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ABSTRACT OF THE DISSERTATION

On synchronous behavior in

complex nonlinear dynamical systems

by Zahra Aminzare

Dissertation Director: Professor Eduardo D. Sontag

The purpose of this dissertation is to study synchronous behavior of certain nonlinear

dynamical systems by the method of contraction theory.

Contraction theory provides an elegant way to analyze the behavior of certain non-

linear systems. Under sometimes easy to check hypotheses, systems can be shown to

have the incremental stability property that trajectories converge to each other. This

work provides a self contained introduction to some of the basic concepts and results

in contraction theory. As we will discuss later, contractivity is not a topological, but

is instead a metric property: it depends on the norm being used in contraction theory

and in fact an appropriate choice of norms is critical. One of the main contributions of

this dissertation is to generalize some of the existing results in the literature which are

based on L2 norms to results based on non L2 norms using some modern techniques

from nonlinear functional analysis.

The focus of the first main part of this dissertation is on the application of con-

traction theory and graph theory to synchronization in complex interacting systems

that can be modeled as an interconnected network of identical systems. We base our

approach on contraction theory, using norms that are not induced by inner products.

Such norms are the most appropriate in many applications, but proofs cannot rely upon
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Lyapunov-like linear matrix inequalities, and different techniques, such as the use of

the Perron-Frobenious Theorem in the cases of L1 or L∞ norms, must be introduced.

On the second main part of this work, using the method of contraction theory based

on non L2 norms, spatial uniformity for the asymptotic behavior of the solutions of a

reaction diffusion PDE with Neumann boundary conditions will be studied.
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Chapter 1

Introduction

1.1 Background and previous work

Synchrony can be divided into two categories: external synchronization which refers to

synchronization by an external force, [1, 2, 3], and mutual synchronization of two or

more coupled nonlinear systems. Discovered by the Dutch scientist Christiaan Huy-

gens, inventor of the pendulum clock in 1657, mutual synchronization of two periodic

oscillators was first analytically studied by Maier [4].

The analysis of mutual synchronization in networks of identical components involves

a variety of research fields in science and engineering as well as in mathematics. In

biology, the synchronization phenomenon is exhibited at the physiological level, for

example in neuronal interactions, in the generation of circadian rhythms, or in the

emergence of organized bursting in pancreatic beta-cells, [5, 6, 7, 8, 9, 10]. It is also

exhibited at the population level, for example in the simultaneous flashing of fireflies,

[11, 12]. In engineering, one finds applications of synchronization ideas in areas as varied

as robotics or autonomous vehicles, [13, 14]. For more references, see also [15, 16, 17, 18].

In modeling such networks, a direct communication between nodes is often assumed.

However, there are many natural examples that nodes rather to communicate through

the environment than direct communication. Quorum sensing is an example of this

kind of communication [19].

We will restrict attention to interconnections given by diffusion, where each pair of

“adjacent” components exchange information and adjust in the direction of the differ-

ence with each other.
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Many different theoretical methods, based on Lyapunov exponents [20], Master sta-

bility function [21] (see Section 3.3.4 for a discussion), graph theory [22], and Lyapunov

functions [23], have been employed to approach the problem of synchronization. An-

other useful method to show synchronization, which we are interested in, is contraction

theory.

A proper tool for characterizing contractivity for nonlinear systems is provided by

the matrix measures, or logarithmic norms, [24, 25], of the Jacobian of the vector field,

evaluated at all possible states. This idea is a classical one, and can be traced back

at least to work of D.C. Lewis in the 1940s, [26, 27]. Dahlquist’s 1958 thesis under

Hörmander ([28] for a journal paper) used matrix measures to show contractivity of

differential equations, and more generally of differential inequalities, the latter applied

to the analysis of convergence of numerical schemes for solving differential equations.

Several authors have independently rediscovered the basic ideas. For example, in the

1960s, Demidovič [29, 30] established basic convergence results with respect to Eu-

clidean norms, as did Yoshizawa [31, 32]. In control theory, the field attracted much

attention after the work of Lohmiller and Slotine [33], and follow-up papers by Slotine

and collaborators, see for example [34, 35, 36, 37]. These papers showed the power of

contraction techniques for the study of not only stability, but also observer problems,

nonlinear regulation, and consensus problems in complex networks. (See also the work

of Nijmejer and coworkers [38].) We refer the reader to the historical analysis given in

[39, 40] and the survey [41].

Synchronization results based on contraction-based techniques, typically employing

measures derived from L2 or weighted L2 norms, [33, 35, 42, 43, 44, 45, 46] have been

already well studied. The proofs rely upon Lyapunov functions.

Our interest here is in using matrix measures derived from norms that are not in-

duced by inner products, such as L1 and L∞ norms, because these are the most appro-

priate in many applications, such as the biochemical examples discussed as illustrations

in this dissertation (see Section 3.3.3). For such more general norms, proofs cannot

rely upon Lyapunov-like linear matrix inequalities. We remark that other authors have

also previously studied matrix measures based on non L2 norms, see for instance [33];
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however, rigorous proofs of the types of results proved here have not been given in [33].

In [47], the author studies synchronization using matrix measures for L1, L2, and L∞

norms; we will compare our results to this and other papers later in this dissertation

(see Section 3.3.4). Also, in [48, 49], a sufficient condition for synchronization based on

matrix measure induced by an arbitrary norm is given for linear systems, but in this

work we focus on nonlinear systems.

1.2 The main contribution of the current work

We are interested in approaching the problem of synchronization by the methods of

contraction theory for non L2 norms and graph theory. Unlike the usual methods

appropriate for Hilbert spaces, based on Lyapunov functions, our method is based on

techniques from modern functional analysis. The reason that we are interested in Lp

norms rather than just L2 norms is that we were motivated by a desire to understand

an important biological system, for which contractivity holds for diagonally weighted

L1 norms, but not with respect to diagonally weighted Lp norms, for any 1 < p ≤ ∞.

System of ODEs

In Chapter 2 and 3, we study the global convergence of the solution of a network with

N compartments (nodes) x1, . . . , xN , xi ∈ Rn, with identical dynamics ẋi = F (xi, t),

which are connected through an undirected, connected graph G with N vertices, m

edges and (graph) Laplacian L. The following system of ODEs describes the evolution

of the xi’s in the network:

ẋ = F̃ (x, t)− L⊗D(t)x, (1.1)

where x is the column of the xi’s and F̃ (x, t) is the column of F (xi, t)’s and D(t) is the

diffusion matrix.

Let (X, ‖ · ‖X) be a finite dimensional normed vector space over R or C. The

space L(X,X) of linear transformations A : X → X is also a normed vector space with

the induced operator norm ‖A‖X→X = sup‖x‖X=1 ‖Ax‖X . The logarithmic norm (also

called matrix measure) µX(·) induced by ‖ · ‖X is defined as the directional derivative



4

of the matrix norm, that is,

µX [A] = lim
h→0+

1

h
(‖I + hA‖X→X − 1) ,

where I is the identity operator on X.

We say that the system (1.1) is contractive, if any two solutions of the network

converge to each other exponentially and with no overshoot (see Remark 1). In Chapter

2, we provide conditions on (only) F that guarantee contractivity of the system (1.1).

In this work, Jf denotes the Jacobian of f .

Theorem 1. Consider the system (1.1) and let c := sup(x,t) µp,Q[JF (x, t)], where µp,Q

is the logarithmic norm induced by the Q-weighted Lp norm, ‖ · ‖p,Q, on Rn defined by

‖x‖p,Q := ‖Qx‖p, for some 1 ≤ p ≤ ∞ and a positive diagonal matrix Q. Then for any

two solutions x and y of (1.1), we have

‖x(t)− y(t)‖p,Q ≤ ect ‖x(0)− y(0)‖p,Q .

In particular, when c < 0, the system (1.1) is contractive.

We say that the system (1.1) synchronizes, if any solution x =
(
xT1 , . . . , x

T
N

)T
of the

system converges to a uniform solution exponentially; in other words, xi(t)−xj(t)→ 0,

exponentially as t→∞. See Figure 1.1 for graphical illustrations.

Although the “contractivity” condition provided in Theorem 1, namely c < 0, guar-

antees synchrony of the system (1.1), we are interested in a weaker condition. In

Chapter 3, we provide such a condition.

Theorem 2. Consider the system (1.1). For an arbitrary orientation of G, let E be the

directed incidence matrix of G, and pick any m×m matrix K satisfying ETL = KET .

Denote

c := sup
(w,t)

µ [J(w, t)−K ⊗D(t)] ,

where µ is the logarithmic norm induced by an arbitrary norm on Rmn, ‖ · ‖, and for

w =
(
wT1 , . . . , w

T
m

)T
, J(w, t) is defined as follows:

J(w, t) = diag (JF (w1, t), . . . , JF (wm, t)) ,
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and JF (·, t) denotes the Jacobian of F with respect to the first variable. Then

∥∥(ET ⊗ I
)
x(t)

∥∥ ≤ ect
∥∥(ET ⊗ I

)
x(0)

∥∥ .

Note that
(
ET ⊗ I

)
x is a column vector whose entries are the differences xi(t)− xj(t),

for each edge e = {i, j} in G. Therefore, if c < 0, the system synchronizes.

As a direct application of Theorem 2, we conclude the following results for complete

and path graphs, in particular.

Proposition 1. Let (xT1 , . . . , x
T
N )T be a solution of

ẋi = F (xi, t) +D(t)(xi−1 − xi + xi+1 − xi), i = 1, . . . , N,

assuming x0 = x1 and xN = xN+1. For 1 ≤ p ≤ ∞ and a positive diagonal matrix Q,

let

c = sup
(x,t)

µp,Q
[
JF (x, t)− 4 sin2 (π/2N)D(t)

]
.

Then

‖e(t)‖p,Qp⊗Q ≤ ect‖e(0)‖p,Qp⊗Q,

where e =
(
eT1 , . . . , e

T
N−1

)T
with ei = xi − xi+1 denotes the vector of all edges of the

path graph, and ‖·‖p,Qp⊗Q denotes the weighted Lp norm with the weight Qp⊗Q, where

Qp = diag

(
p

2−p
p

1 , . . . , p
2−p
p

N−1

)
, for 1 ≤ p <∞

Q∞ = diag (1/p1, . . . , 1/pN−1) ,

and for 1 ≤ k ≤ N − 1, pk = sin(kπ/N). In addition, 4 sin2 (π/2N) is the smallest

nonzero eigenvalue of the Laplacian matrix of G.

Proposition 2. Let ‖ · ‖ be an arbitrary norm on Rn with corresponding logarithmic

norm µ, x = (xT1 , . . . , x
T
N )T be a solution of

ẋi = F (xi, t) +D(t)
N∑

j=1

(xj − xi),

and

c := sup
(x,t)

µ[JF (x, t)−ND(t)] .
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Then

m∑

k=1

‖ek(t)‖ ≤ ect
m∑

k=1

‖ek(0)‖ ,

where ek’s, for k = 1, . . . ,m are the edges of G, meaning the differences xik(t)− xjk(t)

for ik < jk ∈ {1, . . . , N}.

Note that N is the smallest nonzero eigenvalue of the Laplacian matrix of a complete

graph with N vertices.

In Propositions 1, and Propositions 2, when c < 0, the systems synchronize.

In addition to path and complete graphs, we provide conditions for synchronization

in systems that are connected through a star graph: if sup(x,t) µ[JF (x, t) −D(t)] < 0,

then the system synchronizes. Also, a Cartesian product of the above graphs would

synchronize under an appropriate condition.

Figure 1.1: (left) 6 isolated compartments (right) complete interconnection

System of PDEs

As in the discrete case, we are also interested in finding conditions that guarantee the

synchronous behavior of the solutions of the following reaction diffusion PDEs defined

on Ω × [0,∞) for a smooth domain Ω ⊂ Rm, and subject to Neumann boundary

conditions:

∂ui
∂t

(ω, t) = Fi(u(ω, t), t) + di(t)∆ui(ω, t), i = 1, . . . , n,

∂ui
∂n

(ξ, t) = 0 ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞).

(1.2)

An analogous result to Theorem 1 for a reaction diffusion PDE (1.2), is the following

theorem proved in Section 4.2.
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Theorem 3. Consider the PDE (1.2) and let

c = sup
(x,t)

µp,Q[JF (x, t)] ,

for some 1 ≤ p ≤ ∞ and some positive diagonal matrix Q. Then for any two solutions

u and v of the reaction diffusion PDE defined on [0, T ) for some T ∈ (0,∞],

‖u(·, t)− v(·, t)‖p,Q ≤ ect ‖u(·, 0)− v(·, 0)‖p,Q .

We say that the system (1.2) synchronizes, if for any solution u(ω, t) of the system,

there exists a uniform solution ū(ω, t) = ū(t), such that u(ω, t) − ū(t) → 0 as t → ∞

for all ω ∈ Ω (understood in an appropriate topology). See Figure 1.2a and Figure 1.2b

for graphical illustrations.

Similar to Theorem 1, Theorem 3 guarantees synchrony of reaction diffusion PDE

system (1.2), namely when c = sup(x,t) µp,Q[JF (x, t)] < 0, any solution u, converges to

a uniform solution ū(ω, t) = ū(t). But more interestingly, we are looking for a weaker

condition. In Section 4.4, we will provide such a condition for 1-dimensional space and

for L1 norms.

Theorem 4. Let u(ω, t) be a solution of

∂u

∂t
(ω, t) = F (u(ω, t), t) +D(t)

∂2u

∂ω2
(ω, t) on (0, L)

∂u

∂ω
(0, t) =

∂u

∂ω
(L, t) = 0,

defined for all t ∈ [0, T ) for some 0 < T ≤ ∞. In addition, assume that u(·, t) ∈ C3(Ω),

for all t ∈ [0, T ). Let

c = sup
t∈[0,T )

sup
x∈V

µ1,Q

[
JF (x, t)− π2

L2
D(t)

]
,

where µ1,Q is the logarithmic norm induced by ‖ · ‖1,Q for a positive diagonal matrix Q.

Then for all t ∈ [0, T ),

∥∥∥∥
∂u

∂ω
(·, t)

∥∥∥∥
1,φ,Q

≤ ect
∥∥∥∥
∂u

∂ω
(·, 0)

∥∥∥∥
1,φ,Q

,

where ‖ · ‖1,φ,Q := ‖sin(πω/L)(·)‖1,Q .
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(a) (b)

Figure 1.2: (a) shows the oscillatory behavior of a solution of a PDE system when there
is no diffusion, D = 0. (b) shows the spatially uniformity of the solution of the same
PDE when diffusion occurs, D 6= 0

1.3 Publications associated to this work

Many portions of this dissertation have been published. These publications are all self

contained, and the reader is invited to look at them for discussions that are independent

of the rest of the material.

• A part of Chapter 2 was published in the proceedings for the 2014 IEEE conference

on Decision and Control [50], (jointly authored with Eduardo Sontag).

• A version of Section 3.2 and Section 4.2 were published in the Journal of Nonlinear

Analysis: Theory, Methods and Applications [51], (jointly authored with Eduardo

Sontag).

• A version of Section 3.4 and Section 4.5 were published in a joint book chapter in

Springer-Verlag [46] and in proceedings for the 2013 American Control Conference

[52] (coauthored with Yusef Shafi, Murat Arcak, and Eduardo Sontag).

• Section 3.3 was published in the proceedings for the 2014 IEEE conference on

Decision and Control [53] and in the Journal of IEEE Transactions on Network

Science and Engineering [54], (jointly authored with Eduardo Sontag).
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Chapter 2

Contraction theory for nonlinear ODE systems

Acknowledgement of conference publication:

Parts of the material in this chapter have been published in the conference paper [50].

2.1 Introduction

Global stability is a central research topic in dynamical systems theory. Stability prop-

erties are typically defined in terms of attraction to an invariant set, for example to an

equilibrium or a periodic orbit, often coupled with a Lyapunov stability requirement

that trajectories that start near the attractor must stay close to the attractor for all

future times.

A far stronger requirement than attraction to a pre-specified target set is to ask

that any two trajectories should (exponentially, and with no overshoot (see Remark

1 below)), converge to each other, or, in more abstract mathematical terms, that the

flow be a contraction in the state space. While this requirement will be less likely to

be satisfied for a given system, it is sometimes comparatively easier to check. Indeed,

checking stability properties often involves constructing an appropriate Lyapunov func-

tion, which, in turn, requires a priori knowledge of the attractor location. In contrast,

contraction-based methods, discussed here, do not require the prior knowledge of at-

tractors. Instead, one checks an infinitesimal property, that is to say, a property of

the vector field defining the system, which guarantees exponential contractivity of the

induced flow.

It is useful to first discuss the relatively trivial case of linear time-invariant systems

of differential equations ẋ = Ax, with Euclidean norm. Since differences of solutions

are also solutions, contractivity amounts simply to the requirement that there exists a
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positive number c such that, for all solutions, |x(t)| ≤ e−ct |x(0)|, where | · | refers to

the Euclidean norm. This is clearly equivalent to the requirement that A + AT be a

negative definite matrix. In Lyapunov-function terms, xTPx is a Lyapunov function

for the system, when P = I.

This property is of course stronger than merely asymptotic stability of the zero

equilibrium of ẋ = Ax, that is, that A be a Hurwitz matrix (all eigenvalues with

negative real part). Of course, asymptotic stability is equivalent to the existence of

some positive definite matrix P (but not necessarily the identity) so that xTPx is a

Lyapunov function, and this can be interpreted, as remarked later, as a contractivity

property with respect to a weighted Euclidean norm associated to P . This simple

example with linear systems already illustrates why an appropriate choice of norms

when defining “contractivity” is critical; even for linear systems, contractivity is not a

topological, but is instead a metric property: it depends on the norm being used, in

close analogy to the choice of an appropriate Lyapunov function.

Remark 1. Our results provide a far stronger property than asymptotic stability of

solutions. Consider for example the system

ẋ = −x

ẏ = (x− 1)y,

(2.1)

which has the origin as a globally asymptotically stable state. This system cannot be

contractive under any possible norm, since solutions starting with large x initially di-

verge from each other. Figure 2.1 shows the x components (left) and y components

(right) of two solutions of Equation (2.1). It is clear from the right figure that the

solutions diverge after a while and so the solutions are not contractive.

Figure 2.2 shows that a nonlinear system could be contractive in one norm (here L1

norm) while it cannot be contractive in other norms (e.g., L2 norm). For more details

about the system see the biochemical example explained in Section 3.3.3.

In this section, we first discuss the most basic results regarding contraction for

ODE systems. We frame our discussion in the language of modern nonlinear functional

analysis in the style of [55]. This language provides the natural concepts needed to
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Figure 2.1: Two solutions of Equation (2.1)

Figure 2.2: In this figure the difference between two solutions of a nonlinear system
(biochemical example) is given in L2 norm (red and thin graph) and L1 norm (blue and
thick graph). As it is clear, in L2 norm, there is an overshoot between the solutions
(the graph of their difference increases after a while)
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understand abstract norms as well as extensions to infinite-dimensional spaces, includ-

ing partial differential equations. We then turn to certain new developments regarding

diffusive synchronization of ODE systems. The emphasis of this section would be on

contractions with respect to non-Euclidean norms, and for which many problems remain

open (see Section 5). We only consider deterministic systems; see [36] for applications

of contraction theory to the analysis of certain stochastic systems.

In this section we study systems described by nonlinear deterministic systems of

differential equations

ẋ = f(x, t) , (2.2)

where x(t) ∈ V ⊆ Rn is an n dimensional vector corresponding to the state of the

system, t ∈ [0,∞) is the time, and f is a nonlinear vector field which is differentiable

on x with Jacobian matrix denoted by Jf and is continuous on (x, t). The goal is to find

a condition that guarantees that any two trajectories of (2.2) converge to each other

exponentially.

As mentioned in the introduction, Section 1, we focus here on conditions based on

matrix measures. We recall (see for instance [24] or [25]) that, given a vector norm on

Euclidean space (|·|), with its induced matrix norm ‖A‖, the associated matrix measure

µ is defined as the directional derivative of the matrix norm in the direction of A and

evaluated at the identity matrix, that is:

µ[A] := lim
h→0+

1

h
(‖I + hA‖ − 1) .

The limit is known to exist (see Remark 4), and the convergence is monotonic, see [28,

56].

Matrix measure, also known as “logarithmic norm” of a square matrix A, was in-

dependently introduced by Germund Dahlquist [28], and Sergei Lozinskii [57], in 1959.

In 1965, W. A. Coppel [58, page 58] showed that µ can be used to bound solutions

of linear differential equation ẋ = A(t)x, (see Theorem 5). In 1970, R. H. Martin [59]

extended the definition of µ to functions which satisfy a Lipschitz condition on bounded

subsets of a Banach space (see Definition 2 in Section 2.2) and used this extension to

bound solutions of the corresponding differential equations (see Theorem 6).
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2.2 Preliminaries: logarithmic Lipschitz constants

We now define and state elementary properties of logarithmic Lipschitz constants based

on the definitions in [41, 55].

Definition 1. Let (X, ‖ · ‖X) be a normed space and f : Y → X be a function, where

Y ⊆ X. The least upper bound (lub) Lipschitz constant of f induced by the norm ‖ ·‖X ,

on Y , is defined by

LY,X [f ] = sup
u6=v∈Y

‖f(u)− f(v)‖X
‖u− v‖X

.

Note that LY,X [f ] <∞ if and only if f is Lipschitz on Y .

When identifying a linear operator f : Rn → Rn with its matrix representation A with

respect to the canonical basis, LY,X [A] = ‖A‖X→X , where ‖ · ‖X→X is the operator

norm induced by ‖ · ‖X .

Definition 2. Let (X, ‖·‖X) be a normed space and f : Y → X be a Lipschitz function.

The least upper bound (lub) logarithmic Lipschitz constant of f induced by the norm

‖ · ‖X , on Y ⊆ X, is defined by

µY,X [f ] = lim
h→0+

1

h
(LY,X [I + hf ]− 1) ,

or equivalently,

µY,X [f ] = lim
h→0+

sup
u6=v∈Y

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)
. (2.3)

If X = Y , we write µX instead of µX,X . Whenever it is clear from the context, we drop

the subscript and simply write µ instead of µY,X .

When identifying a linear operator f : Rn → Rn with its matrix representation A with

respect to the canonical basis, we call µ a “matrix measure” or a “logarithmic norm”.

Notation 1. Let (X, ‖ · ‖X) be a normed space and f : Y → X be a function. Denote

µ+
Y,X as follows

µ+
Y,X [f ] := sup

u6=v∈Y
lim
h→0+

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)
. (2.4)

If X = Y , we write µ+
X instead of µ+

X,X . Whenever it is clear from the context, we drop

the subscript and simply write µ+ instead of µ+
Y,X .
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Similarly, denote µ−Y,X as follows

µ−Y,X [f ] := sup
u6=v∈Y

lim
h→0−

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)
. (2.5)

Remark 2. In general µ+
Y,X [f ] and µ−Y,X [f ] are not equal. Consider X = Y = R2

with L1 norm, i.e., ‖x‖1 = |x1| + |x2|, where x = (x1, x2)T ∈ R2. For any x ∈ R2, let

f(x) := Ax, where A =


 1 2

0 1


. We will show that µ+

X [f ] = 3, and µ−X [f ] = −1.

Let ‖ · ‖1→1 be the operator norm induced by L1 norm. By the definitions of µ+,

we have,

µ+
X [A] = lim

h→0+

‖I + hA‖1→1 − 1

h

= lim
h→0+

max {|1 + h| , |1 + h|+ |2h|} − 1

h

= lim
h→0+

1 + 3h− 1

h

= 3.

Also by the definitions of µ−, we have,

µ−X [A] = lim
h→0+

‖I − hA‖1→1 − 1

−h
= lim

h→0+

max {|1− h| , |1− h|+ |−2h|} − 1

−h
= lim

h→0+

1 + h− 1

−h
= −1.

Therefore, in general µ+
Y,X [f ] 6= µ−Y,X [f ].

Remark 3. Another way to define µ+ (and µ−) is by the concept of semi inner product

which is in fact a generalization of inner product to non Hilbert spaces. Let (X, ‖ · ‖X)

be a normed space. For x1, x2 ∈ X, the right semi inner product is defined by

(x1, x2)+ = ‖x1‖X lim
h→0+

1

h
(‖x1 + hx2‖X − ‖x1‖X) . (2.6)

Using this definition,

µ+
Y,X [f ] = sup

u6=v∈Y

(u− v, f(u)− f(v))+

‖u− v‖2X
. (2.7)
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Note that one can also define the left semi inner product as follows

(x1, x2)− = ‖x1‖X lim
h→0−

1

h
(‖x1 + hx2‖X − ‖x1‖X) , (2.8)

and

µ−Y,X [f ] = sup
u6=v∈Y

(u− v, f(u)− f(v))−
‖u− v‖2X

. (2.9)

Both the right and left semi inner products (·, ·)±, induce the norm ‖ · ‖X in the usual

way: (x, x)± = ‖x‖2X . Conversely, if the norm arises from an inner product (·, ·), as

when X is a Hilbert space, (x1, x2)± = (x1, x2). Moreover the semi inner products

satisfy the Cauchy-Schwarz inequalities:

−‖x‖ · ‖y‖ ≤ (x, y)± ≤ ‖x‖ · ‖y‖.

Remark 4. As every norm possesses right (left) Gâteaux-differentials, the limit in

(2.6) (in (2.8)) exists and is finite. For more details, see [60].

The following elementary properties of semi inner products are consequences of the

properties of norms. See [41, 55] for proofs.

Proposition 3. For x, y, z ∈ X and α ≥ 0,

1. (x,−y)± = −(x, y)∓;

2. (x, αy)± = α(x, y)±;

3. (x, y)− + (x, z)± ≤ (x, y + z)+ ≤ (x, y)+ + (x, z)±.

Remark 5. In general, the semi inner products are not symmetric:

(x, y)± 6= (y, x)±.

In this work, we mostly use the right semi inner product and µ+. See Definition 6 for

the only application of the left semi inner product and µ− in this work.

Remark 6. For any Lipschitz operator f : Y ⊂ X → X:

µ+
Y,X [f ] ≤ µY,X [f ].

However, µ+[f ] = µ[f ] if the norm is induced by an inner product.



16

Proof. For any fixed u 6= v ∈ Y ,

‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

≤ sup
u6=v∈Y

‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

.

Now using this inequality, we have:

lim
h→0+

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)

≤ lim
h→0+

sup
u6=v∈Y

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)
.

Taking sup over all u 6= v ∈ Y , we have:

sup
u6=v∈Y

lim
h→0+

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)

≤ lim
h→0+

sup
u6=v∈Y

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)
,

from which the conclusion follows by Definition 2 and Equation (2.4).

In what follows we show that for linear f , one has the reverse of the inequality in

Remark 6 as well.

Proposition 4. Let (X, ‖ · ‖X) be a finite dimensional normed space. For any linear

operator A : X → X,

µX [A] = µ+
X [A].

See the Appendix, Section 2.6, for a proof.

Remark 7. For a linear operator f , µ and µ+ can be written as follows:

µY,X [f ] = lim
h→0+

sup
u6=0∈Y

1

h

(‖u+ hf(u)‖X
‖u‖X

− 1

)
, (2.10)

and

µ+
Y,X [f ] = sup

u6=0∈Y
lim
h→0+

1

h

(‖u+ hf(u)‖X
‖u‖X

− 1

)
. (2.11)

Notation 2. In this work, for (X, ‖ · ‖p), where ‖ · ‖p is the Lp norm on X, for some

1 ≤ p ≤ ∞, we sometimes use the notation “µp” instead of µX for the least upper bound

logarithmic Lipschitz constant or logarithmic norm, and by “µp,Q” we denote the least

upper bound logarithmic Lipschitz constant or logarithmic norm induced by the weighted

Lp norm, ‖u‖p,Q := ‖Qu‖p, where Q is a fixed nonsingular matrix.
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The following elementary properties of logarithmic norms are well-known. For more

properties of logarithmic norms, see e.g., [61].

Lemma 1. For any square matrix A,

1. Let λmax(A) be the largest real part of an eigenvalue of A. Then, for an arbitrary

norm, namely ‖ · ‖, and logarithmic norm µ induced by ‖ · ‖,

λmax(A) ≤ µ[A] ≤ ‖A‖.

2. µp,Q[A] = µp[QAQ
−1] for 1 ≤ p ≤ ∞, and nonsingular matrix Q.

Remark 8. In Table 2.1, the algebraic expression of the least upper bound logarithmic

Lipschitz constant induced by the Lp norm for p = 1, 2, and ∞ for matrices (i.e.,

logarithmic norm) are shown.

Remark 9. 1. Note that unlike norms, logarithmic norms could be negative. For

example, consider the following matrix

A =


 −3 −1

2 −4


 .

Using Table 2.1, observe that

λmax(A) = −3.5 < µ1[A] = max{−3 + |2| ,−4 + |−1|} = −1 < 0 < ‖A‖1 = 5,

and

λmax(A) = −3.5 < µ2[A] ' −2.8 < 0 < ‖A‖2 ' 4.5.

2. Unlike norms, one can not compare the logarithmic norms. For example, as it is

shown above, µ2[A] < µ1[A] < 0, while for

B =


 2 1

0 1


 ,

µ2[B] ' 2.2 > µ1[B] = 2 > 0.

The following subadditivity property, from [41], is key to diffusive interconnection anal-

ysis.
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vector norm, ‖ · ‖ induced matrix measure, µ[A]

‖x‖1 =
n∑

i=1

|xi| µ1[A] = max
j


ajj +

∑

i 6=j
|aij |




‖x‖2 =

(
n∑

i=1

|xi|2
) 1

2

µ2[A] = max
λ∈spec 1

2
(A+AT )

λ

‖x‖∞ = max
1≤i≤n

|xi| µ∞[A] = max
i


aii +

∑

i 6=j
|aij |




Table 2.1: Standard matrix measures for a real n× n matrix, A = [aij ]

Proposition 5. Let (X, ‖ · ‖X) be a normed space. For any f , g : Y → X and any

Y ⊆ X:

1. µ+
Y,X [f + g] ≤ µ+

Y,X [f ] + µ+
Y,X [g].

2. µ+
Y,X [αf ] = αµ+

Y,X [f ] for α ≥ 0.

In addition, for Lipschitz maps f and g,

1. µY,X [f + g] ≤ µY,X [f ] + µY,X [g].

2. µY,X [αf ] = αµY,X [f ] for α ≥ 0.

Proof. Since the proofs for µ and µ+ are exactly the same, we only give the proof for

µ+.

1. By the definition of µ+
Y,X , and the triangle inequality for norms, we have:

µ+
Y,X [f + g] = sup

u6=v∈Y
lim
h→0+

1

h

(‖u− v + h((f + g)(u)− (f + g)(v))‖X
‖u− v‖X

− 1

)

= sup
u6=v∈Y

lim
h→0+

1

2h

(‖2(u− v) + 2h((f + g)(u)− (f + g)(v))‖X
‖u− v‖X

− 2

)

≤ sup
u6=v∈Y

lim
h→0+

1

2h

(‖u− v + 2h(f(u)− f(v))‖X
‖u− v‖X

− 1

)

+ sup
u6=v∈Y

lim
h→0+

1

2h

(‖u− v + 2h(g(u)− g(v))‖X
‖u− v‖X

− 1

)

= µ+
Y,X [f ] + µ+

Y,X [g].
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2. For α = 0, the equality is trivial, because both sides are equal to zero. For α > 0:

µ+
Y,X [αf ] = sup

u6=v∈Y
lim
h→0+

1

h

(‖u− v + h(αf(u)− αf(v))‖X
‖u− v‖X

− 1

)

= sup
u6=v∈Y

lim
h→0+

α

αh

(‖u− v + (αh)(f(u)− f(v))‖X
‖u− v‖X

− 1

)

= αµ+
Y,X [f ].

The (lub) logarithmic Lipschitz constant makes sense even if f is not differentiable.

However, the constant can be tightly estimated, for differentiable mappings on convex

subsets of finite-dimensional spaces, by means of Jacobians, [62].

Lemma 2. For any given norm on X = Rn, let µ be the (lub) logarithmic Lipschitz

constant induced by this norm. Let Y be a connected subset of X = Rn. Then for any

Lipschitz and continuously differentiable function f : Y → Rn,

sup
x∈Y

µX [Jf (x)] ≤ µY,X [f ] .

Moreover, if Y is convex, then

sup
x∈Y

µX [Jf (x)] = µY,X [f ] .

Note that for any x ∈ Y , Jf (x) : X → X. Therefore, we use µX instead of µX,X , as we

said in Definition 2.

We also recall a notion of generalized derivative, that can be used when taking deriva-

tives of norms (which are not differentiable).

Definition 3. For any continuous function, Ψ: [0,∞) → R, the upper right Dini

derivative is defined by

(
D+Ψ

)
(t) = lim sup

h→0+

1

h
(Ψ(t+ h)−Ψ(t)) .

Note that D+Ψ might be infinite.

One can also define the upper left Dini derivative as follows

(
D−Ψ

)
(t) = lim sup

h→0−

1

h
(Ψ(t+ h)−Ψ(t)) .
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Notation Definition Equivalent Definition Equivalent Definition

µX [A] lim
h→0+

1

h
(‖I + hA‖X→X − 1) lim

h→0+
sup
‖x‖X=1

1

h
(‖x+ hAx‖X − 1) sup

‖x‖X=1
lim
h→0+

1

h
(‖x+ hAx‖X − 1)

LY,X [f ] sup
u6=v∈Y

‖f(u)− f(v)‖X
‖u− v‖X

µY,X [f ] lim
h→0+

1

h
(LY,X [I + hf ]− 1) lim

h→0+
sup

u6=v∈Y

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)

(x, y)± ‖x‖X lim
h→0±

1

h
(‖x+ hy‖X − ‖x‖X)

µ±Y,X [f ] sup
u6=v∈Y

(u− v, f(u)− f(v))±
‖u− v‖2X

sup
u6=v∈Y

lim
h→0±

1

h

(‖u− v + h(f(u)− f(v))‖X
‖u− v‖X

− 1

)

Table 2.2: Basic concepts

In this work, we only use the upper right Dini derivative.

For ease of reference, we summarize the main notations and definitions in Table 2.2.

In what follows, we state and prove a few technical lemmas that we will use in the

following chapters.

Lemma 3. Let (X, ‖ · ‖X) be a normed space and G : Y × [0,∞) → X be a Lipschitz

function on its first argument, where Y ⊆ X. Let u, v : [0,∞)→ Y be two solutions of

du(t)

dt
= Gt(u(t)),

where Gt(u) = G(u, t). Then for all t ∈ [0,∞),

D+‖(u− v)(t)‖X =
((u− v)(t), Gt(u(t))−Gt(v(t)))+

‖(u− v)(t)‖2X
‖(u− v)(t)‖X . (2.12)

(When u(t) = v(t), we understand the right hand side through the limit in (2.14).)

In addition,

D+‖(u− v)(t)‖X ≤ µ+[Gt]‖(u− v)(t)‖X . (2.13)

Proof. By definition of the right semi inner product, the right hand side of (2.12) is:

lim
h→0+

1

h
(‖(u− v)(t) + h(Gt(u(t))−Gt(v(t)))‖X − ‖(u− v)(t)‖X) , (2.14)

so it suffices to show that

D+‖(u− v)(t)‖X = lim
h→0+

1

h
(‖(u− v)(t) + h(Gt(u(t))−Gt(v(t)))‖X − ‖(u− v)(t)‖X) .

Now using the definition of Dini derivative, we have:

D+‖(u− v)(t)‖X = lim sup
h→0+

1

h
(‖(u− v)(t+ h)‖X − ‖(u− v)(t)‖X)

= lim sup
h→0+

1

h
(‖(u− v)(t) + h(u̇− v̇)(t) + o(h)‖X − ‖(u− v)(t)‖X)
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= lim sup
h→0+

1

h
(‖(u− v)(t) + h(u̇− v̇)(t)‖X − ‖(u− v)(t)‖X)

= lim
h→0+

1

h
(‖(u− v)(t) + h(u̇− v̇)(t)‖X − ‖(u− v)(t)‖X)

= lim
h→0+

1

h
(‖(u− v)(t) + h(Gt(u)−Gt(v))‖X − ‖(u− v)(t)‖X) .

(Note that the fourth equality holds because of Remark 4.)

Inequality (2.13) holds by the definition of µ+ and Equation (2.12).

