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ABSTRACT OF THE THESIS

Towards Frameworks for Large Scale Ensemble-based

Execution Patterns

by Vivekanandan Balasubramanian

Thesis Director: Dr. Shantenu Jha

A major challenge in the field of chemical sciences is to bridge the gap between the

ability to study matter at an atomic scale and to predict how these details behave and

impact at a macroscopic scale. Molecular Dynamics (MD) simulations are a powerful

tool for the study of macromolecular systems as they provide the ability to compute

thermodynamic and kinetic parameters accurately.

In order for MD simulations to be effective, they must adequately sample, e.g., effi-

ciently and accurately sample all conformational space for a molecule. A long standing

debate in the MD community has been around approaches to effective sampling: for a

given amount of compute time, which is likely to guarantee better sampling: a single

long-running simulation or multiple smaller simulations? In this project, we provide

support for the scenario when multiple small simulations are to be used.

Another important requirement faced by MD community is the need for iterative

simulation and analysis stages, from which data can be extracted and, based on prob-

ability densities and weights, new set of trajectories can be generated. These scenarios

result in the following computational challenges: (i) Executing large number of tasks

concurrently, (ii) Support for heterogeneous resource, (iii) Effective data movement that

is correlated with stage transitions.
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To address these requirements, we developed the Ensemble MD Toolkit (EnMDTK).

The EnMDTK has three primary design features: (1) Fundamental support for multiple

concurrent simulations, (2) Support for different ensemble-based execution patterns,

and (3) Execution Plugins which abstract, from the user the challenges /difficulties of

managing the execution of these patterns on heterogeneous systems. The toolkit enables

scientists to easily and scalably develop their own applications using pre-determined

patterns supported by the EnMDTK.

Our contribution to this project is the development, testing and documentation of

the specific iterative Simulation-Analysis pattern of EnMDTK. The development re-

quired extensive study and testing of the underlying RADICAL-Pilot framework in

order to use it in the most effective form. Knowledge of the individual kernels, work-

ing and their specific dependencies were required for their deployment on the various

resources. Testing revealed certain optimizations that could be done with the data

movement. Performance characterization of the final toolkit was also done.
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Chapter 1

Introduction

1.1 Motivation

The achievement of the sampling necessary to predict macroscopic properties from

Molecular Dynamics (MD) simulations of large systems remains an enormous challenge.

Uniform sampling has been used for long, as a method with which one can generate

MD trajectories. Unfortunately, these methods leave many relevant regions of space

unexplored. This stems from the separation of high-probability metastable regions by

low-probability transition regions [1]. Enhanced Sampling methods have shown suc-

cess to efficiently and accurately sample all conformational space for a molecule. In

this method, interleaving large ensembles of short molecular dynamics simulations with

novel analysis tools to direct the sampling on-the-fly, the sampling of macromolecular

systems can be made to speed up[14].

Traditionally, scientists use bash scripts to submit their workloads as ”jobs” onto

a supercomputer or grid queue. The workload may be divided into one or more jobs

based on the resource, time constraints, allocation constraints, etc. This generally leads

to multiple drawbacks during implementation. One major drawback is that of queue

waiting time. Scientists generally require many jobs to be executed in a sequence to

produce useful data. Most of the times, these jobs have the same executable but work

on different input data. Each of these jobs face a queue waiting time on the resource

and the effective time to completion increases by a large factor. There are multiple

disadvantages to using this method. A bash script creates a single point of failure for

the entire workload. Many times, the conventional method is to launch the jobs as

parallel MPI threads; if one of the threads fails, the entire workload fails. The same
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holds true for serial If one decides to use another machine for the same purposes, it

requires heavy changes to the script since every bash script is specific to the particu-

lar resource. Another drawback is inefficient resource utilization, due to various I/O

and execution/scheduling policies, there might not be 100% utilization of the resources.

Along with these execution level issues with this approach, there is also the requirement

that these scientists have knowledge about scripting interfaces and the specifics of each

resource they choose as the target machine. These problems discussed above serve as

the motivation for this dissertation.

The above mentioned drawbacks give us a clear picture of our requirements, i.e.,

efficient and concurrent job execution methods, abstractions to execute independent

jobs, resource level abstractions that provide interoperability, effective I/O transfer

methods. To tackle this High Performance Distributed Computing (HPDC) problem,

we develop EnsembleMD Toolkit (EnMDTK) that uses a Pilot Job framework as the

underlying execution mechanism. A Pilot Job framework provides functionality to

execute large number of computational tasks, concurrently, on a machine. Pilot jobs

provide a much needed decoupling of the resource management from the workload

execution. Additionally, we require that this Pilot framework be interoperable over

multiple heterogeneous resources and hence we opt to use RADICAL Pilot[11], which

uses an interoperability layer SAGA[8], to solve this problem. RADICAL Pilot provides

I/O transfer methods to transfer data at the level of tasks. In EnMDTK, we present

an easy to interface to the user where we scrape of the need to know resource specific

or RADICAL Pilot specific details. The user can, therefore, concentrate solely on the

science problem and not its deployment. More details about EnMDTK, its components

and its advantages are presented in the following Chapters.

1.2 Objectives

The main objective of this thesis is to develop a framework to enable large scale execu-

tion of simulation and analysis patterns and , in the process, enable the user to develop

applications using this framework by providing the bare building blocks. In this project,
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we would be supporting two simulation tools - GROMACS[16], AMBER[15] and two

analysis tools - LSDMap[14] and CoCo[9]. We aim to develop production grade software

targeted to support ensemble-based execution patterns with the following capabilities

:-

• Enable Large Scale execution of ensemble based tasks

• Provide interoperability to enable execution over multiple heterogeneous dis-

tributed computing infrastructure

• Enable the users to develop their own application by providing them with the

building blocks

• Provide resource and tool level abstractions to minimize user application devel-

opment time

• Provide effective data transfer methods

• Analyze the performance and scalability of the framework

1.3 Overview

The motivation and objectives for this thesis are discussed in Chapter 1. We compare

conventional execution methods with Pilot Job frameworks, more specifically RADI-

CAL Pilot, in Chapter 2. We also discuss the architecture and operation of RADICAL

Pilot with a simple example. In Chapter 3, we develop an initial prototype by directly

integrating the Simulation and Analysis tools with RADICAL Pilot. We focus on the

specific ”Pattern” at hand and how the prototype was architected around it. Once

the similarities and requirements for different patterns are recognized, we develop and

discuss the advanced prototype in chapter 4. We discuss the motivation, architecture

and the API of EnsembleMD Toolkit. In chapter 5, we conduct strong and weak scaling

tests using the toolkit. We conclude in chapter 6 with the learnings during this thesis

and discuss on the future scope of the toolkit.
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Chapter 2

Task Level Parallelism: Pilot-Abstraction

2.1 Conventional Methods

Distributed Computing Infrastructure (DCI) comprises of set of resources that changes

in load, capability and availability, as opposed to the static utilization model of regular

HPC clusters. Chemists, physicists and other scientists require the use of these DCI at

a large scale to execute their experiments and analysis. It is imperative, therefore, to

utilize DCIs efficiently for such applications.

