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ABSTRACT 

Background: Under current classification of lymphoid neoplasms, majority of 

lymphomas can be reliably classified; however, overlapping features between diffuse 

large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL) with or without MYC gene 

rearrangement are problematic to diagnose.   

Purpose: The aim of this study was to identify recurrent chromosome abnormalities to 

distinguish these entities and to test for their specificities using predictor models. 

Dataset and Methods: The Study involved the analysis of publicly available information 

and institutional cases.  Two distinct datasets were used to build (n = 338) and test 

(n=177) predictor models.  An independent group t-test performed with the Statistical 

Analysis Software (SAS) was used to assess the differences in the number of aberrations 

between groups.  The Fisher exact test was then used to determine correlations between 

RCAs and the two entities.  A p-value less than .05 was considered significant.  

Discrimination of models was determined by the ROC curve.  All analyses were 

performed using R; only SAS was used for a logistic regression model. Subsequent 

supervised models were constructed (n = 515) and copy number variations analysis (n = 

249) was conducted for validity.   

Results: RCAs associated with DLBCL: +X, 1qL, 1p36L, +2, -2, +3, -4, +7, -8, 9qL, 

+12, 14qL, 15qL, 16qL, +16, 17pL, +18, 19pL and 22qL. Specificity of models was 85-

100%.  In terms of the area under the curve (AUC) of the ROC curve, predictor 

classifiers were classified as excellent models (0.9 - 0.93).  Only the LR was below 0.9.  

When datasets were combined, additional RCAs were identified (6pG, 6qL, +5, +11, -
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10/-15, -10/-14, 1qG and 13qL), with latter two describing BL.  Subsequent analysis by 

an artificial neural network model showed a specificity of 95-100%.  In terms of validity, 

findings from an extended array CGH review showed a number of RCAs correlated with 

copy number aberrations. Moreover, an analysis of CNVs revealed similar results. 

Conclusion: Our findings revealed unique RCAs that suggest distinct biological 

activities between DLBCL and BL, these RCAs may be used to augment diagnostic 

accuracy and help clinicians better manage these patients. In terms of predictor 

classifiers, ANN models outperformed all others classifiers.   
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                                                             Chapter I 

I. Introduction 

 

1.1 Introduction 

Under the current World Health Organization (WHO) Classification scheme of 

hematolymphoid neoplasms, diffuse large B-cell lymphoma (DLBCL) and Burkitt 

lymphoma (BL) fall under the umbrella of mature B-cell non-Hodgkin (NHL) 

lymphomas.  Distinguishing between these two entities is critical since prognosis and 

treatment greatly differs.  BL is not cured with existing therapies used for DLBCL and 

requires more aggressive protocols.  Therefore, an accurate diagnosis is critical to avoid 

the over-treatment or under-treatment of these patients.  Although establishing a 

diagnosis for DLBCL and BL may appear straightforward, differential diagnosis between 

the two remains problematic in daily clinical practice.
1
  This is due to the overlapping 

morphological, immunophenotypic and cytogenetic features between these two entities.
1-3

  

In fact, the Non-Hodgkin’s Lymphoma Classification project identified just 53% 

agreement between experienced hematopathologist when distinguishing BL, atypical BL 

and DLBCL.
4
  To further support this view, two recent DNA microarray studies have 

shown that nearly 6% of histological DLBCL actually represent the molecular BL 

subtype.
5,6

  In view of these challenges, the 2008 WHO classification established the new 

provisional category, B-cell lymphoma, unclassifiable, with features intermediate 

between DLBCL and BL (I/DLBCL-BL).
7
  This category only serves to bring together B-

cell lymphomas that share both BL or DLBCL features but failed a diagnosis of BL or 

DLBCL.  Within this new classification, the WHO also outlined BL by a simple MYC 

gene positive karyotype compared to more complex karyotypes for I-DLBCL/BL and 
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DLBCL.  However, this may not be entirely correct since molecular studies have shown 

an increase in genetic complexity in the molecular BL subtype.
5,8

  Chromosome 

structural rearrangements are also now included in this classification system, for 

example, genomic gains of the long arm of chromosome 3 (3q), short arm of 

chromosome 9 (9p) and 18q are classified as activated B-cell DLBCL (ABC-DLBCL) 

and chromosome translocations between chromosome 14 and 18 [t(14;18)] and 12 q 

gains belong to the germinal center GC-DLBCL subset, while t(14;18) now rules out 

BL.
7
   Despite such efforts to properly assign BL from DLBCL, additional genetic criteria 

are clearly needed. 

1.2 Background Information 

To better distinguish BL from DLBCL, this current study will use an integrative 

approach analysis of cytogenetic data, gene expression profiles and bioinformatic tools to 

augment diagnostic accuracy.  In the following paragraphs, we provide background 

information on the various technologies that will be used in this study.  

Cytogenetics as a Diagnostic Tool for Hematological Disorders   

Cytogenetics is a subspecialty of pathology that studies chromosome structure and 

variation in cancer and non-cancer states.  Normally, an individual carries a total of 22 

homologous chromosomes in addition to a sex chromosome pair (XY for males and XX 

for females) for a total of 46 chromosomes.  Each chromosome has a distinctive band 

pattern when trypsin is applied to chromosomes and stain with Wright stain (G-banded 

chromosomes).  Given such distinct banding pattern, each chromosome can be readily 

identified under light microscopy; it is this banding pattern that serves to describe 

structural variations in chromosomes and also serves as the basis for chromosome 
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nomenclature (the International System for Human Cytogenetic Nomenclature or ISCN).  

Because of the advances in cytogenetic techniques, it is nowadays an integral part of the 

diagnosis, prognosis and therapy management for many hematological malignancies.     

Molecular Cytogenetics: Comparative Genomic Hybridization (CGH) 

Introduced in the early 90’s, classical CGH was the first molecular cytogenetic 

technique that offered a comprehensive assessment of the entire genome.  Both classical 

and array CGH allow for the detection of DNA copy number changes providing a map of 

the regions in the genome that are gain or lost.  Nowadays, array CGH has but completely 

replaced classical CGH; however, for the purpose of this research study and because 

there is valuable data available for analysis on many disease states, including DLBCL 

and BL, we will describe classical CGH in more detail.  In classical CGH, differentially 

labeled DNA (test DNA in green and control in red) are hybridized to chromosome 

metaphase spreads.  A copy number difference between a test and control sample is 

shown as a green and red fluorescence ratio difference on metaphase spreads.  This 

fluorescence ratio between test and control DNA is carried out by an imaging system.  In 

the case of genomic regions that are gained or amplified, an increased in green 

fluorescence ratio is detected, whereas regions of the chromosomes that are lost produced 

a decreased fluorescence ratio.  The advantage of this technique is the wide area 

screening of the genome for copy number changes and the amount of DNA needed (a few 

nanograms of DNA), while its disadvantage is resolution.  Genomic gains or losses 

smaller than 5-10 MB are not detected.
9
  In the case of array CGH, this limitation is 

overcome.                
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Bioinformatics 

In the last decade, with the completion of the human genome project in 2003 and 

the rapidly evolving microarray-based technologies, an explosion of biological and 

biomedical data has become available.  It is this vast information in emerging fields such 

as genomics, transcriptomics and proteonomics that has precipitated the rise of 

bioinformatics, an information science that is concerned with the application of computer 

techniques and technologies that gather, manipulate classified, store, retrieve, visualize, 

predict and analyze data. Bioinformatics is an interdisciplinary science that interphase 

biology, computer science, statistics and mathematics all merged into a single discipline. 

Similarly, the National Institute of Health (NIH) working definition of bioinformatics is 

the development, research tools and application of computational applications to expand 

the use of biological and medical data, but also to store, acquire, organize, archive, 

analyze or to visualize these data.  The impact of bioinformatics in the biomedical field is 

not only due to its ability to handle large volumes of data, but also in the ability to 

predict, evaluate and interpret clinical findings.  Thus, the goal of bioinformatics is to 

uncover and find patterns in this wealth of information and gain a better understanding of 

the genome and biological systems. For the purpose of this study, bioinformatics is 

essential to uncover distinguishing genetic features between DLBCL and BL from large 

datasets, and also to predict between these two entities. 

Logistic Regression, Unsupervised and Supervised Prediction Models 

Predictive models are widely used in data classification tasks throughout the 

literature. The following sections offer a brief summary of the various models that will be 

used in this study.   
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In a logistic regression model, the relationship between categorical dichotomous outcome 

variables is modeled.  The model predicts an outcome based on a series of predictor 

variables, in our case, a set of recurrent cytogenetic aberrations that predict BL or 

DLBCL.   In addition, it also provides information on how important independent 

variables relate to the outcome and generates an odds ratio for this relationship.  Once a 

model has been selected, a test of goodness-of-fit is performed; this is usually the 

Hosmer-Lemeshow test that determines the prediction ability of the model or 

“calibration”.
10

  This test generates a chi-square statistic, where a small value describes a 

better performance of the model.  Another calibration tool to assess the quality of LR 

models is calibration plots. It compares the similarity between two approximations of a 

probability, in other words, it plots fitted vs. actual values.  A second feature that is used 

to test the accuracy of the model also referred to “discrimination” or how well the model 

distinguishes between the two different tumor types is the receiver-operating 

characteristic (ROC) curve.  It is the most commonly used tool to evaluate discrimination 

11
 and  it is most often used with diagnostic tests based on specificity and sensitivity.  

Finally, and perhaps more importantly, is the validation of the model.  This is normally 

carried out with a test dataset, that is, a different set of data that was used to build the 

model.   

Another statistical method used in classification tasks is the analysis of clusters.  

Clusters analysis is a form of unsupervised learning, that is, clusters are partitioned and 

derived from no previous knowledge about the classification of objects.  There is a large 

number of clustering analysis methods; however, the most popular method is the k-means 

partitioning algorithm.
12

  Partitioning methods are helpful when a set of clusters are 
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desired.
13

  For numerical and binary datasets, the k-means algorithm has a mean vector 

that finds the nearest cluster for an object, while at the same time reducing object 

dissimilarity by a distance metric, for example, a Euclidian distance.  K-means 

repetitively designates objects to the nearest cluster revising the mean with every 

repetition cycle.  The repetition goes on until a certain threshold specified by the user is 

reached, that is, pending a specified number of objects changing clusters.
12

  There are 

limitations to k-means, such as processing speed, parameters that can be designated by 

the user, responsiveness to outliers and initial means, as well as shaped clusters.  Various 

other algorithms have been developed to address some of these shortcomings.  One 

alternative to using the k-means and that addresses outliers is the k-medoids algorithm or 

PAM (partition around medoids).  In this instance, the k-medoids assigns the mean to the 

object that is closest to the center and reduces distances among the different objects 

within a cluster.
14

       

Supervised Models: Artificial neural networks-ANNs and Support Vector Machine-

SVM  

Unlike unsupervised methods that derive clusters with no previous knowledge of 

classification, supervised models classify by learning experience, that is, models are 

trained and build a predictive model that is subsequently tested against a test dataset.  

One such example of a supervised model is artificial neural networks (ANNs).  ANN 

models are supervised learning methods that are highly precise in the assessment of 

outcome prediction.  These models also generate near-perfect classifications and are able 

to depict causality between input and output data using IF-THEN rules.
15-17

  These 

networks achieve this by constantly adjusting weighted connections to minimize errors in 
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matching input to the output datum.  In this context, ANNs have the capacity to learn by 

example by way of highly interconnected processing units referred to as a perceptron that 

is analogous to a biological neuron.  Indeed, it is the perceptron that serves as the basic 

framework for neural networks and the processing information parallels that of the brain.  

Figure 1-1 illustrates the basic structure and function of the perceptron.      

 

 

Figure 1-1. A multiple input model of the perceptron.  Single inputs X1, X2, X3…  ;Xr  are 

weighted suitable elements W1,W2,W3…  ;Wr.  The summation of the weighted input and 

the bias equal to 1 represents the total input (n).  Thereafter, it continues into to an 

activation function (f) that consequently generates the neuron output (a).  Figure was 

adapted from Hanrahan et al.
18

 

 

Neural networks generally use a sigmoid function due to the fact that it possess 

better learning capability and improved precision.
19

  However, in recent years 

investigators have explored other types of functions such as the radial basis functions 

(RBFs).
18

  Given the functionality of a single perceptron, it is limited by a given weight 

and threshold value; however, when multiple neurons are interconnected in layers 
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moving forward to a single output the power of neural networks is truly appreciated.  In 

fact, multilayered perceptrons (MLP) are well suited for classifications, pattern 

recognition, predictions and decision support systems.  Another type of supervised 

learning method that is used in biological systems for classification tasks is a support 

vector machine (SVM) model.  This approach produces a lower number of classification 

inaccuracies compared to other methods.
20

  First introduced in 1995 by Cortes and 

Bapnik
21

, it maps input vectors to high dimensional planes (hyper-planes) instead of 

linear maps; it then uses this hyper-plane to construct a linear decision border between 

two different classes or groups. In this regard, with the existence of one hyper-plane, 

there exist an infinite number of hyper-planes.  The optimal feature space or hyper-plane 

that is used by the model to separate between groups is selected based on the closest point 

of each group to the hyper-plane, but at the same time as measured distance, usually a 

Euclidian distance that is as farthest away from this optimal feature space as possible.
20

   

Internal and External Validation Techniques 

 The objective of any predictive model is to deliver an effective outcome 

prediction for future patients, in our case, new patients with a suspected differential 

diagnosis of DLBCL and BL.  Thus, the dataset and analysis to construct prediction 

models is essentially only of interest to learn for future events.  Therefore, validation is 

an important element of the process when constructing diagnostic classifiers or prediction 

models.  Here, two types of validity are considered, internal and external validity.  In 

terms of internal validity, it is the reproducibility of the model, that is, different settings 

are performed within the same underlying population and then results from these settings 

are then evaluated to determine the validity of the model.  For the purpose of this study, 
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the following are used: split-sample validation (samples are divided into two different 

groups), cross validation (assessment of model performance is carried out by assigning a 

random part of the underlying population consecutively, usually in deciles or a 10 cross 

validation that functions as validation component) and boot-strap validation (the process 

of sampling with replacement from an underlying population, this process introduces a 

random element and normally 100 to 200 bootstraps are required to achieve stable 

results).  With regards to external validation or the general applicability of the model to 

future patients or new datasets, method transportability (assessment of the model using a 

different method or approach) is used in the present study.        

