn, permutation(p)” in H

=
number of ”pn−k+1, . . . , pn, permutation(p)” in H

number of ”pn−k+1, . . . , pn” in H

(2.4)

Conditional probabilities can be built in an online fashion by updating them every

time a new page access is observed. To explain with a simple example, consider the

alphabet a, b and the observed page access sequence H = [a, a, b, b, b, a, a, b, a, a, a] of

length 7. Our prefetcher builds a decision tree using H for k (order of Markov model)

and l (number of accesses to be predicted) equal to 2 and 1. Figure 2.6 shows the

decision tree in which conditional probabilities associated with leaf edges are calculated

by computing the frequency of patterns in the access sequence as described by the

equation 2.2. Every time a new page access is desired to be predicted, the pointer

walks on the tree starting from the root and goes down following the last k accesses,

which in this case is [a, a]. If the walk cannot be completed due to missing nodes in the

tree (possible when the pattern e.g., ”a, a” int this case, is not observed yet), prediction

cannot be made and instead a default policy can be used to randomly pick one of the

pages in the alphabet to prefetch. If the walk can be completed as the walk ended on the

node marked with ”X” in the example shown in Figure 2.6, prediction can be made by

picking the edge among the connected edges which is assigned highest probability and

finally assigned page to the picked edge is prefetched by the prefetcher. For example,

page b is prefetched in this example since edge corresponding to b is assigned with 2/3

which is greater than 1/3 of the edge corresponding to page a.

50

Figure 2.6: Decision tree constructed by the prefetcher given observed page access

history H = [a, a, b, b, b, a, a, b, a, a, a] and order of Markov model is 2 and number of

accesses to be predicted is 1.

Decision tree as exemplified above for storing and updating the conditional proba-

bility values is fairly easy to implement. Naturally, implementation and computational

complexity of the decision tree increases proportional with k and l. Complexity is not

an issue in WA-Dataspaces case because prefetching algorithm will be run on a com-

pute node of a HPC cluster. Actually, even if prediction algorithm takes considerable

time to make a decision, it still would not introduce high relative overhead to the work-

flow execution since data transport time over WAN is already much higher in practice.

Criteria for picking the right values for k and l are outlined next as follows:

• Model coverage: As discussed in SubSection 2.2.2, coverage of the Markov

model decreases with the increasing model order k. This affects the predictive

accuracy and consequently prefetching performance adversely for especially short-

duration user sessions where the length of the access sequence is ”low or not

enough” to recognize patterns in a high-order Markov model in a timely manner.

Model coverage can also be thought in terms of convergence of the decision tree

associated with the model to the optimal. It is easy to observe that higher the

coverage is (i.e., the lower the order of the model k), faster the convergence to

optimal is. Currently, WA-Dataspaces framework does not employ any autonomic

decision mechanism to tune the value of k and we assume application developer

picks a value for k by considering application characteristics and the corresponding

51

required coverage. However, as again discussed in SubSection 2.2.2, low coverage

problem of high order Markov models is solved by ”All-Kth Order Markov Model”

introduced in [36] and we will investigate possibility of using this idea to integrate

a more autonomic prefetcher for WA-Dataspaces.

• Prefetching buffer size and data replacement: Prefetching buffer is is meant

to store only the pages that are going to be accessed soon. Pages in the buffer

are replaced in many contexts using policies such as Least Recently Used (LRU)

policy, First-in First-out (FIFO) policy, random policy, and many other more

complicated derivatives of those. Goal of replacing prefetched pages with the

newly prefetched ones is both to keep buffer small and optimal strategy would

be to replace the pages which are prefetched but never used and will not be used

due to misprediction. Decision of the number of pages to be prefetched at a time

l should be done based on the available buffer size and the replacement policy

which are not addressed in this thesis. Therefore, we will assume also the value of

l is tuned by the application developer who is assumed to be aware of its effects

on the prefetching performance.