There are many tools that utilize distributed computing infrastructures (DCI) suc-

cessfully for a number of applications. These tools, although successful, do not use the

DCI effectively and have a very complex design. These tools are not flexible with the

different dimensions of scalability (scale-out, scale-across, etc.) or level of robustness

required by the application. The tool might be usable at small scales and in controlled

experiment, but they often fail to support the application at large scales. Applica-

tions using these tools rely heavily on the tool’s ability for fault tolerance and security,

but most of the tools operate under the assumption of no faults during deployment

or execution of the application, thereby following a fail-stop behaviour. Most methods

represent performance as measured only by peak performance. While peak performance

is a significant metric in high-performance computing, there are additional metrics that

could be considered as well. For example, in many applications that represent a contin-

uous workload, one key metric is the throughput of the jobs during execution, i.e. the

number of jobs launched per second. Also, most of the tools assume that there is only

one application in the system. This assumption is generally not valid as any DCI is

shared by multiple users at the same time and thus may require replication of data and
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re-iteration of jobs in order to avoid the effects of loss of data during possible conflicts.

General solutions to the above concerns, consist of highly customized designs that

are specific to particular resources. These solutions often follow a strict form. This

makes addition of feature components, which might be required in the future, diffi-

cult to implement. One of the other major constraints is that many of these solutions

include system level details, thereby, lacking any interoperability and reuse of code.

Experiments on a different system would require heavy reprogramming and testing.

The toolkit being developed in this thesis should, therefore, aim to address the

requirements of (i) extensibility, (ii) interoperability, (iii) scalability, (iv) support for

different application designs (v) reuse of code. The key requirement here is that of

abstractions at different levels of the hierarchy. Abstractions can be present in different

levels - resource abstraction, task level abstractions, application level abstractions for

extensibility, etc.

In this regard, Pilot Job (PJ) frameworks have been commonly used. A Pilot Job

provides the ability to use a container job to execute a dynamically determined set of

computational tasks. They provide a simple approach to decouple workload manage-

ment from resource assignment, thus, effectively abstracting the dynamic execution and

resource utilization[11]. Higher level abstractions also allow the representation of data

dependencies in a logical form, rather than in terms of files. There are several PJ frame-

works that are used for various applications, however, many of the Pilot-Job frameworks

are all heavily customized and often tightly coupled to a specific infrastructure, and

not extensible or usable across different systems, e.g. there is no such ”unifying” and

”extensible” tools that supports a range of application types and characteristics[11]. In

this project, I have used RADICAL Pilot (RP) which uses an interoperability layer,

SAGA, which comprises of set of adaptors and thus offers resource abstraction to the

above RP layer.
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2.2 RADICAL-Pilot

A Pilot-Job can be thought of as a container job for many sub-jobs (tasks), with sophis-

ticated management to coordinate the launch and interaction of actual computational

tasks within the container[10, 11]. A Pilot-Job acquires the resources necessary to ex-

ecute the sub-jobs (thus, acquires the resources required to run the sub-jobs, rather

than just one sub-job). If a system has a batch queue, the Pilot-Job is submitted to

this queue. Once it becomes active, it can run the sub-jobs directly, instead of having

to wait for each sub-job to queue. This eliminates the need to submit a different job

for every executable and significantly reduces the time-to-completion. Pilots provide a

fundamental abstraction for task-level parallelism, by supporting concurrent execution

of large number of tasks. The PJ approach supports the decoupling of system-level task

submission from resource assignment. PJ provides application level control to sched-

ule each of the sub-jobs/tasks and management of the set of acquired resources. This

feature, application level task scheduling control, can support many, if not all, patterns

that the user application might have.

RADICAL Pilot is a PJ framework that sits above an interoperability layer called

SAGA (Simple API for Grid Applications), that provides a high-level interface to the

most commonly used distributed computing infrastructures[8]. SAGA provides mech-

anisms for distributed infrastructure components like job schedulers, file transfer and

resource provisioning services. Given the heterogeneity of distributed infrastructure,

SAGA provides a much needed interoperability layer that lowers the complexity and

improves the simplicity of using distributed infrastructure whilst enhancing the sustain-

ability of distributed applications, services and tools. Thus, it provides the building

blocks to develop the abstractions and functionalities to support the characteristics

required by distributed applications whether directly, or as tools in interoperable and

extensible fashion.
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2.2.1 Architecture

The RADICAL Pilot Architecture can be divided broadly into 3 layers : Application

Layer, Abstraction Layer and Infrastructure Layer[4]. The Application Layer

exposes RADICAL Pilot constructs to the user that can be used to develop the appli-

cation execution logic. The Abstraction Layer consists of various components that form

the core of RADICAL Pilot. It handles the deployment of the Pilot Job, scheduling of

the tasks, coordination of the tasks, hides the complexity of execution on heterogeneous

systems, etc. The Infrastructure Layer consists of components necessary for coordina-

tion of tasks, scheduling of tasks on the specific cores, etc.

Figure 2.1: RADICAL Pilot Architecture[4])
Application layer consists of the actual application defined in terms of Compute Units.
The Abstraction layer consists of RADICAL Pilot components that provide task level
abstractions using Compute Units, decoupling of workload management from resource
management using a Pilot Job and interoperability using SAGA (Simple API for Grid
Applications). Infrastructure layer consists of a Pilot Agent that runs on the remote

machine and launches each the Compute Units on to specific cores.

Main components of RADICAL Pilot are as follows :-
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• Pilot (Pilot-Compute): The Pilot is the entity that gets submitted and scheduled

on a resource. It is the empty container job that acquires the set of resources.

Once acquired, it enables user level control and management of the resource.

• Compute Unit: A CU encapsulates a self-contained piece of work (a compute

task) specified by the application, that is submitted to the Pilot-Job framework.

The task can be either serial or parallel MPI job. There is no intrinsic notion of

resource associated with a CU.

• Pilot Manager: The Pilot Manager is responsible for managing the interaction

between the Pilots and for decisions regarding resource assignment. CUs can be

combined and aggregated; the PM determines how to group them before executing

them on the resource via the Pilot.

• Unit Manager: The Unit Manager manages the compute unit instances which

represent the executable workload. The UnitManager connects the ComputeU-

nits with one or more Pilot instances (which represent the workload executors

in RADICAL-Pilot) and a scheduler which determines which ComputeUnit gets

executed on which Pilot.

• MongoDB: A central database is used for communication and coordination. The

client registers compute units to be executed; the pilots eventually pull those

requests from the database for execution.