Lemma 4. Let A be an mn×mn block diagonal matrix with n×n matrices A1, . . . , Am

on its diagonal. Let ‖·‖ be an arbitrary norm on Rn and define ‖·‖∗ on Rmn as follows.

For any e =
(
eT1 , . . . , e

T
m

)T
with ei ∈ Rn, and any 1 ≤ p ≤ ∞,

‖e‖∗ :=
∥∥∥(‖e1‖, . . . , ‖em‖)T

∥∥∥
p
.

Then

µ∗[A] ≤ max {µ[A1], . . . , µ[Am]} ,

where µ and µ∗ are the logarithmic norms induced by ‖ · ‖ and ‖ · ‖∗ respectively.

Proof. By the definition, for p 6=∞, µ∗[A] can be written as follows.

µ∗[A] = sup
e6=0

lim
h→0+

1

h

{(∑m
i=1 ‖(I + hAi)ei‖p∑m

i=1 ‖ei‖p
) 1
p

− 1

}
.

For a fixed e = (eT1 , . . . , e
T
m)T 6= 0, there exists some k ∈ {1, . . . ,m}, depends on e, such

that for all i ∈ {1, . . . ,m}

‖(I + hAi)ei‖ ≤
‖(I + hAk)ek‖

‖ek‖
‖ei‖ ,

after raising to the power p and taking
∑

over all i’s, we get

m∑

i=1

‖(I + hAi)ei‖p ≤
‖(I + hAk)ek‖p

‖ek‖p
m∑

i=1

‖ei‖p .

Therefore

lim
h→0+

1

h

{(∑n
i=1 ‖(I + hAi)ei‖p∑n

i=1 ‖ei‖p
) 1
p

− 1

}
≤ lim

h→0+

1

h

{‖(I + hAk)ek‖
‖ek‖

− 1

}

≤ µ[Ak] ≤ max {µ[A1], . . . , µ[Am]} .

Now by taking sup over all e 6= 0, we get the desired result.
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For p =∞,

µ∗[A] = sup
e6=0

lim
h→0+

1

h





max
i
‖(I + hAi)ei‖
max
i
‖ei‖

− 1



 .

Note that

max
i
‖(I + hAi)ei‖
max
i
‖ei‖

= max
i

‖(I + hAi)ei‖
max
i
‖ei‖

≤ max
i

‖(I + hAi)ei‖
‖ei‖

.

Therefore,

max
i
‖(I + hAi)ei‖
max
i
‖ei‖

− 1 ≤ max
i

‖(I + hAi)ei‖
‖ei‖

− 1 = max
i

{‖(I + hAi)ei‖
‖ei‖

− 1

}
,

dividing both sides by h > 0, taking limh→0+ , and taking sup over all e 6= 0, we get

µ∗[A] ≤ sup
e6=0

max
i

lim
h→0+

1

h

{‖(I + hAi)ei‖
‖ei‖

− 1

}

= max
i

sup
e6=0

lim
h→0+

1

h

{‖(I + hAi)ei‖
‖ei‖

− 1

}

= max {µ[A1], . . . , µ[Am]} .

Also see [63] for another proof of Lemma 4.

2.3 Single system of ODEs

In 1965, Coppel showed that the logarithmic norm can be used to bound solutions of a

linear differential equation.

Theorem 5. [58, page 58] If A(t) is a continuous matrix function defined for t ≥ t0,

then for any solution of ẋ = A(t)x, and any t ≥ t0,

|x(t0)| exp

(
−
∫ t

t0

µ[−A(s)] ds

)
≤ |x(t)| ≤ |x(t0)| exp

(∫ t

t0

µ[A(s)] ds

)
.

In 1970, Martin introduced a generalization of the logarithmic norm and proved Theo-

rem 5 for nonlinear differential equations.
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Theorem 6. [59] In Equation (2.2), suppose that f is a Lipschitz function of x and a

continuous function of t for t ≥ t0. Then for any solution x of (2.2), and any t ≥ t0,

|x(t0)| exp

(
−
∫ t

t0

µ[−ft] ds
)
≤ |x(t)| ≤ |x(t0)| exp

(∫ t

t0

µ[ft] ds

)
,

where ft(·) = f(·, t).

The following theorem gives an upper bound for the difference between the solutions

of (2.2) using the logarithmic norm of the Jacobian of f , see [26, 27, 33, 40, 64].

Theorem 7. Suppose that V is a convex subset of Rn and let

c = sup
(x,t)∈V×[0,∞)

µ [Jf (x, t)] .

Then, for any two solutions x(t) and y(t) of (2.2), that remain in V , it holds that:

‖x(t)− y(t)‖ ≤ ect‖x(0)− y(0)‖, ∀ t ≥ 0 . (2.15)

To prove Theorem 7, we will use the following general result which estimates rates of

contraction, if c < 0 (or expansion, if c > 0) among any two functions, even functions

that are not solutions of the same system of ODEs (see comment on observers to follow,

Remark 11):

Lemma 5. Let (X, ‖ · ‖X) be a normed space and G : Y × [0,∞) → X be a Lipschitz

function on its first argument, where Y ⊆ X. Suppose u, v : [0,∞)→ Y satisfy

(u̇− v̇)(t) = Gt(u(t))−Gt(v(t)),

where Gt(u) = G(u, t). Let c := supt∈[0,∞) µY,X [Gt]. Then for all t ∈ [0,∞),

‖u(t)− v(t)‖X ≤ ect‖u(0)− v(0)‖X . (2.16)

Proof. By the definition of Dini derivative, we have (dropping some t’s for simplicity)

D+‖(u− v)(t)‖ = lim sup
h→0+

1

h
(‖(u− v)(t+ h)‖X − ‖(u− v)(t)‖X)

= lim sup
h→0+

1

h
(‖u− v + h(u̇− v̇)‖X − ‖u− v‖X)

= lim
h→0+

1

h
(‖u− v + h(Gt(u)−Gt(v))‖X − ‖u− v‖X)

≤ µ+
Y,X [Gt] ‖(u− v)(t)‖X (by definition of µ+)

≤ µY,X [Gt] ‖(u− v)(t)‖X (by Remark 6)

= c ‖(u− v)(t)‖X .
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The third equality holds because since every norm possesses right (and left) Gâteaux-

differentials, the limit exists. Using Gronwall’s Lemma for Dini derivatives, we ob-

tain (2.16). A version of Gronwall’s Lemma is given in [65, Appendix A]. For ease of

reference, we will give a proof in the Appendix.

Remark 10. In the finite-dimensional case, and when G is continuously differentiable

with respect to its first argument, Lemma 5 can be verified in terms of Jacobians.

Indeed, suppose that X = Rn, and Y is a convex subset of Rn. Then, by Lemma 2,

c = c̃ := sup
(w,t)∈Y×[0,∞)

µX [JGt(w)] .

Therefore,

‖u(t)− v(t)‖X ≤ ec̃t‖u(0)− v(0)‖X .

In fact, in the finite-dimensional case, a more direct proof of Lemma 5 can instead be

given. We sketch it next. Let z(t) = u(t)− v(t). We have that

ż(t) = A(t)z(t),

where A(t) =
∫ 1

0
∂
∂xGt (su(t) + (1− s)v(t)) ds. Now, by subadditivity of matrix mea-

sures (Proposition 5), which, by continuity, extends to integrals, we have:

µ[A(t)] ≤ sup
(w,t)∈Y×[0,∞)

µ

[
∂

∂x
Gt(w)

]
.

Applying Theorem 5 gives the result.

Proof of Theorem 7. Since c = sup(x,t) µ [Jf (x, t)] , and ẋ − ẏ = f(x, t) − f(y, t),

by Remark 10, (2.15) can be obtained.

Definition 4. [66] Given a norm ‖ · ‖, the system (2.2), or the time-dependent vector

field f , is said to be infinitesimally contracting with respect to this norm on a set

V ⊆ Rn if there exists some norm in V , with associated matrix measure µ, such that,

for some constant c > 0 (the contraction rate), it holds that:

µ [Jf (x, t)] ≤ −c, ∀x ∈ V, ∀t ≥ 0 . (2.17)
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The key result is that by Theorem 7 infinitesimal contractivity implies global contrac-

tivity.

Note that we use the convexity of V to apply Remark 10 (or Lemma 2). One can prove

Theorem 7 for any arbitrary V but for

c = sup
(x,t)∈V×[0,∞)

µ [f (x, t)] ,

instead of

c = sup
(x,t)∈V×[0,∞)

µ [Jf (x, t)] .

In addition, one can prove the converse of Theorem 7 for any arbitrary V , but for

c = sup
(x,t)∈V×[0,∞)

µ+ [f (x, t)] ,

see Proposition 6 below for more details.

Remark 11. The statement of Lemma 5 allows for considerably more generality than

Theorem 7. Suppose for example that we consider a standard observer configuration:

ẋ = f(x, u)

ż = f(z, u) +K(h(z)− h(x)),

where h is an output function and K is an observer gain matrix. Let

Gt(y) := f(y, u(t)) +Kh(y),

evaluated along any given solution with an input u. Then, ż − ẋ = Gt(z)−Gt(x), and

thus, if Gt has a contractivity property, it follows that z−x converges exponentially to

zero, by Lemma 5. (Theorem 7 does not apply, since x and z solve different equations.)

This recovers the standard Luenberger observer construction for linear time-invariant

systems.

Corollary 1. Under the assumptions of Theorem 7, and for c < 0, the following

statements hold.

• If A is a non-empty forward-invariant set for the dynamics, then every solution

must approach A. Indeed, take any trajectory x(t) and a trajectory y(t) with

y(0) ∈ A. Then, as t→∞,

dist (x(t),A) ≤ ‖(x− y)(t)‖ ≤ ect‖(x− y)(0)‖ → 0.
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• If an equilibrium exists, then it must be unique and globally asymptotically stable.

When contractive systems are forced by periodic signals, they are “entrained”, in the

sense that solutions converge to unique limit cycles. This property is very important

in applications, see for example [64, 67].

Definition 5. Given a number T > 0, we will say that system (2.2) is T -periodic if it

holds that f(x, t+ T ) = f(x, t), ∀ t ≥ 0, x ∈ V . Notice that a system ẋ = f (x, u(t))

with input u(t) is T -periodic if u(t) is itself a periodic function of period T .

The basic theoretical result about periodic orbits is as follows. For more details see

[33, 34, 66].

Theorem 8. Suppose that

1. V is a closed convex subset of Rn;

2. f is infinitesimally contracting with contraction rate c, i.e., µ[Jf ] ≤ −c, for some

c > 0;

3. f is T -periodic.

Then, there is a unique periodic solution x̂(t) : [0,∞) → V of (2.2) of period T and,

for every solution x(t), it holds that ‖x(t)− x̂(t)‖ → 0 as t→∞.

Proof. We denote by ϕ(t, s, ξ) the value of the solution x(t) at time t of the differential

equation (2.2) with initial value x(s) = ξ. Define now P (ξ) = ϕ(T, 0, ξ), where ξ =

x (0) ∈ V .

Claim. P k(ξ) = ϕ(kT, 0, ξ) for all positive integers k and ξ ∈ V .

We will prove the claim by recursion. In particular, the statement is true by definition

when k = 1. Inductively, assuming it is true for k, we have:

P k+1(ξ) = P (P k(ξ)) = ϕ(T, 0, P k(ξ))

= ϕ(T, 0, ϕ(kT, 0, ξ)) = ϕ(kT + T, 0, ξ).

This proves the claim.
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Observe that P is a contraction with factor e−cT < 1: ‖P (ξ)− P (ζ)‖ ≤ e−cT ‖ξ − ζ‖

for all ξ, ζ ∈ V , as a consequence of Theorem 7. The set V is a closed subset of

Rn and hence is complete as a metric space with respect to the distance induced by

the norm being considered. Thus, by the contraction mapping theorem, there is a

(unique) fixed point ξ̄ of P . Let x̂(t) := ϕ(t, 0, ξ̄). Since x̂(T ) = P (ξ̄) = ξ̄ = x̂(0),

x̂(t) is a periodic orbit of period T . Moreover, again by Theorem 7, we have that

‖x(t)− x̂(t)‖ ≤ e−ct‖ξ − ξ̄‖ → 0. Uniqueness is clear, since two different periodic

orbits would be disjoint compact subsets, and hence at positive distance from each

other, contradicting convergence. This completes the proof.

The next result is for the special case of Euclidean norms.

Lemma 6. Suppose that P is a positive definite matrix and A is an arbitrary matrix.

1. If µ2,P [A] = µ, then QA+ATQ ≤ 2µQ, where Q = P 2.

2. If for some positive definite matrix Q, QA + ATQ ≤ 2µQ, then there exists a

positive definite matrix P such that P 2 = Q and µ2,P [A] ≤ µ.

Proof. First suppose µ2,P [A] = µ. By definition of µ:

1

2

(
PAP−1 +

(
PAP−1

)T) ≤ µI.

Since P is symmetric, so is P−1,

PAP−1 + P−1ATP ≤ 2µI.

Now multiplying the last inequality by P on the right and the left, we get:

P 2A+ATP 2 ≤ 2µP 2.

This proves 1. Now assume that for some positive definite matrix Q, QA+ATQ ≤ 2µQ.

Since Q > 0 (positive definite), there exists P > 0 such that P 2 = Q; moreover, because

Q is symmetric, so is P . Hence we have:

P 2A+ATP 2 ≤ 2µP 2.

Multiplying the last inequality by P−1 on the right and the left, we conclude 2.



28

Remark 12. Lemma 6 implies that, for linear time-invariant systems ẋ = Ax, contrac-

tivity with respect to some weighted L2 norm (with a not necessarily diagonal weighting

matrix) is equivalent to A being a Hurwitz matrix. One direction is clear, as contrac-

tivity obviously implies stability. Conversely, suppose that A is Hurwitz. Then, one

may pick a quadratic Lyapunov function V (x) = xTQx, where Q is a positive defi-

nite matrix. By definition of Lyapunov function, QA + ATQ ≤ −βI, for some β > 0.

Letting γ := β/λmax, where λmax is the largest eigenvalue of Q, we have that also

QA+ATQ ≤ −γQ. (Conversely, an inequality of the type QA+ATQ ≤ −µQ implies

that QA+ ATQ ≤ −βI, if we define β := µλmin and λmin is the smallest eigenvalue of

Q.) Thus, there is a positive definite P so that µ2,P [A] ≤ −γ/2 < 0, showing contrac-

tivity with respect to the P -weighted L2 norm. Of course, contractivity with respect

to a diagonally weighted norm, a property which is required in the interconnection and

PDE results mentioned later in Chapter 4, imposes additional requirements even in

the linear time invariant case, amounting to asking that a quadratic Lyapunov func-

tion’s principal axes align with the natural coordinates in Rn. Systems admitting such

Lyapunov functions are often called “diagonally stable” [68], and the study of diagonal

stability is closely related to passivity [69] (see Section 2.5).

The significance of Theorem 7 is that it is true for any norm. Different norms are

appropriate to different problems, just as different Lyapunov functions have to be care-

fully chosen when analyzing a nonlinear system. The choice of norms is a key step in

the application of contraction techniques. Non-Euclidean (i.e., not weighted L2) norms

have been found to be useful in the study of many problems. To illustrate this fact, we

next provide an example of a biochemical model which can be shown to be contractive

by applying Theorem 7 when using a weighted L1 norm, but which is not contractive in

any weighted Lp norm, for any p > 1. The proof that L1 norms suffice for this example

is from [64], and the proof of non-contractivity in Lp, p > 1, is shown below.
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2.4 Example: biochemical model

A typical biochemical reaction is one in which a molecule X (whose concentration is

quantified by the non-negative variable x = x(t)) binds to a second molecule S (whose

concentration is quantified by s = s(t) ≥ 0), to produce a dimer Y (whose concentration

is quantified by y = y(t) ≥ 0), and the molecule X is subject to degradation and dilution

(at rate δx, where δ > 0) and production according to an external signal z = z(t) ≥ 0.

Examples of such reactions might be an enzyme binding to a substrate to produce a

complex, or a transcription factor binding to an unoccupied promoter to make an active

promoter, and the enzyme or the transcription factor is itself being continuously created

and destroyed. The diagram for such a reaction is as follows:

0
z−→ X

δ−→ 0 , X + S
k2−⇀↽−
k1
Y.

Using mass-action kinetics, and assuming a well-mixed reaction in a large volume, the

system of chemical reactions is given by:

ẋ = z(t)− δx+ k1y − k2sx

ẏ = −k1y + k2sx

ṡ = k1y − k2sx.

We observe that y(t) + s(t) = SY remains constant along solutions. Thus we can study

the following reduced system:

ẋ = z(t)− δx+ k1y − k2(SY − y)x

ẏ = −k1y + k2(SY − y)x.

Note that

(x(t), y(t)) ∈ V = [0,∞)× [0, SY ],

for all t ≥ 0 (V is convex and forward-invariant), and SY , k1, k2, δ, d1, and d2 are

arbitrary positive constants.

For any t, the Jacobian of Ft = (z(t)− δx+ k1y − k2(SY − y)x,−k1y + k2(SY − y)x)T ,

is as follows

JFt(x, y) :=


 −δ − k2(SY − y) k1 + k2x

k2(SY − y) −(k1 + k2x)


 .
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Following [64], we show

sup
t

sup
(x,y)∈V

µ1,Q [JFt(x, y)] < 0,

where

Q = diag (1, 1 + δ/(k2SY )− ζ) ,

and we will pick a suitable 0 < ζ < δ
k2SY

. Equivalently, for fixed t and (x, y), we show

that µ1,Q [JFt(x, y)] < 0 and for simplicity we drop the argument (x, y).

We will find a q > 1 such that µ1,Q [JFt(x, y)] < 0 holds with Q = diag (1, q). For any

such q, we can always find ζ such that q := 1 + δ
k2SY

− ζ > 1. With this form for Q,

QJFtQ
−1 =



−δ − a b

q

aq −b


 ,

where a = k2(SY − y) ∈ [0, k2SY ] and b = k1 + k2x ∈ [k1,∞). Since a ≥ 0, b > 0, and

q > 1, by Table 2.1, we have:

µ1,Q[JFt ] = µ1

[
QJFtQ

−1
]

= max{−δ − a+ |aq| ,−b+ |b/q|}

= max{−δ + a(q − 1), b (1/q − 1)}.

So to show that µ1,Q[JFt ] < 0, since we assume q > 1, we need to find an upper bound

for the values of q such that:

−δ + a(q − 1) < 0. (2.18)

Observe that

−δ + a(q − 1) < 0 iff q < 1 +
δ

a
= 1 +

δ

k2(SY − y)
< 1 +

δ

k2SY
.

Hence for Q = diag (1, q), with 1 < q < 1 + δ
k2SY

, µ1,Q[JFt ] < 0. Therefore, by

Theorem 7, the system is contracting. Note that a weighted L1 norm is necessary, since

with Q = I we obtain µ1 = 0.

We next show that for a fixed t, any p > 1, and any positive diagonal Q, it is not true

that µp,Q[JFt(x, y)] < 0 for all (x, y) ∈ V .

We first consider the case p 6=∞ and show that there exists (x0, y0) ∈ V such that for

any small h > 0, ‖I + hQJFt(x0, y0)Q−1‖p > 1. This will imply µp,Q [JFt(x0, y0)] ≥ 0.
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Computing explicitly, we have the following expression:

‖I + hQJFtQ
−1‖p = sup

(ξ1,ξ2)6=(0,0)

(|ξ1 − h(δ + a)ξ1 + hbξ2/q|p + |haqξ1 + ξ2 − hbξ2|p)1/p

(|ξ1|p + |ξ2|p)1/p

≥ (|1− h(δ + a) + hbλ/q|p + |haq + λ− hbλ|p)1/p

(1 + |λ|p)1/p
,

where we take a point of the form (ξ1, ξ2) = (1, λ), for a λ > 0 which will be determined

later. To show

(∣∣∣1− h(δ + a) + h bλq

∣∣∣
p

+ |haq + λ− hbλ|p
) 1
p

(1 + |λ|p)
1
p

> 1,

we equivalently show that for any small enough h > 0:

1

h

(∣∣∣∣1− h(δ + a) + h
bλ

q

∣∣∣∣
p

+|haq + λ− hbλ|p − 1− |λ|p
)
> 0 . (2.19)

Note that the limh→0+ of the left hand side of the above inequality is f ′(0) where

f(h) = |1 + h (bλ/q − (δ + a))|p + |λ+ h(aq − bλ)|p .

Therefore, it suffices to show that f ′(0) > 0 for some value (x0, y0) ∈ V (because

f ′(0) > 0 implies that there exists h0 > 0 such that for 0 < h < h0, the expression

in (2.19) is positive). Since p > 1, by assumption, f is differentiable and

f ′(h) = p (bλ/q − (δ + a)) |1 + h (bλ/q − (δ + a))|p−2 (1 + h (bλ/q − (δ + a)))

+ p(aq − bλ) |λ+ h(aq − bλ)|p−2 (λ+ h(aq − bλ)) .

(Note that d
dx |u(x)|p = |u(x)|p−2u(x) du

dx(x).)

Hence, since λ > 0

f ′(0) = p (bλ/q − (δ + a)) + p(aq − bλ)λp−1 = p (bλ/q − a) (1− λp−1q)− pδ.

Choosing λ small enough such that 1 − λp−1q > 0 and choosing x, or equivalently b,

large enough, we can make f ′(0) > 0.

For p =∞, using Table 2.1,

µ∞
[
QJFtQ

−1
]

= max {−δ − a+ |b/q| ,−b+ |aq|} .

For large enough x, −δ−a+ |b/q| > 0 (and −b+aq < 0) and hence µ∞
[
QJFtQ

−1
]
> 0.
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2.5 Some relations to accretive and dissipative operators

In this section, we show that the converse of Theorem 7 is true as well, and in fact that

contractivity is equivalent to a number of other inequalities. After that, we review the

definitions of accretive and dissipative operators on Banach spaces, and see how these

are related to contractive operators.

The following result summarizes the basic equivalences.

Proposition 6. Consider (2.2) where x(t) ∈ Y ⊂ X, X is a Banach space with norm

‖ · ‖, and t ∈ [0,∞). We assume that

f : Y × [0,∞)→ X,

is a Lipschitz vector field on x and continuous on (x, t).

Then the following statements are equivalent.

1. For any two solutions x, y of (2.2), and all t, s ≥ 0,

‖x(t+ s)− y(t+ s)‖ ≤ ect‖x(s)− y(s)‖.

2. For any t ≥ 0, let ft(x) = f(x, t). Then

µ+[ft] ≤ c .

3. For any two points x, y, and any t ≥ 0

(x− y, ft(x)− ft(y))+ ≤ c‖x− y‖2.

4. For any two solutions x, y of (2.2), and all t ≥ 0,

D+‖(x− y)(t)‖ ≤ c‖(x− y)(t)‖.

Proof. 1⇒ 2. Fix s ≥ 0 and let a 6= b ∈ Y be arbitrary. For t ≥ s, let x(t), y(t) be the

solutions of (2.2) with x(s) = a and y(s) = b respectively.

‖x(s+ h)− y(s+ h)‖ = ‖x(s)− y(s) + h(fs(x(s))− fs(y(s)))) + o(h)‖

≤ ech‖x(s)− y(s)‖.
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Therefore, by subtracting ‖x(s)−y(s)‖ from both sides of the above inequality, dividing

by h > 0, and taking the limh→0+ , we get:

lim
h→0+

‖a− b+ h(fs(a)− fs(b)) + o(h)‖ − ‖a− b‖
h

≤ lim
h→0+

ech − 1

h
‖a− b‖.

Dividing by ‖a− b‖, we get:

lim
h→0+

‖a− b+ h(fs(a)− fs(b))‖ − ‖a− b‖
h‖a− b‖ ≤ c,

and now taking sup over all a 6= b ∈ Y , we get:

µ+[fs] ≤ c.

2⇒ 3. For any fixed t, and any x 6= y ∈ Y

(x− y, ft(x)− ft(y))+ = ‖x− y‖ lim
h→0+

‖x− y + h(ft(x)− ft(y))‖ − ‖x− y‖
h

= ‖x− y‖2 lim
h→0+

‖x− y + h(ft(x)− ft(y))‖ − ‖x− y‖
h‖x− y‖

≤ µ+[ft]‖x− y‖2

≤ c‖x− y‖2.

3⇒ 4. Using the definition of upper Dini derivative, we have: (we drop the argument

t for simplicity)

D+‖(x− y)(t)‖ = lim sup
h→0+

1

h
(‖(x− y)(t+ h)‖ − ‖(x− y)(t)‖)

= lim sup
h→0+

1

h
(‖x− y + h(ẋ− ẏ)‖ − ‖x− y‖)

= lim
h→0+

1

h
(‖x− y + h(ft(x)− ft(y))‖ − ‖x− y‖) .

Note that if (x − y)(t) = 0, then using the above inequality D+‖(x − y)(t)‖ = 0, and

therefore, 4 holds. Assume that (x − y)(t) 6= 0. Multiplying both sides of the above

equality by ‖(x− y)(t)‖, we get:

‖(x− y)(t)‖D+‖(x− y)(t)‖

= ‖x− y‖ lim
h→0+

1

h
(‖x− y + h(ft(x)− ft(y))‖ − ‖x− y‖)

= ((x− y)(t), ft(x(t))− ft(y(t)))+

≤ c‖(x− y)(t)‖2 using 3.
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Dividing by ‖(x− y)(t)‖ 6= 0, we get 4.

4 ⇒ 1. Let φ(t) := ‖(x − y)(t)‖. A simple calculation shows that (see the proof of

Lemma 9 for the calculations.)

D+
(
φ(t)e−ct

)
≤ 0.

Applying Gronwall’s inequality for Dini derivatives (see Lemma 9, in the Appendix),

we have that

φ(t+ s) ≤ ectφ(s),

for all t, s ≥ 0, as desired.

Note that even if Y is a convex subset of X, 1 ⇐⇒ 2, in Proposition 6 is not a

generalization of Theorem 7, because µ+[f ] ≤ c doesn’t imply µ[f ] ≤ c, in general.

Definition 6. [55] An F : Y ⊂ X → X satisfying

(x− y, F (x)− F (y))+ ≥ 0, for any x, y ∈ Y

is said to be accretive (monotone when (·, ·)+ is a true inner product), while F is

dissipative if −F is accretive. Equivalently, by the definition of µ±, F is said to be

accretive if µ+[F ] ≥ 0 and F is dissipative if µ+[−F ] ≥ 0, i.e., µ−[F ] ≤ 0, (by the

definition of µ± and Proposition 3, part 1).

Note that in Hilbert spaces, µ+[F ] = µ−[F ] = µ[F ]. Therefore, F − cI is dissipative,

if µ−[F ] = µ+[F ] ≤ c. In particular, when c < 0, F is dissipative if and only if F is

infinitesimally contractive.

2.6 Appendix

Proof of Proposition 4

To prove this result, we first review some basic minimax optimization facts.



35

Proposition 7. [70] Let X and Y be arbitrary sets and ϕ : X×Y → R be an arbitrary

function. For any y ∈ Y and c ∈ R, denote Hy,c = {x ∈ X : ϕ(x, y) ≥ c} and C the set

of all real numbers c such that for all y ∈ Y , Hy,c 6= ∅, and let c∗ = sup C. Then

(B =) sup
x∈X

inf
y∈Y

ϕ(x, y) = inf
y∈Y

sup
x∈X

ϕ(x, y)(= J),

if and only if for every c < c∗,
⋂
y∈Y Hy,c 6= ∅. In this case B = J = c∗.

A proof is outlined in [70]. For ease of reference, we provide a self-contained proof next.

First we need the following

Lemma 7. For any fixed y ∈ Y , if c1 < c2 then Hy,c2 ⊂ Hy,c1.

Proof. Pick any x ∈ Hy,c2 . By the definition of Hy,c1 , ϕ(x, y) ≥ c2 > c1 and hence

x ∈ Hy,c1 .

Corollary 2. If c1 < c2 then
⋂
y∈Y Hy,c2 ⊂

⋂
y∈Y Hy,c1.

Proof of Proposition 7. First we assume that for every c < c∗,
⋂
y∈Y Hy,c 6= ∅. Using

this assumption, we will show that B = J = c∗. To this end, we will show the following

three inequalities:

1. B ≤ J .

ϕ(x, y) ≤ sup
x∈X

ϕ(x, y) ∀x, y ⇒ inf
y∈Y

ϕ(x, y) ≤ inf
y∈Y

sup
x∈X

ϕ(x, y) ∀x

⇒ sup
x∈X

inf
y∈Y

ϕ(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

Hence, B ≤ J .

2. J ≤ c∗. For an arbitrary c > c∗ we show that J ≤ c. Since c > c∗, there

exists y0 ∈ Y such that Hy0,c = ∅ (otherwise c ∈ C and so c ≤ c∗). This means

that for all x ∈ X, ϕ(x, y0) < c which implies supx∈X ϕ(x, y0) ≤ c and hence

J = infy∈Y supx∈X ϕ(x, y0) ≤ c.

3. c∗ ≤ B. For an arbitrary c < c∗ we show that B ≥ c. Since c < c∗, there exists

c0 ∈ C such that c < c0 (otherwise c = sup C). Since we assumed that for every

c < c∗,
⋂
y∈Y Hy,c 6= ∅, and since c0 ≤ c∗, c0 ∈ C, we have

⋂
y∈Y Hy,c0 6= ∅. By
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Corollary 2, because c < c0, then
⋂
y∈Y Hy,c 6= ∅, i.e., there exists x0 ∈ X such

that for all y ∈ Y , ϕ(x0, y) ≥ c, which implies infy∈Y ϕ(x0, y) ≥ c and hence

B = supx∈X infy∈Y ϕ(x, y) ≥ c.

Now we suppose B = J and for fixed c < c∗ show that
⋂
y∈Y Hy,c 6= ∅. Since c < c∗,

there exists c0 ∈ C such that c < c0. This means that there exists x0 ∈ X such that for

all y ∈ Y , ϕ(x0, y) ≥ c0, i.e., J ≥ c0. Since J = B, there exists x1 ∈ X such that for

all y ∈ Y , ϕ(x1, y) ≥ c0 > c, i.e.,
⋂
y∈Y Hy,c 6= ∅.

For a fixed arbitrary norm ‖ · ‖ on RnN and a fixed arbitrary matrix A ∈ RnN×nN ,

define ϕ : SnN−1 × (0, 1)→ R by

ϕ(v, h) =
1

h
(‖v + hAv‖ − 1) ,

where SnN−1 = {v ∈ RnN : ‖v‖ = 1}. For any h ∈ (0, 1) and c ∈ R, let

Hh,c =
{
v ∈ SnN−1 : ϕ(v, h) ≥ c

}
,

and let C be the set of all real numbers c such that Hh,c 6= ∅ whenever h ∈ (0, 1). Let

c∗ = sup C.

Lemma 8. ϕ(v, h) = 1
h(‖v + hAv‖ − 1) is non-increasing as h→ 0+.

Proof. Let α < 1. Since ‖v‖ = 1,

ϕ(v, αh) =
1

αh
(‖v + αhAv‖ − 1) =

1

h

(∥∥∥ v
α

+ hAv
∥∥∥− 1

α

)

=
1

h

(∥∥∥
( v
α
− v
)

+ (v + hAv)
∥∥∥−

(
1

α
− 1

)
− 1

)

≤ 1

h

(∥∥∥ v
α
− v
∥∥∥+ ‖v + hAv‖ −

(
1

α
− 1

)
− 1

)

=
1

h
(‖v + hAv‖ − 1) = ϕ(v, h).

Corollary 3. For any matrix A, 1
h(‖I+hA‖op−1) is non-increasing as h→ 0+, where

‖ · ‖op is the operator norm induced by ‖ · ‖.
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Proof. Let α < 1. By Lemma 8, we have

1

αh
(‖I + αhA‖op − 1) = sup

‖v‖=1

1

αh
(‖v + αhAv‖ − 1)

= sup
‖v‖=1

ϕ(v, αh)

≤ sup
‖v‖=1

ϕ(v, h)

=
1

h
(‖I + hA‖op − 1).

Proof of Proposition 4. Claim 1.

sup
v∈SnN−1

inf
h∈(0,1)

ϕ(v, h) = inf
h∈(0,1)

sup
v∈SnN−1

ϕ(v, h). (2.20)

Proof of Claim 1. First we show that for c < c∗,
⋂
h∈(0,1)Hh,c 6= ∅, where Hh,c = {v ∈

SnN−1 : ϕ(v, h) ≥ c} and c∗ is defined as above. By Lemma 8, ϕ(v, h) is decreasing

in h which implies Hh1,c ⊂ Hh2,c when h1 < h2. Also by the definition of c∗, c < c∗

implies that Hh,c 6= ∅ for any h ∈ (0, 1). On the other hand, each Hh,c is a closed subset

of SnN−1, so they are all compact. Hence their intersection is non-empty. By applying

Proposition 7, we obtain Equation (2.20).

Claim 2.

sup
v∈SnN−1

lim
h→0+

ϕ(v, h) = sup
v∈SnN−1

inf
h∈(0,1)

ϕ(v, h), (2.21)

and

lim
h→0+

sup
v∈SnN−1

ϕ(v, h) = inf
h∈(0,1)

sup
v∈SnN−1

ϕ(v, h). (2.22)

Proof of claim 2. By Lemma 8, since f(v, h) is non-increasing as h→ 0+, (2.21) holds.

By Corollary 3, since 1
h(‖I + hA‖op − 1) is non-increasing as h→ 0+, (2.22) holds.

By claim 1, the right hand sides of (2.21) and (2.22) are equal, and therefore so are

their left hand sides:

sup
v∈SnN−1

lim
h→0+

ϕ(v, h) = lim
h→0+

sup
v∈SnN−1

ϕ(v, h),

which implies µ[A] = sup‖v‖=1 limh→0+
1
h(‖v + hAv‖ − 1) = µ+[A].
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Gronwall’s Lemma for Dini derivatives

Lemma 9. Suppose D+φ(t) ≤ L(t)φ(t), where φ ≥ 0, and φ and L are continuous

functions of t for t ≥ t0. Then,

φ(t) ≤ φ(t0) exp

(∫ t

t0

L(s) ds

)
.

Proof. Let ψ(t) = φ(t) exp
(
−
∫ t
t0
L(s) ds

)
. Then by the definition of Dini derivative

and D+φ(t) ≤ L(t)φ(t), we have

D+ψ(t)

= lim sup
h→0+

1

h

{
φ(t+ h) exp

(
−
∫ t+h

t0

L(s) ds

)
− φ(t) exp

(
−
∫ t

t0

L(s) ds

)}

= lim sup
h→0+

1

h

{
φ(t+ h) exp

(
−
∫ t

t0

L(s) ds

)
− φ(t) exp

(
−
∫ t

t0

L(s) ds

)}

+ lim sup
h→0+

1

h

{
φ(t+ h) exp

(
−
∫ t+h

t0

L(s) ds

)
− φ(t+ h) exp

(
−
∫ t

t0

L(s) ds

)}

≤ lim sup
h→0+

φ(t+ h)− φ(t)

h
exp

(
−
∫ t

t0

L(s) ds

)

+ lim sup
h→0+

φ(t+ h)
1

h

{
exp

(
−
∫ t+h

t0

L(s) ds

)
− exp

(
−
∫ t

t0

L(s) ds

)}

= D+φ(t) exp

(
−
∫ t

t0

L(s) ds

)
+ φ(t)

(
−L(t) exp

(
−
∫ t

t0

L(s) ds

))

= (D+φ(t)− L(t)φ(t)) exp

(
−
∫ t

t0

L(s) ds

)

≤ 0.

Therefore, for t ≥ t0,

ψ(t) ≤ ψ(t0),

which means

φ(t) ≤ φ(t0) exp

(∫ t

t0

L(s) ds

)
.

Note that a generalized form of Lemma 9, but restricted to non-negative L, is given in

[65, Appendix A, Proposition 2] as follows.
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Lemma 10. Let ψ : [a, b]→ R and f, g ∈ C0([a, b],R) satisfy f, g ≥ 0, and

0 ≤ ψ(t) ≤ lim sup
h→0+

ψ(t− h)

ψ(t) ≥ lim sup
h→0+

ψ(t+ h)

D+ψ(t) ≤ f(t) lim sup
h→0+

ψ(t− h) + g(t).

Then, for every t ∈ [a, b], the function φ fulfills the upper estimate

ψ(t) ≤ ψ(a) exp (ξ(t)) +

∫ t

a
exp(ξ(t)− ξ(s))g(s) ds,

where ξ(t) =
∫ t
a f(s) ds.