1.3  Statement of Problem 

Because of the diagnostic challenges due to the overlapping morphological, 

immunophenotypic and cytogenetic features of BL and DLBCL and since therapy greatly 

differs between the two tumor types, it is important to investigate possible markers that 

may be used to better define these entities.  But first, an outline of some the features 

currently established in clinical practice for these neoplasms is useful to cover at this 

time.    

DLBCL is the most common form of NHL accounting for 30-40% of adult 

cases.
22

  It is a heterogeneous group of neoplasms that are characterized by the presence 

of large number of neoplastic B-cells of varied size and morphological variants, primarily 

consisting of immunoblastic, anaplastic and centroblastic morphology variants.
23

  It 

exhibits a diverse clinical presentation, varied response to treatment and expresses 

distinct molecular profiles.
22

  By gene expression profiling, three molecular subgroups of 

DLBCL can be reliably identified that have both a distinct patho-biology and prognosis.  
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These are the germinal center B-cell like DLBCL (GCB) with a more favorable 

prognosis, the activated B-cell DLBCL (ABC) characterized by a poor clinical outcome 

and the primary mediastinal B-cell lymphoma distinguished by a favorable prognosis.
24

  

Apart from the molecular subgroups, a large number of DLBCL subtypes are now well 

established, the majority of these neoplasms fall under the classification of DLBCL not 

otherwise specified (DLBCL, NOS).  In this group, there are no characteristic genetic 

aberrations; however, cases exhibit complex karyotypes and some of the recurrent 

aberrations that are observed include BCL-6 translocations to the immunoglobulin heavy 

chain gene (IGH) and non-IGH genes with a frequency of 25-40%, BCL-2 translocations 

to IGH observed in 15-20% and MYC (8q24) translocations involving IGH and non-IGH 

genes in up to 16% of the cases, a rare occurrence in DLBCL.
25-30

  The most frequent 

MYC translocations involve the juxtaposition of MYC to the IGH locus at 14q32 

[t(8;14)(q24;q320].  Other frequent MYC variants consist of the t(8;22)(q24;q11) and 

t(2;8)(p11;q24) translocations resulting in the juxtaposition of MYC to the 

immunoglobulin light chain lamda (IGL) and IG Kappa (IGK) genes respectively.
31

  In 

addition to these previously discussed genetic aberrations, other genetic lesions may also 

include the presence of MYC in combination with BCL-2 or BCL-6 gene rearrangements, 

so-called double hit lymphomas that can also occur in rare occasions.  In terms of 

karyotypes, DLBCL may contain a MYC positive complex karyotype (6 or more 

chromosome aberrations in addition to a MYC rearrangement) or it may include a MYC 

simple karyotype.
7
   Morphologically, as described earlier, only large cells are common 

in this entity.  The proliferation index, measured by the Ki67 score i.e., an antigen found 

in growing and dividing cells, is below 90%, but it can measured above 90% in rare 
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occasions, while the bcl-2 protein expression is negative to strongly positive.  By 

Immunophenotype, DLBCL express CD20, may express CD10 in 25-50% and CD5 

appears in 10% of the cases.
7,32

  Briefly, a bcl-2 positive, ki-67 less than 90%, rare MYC 

rearrangements, BCL-2 and BCL-6 rearrangements favors a diagnosis of DLBCL.
1
 

In contrast, Burkitt lymphoma generally presents in extranodal sites e.g., 

abdominal masses, jaw, bone marrow or in the peripheral blood in the form of acute 

lymphoblastic leukemia.  In this regard, it is unlike DLBCL that is localized to both nodal 

and extranodal sites.  BL has three clinical variants: endemic form occurring in Africa, 

sporadic present throughout the world (1-2% in the US) and the immunocompromised 

BL seen generally in AIDS patients.
7,33

   

The gender ratio is also different between the two entities; in BL there is a male 

predominance compared to DLBCL that shows no gender preference.  In contrast to 

DLBCL, the genetic hallmarks for BL, although non-specific, are MYC rearrangements, 

primarily t(8;14) and variant translocations t(8;22) and less often t(2;8) translocation.  

Although most of BL cases do exhibit MYC rearrangements, approximately 10% of cases 

lack a detectable MYC rearrangement by fluorescent in situ hybridization (FISH) 

analysis.
2,5

  In this case, other genetic techniques are available that may be used to detect 

cryptic MYC rearrangements.  Presently, studies are ongoing to determine whether or not 

MYC negative BL cases really do exist.   Unlike DLBCL, non-IG/MYC rearrangements, 

BCL-2 with no MYC rearrangements, BCL-6 with no MYC rearrangements and double hit 

lymphomas are absent in BL.
7
  In terms of karyotypes, MYC simple karyotypes are 

generally a characteristic finding in BL, but MYC complex karyotypes may appear in rare 

occasions.  Morphologically, unlike a diffuse infiltrate of large B-cell seen in DLBCL, 
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BL is characterized by monomorphic small to medium sized B-cells with a “starry sky” 

appearance (see Figure 1-2), a high proliferation index greater than 95% measured by Ki-

67 staining,  positive for CD10, CD20, bcl-6 and absence of bcl-2 expression.
7
  Lastly, 

we should also point out; DLBCL accounts for 25,000 newly diagnosed cases in the US 

in contrast to only 2,000 of BL
34

.     

 

 

Figure 1-2 . Morphological characteristics of DLBCL and BL.  Panel A shows a 

characteristic BL morphology with small to medium sized monophorphous cells, whereas 

panel B illustrates a large pleomorphic cell infiltrate more typical of DLBCL.  Figure 

courtesy of Seegmiller and colleagues. 
35

 

Previously, slight morphological deviation from strict guidelines for BL but with 

immunophenotype and molecular characteristics of BL were formerly termed “Burkitt-

like lymphoma” or “atypical Burkitt”; however, molecular studies have showed these 

variants to have a molecular profile comparable to classical BL, and this term is no longer 

applicable.
5,36

  By gene expression profiles, BL shows a distinct molecular signature from 

DLBCL; however, cases were reported with an intermediate signature.
5,6

  With respect to 

treatment, these patients require aggressive chemotherapeutic regimens due to the high 



13 
 

tendency of central nervous system involvement.  Whereas a low chemotherapeutic 

regimen consisting of cyclophosphamide, doxorubicin, vincristine, prednisone plus the 

anti B-cell monoclonal antibody CD20 rituximab (R-CHOP) is given to patients with 

DLBCL, a more aggressive treatment that requires prophylactic intrathecal chemotherapy 

for BL is needed.
7,22

  In short, BCL-2 negative, a Ki-67 of greater than 95% and simple 

karyotypes (no more than two chromosome aberrations) involving IG/MYC 

rearrangements favors a diagnosis of BL.
1,35

  Table 1-1 summarizes distinguishing 

features between DLBCL and BL. 

 

Table 1-1. Distinguishing Features of DLBCL and BL 

________________________________________________________________________ 

Characteristic    BL    DLBCL 

________________________________________________________________________ 

Gender    Prevalence in males   Gender prevalence 

Infiltrate   Extranodal     Nodal and extranodal 

Morphology   Small to medium cells   Large cells 

    Monomorphous   Pleomorphic 

Proliferation (Ki-67)  Greater than 90%   Common < 90%, rare 

<90% 

Immunophenotype  CD10+,bcl-6+,bcl-2-   CD10+,bcl-6+,bcl-

2+/- 

MYC rearrangement  Yes (90% or more)   Infrequent (up to 

16%) 
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IG/MYC   Yes     Infrequent 

Non-IG/MYC   No     Infrequent 

Simple karyotype/MYC+ Yes      Infrequent  

Complex karyotype/MYC+ Infrequent    Possible when MYC 

present 

BCL-2/MYC-   No     Occasional 

BCL-6/MYC-   No     Occasional 

Double hit   No     Infrequent 

________________________________________________________________________ 

    

In this context, differential diagnosis between DLBCL and BL may appear non- 

problematic, that is, findings of BCL-2 negative, Ki-67 greater than 95%, IG-MYC 

rearrangement with a simple cytogenetic karyotype and monomorphic B-cells with a 

“starry-sky” appearance favors a diagnosis of BL, whereas a bcl-2 positive, Ki-67 less 

than 90%, MYC negative rearrangements, BCL-6 and BCL-2 rearrangements favors 

DLBCL.  Nevertheless, overlapping clinical, morphological and genetic features between 

DLBCL and BL with or without MYC gene rearrangement still remain problematic to 

diagnose in daily clinical practice.  Undoubtedly, new diagnostic markers are needed to 

better distinguish between these two entities.  Therefore, a wide array of technologies 

ranging from conventional cytogenetics, classical CGH, application of bioinformatic 

tools, and the use of gene expression profiles may shed some new light into the genetic 

make-up and chromosome imbalances of DLBCL and BL, augmenting diagnostic 

accuracy and resulting in development of more precise therapeutic modalities. 



15 
 

1.4  Objectives and Goals of the Research 

The overall goal of this project is to identify the most relevant cytogenetic 

markers associated with each tumor type and subsequently apply a set of bioinformatic 

algorithms (i.e., logistic regression, unsupervised hierarchical and k-means partition 

clustering, as well as artificial neural networks and support vector machine models) to 

determine the reliability of these markers and identify predictor models that may be used 

to augment diagnostic accuracy between the two histological tumor types.  It should be 

noted here, that the principal requirement in this study is to determine discrimination (i.e., 

the ability to distinguish between two groups), this is usually determine by specificity and 

the area under the curve (AUC) using the ROC curve, and calibration and sensitivity are 

less required in this context.  Moreover, to further validate these cytogenetic markers and 

to gain an insight into the molecular aspects of DLBCL and BL, copy number variations 

(in terms of chromosome gains and losses) using CGH data information and gene 

expression profiles will also be explored.  To this end and to determine the most 

significant markers associated with each tumor type, we will collect cytogenetics and 

CGH datasets from various publicly available databases.  Next, we will use the Pearson 

correlation to associate RCAs to a specific tumor type, determine specificities of all 

significant RCAs, correlate the different datasets, apply predictor models to analyze these 

RCAs and subsequently obtained a set of genetic markers that are highly predictive of 

tumor type.  ROC curves will evaluate discrimination of predictor models.  To the best of 

our knowledge, this is the first attempt to define DLBCL vs. BL from chromosome 

architecture down to the molecular level, and to use a cytogenetic approach to reliably 
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distinguish between the two diagnostic tumors types.  This study will aim to answer the 

following questions:  

1) What are the RCAs that predict DLCBL from BL? 

2) What is the specificity of these RCAs? 

3) With respect to the analysis of classical CGH, what are the specific gains and 

losses among the various diagnostic categories? 

4) What are the correlations between RCAs and CNVs? 

5) After a comprehensive review of array CGH of DLBCL subtypes and BL, what 

are the chromosomes imbalances distinguishing the various DLBCL subtype from 

BL? 

6) What predictive models, logistic regression, supervised or unsupervised perform 

better? 

7) After the application of the various bioinformatics algorithms, what are the top 

ranked markers predictive of DLBC? 

 

1.5 Research Hypotheses 

The following outlines the various hypotheses that will be tested to determine 

whether or not unique diagnostic cytogenetic markers may be used to distinguish between 

DLBCL vs. BL.  Here, the null hypothesis is designated as H0 and the alternative 

hypothesis is defined as H1.  The first hypothesis tests whether there is a difference in the 

total number of chromosome aberrations (both numerical and structural) between the two 

different groups.  Hypothesis 2, 3, 4, 6 and 7 tests whether there is a difference in the 

frequency of  either RCAs or CNVs accordingly, while hypothesis number 5 tests 
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whether individual RCAs determine the dependent variable or outcome (DLBCL or BL) 

in a multivariable context.  Hypothesis number 6 tests whether there is a difference in 

chromosome imbalances as measured by array CGH between DLBCL subtypes and BL.  

Of note, this hypothesis is based on the review of the literature and is an expanded 

analysis of a previously published report
37

 by our group in 2012.  All hypotheses are in 

line with the overall aim of this study. 

 

1) Is the average total number of chromosome aberrations in DLBCL greater in 

number than BL? 

Hypothesis 1: H0 = H1 

Alternative hypothesis: H0 > H1 

 

2) Is there a difference in the frequency of different RCAs between MYC+ DLBCL 

vs. BL?  

Hypothesis 1: H0 = H1 

Alternative hypothesis: H0 > H1 

 

3) Is there are a difference in the frequency of different RCAs between MYC+ 

DLBCL vs. MYC- DLBCL?   

Hypothesis 1: H0 = H1 

Alternative hypothesis: H0 > H1 
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4) Is there a difference in the frequency of different RCAs between DLBCL (MYC+ 

and MYC-) vs. BL?  

Hypothesis 1: H0 = H1 

Alternative hypothesis: H0 > H1 

 

5) Is there a difference between DLBCL and BL with respect to RCAs within a 

multivariable context?   

Hypothesis 1: H0 = H1 

Alternative hypothesis: H0 > H1 

 

6) Is there a difference in chromosome imbalances (measured by array CGH) in 

DLBCL subtypes compared to BL (only those chromosome aberrations found in 

array CGH with a frequency of 20% or more were considered of relevance)? 

