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Researchers have been studying ways to harvest various ambient vibrations using 

piezoelectric materials to power wireless sensors and portable electronics. Literature review 

includes several such analytical models to harvest energy from vibrations due to the harmonic 

base excitation using piezoelectric beams. These models have not explored non-harmonic forcing 

terms independent of frequency such as an impulse load. Presented in this thesis is an analytical 

model that provides exact solutions for electrical and mechanical response of a piezoelectric 

unimorph cantilever beam acted upon by an impulse load at the free end. The beam is modeled 

using the Euler-Bernoulli assumptions.  The impulse load is simulated using the delta function. 

Damping in the form of strain rate damping and viscous damping is taken into consideration for 

accurate modeling. This model can also capable of obtaining solutions for the conventional forcing 

terms which have been previously mentioned in the literature review. Closed form expressions 

for tip displacement of the beam and voltage generated across a load resistance are derived. 

These closed form expressions are solved using MATLAB to obtain the instantaneous values for 
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the tip displacement and voltage generated. These instantaneous values for different load 

resistances are plotted as a function time using MATLAB for better visual perspective.  The energy 

generated by harvester and the mechanical efficiency are found. From the plots it can be inferred 

that the particular harvester was suited for load resistances between the values of 100 Ω to 1 KΩ. 

The model is thus used to predict the response of a particular configuration for a piezoelectric 

unimorph cantilever beam harvester which satisfies the Euler-Bernoulli assumptions and is 

subjected to impulse loading. 
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Chapter 1. 

1 Introduction 
 

1.1  Research Motivation 

Use of wireless portable electronics such as smart phones, tablets, cameras and 

laptops has burgeoned over the last decade [5].  The growth in device usage may be 

attributed to the enhancement of their functionality, e.g. mobile web browsing, e-readers 

for digital documents, downloadable apps, hand writing recognition, touch screens, and 

network access.   The complexity of device functionality and increases in device usage 

have led to an increase in their power consumption. The majority of these devices are 

powered by secondary batteries, which comprise large portions of the device’s mass and 

volume, and require frequent charging after minimal usage.  As a result of these usage 

limitations, researchers have begun to investigate power/energy management strategies 

to minimize power consumption[6-8]; hybrid energy systems; and alternative energy 

scavenging techniques, to extend the operation time of these portable electronics.  

Harvesting energy from ambient static and dynamic mechanical loads using piezoelectric 

materials has become an area of focus, as these devices may be coupled with batteries or 

used independently to power portable electronics [2, 9].  Mathematical models that 

predict the electrical output from piezoelectric energy harvesting devices are important 

for understanding the role(s) these devices may play in the future of powering portable 

electronics [10-12].  The majority of the existing mathematical models focus on harmonic 
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base excitation of a cantilevered piezoelectric unimorph beam harvester [9, 13-15]. The 

work herein focuses on a less-investigated loading condition - impulse loading on the free 

end of the cantilever beam harvester. This type of mathematical model is appropriate for 

piezoelectric energy harvesting systems that may be used in devices such as tablets, smart 

phones, etc. that incorporate touch gesture based technologies. 

 

1.1.1 Growth in use and complexity of portable electronics 

The search for alternative strategies for powering portable electronics continues to 

grow due to rise in the device usage, complexity and utility as seen in the recent studies.  

For example, the number of mobile phones worldwide is projected to reach 4.77 Billion – 

nearly  66% of the world population, by 2015 [16].  There are more than eight prominent 

operating systems available for mobile operating systems and more than 2.5 million apps 

available for use on a portable devices [17-19].  In addition to consumer devices, the uses 

of micro-sensors have ventured into the fields of remote communication, health 

monitoring, biomedical sensing and health care, telecommunication, environmental 

sensing and industrial monitoring and require reliable and continuous power for 

extended periods [20].  

 

1.1.2 Power consumption and conventional methods for powering portable 

electronics 
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Advances in computing performance and utility of portable electronics have led 

to increased power usage of the electronics [9]. For example, many smart phones and 

tablets are now used for online banking, web browsing, online purchases, and social 

networking.  According to Starner T. et. al. in [21], the RAM capacity of laptops has 

increased 256 X times in the past two decades[21], the CPU speed has increased 850 X 

times in the past two decades [21], while the disk storage capacity has increased 4000 X 

times in the same period [21]. The additional power usage places more demand on the 

battery.  Batteries do not adhere to Moore’s Law [22], and instead are limited in available 

power, by the inherent specific energy and energy densities of electrochemistry used.  The 

increased power requirements of the electronics has led to a reduction in battery life, thus 

limiting the functionality of the devices. The disparity between battery size and host 

device size results from the nonlinear scaling of battery size in comparison with the on-

board chip sizes reducing due to the diminishing sizes of transistors. For example, mobile 

phone batteries account for up to 30-36% of the mass of the entire phone [23].  While 

demand in computing complexity has increased; the amount of available energy from the 

battery has increased by only a factor of three [21].  Researchers have looked towards 

obtaining electrical energy from the ambient mechanical dynamic loading (mechanical 

energy), to extend the operational life of the device and reduce device volume.  This form 

of energy harvesting may be most suitable for sensors and portable electronics that have 

power consumption values that can range from a 1𝜇W-10 𝜇W for sensors and up to 100-

250 mW for small portable devices such as music players, smart pedometer, smart 

watches and other wearable electronics [23].  
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1.2 Piezoelectricity 

1.2.1 Definition of Piezoelectricity 

A piezoelectric material produces an electrical voltage potential in response to a 

mechanical stress.  Conversely, if an electric voltage potential is applied to a piezoelectric 

material, it mechanically actuates. This is the converse piezoelectric effect.  A material 

must possess a non-centrosymmetric crystallographic structure in order to be a 

piezoelectric material.  Aluminum nitride and quartz are examples of materials that have 

non-centrosymmetric structures.  On the other hand, some piezoelectric materials exhibit 

spontaneous polarization due to the separation of negative and positive charge centers in 

the crystallographic unit cell.  The perovskite structure, ABO3 is a common example of a 

material that exhibits a spontaneous polarization. 

In Figure 1.1, the piezoelectric material, lead-zirconate titanate (Pb {ZrxTi1-x} O3 

(0≤x≤1)) is presented.  Like many piezoelectric materials, PZT has the perovskite structure. 

 
Figure 1:1:Crystal lattice structure of (a) perovskite-type lead zirconate titanate (PZT) unit cell in the symmetric cubic 
state above the Curie temperature, and the (b) tetragonaly distorted unit cell below the Curie temperature, where the 
arrow shows the direction of polarization [1]. 
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Each perovskite crystal exhibits a simple cubic symmetry with no dipole moment above 

a critical temperature (the Curie point) as seen in Figure 1.1.A.  At temperatures below the 

Curie temperature, each crystal has a tetragonal or rhombohedral symmetry and a dipole 

moment (Figure 1.1 B).  Adjoining dipoles form regions of local alignment called domains. 

These alignments give the domain structure a dipole moment which causes a net 

polarization. The direction of these polarizations are random as shown in Figure 1.2 A. 

The domains align themselves when subjected to a strong DC electric field at a 

temperature slightly higher than the Curie point (Figure 1.2 B), i.e. polarization.  During 

the polarization process, domains most nearly aligned with the electric field expand at the 

expense of domains that are not aligned with the field, and the element lengthens in the 

direction of the field.  When the electric field is removed most of the dipoles are locked 

into a configuration of near alignment (Figure 1.2 B). The element now has a permanent 

polarization, remnant polarization, and is permanently elongated [24]. 

(a)                   (b)  
Figure 1.2.Polorizing (poling) of piezoelectric ceramic. (a) Domains arranged in random directions. (b) Domains 

aligned in direction of the applied electric field[1]. 

 

1.2.2 History of Piezoelectricity 

Pierre and Jacques Curie first co-authored a publication in 1880 that described a 

phenomenon where crystals such as tourmaline, quartz, topaz, cane sugar and Rochelle 
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salt displayed surface charges when mechanically stressed.  The expression 

“piezoelectricity” was coined to distinguish this phenomenon from other related 

phenomenon like contact electricity and pyroelectricity [25].  The Curie brothers are thus 

credited for the discovery of piezoelectricity.  The converse piezoelectric effect was 

mathematically deduced according to the laws of thermodynamics by Gabriel Lippmann 

in 1881. The converse piezoelectric effect was experimentally confirmed by the Curie 

brothers in 1881 [20]. 

 

1.3        Survey of Relevant Literature 

1.3.1 Vibration based energy harvesting  

Conversion of mechanical vibrations into electrical energy has been studied by 

several researchers such as Glynne-Jones[26], Mitcheson et al. [27], Kornbluh et al. [28], 

and Roundy S. et al. [29].  In theory, electrical power derived from mechanical vibration 

energy could be a potential source of power for sensors and wireless electronics in a wide 

variety of applications. Many environments experience mechanical vibration, and this 

mechanical energy can be harvested and converted into electrical energy.  In Table 1.1 [2] 

a list of acceleration magnitude and frequency of potential sources of vibration generally 

found among common devices is presented.  

 

 



 7 

 

  

Table 1.1. Acceleration magnitude and frequency of sources of vibration among commercially available devices [2]. 

Vibration Source Acceleration 

(m s-2)  

Frequency peak 

(Hz) 

Car Engine Compartment 12 200 

Base of 3-axis machine tool 10 70 

Person tapping their heel 3 1 

Car instrument panel 3 13 

Door frame just after door closes 3 125 

CD on notebook computer 0.6  75 

HVAC vent in office building 0.2-1.5 60 

 

 Prominent methods for harvesting energy from mechanical vibrations include: 

electromagnetic induction (Glynne-Jones [26]), electrostatic generation (Mitcheson et al. 

[27]), dielectric elastomers (Kornbluh et al. [28]) and piezoelectric materials (Roundy S. et 

al. [29]).  A thorough review of forms of piezoelectric energy harvesting is discussed in 

review articles by Cook-Chennault et al. in [23] and by Anton S. and Sodano H. in[9].  

Figure 1.3, shows a comparison of the power densities and voltages produced by 

piezoelectric devices and other common regenerative and lithium-ion power supplies. 
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Figure 1.3: Plot of power density versus voltage for common regenerative and lithium/ lithium-ion power supply 
strategies from Cook-Chennault et al.[2]. 

 

Within the category of mechanical to electrical direct energy conversion devices, 

piezoelectric are of interest because they require no input voltage and can have power 

density values that are comparable to thin film lithium cells and thermoelectric devices. 