40

Chapter 3

Diffusive interconnection of identical nonlinear ODE

systems

In this Chapter, we study networks consisting of identical systems, described by or-

dinary differential equations, which are diffusively interconnected. The state of the

system will be described by a vector x which one may interpret as a vector collecting

the states xi’s (each of them itself possibly a vector) of identical “agents” which tend

to follow each other according to a diffusion rule, with interconnections specified by

an undirected graph. Another interpretation, useful in the context of biological model-

ing, is a set of chemical reactions among species that evolve in separate compartments

(e.g., nucleus, cytoplasm, membrane in a cell); then the xi’s represent the vectors of

concentrations of the species in each separate compartment.

The techniques of this chapter are based on Lipschitz norms (as defined in Section

2.2) and graph theory. For ease of reference, in Section 3.1, we recall some definitions

and ideas in graph theory and introduce some notations that we will use through this

work (for more details see e.g. [71]).

3.1 Preliminaries: graph theory

In this work, we let G = (V, E) denote a finite, undirected, connected, simple (graph

that has no loops, i.e., edges are not connected at both ends to the same vertex)

graph (a “graph” for short) where V = {x1, . . . , xN} is the set of vertices (nodes) and

E = {e1, . . . , em} is the set of edges, where ek = xikxjk is the kth edge that interconnects

xik and xjk for some ik, jk ∈ {1, . . . , N}. (Sometimes we indicate ek by xik − xjk for

some ik < jk.)

Two vertices xi and xj are adjacent if there exists an edge between them, i.e., xixj ∈ E .
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The neighborhood Ni ⊂ V of vertex xi is the set of all vertices that are adjacent to xi.

In what follows we define some standard classes of graphs that we use in this work.

Complete graph. In a complete graph every vertex is adjacent to every other vertex.

Figure 3.1(left) indicates a complete graph with 5 vertices.

Path graph. In a path graph with V = {x1, . . . , xN}, the set of edges is as follows:

E = {x1x2, x2x3, . . . , xN−1xN}.

Figure 3.1(middle) indicates a path graph with 5 vertices.

Star graph. In a star graph with V = {x1, . . . , xN}, the set of edges is as follows:

E = {x1x2, x1x3, . . . , x1xN}.

Figure 3.1(right) indicates a star graph with 5 vertices.
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Figure 3.1: (left) complete graph, (middle) path graph, (right) star graph

Tree. A tree is a simple, undirected graph with no cycles, i.e., any two vertices are

connected by exactly one “path” (a sequence of edges that connects two vertices).

Path graphs and star graphs are two simple examples of trees.

Next we recall the definition of Cartesian product of graphs and some of its properties.

The Cartesian product of two graphs, namely G1 and G2, indicated by G1×G2 is a graph

such that

• the vertex set of G1 × G2 is the Cartesian product V1 × V2; and

• any two vertices (xi, yj) and (xk, yl) are adjacent in G1 × G2 if and only if either

xi = xk and yj is adjacent to yl in G2, or yj = yl and xi is adjacent to xk in G1.
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Figure 3.2 indicates the Cartesian product of two complete graphs with 3 nodes (called

“Rook”) and the Cartesian product of three path graphs with 2 nodes (hypercube or

“lattice”).
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Figure 3.2: (left) hypercube, (right) Rook

Weighted graph. More generally, a weighted graph is a graph that a number (weight)

is assigned to each edge. A weight matrix W = (wij), associated to a weighted graph

Gw (the subscript w refers to weight), is defined as follows.

(W )ij =





wij 6= 0 xi and xj are adjacent with weight wij ,

0 xi and xj are not adjacent.

Since there are exactly m (the number of edges) non-zero wij ’s, they can be ordered as

ω1, . . . , ωm. Let W be an m×m diagonal matrix with ωi’s on its diagonal.

W = diag (ω1, . . . , ωm). (3.1)

Graph and matrices

The incidence matrix

A directed graph is a set of nodes that are connected by directed edges, see e.g. Figure

3.3(left).

Consider a graph G whose edges have been arbitrary oriented. The N ×m incidence
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2

Figure 3.3: (left) a directed path graph, (right) the associated undirected graph

matrix E is defined as follows.

(E)ij =





1 if edge ej originates from vertex xi,

−1 if edge ej terminates at vertex xi,

0 if edge ej and vertex xi are not incident.

The following matrix indicates the incidence matrix associated to the (directed) graph

in Figure 3.3.

E4×3 =




1 0 0

−1 −1 0

0 1 1

0 0 −1



.

An incidence matrix for a weighted graph is defined as follows (see [72] for more details).

Ew := E
√
W, (3.2)

where E is an incidence matrix of the associated unweighted graph, and

√
W = diag (

√
ω1, . . . ,

√
ωm).

The graph Laplacian matrix

Another matrix representation of an (undirected, unweighted) graph G is the graph

Laplacian (or simply Laplacian) L and is defined as follows.

(L)ij =





−|Ni| when i = j,

1 when i 6= j and xi and xj are adjacent,

0 when i 6= j and xi and xj are not adjacent,

where |Ni| indicates the number of the neighbors of vertex xi. The following matrix

indicates the (graph) Laplacian matrix associated to the undirected graph in Figure
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3.3.

L4×4 =




−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1



.

In what follows we recall a few properties of L that we need in this work.

1. L is a positive semidefinite matrix, hence its real eigenvalues can be ordered as

λ1 ≤ λ2 ≤ · · · ≤ λN .

• Since L1 = 0, λ1 = 0 with corresponding eigenvector 1 = (1, . . . , 1)T .

• G is connected if and only if λ2 > 0. The second smallest eigenvalue, λ2, is called

the algebraic connectivity of the graph. This number helps to quantify “how

connected” the graph is; for example, a complete graph is “more connected”

than a path graph with the same number of nodes, and this is reflected in the

fact that the second eigenvalue of the Laplacian matrix of a complete graph

(λ2 = N) is larger that the second eigenvalue of the Laplacian matrix of a path

graph (λ2 = 4 sin2 (π/2N)).

2. For any incidence matrix E of a graph, L = EET .

Examples

1. The following N × N matrix indicates the Laplacian matrix of a complete graph

with N nodes,

L =




N − 1 −1 . . . −1

−1 N − 1 . . . −1

. . .

−1 . . . −1 N − 1



,

with λ1 = 0 and λ2 = N .
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2. The following tridiagonal N × N matrix indicates the Laplacian matrix of a path

graph with N nodes:

L =




1 −1

−1 2 −1

. . .

−1 2 −1

−1 1




. (3.3)

with λ1 = 0 and λ2 = 4 sin2 (π/2N).

3. The following (N + 1) × (N + 1) matrix indicates the Laplacian matrix of a star

graph of N + 1 nodes:

L =




1 −1

1 −1

. . .

1 −1

−1 −1 N




.

with λ1 = 0 and λ2 = 1 (which is independent of the number of vertices).

4. Laplacian spectrum of the Cartesian product G = G1 × · · · × GK is

{λi1(G1) + · · ·+ λiK (GK) | ij = 1, . . . , Nj} ,

where Nj is the number of vertices of Gj . Therefore, since for any j, λ1(Gj) = 0,

λ2(G) = min {λ2(G1), . . . , λ2(GK)} .

Similar to the unweighted graphs, the graph Laplacian can be defined for a weighted

graph with a weight matrix W = (wij) as follows (see [72] for more details).

(Lw)ij =





−∑k∈Ni wik when i = j,

wij when i 6= j and xi and xj are adjacent,

0 when i 6= j and xi and xj are not adjacent.

Similar properties to those we listed above also hold for unweighted graphs as follows.
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1. Lw is a positive semidefinite matrix, hence its real eigenvalues can be ordered as

0 = λ1 < λ2 ≤ · · · ≤ λN .

2. For any incidence matrix Ew of a weighted graph, Lw = EwE
T
w .

The edge Laplacian matrix

For any graph G, the edge Laplacian is an m×m matrix which is defined as follows.

K = ETE. (3.4)

The following lemma describes the eigenvalues of the edge Laplacian of a graph and

their relations to the eigenvalues of the graph Laplacian.

Lemma 11. [73] Let G be a connected graph with incidence matrix E, edge Laplacian

K = ETE, and (graph) Laplacian L = EET . Then

1. The nonzero eigenvalues of K are equal to the nonzero eigenvalues of L.

2. The null space of the edge Laplacian depends on the number of cycles in the graph. In

particular, the null space of a tree is equal to 0, i.e., all the eigenvalues are nonzero.

For any weighted graph Gw, the edge Laplacian is an m×m matrix which is defined as

follows (see [72] for more details).

Kw = ETwEw. (3.5)

The following lemma describes the eigenvalues of the edge Laplacian of a graph and

their relations to the eigenvalues of the graph Laplacian.

Lemma 12. [72, 73] Let Gw be a connected undirected weighted graph with weighted

incidence matrix Ew, edge Laplacian matrix Kw = Ew
TEw, and (graph) Laplacian

matrix Lw = EwEw
T . Then

1. The nonzero eigenvalues of Kw are equal to the nonzero eigenvalues of Lw.

2. The null space of the edge Laplacian depends on the number of cycles in the graph. In

particular, the null space of a tree is equal to 0, i.e., all the eigenvalues are nonzero.
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3.2 Contractivity of diffusively-connected ODEs: weighted Lp norm

approaches

Acknowledgement of journal publication:

Parts of the material in this section have been published in the journal paper [51].

In this section we first describe the networks consisting of identical systems, which

are diffusively interconnected. In order to formally describe the interconnections, we

introduce the following concepts.

• For a fixed convex subset of Rn, say V , F̃ : V N × [0,∞) → RnN is a function of

the form:

F̃ (x, t) =
(
F (x1, t)

T , . . . , F (xN , t)
T
)T
,

where x =
(
xT1 , . . . , x

T
N

)T
, with xi ∈ V for each i, and F (z, t) is a Lipschitz

function on z and a continuous function on (z, t).

• For any x ∈ V N we define ‖x‖p,I⊗Q as follows:

‖x‖p,I⊗Q =
∥∥∥(‖Qx1‖p, . . . , ‖QxN‖p)T

∥∥∥
p
,

where Q = diag (q1, . . . , qn) is a positive diagonal matrix and 1 ≤ p ≤ ∞.

When N = 1, we simply have a norm in Rn:

‖x‖p,Q := ‖Qx‖p.

We also let µp,Q denote the (lub) logarithmic Lipschitz constant (or logarithmic

norm) induced by ‖ · ‖p,Q defined on an appropriate space.

• D(t) = diag (d1(t), . . . , dn(t)), where di(t) ≥ 0 is a continuous functions of t. The

matrix D(t) is called the diffusion matrix.

• L ∈ RN×N is a symmetric matrix and L1 = 0, where 1 = (1, . . . , 1)T . We

think of L as the Laplacian of a graph that describes the interconnections among

component subsystems.

• ⊗ denotes the Kronecker product of two matrices.
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We recall that if A = (aij) is an m×n matrix and B = (bij) is a p× q matrix, then the

Kronecker product, denoted by A⊗B, is the mp× nq block matrix defined as follows:

A⊗B :=




a11B . . . a1nB

...
. . .

...

am1B . . . amnB



,

where aijB denote the following p× q matrix:

aijB :=




aijb11 . . . aijb1q
...

. . .
...

aijbp1 . . . aijbpq



.

The following are some properties of Kronecker product (for more properties see e.g.

[74]):

1. (A⊗B)(C ⊗D) = (AC)⊗ (BD);

2. If A and B are invertible, then (A⊗B)−1 = A−1 ⊗B−1.

3. Suppose that A and B are square matrices of size n and m respectively. Let

λ1, . . . , λn be the eigenvalues of A and µ1, . . . , µm be those of B (listed according

to multiplicity). Then the eigenvalues of A ⊗ B are λiµj for i = 1, . . . , n, and

j = 1, . . . ,m.

Definition 7. For any arbitrary graph G with the associated (graph) Laplacian matrix

L, any diagonal matrix D(t), and any F : V×[0,∞)→ Rn, the associated G−compartment

system, denoted by (F,G, D), is defined by

ẋ(t) = F̃ (x(t), t)− (L ⊗D(t))x(t), (3.6)

where x and F̃ are as defined above.

Definition 8. We say that the G−compartment system (3.6) is contractive, if for any

two solutions x =
(
xT1 , . . . , x

T
N

)T
and y =

(
yT1 , . . . , y

T
N

)T
of (3.6), x(t) − y(t) → 0 as

t→∞.
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A discrete analog of the Turing instability phenomenon (discussed again in Section 4.2)

is that when a dynamic equilibrium x̄ of the non-diffusing ODE system ẋ = F (x, t) is

stable, but, at least for some diagonal positive matrices D, the corresponding intercon-

nected system (3.6) is unstable.

In what follows, we show that, for infinitesimally contractive reaction F (which implies,

in particular, that any two trajectories of F converge to each other, see Theorem 7),

no diffusion instability will occur, no matter what is the size of the diffusion matrix D.

Theorem 9. Consider the system (3.6) and let c = µp,Q[F ]. Then for any two solutions

x, y of (3.6), we have

‖x(t)− y(t)‖p,I⊗Q ≤ ect‖x(0)− y(0)‖p,I⊗Q . (3.7)

In addition, if F is C1 on x, then

‖x(t)− y(t)‖p,I⊗Q ≤ ec̃t‖x(0)− y(0)‖p,I⊗Q ,

where c̃ = sup(x,t) µp,Q[JF (x, t)].

In particular, when c < 0 (or c̃ < 0), the system (3.6) is contractive.

To prove this theorem, we first prove the following technical lemma.

Lemma 13. For any 1 ≤ p ≤ ∞, and positive diagonal matrix Q,

1. µp,I⊗Q[−L⊗D(t)] = 0.

2. µ+
p,I⊗Q[F̃ ] ≤ µp,Q[F ].

Proof. To prove 1 we need the following two steps.

Step 1. µp,I⊗Q[−L⊗D(t)] = µp[−L⊗D(t)].

By the properties of Kronecker product mentioned above, we have:

µp,I⊗Q[−L⊗D(t)] = µp
[
(I ⊗Q)(−L⊗D(t))(I ⊗Q−1)

]

= µp[−L⊗QD(t)Q−1]

= µp[−L⊗D(t)].
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The last equality holds because both Q and D(t) are diagonal, and thus they commute:

QD(t)Q−1 = D(t)QQ−1 = D(t).

Step 2. µp[−L⊗D(t)] = 0.

For any fixed t ≥ 0, let L̃(t) = −L ⊗D(t) = (L̃(t)ij). Note that since L1 = 0, by the

definition of Kronecker product, L̃(t)1 = 0. In addition because L is symmetric and

D(t) is diagonal, L̃(t) is also symmetric and therefore L̃(t)1 = 1L̃(t) = 0. Also the off

diagonal entries of L̃(t), like those of −L, are positive. We first show that µp

[
L̃(t)

]
= 0

for p = 1,∞. For p = 1,

µ1

[
L̃(t)

]
= max

j

∑

i 6=j,i=1,...,nN

(
L̃ii(t) +

∣∣∣L̃ij(t)
∣∣∣
)

= max
j

0 = 0.

Similarly, for p =∞,

µ∞
[
L̃(t)

]
= max

i

∑

i 6=j,j=1,...,nN

(
L̃ii(t) +

∣∣∣L̃ij(t)
∣∣∣
)

= max
j

0 = 0.

Now suppose p 6= 1,∞. By Lemma 1, µp

[
L̃(t)

]
≥ λmax, where λmax is the largest

real part of an eigenvalue of L̃(t). Because L̃(t)1 = 0, λ = 0 is an eigenvalue of L̃(t);

therefore µp

[
L̃(t)

]
≥ 0. To show that µp

[
L̃(t)

]
≤ 0, by Lemma 3, it suffices to show

that D+‖u‖p ≤ 0 where u is a solution of u̇ = L̃(t)u. By the definition of Dini derivative,

it suffices to show that ‖u(t)‖p is a non-increasing function of t. Let Φ(u(t)) := ‖u(t)‖pp,

where u =
(
uT1 , . . . , u

T
N

)T
with ui =

(
u1
i , . . . , u

n
i

)T ∈ V n. Here we abuse the notation

and assume that u = (u1, . . . , unN )T . We will show that dΦ
dt (u(t)) ≤ 0.

We will use the following simple fact (which is proved in the Appendix):

For any real α, β, and 1 ≤ p,
(
|α|p−2 + |β|p−2

)
αβ ≤ |α|p + |β|p.

As we explained above, L̃(t) is symmetric and L̃(t)1 = 0. Using this information and

the above inequality:

dΦ

dt
(u(t)) =

nN∑

i=1

dΦ

dui

dui
dt

= OΦ · u̇

= OΦ · L̃(t)u

= p
(
|u1|p−2u1, . . . , |unN |p−2unN

)
L̃(t) (u1, . . . , unN )T
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= p
∑

i,j

|ui|p−2uiL̃ij(t)uj

= p
∑

i

|ui|pL̃ii(t) + p
∑

i<j

L̃ij(t)
(
|ui|p−2 + |uj |p−2

)
uiuj

≤ p
∑

i

|ui|pL̃ii(t) + p
∑

i<j

L̃ij(t) (|ui|p + |uj |p)

= p
∑

i

|ui|pL̃ii(t) + p
∑

i 6=j

(
L̃ij(t)|ui|p + Lji(t)|uj |p

)

= p
∑

i

|ui|p

L̃ii(t) +

∑

i 6=j
L̃ij(t)




= 0,

since dΦ
dui

= d
dui
|ui|p = p|ui|p−2ui (recall that |x|p is differentiable for p > 1).

Next we prove part 2 of the lemma. In this part, for any t, we let Ft(·) := F (·, t) and

F̃t(·) := F̃ (·, t). By the definition of c̃t := µp,Q[Ft], we have

lim
h→0+

1

h
sup

x1 6=y1∈V

(
‖x1 − y1 + h(Ft(x1)− Ft(y1))‖p,Q

‖x1 − y1‖p,Q
− 1

)
= c̃t.

Fix an arbitrary ε > 0. Then there exists h0 > 0 such that for all 0 < h < h0,

1

h
sup

x1 6=y1∈V

(
‖x1 − y1 + h(Ft(x1)− Ft(y1))‖p,Q

‖x1 − y1‖p,Q
− 1

)
< c̃t + ε.

Therefore, for any x1 6= y1, and 0 < h < h0

‖x1 − y1 + h(Ft(x1)− Ft(y1))‖p,Q < ((c̃t + ε)h+ 1)‖x1 − y1‖p,Q. (3.8)

Consider (3.8) for N pairs (xi, yi)’s with xi 6= yi. Raising Inequality (3.8) to the power

p, summing over all N pairs (xi, yi), dividing by
∑ ‖xi − yi‖pp,Q, raising to the power

1
p , subtracting by 1, and dividing by h, we get:

1

h




(∑
i ‖xi − yi + h(Ft(xi)− Ft(yi))‖pp,Q

) 1
p

(∑
i ‖xi − yi‖

p
p,Q

) 1
p

− 1


 < c̃t + ε.

Now by letting ε→ 0 and taking sup over all pairs (xT1 , . . . , x
T
N )T 6= (yT1 , . . . , y

T
N )T , and

by definition of F̃t, and µ+
p,I⊗Q, for ant t, we get, µ+

p,I⊗Q[F̃t] ≤ c̃t = µp,Q[Ft]. Therefore,

µ+
p,I⊗Q[F̃ ] ≤ µp,Q[F ].
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Proof of Theorem 9. As in the proof of Lemma 13, for any t, we let Ft(·) := F (·, t)

and F̃t(·) := F̃ (·, t). By subadditivity of µ+
p,I⊗Q, Proposition 5, and Lemma 13, for any

t > 0:

µ+
p,I⊗Q[F̃t − L⊗D(t)] ≤ µ+

p,I⊗Q[F̃t] + µ+
p,I⊗Q[−L⊗D(t)]

≤ µp,Q[Ft] + µp,I⊗Q[−L⊗D(t)]

≤ µp,Q[F ].

Therefore, supt∈[0,∞) µ
+
p,I⊗Q[F̃t − L⊗D(t)] ≤ c. Now using Theorem 7, we have

‖x(t)− y(t)‖p,I⊗Q ≤ ect‖x(0)− y(0)‖p,I⊗Q.

In addition, when F is C1, by Proposition 2, c ≤ c̃ and the following inequality holds:

‖x(t)− y(t)‖p,I⊗Q ≤ ec̃t‖x(0)− y(0)‖p,I⊗Q.

Lemma 14. Assume F is a linear operator. Then

µp,I⊗Q
[
F̃ − L⊗D(t)

]
≤ µq,Q[F ] if p = q. (3.9)

Proof. Note that for a linear operator, µ+ = µ (Proposition 4). Therefore, by subaddi-

tivity of µ and Lemma 13 we have:

µp,I⊗Q
[
F̃ − L⊗D(t)

]
≤ µp,I⊗Q[F̃ ] = µ+

p,I⊗Q[F̃ ] ≤ µp,I⊗Q [F ] .

Remark 13. Note that (3.9) does not need to hold if p 6= q. Indeed, consider the

following system:

ẋ1 = Ax1 +D(x2 − x1)

ẋ2 = Ax2 +D(x1 − x2),

where xi ∈ R2, A =

−2 1

1 −2

 and D = diag (d1, d2). In this example L =

 1 −1

−1 1

,

F (u) = Au, and F̃ (u) = diag (Au,Au). We show that for Q = diag (3, 1), µ2,Q[A] < 0

while µ1,I⊗Q[F̃ − L⊗D] > 0. By Table 2.1,

µ2,Q[A] = µ2[QAQ−1] = µ2


−2 3

1
3 −2


 < 0,
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and

µ1,I⊗Q
[
F̃ − L⊗D(t)

]
= µ1,I⊗Q




−2− d1 1 d1 0

1 −2− d2 0 d2

d1 0 −2− d1 1

0 d2 1 −2− d2




= µ1




−2− d1 3 d1 0

1
3 −2− d2 0 d2

d1 0 −2− d1 3

0 d2
1
3 −2− d2




= 1 > 0.

3.3 Synchronization of diffusively-connected ODEs: non L2 norm ap-

proaches

Acknowledgement of journal and conference publications:

Parts of the material in this section have been published in the conference paper [53]

and the journal paper [54].

In this section we use the contraction theory to show synchronization (or “consen-

sus”) in diffusively connected identical ODE systems. Synchronization results based on

contraction-based techniques, typically employing measures derived from L2 or weighted

L2 norms, have been already well studied [33, 35, 42, 43, 44, 45].

Our interest here is in using matrix measures derived from norms that are not in-

duced by inner products, such as L1 and L∞ norms, because these are the most appro-

priate in many applications, such as the biochemical examples discussed as illustrations

in Section 3.3.3. For such more general norms, proofs cannot rely upon Lyapunov-like

linear matrix inequalities. We remark that other authors have also previously studied

matrix measures based on non L2 norms, see for instance [33]; however, rigorous proofs

of the types of results proved here have not been given in [33]. In [47], the author stud-

ies synchronization using matrix measures for L1, L2, and L∞ norms; we compare our

results to this and other papers in Section 3.3.4. Also, in [48, 49] a sufficient condition
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for synchronization based on matrix measure induced by an arbitrary norm is given for

linear systems, see Remark 14 in Section 3.3.1 below with slightly different proof. In

this work, we are interested in nonlinear systems.

Definition 9. We say that the G−compartment system (3.6) synchronizes, if for any

solution x =
(
xT1 , . . . , x

T
N

)T
of (3.6), and ∀i, j ∈ {1, . . . , N}, (xi−xj)(t)→ 0 as t→∞.

An easy first result is as follows.

Proposition 8. Suppose that x is a solution of (3.6), F (x, t) is C1 on x, and let

c = sup(x,t) µp,Q[JF (x, t)] < 0. Then the G−compartment system (3.6) synchronizes.

Proof. Note that z(t) :=
(
zT1 (t), . . . , zT1 (t)

)T
is a solution of (3.6), where z1(t) is a

solution of ẋ = F (x, t). Then by Equation (3.7),

‖x(t)− z(t)‖p,I⊗Q ≤ ect‖x(0)− z(0)‖p,I⊗Q.

When c < 0, ∀i, (xi−z1)(t)→ 0, hence for any pair (i, j), (xi−xj)(t)→ 0 as t→∞.

In Proposition 8, we imposed a strong condition on F , which in turn leads to the

very strong conclusion that all solutions should converge exponentially to a particu-

lar solution, no matter what is the strength of the interconnection (choice of diffusion

matrix). A more interesting and challenging problem is to provide a condition that

links the vector field, the graph structure, and the diffusion matrix, so that interesting

dynamical behaviors (such as oscillations in autonomous systems, which are impossi-

ble in contractive systems) can be exhibited by the individual systems, and yet the

components synchronize. The example in Section 3.3.3 illustrates this question.

3.3.1 Synchronization based on contractions

In this section, we discuss several matrix measure based conditions that guarantee

synchronization of ODE systems.

Consider a G−compartment system, (F,G, D), where G is any arbitrary graph and

F is C1 on its first argument. The following re-phrasing of a theorem from [42] provides

sufficient conditions on F and D (D is time invariant in [42]), based upon contractions
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with respect to L2 norms, that guarantee synchrony of the associated G−compartment

system. We have translated the result to the language of contractions. (Actually, the

result in [42] is stronger, in that it allows for certain non-diagonal diffusion and also

certain non-diagonal weighting matrices Q, by substituting these assumptions by a

commutativity type of condition.)

Theorem 10. [42] Consider a G−compartment as defined in Equation (3.6) and sup-

pose that V ⊆ Rn is convex. For a given positive diagonal matrix Q, let

c := sup
(x,t)

µ2,Q[JF (x, t)− λ2D]. (3.10)

Then for every forward-complete solution x = (xT1 , . . . , x
T
N )T that remains in V , the

following inequality holds:

‖x̃(t)‖2,I⊗Q ≤ ect‖x̃(0)‖2,I⊗Q,

where x̃ =
(
(x1 − x̄)T , . . . , (xN − x̄)T

)T
and x̄ = (x1 + · · · + xN )/N . In particular, if

c < 0, then for any pair i, j ∈ {1, . . . , N}, (xi − xj)(t)→ 0 exponentially as t→∞.

We next turn to general norms. The following theorem provides a sufficient condition

on F,D, and G that guarantees synchrony of the associated G−compartment system in

any norm.

Theorem 11. Consider a G−compartment system, (F,G, D), where G is an arbitrary

graph with N nodes and m edges. For an arbitrary orientation of G, let E be the directed

incidence matrix of G, and pick any m×m matrix K satisfying

ETL = KET . (3.11)

Denote:

c := sup
(w,t)

µ [J(w, t)−K ⊗D(t)] , (3.12)

where µ is the logarithmic norm induced by an arbitrary norm on Rmn, say ‖ · ‖, and

for w =
(
wT1 , . . . , w

T
m

)T
, J(w, t) is defined as follows:

J(w, t) = diag (JF (w1, t), . . . , JF (wm, t)) .
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Then

∥∥(ET ⊗ I
)
x(t)

∥∥ ≤ ect
∥∥(ET ⊗ I

)
x(0)

∥∥ .

Proof. Assume that x is a solution of ẋ = F̃ (x, t)− (L ⊗D(t))x. For any t, define y as

follows.

y(t) :=
(
ET ⊗ I

)
x(t).

Notice that for k = 1, . . . ,m, the kth entry of
(
ET ⊗ I

)
x(t) is xik −xjk which indicates

the kth edge of G, i.e., the difference between states associated to the two nodes that

constitute the edge, and I is the n × n identity matrix. Then, using the Kronecker

product identity (A⊗B)(C⊗D) = AC⊗BD, for matrices A,B,C, and D of appropriate

dimensions, we have:

ẏ =
(
ET ⊗ I

)
ẋ

=
(
ET ⊗ I

) (
F̃ (x, t)− (L ⊗D(t))x

)

=
(
ET ⊗ I

)
F̃ (x, t)−

(
ETL ⊗D(t)

)
x

=
(
ET ⊗ I

)
F̃ (x, t)−

(
KET ⊗D(t)

)
x

=
(
ET ⊗ I

)
F̃ (x, t)− (K ⊗D(t))

(
ET ⊗ I

)
x

=
(
ET ⊗ I

)
F̃ (x, t)− (K ⊗D(t)) y,

where for i = 1, . . . ,m,
(
ET ⊗ I

)
F̃ (x, t) can be written as follows:

(
ET ⊗ I

)
F̃ (x, t) = diag (F (xi1 , t)− F (xj1 , t), . . . , F (xim , t)− F (xjm , t)) .

Now let u =
(
xTi1 , . . . , x

T
im

)T
, v =

(
xTj1 , . . . , x

T
jm

)T
, and for any t, Gt be as follows:

Gt(u) :=




F (xi1 , t)

...

F (xim , t)



− (K ⊗D(t))




xi1
...

xim



,

then u̇− v̇ = Gt(u)−Gt(v), and by Remark 10,

‖u(t)− v(t)‖ ≤ ect‖u(0)− v(0)‖,

where u− v =
(
ET ⊗ I

)
x and c = sup(w,t) µ [JGt(w)] = sup(w,t) µ [J(w, t)−K ⊗D(t)] .
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Since
(
ET ⊗ I

)
x is a column vector whose entries are the differences xik − xjk , when

c < 0, the system synchronizes.

In Section 3.3.2, we will see the application of Theorem 11 to path graphs (Proposition

10) and complete graphs (Proposition 11) . We remark that, at least for certain graphs,

one can recover the L2 result from [42] as a corollary of Theorem 11 (see Remark 17 in

Section 3.5).

We next specialize to the linear case, when F (x, t) = A(t)x.

Remark 14. Our interest in this work is in nonlinear systems. For the special case of

linear dynamics, a general result is easy, and well-known. Consider a G−compartment

system, (F,G, D), and suppose that F (x, t) = A(t)x, i.e.,

ẋ(t) = (I ⊗A(t)− L⊗D(t))x(t). (3.13)

For a given arbitrary norm in Rn, say ‖ · ‖, suppose that supt µ[A(t) − λ2D(t)] < 0.

Then, for any i, j ∈ {1, . . . , N}, (xi − xj)(t)→ 0, exponentially as t→∞.

Proof. Note that any solution x of Equation (3.13) can be written as follows:

x(t) =
∑

i=1,...,N

∑

j=1,...,n

cij(t) (vi ⊗ ej),

where the vi’s, vi ∈ RN , are a set of orthonormal eigenvectors of L (that make up a

basis for RN ), corresponding to the eigenvalues λi’s of L, and the ej ’s are the standard

basis of Rn. In addition, the cij ’s are the coefficients that satisfy

Ċ(t) =




A(t)− λ1D(t)

. . .

A(t)− λND(t)



C(t),

with appropriate initial conditions, where C = (c11, . . . , c1n, . . . , cN1, . . . , cNn)T . For an

incidence matrix E, let y =
(
ET ⊗ I

)
x, then

y(t) =
∑

i=1,...,N

∑

j=1,...,n

cij(t)
(
ET vi ⊗ ej

)
=

∑

i=2,...,N

∑

j=1,...,n

cij(t)
(
ET vi ⊗ ej

)
,

because ET v1 = 0 (where v1 = (1/
√
n)1). Therefore, if supt µ[A(t)−λ2D(t)] < 0, then

supt µ[A(t) − λiD(t)] < 0, ∀i = 2, . . . , N , and by Lemma 5, the cij(t)’s, for j ≥ 2, and

hence also y(t), converge to 0 exponentially as t→∞.
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Table 3.1: Sufficient conditions for synchronization in complete, line and star graphs
with N nodes. If no subscript is used in µ, the result has been proved for arbitrary
norms

For a different proof of Remark 14, see [48, 49].

3.3.2 Synchronization based on graph structure

While the results for measures based on Euclidean norm are quite general, in the non-

linear case and for Lp norms, p 6= 2, we separately establish results for special cases,

depending on the graph structure. We present sufficient conditions for synchronization

for some general families of graphs (path, complete, star), and compositions of them

(Cartesian product graphs).

See Table 3.1 and Table 3.2 for a summary of the results that will be stated in this

section.

Note that the results presented in Propositions 10 and 11 below are derived from The-

orem 11 directly. But to prove Proposition 12 (star graph), we use different techniques.

Two compartments

We first study the relatively trivial case of a system with two compartments, N = 2.

Since it makes no difference in the proof, we allow in this case a “nonlinear diffusion”
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Table 3.2: Sufficient conditions for synchronization in cartesian products of K line and
complete graphs, (if no subscript is used in µ, the result has been proved for arbitrary
norms)

term represented by a function h which need not be linear:

ẋ1 = F (x1, t) + h1(x2, t)− h1(x1, t)

ẋ2 = F (x2, t) + h2(x1, t)− h2(x2, t)

(3.14)

Proposition 9. Let c = sup(x,t) µ [JF (x, t)− (Jh1 + Jh2)(x, t)], and
(
xT1 , x

T
2

)T
be a

solution of (3.14). Then

‖x1(t)− x2(t)‖ ≤ ect‖x1(0)− x2(0)‖,

where ‖ · ‖ is an arbitrary norm in Rn and µ is the logarithmic norm induced by ‖ · ‖.

Proof. Note that ẋ1 − ẋ2 = Gt(x1) − Gt(x2) where Gt(x) = F (x, t) − (h1 + h2)(x, t).

By Remark 10,

‖x1(t)− x2(t)‖ ≤ ect‖x1(0)− x2(0)‖,

where c = sup(x,t) µ [JGt(x)] = sup(x,t) µ [JF (x, t)− (Jh1 + Jh2)(x, t)].

Our interest here is in an arbitrary number of compartments, and we turn to that

general problem next.
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Path graphs

Consider a system of N compartments, x1, . . . , xN , that are connected to each other

by a path graph G. Assuming x0 = x1, xN+1 = xN , the following system of ODEs

describes the evolution of the individual agent xi, for i = 1, . . . , N :

ẋi = F (xi, t) +D(t)(xi−1 − xi + xi+1 − xi). (3.15)

The following result is an application of Theorem 11 to path graphs.

Proposition 10. Let (xT1 , . . . , x
T
N )T be a solution of (3.15), and for 1 ≤ p ≤ ∞ and a

positive diagonal matrix Q, let

c = sup
(x,t)

µp,Q
[
JF (x, t)− 4 sin2 (π/2N)D(t)

]
. (3.16)

Then

‖e(t)‖p,Qp⊗Q ≤ ect‖e(0)‖p,Qp⊗Q, (3.17)

where e =
(
eT1 , . . . , e

T
N−1

)T
with ei = xi − xi+1 denotes the vector of all edges of the

path graph, and ‖·‖p,Qp⊗Q denotes the weighted Lp norm with the weight Qp⊗Q, where

for any 1 ≤ p <∞,

Qp := diag

(
p

2−p
p

1 , . . . , p
2−p
p

N−1

)
,

and for 1 ≤ k ≤ N − 1, pk = sin(kπ/N). In addition, 4 sin2 (π/2N) is the smallest

nonzero eigenvalue of the Laplacian matrix of G. Note that

Q∞ = diag (1/p1, . . . , 1/pN−1) .

The significance of Proposition 10 is as follows: since the numbers pk = sin(kπ/N)

are nonzero, we have, when c < 0, exponential convergence to uniform solutions in a

weighted Lp norm, the weights being specified in each compartment by the matrix Q

and the relative weights among compartments being weighted by the numbers pk’s.

Before we prove Proposition 10, we will explain where the pi’s and 4 sin2 (π/2N) come

from. For a path graph with N nodes, consider the following N × N − 1 directed
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incidence matrix E and the N − 1×N − 1 edge Laplacian K := ETE:

E =




−1

1
. . .

. . . −1

1



, K =




2 −1

−1 2 −1

. . .
. . .

−1 2



. (3.18)

Note that since −K is a Metzler (a matrix with non-negative off diagonal entries)

and irreducible matrix, it follows by the Perron-Frobenius Theorem (see the Appendix

for the statement of the theorem) that it has a positive eigenvector (v1, . . . , vN−1)

corresponding to −λ, the largest eigenvalue of −K, (λ is the smallest eigenvalue of K),

i.e.,

(p1, . . . , pN−1) (−K) = −λ (p1, . . . , pN−1) . (3.19)

Note that by Lemma 11, the smallest eigenvalue of K is equal to the smallest non-zero

eigenvalue of the corresponding Laplacian matrix of G. A simple calculation shows that

pk = sin(kπ/N) and λ = 4 sin2 (π/2N) (see the Appendix for more details).