• Prediction Accuracy: Most of important criterion for picking the order of the

model k is the desired prediction accuracy. Given the characteristics of the user

process, different access patterns may emerge. Some patterns are easier to recog-

nize than others by using a Markov model because prefetcher uses the sequentiality

within the observed page access while building the decision tree and sequentiality

is affected by the alphabet size and the length of the observed access sequence. For

example, given alphabet of a, b and observed sequence [a, b, a, b, a, b, a] sequential

pattern of ”a, b” and ”b, a” can be captured using a first-order Markov model

and since order is low, model coverage is high and also decision tree converges

to the optimal very fast. However, when the scenario is not as simple as in the

last example, order of the model k should be carefully selected since model cov-

erage and accuracy usually compete since the choice of k affects both oppositely

i.e., if coverage increases, accuracy will decrease. Therefore, process of selecting

52

a ”good” value for k requires Pareto optimal-curve analysis. In WA-Dataspaces

case, we do not address the autonomic management of l with respect to applica-

tion characteristics and heterogeneity and the limits on the buffer size, and again

we let application developer tune the value of l assuming s/he know its discussed

effects.

To conclude, current prefetcher implementation in WA-Dataspaces framework, mostly

relies on developer’s knowledge about choosing important model parameters k and l

and then implements a kth-order Markov model for predictive prefetching l data tuples

every time a new data access is observed from the application. We do not investigate

and leave autonomic tuning of these model parameters and buffer management as future

work.

As discussed previously in this section, sequentiality in the observed access se-

quence is important for Markov models to recognize patterns and compute condi-

tional prediction probabilities accurately. However, Dataspaces API and consequently

WA-Dataspaces API does not constrain the set of possible keys to identify the shared

data although whole discussion about Markov-based model assumed that user accesses

are identified by a finite set of identifiers (i.e., alphabet). Therefore, WA-Dataspaces

prefetcher performs an online mapping application keys to the elements of an alphabet

of finite size as described next. Starting with the observation that scientific applications

usually interact with each other at particular time steps for varying purposes such as

synchronization, computational validation of a model, visualization, stream-based pro-

cessing pipelines etc. This characteristic of scientific applications results in a trend of

data access behavior in that the data that is most recently produced and put into the

space is most likely going to be consumed soon, in other words, one can say probability

of a data item to be consumed within a time interval since its arrival can be described

with an exponential distribution. Given this observation one can make the following

claim that if data put into the space is identified by the sequence of keys [s1, s2, . . . , sn],

it is highly likely that access sequence observed later in time will be the same. WA-

Dataspaces prefetcher tries to maximize the chance of recognizing this access behavior

by mapping data keys put into the space, which can be arbitrarily any char array, to

53

a one-dimensional circular sequence in a sequential manner using an alphabet of finite

size. We call this procedure as application key renaming. Size of the circular alphabet

used depends on the model order k and number of items to be prefetched at a single

prefetching session l. As a heuristic to optimize the model coverage and prediction

accuracy, our prefetcher sets the size of the alphabet equal to maximum of k and l.

To explain with an example, suppose k is 2 and l is 1, and consequently generated

alphabet is of size; suppose it is A = a, b. Application scenario is fairly simple such

that producer application puts data sequentially into the space which is identified by

the following key sequence S = [s1, s2, . . . , s10] in which si represents an arbitrary char

array, and consumer application accesses the data put by the producer by following

the same sequence S. As can also be followed on the representation given in Figure

2.7, prefetcher maps each item in the access sequence S to a new key in alphabet A

by traversing the alphabet in a sequential and circular manner, and generates the new

access sequence Sc = [a, b, a, b, a, b, a, b, a, b]. There is a strong sequentiality in the new

sequence Sc which can be easily detected by the second-order Markov model and high

coverage and predictive accuracy can be obtained i.e., in this example starting with

the fifth key, model predicts each of the following keys in the sequence accurately by

making a prediction every time true value of a new access is observed. However, one

problem that comes with application key renaming procedure described here is that data

elements in the new sequence Sc cannot be differentiated after more than 2 keys have to

be staged before the consumer gets them which can also be called computational phase

lag between the consumer and the producer component. This should be addressed in

the renaming process since applications cannot give any guarantee on the computational

phase lag proactively – it can only be detected at runtime. Therefore, prefetcher labels

each key in the newly generated sequence with a version which can be computed using

a counter being incremented each time a circular traverse on the alphabet is completed,

so with labeling generated sequence turns into Sc = [a0, b0, a1, b1, a2, b2, a3, b3, a4, b4].