On the other hand, electromagnetic energy harvesters generally render lower output 

voltage values, and require post processing in order to achieve a voltage level that can 

charge a storage device.  Also, electrostatic energy harvesters require an input charge to 

create an alternating electrical output.  Due to these reasons piezoelectric energy 

harvesters have received lot of attention over the last decade. 

 

1.3.2 Loading configurations of piezoelectric materials 
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Piezoelectric materials produce an electric current when subjected to mechanical 

loads. The voltage and current produced depend on the properties of the piezoelectric 

material, as well as, the loading and the structure of the device.  The unimorph structure 

is the focus of this work.  A unimorph is comprised of a piezoelectric material that is 

sandwiched between two electrodes.  Two metallic layers that are bonded to the top and 

bottom surfaces of the piezoelectric material.  The electrically conductive layers are used 

to improve its structural properties of the unimorph and provide a surface for 

attachment of leads.  The most common mounting configuration for a unimorph is a 

cantilever.  The loading experienced by this type of beam structure may be described in 

terms of modes, e.g. 33 and 31, as illustrated in Figures 1.4 (a) and (b)[23].  

 

Figure 1.4: Modes of operation for piezoelectric beams, (a) 31-mode of loading for piezoelectric structures, which means 
the voltage acts in the 3 direction and the mechanical stress acts in the 1 direction and (b) 33-mode of loading for 
piezoelectric structures which means that both the voltage and the stress act in the same 3 direction. [29]. 

 

In Figure 1.4, 1, 2 and 3 represent the x, y, and z directions respectively.  The 

operation of the device in 33-mode means that voltage and stress both act in the z 

direction.  On the other hand, operation of the device in the 31-mode means that the 

voltage acts parallel to the z axis, while stress is generated along the x axis. Since the 

coupling factor of the 33-mode is higher than 31-mode, the 33-mode can achieve higher 
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voltage potential and stress.  However, for a very low pressure source and limited device 

size, the 31-mode conversion may be more suitable for energy harvesting, since larger 

strains can be produced with smaller input forces with 31 loading [23]. 

Piezo-ceramic materials are transversely isotropic materials. According to the 

IEEE Standard on Piezoelectricity [30], the piezoelectric constitutive equations can be used 

to describe the relationship between the stress (Tij), the strain (Sij), the electric field (Ek) and 

the electric displacement (Dk) of the material.  As such, the tensor forms of the piezoelectric 

constitutive equations are expressed as: 

𝑆𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙
𝐸 𝑇𝑘𝑙 + 𝑑𝑘𝑖𝑗𝐸𝑘   (1.1) 

                                                 𝐷𝑖 = 𝑑𝑖𝑘𝑙𝑇𝑘𝑙 + 𝜀𝑖𝑘
𝑇 𝐸𝑘. (1.2) 

In Equations (1.1) and (1.2), sE, εT and d represent the elastic compliance at constant 

electric field, dielectric constant at a constant stress, and piezoelectric strain coefficient. 

Superscripts E and T represent constants that are evaluated at constant electric field and 

constant stress respectively. Electromechanical coefficients such as s, d and ε establish a 

coupling relation between the direction of the applied mechanical or electrical excitation, 

and the direction of the response.  The piezoelectric strain coefficient, dij (i= 1, 2, 3, j = 1, 

2,…, 6) can be defined as the polarization generated per unit mechanical stress applied to 

the piezoelectric material or alternatively; the mechanical strain induced per unit electric 

field applied to the material.   

In this thesis, the analytical model is based on Euler-Bernoulli beam theory, where 

the energy harvester is modeled as a thin beam.  The plane stress assumption of the Euler-
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Bernoulli beam theory neglects the stress components in all other directions apart from 

the axial direction [31].  

 

1.3.3 Analytical Models for Prediction of Piezoelectric Performance 

Most analytical models presented by researchers over the last decade have focused 

on prediction of mechanical and electrical performance of cantilevered unimorph or 

bimorph harvesters subjected to sinusoidal (vibration) mechanical loads. Researchers 

have studied various types of loading conditions to understand their performance of the 

harvesters under different circumstances.  For example, piezoelectric beams subjected to 

static [12], torsion and twisting [32], and transverse motion of the clamped base [4] have 

been investigated to understand the piezoelectric response of the beam element.   

For this work, a cantilevered beam such as the one depicted in Figure 1.5, is 

modeled, wherein strain induced in the piezoelectric (from an applied mechanical load) 

results in a voltage potential.  Beams with this configuration may render energy when the 

output voltage signal (of variable polarity) is rectified through a bridge rectifier (to 

produce pulsed direct current).  A stable (smoothened) voltage potential may be 

subsequently achieved via a reservoir capacitor.  The processed signal may then be used 

to charge a secondary battery [20].  
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Figure 1.5: Basic input-output principle of piezoelectric energy generators [32]. 

 

1.3.4 Literature review of mathematical models of piezoelectric energy 

harvesters 

A comprehensive mathematical model should be sophisticated enough to 

represent the phenomena as closely as possible and predict its dynamic behavior, yet it 

needs to be as simple as possible for comprehension and customizations.  Several 

researchers such as [29, 33] have used the lumped parameter approach to model the 

coupled system dynamics of piezoelectric harvesters. The lumped parameter is a system 

in which the dependent variables are assumed to be the function of time alone [31]. For 

example, Neiss S. modeled a non-linear piezoelectric energy harvester that included a 

mass on the tip of the beam in [33]. The harvester was modeled as a spring-damper system 

where energy from the oscillating beam is converted to electrical energy. The model was 
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used to obtain expressions to predict the voltage generated and the power output 

achieved from the conversion of mechanical energy to electrical energy. The lumped 

parameter model is an approximation limited to single vibration mode and it neglects 

electro-mechanical coupling found in the piezoelectric materials. 

 Gao X. et al. [12] studied the voltage developed in a cantilever unimorph beam 

while varying the length of the non-active layer with respect to the active layer. In this 

model, the unimorph beam was subjected to a concentrated point load using a load cell. 

The load applied was static i.e. not varying with time. Maximum displacement of the 

beam tip and the maximum voltage generated were derived.  The maximum induced 

voltage per unit tip displacement under constant tip displacement conditions, was 

exhibited when the SS/PZT length ratio was unity.  A. Abdelkefi et al.[32], also modeled a 

PZT-steel cantilever beam with asymmetric tip-masses to predict the behavior of these 

beams when subjected to bending and torsion. In this work, exact solutions for the tip 

deflection, twisting angle, voltage output and harvested electrical power were derived. 

Wang [34] developed an analytical model for a curved beam to harvest acoustic energy. 

This model predicted the voltage and power generated.  Energy harvesting using a 

circular membrane under pressure loading has been investigated by Mo C. et al. in [35]. 

They developed an analytical model to simulate the energy generated by a circular PVDF 

membrane harvester subjected to transverse deflections. Closed form steady-state 

response expressions for a thin plate piezoelectric harvester have also been developed by 

Aridogan U. et al. in[36].  
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Lumentut M.F. and Howard I.M. [37] developed closed form expressions for the 

tip displacement, voltage generated and power output of a piezoelectric bimorph beam 

with a mass at its tip. The governing equations were derived using the weak form of 

Hamiltonian principle to obtain the constitutive equations. Researchers have also looked 

into analytical modeling of bimorph and multilayer piezoelectric cantilever in the work 

of Yuan Y. et al.[38].  In order to obtain the analytical expressions to predict the voltage 

generated and tip displacement Erturk A. and Inman D.[4] used Euler-Bernoulli beam 

theory.  

Erturk A. and Inman D.J. [4], Aridogan U. et al. [36] and Hosseini S. et al.[39] 

developed models for beams that were excited by the motion of the base.   Gao X. et al. 

[12] modeled a unimorph beam that was subjected to a concentrated force.  In this work, 

the concentrated force was generated using a load that was another unimorph 

piezoelectric cantilever beam.  In the work of Abdelkefi A. et al.[32], the beam was 

subjected to coupled bending- torsion vibrations created by placing two masses 

asymmetrically at the tip of the beam causing an offset between the beam’s center of 

gravity and shear center.  

The causes of excitation in all of the aforementioned work could be included into 

a mathematical model as exponential functions, which were frequency and time 

dependent.  Umeda M. et al. in [40], investigated beams subjected to low-frequency 

sources, wherein excitation was due to an impact load.  In this work, experimental studied 

were conducted to understand the electric power generation produced from a circular 

transducer subjected to impact load. Pozzi M. [41] presented a model for a bimorph under 
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impulse loading using dimensionless analysis.  The impulse load was a simulated in the 

model using the Gausian function.  In practical applications, the excitation may or may 

not be a simple harmonic, and easy to solve mathematically.  

In this work, the force acting on the beam is an impulse load acting on the free end 

of the unimorph cantilever beam. The damping mechanisms taken into consideration are 

viscous air damping and internal strain-rate damping in order to simulate a practical 

environment as closely as possible.  The solution was obtained using separation of 

variables to obtain closed form expressions for the tip displacement, voltage, current and 

power for a specified support and loading conditions.  This work focuses on generation 

of a generalized form of excitation force that is independent of frequency. 

The model presented in the following chapter is a cantilever piezoelectric energy 

harvester solved for the transverse vibration using the Euler-Bernoulli beam assumptions. 

The fundamental assumption of this theory is that deformation due to shear across the 

section is not taken into consideration, i.e. no shear deformation. A parametrized model 

is chosen over a single degree of freedom (SDOF) model to obtain the exact solutions for 

better accuracy as shown in by Erturk A. and Inman D.J. in [4].  Damping mechanisms in 

the form of viscous damping due to air and internal strain-rate damping (Kelvin-Voigt 

damping) have been taken into consideration. The harvester is excited by an impulse load 

that acts on the tip of the free end. Closed form expressions for voltage and mechanical 

response, i.e. beam deflection are presented.  The expressions are then plotted as a 

function of time using MATLAB to verify the nature of the output obtained from the 

expressions. 
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1.4        Thesis Organization 

 The organization of this thesis is described herein. In Chapter 2, the analytical 

model formulated for predicting the response of the unimorph cantilever beam subjected 

to an impulse load at the free end is developed. Closed forms solutions for the electrical 

and mechanical responses are obtained. In chapter 3 the closed form solutions obtained 

in Chapter 2 are plotted using MATLAB codes to study the nature of the solution and 

validate the model. Chapter 4 provides the conclusions drawn from the thesis and a 

discussion of possible future work. 
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Chapter 2   

2. Analytical Method 
 

  The model presented in this chapter describes the method used to predict the 

mechanical displacement and electrical response (output voltage) of a piezoelectric 

cantilever beam subjected to an impulse load at the free end.  The piezoelectric beam of 

interest is subjected to a dynamic non-sinusoidal load, which could simulate a touch or a 

tap on a portable electronic device.  