To prove Proposition 10, we first prove the following Lemma.

Lemma 15. Let K be the edge Laplacian of a path graph with N ≥ 3 nodes as shown

in (3.18). Then for any 1 ≤ p ≤ ∞,

µp,Qp⊗Q
[
4 sin2 (π/2N) I ⊗D(t)−K ⊗D(t)

]
≤ 0, (3.20)

where Q and Qp are as in Proposition 10.

Proof. To prove (3.20), we will show that µp[A] ≤ 0, where A is defined as follows:

A = (Qp ⊗Q)
(
4 sin2 (π/2N) I ⊗D(t)−K ⊗D(t)

) (
Q−1
p ⊗Q−1

)
.

(Recall that µp,Q [A] = µp
[
QAQ−1

]
, and A−1 ⊗B−1 = (A⊗B)−1.)

We first show that for p = 1, µp[A] = 0. A simple calculation shows that, for p = 1, A
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can be written as follows:




(λ− 2)D(t) p1
p2
D(t)

p2
p1
D(t) (λ− 2)D(t) p2

p3
D(t)

. . .
. . .

pN−1

pN−2
D(t) (λ− 2)D




,

where as mentioned before, λ = 4 sin2 (π/2N). For 1 = (1, . . . , 1)T , and p = 1, since

1TQp = (p1, . . . , pN−1), it follows by Equation (3.19) that 1TQp(−K)Q−1
p = −λ1T ,

therefore,

−2 +
p2

p1
= −2 +

p1

p2
+
p3

p2
= · · · = −2 +

pN−2

pN−1
= −λ. (3.21)

Hence, by the definition of µ1, µ1[A] = maxj

(
ajj +

∑
i 6=j |aij |

)
, and because D(t) is

diagonal, µ1[A] = 0.

Now, we show that µ∞[A] = 0. A simple calculation shows that, for p = ∞, since

Q∞ = diag (1/p1, . . . , 1/pN−1), A can be written as follows:




(λ− 2)D(t) p2
p1
D(t)

p1
p2
D (λ− 2)D(t) p3

p2
D(t)

. . .
. . .

pN−2

pN−1
D(t) (λ− 2)D(t)




.

Therefore, by the definition of µ∞, µ∞[A] = maxi

(
aii +

∑
i 6=j |aij |

)
, and because D(t)

is diagonal, µ∞[A] = max
{
λ− 2 + p2

p1
, . . . , λ− 2 +

pN−2

pN−1

}
= 0.

Next we show for 1 < p < ∞, µp[A] ≤ 0. A simple calculation shows that A can be

written as follows:




(λ2 − 2)D(t) α−1
1 D(t)

α1D(t) (λ2 − 2)D(t) α−1
2 D(t)

. . .
. . .

αN−2D(t) (λ2 − 2)D(t)




,
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where αi =
(
pi+1

pi

) 2−p
p

. To show µp[A] ≤ 0, using Lemma 3 and the definition of µ, it

suffices to show that D+‖u‖p ≤ 0, where u = (u11, . . . , u1n, . . . , uN−11, . . . , uN−1n)T is

the solution of u̇ = Au, or equivalently, dΦ
dt (u(t)) ≤ 0, where Φ(t) = ‖u(t)‖pp. In the

calculations below, we use the following simple fact (which is proved in the Appendix).

For any real α and β and 1 ≤ p:

(
|α|p−2 + |β|p−2

)
αβ ≤ |α|p + |β|p.

In the calculations below, we let βi = α
2

2−p
i . We also use the fact that |x|p is differen-

tiable for p > 1 and

dΦ

dui
=

d

dui
|ui|p = p|ui|p−1 ui

|ui|
= p|ui|p−2ui.

Observe that

dΦ

dt
(u(t)) =

∑

i,k

dΦ

duik

duik
dt

= OΦ · u̇ = OΦ · Au

= p
(
|u11|p−2u11, . . . , |unN−1|p−2uN−1n

)
A(u11, . . . , uN−1n)T

= p

n∑

k=1

dkQk,

where Qk is the following expression:

N−1∑

i=1

(λ− 2) |uik|p +
N−2∑

i=1

(
αi |ui+1k|p−2 ui+1kuik + α−1

i |uik|p−2 ui+1kuik

)

=
N−1∑

i=1

(λ− 2) |uik|p +

N−2∑

i=1

αi
βi

(
|ui+1k|p−2 ui+1k(βiuik) + |βiuik|p−2 ui+1k(βiuik)

)

≤
N−1∑

i=1

(λ− 2) |uik|p +

N−2∑

i=1

αi
βi

(|ui+1k|p + |βiuik|p)

=

N−1∑

i=1

(λ− 2) |uik|p +

N−2∑

i=1

αi
βi
|ui+1k|p + αiβ

p−1
i |uik|p

=
N−1∑

i=1

(λ− 2) |uik|p +
N−2∑

i=1

pi
pi+1

|ui+1k|p +
pi+1

pi
|uik|p

= |u1k|p
(
λ− 2 +

p2

p1

)
+ · · ·+ |uN−1k|p

(
λ− 2 +

pN−2

pN−1

)
,

and this last term vanishes by Equation (3.21).
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Proof of Proposition 10. Let K be as defined in (3.18) and for w = (wT1 , . . . , w
T
N−1)T ,

let

J(w, t) = diag (JF (w1, t), . . . , JF (wN−1, t)) .

By subadditivity of µ, and Lemma 15, for any 1 ≤ p ≤ ∞,

µp,Qp⊗Q [J(w, t)−K ⊗D(t)]

≤ µp,Qp⊗Q [J(w, t)− λ2I ⊗D(t)] + µp,Qp⊗Q [λ2I ⊗D(t)−K ⊗D(t)]

≤ µp,Qp⊗Q [J(w, t)− λ2I ⊗D(t)]

≤ max
i
{µp,Q [JF (w,t)− λ2D(t)]} .

The last inequality holds by Lemma 4. Note that Qp does not appear in the last equation.

Now by taking sup over all w = (wT1 , . . . , w
T
N−1)T and all t ≥ 0, we get

sup
(w,t)

µp,Qp⊗Q [J(w, t)−K ⊗D(t)] ≤ sup
t

sup
x∈Rn

µp,Q [JF (x, t)− λ2D(t)] . (3.22)

Now by applying Theorem 11, we obtain the desired inequality, Equation (3.17).

Remark 15. Under the conditions of Proposition 10, the following inequality holds:

N−1∑

i=1

‖ei(t)‖p,Q ≤ αect
N−1∑

i=1

‖ei(0)‖p,Q,

where α =
maxk{(Qp)k}
mink{(Qp)k} (N − 1)1−1/p > 0, and (Qp)k is the kth diagonal entry of Qp.

Proof. Using Equation (3.17) and the following inequality for Lp norms, p ≥ 1, on

RN−1:

‖ · ‖p ≤ ‖ · ‖1 ≤ (N − 1)1−1/p‖ · ‖p , (3.23)

we conclude the desired result.

Complete graphs

Consider a G−compartment system with an undirected complete graph G. The following

system of ODEs describes the evolution of the interconnected agents xi’s:

ẋi = F (xi, t) +D(t)

N∑

j=1

(xj − xi) . (3.24)
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Proposition 11. Let ‖ · ‖ be an arbitrary norm on Rn with corresponding logarithmic

norm µ, x = (xT1 , . . . , x
T
N )T be a solution of Equation (3.24), and

c := sup
(x,t)

µ[JF (x, t)−ND(t)] .

Then
m∑

k=1

‖ek(t)‖ ≤ ect
m∑

k=1

‖ek(0)‖ , (3.25)

where the ek’s, for k = 1, . . . ,m are the edges of G, meaning the differences xik(t)−xjk(t)

for ik < jk ∈ {1, . . . , N}.

Proof. Let E be an incidence matrix of G. We first show that ETEET = NET . For any

orientation of G, ET is an
(
N
2

)
×N matrix such that its i−th row looks like (εi1, . . . , εiN ),

where for exactly one j, εij = 1, for exactly one j, εij = −1, and for the rest of j’s,

εij = 0. Observe that for any row i,
∑

j εij = 0, and

(
ETL

)
(ij)

=
(
ET
)
ri

(L)cj ,

where (A)(ij) denotes the (i, j)−th entry of matrix A, and (A)ri and (A)ci denote the

ith row and ith column of A, respectively. Hence,

(
ETL

)
(ij)

= (εi1, . . . , εiN )




−1

...

N − 1

...

−1




← jth

= −εi1 − · · ·+ (N − 1)εij − · · · − εiN

= Nεij −
∑

k

εik = Nεij .

This proves ETL = ETEET = NET .

Thus we may apply Theorem 11 with K = NI. Then J = J(w, t)−K ⊗D(t) can be

written as follows:

J = diag (JF (w1, t)−ND(t), . . . , JF (wm, t)−ND(t)).
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For u = (uT1 , . . . , u
T
m)T , with ui ∈ Rn, let ‖u‖∗ :=

∥∥∥(‖u1‖, . . . , ‖um|‖)T
∥∥∥

1
, where ‖ · ‖1

is L1 norm on Rm, and let µ∗ be the logarithmic norm induced by ‖ · ‖∗. Then by the

definition of µ∗ and Lemma 4,

µ∗[J(w, t)−K ⊗D(t)] ≤ max
i
{µ[JF (wi, t)−ND(t)]} .

By taking sup over all possible w’s in both sides of the above inequality, we get:

sup
w
µ∗[J(w, t)−K ⊗D(t)] ≤ sup

(x,t)
µ[JF (x, t)−ND(t)] = c.

Applying Theorem 11, we conclude (3.25).

Star graphs

Consider a G−compartment system, where G is a star graph with N + 1 nodes. The

following system of ODEs describes the evolution of the whole system:

ẋi = F (xi, t) +D(t) (x0 − xi) , i = 1, . . . , N

ẋ0 = F (x0, t) +D(t)
∑

i 6=0

(xi − x0) .
(3.26)

Proposition 12. Let ‖ · ‖ be an arbitrary norm on Rn with corresponding logarithmic

norm µ, x = (xT0 , x
T
1 , . . . , x

T
N )T be a solution of Equation (3.26), and

c := sup
(x,t)

µ[JF (x, t)−D(t)].

Then for any i ∈ {1, . . . , N},

‖(xi − x0)(t)‖ ≤ (1 + αit)e
ct ‖(xi − x0)(0)‖ , (3.27)

where αi =
∑

j 6=i,0 ‖(xj − xi)(0)‖.

Proof. Using (3.26), for all i, j = 1, . . . , N ,

ẋi − ẋj = (F (xi, t)−D(t)xi)− (F (xj , t)−D(t)xj) .

Applying Lemma 5, we get

‖(xi − xj)(t)‖ ≤ ect ‖(xi − xj)(0)‖. (3.28)
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For any i = 1, . . . , N , we have:

ẋi − ẋ0 = F (xi, t)− F (x0, t)−D(t)


(xi − x0)−

N∑

j=1

(xj − x0)




= F (xi, t)− F (x0, t)−D(t)(N + 1)(xi − x0)−D(t)

N∑

j=1

(xj − xi) .

(In line 2, we added and subtracted ND(t)xi.)

Now using the Dini derivative of ‖xi − x0‖ and using the upper bound for ‖xi − xj‖

derived in (3.28), we get:

D+‖(xi − x0)(t)‖ ≤ c̃‖(xi − x0)(t)‖+ αie
ct,

where, αi =
∑

j 6=i,0 ‖(xj − xi)(0)‖ and by subadditivity of µ,

c̃ := sup
x
µ[JF (x, t)− (N + 1)D(t)]

≤ sup
x
µ[JF (x, t)−D(t)] + sup

x
µ[−ND(t)]

≤ sup
(x,t)

µ[JF (x, t)−D(t)] = c since µ[−ND(t)] < 0.

Applying Gronwall’s Lemma (Lemma 9) to the above inequality, we get Equation (3.27).

Observe that, as a consequence, when c < 0, we have synchronization, i.e., for any

i ∈ {1, . . . , N}, (xi − x0)(t)→ 0, as t→∞.

Corollary 4. Under the conditions of Proposition 12, the following inequality holds:

∑

i 6=0

‖(xi − x0)(t)‖ ≤ Pect
∑

i 6=0

‖(xi − x0)(0)‖ , (3.29)

where P = 1 + 2(N − 1) t
∑

i 6=0 ‖(xi − x0)(0)‖.

Proof. For any i 6= 0, using the triangle inequality, we have

αi =
∑

j 6=i,0
‖(xj − xi)(0)‖ ≤

∑

j 6=i,0
‖(xj − x0)(0)‖+

∑

j 6=i,0
‖(xi − x0)(0)‖

=
∑

j 6=i,0
‖(xj − x0)(0)‖+ (N − 1)‖(xi − x0)(0)‖,
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taking sum over all i 6= 0, we get

∑

i 6=0

αi ≤ (N − 1)
∑

j 6=0

‖(xj − x0)(0)‖+ (N − 1)
∑

i 6=0

‖(xi − x0)(0)‖.

Therefore, since the αi’s are nonnegative, for any i,

1 + αit ≤ 1 + t
∑

i 6=0

αi ≤ 1 + 2(N − 1) t
∑

i 6=0

‖(xi − x0)(0)‖ := P ,

and hence, using Equation (3.27),

‖(xi − x0)(t)‖ ≤ Pect‖(xi − x0)(t)‖.

Now taking sum over all i 6= 0, we obtain Equation (3.29) as we wanted.

Cartesian products

Consider a network with N1×N2 compartments that are connected to each other by a

2-D, N1 ×N2 lattice (grid) graph G = (V, E), where

V = {xij , i = 1, . . . , N1, j = 1, . . . , N2} ,

is the set of all vertices and E is the set of all edges of G.

x11 x12 x13

x21 x22 x23

x31 x32 x33

x14

x24

x34

Figure 6: An example of a grid graph: 3⇥ 4 nodes

Proposition 10. Let x = {xij} be a solution of Equation (60) and c = max{c1, c2},
where for i = 1, 2,

ci := sup
(x,t)

Mp,Q

⇥
JF (x, t)� 4 sin2 (⇡/2Ni) D

⇤
,

and 1  p  1. Then, there exist positive constants ↵ � 1, and � such that

X

e2E
ke(t)kp,Q  (↵+ �t) ect

X

e2E
ke(0)kp,Q. (61)

In particular, when c < 0, the system (60) synchronizes, i.e., for all i, j, k, l

(xij � xkl)(t)! 0, exponentially as t!1.

Proof. For i = 1, . . . , N1, let xi = (xi1, . . . , xiN2)
T , and assume that xi’s are

di↵usively interconnected by a linear graph of N1 nodes.

For ease of notation, we assume that for i = 1, . . . , N1, E(i) is the set of all edges
in the compartment i, i.e., all the edges in each row in Figure 6. In addition,

we let Eh =

N1[

i=1

E(i) denote all the horizontal edges in G. Also we assume that

for i = 1, . . . , N1, E(i) is the set of all edges that connect the compartment i to

the other compartments. In addition, we let Ev =

N1[

i=1

E(i) denote all the vertical

edges in G.

For each i = 1, . . . , N1, and fixed t, let

G(xi, t) := F̃ (xi, t)� L2 ⌦Dxi,

where L2 is the Laplacian matrix of the linear graph of N2 nodes; and F̃ (xi, t) =
(F (xi1, t), . . . , F (xiN2 , t))

T . We can think of G as the reaction operator acts in
each compartment xi.

45

Figure 3.4: An example of a lattice graph: 3× 4 nodes

The following system of ODEs describes the evolution of the xij ’s: for any i = 1, . . . , N1,

and j = 1, . . . , N2

ẋij = F (xij , t) +D(t) (xi−1j − 2xij + xi+1j) +D(t) (xij−1 − 2xij + xij+1) , (3.30)

assuming Neumann boundary conditions, i.e., xi0 = xi1, xiN2 = xiN2+1, etc.
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Proposition 13. Let x = {xij} be a solution of Equation (3.30) and c = max{c1, c2},

where for i = 1, 2,

ci := sup
(x,t)

µp,Q
[
JF (x, t)− 4 sin2 (π/2Ni)D(t)

]
,

and 1 ≤ p ≤ ∞. Then, there exist a positive constant α ≥ 1, and a positive function of

time, β(t), such that

∑

e∈E
‖e(t)‖p,Q ≤ (α+ β(t)t) ect

∑

e∈E
‖e(0)‖p,Q. (3.31)

In particular, when c < 0, the system (3.30) synchronizes, i.e., ∀i, j, k, l, as t → ∞,

(xij − xkl)(t)→ 0, exponentially.

Proof. For i = 1, . . . , N1, let xi =
(
xTi1, . . . , x

T
iN2

)T
, and assume that xi’s are diffusively

interconnected by a path graph of N1 nodes.

For ease of notation, we assume that for i = 1, . . . , N1, E(i) is the set of all edges in

the compartment i, i.e., all the edges in each row in Figure 3.4. We let Eh =
⋃N1
i=1 E(i)

denote all the horizontal edges in G. Also we assume that for i = 1, . . . , N1, E(i) is

the set of all edges that connect the compartment i to the other compartments. In

addition, we let Ev =
⋃N1
i=1 E(i) denote all the vertical edges in G.

For each i = 1, . . . , N1, and fixed t, let

G(xi, t) := F̃ (xi, t)− L2 ⊗D(t)xi,

where L2 is the Laplacian matrix of the path graph of N2 nodes; and F̃ (xi, t) =
(
F (xi1, t)

T , . . . , F (xiN2 , t)
T
)T

. We can think of G as the reaction operator that acts in

each compartment xi. Then the system (3.30) can be written as:

ẋ1 = G(x1, t) + (IN2 ⊗D(t)) (x2 − x1)

ẋ2 = G(x2, t) + (IN2 ⊗D(t)) (x1 − 2x2 + x3)

...

ẋN1 = G(xN1 , t) + (IN2 ⊗D(t)) (xN1−1 − xN1).

By Remark 15, if for 1 ≤ p ≤ ∞, c1 is defined as follows

c1 = sup
(x,t)

µp,IN2
⊗Q
[
JG(x, t)− 4 sin2 (π/2N1) (IN2 ⊗D(t))

]
,
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then,
∑

e∈Ev
‖e(t)‖p,Q ≤ α1 e

c1t
∑

e∈Ev
‖e(0)‖p,Q , (3.32)

where

α1 = max
k
{sin (kπ/N1)}

/
min
k
{sin (kπ/N1)} (N1 − 1)1−1/p.

By Lemma 4, for any p,

c1 = sup
(x,t)

µp,IN2
⊗Q
[
JG(x, t)− 4 sin2 (π/2N1) (IN2 ⊗D(t))

]

≤ sup
(x,t)

µp,Q
[
JF (x, t)− 4 sin2 (π/2N1)D(t)

]
≤ c.

(3.33)

Therefore, using Equations (3.32) and (3.33), we have

∑

e∈Ev
‖e(t)‖p,Q ≤ α1 e

ct
∑

e∈Ev
‖e(0)‖p,Q . (3.34)

Now let’s look at each compartment xi which contains N2 sub-compartment that are

connected by a path graph. For example, for i = 1:

ẋ11 = F (x11, t) +D(t)(x12 − x11 + x21 − x11)

ẋ12 = F (x12, t) +D(t)(x11 − 2x12 + x13 + x22 − x12)

...

ẋ1N2 = F (x1N2 , t) +D(t)(x1N2−1 − x1N2 + x2N2 − x1N2).

Let u :=
(
xT11, . . . , x

T
1N2−1

)T
, v :=

(
xT12, . . . , x

T
1N2

)T
, and for any fixed t, define G̃ as

follows:

G̃(u, t) :=




F (x11, t)

F (x12, t)

...

F (x1N2−1, t)



−K ⊗D(t)




x11

x12

...

x1N2−1



,

where K is as defined in (3.18). Then

u̇− v̇ = G̃(u, t)− G̃(v, t) +




(x21 − x11)− (x22 − x12)

...

(x2N2−1 − x1N2−1)− (x2N2 − x1N2)



⊗D(t).
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Using the Dini derivative, for any p, and Qp as defined in Proposition 10, we have: (for

ease of the notation let ‖ · ‖ := ‖ · ‖p,Qp⊗Q.)

D+‖(u− v)(t)‖ = lim sup
h→0+

1

h
(‖(u− v)(t+ h)‖ − ‖(u− v)(t)‖)

= lim sup
h→0+

1

h
(‖(u− v + h(u̇− v̇))(t)‖ − ‖(u− v)(t)‖)

≤ lim
h→0+

1

h

(
‖(u− v)(t) + h(G̃(u, t)− G̃(v, t))‖ − ‖(u− v)(t)‖

)

+

∥∥∥∥∥∥∥∥∥∥




(x21 − x11)− (x22 − x12)

...

(x2N2−1 − x1N2−1)− (x2N2 − x1N2)



⊗D(t)

∥∥∥∥∥∥∥∥∥∥

≤ sup
(w,t)

µp,P⊗Q
[
JG̃(w, t)

]
‖(u− v)(t)‖

+

∥∥∥∥∥∥∥∥∥∥




(x21 − x11)− (x22 − x12)

...

(x2N2−1 − x1N2−1)− (x2N2 − x1N2)



⊗D(t)

∥∥∥∥∥∥∥∥∥∥

.

Note that the last term is the difference between some of the vertical edges of G.

Therefore by Equation (3.34), and the triangle inequality, we can approximate the last

term as follows:

∥∥∥∥∥∥∥∥∥∥




(x21 − x11)− (x22 − x12)

...

(x2N2−1 − x1N2−1)− (x2N2 − x1N2)



⊗D(t)

∥∥∥∥∥∥∥∥∥∥
p,Qp⊗Q

≤ 2d(t)aα1

∑

e∈E(1)
‖e(t)‖p,Q ,

where a = maxi {(Qp)i}, d(t) = max{d1(t), . . . , dn(t)}, and E(1) is the set of edges of G

which connect the compartment x1 to the compartment x2.

By Equation (3.22), for any 1 ≤ p ≤ ∞,

sup
(u,t)

µp,Qp⊗Q
[
JG̃(u, t)

]
≤ sup

(x,t)
µp,Q

[
JF (x, t)− 4 sin2 (π/2N2)D(t)

]
≤ c.
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Therefore for x1, we have:

D+
∑

e∈E(1)
‖φee(t)‖p,Q ≤ c

∑

e∈E(1)
‖φee(t)‖p,Q + 2d(t) a α1

∑

e∈E(1)
‖e(t)‖p,Q ,

where φe = (Qp)k, when e = ek is the k-th edge of the N2-path graph.

Repeating the same process for other compartments, x2, . . . , xN1 , and adding them up,

we get the following inequality

D+
∑

e∈Eh
‖φee(t)‖p,Q ≤ c

∑

e∈Eh
‖φee(t)‖p,Q + 2× 2d(t) a α1

∑

e∈Ev
‖e(t)‖p,Q

≤ c
∑

e∈Eh
‖φee(t)‖p,Q + 4d(t) a α1e

ct
∑

e∈E(1)
‖e(0)‖p,Q .

Note that in the first inequality, the coefficient 2 appears because each edge e that

connects the ith compartment to the jth compartment is counted twice: once when we

do the process for xi and once when we do it for xj .

Applying Gronwall’s inequality allows us to conclude:

∑

e∈Eh
‖φee(t)‖p,Q ≤ ect

∑

e∈Eh
‖φee(0)‖p,Q + 4d(t) a α1te

ct
∑

e∈Ev
‖e(0)‖p,Q

≤ ect
∑

e∈Eh
‖φee(0)‖p,Q + 4d(t) a α1te

ct
∑

e∈E
‖e(0)‖p,Q .

Now using Equation (3.23) and the following inequalities:

min
k
{(Qp)k} ‖e(t)‖p,Q ≤ ‖φee(t)‖p,Q , ‖φee(0)‖p,Q ≤ max

k
{(Qp)k} ‖e(0)‖p,Q ,

we get ∑

e∈Eh
‖e(t)‖p,Q ≤ α2e

ct
∑

e∈Eh
‖e(0)‖p,Q + β(t)tect

∑

e∈E
‖e(0)‖p,Q . (3.35)

where

α2 =
maxk {(Qp)k}
mink {(Qp)k}

(N2 − 1)1−1/p, β(t) =
4d(t) a α1

α2
.

Let α = max {α1, α2}, then Equations (3.34) and (3.35), imply (3.31).

Remark 16. We proved Proposition 13 for two path graphs. One can generalize the

result of Proposition 13 for K (K ≥ 2) arbitrary graphs. A sketch of proof is as follows.

For k = 1, . . . ,K, let Gk = (Vk, Ek) be an arbitrary graph, with |Vk| = Nk and Laplacian

matrix LGk . Consider a system of N = ΠK
k=1Nk compartments xi1,...,iK ∈ Rn, for
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ij = 1, . . . , Nj , which are interconnected by G = G1 × · · · × GK , where × denotes

the Cartesian product. The following system of ODEs describes the evolution of the

xi1,...,iK ’s:

ẋ = F̃ (x, t)− (L ⊗D(t))x, (3.36)

where x = (xi1,...,iK ) is the vector of all N compartments, F̃ (x, t) = (F (xi1,...,iK , t)),

and L =
∑

i IN1 ⊗· · ·⊗LGi ⊗· · ·⊗ INK . Recall that λ2(G) = min {λ2(G1), . . . , λ2(GK)} .

(See Section 3.1.)

Given graphs Gk, k = 1, . . . ,K as above, suppose that for each k, there are a norm

‖ · ‖(k) on Rn, a real nonnegative number λ(k), and a polynomial P(k)(z, t) on R2
≥0, with

the property that for each z, P(k)(z, 0) ≥ 1, such that for any solution x of (3.36),

∑

e∈Ek
‖e(t)‖(k) ≤ P(k)


∑

e∈Ek
‖e(0)‖(k) , t


 eckt

∑

e∈Ek
‖e(0)‖(k) , (3.37)

holds, where ck := sup(x,t) µ(k)

[
JF (x, t)− λ(k)D(t)

]
, and µ(k) is the logarithmic norm

induced by ‖ · ‖(k). Then for any norm ‖ · ‖ on Rn, there exists a polynomial P (z, t) on

R2
≥0, with the property that for each z, P (z, 0) ≥ 1, such that

∑

e∈E
‖e(t)‖ ≤ P

(∑

e∈E
‖e(0)‖ , t

)
ect
∑

e∈E
‖e(0)‖ ,

where c := max{c1, . . . , cK}, and E is the set of the edges of G. Observe that if all

ci < 0, then also c < 0, and this guarantees synchronization, i.e., e(t)→ 0 as t→∞.

The proof of this result is by induction on the number of graphs K and is similar to

the proof of Proposition 13 but the notations are very involved.

Note that for K = 1, Remark 15, Proposition 11, and Corollary 4 show that (3.37)

holds when Gk is a path, complete or star graph, for P(k)(z, t) = α, 1, 1 + 2(N − 1)tz,

respectively. Therefore, for a hypercube (cartesian product of K path graphs) with

N1 × · · · ×NK nodes, if for some p, 1 ≤ p ≤ ∞, and some positive diagonal matrix Q,

and λ2 = 4 mini
{

sin2(π/2Ni)
}

, sup(x,t) µp,Q [JF (x, t)− λ2D(t)] < 0, then the system

synchronizes. For a Rook (cartesian product of K complete graphs) with N1×· · ·×NK

nodes, if for any given norm, and λ2 = mini {Ni}, sup(x,t) µ [JF (x, t)− λ2D(t)] < 0,

then the system synchronizes.
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Trees

The following remark for the L2 case is already known for constant diffusion D, see

[42], but we show here how it follows from Theorem 11 as a special case and for time

varying diffusion D(t).

Remark 17. Consider a G−compartment system, (F,G, D), where G is a tree and

denote

c := sup
(w,t)

µ2,Q [JF (w, t)− λ2D(t)] ,

for a positive diagonal matrix Q. Then

∥∥(ET ⊗ I
)
x(t)

∥∥
2,I⊗Q ≤ ect

∥∥(ET ⊗ I
)
x(0)

∥∥
2,I⊗Q ,

where I is the identity matrix of appropriate size and E is a directed incidence matrix

of G.

Proof. Let K = ETE and J = diag (JF (w1, t), . . . , JF (wm, t)), where m is the number

of edges of G. By subadditivity of µ, for fixed w = (wT1 , . . . , w
T
m)T and t, we have:

µ2,I⊗Q [J −K ⊗D(t)] ≤ µ2,I⊗Q [J − λ2I ⊗D(t)] + µ2,I⊗Q [λ2I ⊗D(t)−K ⊗D(t)] .

(3.38)

We first show that the second term of the right hand side of the above inequality is

zero. By Lemma 11, λ2 is the smallest eigenvalue of the edge Laplacian, ETE, so the

largest eigenvalue of λ2I −K and hence (λ2I −K)⊗D(t) is zero. Therefore,

µ2,I⊗Q[(λ2I −K)⊗D(t)] = µ2

[
(I ⊗Q) ((λ2I −K)⊗D(t))

(
I ⊗Q−1

)]

= µ2 [(λ2I −K)⊗D(t)]

= largest eigenvalue of (λ2I −K)⊗D(t) = 0,

(since (λ2I − K) ⊗ D(t) is symmetric, µ2 [(λ2I −K)⊗D(t)] is equal to the largest

eigenvalue of (λ2I − K) ⊗ D(t)). Next, we will show that the first term of the right

hand side of Equation (3.38) is ≤ c. By Lemma 4,

µ2,I⊗Q [J − λ2I ⊗D(t)] ≤ max
i
{µ2,Q [JF (wi, t)− λ2D(t)]} ,
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where J = J(w, t). By taking sup over all t ≥ 0 and w, we get

sup
(w,t)

µ2,I⊗Q [J(w, t)−K ⊗D(t)] ≤ sup
t

sup
x∈Rn

µ2,Q [JF (x, t)− λ2D(t)] = c.

Now by applying Theorem 11, we obtain the desired inequality.

3.3.3 Examples

We discuss here two examples that illustrate the power of our estimates.

A biomolecular reaction

We revisit the biochemical example described in Section 2.4. As we showed there, the

following set of ODEs describes the system.

ẋ = z(t)− δx+ k1y − k2(SY − y)x

ẏ = −k1y + k2(SY − y)x,

(3.39)

where (x(t), y(t)) ∈ V = [0,∞)×[0, SY ] for all t ≥ 0 (V is convex and forward-invariant),

and SY , k1, k2, and δ are arbitrary positive constants.

It was shown in [64] that this system entrains to the external signal z(t), and therefore,

even for isolated systems, we will see synchronization behavior. We show next how to

obtain estimates on how the speed of synchronization improves under diffusion.

Figure 3.5 shows the solutions of the system (3.39) for 6 different initial conditions

(6 identical compartments with dynamics described by the system (3.39)) for periodic

function z(t) = 20(1 + sin(10t)), and the following set of parameters:

δ = 20, k1 = 0.5, k2 = 5, SY = 0.1.

As it is clear from the figure, all the solutions converge to a periodic solution; in other

words, the system (3.39) synchronizes.

In what follows, we first show that one cannot apply Theorem 17 to show synchronous

behavior of (3.39). Then, we show how to justify the synchronous behavior of the

solutions of the system (3.39) by applying Proposition 8.
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Figure 3.5: Biochemical example: 6 isolated compartments

Let JFt be the Jacobian of Ft(x, y) := (z(t)−δx+k1y−k2(SY−y)x,−k1y+k2(SY−y)x)T :

JFt(x, y) =


 −δ − k2(SY − y) k1 + k2x

k2(SY − y) −(k1 + k2x)


 .

In Section 2.4, it has been shown that for any p > 1, and any positive diagonal Q,

c = sup
t

sup
(x,y)∈V

µp,Q[JFt(x, y)] ≥ 0 .

Here, we will show that not only c ≥ 0, but

sup
t

sup
(x,y)∈V

µ2,Q[JFt(x, y)− λD] ≥ 0, (3.40)

for any positive diagonal matrix Q, any λ > 0, and any constant diffusion matrix

D = diag (d1, d2):

Without loss of generality we assume Q = diag (1, q). Then

QJFt(x, y)Q−1 =



−δ − a b

q

aq −b


 ,

where a = k2(SY − y) ∈ [0, k2SY ] and b = k1 + k2x ∈ [k1,∞). By definition of µ2,Q,

we know that, µ2,Q [JFt(x, y)− λD] = λmax(R), where λmax(R) denotes the largest
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Figure 3.6: Biochemical example: 6 compartments interconnected with a path graph
with strength constant d1 6= 0, and d2 = 0 (note the faster synchronization when there
is diffusion)

eigenvalue of

R :=
1

2

(
Q(JFt(x, y)− λD)Q−1 +

(
Q(JFt(x, y)− λD)Q−1

)T)
.

A simple calculation shows that the eigenvalues of R are as follows:

λ± = −(δ + a+ b+ (d1 + d2)λ)±∆,

where

∆ =

√
((d+ a+ d1λ)− (b+ d2λ))2 + (aq + b/q)2 .

We can pick x = x∗ large enough (i.e., b large enough) and y = y∗ = SY (i.e., a = 0),

such that λ+ > 0 and hence µ2,Q [JFt(x
∗, y∗)− λD] > 0. Therefore, (3.10) doesn’t hold

and one cannot apply the existing result in L2 norms, [42], to justify the synchronous

behavior of the solutions of the system (3.39). But on the other hand, In [64], it has been

shown that supt sup(x,y)∈V µ1,Q[JFt(x, y)] < 0, for some non-identity, positive diagonal

matrix Q. Therefore, by Proposition 8, the system (3.39) synchronizes.

Figure 3.6 shows the solutions of the system (3.39) for the same initial conditions and

parameters as when the x’s of the 6 compartments are connected to each other by a path
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graph with strength constant d1 6= 0. Observe that in this case the system synchronizes

faster than when the compartments are isolated.

Synchronous autonomous oscillators

We consider the following three-dimensional system (all variables are non-negative and

all coefficients are positive):

ẋ =
a

k + z
− bx

ẏ = αx− βy

ż = γy − δz

kM + z
,

(3.41)

where x, y, and z are functions of t.

Figure 3.7: The Goodwin autoregulation model

This system is a variation of a model ([75]), often called in mathematical biology the

“Goodwin model”, that was proposed in order to describe a generic model of an oscil-

lating autoregulated gene, and its oscillatory behavior has been well-studied [76]. In

Goodwin’s original formulation, as is sketched in Figure 3.7, X is the mRNA transcribed

from a given gene, Y an enzyme translated from this mRNA, and Z a metabolite whose

production is catalyzed by Y . It is assumed that Z, in turn, can inhibits the expression

of the original gene. However, many other interpretations are possible. Figure 3.8a

shows non-synchronized oscillatory solutions of (3.41) for 6 different initial conditions,

using the following parameter values from the textbook [77]:

a = 150, k = 1, b = α = β = γ = 0.2, δ = 15, KM = 1.

Figure 3.8b shows the solutions of the same system (6 compartments, with the same

initial conditions as in Figure 3.8a) that are now interconnected diffusively by a path
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(a) 6 isolated compartments (b) Linear interconnection (c) Complete interconnection

graph in which only X diffuses, that is, D = diag (d, 0, 0). The following system of

ODEs describes the evolution of the full system: (in all equations, i = 1, . . . , N):

ẋi =
a

k + zi
− b xi + d (xi−1 − 2xi + xi+1)

ẏi = α xi − β yi

żi = γ yi −
δzi

kM + zi
,

where for convenience we are writing x0 = x1 and xN = xN+1.

Figure 3.8c shows the solutions of the same system (6 compartments with the same

initial conditions as in Figure 3.8a) that are now interconnected, with the same D as in

Figure 3.8b, by a complete graph. Observe that the second and “more connected” graph

structure (reflected, as discussed in the magnitude of its second Laplacian eigenvalue),

leads to much faster synchronization.

Let us now compute, using our theory, for what values of d, the system synchronizes.

For this end, we need to compute sup(x,t) µ1,Q[JF (x, t)− λ2D] for Q = diag (1, 12, 11).

It is easy to see that Q(JF − λ2D)Q−1 is equal to:




−0.2− λ2d 0 −150/11
(1+z)2

(0.2)(12) −0.2 0

0 (0.2)(11/12) −15
(1+z)2



.

