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ABSTRACT OF THE THESIS

An Analytical Model of Cantilever Unimorph Acted Upon by an Impulse Load

By Abhinav A Athavale

THESIS Director:

Dr. Kimberly Cook-Chennault

Researchers have been studying ways to harvest various ambient vibrations using
piezoelectric materials to power wireless sensors and portable electronics. Literature review
includes several such analytical models to harvest energy from vibrations due to the harmonic
base excitation using piezoelectric beams. These models have not explored non-harmonic forcing
terms independent of frequency such as an impulse load. Presented in this thesis is an analytical
model that provides exact solutions for electrical and mechanical response of a piezoelectric
unimorph cantilever beam acted upon by an impulse load at the free end. The beam is modeled
using the Euler-Bernoulli assumptions. The impulse load is simulated using the delta function.
Damping in the form of strain rate damping and viscous damping is taken into consideration for
accurate modeling. This model can also capable of obtaining solutions for the conventional forcing
terms which have been previously mentioned in the literature review. Closed form expressions
for tip displacement of the beam and voltage generated across a load resistance are derived.

These closed form expressions are solved using MATLAB to obtain the instantaneous values for



the tip displacement and voltage generated. These instantaneous values for different load
resistances are plotted as a function time using MATLAB for better visual perspective. The energy
generated by harvester and the mechanical efficiency are found. From the plots it can be inferred
that the particular harvester was suited for load resistances between the values of 100 Q to 1 K.
The model is thus used to predict the response of a particular configuration for a piezoelectric
unimorph cantilever beam harvester which satisfies the Euler-Bernoulli assumptions and is

subjected to impulse loading.
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Nomenclature

T Stress component

S Strain component

E Electric field component

D Electric displacement component

s elastic compliance

Q dielectric constant

d piezoelectric strain constant

E superscript evaluated at constant electric field

T superscript evaluated at constant stress
ssuperscript evaluated at constant strain

Y 8O0UOT zUWOOBGEUOUUWOI wOEUI UPEO
ssubscript substrate material

p subscript piezoelectric material

t thickness of the harvester beam inY ¢ direction
b width of harvester beam in Z 4 direction
w Transverse beam displacement

m mass per length of the beam

Ca viscous air damping coefficient

Gs strain-rate damping coefficient

y Electromagnetic coupling term

v voltage generated

H Heaviside function

8 Delta function

¢ (x) Mass normalized Eigen functions

n(t) Modal functions



r subscript

B

w

d subscript

frequency mode

Dimensionless Eigen value numbers
Undamped frequency in rad/sec

damped frequency in rad/sec

Modal coupling term

Damping ratios

Electric charge

Load resistance connected across the harvester

Electrical circuit time constant



Chapter 1.

1 Introduction

1.1 Research Motivation

Use of wireless portable electronics such as smart phones, tablets, cameras and
laptops has burgeoned over the last decade[5]. The growth in device usage may be
attributed to the enhancement of their functionality, e.g. mobile web browsing, e-readers
for digital documents, downloadable apps, hand writing recognition, touch screen s, and
network access The complexity of device functionality and increases in device usage
have led to an increase in their power consumption. The majority of these devices are
powered by secondary batteries, which comprise OEUT I wx OUUD OO thas®dnduUT 1 wE
volume, and require frequent charging after minimal usage. As a result of these usage
limitations, researchers have begun to investigate power/energy management strategies
to minimize power consumption [6-8]; hybrid energy systems, and alternative energy
scavenging techniques to extend the operation time of these portable electronics
Harvesting energy from ambient static and dynamic mechanical loads using piezoelectric
materials has become an area of focusas thesedevices may be coupled with batteries or
used independently to power portable electronics [2, 9]. Mathematical models that
predict the electrical output from piezoelectric energy harvesting devices are important
for understanding the role(s) these devices may play in the future of powering portable

electronics [10-12]. The majority of the existing mathematical models focus on harmonic



base excitation of a cantilevered piezoelectric unimorph beam harvester [9, 13-15]. The
work herein focuses on a lessinvestigated loading condition - impulse loading on the free
end of the cantilever beam harvester. This type of mathematical model is appropriate for
piezoelectric energy harvesting systemsthat may be used in devices such adablets, smart

phones, etc. that incorporate touch gesture based technologes.

1.1.1 Growth in use and complexity of portable electronics

The search for alternative strategies for powering portable electronics continues to
grow due to rise in the device usage, complexity and utility as seenin the recent studies.
For example, the number of mobile phone s worldwide is projected to reach 4.77 Billiont
nearly 66% of the world population, by 2015 [16]. There are more than eight prominent
operating systems available for mobile operating systems and more than 2.5 million apps
available for use on a portable devices[17-19]. In addition to consumer devices, the uses
of micro-sensors have ventured into the fields of remote communication, health
monitoring, biomedical sensing and health care, telecommunication, environmental
sensing and industrial monitoring and require reliable and continuous power for

extended periods [20].

1.1.2 Power consumption and conventional methods for powering portable

electronics



Advances in computing performance and utility of portable electronics have led
to increased power usage of the electronics [9]. For example, many smart phones and
tablets are now used for online banking, web browsing, online purchases, and social
networking . According to Starner T. et. al.in [21], the RAM capacity of laptops has
increased 256 X times in the past two decadef21], the CPU speed has increased 850 X
times in the past two decades[21], while the disk storage capacity has increased 4000 X
times in the same period [2]]. The additional power usage places more demand on the
battery. ! EOUT UPT UwWE OwO O U wE[EY, antdihsteatGralimied v bvailbhle+ E b
power, by the inherent specific energy and energy densities of electrochemistry used. The
increased power requirements of the electronics has led to a reduction in battery life, thus
limiting the functionality of the devices. The disparity between battery size and host
device size results from the nonlinear scaling of battery size in comparison with the on -
board chip sizesreducing due to the diminishing sizes of transistors. For example, mobile
phone batteries account for up to 30-36% of the mass of theentire phone [23]. While
demand in computing complexity has increased; the amount of available energy from the
battery has increased by only a factor of three [21]. Researches have looked towards
obtaining electrical energy from the ambient mechanical dynamic loading (mechanical
energy), to extend the operational life of the device and reduce device volume. This form
of energy harvesting may be most suitable for sensors and portable electronicsthat have
power consumption values that can range from a JuW-10uW for sensors and up to 100-
250 mW for small portable devices such as music players, smart pedometer, smart

watches and other wearable electronics[23].



1.2 Piezoelectricity

1.2.1Definition of Piezoelectricity
A piezoelectric material produces an electrical voltage potential in response to a
mechanical stress. Conversely, if an electric voltage potential is applied to a piezoelectric
material, it mechanically actuates. This is the converse piezoelectric effect. A material
must possess a honrcentrosymmetric crystallographic structure in order to be a
piezoelectric material. Aluminum nitride and quartz are examples of materials that have
non-centrosymmetric structures. On the other hand, some piezoelectric materials exhibit
spontaneous polarization due to the separation of negative and positive charge centers in
the crystallographic unit cell. The perovskite structure, ABOs is a common example of a
material that exhibits a spontaneous polarization .
In Figure 1.1, the piezoelectric material, lead-zirconate titanate (Pb {ZrxTiix} Os

Y A Riddnederited. Like many piezoelectric materials, PZT hasthe perovskite structure.

O @ ez

Direction of

®) polarization

T>TC T<TC

Figurel:1:Crystal lattice structure of (a) perovskiigpe lead zirconatditanate (PZT) unit cell in the symmetric cubic
state above the Curie terepature, and the (b) tetragongldistorted unit cell below the Curie temperature, where the
arrow shows the direan of polarizatior1].




Each perovskite crystal exhibits a simple cubic symmetry with no dipole moment above
a critical temperature (the Curie point) as seen in Figure 1.1.A At temperatures below the
Curie temperature , each crystal has a tetragonal or rhombohedral symmery and a dipole
moment (Figure 1.1 B). Adjoining dipoles form regions of local alignment called domains.
These alignments give the domain structure a dipole moment which causes a net
polarization. The direction of these polarizations are random as shown in Figure 1.2 A.
The domains align themselves when subjected to a strong DC electric field at a
temperature slightly higher than the Curie point (Figure 1.2 B ), i.e. polarization. During
the polariz ation process, domains most nearly aligned with the electric field expand at the
expense of domains that are not aligned with the field, and the element lengthens in the
direction of the field. When the electric field is removed most of the dipoles are locked
into a configuration of near alignment (Figure 1.2 B). The element now has a permanent

polarization, remnant polarizatio n, and is permanently elongated [24].

1
() (b)

Figure 1.2.Polorizing (poling) of piezoelectric cerami@) Domains arranged in random directions. (®pmains
aligned in direction of the applied electric fi¢ld.