• SAGA: SAGA supports a wide range of distributed, heterogeneous computing

middleware via a flexible adapter architecture. SAGA provides a much needed

interoperability layer that lowers the complexity and improves the ease of us-

ing distributed infrastructure whilst enhancing the sustainability of distributed

applications, services and tools.

• Pilot Agent: The Agent is the actual container job that is submitted to the remote

machine. Once Active, it bootstraps itself as a python process. It manages the

scheduling and execution of Compute units on the individual cores.
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2.2.2 Operation

The application submits a Pilot, of a certain size and a specific active duration, to the

target resource. Once the Pilot is submitted, the application workload is defined in

terms of Compute Units and is submitted to the Unit Manager. The logical sequence

of the various executable components of the application can be realized by configuring

the execution of the individual compute units. The Unit Manager maps each of the

Compute Units to the Pilots. The Unit Manager consists of a scheduler which dictates

the algorithm used in the mapping of the Compute Units to the Pilots. This sched-

uler is flexible and can be changed depending on the application behaviour. The Unit

Manager is also responsible for staging the input data to the Compute Unit from either

the local machine, any other storage systems or data movements within the remote

machine. The Compute Unit, once ready for execution, is updated on the database.

Once the Pilot Agent is active on the remote machine, the Agent pulls the Compute

Units from the database and based on the resource requirements of the Compute Units

and current availability schedules or queues them. Each Compute Unit, apart from the

required input data, consists of a shell script that 1) sets up the execution environment

- this includes modules to be loaded, environment variables to be assigned 2) contains

system specific executable to start execution of the actual workload.

As each of the Compute Units finish, the RP Agent updates the database and

maintains synchronization with the Unit Manager which may contain more CUs to

submit. The RP Agent is responsible for managing any output data from the Compute

Units back to the local machine. Upon termination of the application, the Pilot on the

remote machine is canceled.

2.2.3 RADICAL Pilot API : Bag of Tasks Example

In this section, we describe with an example, the API of RADICAL Pilot for the simple

case of a ’Bag of Tasks’. We will create an example which submits N identical jobs (Bag
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of Tasks) using RADICAL-Pilot[5]. This type of run is very useful if you are running

many jobs using the same executable (but perhaps with different input files). Rather

than submit each job individually to the queuing system and then wait for every job to

become active and complete, you submit just one Pilot job that reserves the number

of cores needed to run all of your jobs. When this pilot becomes active, your tasks are

pulled by RADICAL-Pilot from the MongoDB server and executed.

2.2.3.1 Creating a session

import r a d i c a l . p i l o t as rp

s e s s i o n = rp . Se s s i on ( da taba s e u r l=”mongodb ://my−mongodb−s e r v e r . edu :27017 ” )

c = rp . Context ( ’ ssh ’ )

c . u s e r i d = ” tu t o r i a l X ”

s e s s i o n . add context ( c )

Create a new session. A radical.pilot.Session is the root object for all other ob-

jects in RADICAL Pilot. It has a tree structure with the Session object as the root

and zero or more objects of radical.pilot.Context, radical.pilot.PilotManager and radi-

cal.pilot.UnitManager attached to it. A Session also encapsulates the connection(s) to a

back end MongoDB server which provides persistence and coordination for RADICAL

Pilot. Each Session has a unique identifier (uid) and methods to traverse its members.

The Session uid can be used to disconnect and reconnect to a Session as required.

2.2.3.2 Creating a ComputePilot

A radical.pilot.ComputePilot is the Pilot Job entity for RADICAL Pilot. It is re-

sponsible for executing the ComputeUnits (task) assigned to it. ComputePilots can be

launched either locally or remotely, on a single machine or on one or more HPC clusters,

i.e., you could have multiple pilots running on same or several machines at the same

time. ComputePilots are grouped in radical.pilot.PilotManager containers, so before

you can launch a ComputePilot, you need to add a PilotManager to your Session. Just

like a Session, a PilotManager has a unique id (uid) as well as a traversal method.
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pmgr = r ad i c a l . p i l o t . PilotManager ( s e s s i o n=s e s s i o n )

In order to create a new ComputePilot, you first need to describe its requirements

and properties. This is done with the help of a radical.pilot.ComputePilotDescription

object.

pdesc = r ad i c a l . p i l o t . ComputePi lotDescr ipt ion ( )

pdesc . r e s ou r c e = ” l o c a l h o s t ”

pdesc . runtime = 5

pdesc . c o r e s = 2

Here, we have listed the three mandatory parameters required to launch a Pilot

Job:-

• resource: The name of the target machine or localhost

• runtime: The runtime, in minutes, that the Pilot should remain Active

• cores: The number of cores the Pilot would acquire.

A ComputePilot is launched by passing the ComputePilotDescription to the sub-

mit pilots() method of the PilotManager. Like any other object in RADICAL-Pilot, a

ComputePilot also has a unique identifier (uid)

p i l o t = pmgr . s ubm i t p i l o t s ( pdesc )

2.2.3.3 Creating ComputeUnits

Once a ComputePilot is launched, you can now generate a few radical.pilot.ComputeUnit

objects for the ComputePilot to execute. A ComputeUnit is very similar to an operating

system process that consists of an executable, a list of arguments, and an environment

along with some runtime requirements.

compute units = [ ]

for un i t count in range (0 , 8) :

cu = r ad i c a l . p i l o t . ComputeUnitDescription ( )
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cu . environment = {”SLEEP TIME” : ”10”}

cu . executab l e = ”/bin / s l e e p ”

cu . arguments = [ ”$SLEEP TIME” ]

cu . c o r e s = 1

compute units . append ( cu )

Analogous to ComputePilots, a ComputeUnit is described via a ComputeUnitDe-

scription object. The mandatory properties that you need to define are:

• executable: the executable to launch

• argument: arguments to the executable

• cores: cores required by the executable

This snippet creates a list of 8 Compute Units that perform a ‘/bin/sleep 10’.

2.2.3.4 Scheduling ComputeUnits

Figure 2.2: RADICAL Pilot UnitManager
Both the set of Pilots and the set of Compute Units are submitted to the

UnitManager. The UnitManager, then, based on the selected algorithm binds each
Compute Unit to a particular Pilot for execution.

In the previous steps we have created and launched a ComputePilot (via a Pi-

lotManager) and created a list of ComputeUnitDescriptions. In order to put it all
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together and execute the ComputeUnits on the ComputePilot, we need to create a

radical.pilot.UnitManager instance.

As shown in the diagram above, a UnitManager combines three things: UnitMan-

ager.submit units() used to add the ComputeUnits, one or more ComputePilots, added

via UnitManager.add pilots() and a Unit Scheduler. The UnitManager then binds each

of the submitted ComputeUnits to any of the ComputePilots based on a scheduling

algorithm

Since we have only one ComputePilot, we dont need any specific scheduling al-

gorithm for our example. We choose SCHED DIRECT SUBMISSION which simply

passes the ComputeUnits on to the ComputePilot.

umgr = r ad i c a l . p i l o t . UnitManager ( s e s s i o n=se s s i on , s chedu l e r=r ad i c a l . p i l o t .