A calculation shows that supz µ1

[
Q(JF (z)− λ2D)Q−1

]
< 0, when 2.2 < λ2d. For

instance, in a complete graph with 6 nodes (Figure 3.8c), d > 2.2
6 guarantees synchro-

nization.
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3.3.4 Comparison with other synchronization conditions

Master stability function (MSF)

In order to study the synchronous behavior of ẋ = F (x) + σL ⊗ H(x), where σ is

the coupling strength, L is the Laplacian of the interconnected graph and H is used

for coupling (in our case, σH(x) = D(t)x), one can transform the stability of the

synchronization manifold x1 = · · · = xN , into the following master stability equation

ξ̇ = (DF + (α+ βi)DH)ξ , (3.42)

where α+ βi is an eigenvalue of σL, [21, 78, 79]. One can write the maximum Floquet

or Lyapunov exponents λmax of Equation (3.42) as a function of α and β. The signs of

the various numbers λmax at the points α + βi reveal the stability of Equation (3.42).

If for all the eigenvalues of L, λmax is negative, then the system synchronizes.

• The MSF approach provides local conditions for synchronization, while contrac-

tion theory provides global conditions.

• The condition in MSF depends on all the eigenvalues of the interconnected graph,

while our condition depends only on one eigenvalue, λ2.

• Our approach is effective for autonomous and non-autonomous systems.

• In the MSF approach, the conditions need to be checked numerically, while we

prove our results analytically.

See also [45] for more details about the two approaches (contraction and MSF) to study

synchronization.

A matrix measure approach using L1 and L∞ norms

In [47], the author studies the system (3.6) for a weighted and time varying matrix L

but restricted to a time invariant reaction operator F = F (x) (it seems that the result

can be generalized to time varying reaction operator F = F (x, t)). In order to compare

with the result of the current work, in the following theorem, we only mention the result



81

of [47] for unweighted and time invariant Laplacian and D(t) = dI, and matrix measure

induced by L1 and L∞ norms.

Theorem 12. Let X1j = xj − x1 and A = diag (a1, . . . , an) with ai ≥ 0. For L = (lij),

let S = dS1, where S1 is defined as follows:

S1 =




−
N∑

j=1

l2j − l12 l23 − l13 · · · l2N − l1N

l32 − l12 −
N∑

j=1

l3j − l13 · · · l3N − l1N

...
...

. . .
...

lN2 − l12 lN3 − l13 · · · −
N∑

j=1

lNj − l1N




.

Assume that

1. for j = 2, . . . , N ,

Ẋ1j =

[∫ 1

0
JF (sxj + (1− s)xj)ds−A

]
X1j ,

is globally stabilized in the sense of a Lyapunov function V1j = 1
2X

T
1jX1j.

2. for p = 1,∞, and a = max{a1, . . . , an} ≥ 0

2a+ µp
[
S + ST

]
< 0 .

Then limt→∞(xj − x1)(t) = 0, i.e., the system (3.6) synchronizes.

Now let G be a path graph with N = 4 nodes and F (x) = x. Then for D = dI, S would

be as follows:

S =




−3d d 0

0 −2d d

d d −d



.

A simple calculation shows that µ1[S + ST ] = µ∞[S + ST ] = d. Therefore, the second

condition of Theorem 12 is not satisfied for any d > 0 and one cannot apply the result

of [47]. By Proposition 10, if µ1[JF −4 sin2(π/8)dI] < 0, where 4 sin2(π/8) is the second
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eigenvalue of the Laplacian of a path graph with 4 nodes, then the system synchronizes.

Note that for this example,

JF − 4 sin2(π/8)dI =
(
1− 4 sin2(π/8)d

)
I.

Therefore, µ1[JF − 4 sin2(π/8)dI] = 1− 4 sin2(π/8)d < 0 when d > 1
4 sin2(π/8)

≈ 1.7.

A matrix measure approach using an arbitrary norm

The paper [63] presents a contraction-based network small-gain theorem which has some

relation to the results given here. In that result, a given “global” partitioned matrix

Ag ∈ RN×N is given, where N = n1 + n2 + · · ·+ nk:

Ag =




A11 A12 . . . A1k

A21 A22 . . . A2k

...
... . . .

...

Ak1 Ak2 . . . Akk



,

as well as a set of “local” norms

|ξi|l,i on Rni , i = 1, . . . , k,

and one introduces the induced norms of interconnections, as well as the measures of

each subsystem, as follows:

ρij := sup
|x|l,j=1

|Aijx|l,i , µi := µi(Aii),

as well as a “structure matrix” that encodes all these numbers:

As :=




µ1 ρ12 . . . ρ1k

ρ21 µ2 . . . ρ2k

...
...

. . .
...

ρk1 ρk2 . . . µk



.

Figure 3.9 shows a schematic of the interconnection and the quantities in question.

The main theorem in [63] states that, given any monotone (“interconnection” or “struc-

ture”) norm |x|s on Rk, and defining a “global” norm by:

|ξ|g :=

∣∣∣∣
(
|ξ1|l,1 , . . . , |ξk|l,k

)t∣∣∣∣
s

on Rn1+n2+···+nk ,
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Figure 3.9: An interconnection of four subsystems

then

µg[Ag] ≤ µs[As].

(The theorem is applied to nonlinear systems by considering all possible Jacobians.)

The main objective of [63] was to apply this result to networks of dynamical systems,

allowing one to show global stability, and even contraction, of interconnected systems,

based only estimates on upper bounds on norms of interconnections as well as on

“certificates” given by upper bounds on matrix measures of the Jacobians of each

component. In principle, this result applies, in particular, to diffusive interconnections:

just take local systems equal to each other (and with the same local norms), let the off-

diagonal terms in the global matrix be obtained from the diffusion terms (i.e., Aij = D

for all i 6= j), and adjust the diagonal terms by subtracting D. However, this theorem

is in essence a small-gain theorem, and as such is too conservative compared to our

results in this work, even for linear systems. To see this, let us consider a diffusive

interconnection of two identical linear systems with dynamics F (x) = −Dx, where

D = diag (1, 3), (observe that µ1[JF ] = −1 and hence the system is contractive)

ẋ1 = F (x1) +D(x2 − x1)

ẋ2 = F (x2) +D(x1 − x2),

which gives

Ag =


 −2D D

D −2D


 .
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Thus, for any given local norm, we have

As :=


 µ[−2D] ‖D‖

‖D‖ µ[−2D]


 .

Note that µ1[Ag] = −1 < 0. In what follows, we show that for any structure norm ‖·‖S ,

µS [AS ] > 0, which implies that one cannot apply the result of [63] to conclude µ1[Ag] <

0. Since µ[−2D] ≥ λmax(−2D) (where λmax(A) indicates the largest eigenvalue of A),

and λmax(−2D) = −2, we have that α := µ[−2D] ≥ −2. Also, ‖D‖ = max{d1, d2} = 3.

Therefore, for any norm ‖ · ‖S , we have that µS [AS ] ≥ λmax(AS) = α+ 3 ≥ 1.

By Proposition 10, if supx µ[JF (x)−2D] < 0 (where 2 is the second eigenvalue of a path

graph of two nodes), then the interconnected system synchronizes. A simple calculation

shows that supx µ1[JF (x)− 2D] = µ1[−3D] = −3 < 0.

3.3.5 Synchronization of diffusively-connected ODEs:

weighted graphs

In this section, we study the generalizations of Theorem 11, Proposition 10, and Proposi-

tion 11 for identical systems which are connected through an undirected weighted graph.

Let Gw (the subscript w refers to weighted graph) be a weighted graph, with time vary-

ing weight matrix W (t) = (wij(t)) where for each i, j ∈ {1, . . . , N}, wij : [0,∞)→ R≥0

is a continuous function of t. For i = 1, . . . , N , the following system describes the

evolution of the xi’s.

ẋi(t) = F (xi(t), t) +
∑

j∈N (i)

wij(t)D(t)(xj − xi)(t),

where the ith subsystem (or “agent”) has state xi(t), the weight matrix W (t) = (wij(t)),

provides the adjacency structure, the indices in N (i) represent the “neighbors” of the

ith subsystem in this graph, and F and D are as defined in (3.6). We also assume that

for each pair (i, j), i ∈ Nj ⇐⇒ j ∈ Ni and wij = wji. Recall that wij = wji = 0 when

xi and xj are not connected or i = j, and wij(t) > 0 when xi and xj are connected by

an edge.

Definition 10. For any arbitrary undirected weighted graph Gw with weight matrix

W = (wij) and the associated (graph) Laplacian matrix Lw, any diagonal matrix D(t),
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and any F : V × [0,∞) → Rn, the associated Gw−compartment system, denoted by

(F,Gw, D), is defined by

ẋ(t) = F̃ (x(t), t)− (Lw(t)⊗D(t))x(t), (3.43)

where x, F̃ , and D are as defined in (3.6) and Lw is as defined in Section 3.1.

Theorem 13. Consider a Gw−compartment system, (F,Gw, D), where Gw is an arbi-

trary undirected, weighted graph with N nodes and m edges. For an arbitrary orientation

of Gw, let Ew be a directed incidence matrix of Gw, and pick any m×m matrix Kw(t)

satisfying

Ew(t)TLw(t) = Kw(t)Ew(t)T . (3.44)

Denote:

c := sup
(z,t)

µ [Jw(z, t)−Kw(t)⊗D(t)] , (3.45)

where µ is the logarithmic norm induced by an arbitrary norm on Rmn, ‖ · ‖, and for

z =
(
zT1 , . . . , z

T
m

)T
, Jw(z, t) is defined as follows.

Jw(z, t) =
√
W(t)diag (JF (z1, t), . . . , JF (zm, t)) ,

where W is defined as (3.1) and
√
W = diag (

√
ω1, . . . ,

√
ωm). Then

∥∥(Ew(t)T ⊗ I
)
x(t)

∥∥ ≤ ect
∥∥(Ew(0)T ⊗ I

)
x(0)

∥∥ .

Proof. Assume that x is a solution of ẋ = F̃ (x, t)− (Lw(t)⊗D(t))x. Let’s define y as

follows. For any t,

y(t) :=
(
Ew(t)T ⊗ I

)
x(t).

Note that for k = 1, . . . ,m, the kth entry of
(
Ew(t)T ⊗ I

)
x(t) is

√
ωk(t)(xik − xjk)

which indicates the kth edge of Gw, i.e., the difference between states associated to the

two nodes that constitute the edge, and I is the n×n identity matrix. Then, using the

Kronecker product identity (A⊗B)(C ⊗D) = AC ⊗BD, for matrices A,B,C, and D

of appropriate dimensions, we have:

ẏ =
(
Ew(t)T ⊗ I

)
ẋ

=
(
Ew(t)T ⊗ I

) (
F̃ (x, t)− (Lw(t)⊗D(t))x

)

=
(
Ew(t)T ⊗ I

)
F̃ (x, t)−

(
Ew(t)TLw(t)⊗D(t)

)
x
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=
(
Ew(t)T ⊗ I

)
F̃ (x, t)−

(
Kw(t)Ew(t)T ⊗D(t)

)
x

=
(
Ew(t)T ⊗ I

)
F̃ (x, t)− (Kw(t)⊗D(t))

(
Ew(t)T ⊗ I

)
x

=
(
Ew(t)T ⊗ I

)
F̃ (x, t)− (Kw(t)⊗D(t)) y,

where for i = 1, . . . ,m,
(
Ew(t)T ⊗ I

)
F̃ (x, t) can be written as follows:

√
W(t) diag (F (xi1 , t)− F (xj1 , t), . . . , F (xim , t)− F (xjm , t)).

Now let u(t) =
√
W(t)(xi1 , . . . , xim)T , v(t) =

√
W(t)(xj1 , . . . , xjm)T , and for any t, Gt

be as follows:

Gt(u) :=
√
W(t)




F (xi1 , t)

...

F (xim , t)



− (Kw(t)⊗D(t))

√
W(t)




xi1
...

xim



,

then u̇− v̇ = Gt(u)−Gt(v). By Lemma 5 and Remark 10,

‖u(t)− v(t)‖ ≤ ect‖u(0)− v(0)‖,

where c = sup(x,t) µ [JGt(x)] = sup(x,t) µ [Jw(x, t)−Kw(t)⊗D(t)] and for any fixed t,

u(t)− v(t) =
(
Ew(t)T ⊗ I

)
x(t).

Remark 18. For each t,
(
Ew(t)T ⊗ I

)
x is an m column vector whose entries are the

differences
√
ωk(t)(xik − xjk)(t), for each weighted edge ek = {ik, jk} in Gw. Therefore,

if there exists an a > 0, such that ωk(t) > a for all t ≥ 0 and every k, and if c < 0, then

the system synchronizes.

In Proposition 14 below, we will see the application of Theorem 13 to weighted path

graphs.

Consider a system of N compartments, x1, . . . , xN , that are connected to each other

by a weighted path graph Gw. Assuming x0 = x1, xN+1 = xN , the following system of

ODEs describes the evolution of the individual agent xi, for i = 1, . . . , N :

ẋi = F (xi, t) +D(t) (ωi−1(xi−1 − xi) + ωi(xi+1 − xi)) . (3.46)

Note that the ωi’s are positive constants (and independent of t). The following result

is a generalization of Proposition 10 to weighted path graphs.
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Proposition 14. Let (xT1 , . . . , x
T
N )T be a solution of (3.46), and for 1 ≤ p ≤ ∞ and a

positive diagonal matrix Q, let

c = sup
(x,t)

µp,Q

[√
WJF (x, t)− λD(t)

]
, (3.47)

where
√
W = diag

(√
ω1, . . . ,

√
ωN−1

)
, and λ is the smallest nonzero eigenvalue of the

associated graph Laplacian Lw. Then

‖e(t)‖p,Qp⊗Q ≤ ect‖e(0)‖p,Qp⊗Q, (3.48)

where for any t, e(t) =
(√
ω1(x1 − x2)T (t), . . . ,

√
ωN−1(xN−1 − xN )T (t)

)T
denotes the

vector of all edges of the path graph, and Qp is defined as follows:

Qp(t) = diag

(
p

2−p
p

1 , . . . , p
2−p
p

N−1

)
,

and (p1, . . . , pN−1) is a positive eigenvector associated to −λ for −Kw = −ETwEw, the

weighted edge Laplacian, i.e.,

(p1, . . . , pN−1) (−Kw) = −λ (p1, . . . , pN−1) .

Note that Q∞ = diag (1/p1, . . . , 1/pN−1).

Note that for W = I (unweighted path graph), we saw in the previous section that

λ = 4 sin2 (π/2N), and for 1 ≤ k ≤ N − 1, pk = sin(kπ/N).

The proof of Proposition 14, which is similar to the proof of Proposition 10, is as follows.

For a path graph with N nodes, consider the following N × N − 1 directed incidence

matrix Ew and the N − 1×N − 1 weighted edge Laplacian Kw := Ew
TEw:

Ew =




−√ω1

√
ω2

. . .

. . . −√ωN−2

√
ωN−1



,

Kw =




2ω1 −√ω1ω2

−√ω1ω2 2ω2 −√ω2ω3

. . .
. . .

−√ωN−2ωN−1 2ωN−1



.

(3.49)
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Since −Kw is a Metzler and irreducible matrix, it follows by the Perron-Frobenius The-

orem (see the Appendix) that it has a positive eigenvector (p1, . . . , pN−1) corresponding

to −λ, the largest eigenvalue of −Kw, (λ is the smallest eigenvalue of Kw), i.e.,

(p1, . . . , pN−1) (−Kw) = −λ (p1, . . . , pN−1) . (3.50)

To prove Proposition 14, we first prove the following Lemma which is a generalization

of Lemma 15.

Lemma 16. Let Kw be the weighted edge Laplacian of a path graph with N ≥ 3 nodes

as shown in (3.49). Then for any 1 ≤ p ≤ ∞,

µp,Qp⊗Q [λI ⊗D(t)−Kw ⊗D(t)] ≤ 0, (3.51)

where Q and Qp are as in Proposition 14.

Proof. To prove (3.51), we will show that for any t, µp[Aw(t)] ≤ 0, where Aw(t) is

defined as follows:

Aw(t) = (Qp ⊗Q) (λI ⊗D(t)−Kw ⊗D(t))
(
Q−1
p ⊗Q−1

)
.

We fix t ≥ 0 and first show that for p = 1, µp[Aw(t)] = 0. A simple calculation shows

that, for p = 1, Aw is as follows:




(λ− 2ω1) p1
p2

√
ω1ω2

p2
p1

√
ω1ω2 (λ− 2ω2) p2

p3

√
ω2ω3

. . .
. . .

pN−1

pN−2

√
ωN−2ωN−1 (λ− 2ωN−1)




⊗D(t),

For 1 = (1, . . . , 1)T , and p = 1, since 1TQp = (p1, . . . , pN−1), it follows by Equation

(3.50) that 1TQp(−Kw)Q−1
p = −λ1T , therefore,

−2ω1 +
p2

p1

√
ω1ω2 = −2ω2 +

p1

p2

√
ω1ω2 +

p3

p2

√
ω2ω3 = · · · = −λ. (3.52)

Hence, by the definition of µ1, µ1[A] = maxj

(
ajj +

∑
i 6=j |aij |

)
, and because D(t) is

diagonal, for any fixed t, µ1[Aw(t)] = 0.
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Now we show that for any fixed t, µ∞[Aw(t)] = 0. A simple calculation shows that, for

p =∞, since Q∞ = diag (1/p1, . . . , 1/pN−1),

Aw(t) =




(λ− 2ω1) p2
p1

√
ω1ω2

p1
p2

√
ω1ω2 (λ− 2ω2) p3

p2

√
ω2ω3

. . .
. . .

pN−2

pN−1

√
ωN−2ωN−1 (λ− 2ωN−1)




⊗D(t),

Therefore, by the definition of µ∞, µ∞[A] = maxi

(
aii +

∑
i 6=j |aij |

)
, and because D(t)

is diagonal, µ∞[Aw(t)] = 0.

Next we show for 1 < p < ∞, µp[Aw(t)] ≤ 0. Note that for a fixed t, Aw(t) can be

written as follows:



λ− 2ω1 α−1
1

√
ω1ω2

α1
√
ω1ω2 λ− 2ω2 α−1

2

√
ω2ω3

. . .
. . .

αN−2
√
ωN−2ωN−1 λ− 2ωN−1




⊗D(t),

where αi =
(
pi+1

pi

) 2−p
p

. To show µp[Aw(t)] ≤ 0, using Lemma 3 and the definition of µ,

it suffices to show that D+‖u‖p ≤ 0, where u = (u11, . . . , u1n, . . . , uN−11, . . . , uN−1n)T

is the solution of u̇ = Awu, or equivalently, dΦ
dt (u(t)) ≤ 0, where Φ(t) = ‖u(t)‖pp. In the

calculations below, we use the following simple fact (which is proved in the Appendix).

For any real α and β and 1 ≤ p:
(
|α|p−2 + |β|p−2

)
αβ ≤ |α|p + |β|p.

In the calculations below, we let βi = α
2

2−p
i . We also use the fact that |x|p is differen-

tiable for p > 1 and

dΦ

dui
=

d

dui
|ui|p = p|ui|p−1 ui

|ui|
= p|ui|p−2ui.

Observe that

dΦ

dt
(u(t)) =

∑

i,k

dΦ

duik

duik
dt

= OΦ · u̇ = OΦ · Awu
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= p
(
|u11|p−2u11, . . . , |unN−1|p−2uN−1n

)
Aw(u11, . . . , uN−1n)T

= p
n∑

k=1

dkQk,

where Qk is the following expression:

N−1∑

i=1

(λ− 2ωi) |uik|p
N−2∑

i=1

√
ωiωi+1

(
αi |ui+1k|p−2

ui+1kuik + α−1
i |uik|

p−2
ui+1kuik

)

=

N−1∑

i=1

(λ− 2ωi) |uik|p
N−2∑

i=1

√
ωiωi+1

αi

βi

(
|ui+1k|p−2

ui+1k(βiuik) + |βiuik|p−2
ui+1k(βiuik)

)

≤
N−1∑

i=1

(λ− 2ωi) |uik|p +

N−2∑

i=1

√
ωiωi+1

αi

βi
(|ui+1k|p + |βiuik|p)

=

N−1∑

i=1

(λ− 2ωi) |uik|p +

N−2∑

i=1

√
ωiωi+1

(
αi

βi
|ui+1k|p + αiβ

p−1
i |uik|p

)

=

N−1∑

i=1

(λ− 2ωi) |uik|p +

N−2∑

i=1

√
ωiωi+1

(
pi
pi+1

|ui+1k|p +
pi+1

pi
|uik|p

)

= |u1k|p
(
λ− 2ω1 +

p2

p1

√
ω1ω2

)
+ · · ·+ |uN−1k|p

(
λ− 2ωN−1 +

pN−2

pN−1

√
ωN−2ωN−1

)
,

and this last term vanishes by Equation (3.52).

Proof of Proposition 14. Let Kw be as defined in (3.49) and for u =
(
uT1 , . . . , u

T
N−1

)T
,

let

Jw(u, t) =
√
Wdiag (JF (u1, t), . . . , JF (uN−1, t)) .

By subadditivity of µ, and Lemma 16, for any 1 ≤ p ≤ ∞,

µp,Qp⊗Q [Jw(u, t)−Kw ⊗D(t)]

≤ µp,Qp⊗Q [Jw(u, t)− λI ⊗D(t)] + µp,Qp⊗Q [λI ⊗D(t)−Kw ⊗D(t)]

≤ µp,Qp⊗Q [Jw(u, t)− λI ⊗D(t)]

≤ max
i

{
µp,Q

[√
WJF (ui, t)− λD(t)

]}
.

The last inequality holds by Lemma 4. Note that Qp does not appear in the last equation.

Now by taking sup over all u =
(
uT1 , . . . , u

T
N−1

)T
and all t ≥ 0, we get

sup
(u,t)

µp,Qp⊗Q [Jw(u, t)−Kw ⊗D(t)] ≤ sup
t

sup
x∈Rn

µp,Q

[√
WJF (x, t)− λD(t)

]
.

Now by applying Theorem 13, we obtain the desired inequality, Equation (3.48).

We remark that, at least for certain graphs, one can recover the L2 result from [42] as

a corollary of Theorem 13.
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Remark 19. Consider a Gw−compartment system, (F,Gw, D), where Gw is an undi-

rected weighted tree with weight W = diag (ω1, . . . , ωN−1) and denote

c := sup
(x,t)

µ2,Q

[√
WJF (x, t)− λD(t)

]
,

where λ is the smallest nonzero eigenvalue of the Laplacian of Gw and Q is a positive

diagonal matrix. Then

∥∥(EwT ⊗ I
)
x(t)

∥∥
2,I⊗Q ≤ ect

∥∥(EwT ⊗ I
)
x(0)

∥∥
2,I⊗Q .

where I is the identity matrix of appropriate size and Ew is a weighted incidence matrix

of Gw.

Proof. Let Kw = ETwEw and Jw be as defined in Theorem 13. By subadditivity of µ,

µ2,I⊗Q [Jw(x, t)−Kw ⊗D(t)] ≤ µ2,I⊗Q [Jw(x, t)− λI ⊗D(t)]

+ µ2,I⊗Q [λI ⊗D(t)−Kw ⊗D(t)] .

(3.53)

We first show that the second term of the right hand side of the above inequality is

zero. By Lemma 12, λ is the smallest eigenvalue of the edge Laplacian, Kw, so the

largest eigenvalue of λI −Kw and hence (λI −Kw)⊗D(t) is 0. Therefore,

µ2,I⊗Q[(λI −Kw)⊗D(t)] = µ2

[
(I ⊗Q) ((λI −Kw)⊗D(t))

(
I ⊗Q−1

)]

= µ2 [(λI −Kw)⊗D(t)]

= largest eigenvalue of (λI −Kw)⊗D(t) = 0.

Since (λI − Kw) ⊗ D(t) is symmetric, µ2 [(λI −Kw)⊗D(t)] is equal to the largest

eigenvalue of (λI−Kw)⊗D(t). Next, we will show that the first term of the right hand

side of Equation (3.53) is ≤ c. By Lemma 4,

µ2,I⊗Q [Jw(x, t)− λI ⊗D(t)] ≤ max
i

{
µ2,Q

[√
WJF (xi, t)− λD(t)

]}
.

By taking sup over all t ≥ 0 and x =
(
xT1 , . . . , x

T
m

)T
, we get

sup
(x,t)

µ2,I⊗Q [Jw(x, t)−Kw ⊗D(t)] ≤ sup
t

sup
x∈Rn

µ2,Q

[√
WJF (x, t)− λD(t)

]
= c.

Now by applying Theorem 13, we obtain the desired result.
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3.4 Synchronization of diffusively-connected ODEs: weighted L2 norm

approaches

Acknowledgement of book chapter and conference publications:

Parts of the material in this section have been published in the conference paper [52]

and the book chapter [46].

In this section, we study the asymptotic behavior of the solutions of the following system

which is a generalized form of system (3.6),

ẋ(t) = F̃ (x(t), t)−
(

r∑

i=1

Li ⊗Di(t)

)
x(t), (3.54)

where x, F̃ , and Li’s are as defined in (3.6). For each i = 1, . . . , r, Di(t) is an n × n

diagonal matrix with entries [Di]jj(t) = dij(t), for j = i, . . . , ni (where n1+· · ·+nr = n)

and 0 elsewhere. Note that (3.6) is a version of (3.54) for r = 1.

Before we state the main result of this section, we introduce some notations.

For a fixed i ∈ {1, . . . , r}, let λik be the k-th eigenvalue of the matrix Li and eik be the

corresponding normalized eigenvector. Note that by the definition of Li, λi1 = 0 and

ei1 = 1√
N

1N . For any fixed t, let

Λk(t) :=

r∑

i=1

λikDi(t). (3.55)

For each k ∈ {1, . . . , N}, let Eik be the subspace spanned by the first k eigenvectors:

Eik := 〈ei1, . . . , eik〉.

For each k ∈ {2, . . . , N}, let πk,i be the orthogonal projection map from RN onto Eik−1.

Namely for any vector v ∈ RN with v =
∑N

j=1(v · eij)eij ,

πk,i(v) :=
k−1∑

j=1

(v · eij)eij ,

and for k = 1, let π1,i(v) = 0.

For each k ∈ {2, . . . , N}, and any u =
(
u1T , . . . , uN

T
)T

with uj ∈ Rn, we define

πk : RnN → RnN as follows.

πk(u) :=

n∑

j=1

πk,j(uj)⊗ ej , (3.56)
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where {e1, . . . , en} is the standard basis of Rn, and uj :=
(
u1 · ej , . . . , uN · ej

)T ∈ RN ;

and for k = 1, let π1(u) = 0.

Note that for each k and any u, v ∈ RnN , by the definition of orthogonal maps, we have

(u− πk(u))T πk(v) =

n∑

j=1

(uj − πk,j(uj))T πk,j(vj) = 0. (3.57)

We also can define πk(u) as follows. For i = 1, . . . , n, let ei :=
∑N

j=1 e
i
j ⊗ ej . It

is straightforward to show that e1, . . . , en are linearly independent and for any i, j ∈

{1, . . . , n}, eiT ej = 0. Hence, one can extend
{
ei
}

1≤i≤n to an orthogonal basis for RnN ,
{
ei
}

1≤i≤nN . Then for each k = 2, . . . , nN , and any u ∈ RnN ,

πk(u) =
k−1∑

j=1

(
u · ej

)
ej ,

and π1(u) = 0. Note that for k = 1, . . . , N , this definition is compatible with (3.56).

The goal of this section is to prove the following theorem which its first part is an

analogous of Theorem 9 for system (3.54), and for non diagonal Q but restricted to

p = 2; and its second part is an analogous of [42, Theorem 4] for system (3.54).

Theorem 14. Consider the system (3.54) and for k = 1, 2, let

µk := sup
(x,t)∈V×[0,∞)

µ2,P [JF (x, t)− Λk],

where P is a positive definite matrix such that for every i = 1, . . . , r, and any t

P 2Di(t) +Di(t)P
2 > 0.

Then for any two solutions, namely x and y, of (3.54), we have:

1.

‖(x− y)(t)‖2,IN⊗P ≤ eµ1t‖(x− y)(0)‖2,IN⊗P . (3.58)

2.

‖(x− π2(x))(t)‖2,IN⊗P ≤ eµ2t‖(x− π2(x))(0)‖2,IN⊗P , (3.59)

where IN is the identity matrix of order N .
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To prove Theorem 14, we need the following lemmas. We first state Courant-Fischer

Minimax Theorem, from [80].

Lemma 17. Let L be a positive semidefinite matrix in RN×N and let λ1 ≤ · · · ≤ λN be

its eigenvalues with corresponding normalized orthogonal eigenvectors v1, . . . , vN . For

any v ∈ RN , if vT vj = 0, for 1 ≤ j ≤ k − 1, then

vTLv ≥ λkvT v.

Lemma 18. Let w := x−z, where x is a solution of (3.54) and z = y is either another

solution of (3.54) or z = π2(x), i.e., z = 1N⊗
(

1
N

∑N
j=1 x

j
)

. For a positive semidefinite

matrix Q, let

Φ(w) :=
1

2
wT (IN ⊗Q)w. (3.60)

Then

dΦ

dt
(w) = wT (IN ⊗Q) (F̃ (x, t)− F̃ (z, t))− wT (IN ⊗Q)L(t)w. (3.61)

where L(t) =
∑r

i=1 Li ⊗Di(t).

Proof. When z = y, the claim is trivial because both x and y satisfy (3.54). When

z = π2(x), then, by Equation (3.57), and the definition of π2, we have:

dΦ

dt
(w) = (x− π2(x))T (IN ⊗Q) (F̃ (x, t)− π2(F̃ (x, t))) + wT (IN ⊗Q)L(t)w

= (x− π2(x))T (IN ⊗Q) F̃ (x, t) + wT (IN ⊗Q)L(t)w

= (x− π2(x))T (IN ⊗Q) (F̃ (x, t)− F̃ (π2(x), t)) + wT (IN ⊗Q)L(t)w.

The last equality holds because

(x− π2(x))T (IN ⊗Q) F̃ (π2(x), t)) =

N∑

j=1

(xj − x̄)QF (x̄, t)

=




N∑

j=1

xj −Nx̄


QF (x̄, t) = 0,

where x̄ = 1
N

∑N
j=1 x

j .

Proof of Theorem 14. By Lemma 6,

Q(JF − Λk) + (JF − Λk)
TQ ≤ 2µkQ, (3.62)
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where Q = P 2. Define w and Φ(w) as in Lemma 18 for Q = P 2. Since Φ(w) = 1
2‖Pw‖22,

to prove (3.58) and (3.59), it suffices to show that for k = 1, 2

d

dt
Φ(w) ≤ 2µkΦ(w).

We rewrite the second term of the right hand side of (3.61) as follows. Since Q = P 2

and for any t, P 2Di(t) +Di(t)P
2 > 0, there exists a positive definite matrix Mi(t) such

that QDi(t) +Di(t)Q = 2Mi(t)
TMi(t). Therefore,

wT (IN ⊗Q)L(t)w = wT (IN ⊗Q)

(
r∑

i=1

Li ⊗Di(t)

)
w

= wT

(
r∑

i=1

INLi ⊗QDi(t)

)
w

=
1

2

r∑

i=1

wT (Li ⊗ (QDi(t) +Di(t)Q))w

=
r∑

i=1

wT
(
Li ⊗Mi(t)

TMi(t)
)
w

=
r∑

i=1

wT (IN ⊗Mi(t)
T ) (Li ⊗ In) (IN ⊗Mi(t))w

≥
r∑

i=1

λik ((IN ⊗Mi(t))w)T (IN ⊗Mi(t))w

=
r∑

i=1

λikw
T (IN ⊗Mi(t)

TMi(t))w

=
r∑

i=1

λikw
T (IN ⊗QDi(t))w

= wT (IN ⊗QΛk(t))w (by Equation (3.55)),

where the inequality holds for k = 1, 2, by Lemma 17. Therefore,

−wT (IN ⊗Q)L(t)w ≤ −wT (IN ⊗QΛk(t))w. (3.63)

Note that the smallest eigenvalue of Li ⊗ In, similar to Li, is 0 with corresponding

eigenvector 1nN . Now by applying Lemma 17 to Li ⊗ In, since for z = π2(x), by defi-

nition, wT1nN = 0, (IN ⊗Mi(t))w1nN = 0, and the first inequality holds for k = 2. It

also holds for k = 1, since Li and hence Li ⊗ In are positive definite, and λi1 = 0.

Now, by the Mean Value Theorem for integrals and Lemma 6, we rewrite the first term
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of the right hand side of (3.61) as follows:

wT (IN ⊗Q) (F̃ (x, t)− F̃ (z, t)) =
N∑

i=1

wi
T
Q(F (xi, t)− F (zi, t))wi ds

=

N∑

i=1

∫ 1

0
wi

T
QJF (zi + swi, t)wi ds.

This last equality together with (3.63) imply:

wT (IN ⊗Q) (F̃ (x, t)− F̃ (z, t))− wT (IN ⊗Q)L(t)w

=

N∑

i=1

∫ 1

0
wi

T
Q
(
JF (zi + swi, t)− Λk(t)

)
wi ds

≤
N∑

i=1

2µk
2

∫ 1

0
ds wi

T
Qwi

=
2µk
2
wT (IN ⊗Q)w

= 2µkΦ(w).

Therefore

dΦ

dt
(w) ≤ 2µkΦ(w).

This last inequality implies (3.58) and (3.59) for k = 1 and k = 2, respectively.

Corollary 5. In Theorem 14, if µ1 < 0, then (3.54) is contracting, meaning that

solutions converge (exponentially) to each other, as t → +∞ in the P -weighted L2

norm.

Corollary 6. In Theorem 14, if µ2 < 0, then solutions converge (exponentially) to

uniform solutions, as t→ +∞ in the P -weighted L2 norm.

3.5 Appendix

We state the following lemma about the eigenvalues of tridiagonal matrices. For more

details see [81].
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Lemma 19. Denote by M = M(v, a, b, s, t) the n× n tridiagonal matrix

M =




a+ v t

s v t

. . .
. . .

. . .

s v t

s b+ v




,

where v, a, b, s, t ∈ R. Let σ =
√
st, and assume that λ1 ≤ · · · ≤ λn are the eigenvalues

of M . Then,

1. for a = b = 0, and k = 1, . . . , n, λk = v − 2σ cos

(
(n+ 1− k)π

n+ 1

)
;

2. for a = b = σ, and k = 1, . . . , n, λk = v − 2σ cos

(
(n+ 1− k)π

n

)
.

Note that in −L, as defined in (3.3), v = −2, and a = b = s = t = σ = 1. Therefore,

by Lemma 19,

λ2(L) = −λ2(−L) = 2 + 2 cos ((N − 1)π/N) = 4 sin2(π/2N).

Next, we state the Perron-Frobenius Theorem that we used in the proofs of Proposition

10 and Proposition 14. For more details see [80].

Perron-Frobenius Theorem Let A be an n× n non-negative (means all the entries

are non-negative) and irreducible matrix. Then the following statements hold.

1. There is a real number λ∗, called the Perron-Frobenius eigenvalue, such that λ∗ is

an eigenvalue of A and |λ∗| > λ for any other eigenvalue λ of A.

2. The Perron-Frobenius eigenvalue is simple. Consequently, the left and right eigenspaces

associated to λ∗ are one-dimensional.

3. There exist a left and a right eigenvector v = (v1, . . . , vn) of A corresponding to

eigenvalue λ∗ such that all components of v are positive.

4. There are no other positive left and right eigenvectors except positive multiples of v.
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Note that the Perron-Frobenius Theorem can be generalized to any Metzler, irreducible

matrix, since for any Metzler matrix A, there exists a real positive number α such that

A− αI is a non-negative matrix.

We used the following lemma in the proof of Proposition 13 and Lemma 16.

Lemma 20. For any real α and β and 1 ≤ p:

(|α|p−2 + |β|p−2)αβ ≤ |α|p + |β|p.

Proof. For αβ ≤ 0, the inequality is trivial. Suppose αβ > 0, and w.l.o.g |β| ≥ |α| and

let λ = β
α . Then it suffices to prove that for λ ≥ 1,

(1 + λp−2)λ ≤ λp + 1.