1.2.2History of Piezoelectricity

Pierre and Jacques Curie first ceauthored a publication in 1880 that described a

phenomenon where crystals such as tourmaline, quartz, topaz, cane sugar and Rochelle



salt displayed surface charges when mechanically stressed. The expressn

?xDl 401 Ol EUUPEDPUa» whPEUwWEODPOI EwUOwEDPUUDLOT UPUT
phenomenon like contact electricity and pyroelectricity [25]. The Curie brothers are thus

credited for the discovery of piezoelectricity. The converse piezoelectric effect was
mathematically deduced according to the laws of thermodynamics by Gabriel Lippmann

in 1881. The converse piezoelectric effectwas experimentally confirmed by the Curie

brothers in 1881[20].

1.3 Survey of Relevant Literature
1.3.1 Vibration based energy harvesting

Conversion of mechanical vibrations into electrical energy has been studied by
several researcherssuch as Glynne-Joneg$26], Mitcheson et al.[27], Kornbluh et al.[28],
and Roundy S. et al.[29]. In theory, electrical power derived from mechanical vibration
energy could be a potential source of power for sensors and wireless electronics in a wide
variety of applications. Many environments experience mechanical vibration, and this
mechanical energy can be harvested and converted into electrical energy. In Talte 1.1[2]
a list of acceleration magnitud e and frequency of potential sources of vibration generally

found among common devices is presented.



Tablel.1. Acceleration magnitude and frequency of sources of vibration among comiyeaxiilabledeviced?2].

Vibration Source Acceleration Frequency peak

(ms?) (Hz)

Car Engine Compartment 12 200
Base of 3-axis machine tool 10 70
Person tapping their heel 3 1
Car instrument panel 3 13

Door frame just after door closes 3 125
CD on notebook computer 0.6 75
HVAC vent in office building 0.2-15 60

Prominent methods for harvesting energy from mechanical vibrations include:
electromagnetic induction (Glynne -Jones[26]), electrostatic generation (Mitcheson et al
[27]), dielectric elastomers (Kornbluh et al [28]) and piezoelectric materials (Roundy S. et
al. [29]). A thorough review of forms of piezoelectric energy harvesting is discussed in
review articles by Cook-Chennault et al in [23] and by Anton S. and Sodano H. in[9].

Figure 1.3 shows acomparison of the power densities and voltages produced by

piezoelectric devices and other common regenerative and lithium -ion power supplies .



Power Density (mW/cm®) versus Voltage (V)
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Figure 1.3: Plot of power density versus voltage for common regenerative and lithium/ lithium-ion power supply
strategies from Cook-Chennault et al.[2].

Within the category of mechanical to electrical direct energy conversion devices,
piezoelectric are of interest because they require no input voltage and can have power
density values that are comparable to thin film lithium cells and thermoelectric devices.
On the other hand, electromagnetic energy harvesters generally render lower output
voltage values, and require post processing in order to achieve a voltage level that can
charge a storage device. Also, electrostatic energy harvesters require an input charge to
create an alternating electrical output. Due to these reasons piezoelectric energy

harvesters have received lot of attention over the last decack.

1.32 Loading configurations of piezoelectric materials



Piezoelectric materials produce an electric current when subjected to mechanical
loads. The voltage and current produced depend on the properties of the piezoelectric
material, as well as, the loading and the structure of the device. The unimorph structure
is the focus of this work. A unimorph is comprised of a piezoelectric material that is
sandwiched between two electrodes. Two metallic layer s that are bonded to the top and
bottom surfaces of the piezoelectric material. The electrically conductive layers are used
to improve its structural properties of the unimorph and provide a surface for
attachment of leads. The most common mounting configuration for a unimorph is a
cantilever. The loading experienced by this type of beam structure may be described in

terms of modes, e.g.33 and 31 as illustrated in Figures 1.4 (a) and (b)23].

31 mode 33 mode

3 3,

(@ (®) l

Figurel.4: Modes of operation for piezoelectric beartey, 3tmode of loading for piezoelectric structurediich means
the voltage acts in the 3 direction and the mechanical stress acts in the 1 direntiqb) 33mode of loading for
piezoelectric structureshich means that both the voltage and the stress act in the same 3 diref@@jn.

In Figure 1.4, 1, 2 and 3 represent thex, y, and z directions respectively. The
operation of the device in 33-mode means that voltage and stress both act in the z
direction. On the other hand, operation of the device in the 31-mode means that the
voltage acts parallel to the z axis, while stress is generated along thex axis. Since the

coupling factor of the 33-mode is higher than 31-mode, the 33mode can achieve higher
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voltage potential and stress. However, for a very low pressure source and limited device
size, the 3tmode conversion may be more suitable for energy harvesting, since larger
strains can be produced with smaller input forces with 31 loading [23].

Piezo-ceramic materials are transversely isotropic materials. According to the
IEEE Standard on Piezoelectricity[30], the piezoelectric constitutive equations can be used
to describe therelation ship between the stress (T), the strain (S), the electric field (Ex) and
the electric displacement (D«) of the material. As such, thetensor forms of the piezoelectric
constitutive equations are expressedas:

Sij = St Tra + dijEx (1.1)
D; = dy Ty + €l Ex. (1.2)

In Equations (1.1) and (1.2),s5, Q and drepresent the elastic compliance at constant
electric field, dielectric constant at a constant stress and piezoelectric strain coefficient.
Superscripts E and T represent constants that are evaluated at constant electric field and
constant stress respectively. Electranechanical coefficients such ass, d and Qestablish a
coupling relation between the direction of the applied mechanical or electrical excitation,
and the direction of the response. The piezoelectric strain coefficient, dj (i= 1, 2, 3j = 1,
| O6 0wt AWEEOWET wEl | POl EWEUwWUT 1T wxOOEUPAEUDOOwWI T O
the piezoelectric material or alternatively; the mechanical strain induced per unit electric
field applied to the material.

In this thesis, the analytical model is based on Eiler-Bernoulli beam theory, where

the energy harvester is modeled as athin beam. The plane stress assumption ofthe Euler-
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Bernoulli beam theory neglects the stress components in all other directions apart from

the axial direction [31].

1.33 Analytical Models for Prediction of Piezoelectric Performance

Most analytical models presented by researchersover the last decade have focused
on prediction of mechanical and electrical performance of cantilevered unimorph or
bimorph harvesters subjected to sinusoidal (vibration) mechanical loads. Researchers
have studied various types of loading conditio nsto understand their performance of the
harvesters under different circumstances. For example, piezoelectric beams subjected to
static [12], torsion and twisting [32], and transverse motion of the clamped base[4] have
beeninvestigated to understand the piezoelectric response of the beam elanent.

For this work, a cantilevered beam such as the one depictedin Figure 1.5, is
modeled, wherein strain induced in the piezoelectric (from an applied mechanical load)
resultsin avoltage potential. Beams with this configuration may render energy when the
output voltage signal (of variable polarity) is rectified through a bridge rectifier (to
produce pulsed direct current). A stable (smoothened) voltage potential may be
subsequently achieved via a reservoir capacitor. The processed signal may then be used

to charge a secondary battery[20].
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\")

Figure 15: Basic inpuoutput principle of piezoeléic energy generators [32].

1.34 Literature review of m athematical model s of piezoelectric energy

harvesters

A comprehensive mathematical model should be sophisticated enough to
represent the phenomena as closely as possible and predict its dynamic behavior, yetit
needs to be as simple as possible for comprehension and customizations. Several
researcherssuch as [29, 33] have used the lumped parameter approach to model the
coupled system dynamics of piezoelectric harvesters. The lumped parameter is a system
in which the dependent variables are assumed to be thefunction of time alone [31]. For
example, Neiss S modeled a non-linear piezoelectric energy harvester that included a
masson the tip of the beam in [33]. The harvesterwas modeled as a spring-damper system

where energy from the oscillating beamis converted to electrical energy. The model was
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used to obtain expressions to predict the voltage generated and the power output
achieved from the conversion of mechanical energy to electrical energy. The lumped
parameter model is an approximation limited to single vibration mode and it neglects
electro-mechanical coupling found in the piezoelectric materials.