SCHED DIRECT SUBMISSION)

umgr . add p i l o t s ( p i l o t )

umgr . submit un i t s ( compute units )

umgr . wa i t un i t s ( )

The radical.pilot.UnitManager.wait units() call blocks until all ComputeUnits have

been executed by the UnitManager. Simple control flows / dependencies can be realized

with wait units()

2.2.3.5 ComputeUnit I/O

There are two points to be satisfied in order for RADICAL Pilot to transfer files. First

you need to specify the respective input and output files for the Compute Unit in

so called staging directives. Then, these staging directives need to be linked to each

of the Compute Units using the input staging and output staging members. For this

reason, a radical.pilot.ComputeUnitDescription allows the definition of input staging

and output staging:

• input staging: a list of local files that need to be transferred to the execution

resource before a ComputeUnit can start running.
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• output staging: a list of remote files that need to be transferred back to the

local machine after a ComputeUnit has finished execution.

Let’s discuss using an example:-

INPUT FILE NAME = ”INPUT FILE .TXT”

OUTPUT FILE NAME = ”OUTPUT FILE.TXT”

cud = r ad i c a l . p i l o t . ComputeUnitDescription ( )

cud . executab l e = ”/ usr / bin / s o r t ”

cud . arguments = [ ”−o” , OUTPUT FILE NAME, INPUT FILE NAME]

cud . i npu t s t ag i ng = INPUT FILE NAME

cud . output s tag ing = OUTPUT FILE NAME

Here the staging directives INPUT FILE NAME and OUTPUT FILE NAME are

simple strings that both specify a single filename. This transfers the file from the source

local directory to the directory where the ComputeUnit is being executed. After the

task has run, the file OUTPUT FILE.TXT that has been created by the task, will be

transferred back to the local directory.

The format of the staging directives can either be a string as above or a dict of the

following structure:

s t a g i n g d i r e c t i v e = {

’ source ’ : source ,

’ t a r g e t ’ : ta rget ,

’ a c t i on ’ : act ion ,

’ f l a g s ’ : f l a g s ,

’ p r i o r i t y ’ : p r i o r i t y

}

• source,target: In case of the staging directive being used for input, then the

source refers to the location to get the input files from, e.g. the local working

directory on your laptop or a remote data repository, target refers to the working

directory of the ComputeUnit.
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• action: Depending on the relative location of the working directory of the source

to the target location, the action can be COPY (local resource), LINK (same file

system), MOVE (local resource), or TRANSFER (to a remote resource).

• flags: By passing certain flags we can influence the behavior of the action.

– CREATE PARENTS : Create parent directories while writing file.

– SKIP FAILED : Dont stage out files if tasks failed

• priority: This optional field can be used to instruct the backend to prioritize the

actions on the staging directives

2.2.3.6 ComputePilot I/O

In addition to the constructs on Compute Unit-level RADICAL-Pilot also has constructs

on Compute Pilot-level for data transfer. The reason behind this is that quite often there

is (input) data to be shared between multiple Compute Units. Instead of transferring

the same files for every Compute Unit, we can transfer the data once to the Pilot, and

then make it available to every Compute Unit that needs it.

This works in a similar way as the Compute Unit-IO, where we use also use the

Staging Directive to specify the I/O transaction The difference is that in this case, the

Staging Directive is not associated to the Description, but used in a direct method call

pilot.stage in(sd pilot).

s d p i l o t = { ’ source ’ : s h a r e d i n p u t f i l e u r l ,

’ t a r g e t ’ : os . path . j o i n (MY STAGING AREA, SHARED INPUT FILE) ,

’ a c t i on ’ : r a d i c a l . p i l o t .TRANSFER

}

p i l o t . s t a g e i n ( s d p i l o t )
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Chapter 3

Initial Prototype: Direct Integration with Radical Pilot

The first prototype of the framework was implemented directly using Radical Pilot.

Resource acquisition was done using a Pilot. The different Simulation and Analysis

engines were defined in terms of Compute Units. The data flow is maintained us-

ing Radical Pilot directives. A physicist or chemist using this tool for the purposes

of science, does/should not require the knowledge of Radical Pilot or the underlying

mechanisms to run the science application. To keep it so, we use a command line in-

terface and use configuration files as the only method of user interaction. We discuss

the detail of the architecture in greater detail in the forthcoming sections.

3.1 Simulation and Analysis Engines

Before we discuss the architecture of this native implementation, it is important to get

an idea of the type of workload and the science behind it. The tool currently sup-

ports two MD Simulation Engines - Gromacs, Amber and two Analysis Engines -

LSDMap, CoCo. By engines we mean the actual executable kernels on the target

machine, we will be using them inter-changeably.

MD Simulation is a computational method that calculates the time dependent be-

havior of a molecular system. Scientists are interested in the changes and observa-

tions at a macroscopic level described usually in terms of temperature, pressure, etc.

MD simulations provide detailed information on the fluctuations and conformational

changes of proteins and nucleic acids. This information is at the microscopic level in-

cluding atomic positions, velocities and momentum. The state of the molecule can be

described in terms of these parameters/dimensions by a single point. MD simulations
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generate a series of such points that are equivalent at a macroscopic level but differ

at the microscopic level[13]. These methods are now routinely used to investigate the

structure, dynamics and thermodynamics of biological molecules and their complexes.

Gromacs and Amber both are MD packages that consist of various algorithms that do

the same.

The connection between microscopic simulations and macroscopic properties is made

via statistical mechanics which provides the rigorous mathematical expressions that re-

late macroscopic properties to the distribution and motion of the atoms and molecules[13].

The Analysis stage, in this tool, uses two such tools. CoCo analyses the distribution of

an ensemble of structures in conformational space, and generates a new ensemble that

fills gaps in the distribution[9]. These new structures provide possible, approximate,

new solutions which is a refinement of the original data. LSDMap, on the other hand,

constructs a ensemble based on the existing ensembles[14]. Based on probability densi-

ties, the algorithm assigns weights to each ensemble, the number of ensemble members

to be considered can increase or decrease based on these analysis.

3.2 The Pattern : Simulation-Analysis Loop

A careful look at the workflow reveals an important information. The workflow follows

an iterative pattern with two stages. The first stage is similar to a Bag of Tasks

case, where each task performs a molecular dynamics simulation. Once all of the MD

Simulation Tasks have completed, an Analysis is performed collectively on the outputs

of all of the Simulation Tasks. The Analysis in our example is a single task but can also

be converted into a Bag of Tasks in which case the output of the simulation stages are

partitioned among the different analysis tasks. The above two stages form one iteration

of the workflow.

There also exists a pre loop and post loop stage during which there is some pre-

processing and post-processing of data. These occur outside of the loop and once per
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entire workflow.