 

2.1 Beam model description and boundary conditions 

This analytical model described here may be used to predict the mechanical and 

electrical response of the cantilever unimorph beam subjected to an impulse load at its 

free end.  The beam under consideration is modeled as an Euler-Bernoulli beam, and is 

depicted in Figure 2.1.   In Figure 2.1, a unimorph piezoelectric beam is presented, where 

L, m, and YI represent the length of the beam, mass per unit length of the beam and 

bending modulus of the composite beam, respectively.  The beam is comprised of an 

active piezoelectric layer and a non-active layer and a perfect bond is assumed between 

the two layers. The width of the beam is b, as seen in YZ plane.  According to [31, 42] an 

Euler-Bernoulli beam is a long beam made of an isotropic material that is subjected to 

“pure bending”.  The cross section of the beam is symmetric to the XY plane as shown in 

Figure 2.1.  The cross-section is rigid in the YZ plane. In this model, it is assumed that the 
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cross-section of the beam remains plane and normal to the deformed axis of the beam after 

deformation. Also, the mechanical damping of the beam is expressed as a combination of 

the internal (strain-rate) and external (air) damping mechanisms.   

 

Figure 2.1: A cantilever unimorph beam subjected to an impulse load at the free end.  The electrode leads are attached 
at the top and bottom of the active piezoelectric layer. L is the length of the beam, YI is the bending modulus of the 

unimorph beam, m is mass per unit length, Py is the magnitude of the impulse acting on the beam, RL is the 
load resistance connected in series with the unimorph harvester beam and v(t) describes the voltage 
potential generated across the resistive load. 

  

The impulse load, Py, acts on the free end of the cantilever beam at time t = 0 secs.  

The equation of motion may be obtained by applying Hamilton’s Principle to the beam 

element, which results in an electromechanically coupled differential equation.  The 

differential equation may be solved using separation of variables, to obtain a coupled 

solution.  Decoupled solutions for the electrical output voltage and mechanical 

displacement are determined with the aid of MATLAB. 

2.2  Problem Formulation  

2.2.1 Determination of the location of the neutral axis   

The neutral axis (NA) of the unimorph is calculated prior to the calculation of the bending 
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 modulus. The cross section of the unimorph is comprised of two different materials; the 

active piezoelectric and the non-active materials.  To locate the neutral axis in the cross 

section , it is transformed into a cross-section of beam made of one of either material [43]. 

This technique is often used to find the bending modulus of composite beams such 

RCC[44]. The purpose of transforming the cross-section is limited to calculating the 

location of the sectional neutral axis.  Figure 2.2 (a) depicts the original beam cross section 

(prior to transformation).  The purpose of the non-active (electrically conductive layer) is 

to add mechanical strength to the unimorph structure and collect the current generated 

from the device.  The elastic modulus of the non-active layer is higher than the active 

piezoelectric layer.  Hence when the cross section is transformed into a section consisting 

of only the piezoelectric layer, where the width of the non-active layer is increased by a 

factor of n, which is the ratio of the elastic moduli of both materials, 

𝑛 =
𝑌𝑠

𝑌𝑝
 .                                                              (2.1) 

In equation (2.1), Ys and Yp represent the elastic Young’s moduli for non-active and 

piezoelectric layers respectively.  
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Figure 2.2: (a) The original cross section of the unimorph is for a beam consisting of two materials; piezoelectric and 
non-active layers and (b) is the converted cross section consisting of only one material, the piezoelectric material [45]. 

 

 In Figure 2.2 (a) the cross section of the unimorph is presented where ts, tp and b 

represent the distances from the neutral axis to the top and bottom of the beam, and width 

of the beam, respectively.  In Figure 2.2 (b) the equivalent cross section is depicted, which 

consists of only the active layer.  Here, tsa represents the thickness of the layer from the 

bottom of the non-active layer to the neutral axis.  The thickness of the layer from the 

bottom of the active layer to the neutral axis, tsa is expressed as [20]; 

 𝑡𝑠𝑎 =
𝑛 𝑡𝑠

2+2𝑡𝑠𝑡𝑝+𝑡𝑝
2

2(𝑛𝑡𝑠+𝑡𝑝)
.                                 (2.2) 

The length from the top of the active layer to the neutral axis, tpa, is expressed as,  

The distance from the center of the top layer to the neutral axis, tpc is calculated from, 

    𝑡𝑝𝑐 =
𝑛 𝑡𝑠(𝑡𝑝+𝑡𝑠)

2(𝑛𝑡𝑠+𝑡𝑝)
.                                                       (2.4) 

 𝑡𝑝𝑎 =
𝑛 𝑡𝑠

2+2𝑛𝑡𝑠𝑡𝑝+𝑡𝑝
2

2(𝑛𝑡𝑠+𝑡𝑝)
. (2.3) 
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    The boundaries of the beam are defined with respect to ta, which is the distance 

from the bottom of non-active layer to the NA.  Also, tb is the distance from the bottom of 

the piezoelectric layer (or top of non-active layer) to the NA, and tc is the distance from 

top of the piezoelectric layer to the NA. Thus ta, tb and tc are points of location throughout 

the structure, and are used as integration limits. 

 𝑡𝑐 = 𝑡𝑝𝑎, (2.5) 

 𝑡𝑏 = 𝑡𝑝𝑎 − 𝑡𝑝, (2.6) 

 𝑡𝑎 = −𝑡𝑠𝑎. (2.7) 

The internal moments acting on the beam will be evaluated using equations (2.5)-(2.7).  In 

the next section, the differential equation is derived. 

 

2.2.2 Mechanical Equation of Motion with Electrical Coupling  

     In this section the mechanical equation of motion with electrical coupling is 

derived.  The transverse displacement of any point on the beam along the neutral axis is 

denoted by w(x,t).  If the beam is assumed to be undergoing un-damped free vibration, 

the equation of motion obtained after application of Newton’s second law of motion is 

[46], 

 
𝑌𝐼
𝜕𝑤4(𝑥, 𝑡)

𝜕𝑥4
+𝑚

𝜕𝑤2(𝑥, 𝑡)

𝜕𝑡2
= 0. 

                       (2.8) 
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 The bending modulus for the composite beam will be derived in the next section.  

The two types of damping mechanisms included are the viscous air damping and Kelvin-

Voigt damping (or strain rate damping). These are prominent mechanisms for damping 

within an Euler-Bernoulli beam model as discussed by Banks H. and Inman D. in [47].  

Viscous air damping is the force acting on the beam due to air particles displaced when 

the beam is in motion.  Strain-rate damping accounts for the structural damping due to 

frictional internal in the beam [11].  The equation of motion that includes damping effects 

and a force acting on the beam is expressed as: 

 𝜕2 𝑀(𝑥, 𝑡)

𝜕𝑥2
+ 𝑐𝑠𝐼 

𝜕5𝑤(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝑐𝑎

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑚

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 𝑓𝑟(𝑥, 𝑡). 

(2.9) 

In equation (2.9) M and w are the internal moment acting on the beam and the transverse 

displacement of beam respectively. The damping coefficients are defined as csI for the 

strain-rate damping and ca for the viscous air damping, wherein cs is the equivalent 

coefficient of strain-rate damping and I is the equivalent area moment of inertia. 

The same equation can also be derived by applying Newton’s Second Law to the 

beam element, e.g. equating the forces and moment acting on the element with the 

acceleration due to inertia.  A detailed derivation of this equation is available in [46].  

        The constitutive equations for the isotropic non-active and active piezoelectric 

structures at constant temperature  according to [30] are expressed as: 

(for the non-active layer) 

 

𝑇𝑠1 = 𝑌𝑠𝑆1  (2.10) 
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and 

(for the active layer) 𝑆1 = 𝑠11
𝐸 𝑇1 + 𝑑31𝐸3. (2.11) 

The stress experienced by the active (piezoelectric) layer is, 

 𝑇𝑝1 = 𝑌𝑝(𝑆1 − 𝑑31𝐸3). (2.12) 

In equations (2.10) – (2.12), T, S, Y, d and E are the stress, strain, Young’s modulus, 

piezoelectric constant and electric field respectively.  Subscripts s and p denote properties 

for the non-active and the piezoelectric layers respectively.  sE11 is the elastic compliance 

at a constant electric field, and is the reciprocal of the Young’s modulus. 

          The internal moment acting on the beam can be obtained by integrating the first 

moment of the stress distribution over the cross-sectional area,  

 
𝑀(𝑥, 𝑡) =  −∫ 𝑇𝑠1𝑏 𝑧 𝑑𝑧 − ∫ 𝑇𝑝1𝑏 𝑧 𝑑𝑧

𝑡𝑐

𝑡𝑏

𝑡𝑏

𝑡𝑎

. 
(2.13) 

Substituting equations (2.10) and (2.12) into equation (2.13) renders, 

 
𝑀(𝑥, 𝑡) =  −∫ 𝑌𝑠 𝑆1𝑏 𝑧 𝑑𝑧 − ∫ 𝑌𝑝(𝑆1 − 𝑑31𝐸3)𝑏 𝑧 𝑑𝑧

𝑡𝑐

𝑡𝑏

𝑡𝑏

𝑡𝑎

. 
(2.14) 

The bending strain in terms of the radius of curvature of the beam under bending stress 

is expressed as:  

 
𝑆1 = −𝑧 

𝜕2𝑤 

𝜕𝑥2
. 

(2.15) 
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    Following the substitution of equation (2.15) into equation (2.14) and integration, 

the internal bending moment acting on the cross-section of the beam is, 

 
𝑀(𝑥, 𝑡) =  𝑌𝐼 

𝜕2𝑤

𝜕𝑥2
− 𝛾 𝑣(𝑡), 

(2.16) 

where YI  is the combined bending modulus of the beam. YI can be determined from, 

 
𝑌𝐼 = 𝑏 [

𝑌𝑠(𝑡𝑏
3 − 𝑡𝑎

3) + 𝑌𝑝(𝑡𝑐
3 − 𝑡𝑏

3)

3
], 

(2.17) 

where  
𝛾 = −

𝑌𝑝𝑑31(𝑡𝑐
2 − 𝑡𝑏

2)

2𝑡𝑝
. 