Gao X. et al.[12] studied the voltage developed in a cantilever unimorph beam
while varying the le ngth of the non-active layer with respect to the active layer. In this
model, the unimorph beam was subjected toa concentrated point load using a load cell.
The load applied was static i.e. not varying with time. Maximum displacement of the
beam tip and the maximum voltage generated were derived. The maximum induced
voltage per unit tip displacement under constant tip displacement conditions, was
exhibited when the SS/PZT length ratio was unity . A. Abdelkefi et d.[32], also modeled a
PZT-steel cantilever beam with asymmetric tip -massesto predict the behavior of these
beams when subjected tobending and torsion. In this work, exact solutions for the tip
deflection, twisting angle, voltage output and harvested electrical power were derived.
Wang [34] developed an analytical model for a curved beam to harvest acoustic energy.
This model predicted the voltage and power generated. Energy harvesting using a
circular membrane under pressure loading has been investigated by Mo C. et al in [35].
They developed an analytical model to simulate the energy generated by a circular PVDF
membrane harvester subjected to transverse deflections. Closed form steady-state
response expressions for a thin plate piezoelectric harvester havealso beendeveloped by

Aridogan U. et al in[36].
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Lumentut M.F. and Howard I.M. [37] developed closed form expressions for the
tip displacement, voltage generated and power output of a piezoelectric bimorph beam
with a mass at its tip. The governing equations were derived using the weak form of
Hamiltonian principle to obtain the constitutive equations. Researchers have also looked
into analytical modeling of bimorph and multilayer piezoelectric cantilever in the work
of Yuan Y. et al[38]. In order to obtain the analytical expressions to predict the voltage
generated and tip displacement Erturk A. and Inman D. [4] used Euler-Bernoulli beam
theory.

Erturk A. and Inman D.J. [4], Aridogan U. et al [36] and Hosseini S. et al[39]
developed models for beams that were excited by the motion of the base Gao X.et al
[12] modeled a unimorph beam that was subjected to a concentrated force. In this work,
the concentrated force was generated using a load that was another unimorph
piezoelectric cantilever beam. In the work of Abdelkefi A. et al[32], the beam was
subjected to coupled bending- torsion vibrations created by placing two masses
asymmetrically at the tip of the beam causing an offset between UT | w E lceitérzol)
gravity and shear center.

The causes of excitation inall of the aforementioned work could be included into
a mathematical model as exponential functions, which were frequency and time
dependent. Umeda M. et al in [40Q], investigated beams subjected tolow -frequency
sources wherein excitation was due to animpact load. In this work, experimental studied
were conducted to understand the electric power generation produced from a circular

transducer subjected to impact load. Pozzi M. [4]] presented a model for a bimorph under
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impulse loading using dimensionless analysis. The impulse load was a simulated in the
model using the Gausian function. In practical applications, the excitation may or may
not be a simple harmonic, and easy to solve mathematically.

In this work, the force acting on the beam is an impulseload acting on the free end
of the unimorph cantilever beam. The damping mechanisms taken into consideration are
viscous air damping and internal strain -rate damping in order to simulate a practical
environment as closely as possible The solution was obtained using separation of
variables to obtain closed form expressions for the tip displacement, voltage, current and
power for a specified support and loading conditions. This work focuses on generation
of a generalized form of excitation force that is independent of frequency.

The model presented in the following chapter is a cantilever piezoelectric energy
harvester solved for the transverse vibration using the Euler -Bernoulli beam assumptions.
The fundamental assumption of this theory is that deformation du e to shear across the
section is not taken into consideration, i.e. no shear deformation. A parametrized model
is chosen over a single degree of freedom (SDOF) model to obtain the gact solutions for
better accuracy as shown in by Erturk A. and Inman D.J. in [4]. Damping mechanisms in
the form of viscous damping due to air and internal strain -rate damping (Kelvin -Voigt
damping) have been taken into consideration. The harvester is excited by an impulse load
that acts on the tip of the free end. Closed form expressions for voltage and mechanical
response, i.e. beam deflection are presented. The expressions are then plottedhs a
function of time using MATLAB to verify the nature of the output obtained from the

expressions.
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1.4 Thesis Organization

The organization of this thesis is described herein. In Chapter 2, the analytical
model formulated for predicting the response of the unimorph cantilever beam subjected
to an impulse load at the free end is developed. Closed forms solutions for the electrical
and mechanical responses are obtained. In chapter 3 the closed form solutions obtained
in Chapter 2 are plotted using MATLAB codes to study the nature of the solution and
validate the model. Chapter 4 provides the conclusions drawn from the thesis and a

discussion of possible future work.



17

Chapter 2

2. Analytical Method

The model presented in this chapter describes the method used to predict the
mechanical displacement and electrical response (output voltage) of a piezoelectric
cantilever beam subjected to an impulse load at the free end. The piezoelectric beam of
interest is subjected to a dynamic non-sinusoidal load, which could simulate a touch or a

tap on a portable electronic device.

2.1 Beam model description and boundary conditions

This analytical model described here may be used to predict the mechanical and
electrical response of the cantilever unimorph beam subjected to an impulse load at its
free end. The beam under consideration is modeled as an EulefrBernoulli beam, and is
depicted in Figure 2.1. In Figure 2.1, a unimorph piezoelectric beam is presented,where
L, m, and YI represent the length of the beam, mass per unit length of the beam and
bending modulus of the composite beam, respectively. The beam is comprised of an
active piezoelectric layer and a non-active layer and a perfect bond is assumed between
the two layers. The width of the beam is b, as seen inYZ plane. According to [31, 42] an
Euler-Bernoulli beam is a long beam made of an isotropic material that is subjected to
?x 0UI wE | Th&Edodsl secioniof the beam is symmetric to theXY plane as shown in

Figure 2.1. The crosssection is rigid in the YZ plane. In this model, it is assumed that the
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cross-section of the beam remains plane and normal to the deformed axis of the beam after
deformation. Also, the mechanical damping of the beam is expressed as a combination of

the internal (strain -rate) and external (air) damping mechanisms.

-
Y 1 1
Piezolectic layer .
J ¥1, m, L Y g B .
v R: v(t)
g
X
o %
X =Y Non-active layer x=L
-

Figure 2.1A cantilever unimorph beam subjected to an impulse load at the free end. The electrode leads are attached
at the top and bottom of the active piezoelectric layer. L is the length of the beam, Yl is the bending modulus of the

unimorphbeam, m is massgr unit length, Ris the magnitude of the impulse acting on the beamisRhe
load resistance connected in series with the unimorph harvester taaimv(t) describes the voltage
potential generated across thesistive load.

The impulse load, Py, acts on the free end of the cantilever beam at timet = Osecs
311 wl GUEUDPOOWOI wOOUDPOOWOEAWE]T WwOEUEDOI EWEA WE x x (
element, which results in an electromechanically coupled differential equation. The
diff erential equation may be solved using separation of variables, to obtain a coupled
solution.  Decoupled solutions for the electrical output voltage and mechanical

displacement are determined with the aid of MATLAB.

2.2 Problem Formulation

2.2.1 Determination of the location of the neutral axis

The neutral axis (NA) of the unimorph is calculated prior to the calculation of the bending
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modulus. The cross section of the unimorph is comprised of two different materials; the
active piezoelectric and the non-active materials. To locate the neutral axis in the cross
section , it is transformed into a cross-section of beam made of one of either material[43].
This technique is often used to find the bending modulus of composite beams such
RCC[44]. The purpose of transforming the cross-section is limited to calculating the
location of the sectional neutral axis. Figure 2.2 (a)depicts the original beam cross sedion
(prior to transformation ). The purpose of the non-active (electrically conductive layer) is
to add mechanical strength to the unimorph structure and collect the current generated
from the device. The elastic modulus of the non-active layer is higher than the active
piezoelectric layer. Hence when the cross section is transformedinto a section consisting
of only the piezoelectric layer, where the width of the non -active layer is increased by a

factor of n, which is the ratio of the elastic moduli of both materials,

Ys

n=g (2.1)

In equation (2.1), Ysand Yp Ul x Ul Ul OUwUT T wil OEUUP Eaot®@edddd1 z Uw OC

piezoelectric layers respectively.
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l}i th
Active piezolectric layer ‘ Active piezoelectric

b / layer

| |
IS E
_ | Neutral
Non-active layer .
(a) Y (b) b axis

Figure2.2: (a) The original crossection of the unimorph i®r a beam consisting of two materialpiezoelectric and
non-active layers angb) is the converted cross section consisting of only one matiéabiezoelectric materigds].

In Figure 2.2 (a) the cross section of the unimorph is presented wherets, tp and b
represent the distances from the neutral axis to the top and bottom of the beam, and width
of the beam, respectively. In Figure 2.2 (b) the equivalent cross sectionis depicted, which
consists of only the active layer. Here, tsarepresentsthe thickness of the layer from the
bottom of the non-active layer to the neutral axis. The thickness of the layer from the

bottom of the active layer to the neutral axis, tsais expressed as[20];

b= ntZ+2tstp+t3 (22)
sa 2(nts+tp)

The length from the top of the active layer to the neutral axis, tps, is expressed as

The distance from the center of the top layer to the neutral axis, t.c is calculated from,

_ nti+2ntsty+t] 23

tpa = 2(nts+ty) @3
nt

£, = ——ptts) (2.4)

Pe T 2(ntst+ty)
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The boundaries of the beam are defined with respect to ta, which is the distance
from the bottom of non -active layer to the NA. Also, tsis the distance from the bottom of
the piezoelectric layer (or top of non -active layer) to the NA, and tcis the distance from
top of the piezoelectric layer to the NA. Thus ta, toand tc are points of location throughout

the structure, and are used as integration limits.

te = th, (2.5)
tb = tpa - tp, (26)
ty = —tsq- (2.7)

The internal moments acting on the beam will be evaluated using equations (2.5)-(2.7). In

the next section, the differential equation is derived.