Let f(λ) = λp−1 + λ − λp − 1. We want to show that f(λ) ≤ 0 for λ ≥ 1. Since

f(1) = f ′(1) = 0 and f ′′(λ) ≤ 0 for λ ≥ 1, indeed f(λ) ≤ 0.
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Chapter 4

Reaction diffusion PDEs with Neumann and Dirichlet

boundary conditions

4.1 Introduction

In this chapter we study reaction diffusion PDE systems of the general form:

∂u1

∂t
(ω, t) = F1(u(ω, t), t) + d1(t)∆u1(ω, t)

...

∂un
∂t

(ω, t) = Fn(u(ω, t), t) + dn(t)∆un(ω, t),

(4.1)

subject to the Neumann boundary condition:

∂ui
∂n

(ξ, t) = 0, ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞), ∀i = 1, . . . , n, (4.2)

or subject to the Dirichlet boundary condition:

ui(ξ, t) = 0, ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞), ∀i = 1, . . . , n, (4.3)

which can be written as the following closed form:

∂u

∂t
(ω, t) = F (u(ω, t), t) +D(t)∆u(ω, t),

where we assume

• Ω is a bounded domain of Rm with smooth boundary ∂Ω and outward normal n.

• u(ω, t) = (u1(ω, t), . . . , un(ω, t))T , where for any i, ui : Ω̄ × [0,∞) → R is twice

continuously differentiable on the first argument and continuously differentiable

function on the second argument.



100

• F : V × [0,∞)→ Rn is a vector field with components Fi : V × [0,∞)→ R, where

V is a convex subset of Rn: F (x, t) = (F1(x, t), . . . , Fn(x, t))T . Also, we assume

that for each i, Fi(x, t) is Lipschitz on x and continuous on (x, t).

• D(t) = diag (d1(t), . . . , dn(t)), where for each i, di(t) ≥ 0 is a continuous function

of t. The matrix D(t) is called the diffusion matrix.

• ∆u = (∆u1, . . . ,∆un)T , where ∆ = ∇ · ∇ is the Laplacian operator defined by

∆v =
∑m

i=1
∂2v
∂ω2

i
for v = v(ω1, . . . , ωm).

In biology, a PDE system of this form describes individuals (particles, chemical species,

etc.) of n different types, with respective abundances ui(ω, t) at time t and location

ω ∈ Ω, that can react instantaneously, guided by the interaction rules encoded into the

vector field F , and can diffuse due to random motion. reaction diffusion PDEs play

a key role in modeling intracellular dynamics and protein localization in cell processes

such as cell division and eukaryotic chemotaxis (e.g. [82, 83, 84, 85]) as well as in

the modeling of differentiation in multi-cellular organisms, through the diffusion of

morphogens which control heterogeneity in gene expression in different cells (e.g. [86,

87]). From a bioengineering perspective, reaction diffusion models can be used to

model artificial mechanisms for achieving cellular heterogeneity in tissue homeostasis

(e.g. [88, 89]).

Definition 11. By a solution of the PDE

∂u

∂t
(ω, t) = F (u(ω, t), t) +D(t)∆u(ω, t)

∂u

∂n
(ξ, t) = 0, ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞),

on an interval [0, T ), where 0 < T ≤ ∞, we mean a function u = (u1, . . . , un)T , with

u : Ω̄× [0, T )→ V , such that:

1. for each ω ∈ Ω̄, u(ω, ·) is continuously differentiable;

2. for each t ∈ [0, T ), u(·, t) is in Y
(n)
V (the superscript (n) is for Neumann), where

Y
(n)
V =

{
v : Ω̄→ V, v = (v1, . . . , vn)T , vi ∈ C2

R
(
Ω̄
)
,
∂vi
∂n

(ξ) = 0, ∀ξ ∈ ∂Ω, ∀i
}
,

(4.4)
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and C2
R
(
Ω̄
)

is the set of twice continuously differentiable functions Ω̄→ R; and

3. for each ω ∈ Ω̄, and each t ∈ [0, T ), u satisfies the above PDE.

Definition 12. By a solution of the PDE

∂u

∂t
(ω, t) = F (u(ω, t), t) +D(t)∆u(ω, t)

u(ξ, t) = 0, ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞),

on an interval [0, T ), where 0 < T ≤ ∞, we mean a function u = (u1, . . . , un)T , with

u : Ω̄× [0, T )→ V , such that:

1. for each ω ∈ Ω̄, u(ω, ·) is continuously differentiable;

2. for each t ∈ [0, T ), u(·, t) is in Y
(d)
V , (the superscript (d) is for Dirichlet), where

Y
(d)
V =

{
v : Ω̄→ V, v = (v1, . . . , vn)T , vi ∈ C2

R
(
Ω̄
)
, vi(ξ) = 0, ∀ξ ∈ ∂Ω, ∀i

}
,

(4.5)

and C2
R
(
Ω̄
)

is the set of twice continuously differentiable functions Ω̄→ R; and

3. for each ω ∈ Ω̄, and each t ∈ [0, T ), u satisfies the above PDE.

Under the additional assumptions that F (x, t) is twice continuously differentiable on x

and continuous on (x, t), theorems on existence and uniqueness for PDEs such as (4.1)

can be found in standard references, e.g., [90, 91, 92]. One must impose appropriate

conditions on the vector field, on the boundary of V , to insure invariance of V (i.e., the

solutions with initial conditions u : Ω̄→ V remain in V .). Convexity of V insures that

the Laplacian also preserves V . Since we are interested here in estimates relating pairs

of solutions, we do not need to deal with well-posedness of the solutions. Our results

will refer to solutions already assumed to exist.

Therefore, in the current work, we assume that (4.1) has a unique solution on [0, T ) for

some 0 < T ≤ ∞. In addition, when we discuss contractivity and synchronous behavior

of the solutions of (4.1), we assume that the solutions are defined globally (otherwise

t→∞ and the concepts of contraction and synchronization don’t make sense). We will

discuss (global) existence and uniqueness of the solutions in Section 4.6 below.
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For any 1 ≤ p ≤ ∞, and any nonsingular, diagonal matrix Q = diag (q1, . . . , qn), we

introduce a Q-weighted norm on X = CRn
(
Ω̄
)

as follows:

‖v‖p,Q :=
∥∥∥Q (‖v1‖p, . . . , ‖vn‖p)T

∥∥∥
p
. (4.6)

Since

‖v‖p,Q =





(∑

i

|qi|p ‖vi‖pp

) 1
p

1 ≤ p <∞

sup
i
|qi| ‖vi‖p p =∞,

without loss of generality we will assume qi > 0 for each i. Note that ‖v‖p,Q is finite,

for any p, Q, because each vi is a continuous function on Ω̄ and Ω̄ is a compact subset

of Rm.

With a slight abuse of notation, we use the same symbol for a norm in Rn:

‖x‖p,Q := ‖Qx‖p.

Lemma 21. For any v ∈ X = CRn
(
Ω̄
)
, ‖v‖p,Q =

∥∥v
∥∥∗
p,Q

, where

∥∥v
∥∥∗
p,Q

=





(∫

Ω
‖Qv(ω)‖pp dω

) 1
p

1 ≤ p <∞

sup
ω
‖Qv(ω)‖∞ p =∞.

(4.7)

Note that ‖Qv(ω)‖pp =
∑n

i=1 |qivi(ω)|p and ‖Qv(ω)‖∞ = maxi |qivi(ω)|.

Proof. Let Q = diag (q1, . . . , qn), qi > 0. For 1 ≤ p < ∞ (the proof is analogous when

p =∞), by the definitions of ‖·‖p,Q and
∥∥ ·
∥∥∗
p,Q

∥∥v
∥∥∗
p,Q

=

(∫

Ω
‖Qv(ω)‖pp dω

) 1
p

=

(∫

Ω

∥∥(q1v1(ω), . . . , qnvn(ω))T
∥∥p
p
dω

) 1
p

=

(∫

Ω
|q1v1(ω)|p + · · ·+ |qnvn(ω)|p dω

) 1
p

=
(
‖q1v1

∥∥p
p + · · ·+ ‖qnvn

∥∥p
p

) 1
p

=
∥∥∥(q1‖v1‖p, . . . , qn‖vn‖p)T

∥∥∥
p

=
∥∥∥Q (‖v1‖p, . . . , ‖vn‖p)T

∥∥∥
p

= ‖v‖p,Q .



103

Note that this equality between weighted Lp norms of functions and of vectors depends

on our having taken the matrix Q to be diagonal. This is the key place where the

assumption that Q is diagonal is being used.

4.2 Contractivity of reaction diffusion PDEs: weighted Lp norm ap-

proaches

Acknowledgement of journal publication:

Parts of the material in this section have been published in the journal paper [51].

The “symmetry breaking” phenomenon of diffusion-induced, or Turing instability

refers to the case where a dynamic equilibrium ū of the non-diffusing ODE du
dt = F (u, t)

is stable, but, at least for some diagonal positive matrices D, the corresponding uni-

form state u(ω, t) = ū is unstable for the PDE system ∂u
∂t = F (u, t) + D∆u. This

phenomenon has been studied at least since Turing’s seminal work on pattern forma-

tion in morphogenesis [93], where he argued that chemicals might react and diffuse so

as result in heterogeneous spatial patterns.

Subsequent work by Gierer and Meinhardt [94, 95] produced a molecularly plausible

minimal model, using two substances that combine local autocatalysis and long-ranging

inhibition. Since that early work, a variety of processes in physics, chemistry, biology,

and many other areas have been studied from the point of view of diffusive instabilities,

and the mathematics of the process has been extensively studied [86, 87, 96, 97, 98, 99,

100, 101, 102, 103]. Most past work has focused on local stability analysis, through the

analysis of the instability of nonuniform spatial modes of the linearized PDE. Nonlinear,

global results are usually proved under strong constraints on diffusion constants as they

compare to the growth of the reaction part.

In this work, we are interested in conditions on the reaction part F that guarantee

that no diffusion instability will occur, no matter what is the size of the diffusion matrix

D. We show that if the reaction system is “contractive” in the sense that trajectories
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globally and exponentially converge to each other with respect to a diagonally weighted

Lp norm, then the same property is inherited by the PDE. In particular, if there exists

a homogeneous steady state ū, it will follow that this steady state is globally expo-

nentially stable for the PDE system. We were motivated by the desire to understand

the important biological systems described in [64, 104] for which, as we will show, con-

tractivity holds for diagonally weighted L1 norms, but not with respect to diagonally

weighted Lp norms, for any 1 < p ≤ ∞.

In what follows, we first state and prove the main result of this section and then

we provide some examples to support the result. Note that the following theorem is an

analogous version of Theorem 9 for reaction diffusion PDEs.

Theorem 15. Consider the reaction diffusion PDE (4.1) defined on [0, T ), subject to

Neumann boundary conditions (4.2). Let c := µp,Q[F ] for some 1 ≤ p ≤ ∞, and

some positive diagonal matrix Q . Then for any two solutions u, v of the PDE and all

t ∈ [0, T ):

‖u(·, t)− v(·, t)‖p,Q ≤ ect ‖u(·, 0)− v(·, 0)‖p,Q .

To prove the theorem, we need the following two lemmas. We first show how to write

the reaction diffusion PDE (4.1) as an ODE.

Lemma 22. Pick any 0 < T ≤ ∞ and suppose that u is a solution of (4.1) and (4.2)

defined on Ω̄× [0, T ). In addition, we denote X = CRn
(
Ω̄
)
, where CRn

(
Ω̄
)

is the set of

all continuous functions Ω̄→ Rn. For each t ∈ [0, T ), ω ∈ Ω̄, and u ∈ Y
(n)
V (as defined

in (4.4)) define the following functions:

• û : [0, T )→ Y
(n)
V , û(t)(ω) := u(ω, t).

• F̃t : Y
(n)
V → X, F̃t(u)(ω) := F (u(ω), t).

• Ap,Q(t) : Y
(n)
V → X, Ap,Q(t)(u) = diag (d1(t)∆u1, . . . , dn(t)∆un).

• v̂ : [0, T )→ X, v̂(t)(ω) = v(ω, t) = ∂u
∂t (ω, t).

Then, v̂(t) is the derivative of û(t) in the space (X, ‖·‖p,Q), that is:

lim
h→0

∥∥∥∥
1

h
[û(t+ h)− û(t)]− v̂(t)

∥∥∥∥
p,Q

= 0,
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for all t ∈ [0, T ). Moreover,

dû

dt
(t) = F̃t(û(t)) +Ap,Q(t)(û(t)). (4.8)

Proof. Fix t ∈ [0, T ) and i ∈ {1, . . . , n}. Using the definition of v, we have:

lim
h→0

∣∣∣∣
1

h
[ui(ω, t+ h)− ui(ω, t)]− vi(ω, t)

∣∣∣∣ = 0,

for any ω ∈ Ω̄. Hence for any ε > 0, there exists hω > 0 such that for any 0 < h < hω,
∣∣∣∣
1

h
[ui(ω, t+ h)− ui(ω, t)]− vi(ω, t)

∣∣∣∣ <
ε

2
.

Now since ui is a continuous function of ω, there exists a ball Bω centered at ω such

that for any 0 < h < hω,
∣∣∣∣
1

h
[ui(ω̃, t+ h)− ui(ω̃, t)]− vi(ω̃, t)

∣∣∣∣ < ε,

for all ω̃ ∈ Bω. Since {Bω : ω ∈ Ω̄} is an open cover of Ω̄ and Ω̄ is a compact

subset of Rm, finitely many of these balls, namely Bω1 , . . . , Bωk , cover Ω̄. Now let

h0 = min{hω1 , . . . , hωk}. Then, for any 0 < h < h0 and any ω ∈ Ω̄, we have
∣∣∣∣
1

h
[ui(ω, t+ h)− ui(ω, t)]− vi(ω, t)

∣∣∣∣ < ε.

Raising to the p-th power and taking the integral over Ω of the above inequality, we get

∫

Ω

∣∣∣∣
1

h
[ui(ω, t+ h)− ui(ω, t)]− vi(ω, t)

∣∣∣∣
p

dω < |Ω| εp,

which by the definition of ‖·‖p,Q, it implies that for any 0 < h < h0,
∥∥∥∥

1

h
[u(·, t+ h)− u(·, t)]− v(·, t)

∥∥∥∥
p,Q

< cε,

where c = (|Ω|∑n
i=1 q

p
i )

1
p . Since ε > 0 is arbitrary, we have proved that

lim
h→0

∥∥∥∥
1

h
[û(t+ h)− û(t)]− v̂(t)

∥∥∥∥
p,Q

= 0.

For a fixed t ∈ [0, T ) and any ω ∈ Ω̄:

v̂(t)(ω) = v(t, ω) =
∂u

∂t
(ω, t)

= F (u(ω, t), t) +D(t)∆u(ω, t)

= F̃t(û(t))(ω) +Ap,Q(t)(û(t))(ω),

and therefore Equation (4.8) holds.
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Lemma 23. For any t,

1. µ+

Y
(n)
V ,X

[Ap,Q(t)] ≤ 0.

2. µ+

Y
(n)
V ,X

[F̃t] ≤ µp,Q[Ft].

Proof. To prove the first part of the lemma, we consider the following three cases. Fix

t ≥ 0. We drop the arguments ω and t for simplicity.

Case 1. 1 < p < ∞. By the definition of µ+

Y
(n)
V ,X

[Ap,Q(t)], it is enough to show that

for any u ∈ Y
(n)
V with ‖u‖p,Q 6= 0, and any ε > 0, there exists hε > 0, depending on ε,

such that for 0 < h < hε,

1

h

(
‖u+ hD∆u‖p,Q

‖u‖p,Q
− 1

)
=

1

h

(
(
∑

i q
p
i ‖ui + hdi∆ui‖pp)

1
p

(
∑

i q
p
i ‖ui‖

p
p)

1
p

− 1

)
< ε.

(As Ap,Q(t)u = D(t)∆u, we write D(t)∆u instead of Ap,Q(t)u.)

Therefore, we will show that for h small enough

∑

i

qpi ‖ui + hdi∆ui‖pp < (1 + εh)p
∑

i

qpi ‖ui‖pp . (4.9)

Let k : [0, 1]→ R be as follows:

k(h) =
∑

i

qpi ‖ui + hdi∆ui‖pp − (1 + εh)p
∑

i

qpi ‖ui‖pp .

Observe that k is continuously differentiable, and

k′(h) =
d

dh

∑

i

qpi

∫

Ω
|ui + hdi∆ui|p dω − pε(1 + εh)p−1

∑

i

qpi ‖ui‖pp

=
∑

i

qpi

∫

Ω
p |ui + hdi∆ui|p−2 (ui + hdi∆ui) di∆ui dω

−pε(1 + εh)p−1
∑

i

qpi ‖ui‖pp .

Note that in general |g|p is differentiable for p > 1 and its derivative is p |g|p−2 gg′. Now

by Green’s Identity, the Neumann boundary condition, and by the assumption that
∑

i q
p
i ‖ui‖

p
p 6= 0, it follows integrating by parts that:

k′(0) = p
∑

i

qpi

∫

Ω
|ui|p−2 uidi∆ui dω − pε

∑

i

qpi ‖ui‖pp

= −p(p− 1)
∑

i

qpi di

∫

Ω
|ui|p−2 |∇ui|2 dω − pε

∑

i

qpi ‖ui‖pp

< 0 .
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(Note that by the definition, any u ∈ Y
(n)
V satisfies the Neumann boundary condition.)

Since k′(0) < 0, k′ is continuous, and k(0) = 0, k(h) < 0 for h small enough and

therefore Inequality (4.9) holds.

Case 2. p = 1. Let

g(p) := lim
h→0+

1

h

(
(
∑

i q
p
i ‖ui + hdi∆ui‖pp)

1
p

(
∑

i q
p
i ‖ui‖

p
p)

1
p

− 1

)
.

Since g(p) is a continuous function at p = 1, and since in Case 1, we showed that

g(p) ≤ 0 for any p > 1, we conclude that g(1) ≤ 0.

Case 3. p = ∞. Before proving this case we need the following lemma, which is an

easy exercise in real analysis. (For completeness, we include a proof in the Appendix.)

Lemma 24. Let Ω ⊂ Rm be a Lebesgue measurable set with finite measure |Ω| and let f

be a bounded, continuous function on R. Then F (p) :=
(

1
|Ω|
∫

Ω |f |
p
) 1
p

is an increasing

function of p and its limit as p→∞ is ‖f‖∞.

For a fixed p0 > 1, pick u ∈ Y
(n)
V with ‖u‖p0,Q 6= 0. By the definition of the norm,

‖u‖p0,Q 6= 0 implies that for some i0 ∈ {1, . . . , n}, ‖ui0‖p0 6= 0. Let

ϕ(p) :=
1

|Ω|
1
p

‖ui0‖p .

Since by Lemma 24, ϕ is an increasing function of p, for any p > p0,

‖ui0‖p ≥ ‖ui0‖p0 > 0 .

Now for fixed i ∈ {1, . . . , n}, p > p0, and ε > 0, let k(h) be as follows:

k(h) =





‖ui + hdi∆ui‖pp − (1 + εh)p‖ui0‖pp if ‖ui0‖p ≥ ‖ui‖p

‖ui + hdi∆ui‖pp − (1 + εh)p‖ui‖pp if ‖ui0‖p ≤ ‖ui‖p .

In both cases k(0) ≤ 0 and k′(0) < 0 (the proof is similar to the proof of k′(0) < 0 in

Case 1, since ‖ui0‖p > 0 and ‖ui‖p > 0). Therefore, for a small enough h, k(h) ≤ 0,

which implies that:

lim
h→0+

1

h

(‖ui + hdi∆ui‖p
‖ui‖p

− 1

)
≤ 0 .
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Now by Lemma 24, since

1

|Ω|
1
p

‖ui + hdi∆ui‖p → ‖ui + hdi∆ui‖∞ and
1

|Ω|
1
p

‖ui‖p → ‖ui‖∞, as p→∞,

we can conclude that

lim
h→0+

1

h

(‖ui + hdi∆ui‖∞
‖ui‖∞

− 1

)
≤ 0.

In other words, for a fixed ε > 0, there exists hi > 0 such that for any 0 < h < hi,

‖ui + hdi∆ui‖∞ ≤ (1 + εh)‖ui‖∞ for any i ∈ {1, . . . , n}.

Let h0 = min
i
hi. Then for any 0 < h < h0,

max
i
qi‖ui+hdi∆ui‖∞ =: qj‖uj+hdj∆uj‖∞ ≤ qj(1+εh)‖uj‖∞ ≤ (1+εh) max

i
qi‖ui‖∞,

which implies

lim
h→0+

1

h




max
i
qi‖ui + hdi∆ui‖∞
max
i
qi‖ui‖∞

− 1


 ≤ 0 .

This prove the first part of the lemma.

We next prove the second part of the lemma. By the definition of c := µp,Q[Ft], for any

fixed t, we have

lim
h→0+

1

h
sup

x 6=y∈V

(
‖x− y + h(F (x, t)− F (y, t))‖p,Q

‖x− y‖p,Q
− 1

)
= c.

Fix an arbitrary ε > 0. Then there exists h0 > 0 such that for all 0 < h < h0,

1

h
sup

x 6=y∈V

(
‖x− y + h(F (x, t)− F (y, t))‖p,Q

‖x− y‖p,Q
− 1

)
< c+ ε.

Therefore, for any x 6= y, and 0 < h < h0

‖x− y + h(F (x, t)− F (y, t))‖p,Q
‖x− y‖p,Q

< (c+ ε)h+ 1. (4.10)

For fixed u 6= v ∈ Y
(n)
V , let Ω1 = {ω ∈ Ω̄ : u(ω) 6= v(ω)}. Fix ω ∈ Ω1, and let x = u(ω)

and y = v(ω). We give a proof for the case p <∞; the case p =∞ is analogous. Using

Equation (4.10), we have:

(
∑

i q
p
i |ui − vi + h(Fi(u, t)− Fi(v, t))|p)

1
p

(
∑

i q
p
i |ui − vi|p)

1
p

< (c+ ε)h+ 1. (4.11)
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Multiplying both sides by the denominator and raising to the power p, we have:

∑

i

qpi |ui − vi + h (Fi(u, t)− Fi(v, t))|p < ((c+ ε)h+ 1)p
∑

i

qpi |ui − vi|p . (4.12)

Since F̃t(u)(ω) = F (u(ω), t), Equation (4.12) can be written as:

∑

i

qpi

∣∣∣ui − vi + h
(
F̃t,i(u)− F̃t,i(v)

)∣∣∣
p
< ((c+ ε)h+ 1)p

∑

i

qpi |ui − vi|p . (4.13)

Now by taking the integral over Ω̄, using Lemma 21, we get:

∥∥∥u− v + h
(
F̃t(u)− F̃t(v)

)∥∥∥
p,Q

< ((c+ ε)h+ 1) ‖u− v‖p,Q .

(Note that for ω /∈ Ω1, ((c+ ε)h+ 1)p
∑

i q
p
i |ui − vi|p = 0 which we can add to the right

hand side of (4.13), and
∑

i q
p
i |ui − vi + h(Fi(u, t)− Fi(v, t))|p = 0 which we can add

to the left hand side of (4.13), and hence we can indeed take the integral over all Ω̄.)

Hence,

lim
h→0+

1

h




∥∥∥u− v + h
(
F̃t(u)− F̃t(v)

)∥∥∥
p,Q

‖u− v‖p,Q
− 1


 ≤ c+ ε.

Now by letting ε→ 0 and taking sup over u 6= v ∈ Y
(n)
V , we get µ+

Y
(n)
V ,X

[F̃t] ≤ c.

Proof of Theorem 15. For any 1 ≤ p ≤ ∞ and any fixed t, by subadditivity of µ+,

Equation (4.8), and Lemma 23, we have

µ+

Y
(n)
V ,X

[
F̃t +Ap,Q(t)

]
≤ µ+

Y
(n)
V ,X

[
F̃t

]
≤ µp,Q[Ft].

Now using Theorem 7, for any t,

‖û(t)− v̂(t)‖p,Q ≤ ect ‖û(0)− v̂(0)‖p,Q ,

which is equivalent to the following inequality

‖u(·, t)− v(·, t)‖p,Q ≤ ect ‖u(·, 0)− v(·, 0)‖p,Q .

Corollary 7. In addition to the conditions of Theorem 15, assume that F is C1 on x

and let c = sup(x,t) µ[JF (x, t)]. Then

‖u(·, t)− v(·, t)‖p,Q ≤ ect ‖u(·, 0)− v(·, 0)‖p,Q .
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Proof. The proof is immediate from Theorem 15 and Proposition 2.

Corollary 8. Under the conditions of Theorem 15 and Corollary 7, if c < 0 and the

solutions of (4.1) are defined globally (for more discussion see Section 4.6), then the

reaction diffusion PDE is contracting, meaning that solutions converge (exponentially)

to each other, as t→ +∞.

Examples

Example 1. In Section 2.4, we provided an example of a biochemical model which

is modeled by a system of ODEs and is contractive when using a weighted L1 norm

[64], but it is not contractive in any weighted Lp norm, p > 1. In what follows, we

consider the spatial dependence version of the same example which is modeled by a

reaction diffusion PDE subject to Neumann boundary conditions. We use the result of

this section, namely Theorem 15 or Corollary 8, to show that the system is contractive.

As discussed in Section 2.4, a typical biochemical reaction is one in which an enzyme

X (whose concentration is quantified by the non-negative variable x = x(ω, t)) binds

to a substrate S (whose concentration is quantified by s = s(ω, t) ≥ 0), to produce a

complex Y (whose concentration is quantified by y = y(ω, t) ≥ 0), and the enzyme is

subject to degradation and dilution (at rate δx, where δ > 0) and production according

to an external signal z = z(t). We let the domain Ω (here Ω = (0, 1)) represents the

part of the cytoplasm where these chemicals are free to diffuse. Taking equal diffusion

constants for S and Y (which is reasonable since typically S and Y have approximately

the same size), a natural model is given by a reaction diffusion system

∂x

∂t
= z(t)− δx+ k1y − k2sx+ d1∆x

∂y

∂t
= −k1y + k2sx+ d2∆y

∂s

∂t
= k1y − k2sx+ d2∆s,

subject to the Neumann boundary condition, ∂x
∂ω (0, t) = ∂x

∂ω (1, t) = 0, etc. Note that

∂
∂t(y + s)(ω, t) = d2

∂2

∂ω2 (y + s)(ω, t). Therefore, if we assume that initially S and Y

are uniformly distributed, i.e., (y+ s)(ω, 0) = SY , for a positive constant SY , it follows
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that, by the uniqueness of the solutions of heat equation, for any t,

(y + s)(ω, t) = (y + s)(ω, 0) = SY .

Thus, we can study the following reduced system:

∂x

∂t
= z(t)− δx+ k1y − k2(SY − y)x+ d1∆x

∂y

∂t
= −k1y + k2(SY − y)x+ d2∆y.

(4.14)

Note that (x(ω, t), y(ω, t)) ∈ V = [0,∞) × [0, SY ] for all ω ∈ (0, 1), and t ≥ 0 (V is

convex and forward-invariant), and k1, k2, δ, d1, and d2 are arbitrary positive constants.

Let JFt be the Jacobian of Ft(x, y) := (z(t)−δx+k1y−k2(SY−y)x,−k1y+k2(SY−y)x)T :

JFt(x, y) =


 −δ − k2(SY − y) k1 + k2x

k2(SY − y) −(k1 + k2x)


 .

In Section 2.4, following [64], we showed

sup
t

sup
(x,y)∈V

µ1,Q [JFt(x, y)] < 0,

for some positive diagonal matrix Q. Therefore, by Corollary 8, the reaction diffusion

PDE system (4.14) is contractive.

The following example, from the literature on pattern formation, also illustrates the

need to choose norms judiciously.

Example 2. [86] In this example, we study the Thomas mechanism, which is based on a

specific reaction, involving the substrates oxygen, v, and uric acid, u. The dimensionless

form of the reaction diffusion equations for the oxygen and the uric acid concentrations

are as follows:
∂u

∂t
= a− u− ρR(u, v) + d1∆u

∂v

∂t
= α(b− v)− ρR(u, v) + d2∆v,

(4.15)

where R(u, v) =
uv

1 + u+Ku2
. We assume :

1. a, b, ρ, α, K, d1, and d2 are all positive constants,

2. for all t ≥ 0, (u(t), v(t)) ∈ V = [0, 2a]× [0,∞),

3. a <
1

2
√
K

.
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Note that V is convex and forward-invariant.

In this model, u and v are subject to production at constant rates a and αb, and are

subject to degradation at rates −u and −αv respectively; and both are used up in the

reaction at a rate ρR(u, v). The form R(u, v) exhibits substrate inhibition: For small

u, namely u < 2a, R is increasing and for u large enough, u > 2a, R is decreasing.

Let JF be the Jacobian of F = (a− u− ρR(u, v), α(b− v)− ρR(u, v))T :

JF (u, v) =


 −1− ρRu(u, v) −ρRv(u, v)

−ρRu(u, v) −α− ρRv(u, v)


 ,

where

Ru(u, v) =
v
(
1−Ku2

)

(1 + u+Ku2)2 , Rv(u, v) =
u

1 + u+Ku2
,

are the partial derivatives of R with respect to u and v, respectively. Note that, by

assumptions 2 and 3, both Ru and Rv are non-negative on V . Hence, for any (u, v) ∈ V ,

µ1[JF (u, v)] = max {−1− ρRu(u, v) + |−ρRu(u, v)| ,−α− ρRv(u, v) + |−ρRv(u, v)|}

= max {−1− ρRu(u, v) + ρRu(u, v),−α− ρRv(u, v) + ρRv(u, v)}

= max{−1,−α} < 0.

Therefore, by Corollary 8, the system is contractive.

We next show that for any positive diagonal matrix Q, and p > 1,

sup
(u,v)∈V

µp,Q[JF (u, v)] ≥ 0.

Let Q = diag (1, q) and u = 0. Then for any v ∈ [0,∞):

J0(v) := I + hQJF (0, v)Q−1 =


 1− h(1 + ρv) 0

−qρvh 1− hα


 .

We first consider p 6=∞ and will show that µp,Q[JF (0, v)] ≥ 0 for some v ∈ [0,∞). To

this end, by the definition of the logarithmic norm, we show that there exists v ∈ [0,∞)

such that for all small enough h > 0, ‖J0(v)‖p > 1. Computing explicitly, we have:

‖J0(v)‖p = sup
(ξ1,ξ2)6=(0,0)

(|ξ1 − h(1 + ρv)ξ1|p + |−qρvhξ1 + ξ2 − αhξ2|p)
1
p

(|ξ1|p + |ξ2|p)
1
p

≥ (|1− h(1 + ρv)|p + |−qρvh+ λ− αhλ|p)
1
p

(1 + |λ|p)
1
p

,
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where we take a point of the form (ξ1, ξ2) = (1, λ), for a λ < 0 which will be determined

later. To show

(|1− h(1 + ρv)|p + |−qhρv + λ− αhλ|p)
1
p

(1 + |λ|p)
1
p

> 1,

we equivalently show that for any small enough h > 0:

1

h
(|1− h(1 + ρv)|p + |−qρvh+ λ− αhλ|p − 1− |λ|p) > 0. (4.16)

Note that the limh→0+ of the left hand side of the above inequality is f ′(0) where

f(h) = |1− h(1 + ρv)|p + |−qρvh+ λ− αhλ|p .

Therefore, it suffices to show that f ′(0) > 0 for some value v ∈ [0,∞) (because f ′(0) > 0

implies that there exists h0 > 0 such that for 0 < h < h0, (4.16) holds). Since p > 1,

by assumption, f is differentiable and

f ′(h) = −p(1 + ρv) |1− h(1 + ρv)|p−2 (1− h(1 + ρv))

+ p(−qρv − αλ) |−qρvh+ λ− αhλ|p−2 (−qρvh+ λ− αhλ) .

Hence, since λ < 0

f ′(0) = −p(1 + ρv) + p(−qρv − αλ) |λ|p−2 λ

= −p(1 + ρv) + p(qρv + αλ)(−λ)p−1

= pρ
(
−1 + q(−λ)p−1

)
v − p

(
1 + α(−λ)p−1

)
.

Choosing λ < 0 small enough such that −1+q(−λ)p−1 > 0 and choosing v large enough,

we can make f ′(0) > 0.

Now we show that for large v, µ∞[J0(v)] > 0. Using Table 2.1,

µ∞[J0(v)] = max {−α+ qρv,−1− ρv} ,

which is positive for v >
α

qρ
.

Remark 20. For a system

∂x

∂t
= f(x, y) + d1∆x

∂y

∂t
= g(x, y) + d2∆y,
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with a steady state (x∗, y∗), a set of necessary and sufficient conditions for diffusive

instability are as follows (for a proof see e.g., [86, 87]):

1. fx + gy < 0,

2. fxgy − fygx > 0,

3. d2fx + d1gy > 0,

4. (d2fx + d1gy)
2 − 4d2d1(fxgy − fygx) > 0;

where fx denote the partial derivative of f , with respect to x, at the steady state (x∗, y∗),

etc. The first two conditions say that (u∗, v∗) is (locally) stable before diffusion. Note

that the derivatives fx and gy must be of opposite sign.

In Example 2, the first two conditions hold for all (u, v) ∈ V , so if there exists a steady

state in V , it must be asymptotically stable (without diffusion terms). But since Ru and

Rv are both non-negative on V (because of the choice of V and the parameters), the

third condition is violated. Hence, if there exists a steady state in V , it remains locally

asymptotically stable after diffusion; and we showed that it is in fact globally stable on

V . One may get diffusive instability with choosing parameters appropriately.

4.3 Contractivity of reaction diffusion PDEs with space dependent

diffusion: weighted Lp norm approaches

In this section, we generalize the main result of Section 4.2, namely Theorem 15, to

the following space dependent reaction diffusion system which is a generalization of

reaction diffusion system (4.1).

∂u1

∂t
(ω, t) = F1(u(ω, t), t) + d1(t)∇ · (A1(ω)∇u1(ω, t))

...

∂un
∂t

(ω, t) = Fn(u(ω, t), t) + dn(t)∇ · (An(ω)∇un(ω, t)),

(4.17)

subject to the Neumann boundary condition:

∂ui
∂n

(ξ, t) = 0, ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞), ∀i = 1, . . . , n, (4.18)
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where ui’s, Fi’s, di’s, Ω, ∂Ω, and n are as defined in Equation (4.1). For each i,

Ai : Ω → Rm×m is a symmetric matrix and there exist αi, βi > 0 such that for all

ω ∈ Ω, and ζ = (ζ1, . . . , ζm)T ∈ Rm,

αi |ζ|2 ≤ ζTAi(ω)ζ ≤ βi |ζ|2 . (4.19)

In addition, Ai(ω) is a C1 function of ω. Note that in Equation (4.1), Ai(ω) = I.

Theorem 16. Consider the reaction diffusion PDE (4.17) defined on [0, T ) for some

T ∈ (0,∞], subject to Neumann boundary conditions (4.18). Let c := µp,Q[F ] for some

1 ≤ p ≤ ∞, and some positive diagonal matrix Q. Then for any two solutions u, v of

the PDE and all t ∈ [0, T ):

‖u(·, t)− v(·, t)‖p,Q ≤ ect ‖u(·, 0)− v(·, 0)‖p,Q .

Proof. The proof of Theorem 16 is exactly similar to the proof of Theorem 15. We only

need to generalize Lemma 22 and the first part of Lemma 23 for

Ap,Q(t)(u) = diag (d1(t)∇ · (A1(ω)∇u1), . . . ,∇ · (An(ω)∇un)) .

By the definition, it is straightforward that one can generalize Lemma 22 for Ap,Q.

Next we show that µ+

Y
(n)
V ,X

[Ap,Q(t)] ≤ 0. Similar to the proof of part 1 of Lemma 23,

we consider the following three cases. Note that for each i, Ai = Ai(ω), ui = ui(ω),

and di = di(t). Fix t ≥ 0.

Case 1. 1 < p < ∞. By the definition of µ+

Y
(n)
V ,X

[Ap,Q(t)], it is enough to show that

for any u ∈ Y
(n)
V with ‖u‖p,Q 6= 0, and any ε > 0, there exists hε > 0, depending on ε,

such that for 0 < h < hε,

1

h

(
(
∑

i q
p
i ‖ui + hdi∇ · (Ai∇ui)‖pp)

1
p

(
∑

i q
p
i ‖ui‖

p
p)

1
p

− 1

)
< ε.