Figure 3.1: Simulation Analysis Loop[3]
The crux of the pattern consists of N bag of ensembles of MD simulations followed by

M bag of analysis phases per one iteration. The pre loop and post loop perform
preprocessing and post-processing functions.

3.3 Architecture

As mentioned before, ExTASY provides an configuration file based interface to users,

so that they can take advantage of RADICAL Pilot without knowing the details of

programming with RADICAL Pilot. ExTASY is designed to support the addition of

new Simulators and Analyzers and they can be easily switched, by the user, from one

to the other via the configuration files.

• Resource Configuration file: The file is used to specify the details required to

launch a pilot. This mandatory file defines the target remote machine, runtime

duration, number of cores, etc.

• Kernel Configuration file: This file is used to specify the details of the Simula-

tion stage, Analysis stage and other workload specific parameters. These include
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Figure 3.2: ExTASY Architecture
The ExTASY framework enables users to perform large scale ensemble based

simulations followed by analysis algorithms. Two inputs: Resource configuration file
that consists of parameters for launching the Pilot, Kernel Configuration file that

consists of parameters required during simulation and analysis. MD Kernels is a set of
dictionaries using which each Compute Unit can create the environment required to

perform the simulation/analysis.

number of iterations, number of Compute Units, input filenames and simulation/-

analysis specific parameters.

• Simulators: This is a bag of all supported Simulation kernels. It is extendable

and currently supports Gromacs and Amber.

• Analyzers: This is a bag of all supported Analysis kernels. It is extendable and

currently supports LSDMap and CoCo.

• MDKernels: This is a light layer which generates the exact the executable and

environment setup for each remote target. This because, for the same application,

the executables and the execution environment might be different for different

resources. Hence, based on the resource, this layer sets up all the modules and

environment variables and mentions the exact version of the executable to be

used. The output of this layer is used to construct the Compute units to be

submitted.
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• RADICAL Pilot: This is the base layer of the framework and is used to execute

the large number of simulations and analysis as well as manage the associated

data efficiently.

3.4 Operation

Once ExTASY is installed and the necessary simulation and analysis files are available

on the local machine, the user would first require to set up the resource configuration

file with the details of target resource name, runtime, reservation amount, etc. Next,

the user would have to set up the kernel configuration file. As mentioned before, this

includes the arguments and filenames required in the simulation and analysis stages as

well as details as to the number of compute units, number of iterations, etc.

The parameters mentioned in the kernel configuration file are used to create the

compute units. The MDKernels package is used to add the system specific environment

set up which includes the modules and PATH variables required for successful execution

of the compute units. In this tool, first a bag of simulation tasks is submitted to the

Pilot, and after the completion of all the tasks, an analysis compute unit is submitted.

Therefore, a bag of tasks followed by an analysis constitutes one iteration and the tool

can be configured to perform multiple iterations where one iteration uses the output of

the last.

3.5 Other ”Patterns”

3.5.1 Replica Exchange

Replica Exchange is another pattern which consists of multiple MD stages. In the first

stage, a preprocessing is performed on the input file followed by ”N” MD simulation

steps. Once the simulations are completed, an exchange step is carried out, there are

3 exchange algorithms that can be used - Temperature Exchange, Salt Concentration,

Umbrella Sampling. These Simulation and Exchange form one iteration/cycle of the

pattern. A pictorial representation is given in Fig 3.3.



21

Figure 3.3: Replica Exchange Pattern[3]

3.5.2 All-pairs

The All-pairs problem is stated as:

All-Pairs(set A, set B, function F) returns a matrix M which is composed by com-

paring all elements of set A to all elements of set B using the function F. Otherwise

stated as, M[i,j] = F(A[i],B[j])[12]. A pictorial representation is given in Fig 3.4.

Figure 3.4: All Pairs Pattern[3]
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Chapter 4

Advanced Prototype: Ensemble MD Toolkit

4.1 Motivation

The initial prototype, ExTASY, gave us a proof of the model. The model implemented a

MD Simulation and Analysis loop pattern tool with RADICAL Pilot as the underlying

execution manager with a command line interface to use this tool. This restricts the

user to only ’use’ such tools and not ’develop’ them. To develop such tools the user

would require knowledge of the underlying RADICAL Pilot framework. The questions,

thus posed, are simple: (1) Can we enable the user to ’develop’ such tools for science

applications without requiring any knowledge of the layers underneath ? (2) What

are the building blocks that need to be provided to the user ? (3) Can we provide a

common tool that supports the 3 common MD patterns ?

4.2 Overview of Ensemble MD

The Ensemble MD Toolkit is a Python framework for developing and executing appli-

cations that are comprised of many simulations aka ensembles. It was designed with

the goal to provide an intuitive programming and job execution framework for model-

ing and executing large-scale molecular dynamics (MD) applications. The architecture

follows a top-down approach, starting from the top with the building blocks exposed

to the user, support for the common patterns in the field of molecular dynamics down

to the actual MD tools. The elements of RADICAL Pilot and the underlying layers

are hidden from the user behind these high-level concepts. The toolkit follows a style

of ”pick the pattern that matches my problem and fill in the details”.
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The questions posed earlier are converted to framework requirements and defined.

The toolkit should :-

1. Concentrate on the science application: This keeps the application develop-

ment time short and meaningful for the scientists. The framework follows a ”pick

the template that matches my problem and fill in the details” development style.

2. Decouple ”what to execute” from ”how to execute”: The straightforward

approach of defining the execution of tasks via the application logic has potential

drawbacks. These include lack of concurrent execution, lack of overlapping data

movement and computation, etc. It does not also give room to resource specific

optimizations.

Ensemble MD Toolkit addresses this problem by separating the Application Con-

trol from the Execution Strategy. The user facing script describes the Application

Control and the Execution Strategy is described by ”Execution Plugins”. Decou-

pling the two allows the Execution Plugins to, based on the information about

the application control and the associated data flow, execute strategically.

3. Hide the heterogeneity: There are two levels of heterogeneity. Firstly, the

heterogeneity in the execution methods of the various target resources. The com-

plication of execution in different systems should abstracted out in the lower

layers. In Ensemble MD, this is handled by the SAGA layer which is used by

RADICAL Pilot as a means of interoperability.

Second, heterogeneity in the specific versions (and their dependencies) of the sci-

entific tools. In Ensemble MD, this requirement is addressed via ”Kernel Plugin”

that use a pre-defined set of dictionaries that specify the modules and dependen-

cies to be loaded on the different machines. At the user level, there should be no

specific descriptions required when shifting from one resource to another.
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4.3 Architecture

Now that we have the three main components describes, we shall now describe how

these components fit along with each other to form the Ensemble MD Toolkit.

Figure 4.1: Ensemble MD Architecture[2]

Keeping the requirements and objectives in mind. We define 3 major components

of the Ensemble MD Toolkit.