2.2.2 Mechanical Equation of Motion with Electrical Coupling

In this section the mechanical equation of motion with electrical coupling is
derived. The transverse displacement of any point on the beam along the neutral axis is
denoted by w(x,t). If the beam is assumed to be undergoing undamped free vibration,
the equation of motion obtained after appl ication of - | PUOOz Uw Ul EOOEsuOEP wOI

[46],

ow*(x,t) ow?(x,t) (2.8)
YIT + mT = 0.
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The bending modulus for the composite beam will be derived in the next section.
The two types of damping mechanisms included are the viscous air damping and Kelvin -
Voigt damping (or strain rate damping). These are prominent mechanisms for damping
within a n Euler-Bernoulli beam model as discussed by Banks H. and Inman D. in [47].
Viscous air damping is the force acting on the beam due to air particles displaced when
the beam is in motion. Strain-rate damping accounts for the structural damping due to
friction al internal in the beam[11]. The equation of motion that includes damping effects

and a force acting on the beam is expressed as:

0% M(x,t) 2°w(x, t) ow(x,t) 2°w(x,t) 2.9
axz Tl pagr Tl Mg = D). =9

In equation (2.9) M and ware the internal moment acting on the beam and the transverse
displacement of beam respectively. The damping coefficients are defined ascl for the
strain-rate damping and c. for the viscous air damping, wherein cis the equivalent
coefficient of strain-rate damping and | is the equivalent area moment of inertia.
371 wUEOI wi GUEUPOOWEEOWEOQUOWET wEI UPYI EwWEa wE:
beam element, e.g. equating the forcs and moment acting on the element with the

acceleration due to inertia. A detailed derivation of this equation is available in [46].

The constitutive equations for the isotropic non -active and active piezoelectric

structures at constant temperature according to [30] are expressed as:

(for the non-active layer) Tsy = YsS, (2.10
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and
(for the active layer) S; = sE T, + d3,E;. (2.1)
The stress experienced by theactive (piezoelectric) layer is,
Tp1 = Yp(S1 — d31E3). (2.12

In equations (2.10)¢ (2.12) T, S Y,dand EEUIl wUI T wUUOUI UUOwWUUUEDPOOwW
piezoelectric constant and electric field respectively. Subscriptssand p denote properties
for the non-active and the piezoelectric layers respectively. < is the elastic compliance

at a constant electric fiecOE OWE OE wP U wUT I wUI EDxUOEEOWOi wUT 1 w8 Ol

The internal moment acting on the beam can be obtained by integrating the first

moment of the stress distribution over the cross-sectional area,

tp

te
Tslbzdz—f Tp1b z dz. (213

tp

M(x,t) = —f

ta
Substituting equations (2.10) and (2.12) intoequation (2.13) renders,

tp

te
Y.S,bzdz— f Y, (81 — d31E3)b z dz. (219

tp

M(x,t) = —f

ta

The bending strain in terms of the radius of curvature of the beam under bending stress

is expressed as:

0w (2.15
0x?%’

51=—Z
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Following the substitution of equation (2.15) into equation (2.14) and integration,

the internal bending moment acting on the crosssection of the beam is,

2

2
M(x,t) = YI a—xvzv—yv(t), (218

where YI is the combined bending modulus of the beam. YI can be determined from,

vi = p [Pl — @) + V(2 — 1) , (2.17)
3
where _ Yuda (82— t)) (2.189
B 2t,, '

The voltage term in equation (2.16) is dependent on constantsYy, dsi, tc, to and tp. To
prevent the elimination of the voltage term during differentiation of equation (2.9), the
voltage function is multiplied by a Heaviside step function, H(x) that ranges over the span
of the beam.

2°w(x, t) ow(x,t)
+ Cq
ox*ot ot

o Yl 0w H H L I
I ﬁ—yv(t)( (x) —H(x = L)) | + ¢

2w(xt)

tm—o= = —P,6(x — L)5(2).

(2.19

Equation (2.19) when simplified, takes the form;
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o*w 3°w(x,t ow(x,t 2%w(x,t
Vi + el ) (08 | 0wkt

06(x) 06(x—1L1)
axiar e 5t FrEaa A O v ox

= —P,6(x — L)8(t).

(2.20

The mechanical equation of motion that includes electrical coupling, equation (2.19), is

obtained when equation (2.16) is substituted into equation (2.9). In equation (2.19) and
equation (2.20), the term(—PycS(x - L)5(t)) is an impulse load acting at the tip of the beam

at time t = 0 seconds.

The general solution for the equation (2.20) is obtained using separation of
variables, where it is assumed that the displacement is separated into two parts; one
dependent on position and the other on time [48]. The general solution may be expressed

as,

w(x, t) = XrLq @ () 1, (0), (2.2])

where ¢,.(x) and n,.(t) are the mass normalized eigenfunctions and modal coordinates of
the cantilevered beam for the r" mode, respectively. Also from [46] we can conclude that
for an Euler-Bernoulli beam, the first five terms provide an accurate solution to the

differential equation.

According to [47], for proportionately damped systems the eigenfunctions
denoted by ¢(x), are the same as the mass normalized eigenfunctions for an uadamped

beam undergoing free vibration. These eigenfunctions may be determined from,
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1 (2.22
¢ (x) = (ﬂ) [cosh f,x + cos fB,x + C,.(sinhfx — sinfx)],

where S, describes the range of dimensionless frequency numbers obtained from the

characteristic equations:

1 + cosh(B,L) cos(B,-L) =0 (2.23
and
_ sinhfyL—sinfyL (2 249

T coshByL+cosByL’

The roots of (2.23) may be determined by using thefzerofunction in MATLAB. Hence, the

first five values for g,L were determined to be,

( 1.8750
4.6491
Br =4 7.8548 (2.29

L 10.996 J
14.1372

The mass normalized eigenfunctions defined in (2.22) must satisfy the orthogonality

conditions,
L
fxzom Psprdx = by, (2-26)
L o* ¢y
and [ Y122t = wis, (2.27)

where ;s DPUwUT 1 w* UOOI EOI Uz UwET OUES

The un-damped natural frequency, w,., is expressed as,
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2.29
YI
wr = (8,)° —

Equation (2.20) is multiplied by ¢4(x) and integrated from O to L to obtain equation (2.29),

which is an electromechanically coupled ordinary differential equation for modal

response:
%n(t an(t 2.2
MO 2 6 2D 4 w200 + 10 = B (229
ot? ot
where,
cslw, Ca ) (2.30)
28, =
ér (ZYI +2ma)r ’
_ de(x)
XT _y ( dx )x=L’
and Fo(t) = =Py ($)xmy 8(0).
The mechanical damping (strain rate and viscous air-damping) is 2¢,..
The following property is exploited to determine y,.,
*d"8(x — xo) df™(xo) (2.31)
[ =a s = car SR

3T T wUOOUUPOOWI OUWSBUEUDOOwm! 61 A peBndexpressdd b O1 E wU
as,

n(t) = ift [F-(t) — y,v(1)] e érortD sin(w, (t — 1)) dr, (232
7=0

Wy

r
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where wg, = wpr/1— &2, is the damped natural frequency of the rth mode. In equation

(2.32),n(t) is a function of v(t), which is to be determined.

2.2.3Coupled Electrical Circuit Equation of a Thin Piezo -ceramic Layer under

Dynamic Bending

Just as equation (2.20) is a mechanical equation of motion with electrical coupling,
an electrical equation with mechanical coupling can be derived for the circuit described

in Figure 2.3 (b) [4]. The constitutive relation for piezoelectric materials is given by,
D3 = d3,T; + €33 E5(2), (2.33

where Dsis the electric displacement and e1; is the permittivity at constant stress[30]. As

shown in Equation (2.11), T1 can be written as:
T, = Yp(51 - d31E3),

The permittivity is replaced by permittivity at constant strain  [30], by substituting

equation (2.11) into equation (2.33), the electric displacement expression becomes,

D3 = d31(Yp51) - —Sgi)(t), (2.39
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Piezoelectric H
y YimL Layer B o 1 .
M, y ift) C, i g
i ] {} RE;WU ’ (D —_ R : vii)
x=0 4 =L
Non-active * <=
Layer
(8) (b)

Figure2.3: (a) Unimorph cantilever connected to a resistive load @)dorresponding electrical circuit electrical
circuit withpiezoelectricapacitance andbadresistance.