(2.18) 

 The voltage term in equation (2.16) is dependent on constants Yp, d31, tc, tb and tp.  To 

prevent the elimination of the voltage term during differentiation of equation (2.9), the 

voltage function is multiplied by a Heaviside step function, H(x) that ranges over the span 

of the beam.  

𝜕2

𝜕𝑥2
(𝑌𝐼 

𝜕2𝑤

𝜕𝑥2
− 𝛾 𝑣(𝑡)(𝐻(𝑥) − 𝐻(𝑥 − 𝐿))) + 𝑐𝑠𝐼 

𝜕5𝑤(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝑐𝑎

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
 

                                                                                          +𝑚
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
= −𝑃𝑦𝛿(𝑥 − 𝐿)𝛿(𝑡). 

(2.19) 

Equation (2.19) when simplified, takes the form; 
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𝑌𝐼
𝜕4𝑤

𝜕𝑥4
+ 𝑐𝑠𝐼 

𝜕5𝑤(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝑐𝑎

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+𝑚

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
− 𝛾 𝑣(𝑡) [

𝜕𝛿(𝑥)

𝜕𝑥
−
𝜕𝛿(𝑥 − 𝐿)

𝜕𝑥
] 

                                                                                                            = −𝑃𝑦𝛿(𝑥 − 𝐿)𝛿(𝑡). 

(2.20) 

The mechanical equation of motion that includes electrical coupling, equation (2.19), is 

obtained when equation (2.16) is substituted into equation (2.9).  In equation (2.19) and 

equation (2.20), the term (−𝑃𝑦𝛿(𝑥 − 𝐿)𝛿(𝑡)) is an impulse load acting at the tip of the beam 

at time t = 0 seconds. 

The general solution for the equation (2.20) is obtained using separation of 

variables, where it is assumed that the displacement is separated into two parts; one 

dependent on position and the other on time [48].  The general solution may be expressed 

as,   

                                                    𝑤(𝑥, 𝑡) = ∑ ∅𝑟(𝑥) 𝜂𝑟(𝑡),
∞
𝑟=1                                     (2.21) 

where 𝜙𝑟(𝑥) and 𝜂𝑟(𝑡) are the mass normalized eigenfunctions and modal coordinates of 

the cantilevered beam for the rth mode, respectively.  Also from [46] we can conclude that 

for an Euler-Bernoulli beam, the first five terms provide an accurate solution to the 

differential equation.  

      According to [47], for proportionately damped systems, the eigenfunctions 

denoted by 𝜙(𝑥)𝑟 are the same as the mass normalized eigenfunctions for an un-damped 

beam undergoing free vibration. These eigenfunctions may be determined from, 
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𝜙𝑟(𝑥) =  √(

1

𝑚𝐿
) [cosh 𝛽𝑟𝑥 + cos 𝛽𝑟𝑥 + 𝐶𝑟(𝑠𝑖𝑛ℎ𝛽𝑥 − 𝑠𝑖𝑛𝛽𝑥)], 

(2.22) 

where 𝛽𝑟 describes the range of dimensionless frequency numbers obtained from the 

characteristic equations: 

1 + cosh(𝛽𝑟𝐿) cos(𝛽𝑟𝐿) = 0                                (2.23) 

and                                                     

 𝐶𝑟 =
𝑠𝑖𝑛ℎ𝛽𝑟𝐿−𝑠𝑖𝑛𝛽𝑟𝐿

𝑐𝑜𝑠ℎ𝛽𝑟𝐿+𝑐𝑜𝑠𝛽𝑟𝐿
.                                         (2.24) 

The roots of (2.23) may be determined by using the fzero function in MATLAB.  Hence, the 

first five values for 𝛽𝑟L were determined to be, 

                   𝛽𝑟 =

{
 
 

 
 
1.8750
4.6491
7.8548
10.996
14.1372}

 
 

 
 

                           (2.25) 

The mass normalized eigenfunctions defined in (2.22) must satisfy the orthogonality 

conditions, 

                       ∫ 𝑚 𝜙𝑠𝜙𝑟𝑑𝑥 = 𝛿𝑟𝑠
𝐿

𝑥=0
,                                       (2.26) 

and          ∫ 𝑌𝐼 𝜙𝑠
𝜕4 𝜙𝑟

𝜕𝑥4
= 𝜔𝑟

2𝛿𝑟𝑠
𝐿

0
 ,                                         (2.27) 

where 𝛿𝑟𝑠 is the Kronecker’s delta. 

The un-damped natural frequency, 𝜔𝑟, is expressed as, 
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𝜔𝑟 = (𝛽𝑟)

2 √
𝑌𝐼

𝑚
. 

(2.28) 

Equation (2.20) is multiplied by  𝜙𝑠(𝑥) and integrated from 0 to L to obtain equation (2.29), 

which is an electromechanically coupled ordinary differential equation for modal 

response: 

 𝜕2𝜂(𝑡)

𝜕𝑡2
+ 2 𝜉𝑟𝜔𝑟  

𝜕𝜂(𝑡)

𝜕𝑡
+ 𝜔𝑟

2𝜂(𝑡) + 𝜒𝑟𝑣(𝑡) = 𝐹𝑟(𝑡) 
(2.29) 

where, 

 
2𝜉𝑟 = (

𝑐𝑠𝐼𝜔𝑟
2 𝑌𝐼 

+
𝑐𝑎

2𝑚𝜔𝑟
), 

(2.30) 

 𝜒𝑟 = 𝛾 (
𝑑𝜙(𝑥)

𝑑𝑥
)
𝑥=𝐿

,       

and  𝐹𝑟(𝑡) =  −𝑃𝑦(𝜙)𝑥=𝐿 𝛿(𝑡).  

𝑇he mechanical damping (strain rate and viscous air-damping) is 2𝜉𝑟.  

𝑇he following property is exploited to determine 𝜒𝑟, 

 
∫

𝑑𝑛𝛿(𝑥 − 𝑥0)

𝑑𝑥𝑛
   𝑓(𝑥)𝑑𝑥 = (−1)𝑛

𝑑𝑓𝑛(𝑥0)

𝑑𝑥𝑛
.

∞

−∞

 
(2.31) 

The solution for Equation (2.27) is obtained using Duhamel’s principle [46], and expressed 

as, 

 
𝜂(𝑡) =

1

𝜔𝑑𝑟
∫ [𝐹𝑟(τ) − 𝜒𝑟𝑣(𝜏)] 𝑒

−𝜉𝑟𝜔𝑟(𝑡−𝜏) sin(𝜔𝑑𝑟 (𝑡 − 𝜏)) 𝑑𝜏
𝑡

𝜏=0

, 
(2.32) 
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where 𝜔𝑑𝑟 = 𝜔𝑟√1 − 𝜉𝑟
2, is the damped natural frequency of the rth mode. In equation 

(2.32), 𝜂(𝑡) is a function of 𝑣(𝑡), which is to be determined. 

 

2.2.3 Coupled Electrical Circuit Equation of a Thin Piezo-ceramic Layer under 

Dynamic Bending  

Just as equation (2.20) is a mechanical equation of motion with electrical coupling, 

an electrical equation with mechanical coupling can be derived for the circuit described 

in Figure 2.3 (b) [4].  The constitutive relation for piezoelectric materials is given by, 

 𝐷3 = 𝑑31𝑇1 + 𝜀33
𝑇  𝐸3(𝑡), (2.33) 

where D3 is the electric displacement and ε33
T  is the permittivity at constant stress[30].  As 

shown in Equation (2.11), T1 can be written as: 

 𝑇1 = 𝑌𝑝(𝑆1 − 𝑑31𝐸3),  

The permittivity is replaced by permittivity at constant strain [30], by substituting 

equation (2.11) into equation (2.33), the electric displacement expression becomes,  

 𝐷3 = 𝑑31(𝑌𝑝𝑆1) −
𝜀33
𝑠 𝑣(𝑡)

𝑡𝑝
, (2.34) 
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Figure 2.3: (a) Unimorph cantilever connected to a resistive load and (b) Corresponding electrical circuit electrical 
circuit with piezoelectric capacitance and load resistance. 

  Equation (2.20) is the mechanical equation of motion with electrical coupling. The 

electrical equation with mechanical coupling can be derived for the electrical circuit 

described in Figure 2.3 (b) [4].  The constitutive relation for piezoelectric materials is given 

by, 

 𝐷3 = 𝑑31𝑇1 + 𝜀33
𝑇  𝐸3(𝑡), (2.35) 

where D3 is the electric displacement and 𝜀33
𝑇  is the permittivity at constant stress [30].  As 

shown in equation (2.12), T1 can be written as: 

 𝑇1 = 𝑌𝑝(𝑆1 − 𝑑31𝐸3).  

The permittivity is replaced by permittivity at constant strain[30], by substituting 

equation (2.12) into equation (2.35), to render an expression for electric displacement as a 

function of voltage:  

 𝐷3 = 𝑑31(𝑌𝑝𝑆1) −
𝜀33
𝑠 𝑣(𝑡)

𝑡𝑝
, (2.36) 

where      𝜀33
𝑠 = 𝜀33

𝑇 − 𝑑31
2 𝑌𝑝, (2.37) 
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and  
𝐸3(𝑡) =  −

𝑣(𝑡)

𝑡𝑝
. 

(2.38) 

The average bending strain can be expressed as a function of tpc, in equation (2.39),  

 𝑆1(𝑥, 𝑡) = = 𝑡𝑝𝑐
𝜕2𝑤

𝜕𝑥2
. (2.39) 

Substituting equation (2.40) into equation (2.41) yields: 

 𝐷3 = = 𝑑31𝑌𝑝𝑡𝑝𝑐
𝜕2𝑤

𝜕𝑥2
−
𝜀33
𝑠

𝑡𝑝
𝑣(𝑡). (2.40) 

The electric charge 𝑞(𝑡) developed in the piezoelectric layer can be expressed as, 

 𝑞(𝑡) = ∫𝐷 ⋅ 𝑛 𝑑𝐴, (2.41) 

where n is the normal vector and dA = bdx, is the electrode area i.e. the top section of the 

beam. 