Therefore, we will show that for h small enough

∑

i

qpi ‖ui + hdi∇ · (Ai∇ui)‖pp < (1 + εh)p
∑

i

qpi ‖ui‖pp . (4.20)

Let k : [0, 1]→ R be as follows:

k(h) =
∑

i

qpi ‖ui + hdi∇ · (Ai∇ui)‖pp − (1 + εh)p
∑

i

qpi ‖ui‖pp .
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Observe that k is continuously differentiable and k′(h) is as follows

d

dh

∑

i

qpi

∫

Ω
|ui + hdi∇ · (Ai∇ui)|p dω − pε(1 + εh)p−1

∑

i

qpi ‖ui‖pp

=
∑

i

qpi

∫

Ω
p |ui + hdi∇ · (Ai∇ui)|p−2 (ui + hdi∇ · (Ai∇ui)) di∇ · (Ai∇ui) dω

−pε(1 + εh)p−1
∑

i

qpi ‖ui‖pp .

Now by Green’s Identity, the Neumann boundary condition, and by the assumption

that
∑

i q
p
i ‖ui‖

p
p 6= 0, it follows integrating by parts that:

k′(0) = p
∑

i

qpi

∫

Ω
|ui|p−2 uidi∇ · (Ai∇ui) dω − pε

∑

i

qpi ‖ui‖pp

= −p(p− 1)
∑

i

qpi di

∫

Ω
|ui|p−2∇uiTAi∇ui dω − pε

∑

i

qpi ‖ui‖pp

< −p(p− 1)
∑

i

qpi di

∫

Ω
αi |ui|p−2 |∇ui|2 dω − pε

∑

i

qpi ‖ui‖pp

< 0 .

The first inequality holds by Equation (4.19). Note that by the definition of Y
(n)
V ,

any u ∈ Y
(n)
V satisfies the Neumann boundary condition. Since k′(0) < 0 and k′ is

continuous and k(0) = 0, k(h) < 0 for h small enough and therefore Inequality (4.20)

holds.

Case 2. p = 1. Let

g(p) := lim
h→0+

1

h

(
(
∑

i q
p
i ‖ui + hdi∇ · (Ai∇ui)‖pp)

1
p

(
∑

i q
p
i ‖ui‖

p
p)

1
p

− 1

)
.

Since g(p) is a continuous function at p = 1, and since in Case 1, we showed that

g(p) ≤ 0 for any p > 1, we conclude that g(1) ≤ 0.

Case 3. p =∞. For a fixed p0 > 1, pick u ∈ Y
(n)
V with ‖u‖p0,Q 6= 0. By the definition

of the norm, ‖u‖p0,Q 6= 0 implies that for some i0 ∈ {1, . . . , n}, ‖ui0‖p0 6= 0. Let

ϕ(p) :=
1

|Ω|
1
p

‖ui0‖p .

Since by Lemma 24, ϕ is an increasing function of p, for any p > p0,

‖ui0‖p ≥ ‖ui0‖p0 > 0 .
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Now for fixed i ∈ {1, . . . , n}, p > p0, and ε > 0, we define k as follows:

k(h) =





‖ui + hdi∇ · (Ai∇ui)‖pp − (1 + εh)p‖ui0‖pp if ‖ui0‖p ≥ ‖ui‖p

‖ui + hdi∇ · (Ai∇ui)‖pp − (1 + εh)p‖ui‖pp if ‖ui0‖p ≤ ‖ui‖p .

In both cases k(0) ≤ 0 and k′(0) < 0 (the proof is similar to the proof of k′(0) < 0 in

Case 1, since ‖ui0‖p > 0 and ‖ui‖p > 0). Therefore, for some small h, k(h) ≤ 0, which

implies that:

lim
h→0+

1

h

(‖ui + hdi∆ui‖p
‖ui‖p

− 1

)
≤ 0 .

Now by Lemma 24, since

1

|Ω|
1
p

‖ui + hdi∇ · (Ai∇ui)‖p → ‖ui + hdi∇ · (Ai∇ui)‖∞, as p→∞,

and

1

|Ω|
1
p

‖ui‖p → ‖ui‖∞, as p→∞,

we can conclude that

lim
h→0+

1

h

(‖ui + hdi∇ · (Ai∇ui)‖∞
‖ui‖∞

− 1

)
≤ 0 .

In other words, for a fixed ε > 0, there exists hi > 0 such that for any 0 < h < hi,

‖ui + hdi∇ · (Ai∇ui)‖∞ ≤ (1 + εh)‖ui‖∞ for any i ∈ {1, . . . , n}.

Let h0 = min
i
hi. Then for any 0 < h < h0,

max
i
qi‖ui + hdi∇ · (Ai∇ui)‖∞ =: qj‖uj + hdj∇ · (Aj∇uj)‖∞

≤ qj(1 + εh)‖uj‖∞

≤ (1 + εh) max
i
qi‖ui‖∞,

which implies

lim
h→0+

1

h




max
i
qi‖ui + hdi∇ · (Ai∇ui)‖∞

max
i
qi‖ui‖∞

− 1


 ≤ 0.
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Remark 21. Using the result of this section, namely Theorem 16, one can study

Example 1 and Example 2 from Section 4.2 for space dependent reaction diffusion

equations.

Generalization of Example 1 from Section 4.2.

∂x

∂t
= z(t)− δx+ k1y − k2(SY − y)x+ d1∇ · (A1∇x)

∂y

∂t
= −k1y + k2(SY − y)x+ d2∇ · (A2∇y).

(4.21)

where Ai’s are as defined in Equation (4.17). As we explained in Example 1, there

exists a positive diagonal matrix Q, such that sup(x,y) µ1,Q[JF (x, y)] < 0. Therefore, by

Theorem 16, Equation (4.21) is also contractive.

Generalization of Example 2, Section 4.2.

∂u

∂t
= a− u− ρR(u, v) + d1∇ · (A1∇u)

∂v

∂t
= α(b− v)− ρR(u, v) + d2∇ · (A2∇v),

(4.22)

As we explained in Example 2, sup(u,v) µ1[JF (u, v)] < 0. Therefore, by Theorem 16,

Equation (4.22) is also contractive.

4.4 Spatial uniformity of solutions of reaction diffusion PDEs: non L2

norm approaches

The convergence to uniform solutions in reaction diffusion partial differential equations

∂u/∂t = F (u, t)+D(t)∆u where u = u(ω, t), is a formal analogue of the synchronization

of ODE systems. In the analogy, we think of u(ω, ·) as representing an individual

system or agent (the index “i” in the synchronization problem) whose state is described

at time t by u = u(ω, t). (So u = u(ω, t) plays the role of xi(t). We use “u” to

denote the state, instead of x, so as to be consistent with standard PDE notations.)

Questions of convergence to uniform solutions in reaction diffusion PDEs are also a

classical topic of research. We think of convergence to spatially uniform solutions as

a sort of “synchronization” of independent “agents”, one at each spatial location, and

each evolving according to a dynamics specified by an ODE. In that interpretation,

our work is related to a large literature on synchronization of discrete groups of agents

connected by diffusion, whose interconnections are specified by an undirected graph.
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Definition 13. We say that the reaction diffusion PDE (4.1) synchronizes, if for any

global solution u of (4.1), subject to Neumann or Dirichlet boundary conditions, there

exists ū(t) such that ‖u(·, t) − ū(t)‖ → 0 as t → ∞, or equivalently ‖∇u(·, t)‖ → 0 as

t→∞.

Remark 22. Under the conditions of Theorem 15, if c = sup(x,t) µp,Q[JF (x, t)] < 0,

any global solution u of the PDE (4.1) with u(ω, 0) = u0(ω) exponentially converges

to the spatially uniform solution ū(t) which is itself the solution of the following ODE

system:

ẋ = F (x, t), x(0) =
1

|Ω|

∫

Ω
u0(ω) dω. (4.23)

But, note that the condition c < 0 rules out any interesting non-equilibrium behavior.

For instance in Goodwin’s oscillatory system, Section 3.3.3, c < 0 kills out the oscil-

lation. So we look for a weaker condition than c < 0, that guarantees spatial uniform

convergence result (which is a weaker property than contraction) while keeps interesting

non-equilibrium behavior, like oscillatory in Goodwin example.

Recall, [105], that for any bounded, open subset Ω ⊂ Rm, there exists a sequence of non-

negative eigenvalues 0 ≤ λ
(n)
1 ≤ λ

(n)
2 ≤ · · · going to ∞, (superscript (n) for Neumann)

and a sequence of corresponding orthonormal eigenfunctions φ
(n)
1 , φ

(n)
2 , . . . (defining a

Hilbert basis of L2(Ω)) satisfying the following Neumann eigenvalue problem:

−∆φ
(n)
i = λ

(n)
i φ

(n)
i in Ω

∇φ(n)
i · n = 0 on ∂Ω.

(4.24)

Note that the first eigenvalue is always zero, λ
(n)
1 = 0, and the corresponding eigen-

function is a nonzero constant (φ
(n)
1 (ω) = 1/

√
|Ω|).

The following re-phasing of a theorem from [42], provides a sufficient condition on F

and D (time invariant diffusion matrix) using the Jacobian matrix of the reaction term

and the second Neumann eigenvalue of the Laplacian operator on the given spatial

domain to insure the convergence of trajectories, in this case to their space averages

in weighted L2 norms. The proof in [42] is based on the use of a quadratic Lyapunov

function, which is appropriate for Hilbert spaces. We have translated the result to
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the language of contractions. (Actually, the result in [42] is stronger, in that it allows

for non-diagonal diffusion and also non-diagonal weighting matrices Q, by substituting

these assumptions by a commutativity type of condition, see Section 4.5 for more details

and a generalization to spatially-varying diffusion.)

Theorem 17. Consider the reaction diffusion system (4.1) subject to the Neumann

boundary condition and assume that F (x, t) is C1 on x. Let

c := sup
(x,t)∈V×[0,∞)

µ2,Q

[
JF (x, t)− λ(n)

2 D
]
,

where Q is a positive diagonal matrix. Then

‖u(·, t)− ũ(t)‖2,Q ≤ ect‖u(·, 0)− ũ(0)‖2,Q,

where ũ(t) = 1
|Ω|
∫

Ω u(ω, t) dω.

Note that when c < 0, the reaction diffusion system (4.1) synchronizes. As we discussed

in the biochemical example, in Section 4.2,

sup
(x,t)∈V×[0,∞)

µ2,Q

[
JF (x, t)− λ(n)

2 D
]
≥ 0,

therefore, conditions given in [42] do not hold for the biochemical example.

We next prove an analogous result to Theorem 17 for any norm but restricted to the

linear operators F , F (u, t) = A(t)u, where for any t, A(t) ∈ Rn×n.

Theorem 18. Consider the reaction diffusion system (4.1), for a linear operator F .

For a given norm ‖ · ‖ in Rn, let

c := sup
(x,t)∈V×[0,∞)

µ
[
JF (x, t)− λ(n)

2 D(t)
]
,

where µ is the logarithmic norm induced by ‖ · ‖. Then for any ω ∈ Ω and any t ≥ 0,

‖u(ω, t)− ū(t)‖ ≤
∑

i≥2

∥∥∥αi(t)φ(n)
i (ω)

∥∥∥ ≤ ect
∑

i≥2

∥∥∥αi(0)φ
(n)
i (ω)

∥∥∥ ,

where ū(t) is the solution of the system (4.23) with initial condition u0(ω) = u(ω, 0),

and αi(t) =
∫

Ω u(ω, t)φ
(n)
i (ω) dω. In particular, when c < 0,

‖u(ω, t)− ū(t)‖ → 0 exponentially, as t→∞.
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Proof. We first show that the solution of Equation (4.23), namely ū, is equal to ũ(t) =

1
|Ω|
∫

Ω u(ω, t) dω. Note that both ū and ũ satisfy ẋ = A(t)x. In addition, by the

definition, ū(0) = ũ(0) = 1
|Ω|
∫

Ω u(ω, 0) dω. Therefore, by uniqueness of the solutions of

ODEs, ū(t) = ũ(t). The solution u(ω, t) can be written as follows:

u(ω, t) =
∑

i≥1

φ
(n)
i (ω)αi(t), (4.25)

where for any t, αi(t) =
∫

Ω u(ω, t)φ
(n)
i (ω) dω ∈ Rn and φ

(n)
i ’s are the eigenfunctions of

(4.24).

Claim 1.

u(ω, t)− ū(t) =
∑

i≥2

αi(t)φ
(n)
i (ω). (4.26)

Using the expansion of u as in (4.25), we have

u(ω, t)− ū(t) = α1(t)φ
(n)
1 (ω)− ū(t) +

∑

i≥2

φ
(n)
i (ω)αi(t).

Multiplying both sides of the above equality by the constant eigenfunction φ
(n)
1 and

taking integral over Ω, by orthonormality of the φ
(n)
i ’s, we get:

∫

Ω
(u(ω, t)− ū(t)) dω = α1(t).

We showed that ū(t) = 1
|Ω|
∫

Ω u(ω, t) dω, hence α1(t) = 0. This proves Claim 1.

Claim 2. Fix ω ∈ Ω. Then for any i ≥ 1,

α̇i(t) =
(
A(t)− λ(n)

i D(t)
)
αi(t).

Using the expansion of u as in (4.25) and after omitting the arguments ω and t for

simplicity, we have the following expression for u̇:

∑

i≥1

α̇iφ
(n)
i = Au+D∆u = A

∑

i≥1

αiφ
(n)
i +D∆

∑

i≥1

αiφ
(n)
i =

∑

i≥1

(
A− λ(n)

i D
)
αiφ

(n)
i .

Multiplying both sides of the above equality by φ
(n)
i and taking integral over Ω, by

orthonormality of φ
(n)
i ’s we get:

α̇i(t) =
(
A− λ(n)

i D
)
αi(t).
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This proves Claim 2.

By subadditivity of µ and because λ
(n)
2 ≤ λ

(n)
3 ≤ · · · , if ∀t, µ

[
A(t)− λ(n)

2 D(t)
]
≤ c,

then ∀t and ∀i > 2, µ
[
A(t)− λ(n)

i D(t)
]
≤ c. Therefore, by Claim 2 and Lemma 5:

‖αi(t)‖ ≤ ect‖αi(0)‖.

Using the above inequality and triangle inequality in Equation (4.26), for any ω ∈ Ω

and any t, we get the following inequality:

‖u(ω, t)− ū(t)‖ ≤
∑

i≥2

∥∥∥αi(t)φ(n)
i (ω)

∥∥∥ ≤ ect
∑

i≥2

∥∥∥αi(0)φ
(n)
i (ω)

∥∥∥ .

Specifically, when c < 0, ‖u(ω, t)− ū(t)‖ → 0, exponentially as t→∞.

In what follows, we first present some conditions, analogous to the conditions in The-

orem 15, which guarantee contractivity of the solutions of a reaction diffusion PDE

with Dirichlet boundary conditions. Then, we show that how contractivity of the re-

action diffusion PDE with Dirichlet boundary conditions implies spatial uniformity for

the asymptotic behavior of the solutions of a reaction diffusion PDE with Neumann

boundary conditions. As with synchronization, for non-Euclidean norms we only pro-

vide results in special cases, and the general problem being open (see Section 5).

Recall, [105], that for any bounded, open subset Ω ⊂ Rm, there exist a sequence of

positive eigenvalues 0 < λ
(d)
1 ≤ λ

(d)
2 ≤ · · · going to ∞ (superscript (d) for Dirichlet),

and a sequence of corresponding orthonormal eigenfunctions φ
(d)
1 , φ

(d)
2 , . . . (defining a

Hilbert basis of L2(Ω)) satisfying the following Dirichlet eigenvalue problem:

−∆φ
(d)
i = λ

(d)
i φ

(d)
i in Ω

φ
(d)
i = 0 on ∂Ω.

(4.27)

Let us assume that Ω is a connected open set. Then the first eigenvalue λ
(d)
1 is simple

and the first eigenfunction φ
(d)
1 has a constant sign on Ω. Without loss of generality,

φ
(d)
1 can be assumed to be everywhere positive on Ω.

We next prove an analogues result to Theorem 15 (restricted to p = 1), for reaction

diffusion PDE (4.1) subject to the Dirichlet boundary condition (4.3).
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Theorem 19. Consider the reaction diffusion PDE (4.1) subject to the Dirichlet bound-

ary condition (4.3) and assume that F (x, t) is C1 on x. Let

c = sup
(x,t)

µ1,Q

[
JF (x, t)− λ(d)

1 D(t)
]
,

and let u(ω, t) and v(ω, t) be two solutions of (4.1) and (4.3). Then

‖(u− v)(·, t)‖1,φ,Q ≤ ect‖(u− v)(·, 0)‖1,φ,Q, (4.28)

where ‖u‖1,φ,Q = ‖φu‖1,Q and φ = φ
(d)
1 ≥ 0 is an eigenfunction corresponding to λ

(d)
1 .

To prove Theorem 19, we need the following lemmas:

Lemma 25. Let Ω be an open subset of Rm. For any fixed t, let A(t) denote an n× n

diagonal matrix of operators on Y
(d)
V with operators di(t)∆ on the diagonal. Let Λ(d)(t)

denote an n × n diagonal matrix of operators on Y
(d)
V with operators Λ

(d)
i (t) on the

diagonal which are defined as follows:

Λ
(d)
i (t)(ψ)(ω) := λ

(d)
1 di(t)ψi(ω).

Then

µ+
1,φ,Q

[
A+ Λ(d)

]
= 0, (4.29)

where µ+
1,φ,Q is induced by ‖ · ‖1,φ,Q.

See the Appendix for a proof.

Lemma 26. For a Lipschitz function G : Rn → Rn, define Ĝ : Y
(d)
V → Rn as follows:

Ĝ(u)(ω) := G(u(ω)).

Then,

µ+
p,φ,Q[Ĝ] ≤ µp,Q[G]. (4.30)

In addition, if G is continuously differentiable then

µ+
p,φ,Q[Ĝ] ≤ µp,Q[G] = sup

x
µp,Q[JG(x)].
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Note that although we will need this lemma only for p = 1, the result of this lemma is

true for any 1 ≤ p ≤ ∞. See the Appendix for a proof.

Proof of Theorem 19. Suppose that u is a solution of Equation (4.1) defined on

Ω× [0, T ). Define û, Ht, and A as follows:

• û : [0, T )→ Y
(d)
V , û(t)(ω) := u(ω, t).

• Ht : Y
(d)
V → Rn, Ht(ψ)(ω) := F (ψ(ω), t), ∀ψ ∈ Y

(d)
V , ∀ω ∈ Ω.

• A is as defined in Lemma 25.

Then by the definition,

dû

dt
(t) = (Ht +A) (û(t)) . (4.31)

Suppose u and v are two solutions of Equation (4.1). By Lemma 3 and Equation (4.31)

we have:

D+‖(û− v̂)(t)‖1,φ,Q ≤ µ+
1,φ,Q[Ht +A]‖(û− v̂)(t)‖1,φ,Q. (4.32)

Let Λ(d) be as in Lemma 25. By subadditivity of µ+ (Proposition 5), Lemma 25 and

Lemma 26, we have:

µ+
1,φ,Q[Ht +A] ≤ µ+

1,φ,Q[Ht − Λ(d)] + µ+
1,φ,Q[A+ Λ(d)]

≤ µ+
1,φ,Q

[
Ht − Λ(d)

]

≤ sup
x∈V

µ1,Q

[
JF (x, t)− λ(d)

1 D(t)
]

≤ sup
t∈[0,T )

sup
x∈V

µ1,Q

[
JF (x, t)− λ(d)

1 D(t)
]

= c.

(4.33)

By (4.32), (4.33), and Lemma 5, we get:

‖(û− v̂)(t)‖1,φ,Q ≤ ect‖(û− v̂)(0)‖1,φ,Q.

In terms of the PDE (4.1), this last estimate can be equivalently written as:

‖(u− v)(·, t)‖1,φ,Q ≤ ect‖(u− v)(·, 0)‖1,φ,Q.

Note that unlike in Neumann boundary problems, one cannot conclude synchronization

from contraction in the Dirichlet boundary problems unless for any t, F (0, t) = 0:
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Corollary 9. Under the conditions of Theorem 19, if F (0, t) = 0, then v = 0 is a

uniformly spatial solution of Equations (4.1) and (4.3), and therefore, for any solution

u of Equations (4.1) and (4.3),

‖u(·, t)‖1,φ,Q ≤ ect‖u(·, 0)‖1,φ,Q,

Hence, when c < 0 and u is defined globally, the PDE system synchronizes.

The following theorem provides a sufficient condition for synchronization of reaction

diffusion systems subject to the Neumann boundary condition restricted to one dimen-

sional space and p = 1. The proof is based on the results of Theorem 19.

Theorem 20. Let u(ω, t) be a solution of

∂u

∂t
(ω, t) = F (u(ω, t), t) +D(t)

∂2u

∂ω2
(ω, t) on (0, L)

∂u

∂ω
(0, t) =

∂u

∂ω
(L, t) = 0,

(4.34)

defined for all t ∈ [0, T ) for some 0 < T ≤ ∞. In addition, assume that u(·, t) ∈ C3(Ω),

for all t ∈ [0, T ). Let

c = sup
t∈[0,T )

sup
x∈V

µ1,Q

[
JF (x, t)− π2

L2
D(t)

]
.

Then for all t ∈ [0, T ):

∥∥∥∥
∂u

∂ω
(·, t)

∥∥∥∥
1,φ,Q

≤ ect
∥∥∥∥
∂u

∂ω
(·, 0)

∥∥∥∥
1,φ,Q

, (4.35)

where

‖ · ‖1,φ,Q := ‖sin(πω/L)(·)‖1,Q .

The significance of Theorem 20 lies in the fact that sin(πω/L) is nonzero everywhere in

the domain (except at the boundary). In that sense, we have exponential convergence

to uniform solutions in a weighted L1 norm, the weights being specified in V by the

matrix Q and in space by the function sin (πω/L).

Proof. Suppose that u is a solution of Equation (4.34) defined on [0, L]× [0, T ), and let

v = ∂u
∂ω . Then by taking ∂

∂ω from the both sides of Equation (4.34), we get the following

PDE:

∂v

∂t
= JF (u, t)v +D(t)

∂2v

∂ω2
, (4.36)
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subject to Dirichlet boundary condition: v(0) = v(L) = 0.

For Ω = (0, L), the first Dirichlet eigenvalue is π2/L2 and a corresponding eigenfunction

is sin(πω/L). Therefore, by Equation (4.36) and Corollary 9,

‖v(·, t)‖1,φ,Q ≤ ect‖v(·, 0)‖1,φ,Q,

where c = supt∈[0,T ) supx∈V µ1,Q

[
JF (x, t)− π2

L2D(t)
]
.

Another proof of Theorem 20 using the method of discretization is given in the Ap-

pendix.

Remark 23. In the case of Ω = (0, L), λ
(d)
1 = λ

(n)
2 . Therefore, one can state the

conditions of Theorem 20 in terms of the second Neumann eigenvalue instead of the

first Dirichlet eigenvalue.

Examples

Example 1. In the biochemical model, we showed that there exists a positive diagonal

matrix Q such that

c := sup
(x,y)∈V

µ1,Q[JF (x, y)] < 0.

This condition implies that any solution of (4.14) converges to a uniform solution with

at least rate c (Remark 22). Next, we show that by Theorem 20, any solution of (4.14)

converges to a uniform solution at a better rate than c:

By subadditivity of µ, we have:

sup
(x,y)∈V

µ1,Q[JF (x, y)− π2D] ≤ sup
(x,y)∈V

µ1,Q[JF (x, y)]− π2d, where d = min{d1, d2}.

Therefore, c0 := sup(x,y)∈V µ1,Q[JF (x, y) − π2D] < c < 0. Hence, by Theorem 20, for

any solution u = (x, y)T of (4.14):

∥∥∥∥
∂u

∂ω
(·, t)

∥∥∥∥
1,φ,Q

≤ ec0t
∥∥∥∥
∂u

∂ω
(·, 0)

∥∥∥∥
1,φ,Q

,

where in this example φ(ω) = sin(πω), since Ω = (0, 1).

Figure 4.1 indicates two different solutions of the biochemical model, Equation (4.14),

namely (x1, y1)T and (x2, y2)T on Ω = (0, 2) for specific initial conditions, and for a
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periodic input z, namely z(t) = 20(1+sin(10t)), and for the following set of parameters:

δ = 20, k1 = 0.5, k2 = 5, SY = 0.1, d1 = 0.001, d2 = 0.1.

Also, in Figure 4.1, the difference between the two solutions has been shown that goes

to zero as expected.

Figure 4.1: Two solutions of Equation (4.14) and their differences

Example 2. In 1965, Brian Goodwin proposed a differential equation model, that

describes the generic model of an oscillating autoregulatory gene, and studied its oscil-

latory behavior [76]. In Section 3.3.3, we studied the following systems of ODEs which

is a variant of Goodwin’s model [75]:

ẋ =
a

k + z(t)
− bx

ẏ = αx− βy

ż = γy − δz

kM + z
.

In this section, we assume a continuous model where species diffuse in space. This

example has been studied in [42]. The following system of PDEs, subject to Neumann
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boundary conditions, describe the evolution of X, Y , and Z on (0, 1)× [0,∞):

∂x

∂t
=

a

k + z
− b x+ d1∆x

∂y

∂t
= α x− β y + d2∆y

∂z

∂t
= γ y − δz

kM + z
+ d3∆z

(4.37)

Figure 4.2 provides plots of solutions x, y, and z of (4.37), using the following parameter

values from the textbook [77]:

a = 150, k = 1, b = α = β = γ = 0.2, δ = 15, KM = 1, (4.38)

which oscillate when there is no diffusion (d1 = d2 = d3 = 0).

Figure 4.2: Goodwin oscillator, no diffusion (parameters as in Equation (4.38))

A simple calculation shows that for the weighted matrix Q = diag (1, 12, 11), and for

2.2/π2 < d1, and d2 = d3 = 0,

sup
w=(x,y,z)T

µ1,Q[JF (w)− π2D] < 0.

Applying Theorem 20, we conclude that for 2.2/π2 < d1 and d2 = d3 = 0, (4.37)

synchronizes, meaning that solutions tend to uniform solutions. Note that to have

synchronization, 2.2/π2 is not a sharp lower bound for d1, i.e., the system would syn-

chronize even for smaller values of d1.

Figure 4.3 shows the spatially uniformity of the solutions of (4.37), for the same pa-

rameter values and initial conditions as in Figure 4.2, when 2.2/π2 < d1, here d1 = 0.3,

and d2 = d3 = 0.

In what follows, we compare our result with the results in [42] and [106] using the

Goodwin example.
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Figure 4.3: Goodwin oscillator, X diffuses (parameters as in Equation (4.38))

Considering Equation (4.37), the following sufficient condition in ([42], Equation 55) is

given for synchronization:

αγa

k(b+ λd1)(β + λd2)λd3
< 4, (4.39)

where λ = π2. Note that when d3 = 0, one cannot apply (4.39) directly to get synchro-

nization.

In ([106], Equation 3), Othmer provides a sufficient condition for uniform behavior of

the solutions of the reaction diffusion (4.1) on (0, L), subject to Neumann boundary

conditions:

sup
w
‖JF (w)‖ < π2/L2 min

i
di. (4.40)

In Goodwin’s example (4.37), supw ‖JF (w)‖ is positive and finite (the sup is taken at

z = 0), and mini di = 0, hence (4.40) doesn’t hold and this condition is not applicable

for this example.

4.5 Spatial uniformity of solutions of reaction diffusion PDEs: weighted

L2 norm approaches

Acknowledgement of book chapter publication:

Parts of the material in this section have been published in the book chapter [46].

In this section, we study the asymptotic behavior of the solutions of the following reac-

tion diffusion system which is a generalized form of system (4.1) and another generalized
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form of system (4.17). For any t > 0 and ω ∈ Ω:

∂u

∂t
(ω, t) = F (u(ω, t), t) +

r∑

i=1

Di(t)Liu(ω, t), (4.41)

subject to the Neumann boundary condition:

∂ui
∂n

(ξ, t) = 0, ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞), ∀i = 1, . . . , n, (4.42)

where u = (u1, . . . , un)T , F , Ω, ∂Ω, and n are as defined in Equation (4.1) and (4.17). In

addition, we assume that F (x, t) is C1 on x. For each i = 1, . . . , r, Di(t) is an n×n diag-

onal matrix with entries [Di(t)]jj = dij(t), for j = i, . . . , ni and 0 elsewhere, where dij ’s

are non-negative continuous functions of t, and n1 + · · ·+nr = n. For example, D1(t) =

diag (d11(t), . . . , d1n1(t), 0, . . . , 0) and Dr(t) = diag (0, . . . , 0, dr1(t), . . . , drnr(t)). For

each i = 1, . . . , r,

Liu = (∇ · (Ai(w)∇u1), . . . ,∇ · (Ai(w)∇un))T ,

where Ai’s are as defined in Section 4.3.

Note that in Equation (4.1), r = 1 (n1 = n), and A1(w) = I. Therefore,

r∑

i=1

Di(t)Liu = D1(t) (∇ · ∇u1, . . . ,∇ · ∇un)T = (d1(t)∆u1, . . . , dn(t)∆un)T ,

where dj(t) = d1j(t).

In Equation (4.17), r = n (n1 = · · · = nr = 1), and Ai’s are not necessarily identity.

In this case D1(t) = diag (d1(t), 0, . . . , 0), D2(t) = diag (0, d2(t), 0, . . . , 0), etc. where

di(t) = di1(t). Therefore,

r∑

i=1

Di(t)Liu = (d1(t)∇ · (A1(w)∇u1), . . . , dn(t)∇ · (An(w)∇un))T .

For a fixed i ∈ {1, . . . , r}, let λik be the k-th Neumann eigenvalue of the operator

−∇ · (Ai∇) and eik be the corresponding normalized eigenfunction:

−∇ ·
(
Ai(ω)∇eik(ω)

)
= λike

i
k(ω), ω ∈ Ω

∇eik(ξ) · n = 0, ξ ∈ ∂Ω.

(4.43)

Note that for any i, 0 = λi1 < λi2 < · · · → ∞ and ei1(ω) = constant. For any fixed t, let

Λk(t) :=
r∑

i=1

λikDi(t). (4.44)
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For each k ∈ {1, 2, . . .}, let Eik be the subspace spanned by the first k eigenfunctions:

Eik = 〈ei1, . . . , eik〉.

Now define the map Πk,i on L2(Ω) as follows:

Πk,i(v) = v − πk,i(v),

where πk,i is the orthogonal projection map onto Eik−1, and we let Ei0 = 0. Namely for

any v =
∑∞

j=1(v, eij)e
i
j ,

πk,i(v) =
k−1∑

j=1

(v, eij)e
i
j , and Πk,i(v) =

∞∑

j=k

(v, eij)e
i
j , for k > 1,

π1,i(v) = 0, and Π1,i(v) = v;

(4.45)

where (x, y) :=
∫
xT y. Note that for any i = 1, . . . , r,

Π2,i(v) = v − 1

|Ω|

∫

Ω
v, (4.46)

and therefore, ∫

Ω
Π2,i(v) = 0. (4.47)

For any v = (v1, . . . , vn)T , define Πk(v) = v − πk(v), where πk(v) is defined as follows:

πk(v) = (πk,1(v1), . . . , πk,1(vn1), . . . , πk,r(vn−nr+1), . . . , πk,r(vn))T .

Observe that πk(v) is the orthogonal projection map onto

E1
k−1 × · · · × E1

k−1︸ ︷︷ ︸
n1 times

× · · · × Erk−1 × · · · × Erk−1︸ ︷︷ ︸
nr times

.

The goal of this section is to prove the following theorem which its first part is an

analogous of Theorem 15 for system (4.41) for non diagonal Q but restricted to p = 2;

and its second part is an analogous of [42, Theorem 1] to spatially-varying diffusion.

In addition, the following theorem is an analogous of Theorem 14 for reaction diffusion

equations.

Theorem 21. Consider the reaction diffusion system (4.41) subject to the Neumann

boundary condition. For k = 1, 2, let

µk := sup
(x,t)∈V×[0,∞)

µ2,P [JF (x, t)− Λk],
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for a positive definite matrix P such that for any i = 1, . . . , r:

P 2Di +DiP
2 > 0. (4.48)

Then for any two solutions, namely u and v, of (4.41), we have:

1.

‖u(·, t)− v(·, t)‖2,P ≤ eµ1t‖u(·, 0)− v(·, 0)‖2,P . (4.49)

2.

‖Π2(u(·, t))‖2,P ≤ eµ2t‖Π2(u(·, 0))‖2,P . (4.50)

To prove Theorem 21, we need the following two lemmas. Lemma 27 below is an

analogous of Lemma 18.

Lemma 27. Let w = u − x, where u is a solution of Equation (4.41) subject to the

Neumann boundary condition and either x = π2(u) or x = v is another solution of

Equation (4.41). For a positive definite matrix Q, let

Φ(w) :=
1

2
(w,Qw). (4.51)

Then

dΦ

dt
(w) = (w,Q(F (u, t)− F (x, t))) + (w,QLw) , (4.52)

where L :=
∑r

i=1Di(t)Li.

See the Appendix for a proof.

Lemma 28. Suppose u ∈ L2(Ω) satisfies the Neumann boundary conditions. For any

k ∈ {1, 2, . . .},

(Πk(u),LΠk(u)) ≤ − (Πk(u),ΛkΠk(u)) . (4.53)

where L :=
∑r

i=1Di(t)Li. In addition for k = 1, 2 and any n× n symmetric matrix Q

with the following property:

QDi +DiQ > 0 i = 1, . . . , r, (4.54)

we have:

(Πk(u), QLΠk(u)) ≤ − (Πk(u), QΛkΠk(u)) . (4.55)

See the Appendix for a proof.
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Proof of Theorem 21

By Lemma 6,

Q(JF − Λk) + (JF − Λk)
TQ ≤ 2µkQ, (4.56)

where Q = P 2. Define w and Φ(w) as in Lemma 27 for Q = P 2. Since Φ(w) = 1
2‖Pw‖22,

to prove (4.49) and (4.50), it suffices to show that for k = 1, 2,

d

dt
Φ(w) ≤ 2µkΦ(w).

Note that by Lemma 28, and the fact that w = Π1(u − v) or w = Π2(u), the second

term of the right hand side of (4.52) satisfies:

(w,QLw) ≤ −(w,QΛkw). (4.57)

Next, by the Mean Value Theorem for integrals, and using (4.56), we rewrite the first

term of the right hand side of (4.52) as follows:

(w,Q(F (u, t)− F (x, t))) =

∫

Ω
wT (ω, t)Q(F (u(ω, t), t)− F (x, t)) dω

=

∫

Ω
wT (ω, t)Q

∫ 1

0
JF (x+ sw(ω, t), t) · w(ω, t) ds dω

=

∫ 1

0

∫

Ω
wT (ω, t)QJF (x+ sw(ω, t), t) · w(ω, t) dω ds.

This last equality together with (4.57) imply:

(w,Q(F (u, t)− F (x, t))) + (w,QLw)

≤
∫ 1

0

∫

Ω
wT (ω, t)Q

(
JF (x+ sw(ω, t), t)− Λk

)
· w(ω, t) dω ds

≤ 2µk
2

∫ 1

0
ds

∫

Ω
wTQw dω =

2µk
2

∫

Ω
wTQw dω = 2µkΦ(w).

Therefore dΦ
dt (w) ≤ 2µkΦ(w).

Corollary 10. In Theorem 21, if µ1 < 0 and the solutions are defined globally, then

the reaction diffusion system (4.41) is contracting, meaning that solutions converge

(exponentially) to each other, in P weighted L2 norm, i.e., ‖u(·, t) − v(·, t)‖2,P →

0, as t→∞.
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Corollary 11. In Theorem 21, if µ2 < 0 and the solutions are defined globally, then any

solution of the reaction diffusion system (4.41) converges (exponentially) to a uniform

solution, in P weighted L2 norm, i.e., ‖Π2(u(·, t))‖2,P → 0, as t→∞.

Note that (4.55) does not necessarily hold for any k > 2, since for k > 2, the Πk,i’s

could be different for different i’s. In the following lemma we provide a condition for

which (4.55) holds for any k.

Lemma 29. Assume PL = LP , where P is a positive definite n × n matrix, and

L :=
∑r

i=1Di(t)Li. Then for any k = 1, 2, . . .,

(Πk(u), QLΠk(u)) ≤ − (Πk(u), QΛkΠk(u)) ,

where Q = P 2,

Proof. The proof is analogous to the proof of (4.55), using the fact that PL = LP

implies that P is diagonal (if all Li’s are different) or block diagonal (for equal Laplacian

operators).