Hypothesis 1: H0 = H1 

           Alternative hypothesis: H0 > H1 

 

7) Is there a difference in the frequency of individual CNVs (e.g. gain of 18q, gain of 

3) between the two different histological tumor types? (proposed for further 

research) 

Hypothesis 1: H0 = H1 

Alternative hypothesis: H0 > H1 
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Chapter II 

II. Literature Review 

 

2.1  Epidemiology 

Three distinct variants of Burkitt lymphoma are recognized based on geographical 

location, age groups and risk factors.  These consist of the endemic BL, sporadic BL and 

BL associated with immunodeficiency, primarily due to the human immunodeficiency 

virus (HIV).
7
  The endemic variant for the most part is confined to equatorial parts of the 

African continent.  It is characterized by affecting facial bones in children with an 

incidence at 2 to 9 years of age, and has been correlated with the distribution of malaria 

in Africa.
38,39

  The sporadic variant occurs outside of Africa affecting for the most part 

the abdominal viscera and bone marrow.  It is seen in children and adults with no age 

prevalence.
38

  The incidence is relatively low in both the US and Europe at only 1-2% of 

all non-Hodgkin lymphomas.
7
  The third variant of BL associated with HIV 

(immunodeficiency associated) has no geographical or age prevalence.  All three variants 

typically involve extranodal sites and are at risk to disseminate into the central nervous 

system.
40

   

In contrast, DLBCL is a heterogeneous group of lymphomas accounting for 30-

40% of all adult non-Hodgkin lymphoma cases, with most cases falling under the 

DLBCL not otherwise specified.
7,25

  The median onset of disease is in the 7
th

 decade, but 

it can also present in children and young adults.  The incidence is more prevalent in 

males than that of females and disease presentation may involve nodal or extranodal sites 

with approximately 40% of the cases confined to extranodal sites.
41,42
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2.2 Morphological and Phenotypic Features of BL and DLBCL 

Morphologically, BL are small to medium sized cells with a diffuse infiltrate of 

repetitive tumor cells arranged in sheets, round nucleus, clumped chromatin and with 

various visible nucleoli.  The tumor cells have a high mitotic index, on average greater 

than 95% measured by the immunohistochemical expression of MIB-1 (a monoclonal 

antibody that binds to Ki-67, an antigen associated with the proliferation of cells and used 

as a index to measure the proliferation of tumor cells)
43

, and have a characteristic “starry-

sky” appearance due to intermingle of phagocytic cells.   In contrast, DLBCL are larger 

and more pleomorphic to those tumor cells encountered of BL.  However, as mentioned 

in previous sections, there exists a continuum of morphological features that overlap 

between the two entities and as a result further ancillary studies are required.  

By immunophenotype, BL is positive for CD79a, CD20 and PAX5.
25

  However, 

in most of the cases, BL has a classical signature for CD10 expression, bcl-6, and 

negative for bcl-2 expression.
44

  Besides these markers, BL also can express CD43, 

CD38, TCL1 but it is negative for TdT, CD138, CD44, CD23, CD5 and CD34.
45

  The 

Epstein Barr virus (EBV) varies across BL variants.
25

  In contrast, as a group DLBCL can 

express bcl-6, bcl-2, CD45, CD45RA, CD79a, PAX5, IRF4/MUM-1, CD22, CD19 and 

CD20.
7
  Expression of CD30 is associated with the anaplastic variant but can also be 

expressed variably in other DLBCL subtypes. Approximately 10% of DLBCL will 

express CD5
7,25

 and CD10+ characteristic of BL is also prevalent in a subset of DLBCL 

(30-60%).  The EBV is also present in a subset of DLBCL and in plasmablastic 

lymphoma CD38 and CD138 are expressed.
7
  In the sections that follow, we describe 
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some of the major studies that have included protein expression (immunohistochemical 

staining, IHC), immunophenotypic investigations and the use of limited genetic 

components to aid in the differential diagnosis of DLBCL vs. BL.   

In 2001, the Southwest Oncology Group
46

 outlined phenotypic differences 

between Burkitt like lymphoma, (BLL, n=13) and DLBCL (n= 55) by IHC staining and 

limited used of FISH to assess MYC rearrangements.  In this study, a broad antibody 

panel to distinguish between the two diagnostic entities was used. When BL was 

compared against DLBCL, the Ki-67 showed a proliferation index higher than DLBCL, a 

higher expression for CD10 and oncoprotein p53, a lower expression for bcl-2, and a 

constant lower expression for cell adhesion molecules.  The CD44 was uniformly lower 

in BLL as well.  For the presence of the EBV, the study reported 30% of the cases tested 

positive for BL, while 25 of the cases tested for DLBCL were negative.  In terms of MYC 

rearrangements, four of 5 BL tested positive for the t(8;14) translocation or MYC 

rearrangement and none of the three cases analyzed for DLBCL showed a MYC 

rearrangement.  Although this study is in agreement with the current literature, the scope 

of genetic testing performed by this group was extremely limited.  

Unlike the previous study that reported no MYC rearrangements in DLBCL, 

Nakamura and colleagues
47

 in 2002 compared both immunophenotypic and genetic 

characteristics between BL and MYC+ DLBCL (n = 10, n = 5 each).  The study 

population included 5 pediatric cases with BL and remaining ten patients were adults.  

The IHC studies showed BL positive for CD20 (100%), CD10 (90%), bcl-2 (10%), and 

bcl-6 (90%), all BL cases were negative for the EBV virus.  In contrast, MYC+ DLBCL 

were positive CD20 (100%), CD10 (40%), bcl-2 (75%), bcl-6 (100%), and none of this 
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cases tested positive for EBV.  The Ki-67 proliferation index was significantly higher in 

BL than MYC+ DLBCL.  The authors of this study concluded that a high proliferation 

index of nearly 100% and a monotonous proliferation of neoplastic cells should suspect 

BL, while CD10+ and bcl-2 negative should further help in distinguishing between BL 

and MYC+ DLBCL.  Although the study reported chromosomal abnormalities for 6 of 10 

BL and 3 of 5 DLBCL cases, there was no direct comparison between the two in terms of 

chromosome aberrations.     

Following with the immunophenotypic features between the two diagnostic 

entities, Frost and colleagues in 2004 
43

 explored the expression of 6 proteins that 

included CD10, bcl-6, MYC, bcl-2, CD138 and MYB-1 in 55 classical BL and DLBCL 

pediatric cases (n=33, BL; n=20, DLBCL).  To assess the usefulness of this IHC panel, 

the study tested four additional pediatric samples that could not be accurately classified 

as DLBCL or BL.  This study showed a significant difference in staining pattern between 

the two entities, mainly a strong staining of MYC, absence of bcl-2 and a 100% protein 

expression of MYB-1 predicted BL.  There was no difference in CD10, CD138 or bcl-6 

protein expression.  Based on these findings, the study classified the four intermediate 

cases as BL.  Although these results are part in agreement with the literature (MYC 

staining is not part of the standard work-up for BL or DLBCL)
1
, one limitation is the 

small numbers of cases analyzed and even much smaller were the cases used to assess the 

utility of MYC, absence of bcl-2 and MIB-1.  In retrospect, it is unlikely that staining for 

MYC can serve as sensitive diagnostic maker because there was substantial overlap in 

MYC staining for both BL and DLBCL as the author rightly pointed out.   
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In line with this previous work, Gormley and colleagues
48

 in 2005 used a panel of 

eight protein expression markers of germinal center (GC) and activated B-cell (ABC) to 

distinguish DLBCL vs. BL. The GC and ABC markers in this study included bcl-6, 

CD10, cyclin H and MUM-1, CD138, PAK1, CD44 and bcl-2 respectively.  A total of 39 

DLBCL and 16 BL cases were evaluated retrospectively.  Based on morphology, cases 

were further subdivided into centroblastic and immunoblastic for DLBCL and classical 

and variant form for BL.  To support a morphological distinction between a variant form 

of BL and DLBCL, the study relied on a high proliferation index or Ki-67 score and 

detection of a MYC rearrangement by FISH analysis.   However, a drawback to 

establishing this distinction is that MYC rearrangements with a high Ki-67 score (more 

than 95%) can also be present in DLBCL
49

.  Therefore, it is uncertain whether these 

characteristics may be completely reliable in distinguishing between a variant form of BL 

and DLBCL.
48

  Despite these shortcomings and using a hierarchical clustering, the study 

reported two major clusters based on protein expression patterns that significantly 

correlated with a morphological diagnosis.  For example, the germinal center markers 

CD-10 and bcl-6, as expected, stained stronger in BL than the DLBCL cluster; however; 

cyclin H a GC marker surprisingly did not stain BL but was more prevalent in DLBCL.  

The bcl-2 marker was not uniquely expressed on both of the clusters. Both the CD44 and 

MUM-1 were absent from BL and positive in the DLBCL cluster, while PAK-1 and 

CD138 showed no distinction between the two diagnostic groups.   Based on hierarchical 

cluster analysis, the sensitivity was only reported at 81% and specificity at 87% for a 

diagnosis of BL.  Even though these findings were able to show some distinction between 

the two diagnostic entities based on a multi protein expression panel (CG and ABC 
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markers), sensitivity and specificity results, in our view, remain low.  What is more and 

as previously stated, the criteria used for the separation between a variant form of BL and 

DLBCL are limited based on the Ki-65 score and FISH analysis of MYC.    

In a similar fashion, Haralambieva and associates
2
 analyzed protein expression 

markers in 74 adult DLBCL and 10 pediatric BL cases (Ki-67, CD-10, bcl-2, bcl-6), this 

study also incorporated genetic markers by FISH analysis, mainly to detect BCL-6, BCL-

2 and MYC rearrangements. The study proceeded with two algorithms (algorithm A, a 

review process by four hematopathologist that assessed morphology, IHC, age, site of 

involvement and algorithm B that included a Ki-67 >90%, bcl6+, CD10+, bcl-2 negative, 

MYC+, BCL-2 negative and BCL-6 negative for a diagnosis of BL)   to make the 

distinction between the two diagnostic entities.  All 10 reference pediatric BL cases were 

accurately diagnosed by the two algorithms.  Of the 74 adult cases, 21 and 52 cases were 

diagnosed as BL and DLBCL by algorithm A respectively, while 23 and 51 were 

categorized as BL and DLBCL each with algorithm B.  However, we should point out 

that an independent consensus by all four pathologists only reached 24% in BL and 69% 

in DLBCL.  In addition, only 55% of all cases independently reviewed and finalized were 

uniformly classified by morphological and cytochemical features. A higher consensus 

was only reached when all four hematopathologist discussed the cases concurrently.  

Interestingly, one observation made by the study was a more homogeneous clinical 

presentation of BL by algorithm B (site of involvement and gender were more uniform in 

BL).  Indeed, it is now well established that BL most often presents with extranodal site 

involvement.
7
  Moreover, the study concluded that 29% of BL cases would have been 

incorrectly diagnosed using just morphological and cytochemical measures based on the 
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criteria of algorithm B.  Therefore, subsequent investigations relied on a multi-parameter 

approach that would include molecular characteristics to accurately diagnose BL from 

DLBCL.            

Following this latter findings and to improve the selection criteria for establishing 

an accurate diagnosis, Cogliatti and colleagues
49

 in 2006 reported a differential diagnostic 

algorithm based on morphology, immunophenotype and genetic features.  For a diagnosis 

of BL, the group used a classical morphology, CD10+, bcl-6+, bcl-2-, Ki-67 >95%, MYC 

rearrangement and absence of a t(14;18) translocation.  Using these criteria, the group 

divided a total number of 39 cases into four distinct groups: 1) DCI (n=5), classical BL, 

all criteria were present in this group, 2) DCII (n=11), atypical BL with deviation of two 

criteria, 3) DCIII (n=9), MYC+ DLBCL with two or more deviations of the criteria 

selected and 4) DCIV (n=14), highly proliferative B-cell lymphoma with morphology 

intermediate between atypical BL and DLBCL.  A Ki-67 of > 95% was more prevalent in 

both classical and atypical BL.  In terms of immunophenotypic findings, the study 

concluded the cell phenotype to be sensitive but not specific for a diagnosis of BL.  Of 

the four groups listed by the study, classical BL had a homogeneous morphological, 

immunophenotypic and genetic characteristics. In light of these newly proposed 

diagnostic algorithm and based on standard therapeutic protocols at the time, the study 

concluded a total of 53.3% of patients were considered undertreated and 38.1% of these 

patients were deemed over treated.  Subsequent stratification of tumors by this classifier 

exhibiting a typical BL morphology confirmed five of six cases with a classical BL that 

is, CD10+, CD20+, BCL-2 negative and bcl-6+.  Eleven of the 39 cases that showed 

variation of immunophenotype, were pleomorphic, harbored a MYC rearrangement and 
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with evidence of a t(14;18) translocation were classified as atypical BL.  Nine additional 

cases were categorized as DLBCL.  These cases showed a morphology consistent with 

DLBCL, variable immunophenotype, MYC rearrangement and at times with a t(14;18) 

translocation.  The remaining 14 cases were classified as B-cell lymphomas with 

intermediate features between DLBCL and BL.  Despite this effort of including 

morphological, immunophenotypic and genetic components in a new classifier, there still 

remained cases that were not adequately classified and were placed into this mix-bag of 

DLBCL and BL.  In brief and as previously mentioned, immunophenotype is sensitive to 

BL but not specific and broader genetic classifiers than just MYC and t(14;18) are clearly 

needed to further stratify these cases. 

Unlike the two previous studies that reported a need to use genetic markers to 

augment distinction between BL and DLBCL, Chuang et al. in 2007
50

, reported a 

comparative study where histopathology and IHC, primarily CD10, bcl-2, bcl-6 and Ki-

67 could confidently distinguish between the two groups.  This study compared the 

results from 28 BL and 16 DLBCL with a high proliferation index with or without the 

characteristic starry sky appearance (DLBCL-HPSS) that were diagnosed by 

histopathology, IHC, FISH results for the MYC rearrangement and by presence of the 

Epstein Barr virus m-RNA (EBER) in neoplastic cells.  The study reported a significant 

difference in CD10, bcl-2, Ki-67 and combined expression of CD10/bcl-2 negative/bcl-6 

+ in BL vs. DLBCL-HPSS (p < .001).  Alternatively, the MUM-1 expression was more 

prevalent in DLBCL-HPSS compared to BL (p < .001).  With respect to EBER and MYC 

rearrangements, 7 of 28 (25%) in BL vs. 0 of 16 (0%) in DLBCL were positive for EBER 

(p = .037) and 26 of 27 (96%) in BL vs. 1 of 15 (7%) showed a MYC rearrangement by 
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FISH analysis (p < .001).  Given these results, the study concluded that CD10, bcl-2, bcl-

6, Ki-67 greater than 95% and with an added benefit from a positive result from EBER, a 

confident distinction between BL and DLBCL could be made in most cases.  While these 

results are persuasive, the study population is small and a larger cohort is needed to 

substantiate findings.  Also and as previously mentioned, a measurement of Ki-67 > 95% 

may not be entirely specific for BL since MYC+ DLBCL may have similar expression 

measurements.
49

  And, even though immunophenotypic markers listed here may 

distinguish between the two entities in general, there still a number of cases that may 

pose a challenge, particularly MYC+ DLBCL with a high Ki-67 as just mentioned or a 

subset of DLBCL that are characterized by the expression of CD10+.   