Equation (2.20) is the mechanical equation of motion with electrical coupling. The
electrical equation with mechanical coupling can be derived for the electrical circuit

described in Figure 2.3 (b)[4]. The constitutive relation for piezoelectric materials is given

by,
D3 - d31T1 + €£3 E3(t), (235)

where Dsis the electric displacement and €13 is the permittivity at constant stress [30]. As

shown in equation (2.12), T: can be written as:
T, = Yp(51 - d31E3)-

The permittivity is replaced by permittivity at constant strain [30], by substituting
equation (2.12) into equation (2.35), to render an expression for electric displacementas a

function of voltage:

D; = dyy (Y,S,) — 5222, (2.36

tp

where £3; = el — d3,Yy, (2.37)
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and E,(t) = _@. (2.39
tp

The average bending strain can be expressed as a function ofy., in equation (2.39),
o*w
Sl(x, t) == tpc ﬁ (239
Substituting equation (2.40) into equation (2.41) yields:
’w €
Dy = = ds1¥ptpe 5z = v (D). (240
The electric chargeq(t) developed in the piezoelectric layer can be expressed as
q(t) = [ D-ndA, (2.41)

where n is the normal vector and dA = bdx,is the electrode areai.e.the top section of the

beam.

Substitution of equation (2.40) into equation (2.41) yields,
— L o*w | & 242
q(t) =—J; b<d31thpcﬁ+ti:v(t)b L> dx . (242)
The current flowing through the circuit is given as,

. _ dq(t) _ L a3w _ €§_3d17(t) (243)
i(t) = Tat fxzo d31thpc axzatdx tp dt bL.

From equation (2.43), it is evident that the current generated is due to the vibratory
motion of the beam in response to the impulse load. The current generated in the

xDl 401 Ol EOUUPEwWOEal UWEEOWEOUOWET wi BRx Ul UUI EwOUDO
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i(t) = %) (2.44)

Substituting equation (2.44) back in to equation (2.43) yields,

v(t)
Ry,

dv(t)
—fx . d31Yy tpca zatdx— ip ’;t bL, (2.45)

Rearranged, equation (2.45) becomes,

e3sb Ldv(t) | v(t) _
t, dt Ry

- - f bd31Y tpc 02 atdx. (24@

xx0abOl w*PDUETT Oi i zUw+EPwWwOOwWUT T wi 01 EOUUPEEOQWEDU

dv(t) v(t)

C +2— i, () =0. (2.47)

P ar

S
The term iﬁb L is the capacitance across of the piezoelectric layer. Substituthn of
14

equation (2.21) (the series form of solution) into equation (2.46) yields,

dv(t) @ oo dny(t) (2.48
dt + Tc - ZT‘=1 T dt 1
where,
__ daiYplpctp d? ¢r(x) _ d31Yplpctp  (dor(x)
Or = 833L f dx? dx = £§3bL ( dx )sz. (249)
and

_ (RL€§3bL)_ (2.50)

C
tp

The Leibniz rule for differentiation under integral sign states that,
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L (129 g(e)dt ) = glRN () — gIA GG, (251)

Substituting % into equation (2.51) yields,

&=L PIE@ + xv@] e ot sin(wg(t — 1) dr,
= [[[F(0) + x,v(D)] e 75D (=5, w, sin(wg(t — ) + (2.52)

wgq cos(wqy(t —1))) dr.

Substitution of equation (2.52) into equation (2.51) yields,

dv(t) v(t) w t
et =;¢rf0[1~;<r>

T

+ x,v(0)] e Srert=D(—E w, sin(wd(t —7)+wy cos(a)d(t — 1'))) dt
(2.53)

Laplace transforms are used to solve equation (2.53), to obtain a decoupled
solution for the voltage function, v (t). The right hand side of equation (2.53) can be viewed
as a convolution of the terms (7) and t. The Laplace transform of a convolution is the
product of the Laplace transforms of each individual term. The step -wise procedure for
applying Laplace transforms is provided below, where the final expression for V(s) is

given in equation (2.54)
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sV(s) + TlV(s) =

o L L[-P,S6O)] + xrv@®L[ebrr D sinw,(t — 1) |
=t +x,v(t) L [wgcos wa(t —1)] }

sV(s) + %CV(S) = 32 0 [~Pyrer + XV (5)] ( “frorva

(5"‘57"(1)7")2"‘(0621

(s+&wy)
(Lwé)),

(s+&rwr)?+w

W_d)] _ (_Py ¢x=L‘Prwch5)
(s+&rwp)2+w] (s+&rwy) +wh

1
V(S) S+T_C_§Dr)(r(

(_Py Or Px=L Xr wTTC)S (254)

183+ (2§ wr T+ 1)s2+H(Tc w242 & wrt Xr@rwgTe)Stw?’

V(s) =

In equation (2.45),a, b, and care designated as roots of the denominator. The roots
can be real or complex in nature. A damped vibratory system exhibits an exponential
function. Hence the real parts of the roots must be negative. This can be used as a check
to analyze the validity of the expressions obtained later. However, due to the nature of
the denominator, the roots have to be obtained numerically by plugging values into

MATLAB and using the function - roots ()

The values for T, w,,, wz and y, can be found using the formulae mentioned above.

The first five modes are considered for our solution. The value for modal damping ratios
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are takenas (0.010 0.013 0.033 0.064 0.109 from [15] and the damping ratios for the first
two modes were determined experimentally i n the work of Erturk A. and Inman D.J .[15]..
The remaining values are found using equation (2.30). The dimensions of the beam
considered are selected from [4], because the danping ratios utilized are from this

reference. The properties of the materials of the unimorph are enlisted in Table 2.1 below.

Table2.2: Geometric, material and electromechanical parameters of the beam from [15] .

Length of the beam, L (mm) 100

Width of the beam, b (mm) 20

Thickness of the substructure, ts (mm) 0.5

Thickness of the PZT,t, (mm) 0.4
8O0UOT ZUWOOBEUOUUwWOYs@P&)1 w 100

8O0UOT zUwWOOEUOWGRA) wUl 66
Mass density of the substructure, ps (kg/m3) 7165
Mass density of the PZT, pp (kg/m?3) 7800
Piezoelectric constant,ds: (pm/V) NL90
Permittivity, &35 (nF/m) 15.93

Thus, equation (2.45) can be written as,
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V(S) = _Pya)dd)x:ch(pr (m) (256)

Taking Laplace inverse transform of equation (2.46), renders decoupled closed form
expressions for the voltage generated within the piezoelectric layer due to impulse load

acting on the tip end of the cantilever beam.

v(t) = —Pwq@r=Tcpr (A e + BePt 4 Cet), (2.57)

a b [

where = ¢ -2 - ¢
A (a-b)(a-c)’ B (a-b)(b-c)’ ¢ (a—c)(b-c)’

Substitution of equation (2.57) into equation (2.32) produces the decoupled solution for

the modal response of the unimorph beam,

t
10 = | (~Bbsmi80) = 1,0(0) (46" + Bl + Ce)

er_grwr(t_r) sin(wy(t — 7)dr.

Upon integrating this expression, the solution obtained is,
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nr(t) = _Py¢x=Le_€ert Sin(wdt) + er¢x=Ly(prwch

(a+&rwp)2+w]

[(L (eat + e 5ot ((a + &, )sin(wgt) —

wy cos(wdt)))> TR — (ebt + e 5rort((b + &, )sin(wgt) —

(b+frwr)2+wé

c

wy COS((Udt)) + (c+&rwr)2+wl

(ect + e‘frwrt((c + & w,)sin(wgt) — wy cos(a)dt)))]].

(2.58)

The mechanical response of the beam can be obtained by substituting equation
(2.21) and equation (2.58) back into the summation term described in equation (2.21). The

displacement of the free end can beobtained by substituting x=L into the solution.

w(L,t) = XrZ1 0r (L) 1r(1).

w(Lt)=Y72, ( (ﬁ) [cosh B,-x + cos B,x + C,.(sinhffx —

2
(a+&rwr)2+wy

. — . A

sinfix)] > < —Pypy=e tr@rtsin(wgt) + XrPx=1, Prwate [(— (eat +
— . B

e frwrt((a + fra)r)sm(wdt) — Wy cos(a)dt)))> + m (ebt +

c

e‘frwrt((b + frwr)sin(wdt) — Wy cos(wdt)) + m

(e“ +e srert((c +
& wy)sin(wgt) — wy cos(a)dt)))]]).

(259



The solution obtained from this derivation is vali dated in Chapter 3.