Substitution of equation (2.40) into equation (2.41) yields, 

 𝑞(𝑡) = −∫ 𝑏 (𝑑31𝑌𝑝𝑡𝑝𝑐
𝜕2𝑤

𝜕𝑥2
+
𝜀33
𝑠

𝑡𝑝
𝑣(𝑡)𝑏 𝐿) 𝑑𝑥 

𝐿

0
. (2.42) 

The current flowing through the circuit is given as,  

 𝑖(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
= −∫ 𝑑31𝑌𝑝𝑡𝑝𝑐

𝐿

𝑥=0

𝜕3𝑤

𝜕𝑥2𝜕𝑡
𝑑𝑥 − 

𝜀33
𝑠

𝑡𝑝

𝑑𝑣(𝑡)

𝑑𝑡
𝑏 𝐿. (2.43) 

 From equation (2.43), it is evident that the current generated is due to the vibratory 

motion of the beam in response to the impulse load.  The current generated in the 

piezoelectric layer can also be expressed using Ohm’s law as, 
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 𝑖(𝑡) =
𝑣(𝑡)

𝑅𝐿
. (2.44) 

Substituting equation (2.44) back in to equation (2.43) yields, 

                                   
𝑣(𝑡)

𝑅𝐿
= −∫ 𝑑31𝑌𝑝𝑡𝑝𝑐

𝐿

𝑥=0

𝜕3𝑤

𝜕𝑥2𝜕𝑡
𝑑𝑥 − 

𝜀33
𝑠

𝑡𝑝

𝑑𝑣(𝑡)

𝑑𝑡
𝑏 𝐿,                       (2.45) 

Rearranged, equation (2.45) becomes, 

                                      
𝜀33
𝑠 𝑏 𝐿

𝑡𝑝

𝑑𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝑅𝐿
= − ∫ 𝑏 𝑑31𝑌𝑝𝑡𝑝𝑐

𝜕3𝑤 

𝜕2𝑥𝜕𝑡

𝐿

0
𝑑𝑥.                      (2.46) 

Applying Kirchhoff’s Law to the electrical circuit shown in Figure 2.3 (b) renders,  

                                              𝐶𝑝
𝑑 𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝑅𝐿
− 𝑖𝑝(𝑡) = 0 .                                               (2.47) 

The term  
𝜀33
𝑠

𝑡𝑝
𝑏 𝐿   is the capacitance across of the piezoelectric layer.  Substitution of 

equation (2.21) (the series form of solution) into equation (2.46) yields, 

 𝑑𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝜏𝑐
= ∑ 𝜑𝑟

𝑑𝜂𝑟(𝑡)

𝑑𝑡
 ∞

𝑟=1 , (2.48) 

where, 

                  𝜑𝑟 = −
𝑑31𝑌𝑝𝑡𝑝𝑐𝑡𝑝

𝜀33
𝑠 𝐿

∫
𝑑2 𝜙𝑟(𝑥)

𝑑𝑥2
𝑑𝑥 

𝐿

𝑥=0
 =

𝑑31𝑌𝑝𝑡𝑝𝑐𝑡𝑝

𝜀33
𝑠 𝑏 𝐿 

   (
𝑑𝜙𝑟(𝑥)

𝑑𝑥
)
𝑥=𝐿

.                 (2.49) 

and 

                                                            𝜏𝑐 =
(𝑅𝐿𝜀33

𝑠 𝑏 𝐿 )

𝑡𝑝
.                                              (2.50) 

The Leibniz rule for differentiation under integral sign states that, 
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 𝑑

𝑑𝑥
(∫ 𝑔(𝑡)𝑑𝑡 

𝑓2(𝑥)

𝑓1(𝑥)
) = 𝑔[𝑓2(𝑥)]𝑓2

′(𝑥) − 𝑔[𝑓1(𝑥)]𝑓1
′(𝑥). (2.51) 

Substituting 
𝑑𝜂

𝑑𝑡
 into equation (2.51) yields, 

 𝑑𝜂

𝑑𝑡
=

𝑑

𝑑𝑡
 ∫ [𝐹𝑟(𝜏) + 𝜒𝑟𝑣(𝜏)] 𝑒

−𝜉𝑟𝜔𝑟(𝑡−𝜏) sin(𝜔𝑑(𝑡 − 𝜏)) 𝑑𝜏
𝑡

0
,  

 = ∫ [𝐹𝑟(𝜏) + 𝜒𝑟𝑣(𝜏)] 𝑒
−𝜉𝑟𝜔𝑟(𝑡−𝜏)(−ξr ωr sin(𝜔𝑑(𝑡 − 𝜏) +

𝑡

0

𝜔𝑑 𝑐𝑜𝑠(𝜔𝑑(𝑡 − 𝜏))) 𝑑𝜏. 

(2.52) 

Substitution of equation (2.52) into equation (2.51) yields,  

𝑑𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝜏𝑐
=∑𝜑𝑟 

∞

𝑟=1

∫ [𝐹𝑟(𝜏)
𝑡

0

+ 𝜒𝑟𝑣(𝜏)] 𝑒
−𝜉𝑟𝜔𝑟(𝑡−𝜏)(−ξr ωr sin(𝜔𝑑(𝑡 − 𝜏) + 𝜔𝑑 𝑐𝑜𝑠(𝜔𝑑(𝑡 − 𝜏))) 𝑑𝜏 

(2.53) 

  Laplace transforms are used to solve equation (2.53), to obtain a decoupled 

solution for the voltage function, v (t). The right hand side of equation (2.53) can be viewed 

as a convolution of the terms (𝜏) and t.  The Laplace transform of a convolution is the 

product of the Laplace transforms of each individual term.  The step-wise procedure for 

applying Laplace transforms is provided below, where the final expression for V(s) is 

given in equation (2.54) 
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 𝑠𝑉(𝑠) +
1

𝜏𝑐
𝑉(𝑠) =

                              ∑
{ 𝜑𝑟ℒ [−𝑃𝑦𝛿(𝑡)] + 𝜒𝑟𝑣(𝑡)ℒ[𝑒

𝜉𝑟𝜔𝑟(𝑡−𝜏) sin𝜔𝑑(𝑡 − 𝜏) ]

+𝜒𝑟𝑣(𝑡)ℒ [𝜔𝑑cos 𝜔𝑑(𝑡 − 𝜏)] }  
∞
𝑟=1 , 

 

 𝑠𝑉(𝑠) +
1

𝜏𝑐
𝑉(𝑠) =  ∑ 𝜑𝑟 [−𝑃𝑦𝜙𝑥=𝐿 + 𝜒𝑟𝑉(𝑠)] (

−𝜉𝑟𝜔𝑟𝜔𝑑

(𝑠+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2  +

∞
𝑟=1

( 
𝜔𝑑 (𝑠+𝜉𝑟𝜔𝑟)

(𝑠+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2)), 

 

  

𝑉(𝑠) [ 𝑠 +
1

𝜏𝑐
− 𝜑𝑟𝜒𝑟 (

𝑠𝜔𝑑

(𝑠+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2)] =

(−𝑃𝑦 𝜙𝑥=𝐿𝜑𝑟𝜔𝑑𝜏𝑐𝑠)

(𝑠+𝜉𝑟𝜔𝑟)
2
+𝜔𝑑

2
, 

 

  

𝑉(𝑠) =
(−𝑃𝑦 𝜑𝑟 𝜙𝑥=𝐿 𝜒𝑟 𝜔𝑟𝜏𝑐)𝑠

𝜏𝑐𝑠3+(2𝜉𝑟𝜔𝑟𝜏𝑐+1)𝑠2+(𝜏𝑐𝜔𝑟
2+2 𝜉𝑟𝜔𝑟+ 𝜒𝑟𝜑𝑟𝜔𝑑𝜏𝑐)𝑠+𝜔𝑟

2. 

 

(2.54) 

 

In equation (2.45), a, b, and c are designated as roots of the denominator.  The roots 

can be real or complex in nature.  A damped vibratory system exhibits an exponential 

function.  Hence, the real parts of the roots must be negative. This can be used as a check 

to analyze the validity of the expressions obtained later.  However, due to the nature of 

the denominator, the roots have to be obtained numerically by plugging values into 

MATLAB and using the function- roots (). 

The values for Τ𝑐 , 𝜔𝑟, 𝜔𝑑  𝑎𝑛𝑑 𝜒𝑟  can be found using the formulae mentioned above.  

The first five modes are considered for our solution. The value for modal damping ratios 
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are taken as (0.010, 0.013, 0.033, 0.064, 0.106) from [15] and the damping ratios for the first 

two modes were determined experimentally in the work of Erturk A. and Inman D.J.[15].. 

The remaining values are found using equation (2.30).  The dimensions of the beam 

considered are selected from [4], because the damping ratios utilized are from this 

reference.  The properties of the materials of the unimorph are enlisted in Table 2.1 below. 

Table2.2: Geometric, material and electromechanical parameters of the beam from [15] . 

Length of the beam, L (mm) 100 

Width of the beam, b (mm) 20 

Thickness of the substructure, ts (mm) 0.5 

Thickness of the PZT, tp (mm) 0.4 

Young’s modulus of the substructure, Ys (GPa) 100 

Young’s modulus of the PZT, Yp (GPa) 66 

Mass density of the substructure, ps (kg/m3) 7165 

Mass density of the PZT, pp (kg/m3) 7800 

Piezoelectric constant, d31  (pm/V) −190 

Permittivity, 𝜀33
𝑠  (nF/m) 15.93 

 

Thus, equation (2.45) can be written as, 
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 𝑉(𝑠) = −𝑃𝑦𝜔𝑑𝜙𝑥=𝐿𝜏𝑐𝜑𝑟  (
𝑠

(𝑠−𝑎)(𝑠−𝑏)(𝑠−𝑐)
). (2.56) 

Taking Laplace inverse transform of equation (2.46), renders decoupled closed form 

expressions for the voltage generated within the piezoelectric layer due to impulse load 

acting on the tip end of the cantilever beam.  

 𝑣(𝑡) = −𝑃𝑦𝜔𝑑𝜙𝑥=𝐿𝜏𝑐𝜑𝑟 (𝐴 𝑒
𝑎𝑡 + 𝐵𝑒𝑏𝑡 + 𝐶𝑒𝑐𝑡), (2.57) 

where 𝐴 =
𝑎

(𝑎−𝑏)(𝑎−𝑐)
,    𝐵 = −

𝑏

(𝑎−𝑏)(𝑏−𝑐)
,      𝐶 =

𝑐

(𝑎−𝑐)(𝑏−𝑐)
.  

 

Substitution of equation (2.57) into equation (2.32) produces the decoupled solution for 

the modal response of the unimorph beam, 

 
𝜂𝑟(𝑡) = ∫ (−𝑃𝑦𝜙𝑥=𝐿𝛿(𝜏) − 𝜒𝑟𝑣(𝜏))

𝑡

0

(𝐴𝑒𝑎𝜏 + 𝐵𝑒𝑏𝜏 + 𝐶𝑒𝑐𝜏) 

𝑒𝑟
−𝜉𝑟𝜔𝑟(𝑡−𝜏) sin (𝜔𝑑(𝑡 − 𝜏)𝑑𝜏. 