To properly distinguish between BL and a subset of CD10+ DLBCL (n=13, n = 

10, respectively), a study in 2010 using flow cytometric immuno-phenotyping (FCI) with 

novel antibodies CD18, CD44, CD54, CD20 and CD43 showed statistically significant 

differences between these two entities with respect to CD44 and CD54 expression
51

 and 

concluded that CD44 is an excellent marker to properly differentiate DLBCL from BL.  

Likewise, McGowan and colleagues
52

 using a multi-parameter scoring system of 

frequently used antibodies in FIC reported significant differences in CD10+ DLBCL and 

BL.  This study assessed the mean florescent intensities (MFI) for CD10, CD20, CD38, 

CD79B, CD71 and CD43 in the two tumor types.  The study revealed MFI for CD10, 

CD43, CD71, percentage of neoplastic cells with CD71 and forward side scatter (FSC) 

significantly associated with BL, whereas CD79b was statistically significant in DLBCL.  

Limitations of this study are the small study group.  Therefore, further investigations with 

a larger cohort are required to confirm these findings.   
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Moving from a scoring system based on MIF of routinely used antibodies, Naresh 

and colleagues
53

 in 2011 explored an IHC and FISH scoring system that was used in 

three phases for the differential diagnosis of BL and DLBCL.  For Phase 1, it consisted of 

scoring cases based on morphology and immuno-stains (0-3 points), CD10 (1 if positive) 

and bcl-2 (2 points if negative and 1 point for positive).  A cumulative score of 5-6 

suggested BL, 3-4 points did not exclude BL and less than 3 points excluded BL.  For the 

second phase, Ki-67 (2 points > 95%, 1-90-95%), CD38 (1 if positive) and CD44 (1 if 

negative) were added for a total of 6 point variables.  Cumulative scores for this second 

phase were as followed: greater than 8 points indicated a diagnosis of BL, 6-7 points BL 

was not excluded and less than 6 points excluded BL.  For the final phase, a FISH 

analysis for a MYC-IGH rearrangement, BCL-2 and BCL-6 rearrangements were added to 

the scoring system.  Final cumulative scores of greater than 8 points suggested a 

diagnosis of BL, while 6-7 points did not exclude BL.  This system was assessed on 252 

patients and a final diagnosis of BL, not BL or BL not excluded (BLNE) were assigned.  

In total, 4.8% of cases were not resolved by the algorithm.  Of the cases that were 

diagnosed as not-BL (n=116), a total of 103 cases were categorized as DLBCL and six 

cases were diagnosed as U-DLBCL/BL.  Of special interest, of the cases diagnosed as 

BL, 5% showed bcl-2 expression, 2.5% were negative for CD10 expression, and in 9.3% 

of the cases the Ki-67 was <95%.  Additionally, in 47 of the cases a CD38-/CD44+ 

immunophenotype was restricted to the not-BL group and,  five (10%) among 48 cases 

diagnosed as BL, a MYC/IGH rearrangement was not detected.  Whether this is due to 

technical issues, MYC activation through micro-RNA expression or whether true MYC- 

BL really exists still remains an unresolved matter.  In brief, additional cases to validate 
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this algorithm are needed.  Moreover, although the proposed algorithm successfully 

classifies the great majority of cases, in our view additional work is clearly needed to 

appropriately classify all unresolved cases.  In this context, we believe additional genetic 

markers may be needed to fully discriminate between DLBCL and BL.  Also, although 

limited cases were found with a deviation in BL phenotype, that is, bcl-2+, CD10- and 

Ki-67 < 95%, more work is needed to fully characterize this subgroup.   

In the same year that Naresh et al.
53

 proposed a three-phase algorithm, Lu and 

colleagues
54

 studied 97 pediatric cases with a diagnosis of BL (n=81), DLBCL (n=8) and 

BL/DLBCL(n=8) using immunohistochemistry, Epstein-Barr virus (EBER) in situ 

hybridization and FISH.  This study reported no difference in CD10 and bcl-6 among all 

three categories, expression of bcl-2 and MUM-1 was significantly higher in DLBCL and 

BL/DLBCL groups compared to BL, Ki-67 > 90% was indicative of BL, EBER was 

significantly higher in BL and extra copies of BCL-6 was more prevalent in both DLBCL 

and BL/DLBCL.  Although most of these findings are in agreement with the previous 

literature, extra copies of BCL-6 and MUM-1 need further validation given the fact that 

only 8 cases of DLBCL were compared against BL.  Here, we should point out that that 

expression of MUM-1 does not exclude a BL diagnosis
54

.  Of interest, this study 

concluded that intermediate cases (BL/DLBCL) resemble DLBCL and may belong to a 

subset of DLBCL, particularly given the fact that there were no differences in 

immunophenotypic features between these two entities.   

Taken together and based on our initial review of morphological, 

immunophenotypic and limited use of genetic markers, we conclude that both protein 

expression patterns and immuno-phenotypic characteristics are sensitive but not specific 
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to BL, and therefore subsequent ancillary studies are needed.  Table 2-1 summarizes this 

initial review. 

 

Table 2-1.  Immunophenotypic and Genetic Characteristics Evaluated in BL and DLBCL 

________________________________________________________________________ 

Reference  Marker   BL (%) DLBCL(%)  p-

Value 

________________________________________________________________________ 

Nakamura
47

  CD10   90  40   NA 

   CD20   100  100   NA 

   bcl-2   10  75   NA 

   bcl-6   100  100   NA 

   EBV   0  0   NA 

   Ki-67   98.1  66.3   .0001 

 

SOG
46

   Ki-67   88  53   NA 

   CD10   85  27   NA 

   p53   54  16   NA 

   bcl-2   15  53   NA 

   Lack of any CAM 92  27   NA 

   CD44   8  86   NA 

   MYC R   80  0   NA 

   EVB   30  0   NA 
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Frost 2004
43

  bcl-2 (no stain) 88  37   .005  

       Ki-67(100%)   82  0   .0001 

  

   myc stain (4+)  76  25   .0001 

       CD10 (4+)  91  100  

 NS 

   bcl-6   70  75   NS 

 

Gormley 2005
48

 bcl-2   rare cases some cases  NA 

   Ki-67   99  56   .0001 

   CD44   Primarily - Strong +  NA 

   MUM-1  Primarily - Strong +  NA 

   CD10   ++++  ++   NS 

   bcl-6   ++++  ++   NS 

   Cyclin H  Absent  ++++   NA 

 

Cogliati 2006
49

 CD10   80  67   NA 

   bcl-2(no stain)  80  56   NA 

   bcl-6+   100  78   NA 

   Ki-67 >95%  100  89   NA 

   MYC+(genotype) 100  100   NA 

   t(14;18)-  100  89   NA  
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Haralambieva 2005
2
 CD10+   23/23  33/51   NA 

   Ki-67   95-99  50-99   NA 

   bcl-6+   23/23  40/46   NA 

   bcl-2+   0  37/51   NA 

   CD10+,bcl-6+, 23/23  0   NA 

   bcl-2 neg 

   MYC+ (genotype) 23/23  7/51   NA 

   BCL-2+ (genotype) 0  9/51   NA 

   BCL-6+ (genotype) 0  11/50   NA 

 

Chuang 2007
50

 CD10+   100  6   <0.01 

   bcl-2    11  69   <0.01 

   bcl-6   96  88   .543 

   CD10+/bcl-2 neg 86  6   <.001 

   bcl-6+ 

   MUM-1  18  94   <0.01 

   KI-67>95  96  13   <0.01 

     

Schniederjan 2010
51

 CD44+   2/13  9/10   .001 

   CD54+   100  220   .01 
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McGowen 2012
52

 MFI of CD10+ NA  NA   <.05 

    CD43,CD71,CD79b,  

FSC (BL > DLBCL) 

 

Naresh 2011
53

  CD38-/CD44+  Negative Positive  NA 

   bcl-2    5  72   NA 

   CD10-   2.5  67   NA 

   Ki-67 < 95%  9.3  94   NA 

   MYC R   90  5   NA 

 

Lu 2011
54

  CD10   91  75   0.396 

   bcl-6   86  63   0.209 

   bcl-2       3  50   .001 

   MUM-1  17  63   .012 

   Ki-67 (mean)  93  83   .006 

   MYC+ (genotype) 98  37.5   0 

   BCL-6 extra copies 0  37.5   0 

________________________________________________________________________ 

Key: SOW, South Oncology Group; CAM, cell adhesion molecules; R, rearrangement; 

EBV, Eptein-Barr virus.  
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2.3  Cytogenetic Aberrations in DLBCL and BL 

Although there are a number of direct comparisons between DLBCL and BL in 

terms of immunophenotypic features, the cytogenetic profile for the two entities is much 

more limited and a direct comparison between the two is narrow in scope.  In the next 

paragraphs we explore existing reports that outline some of the cytogenetic findings for 

both DLBCL and BL.    

In 2004, a study by Au and colleagues
55

 evaluated clinico-pathological features 

and cytogenetics for Non-Hodgkin lymphoma (NHL) with 8q24/MYC aberrations.  Of the 

total number of NHL cases reviewed by this study, a total of 45 were BL and 15 were 

diagnosed as DLBCL.  The study reported a fewer number of secondary aberrations, that 

is, simple karyotypes in BL compared to the rest of the cases (p < 0.001).  A similar 

finding was also reported by our group in 2010.
35

  Therefore, a lack of genetic 

complexity may be suggestive of BL.
56

  This is further supported by an array CGH study 

that reported more chromosome imbalances in non-molecular BL, as well as a higher 

frequency of non-immunoglobulin heavy chain (non-IG) –MYC rearrangements and IG-

MYC rearrangements in the context of complex karyotypes.
5
  However, we now know 

this is not entirely true since a subset of BL may carry an IG-MYC rearrangement in 

combination with complex karyotypes (i.e., with higher genetic complexity).
5
 Despite a 

detailed cytogenetic outline of cases provided by this study, the authors failed to make a 

direct comparison of secondary aberrations with 8q24/ MYC rearrangements between the 

two entities of interest (this is especially true when BL appears with a higher genetic 

complexity).  In our view, a unique pattern of secondary aberrations can be used to 

further distinguish between BL and DLBCL.  In fact, following our initial work in 2010, 
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a preliminary analysis of RCAs in 26 well defined BL and DLBCL cases (n = 23, n = 3 

each), showed loss of 1p32-p36, 2p11-p25, -4, 6q21-q27, -10, 13q loss, 15q loss, and 

16p13 rearrangements significantly associated with DLBCL (unpublished data).   

Following these initial studies, Boerma and colleagues
57

 used the Mitelman 

database of chromosome aberrations to outline the cytogenetic profile of BL and non-BL 

lymphomas.  This study included a total of 538 BL and 327 non-BL cases.  An additional 

108 cases of BL were included without an apparent  MYC translocation.  Of the total 

number of BL cases identified, only 481 cases met the criteria of a core group of BL (IG-

MYC rearrangement with no BCL-2, BCL-6 or CCND1 rearrangements).  Consistent with 

previous reported observations, the core BL group revealed a low genetic complexity 

score.  In terms of age groups in the BL group, adults carry a higher frequency of variant 

MYC rearrangements and a higher incidence of chromosome 8q gains.  However, the 

genetic complexity for both adults and pediatrics was similar.  This is corroborated by 

earlier studies that suggest that BL in both adult and pediatric patients is the same tumor 

neoplasm.
5,6

  In the core BL group, the most recurrent (>4%) aberrations were gains of 

chromosome 1q, 7, 12, and losses to 6q, 13q32-34 and 17p.  When comparing differences 

between the core BL and non-BL groups, the study reported a higher genetic complexity 

in non-BL cases (p < 0.0001), while genetic gains of chromosome 7, 11, 12, 18 and X 

and losses of 4q, 6q13-27, 9, 10p, 15, 17p and 17q were more prevalent in non-BL.  

Importantly, these observations remained the same when the non-BL group was limited 

to a morphological diagnosis of DLBCL.  Among the other reported observations 

included: BL without MYC rearrangement revealed genetic differences from the core BL 

group (an ongoing discussion persists on whether or not a MYC- BL really exist), a non-



36 
 

IG-MYC rearrangement is uncommon and differs significantly from the core BL group, 

and double hit lymphomas (MYC rearrangement with concurrent BCL-2, BCL-6 or 

CCND1 rearrangements) must not be classified as BL.  Even though this latter study was 

able to define a core BL group and show distinct cytogenetics differences between the 

core group and DLBCL, additional work is needed to confirm these findings.  Also, 

sensitivity and specificity analysis were lacking.  Moreover, it is of interest to see 

whether a cytogenetic algorithm can be implemented based on recurrent chromosome 

aberrations to see how well it can classify DLBCL from BL.  Table 2-2 outlines the 

cytogenetic profile of DLBCL and BL.  

 

Table 2-2. Cytogenetic profile of DLBCL and BL 

________________________________________________________________________ 

 Reference                      BL      non-BL/DLBCL 

________________________________________________________________________ 

Seegmiller 2010
35

 Simple karyotype (<2 aberrations) Complex karyotype    

Hummel 2006
5
 IG-MYC rearrangement  non-IG/MYC rearrangement 

IG-MYC + simple karyotype            IG-MYC + complex karyotype 

 

Boerma 2009
57

 1q G, +7,+12, 6q L, 13q L, 17p L +7, +11, +12, +18, +X, 4q L,  

        6q13-27L, -9, -10, -15,  

17 p L, 13qL, 17q L 

Garcia 2011       1p32-p36 L, 2p L, -4, 6qL 

(Unpublish data)      -10, 13q L, -15, 16p13 R 
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________________________________________________________________________ 

Key: G, gain, L, loss, R, rearrangement. 

 

2.4  Chromosome Imbalances by Array Comparative Genomic Hybridization in 

DLBCL subtypes and BL 

To address one of our research questions (hypothesis number 6), that is, whether 

distinct DLBCL subtypes carry unique chromosome imbalances compared to BL, our 

group initially detailed  copy number aberrations (CNAs) by array CGH that are 

distinctive of well-defined WHO DLBCL subtypes.
37

 Following this initial review, this 

section will expand on this work and explore CNAs in BL.  Of note, only those 

aberrations by array CGH that were present in 20% or more in the various DLBCL 

subtypes and BL were included in this review.  In addition, an analysis of classical CGH 

is here proposed for further research.  