Prefetching logic at every staging site is realized by the corresponding RIManager,

which is explained in detail in SubSection 2.3.2. Application data access sequence is ob-

served by the prefetcher through ”Local Communication Layer (LCL)” and RIManager

54

Figure 2.7: Representation of application key renaming procedure during prefetching

for producer-consumer scenario. Model order k is 2 and number of prefetched data

items l is 1.

implements prefetching logic and operations on top of ”Remote Query Engine (RQE)”.

2.5 Evaluation

To evaluate the framework for wide-area data staging described in this chapter, we

used the synthetic workflows which comply with the characteristics (i.e., data access

patterns) of ”Plasma Disruption Analysis” workflow we used in the previous chapter

(see Section 1.4). The application scenario we run on the framework is as follows.

As in the example given in previous SubSection 2.4.1 while describing prefetching, we

consider one producer-consumer pair exchanging data over the two Dataspaces servers

residing at corresponding sides and exchanged data is a sequence of 10 (key, value)

pairs. Consumer application accesses the data sequentially and in the same order as it

is put into space by the producer – staging space plays the role of a queue in this case

as shown for the previous example in Figure 2.7. We also assume application developer

sets the model order to 2 and number of prefetched (key, value) pairs at once to 1. The

infrastructure framework and the applications run on is an RDMA cluster at Rutgers –

nodes of the cluster is separated into producer and consumer sites, and data transport

55

between the two sides over WA-Dataspaces framework is done on RDMA stack.

First, we assume there is no slack time between the get requests that consumer

application initiates. As introduced previously, prefetching in wide-area data staging

context tries to use the slack time between the application requests to fetch data of

interest before the application request arrives. We run the workflow multiple times

by varying the size of a single (key, value) pair (i.e., data item) is put and retrieved

by the coupled applications. Figure 2.8a shows that there is still improvement with

prefetching even with the lack of slack time. This is due to earlier start of handling next

get request using prefetching while the previous get is still being served. Therefore, we

expect prefetching to improve data retrieval time more for the cases where get requests

take longer to handle i.e., due to slow large data transport over WAN. Second, we set

a fixed slack time between get requests consumer application initiates. In practice, the

slack time between the data retrieval sessions of workflows is due to a computational

task which takes a random duration but fixed slack time we set tries to enforce this

nature of workflows. Figure 2.8b shows that compared to scenario without slack time,

gain in total time to get data with prefetching is much higher for the case with slack

time. One point that may look unexpected at first is that relative gain in total get time

by prefetching seems to decrease as the data item size increases. This is expected since

the fixed slack time is enough to finish fetching all the data of interest for relatively

smaller data items but as data items get larger, during the available slack time not

all the data can be transported to the consumer site which decreases the relative gain

obtained from prefetching.

2.6 Conclusions and Future Work

This chapter presented the architecture, design and implementation of an approach

for wide-area shared space abstraction for scientific workflows. Proposed framework

WA-Dataspaces extends currently available data sharing framework Dataspaces, which

provides a semantically specialized shared space abstraction for application coupled

over LAN. WA-Dataspaces leverages NUMA architectural design principles and it has

56

a layered architecture which puts semantics for remote and local data management op-

erations together. Furthermore, implementation of the presented framework leverages

different data transfer technologies (i.e., TCP/IP, RDMA) and high performance data

transport protocols (i.e., GridFTP). To enable fast data retrieval from remote appli-

cations, we explored Markov-based predictive prefetching models and strategies, and

presented an approach for prefetching with partly application developer-driven Markov

models where some model parameters are set by the application. Finally, integration

of the prefetching approach with the overall framework is presented. Also we presented

an evaluation of the framework for real producer-consumer based Fusion Workflow

scenario in terms of end-to-end data retrieval performance and showed considerable

improvement is achieved with prefetching due to efficient recognition of the application

access pattern by renaming keys associated with data by the application.

WA-Dataspaces has enabled application couplings in the Fusion Workflow in a demo

presented during SC’2014. Fusion workflow was run between clusters at Singapore

and Georgia Tech sites which are connected over wide-area RDMA technology (more

information can be found in [42]). Our current work is focused on implementing a

more autonomic prefetching model and semantics to achieve runtime awareness for the

application characteristics and resource constraints. We are investigating how to apply

All-kth order Markov models on the wide-area remote data prefetching problem for

achieving both high model coverage and predictive accuracy at the same time, and

exploring how to tune model order and number of data elements prefetched at a time

in terms of temporal application data access behavior change and dynamic staging

capacity needs and constraints.