Upon integrating this expression, the solution obtained is,  
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𝜂𝑟(𝑡) =            −𝑃𝑦𝜙𝑥=𝐿𝑒
−𝜉𝑟𝜔𝑟𝑡 sin(𝜔𝑑𝑡) +   𝜒𝑟𝑃𝜙𝑥=𝐿𝑦𝜑𝑟𝜔𝑑𝜏𝑐 

                          [(
𝐴

(𝑎+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2 (𝑒

𝑎𝑡   + 𝑒−𝜉𝑟𝜔𝑟𝑡((𝑎 + 𝜉𝑟𝜔𝑟)𝑠𝑖𝑛(𝜔𝑑𝑡) −

𝜔𝑑 cos(𝜔𝑑𝑡)))) +
𝐵

(𝑏+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2 (𝑒

𝑏𝑡 + 𝑒−𝜉𝑟𝜔𝑟𝑡((𝑏 + 𝜉𝑟𝜔𝑟)𝑠𝑖𝑛(𝜔𝑑𝑡) −

𝜔𝑑 cos(𝜔𝑑𝑡)) +
𝐶

(𝑐+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2 (𝑒

𝑐𝑡 + 𝑒−𝜉𝑟𝜔𝑟𝑡((𝑐 + 𝜉𝑟𝜔𝑟)𝑠𝑖𝑛(𝜔𝑑𝑡) − 𝜔𝑑 cos(𝜔𝑑𝑡)))]]. 

(2.58) 

       The mechanical response of the beam can be obtained by substituting equation 

(2.21) and equation (2.58) back into the summation term described in equation (2.21). The 

displacement of the free end can be obtained by substituting x=L into the solution. 

𝑤(𝐿, 𝑡) = ∑ ∅𝑟(𝐿) 𝜂𝑟(𝑡)
∞
𝑟=1 . 

𝑤 (𝐿, 𝑡) = ∑ (√(
1

𝑚𝐿
) [cosh 𝛽𝑟𝑥 + cos 𝛽𝑟𝑥 + 𝐶𝑟(𝑠𝑖𝑛ℎ𝛽𝑥 −

∞
𝑟=1

𝑠𝑖𝑛𝛽𝑥)] ) ( −𝑃𝑦𝜙𝑥=𝐿𝑒
−𝜉𝑟𝜔𝑟𝑡 sin(𝜔𝑑𝑡) +   𝜒𝑟𝑃𝜙𝑥=𝐿𝑦𝜑𝑟𝜔𝑑𝜏𝑐   [(

𝐴

(𝑎+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2 (𝑒

𝑎𝑡   +

𝑒−𝜉𝑟𝜔𝑟𝑡((𝑎 + 𝜉𝑟𝜔𝑟)𝑠𝑖𝑛(𝜔𝑑𝑡) − 𝜔𝑑 cos(𝜔𝑑𝑡)))) +
𝐵

(𝑏+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2 (𝑒

𝑏𝑡 +

𝑒−𝜉𝑟𝜔𝑟𝑡((𝑏 + 𝜉𝑟𝜔𝑟)𝑠𝑖𝑛(𝜔𝑑𝑡) − 𝜔𝑑 cos(𝜔𝑑𝑡)) +
𝐶

(𝑐+𝜉𝑟𝜔𝑟)2+𝜔𝑑
2 (𝑒

𝑐𝑡 + 𝑒−𝜉𝑟𝜔𝑟𝑡((𝑐 +

𝜉𝑟𝜔𝑟)𝑠𝑖𝑛(𝜔𝑑𝑡) − 𝜔𝑑 cos(𝜔𝑑𝑡)))]]). 

(2.59) 
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The solution obtained from this derivation is validated in Chapter 3.  
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Chapter 3 

 

3.  Results, Discussion and Model Validation  

  
The closed form solutions for prediction of the output voltage potential and tip 

displacement (Equations 2.57 and 2.59 respectively) have been developed for an Euler-

Bernoulli cantilever beam subjected to a mechanical impulse load at its free end. The 

solution set to these equations were achieved using a series of MATLAB codes (script 

developed as part of this thesis is available in Appendix A).  The solution set for the tip 

displacement, w (L,t), voltage generated, v(t), and the power generated, P(t), across a load 

resistance are plotted as a function of time t (seconds).   

The device is assumed to be an Euler-Bernoulli beam. The predictions from the 

model will be verified and compared to the trends observed in the work of Gao X. et. al. 

[3].  In order to utilize the values of the modal damping ratios for the unimorph which 

have been previously calculated in the work of Erturk A. et. al. [4]; the dimensions of the 

beam in this thesis are the same as the dimensions of the beam in the work of Erturk A. et. 

al.. In [4], Erturk A. et. al. studied the electrical and mechanical response of an unimorph 

subjected to base excitation at  resonant frequencies.  The dimensions for the beam used 

in this study and those for the beam studied by Erturk. et al.[4], and are summarized in 

Table 3.1. The impulse load applied to the tip of the beam is -0.01N and time interval for 

the impulse was set equal to 1 millisecond. 
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Table 3.3: Geometric, material and electromagnetic properties of the unimorph cantilever beam in Erturk A. et.al. [4] 

Variable Description (units) Erturk A. et al. 

[4] 

This Thesis 

L Length of the beam (mm) 100 100 

b Width of the beam (mm) 20 20 

ts Thickness of the substructure (mm) 0.5 0.5 

tp Thickness of the PZT (mm) 0.4 0.4 

Ys Young’s modulus of the non-active layer (GPa) 100 100 

Yp Young’s modulus of the PZT (GPa) 66 66 

𝜌s Mass density of the substructure (kg/m3) 7165 7165 

𝜌p Mass density of the PZT (kg/m3) 7800 7800 

d31 Piezoelectric constant (pm/V) −190 −190 

𝜀33
𝑠  Permittivity (nF/m) 15.93 15.93 

 

3.1        Tip displacement of the free end of the cantilever beam 

The displacement, w (L,t),  of the free end of the cantilever beam subjected to an 

impulse load of -0.01 N, for 1 millisecond (ms) is plotted as a function of time in Figure 

3.1. . The force acts at time t = 0 seconds. The tip reaches the maximum displacement of w 
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= -0.0134 m, and undergoes oscillatory decay, where a displacement equal to 0 is achieved 

when the time t=1 second. The tip displacement profile observed is an exponential decay 

as a function of time due to viscous damping due to air surrounding the beam and internal 

strain-rate damping within the beam.  

 

Figure 3.1: Displacement of the free end of the cantilever beam under impulse load. 

 

The displacement trend observed in this work is similar to the trend observed by 

Gao X. et. al. [3] for the tip deflection of a unimorph cantilever. In the work of Gao X. et. 

al. in [3], a concentrated force was applied to the tip of a piezoelectric unimorph cantilever 

using a load cell., which bends the unimorph beam. The resultant tip displacement and 

voltage generated were plotted versus time as shown in Figure 3.3. The dimensions of the 

beam studied by Gao. X. et. al. have been enlisted in the table below.  
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Table 3.4: Geometric, material and electromagnetic properties of the unimorph cantilever beam in Gao X. et. al.[3] 

Variable Description (units) Gao et al. [4] This Thesis 

L Length of the beam (mm) 12 100 

b Width of the beam (mm) 2.05 20 

ts Thickness of the substructure (𝜇m) 50 0.5 

tp Thickness of the PZT (𝜇m) 127 0.4 

Ys Young’s modulus of the non-active layer (GPa) 200 100 

Yp Young’s modulus of the PZT (GPa) 62 66 

𝜌s Mass density of the substructure (kg/m3) 7900 7165 

𝜌p Mass density of the PZT (kg/m3) 7800 7800 

d31 Piezoelectric constant (pm/V) −320 −190 

 

The resultant tip displacements for the piezoelectric unimorph cantilever beam 

were obtained empirically and plotted versus time.  As seen in Figure 3.2 after the force 

was applied at time t = 0 second, the tip displacement increased and reached the peak 

value of 35 𝜇m at about t=1.7 milliseconds followed by oscillatory decay with time,  

indicating underdamped transient response. The tip displacement obtained from the 

analytical model (Figure 3.1) presented in this thesis follows the trends similar to Figure 

3.2.  
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Figure 3.6:Tip displacement and induced voltage versus time of cantilever unimorph when a 10 V DC voltage was applied 
to the load cell at t = 0 [3]. 

 

3.2        Voltage generated across the resistive load 

The electrical circuit configuration for the unimorph is shown in Figure 3.3 where 

the voltage across a resistive load, RL is used to calculate the output voltage and power 

generated by the system.  In Figure 3.3, Cp represents the internal capacitance of the 

piezoelectric layer. 

 

Figure 3.3: Electrical configuration of a unimorph cantilever connected to resistive load[4]. 
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The voltage generated across the resistive load as given by Equation (2.57), 

                                   𝑣(𝑡) = −𝑃𝑦𝜔𝑑𝜙𝑥=𝐿𝜏𝑐𝜑𝑟 (𝐴 𝑒
−𝑎𝑡 + 𝐵𝑒−𝑏𝑡 + 𝐶𝑒−𝑐𝑡) ,                          (3.1) 

where:                        𝐴 =
𝑎

(𝑎−𝑏)(𝑎−𝑐)
 ,    𝐵 = −

𝑏

(𝑎−𝑏)(𝑏−𝑐)
  , 𝐶 =

𝑐

(𝑎−𝑐)(𝑏−𝑐)
. 

The voltage generated is exponentially proportional to the roots a, b, c and time t 

which is a solution set of generated using MATLAB. From equation (2.54) it is seen that 

the roots a, b and c are dependent upon 𝜔𝑟 , 𝜉𝑟  , 𝜏𝑐, 𝜒𝑟, 𝜑𝑟. From equations (2.27), 

(2.30),(2.49) and (2.50) it can be said that 𝜔𝑟 ,𝜉𝑟  , 𝜏𝑐, 𝜒𝑟, 𝜑𝑟 are dependent on the  mass per 

unit length (m), permittivity (𝜀33
𝑠  ), length ( L ), piezoelectric constant (d31), Young’s 

modulus Y, beam thickness, beam width (b), and load resistance (RL).   