Following out initial publication of array CGH in distinct DLBCL subtypes, here 

we expand this published review to include BL.  Garcia and colleagues
58

 in 2003 

analyzed 46 BL patients using classical CGH.  In this study, the most frequent aberrations 

included gains of 12q (26%), 22q (20%) and Xq (22%).  In disagreement with these 

previous findings, Barth and associates
59

 reported five of seven (29%) BL cases with loss 

of chromosome 12q.  However, gains of 1q (43%) and loss of 17p (29%) were aligned 

with the results reported by Garcia et al.  Later in 2008, Salaverria and colleagues
8
 

analyzed a total of 51 patients with a molecular signature of BL (26 with classical BL 

features and eight cases with histomorphological features of DLBCL referred to 

discrepant BL).   Aberrations detected for both these groups included gains of 1q, 7q, 
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8q24, 13q11-q13, 13q31-q32, 13q33, but only 1q gain was reported with an incidence 

greater than 20% in the classical BL group.   With respect to the discrepant BL group, 

loss of 13q14 was only present in this group and had a significant difference in terms of 

the aberrations just listed above compared to the classical BL group (p < 0.05).  Of 

interest, some of the cases within this category expressed both BCL-2 mRNA as well as 

bcl-2 protein and although these cases cluster within BL, a lower level of BL germinal 

center B-cell expression genes was evident in a previous study.
6
  In addition to outlining 

some of the chromosome imbalances in BL, this study also compared chromosome 

imbalances between BL (n =51) and 161 previously reported cases of both ABC and 

GCB molecular subtypes of DLBCL.  The analysis showed losses of chromosome 11q24-

q25 more prevalent in BL compared to DLBCL (p = 0.03), whereas gains of chromosome 

3, 18 and losses of 6q16-q27 were found more frequently in the ABC molecular subtype 

of DLBCL (p < 0.05).  No differences were noted between BL and the GCB subgroup of 

DLBCL.  Unlike the previous reports just listed above, Toujani and colleagues
60

 in 2009 

used an array CGH platform to analyze 13 BL tumors and 15 BL cell lines. This study 

reported gains at chromosome 1q (44%), 13q (26%) and 7q (22%).  Likewise, a year 

later, Scholtysik and colleagues
61

 reported the highest recurrent genomic gains (> 7 

cases) occurring at 1q31, 3q27, 6q15, 11q24.3, and 13q31.3 in 39 cases of BL analyzed.  

The most frequent genomic losses (> 6 cases) were 3q13, 17p13, 19q13 and Xp22.  

Figure 2-1 accounts a summary of copy number alterations in both DLBCL subtypes 

(based on our earlier review of DLBCL subtypes) and BL.  The following are 

abbreviations used for the different DLBCL subtypes: PMBL, Primary mediastinal large 

B-cell lymphoma; Bone, Primary large B-cell lymphoma of bone; CNS, DLBCL of the 
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central nervous system; Leg type, Primary cutaneous large B-cell lymphoma leg type; 

T/HR, T-cell/histiocyte-rich B-cell lymphoma (no aCGH data available); CD5+ , De 

novo CD5 large B-cell lymphoma; PAL, Pyothorax-associated lymphoma; PL, 

Plasmablastic lymphoma; PEL, primary effusion lymphoma. 

   

 

Figure 2-1. Chromosome ideogram of gains and losses by array CGH in DLBCL and BL.  

Panel A shows an ideogram spectrum for unique gains and losses for DLBCL subtypes 

and BL. Chromosome band region gains are provided on the right hand side of each 

chromosome, while genetic losses are shown on the left hand side of each chromosome 
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ideogram.  Each category is represented by a different color coded bar as illustrated in the 

schematic. Panel B illustrates common CNA for all DLBCL subtypes. Commonalities 

were highlighted if three or more subtypes had a CNA at that particular band region. 

 

2.5  Gene Expression Profiles, Micro RNA and Single Nucleotide Polymorphisms 

in DLBCL and BL 

The use of gene expression profiles (GEP) has facilitated to quantitate the 

expression of a large number of genes in a single experiment.  With the development of 

the “lymphochip”
62

, a complementary DNA microarray for lymphoid disorders, it has 

been possible to initially characterize various B-cell malignancies including DLBCL at 

the molecular level.  Using hierarchical clustering of differentially expressed genes in 

DLBCL, Alizadeh and associates
63

 initially identified three distinct clusters.  Following 

this initial classification of DLBCL, Rosenwald and colleagues
62

 in 2002 analyzed an 

expanded number of cases (n = 274) and using the same hierarchical clustering method 

validated the existing three distinct expression patterns.  The first two cluster groups were 

designated as the germinal center B-cell like DLBCL (GCB-DLBCL) and the activated 

B-cell like DLBCL (ABC-DLBCL).  The GCB-DLBCL expressed genes that 

characterize the germinal center B-cell molecular signature, while the ABC-DLBCL had 

the molecular signature of activated B-cells.  A third group, termed primary mediastinal 

DLBCL could not be classified into the GCB or ABC molecular subtypes.  Both GCB 

and ABC molecular subgroups are not identified by morphological characteristics and are 

variable in terms of immunophenotype by immunohistochemistry.
64

  The GCB subtype 

expressed numerous markers of GC differentiation that included CD10, CD38, and BCL-
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6.  Furthermore, two characteristic genetic events in DLBCL, the t(14;18) translocation 

and c-rel gene amplification were observed exclusively in the GCB subtype.
62

   

Alternatively, the ABC molecular subtype highly expressed genes similar to those that 

are normally seen in activated B-cells including IRF4, responsible for the proliferation of 

B-cells in response to antigen activation.
65

  Therefore, overexpression of IRF4 may in 

turn contribute to the abnormal proliferation of neoplastic cells.  In addition, other unique 

genetic characteristics limited to this group include the highly expressed BCL-2, an anti-

apoptotic gene,
63

 and the constitutive activation of the nuclear factor kB (NF-kB) 

pathway.
66

  In terms of clinical outcome, the ABC subtype has a lower overall survival 

and event free survival than the GCB subtype.   

In 2006, two major GEP studies carried out by Dave et al. and the other by 

Hummel and associates,
5,6

 investigated the gene expression of BL in an attempt to 

distinguish it from DLBCL at the molecular level.  In the first study by Dave and 

colleagues
6
, two sets of cases were analyzed.  For the first set, a total of 71 cases 

originally diagnosed as classic BL (n = 25), atypical BL (n = 20), DLBCL (n = 20) and 

high grade lymphoma, not otherwise specified (n = 6) based on morphologic, phenotypic 

characteristics and cytogenetics were included for GEP analysis.  These specimens were 

later reclassified by GEP.  The second set of cases consisted of 223 previously 

investigated specimens with a diagnosis of DLBCL.  Nine additional cases were high 

grade DLBCL with a Ki-67 proliferation index of almost 100%.  These specimens were 

subsequently divided into the three major molecular subtypes (GCB, ABC, and primary 

mediastinal DLBCL).  Only one of the cases from this group was reclassified as a BL.  

This study used a custom DNA microarray of 2524 distinctive genes that are 
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differentially expressed in non-Hodgkin lymphomas.  The Affymetrix U133 Plus 2.0 

array was also used to profile a subset of specimens. Initially, the group developed a gene 

expression classifier that separated BL from DLBCL.  Cases were separated into two 

groups based on the classifier, one with a detectable molecular signature of MYC target 

genes, characteristic of BL, and a second group lacking this signature.  Thereafter, the 

molecular signature of MYC target genes was directly compared with the GCB, ABC and 

primary mediastinal DLBCL.  During this process and only after a 4 pairwise comparison 

that supported BL, was a diagnosis of molecular BL assigned.  In terms of biological 

mechanisms between the two entities, BL had a high expression of MYC target genes as 

anticipated, these are a subset of genes that are normally expressed in germinal center B-

cells, whereas the major histocompability complex (MHC) I set of genes and the NF-kB 

target genes were more prevalent in DLBCL.  These latter set of genes included genes 

such as STAT3, BCL-3, NFKBIA, CD44, FLIP, and BCL2A1.    Moreover, both BL and 

DLBCL with MYC rearrangement/ t(8;14) translocation were unmistakably 

distinguishable from each other with respect to expression pattern.  Of the total number 

of specimens analyzed and based on gene expression profile, eight cases that were 

pathologically characterized (pathology was based on morphological findings, 

immunophenotype and cytogenetics) as DLBCL were later reclassified as BL.  These 

cases were referred as discrepant BL.  Interestingly, four of these cases expressed bcl-2.  

Thus, based on these findings, a small number of cases cannot be properly diagnosed 

with routine clinical diagnostic tools. 

In the same year, Hummel and associates
5
 used a molecular profile approach to 

define BL.  In this study, 220 specimens were included for analysis (BL, atypical BL and 
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DLBCL).  The study initially designed a BL core group expression profile that 

subsequently identified an expanded group of lymphoma cases.  The BL core group 

consisted of the following characteristics: a Ki-67 score greater than 95%, CD5-, bcl-2 

negative, CD10+, bcl-6+ and CD20+.  By applying the core group expression profile to a 

training set of 105 lymphomas, the group identified 58 genes that represented a molecular 

signature of BL (mBL).  Each case was then given a mBL score (0-1) based on gene 

expression similarity between the BL core group and the various tumor specimens.  A 

score greater than .95 was considered a diagnosis of mBL, while a score less than .05 

were characterized as a non-mBL.  The rest of the cases were assigned intermediate.  

This process classified 22% (n = 36 + 8 cases that comprised the initial core group) of the 

specimens with an expression signature of mBL, 20% as intermediate, and 58% of cases 

as non-mBL.  Of the 36 specimens with a mBL signature, 21 were classified as atypical 

BL due to variant morphology or immunophenotype.  Importantly, 11 of 36 mBL showed 

typical morphological features of DLBCL.  In terms of immunophenotype, all mBL 

express CD10 and bcl6.  Similar to the previous study, a few number of mBL cases (n = 

7) expressed bcl-2.  The study was also able to categorize two distinct cytogenetic groups 

based on expression.  A MYC-IGH rearrangement with less than 6 chromosome 

aberrations (MYC simple) frequently related to the mBL group, and MYC complex tumor 

specimens more in line with an intermediate signature.  

 Both of these studies help to improve the distinction of BL and DLBCL, for example, 

both studies agree that a number of cases with a unique morphological feature of DLBCL 

are nonetheless consistent with an expression profile that is closest to BL.  Thus, in a 

sense these studies have expanded the continuum of BL to tumor specimens that are 



44 
 

otherwise categorize as DLBCL by conventional morphological features.  Also, we 

should highlight that a small number of BL specimens in both studies showed expression 

of bcl-2.  And lastly, we should point out that there was a 100% agreement between 

classical cases of BL and the molecular signature of these cases.  Following these two 

major GEP studies, Deffenbacher and colleagues
67

 in 2012 expanded the use of genomic 

profiling to include both GEP and micro RNAs (miRNA, small non coding RNA that 

binds to a target mRNA inhibiting the translation of a given protein) profiles to 

distinguish between pediatric and adult non-Hodgkin lymphomas, mainly BL and 

DLBCL.     In this study, GEP and miRNA clearly distinguish between pediatric BL (n = 

57) and DLBCL (n= 13).  In the pediatric DLBCL category, the GCB molecular subtype 

was more prevalent than the ABC subtype (6:1).  Moreover, when pediatric and adult 

cases for both BL and DLBCL were compared in a supervised hierarchical clustering 

model, two distinct clusters were apparent with minor differences between the two, 

suggestive of similarities between pediatric and adult tumor cells at the molecular level.    

However, array CGH observations identified some unique copy number aberrations in 

pediatric DLBCL cases (-4p, -19q and +16p), indicative of distinct underlying biology.  

With respect to miRNAs, there were 35 differentially expressed miRNAs between BL 

and DLBCL.  As expected, tumors with a diagnosis of BL had a miRNA profile regulated 

by MYC, including miR-17-92.  A second clustered was identified on chromosome X, 

mainly composed of miR18b, miR20b and miR106a.  In DLBCL, a subset of cases 

expressed similar patterns of BL, suggesting MYC deregulation in these cases.  In terms 

of age group, expression patterns for pediatric and adult DLBCL revealed no significant 

differences and only miR-9 was elevated in the adult group compared to the pediatric BL 
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group.  In short, both GEP and miRNA unambiguously distinguished pediatric BL from 

DLBCL, but in terms of age groups, it appears that both pediatric and adult DLBCL may 

differ in their underlying oncogenic mechanisms.   

Lastly, we should mention a recent publication by Walther and associates
68

 in 

2013 that reported the aberrant expression of lymphocyte enhancer factor 1 (LEF1) in 

sporadic BL.  

Similar to the just described study, Lenze and associates
69

 used miRNA profiles to 

distinguish subtypes of BL, mainly sporadic, endemic and human immunodeficiency 

virus related-BL (HIV-BL) from DLBCL.  The group of this study generated a profile of 

miRNAs for endemic (n = 18), sporadic (n = 31), HIV-BL (n = 15) and DLBCL (n = 86) 

to see whether miRNA expression could be used to distinguish across the various entities.  

A total of 38 miRNAs were differentially expressed between BL and DLBCL, primarily 

downregulation of MiR-155, suppression of MYC associated miRNAs (has-miRs-23a, -

146b, -30d, -29b, -26a and -23b) and reduce levels of NF-kB (hsa-miRs-221, -222, -146a, 

and 146b) associated miRNAs in BL.  In this context, we should point out that miRNA-

146a, -146b and -155 are activated by the NF-kB signaling pathway, and therefore such 

findings highlights the importance of this pathogenetic pathway in distinguishing DLBCL 

from BL.  This is further supported by previously described GEP studies. For the BL 

subtypes, only 6 miRNAs were differentially expressed between the sporadic and 

endemic form of BL, while no miRNA differences between the HIV-BL and the endemic 

variant were detected.  Using an unsupervised cluster analysis of miRNAs, the study 

showed a clear distinction between BL and DLBCL with no apparent subdivisions of BL, 

indicating that the three BL variants belong to a single entity.  Although this study further 
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supports NF-kB as a distinctive pathway and clearly distinguished between the two 

entities by cluster analysis, two DLBCL were misclassified and 23 cases showed 

overlapping miRNA expression between BL and DLBCL, reminiscent of tumor samples 

with intermediate gene expression profiles.         