57

(a)

(b)

Figure 2.8: Comparison of total get time between w/ (Bottom) and w/o (Top) prefetch-

ing for the scenario of producer-consumer based sharing of 10 data items of same size.

Both X and Y-axes are log-scaled.

58

References

[1] M. F. Aktas, G. Haldeman, and M. Parashar, “Flexible scheduling and control of
bandwidth and in-transit services for end-to-end application workflows,” in Pro-
ceedings of the Fourth International Workshop on Network-Aware Data Manage-
ment. IEEE Press, 2014, pp. 28–31.

[2] L. Zhang, C. Docan, and M. Parashar, “The seine data coupling framework for par-
allel scientific applications,” Advanced Computational Infrastructures for Parallel
and Distributed Adaptive Applications, p. 283, 2010.

[3] V. Bhat, M. Parashar, and S. Klasky, “Experiments with in-transit processing for
data intensive grid workflows,” in Proceedings of the 8th IEEE/ACM International
Conference on Grid Computing. IEEE Computer Society, 2007, pp. 193–200.

[4] V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy, and S. Abdelwa-
hed, “Enabling self-managing applications using model-based online control strate-
gies,” in Autonomic Computing, 2006. ICAC’06. IEEE International Conference
on. IEEE, 2006, pp. 15–24.

[5] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune, and M. Parashar, “High
performance threaded data streaming for large scale simulations,” in Grid Com-
puting, 2004. Proceedings. Fifth IEEE/ACM International Workshop on. IEEE,
2004, pp. 243–250.

[6] D. L. Tennenhouse and D. J. Wetherall, “Towards an active network architecture,”
in DARPA Active NEtworks Conference and Exposition, 2002. Proceedings. IEEE,
2002, pp. 2–15.

[7] T. M. Chen and A. W. Jackson, “Commentaries on” active networking and end-
to-end arguments”,” Network, IEEE, vol. 12, no. 3, pp. 66–71, 1998.

[8] L. Lefèvre, C.-d. Pham, P. Primet, B. Tourancheau, B. Gaidioz, J.-P. Gelas,
and M. Maimour, “Active networking support for the grid,” in Active Networks.
Springer, 2001, pp. 16–33.

[9] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, and W. Johnston,
“Intra and interdomain circuit provisioning using the oscars reservation system,”
in Broadband Communications, Networks and Systems, 2006. BROADNETS 2006.
3rd International Conference on. IEEE, 2006, pp. 1–8.

[10] N. S. Rao, W. R. Wing, S. M. Carter, and Q. Wu, “Ultrascience net: Network
testbed for large-scale science applications,” Communications Magazine, IEEE,
vol. 43, no. 11, pp. S12–S17, 2005.

[11] I. Monga, E. Pouyoul, and C. Guok, “Software defined networking for big-data
science,” SuperComputing 2012, 2012.

59

[12] M. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz, “Datacutter: Mid-
dleware for filtering very large scientific datasets on archival storage systems,” in
IEEE symposium on mass storage systems. Citeseer, 2000, pp. 119–134.

[13] K. Schwan, B. F. Cooper, G. S. Eisenhauer, A. Gavrilovska, M. Wolf, H. Abbasi,
S. Agarwala, Z. Cai, V. Kumar, J. Lofstead et al., “Autonomic information flows,”
2005.

[14] X. Ma, M. Winslett, J. Lee, and S. Yu, “Faster collective output through active
buffering,” in Parallel and Distributed Processing Symposium., Proceedings Inter-
national, IPDPS 2002, Abstracts and CD-ROM. IEEE, 2001, pp. 8–pp.

[15] J. S. Plank and M. Beck, “The logistical computing stack–a design for wide-area,
scalable, uninterruptible computing,” in Dependable Systems and Networks, Work-
shop on Scalable, Uninterruptible Computing (DNS 2002). Citeseer, 2002.

[16] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.
Minden, “A survey of active network research,” Communications Magazine, IEEE,
vol. 35, no. 1, pp. 80–86, 1997.

[17] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Active networking and the
end-to-end argument,” in Network Protocols, 1997. Proceedings., 1997 Interna-
tional Conference on. IEEE, 1997, pp. 220–228.