• Application Patterns: The Application Pattern is the user facing script and

describes ”what to do”, i.e. the Application Control and Dataflow. An MD

Application Pattern represents an executable set of tasks that exhibit a specific

relationship among each other. Supported patterns will be:

– Simulation-Analysis

– Replica-Exchange

– All-Pairs
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An MD Application Pattern dictates the logic by which these tasks are scheduled

to execute and transfer their respective data.

• Execution Context: The Execution Context decouples EnMD and radical.pilot.

Within an Execution Context, a Bag of Tasks or an MD Application Pattern is

executed. The Execution Context translates a Bag of Tasks into a corresponding

set of radical.pilot.ComputeUnits. An MD Application Pattern (which internally

consists of multiple, coupled Bag of Tasks) is also translated into a set of radi-

cal.pilot.ComputeUnits with the help of the respective Pattern Execution Plugin,

which can also implement Pattern-specific optimization methods. Timing probes

are added in specific parts of the execution plugin for such purposes.

The Execution Context also takes care of resource allocation via radical.pilot.

Here, too the Pattern Execution Plugins, can implement advanced resource man-

agement techniques, like for example allocating pilots for a future simulation

iteration in advance. Since the plugin uses RADICAL Pilot, the requirement

of addressing resource heterogeneity is accomplished which provides/ utilizes the

interoperability layer, SAGA.

• Kernel Plugins: A Kernel Plugin represents an instantiation of a specific science

tool along with its resource specific modules and environment variable definitions.

The science tools supported are:-

– AMBER

– GROMACS

– NAMD

– LSDMAP

– CoCo

Kernel plugins hide tool-specific peculiarities across different clusters as well as

differences between the interfaces of the various MD tools to the extent possi-

ble. Data dependencies (data-flow) is also defined between kernels, however, it is

confined to the overarching control flow provided by the pattern.
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4.4 Operation

The User Application sits on top of Ensemble MD. The application first ”allocates” the

resources. The pattern to be executed is selected by the user application. Then the

required kernels are defined along with their arguments, in this case, (K1,1), (K2,1)

and (K3,1). The MD Kernels API uses the resource information to select the specific

kernel definitions from the dictionary of kernels. The resource specific kernel definitions

are passed on to the execution plugin of the pattern. In the execution plugin, the

kernel definitions as well as input/output specifications are converted to RADICAL

Pilot Compute Units and submitted on to the target machine following their respective

patterns.

4.5 Ensemble MD API : SimulationAnalysisLoop Pattern

In this section, we discuss the API of the toolkit with some examples and details

that are paramount in developing applications using the Ensemble MD toolkit. In the

Simulation Analysis Loop pattern, there four stages which need to defined :-

• pre loop : Function is executed once before the Simulation Analysis loop

• simulation step: Function which defines what needs to be executed during the

simulation stage

• analysis step: Function which defines what needs to be executed during the

analysis stage

• post loop : Function is executed once at the end of the Simulation Analysis loop

There are multiple data reference methods defined for the Simulation Analysis loop

pattern.

4.5.1 Creating the Execution Context
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Table 4.1: Simulation Analysis Loop : Step Referencing Variables
PRE LOOP Working directory of the

pre loop

PREV SIMULATION References the previous simu-
lation step with the same in-
stance number

PREV SIMULATION INSTANCE Y References instance Y of the
previous simulation step

SIMULATION ITERATION X INSTANCE Y References instance Y of the
simulation step of iteration
number

PREV ANALYSIS References the previous anal-
ysis step with the same in-
stance number

PREV ANALYSIS INSTANCE Y References instance Y of the
previous analysis step

ANALYSIS ITERATION X INSTANCE Y References instance Y of the
analysis step of iteration num-
ber X

c l u s t e r = SingleClusterEnvironment (

r e s ou r c e=” l o c a l h o s t ” ,

c o r e s =1,

wal l t ime=30,

username=None ,

a l l o c a t i o n=None )

c l u s t e r . a l l o c a t e ( )

The function SingleClusterEnvironment() is an Ensemble MD function that

creates an Execution Context with one resource, ’localhost’ in this case. It defines a

fixed number of resources to be acquired in terms of ’cores’ for a fixed ’walltime’. The

parameters ’username’ and ’allocation’ are used when the resource (generally remote)

requires a username to be accessed and an allocation number to be charged. The

allocate() launches the RADICAL Pilot with the above mentioned parameters on to

the target machine.

4.5.2 Defining the Pattern Details
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randomsa = RandomSA( max i t e ra t i ons=4,

s imu l a t i o n i n s t an c e s =16,

a n a l y s i s i n s t a n c e s =16)

c l u s t e r . run ( randomsa )

We instantiate a class RandomSA with three parameters, maxiterations, simula-

tion instances and analysis instances. This function (discussed in the next subsection)

describes the specifications of Simulation Analysis pattern. ’maxiterations’ stands for

the number of iterations of the Simulation-Analysis loop. ’simulation instances’ stands

for the number of simulation instances in 1 iteration. Similarly, ’analysis instances’

stands for the number of analysis instances in 1 iteration.

4.5.3 Creating the Simulation-Analysis Class

from r a d i c a l . ensemblemd import Simulat ionAnalys i sLoop

class RandomSA( Simulat ionAnalys i sLoop ) :

def i n i t ( s e l f ,

max i terat ions ,

s imu l a t i o n i n s t an c e s =1,

a n a l y s i s i n s t a n c e s =1) :

S imulat ionAnalys i sLoop . i n i t ( s e l f ,

max i terat ions ,

s imu l a t i on i n s t anc e s ,

a n a l y s i s i n s t a n c e s )

The Simulation Analysis class is created by importing the SimulationAnalysisLoop

base class. The ’RandomSA’ class is created using the imported base class by passing

the maxiterations, number of simulation instances and the number of analysis instances.

4.5.4 Defining the ’pre-loop’

def pre l oop ( s e l f ) :
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k = Kernel (name=”misc . mk f i l e ” )

k . arguments = [ ”−−s i z e =1000” , ”−−f i l ename=r e f e r e n c e . dat” ]

return k

Important snippets of the misc.mkfile kernel plugin :-

KERNEL INFO = {

”name” : ”misc . mk f i l e ” ,

” d e s c r i p t i o n ” : ”Creates a new f i l e o f g iven s i z e and f i l l s i t with random

ASCII cha ra c t e r s . ” ,

”arguments” : {

”−−s i z e=” :{ ”mandatory” : True ,

” d e s c r i p t i o n ” : ” F i l e s i z e in bytes . ” } ,

”−−f i l ename=” :{ ”mandatory” : True ,

” d e s c r i p t i o n ” : ”Output f i l ename . ”}

}

}

’pre loop’ is executed before the main simulation-analysis loop is started. In this

example we create an initial 1 kB random ASCII file that we use as the reference for

all analysis steps.