37
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Chapter 3

3. Results, Discussion and Model Validation

The closed form solutions for prediction of the output voltage potential and tip
displacement (Equations 2.57 and 2.59 respectively) have been developed for an Euler
Bernoulli cantilever beam subjected to a mechanical impulse load at its free end. The
solution set to these equations were achieved using a series of MATLAB codes (script
developed as part of this thesis is available in Appendix A). The solution set for the tip
displacement, w (L,t), voltage generated,v(t), and the power generated, P(t), across a load

resistance are plotted as a function of timet (seconds).

The device is assumed to be an EulerBernoulli beam. The predictions from the
model will be verified and compared to the trends observed in the work of Gao X. et al.
[3]. In order to utilize the values of the modal damping ratios for the unimorph whic h
have been previously calculated in the work of Erturk A. et. al.[4]; the dimensions of the
beam in this thesis are the same as the dimensions of the beam in the work of Erturk A.et.
al.. In [4], Erturk A. et. al.studied the electrical and mechanical response of an unimorph
subjected to base exciation at resonant frequencies. The dimensions for the beam used
in this study and those for the beam studied by Erturk. et al[4], and are summarized in
Table 3.1. The impulse load applied to the tip of the beam is-0.0IN and time interval for

the impulse was set equal to 1 milisecond.
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Table 3.3: Geometric, material and electromagnetic properties of the unimorph cantilever beam in Erturk A. et.al. [4]

Variable Description (units) Erturk A. etal.  This Thesis
[4]

L Length of the beam (mm) 100 100
b Width of the beam (mm) 20 20
ts Thickness of the substructure (mm) 0.5 0.5
tp Thickness of the PZT (mm) 0.4 0.4
Ys 8 OUOT z UwOOE U OéttiveuldyerGPh)I 100 100
Yo 8OUOT zUwWOOEUO(@BapOIi w 66 66
Ps Mass density of the substructure (kg/m 3) 7165 7165
Jol Mass density of the PZT (kg/m?3) 7800 7800
Cs1 Piezoelectric constant (pm/V) NL9O NL9O
€33 Permittivity (nF/m) 15.93 15.93

3.1 Tip displacement of the free end of the cantilever beam
The displacement, w (L,t), of the free end of the cantilever beam subjected to an
impulse load of -0.01 N, for 1 millisecond (ms) is plotted as a function of time in Figure

3.1. . The force acts at timd =0 seconds The tip reaches the maximum displacement of w
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=-0.0134 m, and undergoes oscillatory decay, where a displacement equal to 0 is achieved
when the time t=1 second. The tip displacement profile observed is an exponential decay
as a function of time due to viscous damping due to air surrounding the beam and internal

strain-rate damping within the beam.

1.50E-02
1.00E-02
5.00E-03 N H N

0.00E+00 (T

-5.00E-03

Tip Displacement (m)

-1.00E-02

-1.50E-02
Time (sec)

———Tip Displacement (m)

Figure 3.1: Displacement of the free end of the cantilever beam under impulse load.

The displacement trend observed in this work is similar to the trend observed by
Gao X.et. al.[3] for the tip deflection of a unimorph cantilever. In the work of Gao X. et.
al.in [3], a concentrated force was applied to the tip of a piezoelectric unimorph cantilever
using a load cell., which bends the unimorph beam. The resultant tip displacement and
voltage generated were plotted versus time as shown in Figure 3.3. The dimensions ofthe

beam studied by Gao. X.et. al.have been enlisted in the table below.
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Table 34: Geometric, material and electromagnetic properties of the unimorph cantilever beam in Gao 3]et. al.

Variable Description (units) Gaoetal. [4] This Thesis
L Length of the beam (mm) 12 100
b Width of the beam (mm) 2.05 20
ts Thickness of the substructure (um) 50 0.5
tp Thickness of the PZT (um) 127 0.4
Ys 8 OUOT z UwbdOE U OattiveuldyeryGih)l 200 100
Yo 8OUOT zUwWOOEUO@BapOI w 62 66
ps Mass density of the substructure (kg/m 3) 7900 7165
pr Mass density of the PZT (kg/m?3) 7800 7800
O Piezoelectric constant (pm/V) N320 -190

The resultant tip displacements for the piezoelectric unimorph cantilever beam
were obtained empirically and plotted versus time. As seen in Figure 3.2 after the force
was applied at time t = 0 second, the tip displacement increased and reached the peak
value of 35 um at about t=1.7 milliseconds followed by oscillatory decay with time,
indicating underdamped transient response. The tip displacement obtained from the
analytical model (Figure 3.1) presented in this thesis follows the trends similar to Figure

3.2.
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Figure 36:Tip displacement and induced voltage versus time of cantilever unimorph when a 10 V DC voltage was applied
to the load cell at t = (B].

3.2 Voltage generated across the resistive load

The electrical circuit configuration for the unimorph is shown in Figure 3.3 where
the voltage across a resistive bad, R. is used to calculate the output voltage and power
generated by the system. In Figure 3.3,Cp represents the internal capacitance of the

piezoelectric layer.

oY) @ G :: ke v(t)

Figure 3.3: Electrical configuration of a unimorph cantilever connected to resisti4]loa
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The voltage generated across the resisve load as given by Equation (2.57),

v(t) = —Pywpr=rTcpr (Ae™ + Be Pt 4+ Ce™t), (3.2)

a b c

where: A= m , B=- (a=b)(b—c) ’ ¢= (a=c)(b—=c)’

The voltage generated is exponentially proportional to the roots a, b, cand time t
which is a solution set of generated using MATLAB. From equation (2.54) it is seen that
the roots a, b and c are dependent upon w, ,¢, , 7. Xr, @.. From equations (2.27),
(2.30)(2.49) and (2.50) it can be said that, ,¢, , 7., xr, @, are dependent on the mass per
unit length (m), permittivity ( €55 ), length ( L ), piezoelectric constant (dazA Ow 8 OUOT z U w

modulus Y, beam thickness, beam width (b), and load resistance [Rv).

For a given configuration for the cantilever unimorph, the geometric dimensions
of the beam and material properties remain constant, hence the value of w, ,&., xr, @r
remain constant. The value of z. is directly proportional to R. from Equation (2.50). Thus
the value of the roots vary with the respect to the load resistance R.. As the value of load
resistance R. across the circuit increases the values ofa, b and c increase. Due to this
increase in the exponential power, the value of voltage approaches zero quicker with the
increase in RL. Presented below are plots for the voltage generated across the electrodes
when the load resistance connected in the circuit is 100Qs (Figure 3.4) and 1 K—Q (Figure

3.5). The resistance values were selected such as to demonstrate the quicker dampening
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of the generated voltage with increase in the resistance values. In Figure 3.4 the maximum

voltage generated is 0.0052 Volts, but it is consistent with the tip displacement.

Voltage
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4.00E-03

2.00E-03
=
(O]
2 0.00E+00
% ¢ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
>

-2.00E-03

-4.00E-03

-6.00E-03

Time (sec)
—— 100 Ohms

Figure 3.4: Voltage generated across a load resistance of 100 Ohms.

Comparing Figure 3.4 and Figure 3.5,the maximum voltage generated in the later
is 0.121 Volts, but the exponential decay to the X axis is quicker. Hence it can be said that
with increasing load resistance, the value of the peaks or the maximum load generated

increases. But voltage generation quickly dampens down to negligible values.
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Figure 3.5: Voltage generated across a load resistance-GfK

3.3 Instantaneous current generated through the load

371 wEUUUI OUwi 00pPDPOT wlOT UOUT T wlOT T wUI UOUUDYIT wc
=v () /R. From the previous section the peak voltage generated increases with increase
in the load resistance. The current generatedincreases with the increases in the load
resistance. The solution values for instantaneous current are plotted as function of time
(Figure 3.6 and 3.7). The peak current flowing through the resistance of 100Y s is 52.4uA
(Figure 3.6). While the peak current flowing through the resistance of a 1 K Y is 124uA
(Figure 3.7).Just as seen in the plots for the voltage, the peak value of the current flowing

the through the load when the load resistance connected is 100Y s (Figure 3.6) is less than

the peak value when the value of resistance connected is IK-Y (Figure 3.7). But the latter
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decays quicker in comparison and attain values negligible with respect to the peak current

value, hence they are represented on the plot by a fat line.

Current
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Figure 3.6: Current flowing through the current of 100 Ohms
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Figure 3.7: Current flowing through the current of 1 K Ohms

3.4 Instantaneous power generated across the load .
The instantaneous power generated power generated across the resistive load can thus
be obtained asP (t) = \2(t) /R.. The instantaneous power generated for the load resistance

of 100Qs and 1 K Q are plotted as a function of time Figure 3.8 and Figure 39.
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Figure 3.8: Power generated across a load resistance of 100 Ohms.

The maximum power generated by the unimorph cantilever when the connected to a
resistance of 100Y s is 0.27nWs.
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Figure 3.9: Power generated across a load resistance of 1 K Ohm



49

The maximum power generated by the unimorph cantilever when the connected
to a resistance of 1 K is 14.6uW. The unimorph can be connected to a circuit consisting

rectifiers for post conditioning and connected to a secondary battery to harvest this power.