For a given configuration for the cantilever unimorph, the geometric dimensions 

of the beam and material properties remain constant, hence the value of 𝜔𝑟 ,𝜉𝑟 , 𝜒𝑟, 𝜑𝑟 

remain constant. The value of 𝜏𝑐 is directly proportional to RL from Equation (2.50). Thus 

the value of the roots vary with the respect to the load resistance RL. As the value of load 

resistance RL across the circuit increases the values of a, b and c increase. Due to this 

increase in the exponential power, the value of voltage approaches zero quicker with the 

increase in RL. Presented below are plots for the voltage generated across the electrodes 

when the load resistance connected in the circuit is 100 Ωs (Figure 3.4) and 1 K−Ω (Figure 

3.5). The resistance values were selected such as to demonstrate the quicker dampening 
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of the generated voltage with increase in the resistance values.  In Figure 3.4 the maximum 

voltage generated is 0.0052 Volts, but it is consistent with the tip displacement. 

 

Figure 3.4: Voltage generated across a load resistance of 100 Ohms. 

   Comparing Figure 3.4 and Figure 3.5, the maximum voltage generated in the later 

is 0.121 Volts, but the exponential decay to the X axis is quicker. Hence it can be said that 

with increasing load resistance, the value of the peaks or the maximum load generated 

increases. But voltage generation quickly dampens down to negligible values. 
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Figure 3.5: Voltage generated across a load resistance of 1K-Ohm. 

 

3.3        Instantaneous current generated through the load 

The current flowing through the resistive load is obtain using the Ohm’s law i (t) 
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resistance. The solution values for instantaneous current are plotted as function of time 
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decays quicker in comparison and attain values negligible with respect to the peak current 

value, hence they are represented on the plot by a flat line. 

 

Figure 3.6: Current flowing through the current of 100 Ohms 
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Figure 3.7: Current flowing through the current of 1 K Ohms 

 

 

3.4        Instantaneous power generated across the load. 

The instantaneous power generated power generated across the resistive load can thus 

be obtained as P (t) = v2 (t) /RL. The instantaneous power generated for the load resistance 

of 100 Ωs and 1 K Ω are plotted as a function of time Figure 3.8 and Figure 3.9. 
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Figure 3.8: Power generated across a load resistance of 100 Ohms. 

The maximum power generated by the unimorph cantilever when the connected to a 

resistance of 100 Ωs is 0.275𝜇Ws.

 

Figure 3.9: Power generated across a load resistance of 1 K Ohm. 
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The maximum power generated by the unimorph cantilever when the connected 

to a resistance of 1 KΩ is 14.6 𝜇W. The unimorph can be connected to a circuit consisting 

rectifiers for post conditioning and connected to a secondary battery to harvest this power.  

3.5       Efficiency calculations 

The efficiency of a system is defined as the output obtained for the applied input. 

The efficiency for this system can be defined as the percentage of energy utilized from the 

applied impulse load. 

                                      𝛨ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑟 =
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑏𝑦 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑜𝑟𝑐𝑒
 x 100,                                     (3.2) 

The work done by the force applied to the beam is obtained by multiplying the magnitude of the 

force and the displacement.  

                                                     𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 = 𝑓𝑜𝑟𝑐𝑒 x  𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡.                                               (3.3) 

The magnitude of the impulse load acting on the beam is 0.01 and the corresponding 

displacement achieved due to this force is 13.4 mm. The total work done by the impulse load is: 

𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 = 0.01 x  13.4𝑒 − 3 N-m, 

= 1.34𝑒 − 4. 

The total energy generated by the harvester is obtained by integrating the area under the plot for 

instantaneous power. This is obtained by using the Matlab function trapz(). The energy generated 

in the harvester when a load resistance of 100 Ω is connected across the circuit is 0.7341 µW.  

Substituting the values of the work done and electrical energy generated in equation (3.2), 

𝛨ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑟 =
0.7341 𝑒 − 06

1.341 𝑒 − 04
 x 100 = 0.562% 

 The harvester efficiency when the load resistance is 100 Ω is 0.562%. 

 

The energy generated in the harvester when a load resistance of 1 KΩ is connected across the 

circuit is 325 µW.  

Substituting the values of the work done and electrical energy generated in equation (3.2), 

𝛨ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑟 =
32.5 𝑒 − 06

1.341 𝑒 − 04
 x 100 = 24.9% 
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 The harvester efficiency when the load resistance is 1KΩ is 24.9%.  

 

 

From the discussion hitherto, it can be said that the current configuration of 

unimorph is suitable for resistances lower than 1 KΩ, due to the consistent voltage and 

current generation over extended period. 

Typical micro sensors have power requirements ranging from 30𝜇W to 150𝜇W [49-

51]. The impulse load acting on the beam can replicate the touch gesture as is applied on 

the present day touch screen devices. Touch screen devices have undergone vast 

development over the past decade [51] and it could be said that such device are subjected 

to incessant impulse load in the form of screen touches over the duration of its use. If the 

power generated by the unimorph harvester due to each such impulse load is harvested 

and stored it can be used to satisfy the power requirements mentioned for the sensors 

above.  
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Chapter 4 

4.        Conclusion and Future Work 

 

 4.1        Conclusions 

In this thesis an analytical model for a cantilever unimorph beam was presented. 

The model was based on Euler-Bernoulli assumptions, where the internal strain-rate 

damping and external viscous damping were included for accuracy. The unimorph beam 

was excited by an impulse load acting on the free end of the cantilever beam. The impulse 

load was represented by a delta function. This work builds upon the analytical model for 

a piezoelectric unimorphs presented by Erturk A. and Inman D.[4], which is limited to 

solving problems involving harmonic loading expressed as an exponential function of the 

excitation frequency and time.  In the present work, the analytical approach may be used 

to solve cantilevered beams subjected to non-harmonic force loading.  This procedure can 

also be used to solve conventional problems such as the one solved in the work of Erturk 

A. and Inman D.[52].   

The piezoelectric unimorph beam proposed in this thesis was modeled as an Euler-

Bernoulli beam.   Electromechanically coupled equations of motion were derived for the 

beam by applying Newton’s second law of motion.  The equations of motion are solved 

to obtain closed form solutions to predict the tip displacement, voltage generated across 

the load and power generated when the harvester was connected in series with a load 
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resistance. These de-coupled closed form solutions for response can be used for any 

cantilever unimorph which satisfy the assumptions for the Euler-Bernoulli beam theory.  

A MATLAB script was written to solve the expressions mathematically for the 

known boundary conditions, loading conditions and electromechanical properties. Using 

MATALB, data sets of solutions for the tip displacement, voltage generated and power 

output are obtained. The data set generated for the tip displacement, voltage generated 

and power output are plotted as a function of time.  The plot for tip displacement dampens 

exponentially, similar to the plot for tip displacement of a unimorph cantilever beam 

plotted in the work of Gao X. et. al. [12]. 

 The voltage generated across the resistive load has been plotted as function of 

time. The peak values for the voltage increases with the increase in the load resistance 

value. But the exponential decay of the voltage increased with increase in the resistance.    

The current flowing through the load resistance was plotted as a function of time. 

The maximum value of the current flowing through the resistor increases with increases 

the increase in the load resistance. But unlike the voltage generated the current remains 

with the range on microamperes. As the resistance increases the current production 

dampens down quickly.  

The power generated across the load resistance due to each impulse load was 

plotted as a function of time. The value for the power generated were compared with the 

power requirements for modern micro-sensors.  Hence it could be said that the particular 
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configuration for the unimorph harvester was suited for resistance values lower than 1 K-

Ω as the voltage generation and current flow is consistent and continuous. 

In summary, this model can be used for the prediction of the electrical response of 

the unimorph when subjected to a non-harmonic load. It can be used to move towards a 

generalized model which can predict the power output for forces that are not a function 

of frequency as well as conventional forces which have been previously studied in the 

works of Erturk A. [4]and Gao X. et.al[12]. 

 

4.2        Future Work 

 The model presented in this thesis can further be developed for energy harvesting. 

Auxiliary components such as a circuit consisting of bridge rectifiers and capacitors are 

needed to regulate the voltage surges. The energy generated after condition the electrical 

output can be used to charge any secondary source of power. Also further investigations 

can be made to study the response of the beam when it is subjected to base motion 

excitation as well as impulse loading at the same time.  

 Touch gesture based technology is now present within a large extent of electronics 

like PDA, smart phones, car navigation systems, tablets, personal computers, user 

interfaces for industrial machines. The touch gesture by a person has been mathematically 

modeled as an impulse load acting in the model discussed before. Further research can be 

made regarding how this energy harvester can be used to tap the impulse created by the 

incessant touches and generate power to support micro-sensors within the electronics 
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circuit. The model discussed in the anterior can be developed to harvest energy from such 

touch gestures and other base excitations as well.  
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Appendix  

MATLAB Code Script 

The MATLAB script is as follows:  

Hybrid Energy Systems Lab, Rutgers University, New Brunswick 

%%Analytical model of a Cantilever Unimorph Beam under Impulse load 

%%Presented by Abhinav Athavale 

Under the guidance of Dr. Kimberly Cook-Chennault 

clear;clc;       %clearing screen and previous variables 

Defining Basic Parameters of the Unimorph Beam 

Calculating the distances of the top and the bottom of the beam from the neutral axis 

Y_p=66e+09;      %Youngs Modulus of PZT(GPa) 

Y_s=100e+09;     %Youngs Modulus of Substrate(GPa) 

t_p=0.4e-03;     %Thickness PZT(m) 

t_s=0.5e-03;     %Thickness Substrate(m) 

d_31=-190e-12;   %Dielectric constant(pm/V) 

L=100e-03;       %Length of the beam(m) 

Ro_p=7800;       %Density of PZT(kg/m^3) 

Ro_s=7165;       %Density of Substrate(kg/m^3) 

b=20e-03;        %Width of the Beam(m) 

 

e_33=15.93e-09;  %permitivity in nano-Farad/meter 

R_l= 1e+03;      %Load Resistance in Ohms 
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[Vu,YI,t_a,t_b,t_c,t_pc]=Upsilon(Y_p,Y_s,d_31, t_p,t_s,b); %Constant in the 

governing differential and Bending Stiffness of the Beam 

Calculating mass per unit length of the beam 

m= b*(t_p*Ro_p+t_s*Ro_s); 

Calculation of the spatial solution phi(x) 

Calculating constants dependent on the spatial solution 

Beta_L=roots_L; 

Beta=Beta_L/L; 

[phi,phi_diff,X_r, vphi_r]=constant(Beta_L,Beta,m,Vu,d_31,Y_p, t_pc, t_p, 

e_33,L); 

Calculating the natural and damped frequencies of first 4 modes using definition. 