4.5.5 Defining the ’simulation step’

def s imu l a t i on s t ep ( s e l f , i t e r a t i o n , i n s t ance ) :

k = Kernel (name=”misc . mk f i l e ” )

k . arguments = [ ”−−s i z e =1000” ,

”−−f i l ename=simulat ion −{0}−{1}. dat ” . format ( i t e r a t i o n , i n s t ance ) ]

return k

The Kernel plugin is the same as in the pre loop case.

The simulation step generates a 1 kB file containing random ASCII characters that

is used to compare against the ’reference’ file (created in the pre loop) in the subsequent

analysis step.
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4.5.6 Defining the ’analysis step’

def a n a l y s i s s t e p ( s e l f , i t e r a t i o n , i n s t anc e ) :

i npu t f i l ename = ” s imulat ion −{0}−{1}. dat ” . format ( i t e r a t i o n ,

i n s t ance )

output f i l ename = ” ana ly s i s −{0}−{1}. dat ” . format ( i t e r a t i o n ,

i n s t ance )

k = Kernel (name=”misc . l e v en sh t e i n ” )

k . l i n k i npu t da t a = [ ”$PRE LOOP/ r e f e r e n c e . dat” ,

”$PREV SIMULATION/{0}” . format ( i npu t f i l ename ) ]

k . arguments = [ ”−− i n p u t f i l e 1=r e f e r e n c e . dat” , ”−− i n p u t f i l e 2 ={0}” .

format ( i npu t f i l ename ) , ”−−o u t p u t f i l e ={0}” . format ( output f i l ename ) ]

k . download output data = output f i l ename

return k

Important snippets of the misc.levenshtein kernel :-

KERNEL INFO = {

”name” : ”misc . l e v en sh t e i n ” ,

” d e s c r i p t i o n ” : ” Ca l cu l a t e s the Levenshte in d i s t anc e between to s t r i n g s . ” ,

”arguments” : {

”−− i n p u t f i l e 1=” :{ ”mandatory” : True ,

” d e s c r i p t i o n ” : ”The f i s t input f i l e . ” } ,

”−− i n p u t f i l e 2=” :{ ”mandatory” : True ,

” d e s c r i p t i o n ” : ”The second input f i l e . ” } ,

”−−o u t p u t f i l e=” :{ ”mandatory” : True ,

” d e s c r i p t i o n ” : ”The output f i l e conta in ing the d i s t ance

value . ”}

} ,

}

In the analysis step, we take the previously generated simulation output and per-

form a Levenshtein distance calculation between it and the ’reference’ file. The place-

holder ‘$PRE LOOP‘ used in ‘link input data‘ is a reference to the working directory
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of pre loop. The placeholder ‘$PREV SIMULATION‘ used in ‘link input data‘ is a

reference to the working directory of the previous simulation step. It is also possible

to reference a specific simulation step using ‘$SIMULATION N‘ or all simulations via

‘$SIMULATIONS‘. Analogous placeholders exist for ‘ANALYSIS‘.

’post loop’ function exists after the analysis step but is not used in this example.

As described before, the ’post loop’ is executed once all the iterations of the simulation

and analysis instances have been completed. The complete code for the above simple

simulation analysis loop pattern is available in the appendix. Variations of this pattern

have also been added.

4.6 Usability

In the previous subsection we discussed an example script for the Simulation Analysis

Loop Pattern which determined the Levenshtein distance between two files. Changing

what each of the steps do, requires only change in the kernel plugin. The user can use

one of the kernel plugins already supported by EnMDTK or write one’s own kernel

plugin. Similarly, scientists running their application with a particular MD tool may

switch to another with just a change in the kernel name. This enables the scientists to

compare the MD tools and analysis the results of the same workflow with two different

MD tools. Similarly, changing to the target machine can be done easily as well; only

the details in the ‘SingleClusterEnvironment()‘’ need to be changed.
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Chapter 5

Experiments and Results

5.1 Hardware Resources

RADICAL Pilot and RADICAL Pilot based frameworks are very flexible and can uti-

lize a number of heterogeneous resources. For this thesis, both the initial and advanced

Prototype are supported on TACC Stampede[6] located in Austin, Texas and EPCC

Archer[7] located in Edinburgh, UK. Extension to any other machines would, as dis-

cussed before, be only a matter of specifying the target in the user script along with

minor changes to module load operations. For the purposes of experimentation, we

chose to run on Stampede due to smaller queue wait times as compared to Archer. The

TACC Stampede system is a 10 PFLOPS (PF) Dell Linux Cluster based on 6400+ Dell

PowerEdge server nodes, each outfitted with 2 Intel Xeon E5 (Sandy Bridge) proces-

sors and an Intel Xeon Phi Coprocessor. More details about Stampede are presented

in table 5.1.

Table 5.1: Stampede Hardware details[6]
Component Technology Performance/Size

Memory Distributed 32GB/node 205TB (Aggregate)

Shared Disk Lustre 2.1.3, parallel File System 14 PB

Local Disk SATA (250GB) 1.6PB (Aggregate)

Interconnect InfiniBand Mellanox Switches/HCAs FDR 56 Gb/s

5.2 Usecase 1: Gromacs-LSDMap

5.2.1 Experiments

In Gromacs-LSDMap, a large set of configurations/ensemble members (*.gro) is pro-

vided as input. A topology file (*.top), a gromacs parameter file (*.mdp) and a LSDMap
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configuration file (*.ini) form the other set of inputs. The large set of ensemble members

are uniformly divided and provided as input to each of the Compute Units. This implies

that the amount of work done by each Compute Unit is a function of the number of

total Compute Units.

Three experiments were carried out with Gromacs-LSDMap on Stampede.

• Experiment 1: In this first experiment, we keep the input file size constant,

i.e., we keep the number of ensemble members constant. We keep the Pilot Size

constant and vary the number of Compute Units used to complete the simulation.

Hence, there will be multiple generations of Compute Units in the simulation

stage. Each analysis stage uses 1 Compute Unit with cores equal to the Pilot

size. This is a mark of the strong scaling behaviour of the toolkit.

• Experiment 2: In this experiment, we again keep the input file size constant.

We again test the strong scaling behaviour of the toolkit while using Gromacs-

LSDMap as the application kernels. But we vary the Pilot Size in each trial, a

different dimension in strong scaling. We keep the ratio of Compute Units to the

Pilot Size as 1. Hence, there will always be only 1 generation of Compute Units

in each trial. Similar to experiment 1, we keep the number of analysis Compute

Units as 1 with cores equal to the Pilot Size.

• Experiment 3: In the third experiment, we increase the input file size to observe

the toolkitś behaviour. We also increase the Pilot Size by the same amount as the

increase in the input size, in an attempt to observe if we can get similar execution

times. Intuitively, this makes sense, since we increase the acquired resources by

the same amount as the input size.