3.5  Efficiency calculations

The efficiency of a system is defined as the output obtained for the applied input.
The efficiency for this system can be defined as the percentage of energy utilized from the
applied impulse load.

electrical energy

100, (3.2)

H =
harvester ™ y,ork done by applied force

The work done by the force applied to the beam is obtained by multiplying the magnitude of the
force and the displacement.

work done = force x displacement. (3.3)

The magnitude of the impulse load acting on the beam is 0.01and the corresponding
displacement achieved due to this force is 13.4 mm The total work done by the impulse load is:

work done = 0.01 x 13.4e — 3 N-m,
= 1.34e — 4.

The total energy generated by the harvester is obtained by integrating the area under the plot for
instantaneous power. This is obtained by using the Matlab function trapz() The energy generated
in the harvester when a load resistance of 100 Q is connected across the circuit is 0.7341 pW.

Substituting the values of the work done and electrical energy generated in equation (3.2),

0.7341e - 06

Hypgrvester = m x 100 = 0.562%

The harvester efficiency when the load resistance is 100 Q is 0.562%.

The energy generated in the harvester when a load resistance of 1 KQ is connected across the
circuit is 325 pWw.

Substituting the values of the work done and electrical energy generated in equation (3.2),

32.5e—06
Hparvester = m x 100 = 24.9%
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The harvester efficiency when the load resistance is 1KQ is 24.9%.

From the discussion hitherto, it can be said that the current configuration of
unimorph is suitable for resistances lower than 1 KY , due to the consistent voltage and

current generation over extended period.

Typical micro sensors have power requirements ranging from 30 yW to 150uW [49
51]. The impulse load acting on the beam can replicate the touch gesture as is applied on
the present day touch screen devices. Touch sreen devices have undergone vast
development over the past decade[51] and it could be said that such device are subjected
to incessant impulse load in the form of screen touches over the duration of its use. If the
power generated by the unimorph harvester due to each such impulse load is harvested
and stored it can be used to satisfy the power requirements mentioned for the sensors

above.
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Chapter 4

4. Conclusion and Future Work

4.1 Conclusion s

In this thesis an analytical model for a cantilever unimorph beam was presented.
The model was based on EulerBernoulli assumptions, where the internal strain -rate
damping and external viscous damping were included for accuracy. The unimorph beam
was excited by an impulse load acting on the free end of the cantilever beam. The impulse
load was represented by a delta function. This work builds upon the analytical model for
a piezoelectric unimorphs presented by Erturk A. and Inman D. [4], which is limited to
solving problems involving harmonic loading expressed asan exponential function of the
excitation frequency and time. In the present work, the analytical approach may be used
to solve cantilevered beams subjected to norharmonic force loading. This procedure can
also be used to solve conventional problemssuch as the onesolved in the work of Erturk

A. and Inman D.[52].

The piezoelectric unimorph beam proposed in this thesis was modeled as an Euler
Bernoulli beam. Electromechanically coupled equations of motion were derived for the
El EOWEaAWExx0abOl w-1 pUOO ThewdiuatiEn® G Enationtare sodédw O O U D O ¢
to obtain closed form solutions to predict the tip displacement, voltage generated across

the load and power generated when the harvester was connected in series with a load
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resistance These decoupled closed form solutions for response can be usedfor any

cantilever unimorph which satisfy the assumptions for the Euler -Bernoulli beam theory.

A MATLAB script was written to solve the expressions mathematically for the
known boundary conditions, loading conditions and electromechanical properties. Using
MATALB, d ata set of solutions for the tip displacement, voltage generated and power
output are obtained. The data setgenerated for the tip displacement, voltage generated
and power output are plotted as a function of time. The plot for tip displacement dampens
exponentially, similar to the plot for tip displacement of a unimorph cantilever beam

plotted in the work of Gao X. . al.[12].

The voltage generated across the resistive load has been plotted as function of
time. The peak values for the voltage increases with the increase in the load resistance

value. But the exponential decay of the voltage increased with increase in the resistance.

The current flowing through the load resistance was plotted as a function of time.
The maximum value of the current flowing through the resistor increases with increases
the increase in the load resistance. But unlike the voltage generated the current renains
with the range on microamperes. As the resistance increasesthe current production

dampens down quick ly.

The power generated across the load resistance due to each impulse load was
plotted as a function of time. The value for the power generated wer e compared with the

power requirements for modern micro -sensors. Hence it could be said that the particular
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configuration for the unimorph harvester was suited for resistance values lower than 1 K -

Y as the voltage generation and current flow is consistent and continuous.

In summary, this model canbe used for the prediction of the electrical response of
the unimorph when subjected to a hon-harmonic load. It can be used to move towards a
generalized model which can predict the power output for forces that a re not a function
of frequency as well as conventional forces which have been previously studied in the

works of Erturk A. [4]and Gao X.et.a[17)].

4.2 Future Work

The model presented in this thesis can further be developed for energy harvesting.
Auxiliary components such as a circuit consisting of bridge rectifiers and capacitors are
neededto regulate the voltage surges. The energy generated after condition the electrical
output can be used to charge any secondary source of powerAlso further investigations
can be made to study the response of thebeam when it is subjected to base motion

excitation as well as impulse loading at the same time.

Touch gesture basedtechnology is now present within a large extent of electronics
like PDA, smart phones, car navigation systems, tablets, personal computeas, user
interfaces for industrial machines. The touch gesture by a person has been mathematically
modeled as an impulse load acting in the model discussed before.Further research can be
made regarding how this energy harvester can be used to tap the impulse created by the

incessant touches and generate power to support micro-sensors within the electronics
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circuit. The model discussed in the anterior can be developed to harvest energy from such

touch gestures and other base excitatiors as well.



Appendix

MATLAB Code Script

The MATLAB script is as follows:

Hybrid Energy Systems Lab, Rutgers University, New Brunswick

%%Analytical model of a Cantilever Unimorph Beam under Impulse load

%%Presented by Abhinav Athavale

Under the guidance of Dr. Kimberly Cook-Chennault

clear;clc;

%clearing screen and previous variables

Defining Basic Parameters of the Unimorph Beam

Calculating the distances of the top and the bottom of the beam from the neutral axis

Y_p=66e+09;
Y_s=100e+09;

t p=0.4e -03;

t s=0.5e -03;
d_31=-190e- 12;
L=100e - 03;
Ro_p=7800;
Ro_s=7165;
b=20e - 03;

e _33=15.93e - 09;

R_|= 1e+03;

%Youngs Modulus 0 f PZT(GPa)
%Youngs Modulus of Substrate(GPa)
%Thickness PZT(m)

%Thickness Substrate(m)
%Dielectric constant(pm/V)

%Length of the beam(m)

%Density of PZT(k g/m”"3)
%Density of Substrate(kg/m”3)

%Width of the Beam(m)

Y%permitivity in nano - Farad/meter

%L oad Resistance in Ohms
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[Vu,YI,t_at bt ct pcl=Upsilon(Y_p,Y_s,d_31,t p,t_s,b); %Constant

governing differential and Bending Stiffness of the Beam

Calculating mass per unit length of the beam

m= b*(t_p*Ro_p+t_s*Ro_s);

Calculation of the spatial solution phi(x)

Calculating constants dependent on the spatial solution

Beta_L=roots_L;

Beta=Beta LI/L;

[phi,phi_diff,X_r, vphi_r]=constant(Beta_L,Beta,m,Vu,d_31,Y_p, t pc,t_p,
e_33,L);

Calculating the natural and damped frequencies of first 4 modes using definition.

Xi=[0.01 0.013 0.033 0.064]; % Damping ratios according to paper
[w_rw_d]= freq(Beta,Yl,m,Xi); % Frequencies
freq_r=w_r/(2*pi); % obtaining frequencies in Hz

%% Calculating Tau_c and roots to Laplace Equation

in the
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Tau_c=(R_I*e_33*b*L)/t_p; %calculating constant Tau_c

[p,r_1,r_2,r_3]=roots_c(Xi, w_r,w_d, X_r, vphi_r,Tau_c);

Calculating voltage generated.