In a similar fashion and exploring miRNA molecular signatures, Di Lisio and 

associates
70

 in 2012 analyzed a number tumor samples that included 12 BL and 29 

DLBCL.  A direct comparison and confirmation by quantitative real-time polymerase 

chain reaction showed a total of 19 differentially expressed miRNAs, confirming 

previously described findings by Lenze and associates that miR-155, -29b and -146a 

showed reduced expression in BL.  In addition, miR-17-3p, -595 and -663 were 

downregulated in DLBCL in this study.  Using the SOTA algorithm for unsupervised 

clustering of the 19 differentially expressed miRNAs, a total of 66 out 71 cases were 

correctly classified (93% accuracy).  Interestingly, some of the BL tumor samples of this 

study did not harbored a MYC rearrangement; however, analysis of mRNA and protein 

expression patterns of MYC showed no significant difference between MYC+ and MYC- 

BL.  Furthermore, these cases fail to cluster based on MYC expression level or MYC 

status.  These findings may support observations that a subset of cases with classical BL 

morphology may not carry a MYC rearrangement and other molecular mechanisms may 

be involved in MYC deregulation.  Therefore, further investigations are needed to 

determine whether MYC- BL really exists as previously stated in this literature review.   

Similarly, single nucleotide polymorphisms (SNPs), another high resolution 

microarray based technology that detects genome wide numerical abnormalities, specific 

amplifications, low DNA copy number changes, and loss of heterozygosity with no loss 



47 
 

or gain of DNA, also referred to somatic uniparental dysomy (UPD) or loss of 

heterozygosity (LOH) has been used to identify chromosome imbalances in non-Hodgkin 

lymphomas.  In the previously described study of Deffenbacher and associates
71

, the 

group also used a SNP array to detect copy number aberrations (CNAs) in DLBCL; 

however, there was no direct comparison between BL and DLBCL.  In this analysis, 18 

well defined pediatric DLBCL (11 GCB, 2 ABC, 2 primary mediastinal DLBCL and 3 

non-classifiable DLBCL) were included in the analysis.  Cases with a diagnosis of 

primary mediastinal DLBCL carry gains of chromosome 2p.  Other previously observed 

aberrations in DLBCL
72,73

 were also observed by SNP analysis, mainly loss of the long 

arm of chromosome 6, -4p14, +7, +12, 17p-, 17q+, -19q13.32, and LOH at 1q, 2, 6p, 9p, 

as well as 19p.  In a recent report by Scholtysik and associates
74

 in 2012, frequent 

deletion at 19p encompassing TNFSF7 and TNFSF9 were both found in both BL and 

DLBCL.  Despite the great potential of SNP arrays in detecting chromosome imbalances, 

there is limited work in this area and further investigations are needed, at least in directly 

comparing BL and DLBCL.      

Even though both gene expression and miRNAs profiles can reliably distinguish 

between the two diagnostic entities, these are complex techniques and not currently 

available in most clinical diagnostic laboratories.  Therefore, more conventional 

techniques such as immunohistochemistry and cytogenetics, normally included in a 

lymphoma work-up, may serve as surrogate markers for expression profiles e.g., bcl-2 

protein overexpression measured by immunohistochemical methods may be used instead 

of BCL-2 gene expression.  Indeed, Soldini and associates
75

 recently used a differential 

protein expression algorithm based on gene expression profiles to distinguish between 
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BL and DLBCL.  In this study, CSE1L and ID3 protein over expression, earlier identified 

by Dave and Hummel
5,6

 by GEP, were associated with BL and STAT-3 with DLBCL (p 

< 0.001).  Moreover, recurrent cytogenetic aberrations may also be used as surrogate 

markers for gene expression similar to the example just listed above.  One such example 

is gain of chromosome 11 that correlates with CD44 (located at 11p13) overexpression, a 

distinct marker of the NF-kB molecular signaling pathway and characteristic of 

DLBCL.
6,76

  In terms of SNPs, more research is needed and similar to the drawbacks of 

both GEP and miRNAs; it is not routinely available for clinical diagnostics. 

 

2.6 Classification of Non Hodgkin Lymphoma by Bioinformatics Methods: 

Logistic Regression, Cluster Analysis, and Artificial Neural Networks 

Even though logistic regression (LR) models are found all through the literature, 

to the best of our knowledge, there are no studies applying LR classifiers specifically to 

non- Hodgkin lymphoma based on relevant cytogenetic markers.  Nonetheless, there is a 

long list of LR classifiers that use a combination of biomarkers to predict a wide 

spectrum of malignancies including non- Hodgkin lymphomas.
77,78   Unlike LR 

classifiers, unsupervised cluster analyses used to distinguish BL from DLBCL have been 

developed.  To some extent we have already described some of these classifiers in 

previous sections. For example, Gormley and associates
48

 used an unsupervised 

hierarchical clustering method and applied 8 GCB and ABC markers to 13 BL and 5 

DLBCL tumor samples with a sensitivity of 81% and specificity of 87%.  Likewise and 

using a similar approach, Alizadeh and associates
63

 successfully identify three distinct 

molecular clusters in DLBCL (GCB, ABC and primary mediastinal DLBCL categories) 
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and Dave et al
6
 used a classifier based on GEP to correctly categorize 25 confirmed cases 

of BL.  Similarly, both Lenze
69

 and Di Lisio
70

 used unsupervised clustering applied to 

miRNAs to appropriately classify BL from DLBCL.  In the case of Di Lisio et al. 93% of 

the cases submitted for cluster analyses were correctly classified by this method.  

Alternatively, within the last decade, studies have reported using supervised methods for 

classification purposes.  In the paragraphs that follow, we summarize the potential 

usefulness of artificial neural networks (ANNs), a supervised pattern recognition method, 

to classify non Hodgkin lymphoma.  

In 2003, O’Neill and colleagues
16

 explored a 4026 gene panel network of 40 

DLBCL patients.  This study was designed to predict clinical outcome on individual 

patients and to distinguish DLBCL from other donors including other different types of 

lymphomas.  For predicting a diagnosis of DLBCL, this study initially trained 10 

networks with 96 donors based on 4096 gene set.  This generated a subgroup of 292 

genes with three errors produced.  Thereafter, the gene set of 292 was treated in two 

different ways.  Both treatments resulted in 19 genes predicting DLBCL with two errors 

produced.  The gene set of 19 was also used in a follow-up study of 46 donors.  Here 

eleven networks were trained.  In this subsequent run, the networks produced a total of 

one error or 98% correct.  This study shows how networks can be trained to establish a 

perfect prognosis (up to ten years) and near-perfect classification of DLBCL.  However, 

it should be noted that the sample population used in this study may not be totally 

representative of a larger data set, and for this reason, much larger studies are needed to 

validate these results.  
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In the same year that O’Neill and associates published their results, Ando et al. 
17

 used a 

fuzzy neural network (FNN), an advanced ANN model, on gene expression data that 

selected a combination of genes to predict the classification and outcome of DLBCL 

patients after anthracycline-based therapy.  This particular network allowed high 

accuracy (91%) with classification of DLBCL patients into 5 different groups.   

Using a similar methods, Liu and colleagues
15

 used a combinational feature 

selection coupled with ensemble neural network to enhance the classification of 

leukemia, lung cancer, prostate cancer, ovarian cancer, colon cancer and DLBCL (n = 47 

samples based on a 4026 gene set).  Here, the focal point is on the latter.  In this study, a 

combinational approach for selecting the most useful gene sets for classification was 

used.  Presently, a number of selection methods (correlation coefficient, signal to noise 

ratio, mutual information and Euclidean distance)
79-81

  are available for determining top-

ranked genes associated with a particular disease.  However, Li and associates
82

 

concluded that low ranked-genes are also important in selecting genes that may produce a 

more accurate classification. Based on this, several studies have proposed improved 

selection of gene sets.
81,83-86

  In this present study, Liu and colleagues selected a 

combination of methods to obtain better classification scheme.  These included a 

wilcon’s ranksum test 
87

 to obtain the top-ranked gene sets, a statistical analysis termed 

PCA
85

 to obtain key components for a good approximation and a clustering method along 

with a t-test to obtained the top-ranked genes for the clusters.
81,87

  Once the list of genes 

was selected, the study used ensemble multiple networks to optimize classification. 

Combining classification results generated by ensemble networks, Liu et al.
15

 were able 

to obtain more accurate results compared to previous classifiers for the same datasets.  
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Only ovarian classification showed a lower predictive accuracy.  Some limitations of the 

study worth noting include the following: the study failed to describe in detailed the set 

of genes useful in classifying the various neoplasms, it did not mention the possible role 

of genes selected and how these may induce disease, the method used is more labor 

intensive, and it should also be noted that the number of networks forming the model at 

100 members in this study is not necessarily the best model.    

In a more recent study in 2012 by Cui and associates
88

, the group classified 

DLBCL (n = 40) into GCB and ABC molecular subtypes by using an ensemble neural 

network applied to 1277 miRNAs.  A multi-layer feed forward network was used for this 

purpose and a sensitivity analysis was performed to evaluate the importance of input 

variables, also termed profile method.
89

  This method was improved by calculating the 

root mean square error (RMSE) of the neural network.  The ratio of the initial RMSE vs. 

the changed RMSE of the network was then assessed, the bigger this ratio the more 

important the input variable.  Based on this, the authors selected 5 highly important 

miRNAs that better classify the various DLBCL data sets, among these included the NF-

kB target miR-146, previously described by Lenze and Di Lisio.
69,70

  Nonetheless, the 

neural network model used here was not able to accurately predict all samples using the 5 

selected miRNAs (e.g. of 10 samples processed with 5 selected miRNAs, one ABC 

subtype was misclassified as GCB). 

To date, there are a limited number of reports of ANNs to classify DLBCL. 

However, ANN predictive models are plentiful in the scientific literature; for example, a 

high prevalence of published publications on prostate and cervix cancer, as well as 

publications on rare diseases abound.
90

  In a systematic review of neural networks, 
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Lisboa et al. reported a total of 396 hits for neural networks and cancer from 1994 to 

2006.
90

  And, perhaps the most influential work on neural networks and its uses on 

classification of cancer was the study published by Khan et al. in 2001.
83

  Here, Khan and 

colleagues demonstrated the potential use of ANNs in classifying diagnostic disease 

entities; this particular study was able to classify four distinct categories of round blue 

cells based on microarray data using a dataset of 6000 genes.  Likewise, the study by 

O’neill and associates
16

 was the first publish manuscript to demonstrate a 100% accuracy 

in the prognosis of large B-cell lymphomas (n = 40), while reducing unwanted noise level 

in complex datasets.  Similarly, Liu et al. reported a higher predictive accuracy using a 

combinational selection approach coupled with ensemble networks to classify a number 

of cancers including DLBCL.  Since then and coupled with our assessment of four major 

studies reviewed here, ANN-based predictive models have established a favorable 

outlook in developing new classification and predictive models in cancer studies; 

although with the caveat that ANNs have not eclipsed conventional statistical methods 

currently in place today, and  conflicting results of prominent cancer studies reported in 

the literature
90

 have also added concerns about the use ANN-based models.   

Like any other method, ANN-based predictive models have limitations.  First, the 

time necessary to train ANNs may take a considerable time to finalize; and if hidden 

layers are increased, so does the time is increased.  Because of this, only a few hidden 

layers are used to train ANNs.  Another potential drawback is over-fitting i.e., training 

data committed to memory causes the network to perform less efficiently on prospective 

cases.  Bias in error rates are also another concern.  An added concern is their inability to 

explain how the network reached a solution or commonly referred to “the black box” of 
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ANN modeling.  And, finally, the input data must closely represent the specific scenario 

under study.  If this is not case, results are then invalidated.
91

  Notwithstanding these 

shortcomings, some of the limitations just outlined here can be addressed by staging the 

following frameworks: a method that can explain the response of networks such as 

sensitivity analysis or rule extraction, as well as log-odds ratio should be set up as part of 

the analysis process
90

, error rates can be minimized by cross-validation methods such as 

Monte Carlo sampling
92

 and over-fitting can be addressed by re-sampling (this allows for 

performance estimates on new datasets to confidently avoid over-fitting) or by weight 

decay, a method that keeps weight values low since over-fitting produces large weight 

values.
92

  Collectively, re-sampling, weight decay and cross validation techniques are one 

of the most common types of regularization that should be applied during the training of 

data to optimize predictive performance of ANNs.
91

  Once these common practices are 

established, ANN-based models provide many advantages.  For one is their ability to 

make sense of complicated datasets over conventional statistical techniques, datasets 

need not conform to normally distributed sample populations, they can manage complex 

datasets with non-linear relationships and they can also handle noisy information.  What 

is more, ANN models can generalize, that is, their ability to make sense of information 

that is dissimilar to that provided by the training dataset, and therefore in this respect 

have the potential application for diagnostic purposes.
91

  In terms of performance when 

compared to LR models or other statistical methods, ANN models have advantages when 

it comes to forecasting dichotomous outcome and are excellent in diagnostic support.  In 

addition, multiple learning algorithms may be integrated into ANN models compared to 

only one in LR.
93

  Thus, at least in theory ANN models should outperform LR.  
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Nonetheless, a comparative study from 2002 that surveyed the performance of LR vs. 

ANN in 72 papers from the literature reported that ANN models only marginally 

outperformed LR.
94

  In this same study, the authors also reported overall better 

performance from both ANN and LR than that of other statistical tools, mainly those of 

decision trees and k-nearest neighbors.  Only support vector machines performed 

comparable to ANN and LR.  In more recent studies, ANN has outperformed LR or in 

some instances has shown comparable performance.
74,95-101

  In brief, ANN-based models 

provide a powerful classification tool that may use to predict BL from DLBCL.   
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Chapter III 

III. Methods  

 

3.1  Overview 

To generate unique RCAs that may be used to highly predict DLBCL from BL, a 

combination of bioinformatic and statistical tools were applied to the following datasets: 

cytogenetics, copy number variations measured by comparative genomic hybridization, 

selected tumor samples comprised from the published literature and a small number of 

institutional cases.  These datasets were retrieved from the Mitelman Database of 

Chromosome Aberrations in Cancer (available at 

http://cgap.nci.nih.gov/Chromosomes/Mitelman), SKY-M FISH & CGH Database at the 

National Cancer Institute (available at http://www.ncbi.nlm.nih.gov/sky/).  A total of 338 

cases with cytogenetic data (DLBCL, n = 254; BL, n = 84) were queried from the 

Mitelman database to build a diagnostic model for DLBCL and BL based on RCAs.  