[18] A. Brown, E. Kissel, M. Swany, and G. Almes, “Phoebus: A session protocol for
dynamic and heterogeneous networks,” University of Delaware, Tech. Rep, vol.
2008, p. 334, 2008.

[19] “Token bucket filter,” http://lartc.org/howto/lartc.qdisc.classless.html/.

[20] J. Mattingley and S. Boyd, “Automatic code generation for real-time convex op-
timization,” Convex optimization in signal processing and communications, pp.
1–41, 2009.

[21] S. L. Bird and B. J. Smith, “Pacora: Performance aware convex optimization for
resource allocation,” in Proceedings of the 3rd USENIX Workshop on Hot Topics
in Parallelism (HotPar: Posters), 2011.

[22] J. Lee, J. Kim, C. Kessel, and F. Poli, “Simulation study of disruption character-
istics in kstar,” in APS Meeting Abstracts, vol. 1, 2012, p. 8047P.

[23] “Pox,” http://www.noxrepo.org/pox/about-pox/.

[24] S. Diamond, E. Chu, and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization, version 0.2,” http://cvxpy.org/, May 2014.

[25] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping
for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Work-
shop on Hot Topics in Networks. ACM, 2010, p. 19.

[26] G. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes, R. Figueiredo, S. Smallen,
W. Smith, and A. Grimshaw, “Futuregrida reconfigurable testbed for cloud, hpc
and grid computing,” Contemporary High Performance Computing: From Petas-
cale toward Exascale, Computational Science. Chapman and Hall/CRC, 2013.

60

[27] “Dataspaces: An extreme-scale data management framework,”
http://personal.cac.rutgers.edu/TASSL/projects/data/index.html.

[28] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction and coordi-
nation framework for coupled simulation workflows,” Cluster Computing, vol. 15,
no. 2, pp. 163–181, 2012.

[29] C. Schmidt and M. Parashar, “Squid: Enabling search in dht-based systems,”
Journal of Parallel and Distributed Computing, vol. 68, no. 7, pp. 962–975, 2008.

[30] J. S. Vitter and P. Krishnan, “Optimal prefetching via data compression,” Journal
of the ACM (JACM), vol. 43, no. 5, pp. 771–793, 1996.

[31] K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practical prefetching via data
compression,” ACM SIGMOD Record, vol. 22, no. 2, pp. 257–266, 1993.

[32] M. Palmer and S. B. Zdonik, Fido: A cache that learns to fetch. Brown University,
Department of Computer Science, 1991.

[33] N. R. Mabroukeh and C. I. Ezeife, “Semantic-rich markov models for web prefetch-
ing,” in Data Mining Workshops, 2009. ICDMW’09. IEEE International Confer-
ence on. IEEE, 2009, pp. 465–470.

[34] A. Bestavros, “Using speculation to reduce server load and service time on the
www,” in Proceedings of the fourth international conference on Information and
knowledge management. ACM, 1995, pp. 403–410.

[35] J. Borges and M. Levene, “Data mining of user navigation patterns,” in Web usage
analysis and user profiling. Springer, 2000, pp. 92–112.

[36] J. Pitkow and P. Pirolli, “Mininglongestrepeatin g subsequencestopredict world-
widewebsurfing,” in Proc. USENIX Symp. On Internet Technologies and Systems,
1999, p. 1.

[37] M. Deshpande and G. Karypis, “Selective markov models for predicting web page
accesses,” ACM Transactions on Internet Technology (TOIT), vol. 4, no. 2, pp.
163–184, 2004.

[38] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke,
“Gridftp: Protocol extensions to ftp for the grid,” Global Grid ForumGFD-RP,
vol. 20, 2003.

[39] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,”
computer, vol. 29, no. 12, pp. 66–76, 1996.

[40] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate cod-
ing,” Information Theory, IEEE Transactions on, vol. 24, no. 5, pp. 530–536,
1978.

[41] P. Krishnan and J. S. Vitter, “Optimal prediction for prefetching in the worst
case,” SIAM Journal on Computing, vol. 27, no. 6, pp. 1617–1636, 1998.

[42] “Industry collaboration drives 100g foundation for supercomputer infrastructure,”
http://www.obsidianresearch.com/archives/all/2014/100G-SC.html.