Constants required P_y ,varphi, phi_L, w_d, Tau_c



Py= -1e-02; %magnitude of force.
t=0:0.01:1,
[v,volt,A,B,C] = voltage(P_y, vphi_r, phi, w_d, Tau_c, r_1,r_2, r_3,t);

Calculating modal solution eta(t)

n_t=modes(P_y ,Xiw_rw_d,t,A,B,C,r_1,r 2,r 3,X_r,vphi_r,phi,Tau_c);

Calculating displacement

w =summation(phi,n_t,t);

w=transpose(w);

Calculating power

pw= elec_power(v,R_l);

Plotting the expressions against time

plot(t,w);

titte(  'Graph of Tip Displacement Vs Time' )
x| abel( 'Time (sec)' ) % Xx- axis label

ylabel( 'Tip Displacement (m)' ) % y- axis label
pause(2);

plot(t,v);

title(  'Graph of Voltage Vs Time' )

xlabel(  'Time (sec)' ) % x- axis label

ylabel(  'Voltage (V)' ) % y- axis label

pause(2);

plot(t,pw);
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title(  'Graph of Power V s Time' )
xlabel(  'Time (sec)' ) % x- axis label

ylabel( 'Power (W)' ) % y- axis label

hold off ;
% End of code

Function called to obtain Eigen Functions%%

function [z]= roots_L()

%Calculated the roots to characteristic root equation Equation (2.22)%

clear

f=@fun;

x0=1,

=1

z=zeros(1,4);

while  and(x0<100,j<5)
z(j)=fzero(f,x0);
X0=x0+3;
=it

end

end

function r=fun(x)
r=1+(cos(x)*cosh(x));

end

Function to calculate constants related to the natural frequencies

function  [phi,phi_diff,X_r,vphi_r] = constant(Beta_L,Beta,m,Vu,d_31,Y_p, t pc,
t p,e_33L)

Calculates Phi, d phi/dx ,X_r and returns to main.
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B = zeros(1,length(Beta_L));

phi = zeros(1,length(Beta_L));
phi_diff = zeros(1,length(Beta_L));
vphi_r = zeros(1,length(Beta_L));

for k =(l:lengt h(Beta_L))

B(k)=(sinh(Beta_L(k)) - sin(Beta_L(k)))/(cosh(Beta_L(k))+cos(Beta_L(k)));
phi(k)=sqrt(1/(m*L))*(cosh(Beta_L(k)) - cos(Beta_L(k)) -
B(k)*(sinh(Beta_L(k)) - sin(Beta_L(k)))); % phi at x=L equivalent to
(2*sinh(Beta_L(Kk))*sin(Beta_L(Kk)))/( cosh(Beta_L(k))+cos(Beta_L(k)))

phi_diff(k)=sqrt(1/(m*L))*Beta(k)*(sinh(Beta_L(k))+sin(Beta_L(k)) -
B(k)*(cosh(Beta_L(k)) - cos(Beta_L(Kk)))); % phi” at x=L equivalent to
2*(sin(Beta_L(k))*cosh(Beta_L(k))+cos(Beta_L(k))*sinh(Beta_L(k)))/(cosh(Beta_ L(
k))+cos(Beta_L(k)));

a=- (d_31*Y_p*t_pc*t_p)/(e_33*L);
vphi_r(k)=a*phi_diff(k);
end

X_r=Vu*phi_diff;

end

Calculating the natural and damped frequencies of first 4 modes using definition.

function [w_r,w_d] =freq(Beta,YIl,m,Xi)
w_r=zeros(1,length(Beta));
w_d=zeros(1,length(Beta));

for k=(1:length(Beta))

w_r(k)=((Beta(k))*2*sqrt(Yl/m)); %natural frequencies
w_d(k)=w_r(k)*sqgrt(1 - (Xi(k)"2); % corresponding damped frequencies
end

end



Calculating roots to denominator of Equation (2.45)

function [rr 1 2r 3 ] =roots_c( Xi, w_r,w_d, X_r, vphi_r,Tau_c)
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r=zeros(3,4);

p=zeros(1,4);

Calculating coefficients of the cubic equation.

for  j=1:length(Xi)
a=Tau_c;
b=(2*Xi()*w_r(j)*Tau_c+1);
c=(Tau_c*(w_r(j)) 2+2*Xi(j)*w_r()+X_r()*vphi_r(j)*w_d(j)*Tau_c);
d=(w_r()"2;
p(.)=[abcd];

end

Calculating roots from the coefficients

for j=1:length(Xi)
r(:.j)=roots(p(.:));
end

% collecting roots in the sepearte tems

for j=1:1:3
r_1=r(1,);
r_2=r(2,);
r_3=r(3,);
end

end



Calculating voltage generated.

Constants required P_y varphi phi_L w_d Tau_c

function [v,volt,A,B,C]= voltage(P_y, vphi_r, phi,w_d, Tau_c,r_1,r_2,r_3,t)
volt = zeros(length(vphi_r),length(t));

v = zeros(length(t),1);

A = zeros(1,length(vphi_r));

B = zeros(1,length (vphi_n));

C = zeros(1,length(vphi_r));

for k=1:length(r_1)

Ak)=r_1(K)/((r_1(k) - r_2(k))*(r_1(k) -r_3(K));
B(k)= - r_2(k)/((r_1(k) - r_2(K)*(r_2(k) -r_3(k)));
C(k)=r_3(K)/((r_1(k) - r_3(k))*(r_2(k) -r_3(K));

for  j=1:length(t);
volt(k,  j)= P_y*vphi_r(k)*phi(k)* w_d(k)*Tau_c*
(
A(k)exp(r_1(k)*t(}))+B(K)*exp(r_2(k)*t()))+C(k)*exp(r_3(k)*t()));
end
end
for k=1:length(t)
v(k)= volt(1,k)+volt(2,k)+volt(3,k)+volt(4,k);

end

end

Calculating modal solution eta(t)

functi on n_t=modes(P_y,Xiw_r,w_d,t,A,B,C,r_1,r 2,r 3, X r,vphi_r,phi,Tau_c)
n_t=zeros(length(r_1),length(t));
for j=1:length(r_1)

AGQ)=X_r@)*P_y*vphi_r()*phi()*Tau_c*AG)/((r_1()) 2+2*Xi(j)*w_r(j)*r_1()+(
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w_r()"2);

B(j)=X_r()*P_y*vphi_r(j)*phi(j)* Tau_c*B(j)/((r_2@)) 2+2*Xi()*w_r()*r_2()+(
w_r()"2);

C()=X_r(j)*P_y*vphi_r@j)*phi()*Tau_c*C()/((r_3())2+2*Xi(j)*w_r()*r_3(j)+(
w_r()"2);

end

for j=1l:length(r_1)
for k=1:length(t)
n_t(j,k)= (P_y*phi()*(exp(

Xi(j)*w_r(j)*t(k))* sin(w_d(j)*t(k))w_d()))

- AG)*(w_d(j)exp(r_1()*t(k)) -exp( -
Xi)w_r() t(k)*(r_1G)+XiG)y w_r())*sin(w_d()*t(k)) -exp( -
xi(yw_r()*t(k))*(w_d()*cos(w_d(j)*t(k))))

- BO)*(w_d(j)*exp(r_2()*t(k)) -exp( -
Xi(j)w_r() t(k))*(r_ 2()+Xigy w_r()))*sin(w_d()*t(k)) -exp( -
Xi(j)*w_r(j)*t(k))*(w_d() cos(w_d(j)*t(k))))

- C()*(w_d(j)exp(r_3(j)*t(k)) -exp( -
Xij)*w_r() t(k)*(r_3@)+XiG)y w_r())*sin(w_d()*t(k)) -exp( -
Xi(j)*w_r()*t(k))*(w_d()cos(w_d(j)*t(k))));

end

end

Calculating transverse displacement at x = L

function w =summation(phi,n_t,t)
w=zeros(1,length(t));
for k=1:length(t)
w(k)= phi(1)*n_t(1,k)+phi(2)*n_t(2,k)+phi(3)*n_t(3,k)+phi(4)*n_t(4 k);
end

end



Calculating power

function pw = elec_power(v,R_I)
pw=zeros(1,length(v));
for i=1l:length(v)
pw(i)=(v(i))"2;

end

pw=pw/R_l;
pw=transpose(pw);

end

Calculating harvester efficiency

elec_energy = trapz(pw);
mech_work = abs(P_y*max(w));

harv_eff=elec_energy*100/mech_work;

Plotting the expressions against time

plot(t,w);
titte(  'Graph of Tip Displacement Vs Time' )

xlabel(  'Time (sec)' ) % x- axis label

ylabel(  'Tip Displacement (m)' ) % y- axis label
pause(3);

plot(t,v);

title(  'Graph of Voltage Vs Time' )

xlabel(  'Time (sec)' ) % x- axis label
ylabel(  'Voltage (V)' ) % y- axis label
pause(3);

plot(t,i_t);
title(  'Graph of Current Vs Time' )

xlabel(  'Time (sec)' ) % x- axis label
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ylabel( 'Current(Amp)’ ) % y- axis label

pause(3);

plot(t,pw);

title(  'Graph of Power Vs Time' )
xlabel(  'Time (sec)' ) % x- axis label

ylabel(  'Power (W)' ) % y- axis label

hold off ;
%%End of code

Published with MATLAB® R2014a
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