Xi=[0.01 0.013 0.033 0.064]; % Damping ratios according to paper 

[w_r,w_d]= freq(Beta,YI,m,Xi); % Frequencies  

freq_r=w_r/(2*pi);   % obtaining frequencies in Hz 

 

%% Calculating Tau_c and roots to Laplace Equation 

 

Tau_c=(R_l*e_33*b*L)/t_p; %calculating constant Tau_c 

[p,r_1,r_2,r_3]=roots_c(Xi, w_r,w_d, X_r, vphi_r,Tau_c); 

Calculating voltage generated. 

Constants required P_y ,varphi, phi_L, w_d, Tau_c 
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P_y = -1e-02;              %magnitude of force. 

t= 0:0.01:1; 

[v,volt,A,B,C] = voltage(P_y, vphi_r, phi, w_d, Tau_c, r_1, r_2, r_3,t); 

Calculating modal solution eta(t) 

n_t=modes(P_y,Xi,w_r,w_d,t,A,B,C,r_1,r_2,r_3,X_r,vphi_r,phi,Tau_c); 

Calculating displacement 

w =summation(phi,n_t,t); 

w=transpose(w); 

Calculating power 

pw= elec_power(v,R_l); 

Plotting the expressions against time 

plot(t,w); 

title('Graph of Tip Displacement Vs Time') 

xlabel('Time (sec)') % x-axis label 

ylabel('Tip Displacement (m)') % y-axis label 

pause(2); 

 

plot(t,v); 

title('Graph of Voltage Vs Time') 

xlabel('Time (sec)') % x-axis label 

ylabel('Voltage (V)') % y-axis label 

pause(2); 

 

 

plot(t,pw); 
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title('Graph of Power Vs Time') 

xlabel('Time (sec)') % x-axis label 

ylabel('Power (W)') % y-axis label 

 

hold off; 

% End of code 

Function called to obtain Eigen Functions%% 

function [z]= roots_L() 

%Calculated the roots to characteristic root equation Equation (2.22)% 

clear 

f=@fun; 

x0=1; 

j=1; 

z=zeros(1,4); 

while and(x0<100,j<5) 

    z(j)=fzero(f,x0); 

    x0=x0+3; 

    j=j+1; 

end 

end 

 

function r= fun(x) 

r=1+(cos(x)*cosh(x)); 

end 

Function to calculate constants related to the natural frequencies 

function[phi,phi_diff,X_r,vphi_r] = constant(Beta_L,Beta,m,Vu,d_31,Y_p, t_pc, 

t_p, e_33,L) 

Calculates Phi, d phi/dx ,X_r and returns to main. 
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B = zeros(1,length(Beta_L)); 

phi = zeros(1,length(Beta_L)); 

phi_diff = zeros(1,length(Beta_L)); 

vphi_r = zeros(1,length(Beta_L)); 

 

for k  = (1:length(Beta_L)) 

 

B(k)=(sinh(Beta_L(k))-sin(Beta_L(k)))/(cosh(Beta_L(k))+cos(Beta_L(k))); 

 

phi(k)=sqrt(1/(m*L))*(cosh(Beta_L(k))-cos(Beta_L(k))-       

B(k)*(sinh(Beta_L(k))-sin(Beta_L(k))));         % phi at x=L equivalent to 

(2*sinh(Beta_L(k))*sin(Beta_L(k)))/(cosh(Beta_L(k))+cos(Beta_L(k))) 

 

phi_diff(k)=sqrt(1/(m*L))*Beta(k)*(sinh(Beta_L(k))+sin(Beta_L(k))-

B(k)*(cosh(Beta_L(k))-cos(Beta_L(k))));         % phi` at x=L equivalent to     

2*(sin(Beta_L(k))*cosh(Beta_L(k))+cos(Beta_L(k))*sinh(Beta_L(k)))/(cosh(Beta_L(

k))+cos(Beta_L(k))); 

 

a=-(d_31*Y_p*t_pc*t_p)/(e_33*L); 

vphi_r(k)=a*phi_diff(k); 

end 

X_r=Vu*phi_diff; 

end 

Calculating the natural and damped frequencies of first 4 modes using definition. 

function [w_r,w_d] =freq(Beta,YI,m,Xi) 

w_r=zeros(1,length(Beta)); 

w_d=zeros(1,length(Beta)); 

for k=(1:length(Beta)) 

w_r(k)=((Beta(k))^2*sqrt(YI/m)); %natural frequencies 

w_d(k)=w_r(k)*sqrt(1-(Xi(k))^2); % corresponding damped frequencies 

 end 

end 
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Calculating roots to denominator of Equation (2.45) 

function [r,r_1,r_2,r_3] = roots_c( Xi, w_r,w_d, X_r, vphi_r,Tau_c) 

r=zeros(3,4); 

p=zeros(1,4); 

Calculating coefficients of the cubic equation. 

for j=1:length(Xi) 

    a=Tau_c; 

    b=(2*Xi(j)*w_r(j)*Tau_c+1); 

    c=(Tau_c*(w_r(j))^2+2*Xi(j)*w_r(j)+X_r(j)*vphi_r(j)*w_d(j)*Tau_c); 

    d=(w_r(j))^2; 

    p(j,:)=[a b c d]; 

end 

Calculating roots from the coefficients 

for j=1:length(Xi) 

r(:,j)=roots(p(j,:)); 

end 

% collecting roots in the sepearte tems 

for j=1:1:3 

    r_1=r(1,:); 

    r_2=r(2,:); 

    r_3=r(3,:); 

 end 

end 
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Calculating voltage generated. 

Constants required P_y varphi phi_L w_d Tau_c 

function [v,volt,A,B,C]= voltage(P_y, vphi_r, phi, w_d, Tau_c, r_1, r_2, r_3,t) 

volt = zeros(length(vphi_r),length(t)); 

v = zeros(length(t),1); 

A = zeros(1,length(vphi_r)); 

B = zeros(1,length(vphi_r)); 

C = zeros(1,length(vphi_r)); 

for k=1:length(r_1) 

    A(k)= r_1(k)/((r_1(k)-r_2(k))*(r_1(k)-r_3(k))); 

    B(k)= -r_2(k)/((r_1(k)-r_2(k))*(r_2(k)-r_3(k))); 

    C(k)= r_3(k)/((r_1(k)-r_3(k))*(r_2(k)-r_3(k))); 

    for j=1:length(t); 

         volt(k,j)= P_y*vphi_r(k)*phi(k)* w_d(k)*Tau_c*... 

             ( 

A(k)*exp(r_1(k)*t(j))+B(k)*exp(r_2(k)*t(j))+C(k)*exp(r_3(k)*t(j))); 

    end 

end 

for k=1:length(t) 

    v(k)= volt(1,k)+volt(2,k)+volt(3,k)+volt(4,k); 

 

end 

end 

Calculating modal solution eta(t) 

function n_t=modes(P_y,Xi,w_r,w_d,t,A,B,C,r_1,r_2,r_3,X_r,vphi_r,phi,Tau_c) 

n_t=zeros(length(r_1),length(t)); 

for j=1:length(r_1) 

    

A(j)=X_r(j)*P_y*vphi_r(j)*phi(j)*Tau_c*A(j)/((r_1(j))^2+2*Xi(j)*w_r(j)*r_1(j)+(
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w_r(j))^2); 

    

B(j)=X_r(j)*P_y*vphi_r(j)*phi(j)*Tau_c*B(j)/((r_2(j))^2+2*Xi(j)*w_r(j)*r_2(j)+(

w_r(j))^2); 

    

C(j)=X_r(j)*P_y*vphi_r(j)*phi(j)*Tau_c*C(j)/((r_3(j))^2+2*Xi(j)*w_r(j)*r_3(j)+(

w_r(j))^2); 

end 

 

for j=1:length(r_1) 

    for k=1:length(t) 

        n_t(j,k)= (P_y*phi(j)*(exp(-

Xi(j)*w_r(j)*t(k)))*sin(w_d(j)*t(k))/w_d(j))... 

           -A(j)*(w_d(j)*exp(r_1(j)*t(k))-exp(-

Xi(j)*w_r(j)*t(k))*(r_1(j)+Xi(j)*w_r(j))*sin(w_d(j)*t(k))-exp(-

xi(j)*w_r(j)*t(k))*(w_d(j)*cos(w_d(j)*t(k))))... 

           -B(j)*(w_d(j)*exp(r_2(j)*t(k))-exp(-

Xi(j)*w_r(j)*t(k))*(r_2(j)+Xi(j)*w_r(j))*sin(w_d(j)*t(k))-exp(-

Xi(j)*w_r(j)*t(k))*(w_d(j)*cos(w_d(j)*t(k))))... 

           -C(j)*(w_d(j)*exp(r_3(j)*t(k))-exp(-

Xi(j)*w_r(j)*t(k))*(r_3(j)+Xi(j)*w_r(j))*sin(w_d(j)*t(k))-exp(-

Xi(j)*w_r(j)*t(k))*(w_d(j)*cos(w_d(j)*t(k)))); 

 

    end 

end 

Calculating transverse displacement at x = L 

function w =summation(phi,n_t,t) 

w=zeros(1,length(t)); 

for k=1:length(t) 

  w(k)= phi(1)*n_t(1,k)+phi(2)*n_t(2,k)+phi(3)*n_t(3,k)+phi(4)*n_t(4,k); 

end 

end 



 63 

 

  

Calculating power 

function pw = elec_power(v,R_l) 

 pw=zeros(1,length(v)); 

for i=1:length(v) 

    pw(i)=(v(i))^2; 

end 

 

pw=pw/R_l; 

pw=transpose(pw); 

end 

Calculating harvester efficiency 

elec_energy = trapz(pw); 

mech_work = abs(P_y*max(w)); 

harv_eff=elec_energy*100/mech_work; 

 

Plotting the expressions against time 

plot(t,w); 

title('Graph of Tip Displacement Vs Time') 

xlabel('Time (sec)') % x-axis label 

ylabel('Tip Displacement (m)') % y-axis label 

pause(3); 

 

plot(t,v); 

title('Graph of Voltage Vs Time') 

xlabel('Time (sec)') % x-axis label 

ylabel('Voltage (V)') % y-axis label 

pause(3); 

 

plot(t,i_t); 

title('Graph of Current Vs Time') 

xlabel('Time (sec)') % x-axis label 
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ylabel('Current(Amp)') % y-axis label 

pause(3); 

 

plot(t,pw); 

title('Graph of Power Vs Time') 

xlabel('Time (sec)') % x-axis label 

ylabel('Power (W)') % y-axis label 

 

hold off; 

%%End of code 

 

Published with MATLAB® R2014a 

 

  

http://www.mathworks.com/products/matlab
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