Initially, cytogenetic data was collected into three groups. These included the following: 

1) MYC+ DLBCL vs. BL, 2) MYC+ DLBCL vs. MYC- DLBCL and 3) a combined 

dataset of MYC+ and MYC- DLBCL vs. BL.  Cytogenetic data was initially analyzed 

with CyDAS, a bioinformatics tool-kit, that analyzes cytogenetic data in ISCN format.  

To validate results from CyDAS and to determine differences in the number of 

aberrations (numerical and structural) between comparative groups, a manual curation of 

the data was performed for statistically significant RCAs generated from CyDAS; an 

independent group t-test was performed to determine differences in the number of 

aberrations.  The specificity of these RCAs was also calculated.  To test for the reliability 

http://www.ncbi.nlm.nih.gov/sky/
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of RCAs and develop a set of predictive models, a distinct cytogenetic dataset of 177 

cases (DLBCL, n = 117; BL, n = 60) collected from the literature coupled with a small 

number of institutional cases was applied to cluster analysis (hierarchical clustering (HC) 

heat map, HC with p-values, k-means partition using the PAM algorithm), neural 

networks and logistic regression.  Discrimination analysis (area under the receiver 

operator characteristic curve – ROC) to determine specificity and sensitivity and to assess 

the functionality of these predictive models was performed.  To address internal validity, 

a number of techniques were used, mainly split sample validation, boot-strap resampling, 

10-fold cross validation and well-established RCAs were used as internal controls [e.g., 

(14;18) translocation or BCL-2 rearrangements  and +12 seen in GCB-DLBC and +3/+18 

prevalent in the ABC-DLBCL molecular subtypes].  For external validation, method 

transportability was considered.  In this regard, findings of this study were compared and 

correlated with an extended analysis of array CGH and a copy number variation analysis 

(n = 259).    

 

3.2       CyDAS: An Online bioinformatics Toolkit for Chromosome Analysis 

CyDAS, a bioinformatics tool-kit capable of cytogenetic data analysis in ISCN 

format, available at http://www.cydas.org allows statistical analysis in cancer 

cytogenetics.  This program decodes the genomic aberrations contained in a karyotype 

into numerical value and assigns to individual chromosome band regions.  CyDAS allows 

for a “birds-eye view” of the different aberrations (gains, losses and rearrangements) for 

every chromosome band region and display data alongside a chromosome ideogram and 

in a table format.  The resulting image illustrates numeric imbalances with red coloring 

http://www.cydas.org/
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for genomic losses and green coloring representing genomic gains (See Figure 3-1).  

Cytogenetic data selected from the Mitelman database was up loaded to CyDAS for 

analysis.  

 

Figure 3-1.  Qualitative and quantitative aberrations generated by CyDAS.  Panel A 

illustrates RCAs in chromosome ideogram format, whereas panel B shows a quantitative 

representation of RCAs in a table format.  In this example, the quantitative tables only 

show gains, losses and structural rearrangements for chromosomes Xp, 1p and 1q. 
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3.3 Analysis of the Mitelman Dataset in CyDAS      

CyDAS graphically analyses chromosome aberration datasets downloaded from 

the Mitelman Database. Using the case quick searcher (see Figure 3-2), a text file is 

downloaded from the Mitelman database with a complete dataset specified by a query.   

 

Figure 3-2. Screenshot of the Mitelman Case Quick Searcher. The case quick searcher 

allows the user to query samples with a specified abnormality, breakpoint, topography 

and morphology. 

 

In this search example, a translocation between chromosomes 8 and 14 [t(8;14)(q24;q32)] 

with a diffuse large B-cell (DLBCL) morphology was selected.  Once the query form is 

submitted, the total numbers of specified cases are displayed in Mitelman format.  A text 
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file of all cases in Mitelman format is subsequently uploaded into CyDAS (see Figure 3-

3).   

 

Figure 3-3.  Screenshot of the CyDAS interphase analysis of datasets for gains and losses.  

The text file uploaded from the Mitelman database and used in the CyDAS online 

application is highlighted at the red arrow.  The format for the file is in Mitelman format 

and chromosome banding resolution is set at 400.   

 

The online analysis system from CyDAS (analysis of datasets for gains and losses) was 

used to process the dataset.  CyDAS determines the number of gains and losses of all 

chromosome band regions.  These results are displayed in columns alongside a 

chromosome ideogram and a quantitative representation is also generated in a table 

format as previously indicated.   
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From the image generated in CyDAS, a clear overrepresentation of gains and losses is 

then visualized.  For more quantitative results, the table generated by CyDAS provides 

specific number of events i.e., gains and losses or RCAs, for all chromosome band 

regions.  Such collection of both qualitative and quantitative RCAs may be repeated for 

different neoplastic states represented in the Mitelman Database.  For this project, two 

datasets for DLBCL and BL were generated from the Mitelman Database and analyzed 

with CyDAS to obtain a “bird’s eye view” of all RCAs in DLBCL and BL.  Moreover, an 

independent group t-test, performed with the Statistical Analysis Software – SAS (Cary, 

North Carolina), was used to assess the differences in the number of aberrations between 

MYC+ DLBCL vs. BL and MYC+ vs. MYC- DLBCL.  

3.4 Building a Reliable Set of RCAs for Distinguishing DLBCL (MYC+ and 

MYC-) vs. BL   

This study involved the analysis of the publicly available information from the 

Mitelman Database of Chromosome Aberrations in Cancer (available at 

http://cgap.nci.nih.gov/Chromosomes/Mitelman), and other relevant publications 

accessed through the PubMed search. The Mitelman Database was queried using the key 

words – B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma 

(BL), t(8;14), t(8;22), t(2;8), 8q24.  Lymphoma in pediatric population (patients <20 

years of age), tumors in which karyotype was not fully described or did not conform to 

ISCN nomenclature were excluded. Since a simple karyotype (pseudo-diploid karyotype) 

was considered as indicative of BL these cases were also excluded from the analysis. 

Data from these searches were processed as indicated in Fig. 3-4.  

 

http://cgap.nci.nih.gov/Chromosomes/Mitelman
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Figure. 3-4. Datasets and analysis work-flow.  Key: SH, single hit. 

 

Cytogenetic data from these tumors was initially classified into three analysis groups – 

MYC+ DLBCL vs BL, MYC+ DLBCL vs. MYC- DLBCL, and DLBCL (MYC+ and 

MYC-) vs. BL.  All three groups were evaluated for effect size and statistical power 

using the R statistical package.    

The first comparative group consisted of 71 DLBCL and 84 BL with MYC 

rearrangement. The second comparative group consisted of 183 MYC- DLBCL was 

evaluated and compared to that identified in the 71 MYC+ DLBCL. To further evaluate 

RCA differences between MYC+ vs. MYC- DLBCL, a larger dataset of sample 

karyotypes not restricted to more than two aberrations (MYC+, n = 104; MYC-, n = 202) 

was also analyzed. The third comparative group consisted of 254 cases of DLBCL 



62 
 

(MYC+ and MYC-) and 84 cases of BL.  Lastly a fourth comparative group was 

identified to evaluate whether double hit lymphomas with MYC+ and BCL-2+ 

rearrangements (n = 55) are close in chromosome architecture to SH DLBCL (n = 306), 

we compared all these groups using the Fisher Exact Test, a statistical test that measures 

the strength of association between two variables in a 2 x 2 contingency table.    

Cytogenetic information from the online karyotype of these selected cases was uploaded 

into CyDAS, a bioinformatics program developed to analyze the structural and numerical 

abnormalities of tumor karyotypes (Hiller et al.,
102

 available at http://www.cydas.org).  

From these results, the differences between the two comparative groups were tabulated 

and then confirmed by a manual analysis of all karyotypes included in the analysis for 

accuracy.  Fisher exact test was then used to determine the strength of association of 

different aberrations between the two comparative groups. To provide further evidence 

between statistically correlated RCAs in the two distinct tumor types (DLBCL and BL), 

specificity of all RCAs was determined.  Indeed, the higher the specificity, a 

measurement that rules in disease, the higher the diagnostic probability of a given RCA.  

Although we should highlight that a clue with 100% specificity, is not essentially present 

in every patient with the disease.
103

    The equation for specificity is shown below. 

Specificity = True Negative / True Negative + false positive (3-1) 

 

 

 

 

http://www.cydas.org/
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3.5 Cluster Predictive Models of DLBCL and BL. 

To further assess the performance of RCAs in predicting DLBCL vs. BL and to 

build a predictive model, we applied two unsupervised hierarchical clusters-HCs (a HC 

heat map based on Euclidian distance and one based on p-values) to a fourth and distinct 

dataset of DLBCL (MYC+ and MYC-, n = 116) and BL (n = 60).  Heat maps use colors 

instead of numbers to represent data, for example, in a dichotomous table of 0 and 1 

representing the presence and absence of RCAs, the low and high values in the heat map 

are set to blue and bright red respectively.  One advantage of heat maps is the ability to 

visualize clustered data that are not otherwise apparent in a large number table.  Normally 

heat maps are combined with hierarchical clustering to arrange similar items or cluster 

items based on a comparable distance, usually a Euclidian distance.  The result is a 

hierarchical cluster that is presented in a heat map as a dendrogram, a tree like structure 

(see Figure 3-5 for a column dendrogram). 

    

Figure 3-5. Typical column dendrogram of a hierarchical cluster.  The dendrogram 

illustrates the distance or similarity between columns (e.g., variables BCL-2, +12 are 

closer to each, whereas +3, +18 form a separate and distinct cluster) and the node each of 

the variables belong base on the clustering calculation.      
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In the case of a HC based on p-values, it evaluates the uncertainty in the 

hierarchical cluster analysis by calculating a p-value for each of the clusters in the 

dendrogram.  In this analysis, two types of p-values are generated, approximately 

unbiased (AU) and the bootstrap probability (BP).  Of these, the AU type p-value 

determined by multiscale bootstrap has a better estimate that the BP p-value, which is 

generated by a normal bootstrap resampling technique.
104

 Misclassified cases generated 

by the two HCs were assessed with a K-means partition  using the PAM algorithm
14

, a 

logistic regression analysis and a RCA cluster based on p-values.  With respect to a K-

means partition cluster, it has a mean vector that finds the nearest cluster for an object, 

while at the same time reducing object dissimilarity by a distance metric, usually a 

Euclidian distance.  There are limitations to k-means, such as processing speed, 

parameters that can be designated by the user, responsiveness to outliers and initial 

means, as well as shaped clusters.  Various other algorithms have been developed to 

address some of these shortcomings.  One alternative to using the k-means and that 

addresses outliers is the k-medoids algorithm or PAM (partition around medoids).  In this 

instance, the k-medoids assigns the mean to the object that is closest to the center and 

reduces distances among the different objects within a cluster.
14

  To test the internal 

validity and functionality of the predictor model, we included BCL-2 rearrangements.  

Although BCL-2 rearrangements exclude a BL diagnosis, these cases were included as an 

internal control.  The reason here is that those cluster members farther away from BL, in 

this instance BCL-2 rearrangements, should reside closest to a DLBCL cluster 

membership in a predictive model.   The 177 cases applied to HCs (heat map and p-

value), PAM algorithm and logistic regression consisted of 12 institutional cases of 
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DLBCL histology previously reported
35

, an additional 7 BL cases not published and 157 

cases from the publish literature.  The statistical R package (The R Core Team, Vienna, 

Austria) using the gplots, pvclust and cluster libraries were used for all types of analyses 

described above.    

3.6 Logistic Regression Model of DLBCL and BL 

The test-dataset of 177 cases previously used for the clustering analyses and 

containing greater than 2 chromosome aberrations was applied to a logistic regression 

analysis.  Findings from the logistic regression were taken into account when assessing 

misclassified cases using hierarchical clustering techniques.  Logistic regression is a 

method that is used to evaluate the impact of a given predictor (independent variable or 

RCAs in this project) on a categorical dependent variable (in our case BL or DLBCL).  It 

is used to predict categorical outcomes when two or more categories are present.
105

  In 

our case, a logistic regression analysis allows to evaluate how well a set of RCAs 

explains BL or DLBCL.  It also calculates the prediction ability or calibration of the 

model by performing a test of goodness of fit, normally the Hosmer-Lemeshow test.  It 

also describes the comparative importance of the individual RCAs and determines 

specificity and sensitivity of the model (concordance statistic or c statistic).
105

  In logistic 

regression, odds ratios are used instead of probabilities.  The odds ratio approach gives a 

measurement of the effect of independent variables (RCAs) on the dependent variable 

(BL or DLBCL), for example, a 7.5 odds ratio of a given RCA (e.g., gain of chromosome 

6p) associated in DLBCL is interpreted as the odds of a patient with DLBCL having a 

gain of chromosome 6p is 7.5 more than that of a patient with BL.  The logistic 

regression equation for prediction is listed below: 
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        p =  𝑒β0 + β1X1 + β2X2 + … βkXk 
 / 1 + 𝑒β0 + β1X1 + β2X2 + … βkXk 

 (3-2) 

Here, p represents the probability of the event occurring (outcome); e designates the base 

of the natural logarithm or exponent function, X1…Xk designates k independent 

variables, β0 is a constant and βi is the coefficient of the independent variable Xi.  In this 

project, a multivariable analysis (logistic regression) with stepwise selection (stepwise 

independent variable selection) was then used to determine the relationship between the 

two diagnostic tumor types (dependent variable) and the various reliable predictor RCAs 

(independent variables). 