5.2.2 Results

Experiment 1: Execution time as a function of number of Compute Units

Description of graph:-

Detail : Gromacs-LSDMap on Stampede performed with 10000 initial ensemble mem-

bers, 1 iteration
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X-axis : Pilot Size/ Number of Compute Units

Y-axis(L) : Execution time for individual stages

Y-axis(R) : Total Execution time

In figure 5.1, we observe the behaviour of varying execution time with varying Com-

pute Units. Each Compute Unit, has a gromacs preprocessing step followed by a MD

simulation step. The execution time is a sum of both these steps. With increasing

number of Compute Units, the size of the input file per Compute Unit decreases. We

see a trade off between these two steps and observe an optimum point when number of

Compute Units are 256 or 512. The analysis stage is executed over 16 cores in all the

trials with the same size of input and hence remains similar at each data point. The

conclusion of this experiment is that, there lies a ”sweetspot” or an optimal distribution

of work for every configuration that would reduce the execution time of the experiment.

Experiment 2: Execution time as a function of Pilot Size Description of graph:-

Detail : Gromacs-LSDMap on Stampede performed with 10000 initial ensemble mem-

bers, 1 iteration

X-axis : Pilot Size/ Number of Compute Units

Y-axis(L) : Execution time for individual stages

Y-axis(R) : Total Execution time

In figure 5.2, we observe the behaviour of varying execution time with varying Pilot

Size. Each Compute Unit, has a gromacs preprocessing step followed by a MD simu-

lation step. The execution time is a sum of both these steps. In this experiment, we

keep the number of Compute Units to be the same as the Pilot Size, i.e., there is only

one generation of Compute Units. With increasing number of Pilot Size, and keeping

the input size constant, we can observe noticeable decrease in the execution time. This

is somewhat expected, as we increase the resources used in doing the same amount of

work. The conclusion drawn from this experiment is that, it is possible to reduce the

execution time of the experiment if more resources can be availed.
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Experiment 3: Execution time as a function of Pilot Size and Input Size

Description of graph:-

Detail : Gromacs-LSDMap on Stampede performed with 300000 timesteps, 1 iteration

X-axis : Pilot Size/ Number of Compute Units/ Number of ensemble members

Y-axis(L) : Execution time for individual stages

Y-axis(R) : Total Execution time

Experiment 3 is almost a converse of experiment 2. In this experiment, we vary the

pilot size and the input size by the same factor, thus keeping their proportion constant.

We can observe that while going from 10,000 ensemble members to 20,000 and then

40,000, the simulation execution time remains similar in each case. This is so since we

increase the resources by the same proportion, 16,32 and 64. We keep the number of

Compute Units constant to remove the effect of distribution of work. The conclusion

of this experiment is that, given large number of resources, it is possible to keep the

execution times within an expected/desirable limit.

5.3 Usecase 2: Amber-CoCo

5.3.1 Experiments

In the case of Amber-CoCo, we use the configuration of the molecule ”Vilin”. In this

scenario, each compute unit gets the same number of ensemble members regardless

of the number of compute units as opposed to usecase 1. The simulation stage is

divided into the minimization step and the MD simulation step. The configuration file,

minimization parameters, simulation parameters and the topology file are provided to

each of the compute units in the simulation stage. In the analysis stage, similar to

gromacs-lsdmap, a configuration file is provided for CoCo which acts upon the output

of the simulation stage.

Experiment: Similar to the experiments in the gromacs-lsdmap case, we vary the
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number of Compute Units and the Pilot Size and observe the Execution Time. In this

experiment, the amount of work done by an individual Compute Unit remains constant

as the number of ensemble members per Compute Unit remains constant (1 in this

case). This is a mark of the weak scaling behaviour of the toolkit for this application.

5.3.2 Results

Experiment: Execution time as a function of Pilot Size and Compute Units

Description of graph:-

Detail : Amber-CoCo on Stampede performed with 5000 timesteps, 1 iteration

X-axis : Pilot Size/ Number of Simulation Compute Units

Y-axis : Execution time for individual stages

In figure 5.4, we vary the number of Compute Units over different values of the

Pilot Size. We observe that, for a combination of Pilot Size and Compute Units, if

the number of generations of Compute Units is constant, so is the Execution Time.

For example, for a Pilot Size = 16 and number of Compute Units = 16, the Execution

Time is same as that of Pilot Size = 32, Compute Units = 32. The work done is twice

though. This again points us to the fact that, given enough amount of resources, the

Execution Time for increasing workload can be kept similar.
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Figure 5.1: Gromacs-LSDMap : Exec time vs No. of Compute Units

Figure 5.2: Gromacs-LSDMap : Exec time vs Pilot Size
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Figure 5.3: Gromacs-LSDMap : Exec time vs Pilot Size and Input Size

Figure 5.4: Amber-CoCo : Exec time vs Pilot Size/Compute Units
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Chapter 6

Conclusion and Future Work

In this thesis, we presented a Framework to enable large scale ensemble based sim-

ulations, EnsembleMD Toolkit. We began by understanding the requirements of the

science community, 1) to run large number of short simulations on a Distributed Com-

puting Infrastructure, 2) to support, amongst others, a pattern which follows a Simu-

lation Analysis Loop. We addressed the topic of task based parallelism as a promising

alternative to conventional methods of job submission and execution. We use RADI-

CAL Pilot to implement the task based parallelism principle. RADICAL Pilot enables

us to Pilot Job frameworks which allow us to decouple resource management from

workload management. RADICAL Pilot lays over the SAGA Layer which provides an

interface to enable interoperability thus enabling scientists to use several Distributed

Computing Infrastructures. Using Ensemble MD, we provide the bare essential building

blocks required to develop a Molecular Dynamics application, not by the developer, but

the scientists themselves. In order to minimize the overhead of development, resource

and kernel level abstractions have been provided in Ensemble MD as well. Resource

level abstractions have been discussed as part of RADICAL Pilot, whereas kernel level

abstractions are provided in terms of Kernel plugins which implements the required en-

vironment setups to use the application on the specific resource. Easy to use and follow

data transfer methods are provided in Ensemble MD to assist the scientists. Lastly,

scalability tests, strong and weak scaling tests, have been performed on the Ensemble

MD Toolkit Simulation Analysis Loop pattern and analyzed.

There is a lot of scope for future work in Ensemble MD toolkit. One of the aims is

to implement a tool level abstraction, much similar to Kernel level abstractions, where
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the tool specific argument methods can be removed from the user interface thereby

making switches from one MD tool to another quite easy. Another direction of future

work is to enable support for multiple Pilots so that execution can be performed over

multiple heterogeneous machines simultaneously. Currently, the execution contexts are

static and work over pre-known variables, the next versions of EnMD will concentrate

on developing Dynamic Execution Contexts which can vary Pilot and Compute Unit

specifications during runtime as to minimize the Time to Completion.
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