Remark 24. Note that Theorem 21 is valid for Q = P 2, if PL = LP is assumed

instead of (4.54), because (4.55) holds by Lemma 29 and this is all that is needed in

the proof. In the following theorem we use this condition to generalize the result of

Theorem 21 for any arbitrary k but restricted to linear systems. We omit the proof,

which is analogous.

Theorem 22. Consider the reaction diffusion system (4.41) and assume that F is a

linear function. For k ∈ {1, 2, . . .}, let

µk := sup
(x,t)∈V×[0,∞)

µ2,P [JF (x, t)− Λk],

where P is a positive definite matrix and PL = LP . Then for any two solutions of

(4.41), namely u and v, we have:

‖Πk(u− v)(·, t)‖2,P ≤ eµkt‖Πk(u− v)(·, 0)‖2,P .
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Example

In Section 4.4 we studied the following system:

ẋ = z(t)− δx+ k1y − k2(SY − y)x+ d1∆x

ẏ = −k1y + k2(SY − y)x+ d2∆y,

(4.58)

and showed that there exists a positive diagonal matrix Q such that for Q-weighted

L1 norm, sup(x,y) µ1,Q[JF (x, y)] < 0 and concluded that the reaction diffusion PDE is

contractive. In addition, we had shown before that for any p > 1 and any positive

diagonal matrix Q , sup(x,y) µp,Q[JF (x, y)] ≥ 0.

Now we show that there exists some positive definite (but non-diagonal) matrix P such

that for all (x, y) ∈ V , µ2,P [JF (x, y)] < 0 and P 2D+DP 2 > 0, where D = diag (d1, d2).

Then by Theorem 21 (for r = 1 and Liui = ∆ui), and Corollary 10, one can conclude

that the system is contractive.

Claim. Let Q =


 1 1

1 q


, where q > max

{
1 + δ

4k1
,
(

1
2
√
d

+
√
d

2

)2
}

, and d = d1
d2

.

Then QJF + (QJF )T < 0 and QD +DQ > 0.

Proof of Claim. First note that Q is positive definite (because q > 1). We next compute

QJF :

QJF =


 1 1

1 q




 −δ − a b

a −b


 =


 −δ 0

−δ + (q − 1)a −b(q − 1)


 .

So

QJF + (JFQ)T =


 −2δ −δ + (q − 1)a

−δ + (q − 1)a −2b(q − 1)


 .

To show QJF + JTFQ < 0, since the first order leading principal minor, i.e., −2δ,

is negative, it suffices to show that the second order leading principal minor, i.e.,

det
(
QJF + JTFQ

)
, is positive:

det
(
QJF + JTFQ

)
= 4δb(q − 1)− (−δ + (q − 1)a)2 .

Note that for any q > 1,

f(a) := (−δ + (q − 1)a)2 ≤ δ2 on [0, k2SY ],
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and

g(b) := 4δb(q − 1) ≥ 4δk1(q − 1) on [k1,∞].

Therefore, to have det > 0, it is enough to have 4δk1(q− 1)− δ2 > 0, i.e., q− 1 > δ2

4δk1
,

i.e., q > 1 + δ
4k1

.

Now we compute QD +DQ:

QD +DQ =


 2d1 d1 + d2

d1 + d2 2qd2


 .

since the first order leading principal minor of QD+DQ, i.e., 2d1, is positive, to show

QD + DQ > 0, it suffices to show that the second order leading principal minor, i.e.,

det (QD +DQ) > 0.

det (QD +DQ) = 4d1d2q − (d1 + d2)2 > 0 iff q >

(
1

2
√
d

+

√
d

2

)2

,

where d = d1
d2

. This completes the proof of the Claim.

Now by Lemma 6 and Remark 12, µ2,P [JF (x, y)] < 0, for all (x, y) ∈ V , where P 2 = Q.

Hence by Theorem 21, the system (4.58) is contractive using P - weighted L2 norm

where P is not diagonal.

In what follows, we consider the biochemical example with space dependent diffusions

(see Remark 21) and show that the result of this section cannot be applied to this

system.

dx

dt
= z(t)− δx− k2 (SY − y)x+ k1 y + d1∇ · (A1(ω)∇x(ω, t))

dy

dt
= k2 (SY − y)x− k1 y + d2∇ · (A2(ω)∇y(ω, t)) ,

(4.59)

where we assume A1 6= A2 and define D1 and D2 as follows:

D1 =


 d1 0

0 0


 and D2 =


 0 0

0 d2


 .

Claim. There exists no positive definite matrix P such that for i = 1, 2,

PDi +DiP > 0.
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Proof of Claim. Let P =


 a b

b c


 be an arbitrary positive definite matrix. Then

PD1 +D1P =


 a b

b c




 d1 0

0 0


+


 d1 0

0 0




 a b

b c


 =


 2ad1 bd1

bd1 0


 .

Since the determinant of PD1+D1P is negative, it has a negative eigenvalue and cannot

be positive definite.

Recall that in Remark 21 we showed that the system (4.59) is contractive using a

weighted L1 norm.

4.6 Global existence and uniqueness of the solutions of reaction dif-

fusion PDEs

In this section, we review the conditions that guarantee the existence and uniqueness of

the solutions of reaction diffusion equation (4.1) and provide some conditions for global

existence of the solutions.

Theorem 23. [92, Proposition 2.2] Consider the reaction diffusion equation (4.1)

with either Neumann (4.2) or Dirichlet (4.3) boundary condition and initial condi-

tion u(·, 0) = u0(·) ∈ [L∞(Ω)]n. Then there exist Tmax > 0 and Ni ∈ C([0, Tmax)) such

that

1. System (4.1) has a unique, classical, noncontinuable solution u(x, t) on Ω̄×[0, Tmax);

2. ‖ui(·, t)‖∞ ≤ Ni(t) for all 1 ≤ i ≤ n and t ∈ [0, Tmax).

Moreover, if Tmax <∞ then ‖ui(·, t)‖∞ →∞ as t→ T−max, for some 1 ≤ i ≤ n.

See also [90, Theorem 3.1] and [91, Theorem 1.11, Theorem 1.12].

Note that under the conditions of Theorem 23, if the system admits a compact invariant

region Σ ⊂ Rn, i.e., if u(ω, 0) ∈ int(Σ), then u(ω, t) ∈ Σ for all ω ∈ Ω and 0 < t < Tmax

(as in the case of many applications, including the examples mentioned in the current

work), then Tmax =∞.



138

In [92], Morgan made the assumption that there exists a Lyapunov structure function

H ∈ C2(M,R≥0), where M is a unbounded region of Rn for which (4.1) is invariant.

Under some assumptions on H, he obtained boundedness and stability results for (4.1).

In this work, instead of finding a Lyapunov function, we provide a condition based on

contraction theory for global existence of the solutions.

Theorem 24. Consider the reaction diffusion equation (4.1) with Neumann boundary

condition (4.2). Let c = µ∞[F ] (or c = sup(x,t) µ∞[JF (x, t)], if F is differentiable) be

finite, and u be a solution of (4.1) defined on [0, Tmax) with initial condition u(·, 0) =

u0(·) ∈ [L∞(Ω)]n. Then Tmax =∞.

Proof. By Theorem 23, it suffices to show that lim supt→T−max
‖u(·, t)‖∞ is finite. Let v

be a solution of ẋ = F (x, t) with constant initial condition v(0) = v0. Note that v is

defined globally since F is globally Lipschitz (because F is assumed to be Lipschitz and

c <∞). Therefore, v is a global solution of (4.1) and by Theorem 15, for any t < Tmax,

‖u(·, t)− v(t)‖∞ ≤ ect‖u0(·)− v0‖∞ .

Therefore, for any t < Tmax,

‖u(·, t)‖∞ ≤ N(Tmax) + ec Tmax‖u0(·)− v0‖∞ =: B(Tmax) <∞ ,

where N(Tmax) is the upper bound of v on [0, Tmax), and hence

lim sup
t→T−max

‖u(·, t)‖∞ ≤ B(Tmax) <∞.

4.7 Appendix

Proof of Lemma 24

Fix p < q. Then there exists r > 0 such that 1
q + 1

r = 1
p . Indeed r = 1

1/p−1/q . Using

Hölder Inequality,

(∫

Ω
|f |p

) 1
p

≤
(∫

Ω
|f |q
) 1
q
(∫

Ω
1r
) 1
r

≤
(∫

Ω
|f |q
) 1
q

|Ω|
1
p
− 1
q ,
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therefore,

(
1

|Ω|

∫

Ω
|f |p

) 1
p

≤
(

1

|Ω|

∫

Ω
|f |q
) 1
q

.

The above inequality shows that F is an increasing function of p. Now we show that as

p→∞, F (p)→ ‖f‖∞. Since for any p, F (p) ≤ ‖f‖∞, limp→∞ F (p) ≤ ‖f‖∞. To prove

the converse inequality, for any ε > 0, we define Eε := {ω ∈ Ω : |f(ω)| > ‖f‖∞ − ε}

which by the definition of ‖f‖∞ has positive measure, i.e., |Eε| > 0. Note that

(∫

Ω
|f |p

) 1
p

≥
(∫

Eε

|f |p
) 1
p

≥ (‖f‖∞ − ε) (|Eε|/|Ω|)
1
p .

Since |Eε|/|Ω| > 0, (|Eε|/|Ω|)
1
p → 1 as p→∞. Therefore, for any arbitrary ε > 0,

lim
p→∞

F (p) ≥ ‖f‖∞ − ε,

which implies

lim
p→∞

F (p) ≥ ‖f‖∞.

Proof of Lemma 25

To prove Lemma 25, we need the following lemma:

Lemma 30. For any u : Ω ⊂ Rm → R, assume that ∆u is defined on Ω. Then, there

exists a set I ⊂ Ω such that:

• µ(I) = 0, where µ denote the measure; and

• ∆ |u| is defined on Ω \ I.

In fact, I = {ω ∈ Ω : u(ω) = 0, ∇u(ω) 6= 0}.

Proof. We only prove the special case Ω = (a, b). The proof for a general domain Ω is

analogue. We show that I is countable, and hence of measure zero:

Fix ω∗ ∈ I such that ∂u
∂ω (ω∗) 6= 0. Since u is continuous and ∂u

∂ω (ω∗) 6= 0, there exists

an open subinterval I∗ around ω∗ such that u(ω) 6= 0 for all ω 6= ω∗ ∈ I∗. Pick a

rational number in I∗. Since the intersection of two such subintervals is empty (if not,

there exists e sequence {ωn}, u(ωn) = 0 and ωn → ω∗. By Mean Value Theorem,
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there exists a sequence {νn}, ωn < νn < ωn+1, such that ∂u
∂ω (νn) = 0. Since νn → ω∗,

and ∂u
∂ω (νn) = 0, by continuity, ∂u

∂ω (ω∗) = 0, that contradicts the choice of ω∗), every

member of I is in one of these subinterval. Hence, I is countable.

If u > 0 or < 0, then it is trivial that ∆ |u| = |∆u|. Suppose that u(ω∗) = 0 and

∂u

∂ω
(ω∗) = 0. Then u(ω) = (ω − ω∗)2v(ω) for some function v. Then

∆u(ω) = 2v(ω) + (ω − ω∗)2∆v(ω) + 4(ω − ω∗) ∂v
∂ω

(ω). (4.60)

On the other hand,

d

dω
|u| (ω) =





∣∣∣∣2(ω − ω∗)v(ω) + (ω − ω∗)2 ∂v

∂ω
(ω)

∣∣∣∣ v(ω) 6= 0

0 v(ω) = 0.

Therefore,

∆ |u| (ω) =





∣∣∣∣2v(ω) + (ω − ω∗)2∆v(ω) + 4(ω − ω∗) ∂v
∂ω

(ω)

∣∣∣∣ v(ω) 6= 0

lim
ν→ω

1

ν − ω

∣∣∣∣2(ω − ω∗)v(ω) + (ω − ω∗)2 ∂v

∂ω
(ω)

∣∣∣∣ v(ω) = 0.
(4.61)

Hence, by computing (4.60) and (4.61) at ω = ω∗, we get:

∆ |u| (ω∗) = |2v(ω∗)| = |∆u(ω∗)| .

Proof of Lemma 25. By definition of µ+
1,φ,Q we have:

µ+
1,φ,Q[A+Λ(d)] = sup

u∈Y(d)
V

lim
h→0+

1

h





∑
i qi

∫

Ω
φ(ω)

∣∣∣ui + hdi(t)(∆ + λ
(d)
1 )ui(ω)

∣∣∣ dω
∑

i qi

∫

Ω
φ(ω) |ui(ω)| dω

− 1




,

it is enough to show that for a fixed u 6= 0 ∈ Y
(d)
V and a fixed i = 1, . . . , n, and fixed t:

lim
h→0+

1

h

{∫

Ω
φ(ω)

∣∣∣ui(ω) + hdi(t)(∆ + λ
(d)
1 )ui(ω)

∣∣∣ dω −
∫

Ω
φ(ω) |ui| dω

}
= 0. (4.62)

Or equivalently, after dividing by di(t)
∫

Ω φ(ω) |ui| dω, (note that if di(t) = 0, then the

left hand side of (4.62) is zero, so we assume that di(t) 6= 0) and renaming di(t)h as h,

and dropping i, we need to show that:

lim
h→0+

1

h





∫

Ω
φ(ω)

∣∣∣u(ω) + h(∆ + λ
(d)
1 )u(ω)

∣∣∣ dω
∫

Ω
φ(ω) |u| dω

− 1





= 0. (4.63)
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Let I be as in Lemma 30: the set of points of Ω such that for any ω ∈ I, u(ω) = 0 and

∇u(ω) 6= 0.

To show (4.63), we add and subtract φ(ω)
(
|u|+ h∆ |u|+ λ

(d)
1 |u|

)
in the integral of the

numerator of the left hand side of (4.63), and get:

lim
h→0+

1

h





∫
Ω φ(ω)

∣∣∣u+ h(∆ + λ
(d)
1 )u

∣∣∣ dω
∫

Ω φ(ω) |u| dω − 1





= lim
h→0+

1

h





∫
Ω φ(ω)

(
|u|+ h(∆ + λ

(d)
1 ) |u|

)
dω

∫
Ω φ(ω) |u| dω − 1





+ lim
h→0+

1

h





∫
Ω φ(ω)

(∣∣∣u+ h(∆ + λ
(d)
1 )u

∣∣∣− |u| − h(∆ + λ
(d)
1 ) |u|

)
dω

∫
Ω φ(ω) |u| dω



 .

(4.64)

First, we show that the first term of the right hand side of (4.64) is 0. By Divergence

Theorem and Dirichlet boundary conditions, we have (recall that φ = φ
(d)
1 ):

∫

Ω
φ

(d)
1 ∆ |u| =

∫

∂Ω
φ

(d)
1 ∇ |u| · n−

∫

Ω
∇ |u| · ∇φ(d)

1 (φ1 = 0 on ∂Ω)

= −
∫

∂Ω
∇φ(d)

1 |u| · n +

∫

Ω
|u|∆φ(d)

1 (u = 0 on ∂Ω)

=

∫

Ω
|u|∆φ(d)

1

= −
∫

Ω
|u|λ(d)

1 φ
(d)
1 .

Therefore, ∫

Ω
φ(ω)

(
λ

(d)
1 + ∆

)
|u| (ω) dω = 0,

and so:

lim
h→0+

1

h





∫

Ω
φ(ω)

(
|u|+ h(∆ + λ

(d)
1 ) |u|

)
dω

∫

Ω
φ(ω) |u| dω

− 1





= 0.

Next, we show that the second term of the right hand side of (4.64) is 0:

lim
h→0+

1

h





∫

Ω
φ(ω)

(∣∣∣u+ h
(

∆ + λ
(d)
1

)
u
∣∣∣− |u| − h

(
∆ + λ

(d)
1

)
|u|
)
dω

∫

Ω
φ(ω) |u| dω





= 0. (4.65)

In this part, we drop the superscript (d) for the ease of notation: λ1 = λ
(d)
1 . For a fixed

u ∈ Y
(d)
V , we define Fh, for any 0 < h, as follows:

Fh(ω) :=
1

h
{φ(ω) (|u+ h(∆ + λ1)u| − |u| − h(∆ + λ1) |u|) (ω)} .
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1. First, we will show that there exists M > 0 such that for all h positive, |Fh| < M

almost everywhere:

We study Fh, for any 0 < h, on the following possible subsets of W := Ω \ I:

• W1 := {ω : u(ω) > 0, (∆ + λ1)u(ω) ≥ 0}. By definition,

Fh(ω) =
φ(ω)

h
(u+ h(∆ + λ1)u− u− h(∆ + λ1)u) (ω) = 0.

• W2 := {ω : u(ω) > 0, (∆ + λ1)u(ω) < 0, u > |(∆ + λ1)u|h}. By definition,

Fh(ω) =
φ(ω)

h
(u+ h(∆ + λ1)u− u− h(∆ + λ1)u) (ω) = 0.

• W3 = {ω : u(ω) > 0, (∆ + λ1)u(ω) < 0, u < |(∆ + λ1)u|h}. By definition,

Fh(ω) =
φ(ω)

h
(−u− h(∆ + λ1)u− u− h(∆ + λ1)u) (ω).

Using the triangle inequality and the assumption u < |(∆ + λ1)u|h, we get:

|Fh| <
2

h
max

Ω
|φ| (|u|+ h |(∆ + λ1)u|)

< 4 max
Ω
|φ| |(∆ + λ1)u|

≤ 4 max
Ω
|φ|
(

max
Ω
|∆u|+ λ1 max

Ω
|u|
)

=: M.

(4.66)

(Note that, without loss of generality, we assume that M 6= 0; otherwise, u = 0.

Therefore Fh = 0 on Ω.)

• W4 := {ω : u(ω) < 0, (∆ + λ1)u(ω) ≤ 0}. By definition,

Fh(ω) =
φ(ω)

h
(−u− h(∆ + λ1)u+ u+ h(∆ + λ1)u) (ω) = 0.

• W5 := {ω : u(ω) < 0, (∆ + λ1)u(ω) > 0, |u| < h(∆ + λ1)u}. Similar to the case

of W3, |Fh| < M.

• W6 := {ω : u(ω) < 0, ∆u(ω) > 0, |u| > (∆ + λ1)uh}. By definition,

Fh(ω) =
φ(ω)

h
(−u− h(∆ + λ1)u+ u+ h(∆ + λ1)u) (ω) = 0.

• W7 := {ω : u(ω) = 0, uω(ω) = 0}. In this case, by definition of ∆ |u|, we have

∆ |u| (ω) = |∆u(ω)|. Therefore, Fh(ω) = 0.
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2. Next, we will show that as h → 0, Fh → 0 almost everywhere. Fix ω ∈ Ω \ I and

consider the following cases:

• u(ω) > 0. We can choose h small enough, such that

|u(ω) + h(∆ + λ1)u(ω)| = u(ω) + h(∆ + λ1)u(ω).

Therefore,

Fh(ω) =
1

h
φ(ω)(u(ω) + h(∆ + λ1)u(ω)− u(ω)− h(∆ + λ1)u(ω)) = 0.

• u(ω) < 0. We can choose h small enough, such that

|u(ω) + h(∆ + λ1)u(ω)| = −u(ω)− h(∆ + λ1)u(ω).

Therefore,

Fh(ω) =
1

h
φ(ω)(−u(ω)− h(∆ + λ1)u(ω) + u(ω) + h(∆ + λ1)u(ω)) = 0.

• u(ω) = 0. Then as we discussed before, on W7, Fh(ω) = 0.

Using 1 and 2, and the Dominated Convergence Theorem, we can conclude (4.65).

Proof of Lemma 26

By the definition of c := µp,Q[G], we have

lim
h→0+

1

h
sup

x 6=y∈V

(
‖x− y + h(G(x)−G(y))‖p,Q

‖x− y‖p,Q
− 1

)
= c.

Fix an arbitrary ε > 0. Then there exists h0 > 0 such that for all 0 < h < h0,

1

h
sup

x 6=y∈V

(
‖x− y + h(G(x)−G(y))‖p,Q

‖x− y‖p,Q
− 1

)
< c+ ε.

Therefore, for any x 6= y, and 0 < h < h0

‖x− y + h(G(x)−G(y))‖p,Q
‖x− y‖p,Q

< (c+ ε)h+ 1. (4.67)

For fixed u 6= v ∈ Y
(d)
V , let Ω1 = {ω ∈ Ω̄ : u(ω) 6= v(ω)}. Fix ω ∈ Ω1, and let x = u(ω)

and y = v(ω). We give a proof for the case p <∞; the case p =∞ is analogous. Using

equation (4.67), we have:

(
∑

i q
p
i |ui(ω)− vi(ω) + h(Gi(u(ω))−Gi(v(ω)))|p)

1
p

(
∑

i q
p
i |ui(ω)− vi(ω)|p)

1
p

< (c+ ε)h+ 1. (4.68)
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Multiplying both sides by the denominator and raising to the power p, we have:

∑

i

qpi |(ui − vi)(ω) + h (Gi(u)−Gi(v)) (ω)|p < ((c+ ε)h+ 1)p
∑

i

qpi |(ui − vi)(ω)|p .

(4.69)

Since Ĝ(u)(ω) = G(u(ω)), Equation (4.68) can be written as:

∑

i

qpi

∣∣∣(ui − vi)(ω) + h
(
Ĝi(u)− Ĝi(v)

)
(ω)
∣∣∣
p
< ((c+ ε)h+ 1)p

∑

i

qpi |(ui − vi)(ω)|p .

Now by multiplying both sides of the above inequality by φ(ω) which is nonnegative,

and taking the integral over Ω̄, we get:

‖u− v + h
(
Ĝ(u)− Ĝ(v)

)
‖p,φ,Q < ((c+ ε)h+ 1)‖u− v‖p,φ,Q.

(Note that for ω /∈ Ω1,

((c+ ε)h+ 1)p
∑

i

qpi |ui(ω)− vi(ω)|p = 0,

which we can add to the right hand side of (4.69), and also

∑

i

qpi |ui(ω)− vi(ω) + h(Gi(u(ω))−Gi(v(ω)))|p = 0,

which we can add to the left hand side of (4.69), and hence we can indeed take the

integral over all Ω̄.)

Hence,

lim
h→0+

1

h




∥∥∥u− v + h
(
Ĝ(u)− Ĝ(v)

)∥∥∥
p,φ,Q

‖u− v‖p,φ,Q
− 1


 ≤ c+ ε.

Now by letting ε→ 0 and taking sup over u 6= v ∈ Y
(d)
V , we get µ+

p,Q[Ĝ] ≤ c.

Another proof of Theorem 20

Proof by discretization:

Let 0 = ω0 < ω1 < · · · < ωN+1 = L be the mesh points of the closed interval [0, L] with

equal mesh size ∆ω = L
N+1 . For i = 0, . . . , N + 1, define

xi(t) := u(ωi, t),
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By the Neumann boundary condition, we have:

0 = uω(0, t) ' u(ω1, t)− u(ω0, t)

∆ω
⇒ u(ω1, t) = u(ω0, t),

where uω = ∂u
∂ω . Therefore for any t, x0(t) = x1(t), and similarly, xN (t) = xN+1(t).

Now using the definition of uωω, we have the following expressions for uωω at mesh

points:

uωω(ωi, t) = lim
∆ω→0

u(ωi−1, t)− 2u(ωi, t) + u(ωi+1, t)

∆ω2

= lim
N→∞

(N + 1)2

L2
(xi−1 − 2xi + xi+1) (t),

(4.70)

we can write Equation (4.1) for the mesh points as follows:

ẋ1 = F (x1, t) +
(N + 1)2

L2
D(t) (x2 − x1)

ẋ2 = F (x2, t) +
(N + 1)2

L2
D(t) (x1 − 2x2 + x3)

...

ẋN = F (xN , t) +
(N + 1)2

L2
D(t) (xN−1 − xN ).

(4.71)

Note that the ODE system (4.71) describes the dynamics of N identical compartments

that are connected through a path graph with diffusion matrix (N+1)2

L2 D(t). Therefore,

by Proposition 10, if

cN := sup
(x,t)

µ1,Q

[
JF (x, t)− 4 sin2 (π/2N)

(N + 1)2

L2
D(t)

]
,

where −4 sin2 (π/2N) is the second eigenvalue of (graph) Laplacian of path graph, then

N−1∑

k=1

sin (kπ/N) ‖(xk − xk+1)(t)‖1,Q ≤ ecN t
N−1∑

k=1

sin (kπ/N) ‖(xk − xk+1)(t)‖1,Q .

(4.72)

Now dividing both sides of (4.72) by ∆ω = L
N+1 and letting N →∞, we get:

∫ L

0
sin (πω)

∥∥∥∥
∂u

∂ω
(t)

∥∥∥∥
1,Q

dω ≤ elimN→∞ cN t

∫ L

0
sin (πω)

∥∥∥∥
∂u

∂ω
(t)

∥∥∥∥
1,Q

dω, (4.73)

where

lim
N→∞

cN = lim
N→∞

sup
(x,t)

µ1,Q

[
JF (x, t)− 4 sin2 (π/2N)

(N + 1)2

L2
D(t)

]

= sup
(x,t)

µ1,Q

[
JF (x, t)− 4 lim

N→∞
sin2 (π/2N)

(N + 1)2

L2
D(t)

]

= sup
(x,t)

µ1,Q

[
JF (x, t)− π2

L2
D(t)

]
= c.
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Proof of Lemma 27

To prove lemma 27, we need the following lemma.

Lemma 31. Suppose u ∈ L2(Ω) satisfies Neumann boundary conditions. Then, for

any k ∈ {1, 2, . . .}, Πk (Lu) = LΠk(u), where L is as defined in Lemma 27.

Proof. First note that L can be written as L := diag (L1, . . . ,Ln), where for example,

L1 = d11L1, L2 = d12L1, etc.

By the definition of Πk and L = diag (L1, . . . ,Ln), it suffices to show that for any fixed

i ∈ {1, . . . , n},

Πk,i (Liui) = LiΠk,i(ui). (4.74)

Using the fact that Li = dpq(t)Lp, for some p, q, and Lpepj = −λpje
p
j , the right hand

side of (4.74) becomes:

LiΠk,i(ui) = dpq(t)Lp
∞∑

j=k

(ui, e
p
j )e

p
j = dpq(t)

∞∑

j=k

(ui, e
p
j )Lpe

p
j = −dpq(t)

∞∑

j=k

(ui, e
p
j )λ

p
je
p
j ;

and using the orthogonality of the epj ’s, the left hand side of (4.74) becomes:

Πk,i (Liui) =

∞∑

j=k

(
dpq(t)Lpui, epj

)
epj

=
∞∑

j=k

(
dpq(t)Lp

∞∑

l=1

(ui, e
p
l )e

p
l , e

p
j

)
epj

=
∞∑

j=k

( ∞∑

l=1

(ui, e
p
l )dpq(t)Lpeil , e

p
j

)
epj

= −
∞∑

j=k

( ∞∑

l=1

(ui, e
p
l )dpq(t)λ

p
l e
p
l , e

p
j

)
epj

= −dpq(t)
∞∑

j=k

(ui, e
p
j )λ

p
je
p
j .

Hence, (4.74) holds.

Proof of Lemma 27. For x = v,

dΦ

dt
(w) =

(
u− v,Q ∂

∂t
(u− v)

)

= (w,Q(F (u, t)− F (v, t))) + (w,QL(u− v))

= (w,Q(F (u, t)− F (x, t))) + (w,QLw) .
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For x = π2(u), i.e., w = Π2(u),

dΦ

dt
(w) =

(
Π2(u), Q

∂

∂t
(Π2(u))

)

= (Π2(u), QΠ2(F (u, t))) + (w,QΠ2(Lu))

= (Π2(u), QΠ2(F (u, t))) + (w,QLΠ2(u)) by Lemma 31

= (Π2(u), Q(F (u, t)− π2(F (u, t)))) + (w,QLw)

= (Π2(u), Q(F (u, t)− F (π2(u), t))) + (w,QLw)

+ (Π2(u), Q(π2(F (u, t))− F (π2(u), t)))

= (w,Q(F (u, t)− F (x, t))) + (w,QLw) .

Note that the last equality holds because Q(π2(F (u, t)) − F (π2(u), t)) is independent

of ω and
∫

Ω Π2,i(u) = 0 (by Equation (4.47)).

Proof of Lemma 28

To prove Lemma 28, we first recall a result following from the Poincaré principle as in

[105], which gives a variational characterization of the eigenvalues of an elliptic operator.

The following lemma is an analogous of Lemma 17 for PDEs.

Lemma 32. Let A be a matrix as defined in (4.19), and consider the elliptic operator

−∇ · (A∇(·)) with eigenvalues λj’s and corresponding orthonormal eigenfunctions ei’s.

Let v = v(ω) be a function not identically zero in L2(Ω) with derivatives ∂v
∂ωj
∈ L2(Ω)

that satisfies the Neumann boundary condition, ∇v · n = 0, and ∀j ∈ {1, . . . , k − 1},
∫

Ω vej = 0. Then the following inequality holds, for any k ≥ 1:

∫

Ω
∇v · (A(ω)∇v) dω ≥ λk

∫

Ω
v2 dω.

Proof of Lemma 28.

(Πk(u),LΠk(u))

=

n1∑

i=1

∫

Ω

Πk,i(ui)
TLiΠk,i(ui) dω + · · ·+

n∑

i=n−nr+1

∫

Ω

Πk,i(ui)
TLiΠk,i(ui) dω

=

n1∑

i=1

d1i(t)

∫

Ω

Πk,i(ui)∇ · (A1(ω)∇Πk,i(ui)) dω

+ · · ·+
n∑

i=n−nr+1

dri(t)

∫

Ω

Πk,i(ui)∇ · (Ar(ω)∇Πk,i(ui)) dω
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=

n1∑

i=1

d1i(t)

{∫

∂Ω

Πk,i(ui)A1∇Πk,i(ui) · n dS −
∫

Ω

∇Πk,i(ui)
TA1∇Πk,i(ui) dω

}
+ · · ·

+

n∑

i=n−nr+1

d1i(t)

{∫

∂Ω

Πk,i(ui)Ar∇Πk,i(ui) · n dS −
∫

Ω

∇Πk,i(ui)
TAr∇Πk,i(ui) dω

}

≤ −
n1∑

i=1

d1i(t)λ
1
k

∫

Ω

Π2
k,i(ui) dω − · · · −

n∑

i=n−nr+1

d1i(t)λ
r
k

∫

Ω

Π2
k,i(ui) dω

= − (Πk(u),ΛkΠk(u)) .

The first and second equalities follow by the definition of L (recall that we can write

L = diag (L1, . . . ,Ln)). The third equality holds by Green’s Identity.

For any n1 + · · ·+ ns−1 + 1 ≤ i ≤ n1 + · · ·+ ns,

• ∇Πk,i(v(ξ)) · n =

∞∑

j=k

(v, esj)∇esj(ξ) · n = 0,

• and for any j = 1, . . . , k − 1,
∫

Ω Πk,i(v)esj dω = 0,

using the above equalities and applying Lemma 32 to Ai’s, the fourth inequality holds.

The last equality holds by the definition of Λk.

Next we prove the second part of the lemma. Since for each i = 1, . . . , r, QDi+DiQ > 0,

there exists positive definite matrix Mi, such that QDi +DiQ = 2MT
i Mi. Note that

2 (Πk(u), QDiLiΠk(u)) = (Πk(u), (QDi +DiQ)LiΠk(u))

+ (Πk(u), (QDi −DiQ)LiΠk(u)) .

(4.75)

A simple calculation shows that (Πk(u), (QDi −DiQ)LiΠk(u)) = 0:

(Πk(u), DiQLiΠk(u)) = (QDiΠk(u),LiΠk(u))

= (QDiΠk(u),∇ · (Ai∇Πk(u)))

= − (∇(QDiΠk(u)), Ai∇Πk(u))

= − (QDi∇Πk(u), Ai∇Πk(u))

= − (AiQDi∇Πk(u),∇Πk(u))

= − (∇Πk(u), AiQDi∇Πk(u)) .

The first equality holds because both Q and Di are symmetric and hence QDi, i.e.,

(DiQ)T = QDi. The second equality holds by the definition of Li. The third equality
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holds by Green’s Identity and the Neumann boundary condition. The fourth equality

holds because both Q and Di are independent of space and ∇ does not affect them.

The fifth equality holds because Ai is symmetric. Also,

(Πk(u), QDiLiΠk(u)) = (Πk(u),LiQDiΠk(u))

= (Πk(u),∇ · (Ai∇(QDiΠk(u))))

= − (∇Πk(u), Ai∇(QDiΠk(u)))

= − (∇Πk(u), AiQDi∇Πk(u)) .

The first equality holds because by the definition of Li, for any vector u and matrix A,

ALiu = LiAu. Therefore, for k = 1, 2, we get

(Πk(u), QLΠk(u)) =
r∑

i=1

(Πk(u), QDiLiΠk(u))

=
1

2

r∑

i=1

(Πk(u), (QDi +DiQ)LiΠk(u))

=
r∑

i=1

(
Πk(u),MT

i MiLiΠk(u)
)

=
r∑

i=1

(MiΠk(u),MiLiΠk(u))

=
r∑

i=1

(MiΠk(u),LiMiΠk(u))

=
r∑

i=1

(Πk(Miu),LiΠk(Miu))

= −
r∑

i=1

(∇Πk(Miu), Ai∇Πk(Miu))

≤ −
r∑

i=1

λik (Πk(Miu),Πk(Miu))

= −
r∑

i=1

λik (Πk(u), QDiΠk(u)) .

The first equality holds by the definition of L. The second equality holds by Equation

(4.75), and the third equality holds by the choice of Mi. For any v, MiLiv = LiMiv and

this justify the fifth equality. To justify the sixth equality we show that for k = 1, 2,

MiΠk(u) = Πk(Miu): For k = 1, Πk(u) = u, hence MiΠ1(u) = Miu = Π1(Miu). Also,
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for k = 2,

Π2(u) = (Π2,1(u1), . . . ,Π2,n(un))T =

(
u1 −

1

|Ω|

∫

Ω
u1, . . . , un −

1

|Ω|

∫

Ω
un

)T
.

It is easy to see that MiΠ2(u) = Π2(Miu). The seventh equality holds by Green’s

Identity and the Neumann boundary condition. The inequality holds for k = 1, because

λi1 = 0 and Ai is positive definite and it holds for k = 2 by Lemma 32 and the fact that

for any l,
∫

Π2,l = 0.
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Chapter 5

Discussion

In this work we studied the contractivity behavior of the solutions of diffusively inter-

connected ODEs (3.6) and reaction diffusion PDEs (4.1) by the tool of matrix measures

induced by non L2 norms.

Although the problem is well studied in weighted L2 norms, in Section 2.4, we saw

that the existing results in L2 norms do not justify the contractivity behavior of simple

biochemical examples which one sees in simulations; while the results presented in this

work, mainly Theorem 9 and Theorem 15, can justify it.

We also studied synchronous behavior of the solutions of diffusively interconnected

ODEs (3.6) and reaction diffusion PDEs (4.1) by the method of contraction theory.

The synchronization problem is also a well-understood problem in weighted L2 norms.

However, in this work, we saw that the synchronous behavior of the biochemical exam-

ples cannot be justified by the existing results in weighted L2 norms.

In Theorem 11 we provided a general sufficient condition based on the edge Laplacian,

for arbitrary norms, which guarantees the synchronous behavior of diffusively intercon-

nected ODEs (3.6).

We then simplified the conditions in Theorem 11 for path and complete graphs and

provided conditions in terms of second eigenvalue of the graph Laplacian. Using differ-

ent techniques from those used to prove the results for path and complete graphs, we

showed an analogous result in non L2 norms for star graphs and the Cartesian products

of path, complete and star graphs and saw how these results explain the synchroniza-

tion in biochemical examples. However, obtaining generalizations to arbitrary graphs

remains the subject of future research.

As in the ODE case, the synchronization behavior of the solutions of PDE system (4.1)
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is a well-understood problem in weighted L2 norms, but the results are not applicable

to the biochemical examples; while our result in weighted L1 norms but restricted to

one dimensional spaces (Theorem 20) is applicable to more examples (see the discussion

in Section 4.4, Example 2).

The problem of synchronization for PDE system (4.1) is still open for general norms

and higher dimension spaces.

Another important topic for further research is to generalize the current results to

non-constant norms, i.e., when the weighted matrix Q depends on x, Q = Q(x).
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