3.7 Neural Networks and SVM models for the Classification of DLBCL and BL 

Data from 177 sample karyotypes with DLBCL (n = 117) and BL (n = 60) were 

randomly divided into training and testing groups (100 cases were used to train the model 

and 77 cases were used to test the model).  The total numbers of cases comprised of 177 

cases used previously to develop the predictive model based on clustering and logistic 

regression.  Every sample karyotype of the dataset was described by an input of 21 RCAs 

(1 RCA, BCL-2, served as internal control), four hidden layers, including one bias node 

along with one output node (See Figure 3-6).   
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Figure 3-6.  Schematic representation of an ANN model.  The model contains 21 input 

nodes (X1,X2,Xn), three nodes within a single hidden layer, one bias node and one single 

output node representing DLBCL. 

The logistic sigmoid activation function was used for each of the hidden and output 

nodes.  An additional ANN model was processed with only one hidden layer.  The ANN 

was processed by R using the neuralnet and nnet packages.  The training phase of the 

ANN model, described as the optimum parameters (e.g., weights and biases) of the model 

to accurately predict a patient with DLBCL or BL, was carried out by the globally 

convergent algorithm based on back propagation (BP).  For the training phase, 

approximately 2/3 (n = 100) of the total cases were used for this purpose.  In the course 

of this phase, the ANN model is provided with input data, that is, RCAs of sample 

karyotypes and the correct answer is also assigned to the model.  During this process, the 

network adjusts the connections weights to diminish observed inaccuracies in matching 

both inputs and outputs.  Neural network connections are fixed once the network has 
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correctly classified all training dataset. The ANN model was then tested using the 

remaining 1/3 of the total dataset (n= 70) to evaluate the accuracy of the model. 

 In order to further evaluate reliable RCAs in the context of a larger sample 

population, a SVM and ANN models were constructed of all tumor samples with 

cytogenetic information.  The total samples (n = 515) included the dataset used to 

identify reliable RCAs (n =334) plus a second dataset used to test predictor models (n = 

177).  The statistical R package using the e1071 library was used to develop the SVM 

model.        

3.8 Discrimination (AUC and specificity) Studies of Predictive Models 

Traditionally, to assess how well a model performs, both specificity and 

sensitivity are determined by calculating the area under the receiver operator 

characteristic curve (ROC)
106

, also referred to the c statistic or discrimination (this is the 

principal component of a predictive model if a high risk group is to be identified – in our 

case, DLBCL vs. BL).  An acceptable model has a c statistics above 0.7, over 0.8 is 

considered a good model and anything above 0.9 is considered an excellent model.  In 

general, discrimination or the c statistic is preferable when a diagnostic test is required.
73

  

Thus, for the purpose of this present study and the primary requirement required to 

accurately diagnose one entity from the other, it is the discrimination of the model (how 

well the model can distinguish between DLBCL vs. BL) that will take precedence.  To 

determine discrimination (i.e., ROC curves, specificities, sensitivities and the c statistic) 

for all predictor models, SAS using a logistic regression and the statistical R package 

(ROCR and Epi libraries) were used in this study.   
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3.9 Internal validation Techniques 

To address internal validation in this study, a number of techniques were used.  

Among these methods used included a split-sample validation (one dataset used to 

construct reliable RCAs while a different dataset was used to evaluate the model), 10-

cross validation (10 different deciles of the underlying sample population serve as 

validation) Bootstrap validation (repetitive re-sampling from an underlying population 

and each used as an original dataset for analysis) used in the hierarchical cluster with p-

values and internal RCA controls (e.g., initially included in the study BCL-2, +3/+18 and 

later added 3q27 rearrangements all indicative of a tumor phenotype consistent of 

DLBCL). 

3.10 External Validation: an Extended Literature Review of Array CGH in  

DLBCL Subtypes vs. BL and Compared with RCAs  

To address external validity by method transportability (i.e., collection of data and 

analyzed with an alternative method), we performed an extended literature review of 

array CGH.  In 2012, our group initially carried out a literature review of copy number 

aberrations performed by array CGH in DLBCL subtypes and reported unique copy 

number aberrations between distinct DLBCL subtypes.  In this present study, we 

expanded this initial analysis and compared the different DLBCL subtypes vs. BL to 

determine correlations between RCAs and copy number variations by array CGH.  Only 

those copy number aberrations that were listed in the literature with a frequency of 20% 

or greater were considered significant.  Moreover, we should highlight the analysis of 

copy number variations (using a classical CGH dataset), as well as a dataset of gene 

expression profiles that were used to further support our cytogenetic findings.   
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In terms of the copy number variations-CNV analysis and to identify unique CNVs 

between the two distinct entities, a total of 249 (n=78, BL; n=171, DLBCL) cases were 

retrieved from the SKY-M FISH & CGH database at the National Cancer Institute 

(available at http://www.ncbi.nlm.nih.gov/sky/) and the Progenetix Database, a database 

of copy number abnormalities in cancer available at http://www.progenetix.org.  All 

cases included in this analysis were previously analyzed by classical comparative 

genomic hybridization (CGH).  The total number of DLBCL cases included five distinct 

categories, mainly ABC, GCB, NOS, transformed DLBCL and relapse DLBCL.  For the 

BL subgroups, four distinct subtypes were identified.  These included: atypical BL, 

classic BL, discrepant BL and BL-NOS.  The two major diagnostic groups were grouped 

together and analyzed (DLBCL vs. BL) using the Fisher Exact Test to assess CNVs 

differences between the two diagnostic groups.  A logistic regression analysis to evaluate 

the impact of individual CNVs on the two tumor types was then performed.  The 

statistical software package SAS was used for the logistic regression.  A p-value of < .05 

was considered significant of all RCAs and CNVs data analysis.   

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/sky/
http://www.progenetix.org/
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Chapter IV 

IV. Results  

 

 

4.1 Genetic Complexity of DLBCL vs. BL and CyDAS analysis  

 

Research question 1:  Is the average total number of chromosome aberrations in 

MYC+ DLBCL greater in number than BL?  Initial analysis of all aberrations (numerical 

and structural) identified a total of 899 observations or 12.6 / tumor in MYC+ DLBCL, 

and a total of  814 observations or 9.7 / tumor in BL; this difference was significant by an 

independent group t-test (p = .003).   

An analysis of structural and numerical analysis using the CyDAS also revealed 

significant differences in the number of chromosome aberrations.  Among these, gain of 

chromosomes X, 2, 3, 5, 7, 11, 12, 18 and 21, and loss of chromosomes X, 1p, 2, 3q, 4, 

6q, 8, 9p, 9q, 10, 14, 15q, 16, 17 were more prevalent in DLBCL than in BL (see Fig. 4-

1). A quantitative representation of the number of aberrations registered by CyDAS at 

1p21-36 is illustrated in Table 4-1.  In this instance, there were a total of 67 losses in 

DLBCL and 9 losses in BL, and the difference was significant (p=0.001); this suggests 

1p36 loss is associated with a DLBCL histology rather than a histology of BL.   
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Figure 4-1. Distribution of gains and losses in DLBCL and BL identified by CyDAS. A. 

DLBCL(MYC+ and MYC-), B. BL histology. 

 

 

Table 4-1. Quantitative representation of aberrations at chromosome 1p by CyDAS 

 

     G     L     R      G    L    R 

 
           

         DLBCL (MYC+ and MYC-)          BL 

 

Key: G, gains; L, losses; R, rearrangements. 
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4.2 RCAs between MYC+ DLBCL and BL 

 

Research question 2: Are there differences in the frequency of different RCAs 

between MYC+ DLBCL vs. BL? Since in tumors with clonal evolution CyDAS may have 

registered a chromosome aberration at a specific band more than once, the frequency of 

tumors with all statistically significant aberrations was manually verified.  Initial manual 

analysis was performed on 71 MYC+ DLBCL and 84 BL cases. The type of MYC 

translocation and frequencies of tumors in each cytogenetic class is presented in Table 4-

2.  

 

Table 4-2. Morphological Groups for MYC+ DLBCL and BL  

________________________________________________________________________ 

Group  t(8;14)        t(8;22) t(2;8)      non-IG/MYC             Total 

________________________________________________________________________ 

 

DLBCL 51  6     6        6           71  

  

BL  63  13     8        0            84       

________________________________________________________________________ 

Key: BL, Burkitt lymphoma; DLBCL, diffuse large B-cell lymphoma. 

 

A manual curation of RCAs of this comparative group revealed +X, +7, 15q loss, +16, 

17p loss, and +18 were significantly associated with MYC+ DLBCL than BL (Table 4-4). 

 

 

4.3 RCAs differences between MYC+ and MYC- DLBCL. 

 

Research question 3:  Are there differences in the frequency of different RCAs 

between MYC+ DLBCL vs. MYC- DLBCL?  In order to verify whether the significant 

RCAs identified in the above analysis were specific to MYC+ DLBCL, or they represent 
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DLBCL in general (MYC+ and MYC- DLBCL as a single entity), chromosome  

abnormalities of 183 MYC- DLBCL were evaluated and compared along the same lines 

as MYC+ DLBCL and BL.  In this instance, a total of 2417 aberrations or an average of 

13.2 / tumor was identified in this group. The pattern of aberrations and their frequency 

(13.2/tumor vs. 12.6/tumor, p = 0.59) in MYC- DLBCL was similar to that seen in 

MYC+ DLBCL. The aberrations that showed significant positive association with MYC- 

DLBCL were 1p36L, 1qL, 19pL and monosomy 8.  Therefore, presence of these 

aberrations in a DLBCL tumor may suggest the absence of a MYC rearrangement. In 

contrast, +7 and 15qL were associated with the MYC+ group.  However, in a larger 

dataset of MYC+ (n= 104) vs. MYC- DLBCL (n = 202) where the number of aberrations 

was not restricted to more than two per karyotype , only 1qL, 16qL and monosomy 8 

remained significant, and +7 and 15qL were not statistically significant.   

In terms of 1p36 L in this larger dataset, the MYC- group showed a higher 

prevalence for this aberration, although non-significant compared to the MYC+ DLBCL 

group (p = .07, data not shown).   The above results indicate only marginal differences 

between the MYC+ and MYC- groups. Therefore in general, these RCAs may be useful in 

distinguishing between DLBCL and BL.  Moreover, those aberrations associated with the 

MYC- group may characterize the ABC molecular subtype of DLBCL since presence of 

MYC rearrangements in DLBCL are more associated with the germinal subtype of 

DLBCL.  Table 4-3 illustrates differences between MYC+ and MYC- DLBCL.  
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Table 4-3. RCAs Differences between MYC+ and MYC- DLBCL 

________________________________________________________________________ 

RCA  MYC+ DLBCL (n=71)  MYC- DLBCL (n=183) p-

Value 

     SH (> 2 aberrations)       SH (> 2 aberrations) 

________________________________________________________________________ 

1p36 L   10     57   .04 

1qL   6     48   .01 

+7   26     36   .03 

15qL   21     25   .02  

19pL      5     24   .01 

16qL   4     29   .05 

-8   1     24   .002 

________________________________________________________________________

Key: L, loss; G, gain. 

 

 

4.4 Differences between DLBCL (MYC+ and MYC-) vs. BL. 

 

Research question 4: Are there differences in the frequency of different RCAs 

between DLBCL (MYC+ and MYC-) vs. BL? Since the difference in the occurrence of 

different RCAs between MYC+ and MYC- DLBCLs was only marginal, we combined the 

data from all DLBCL tumors and compared it with that from BL. The combined data 

confirmed the previously identified RCAs by CyDAS and identified an additional two 

RCAs (1qL and 22qL) significantly associated with DLBCL compared to BL (see Table 

4-4).  With regards to 9qL, and 19pL, these RCAs were not significant in comparing 

DLBCL with BL; however, they remained significant when only the MYC- DLBCL 

group was compared with BL (p = .04 for 9qL and 19pL).  In the case of +16, it remained 

significant in the MYC+ DLBCL vs. BL.  Figure 4-2 is a visual representation of Table 4-

4 illustrating all the RCAs that may be used to distinguish between DLBCL and BL.  
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Table 4-4. RCAs Differences between characteristic groups of DLBCL vs. BL 

________________________________________________________________________ 

RCA          DLBCL               BL (n=84)              p-Value       Specificity 

           SH (> 2 aberrations)       SH (> 2 aberrations) 

________________________________________________________________________ 

 

DLBCL (MYC+ and MYC-, n= 254) vs. BL 

 

+X   36    4  .03  95.6 

      

1p36 L   67    6  .001  93.4 

1qL   48    5  .004  94.4 

+2   14    0  .026  100  

-2   22    0  .003  100  

+3   29    3  .05  96.6 

-4   29    4  .015  95.6 

9qL   42    6  .07  93.4 

+12   52    7  .03  92.4 

14qL   50    5  .009  94.4 

15qL   46    4  .006  95.6  

17pL   57    8  .02  91.4 

+18   43    5  .03  94.4 

22qL   20    0  .006  100 

-8   25    1  .01  98.8 

 

 

 

MYC+ DLBCL (n = 71) vs. BL 

 

+16   4    0  .04  100 

+X   11    4  .05  95.6 

+7   27    15  .036  85.5 

15qL   29    3   .0004  96.7  

+16   4    0  .04  100 

17pL   16     8   .05  92.6 

+18   13    5  .04  94.4 

 

 

 

MYC- DLBCL (n = 183) vs. BL 
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+X   25    4  .05  95.6 

1p36L   57    6  .0002  93.4 

1qL   48    5  .0007  94.4 

+2   11    0  .04  100 

-2   19    0  .001  100 

+3   22    3  .04  96.7 

-4   25    4  .05  95.6 

-8   24    1  .002  98.8 

9qL   33    6  .04  93.4 

+12   39    7  .03  92.4 

14qL   45    5  .002  94.4 

15qL                            25    4  .05  95.6 

16qL 29    5  .05  94.4 

17pL                            41    8  .04  92.6 

+18                              30    5  .05  94.4  

19pL              23    3  .04  96.7 

del(22)q                      17    0  .004  100 

________________________________________________________________________

Key: L, loss; G, gain.  Specificities for 9qL and 20 are better reflective of MYC-DLBCL 

vs. BL only. 
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Figure 4-2.  Ideogram representation of characteristic gains and losses in DLBCL vs. BL.  

Ideogram shows a visual representation of gains and losses in DLBCL compared to BL. 

 

4.5 Differences between DLBCL (MYC+ and MYC-) vs. BL in a Multivariable 

Context. 

 

Research question 5: Are there differences between DLBCL and BL with respect to 

RCAs within a multivariable context?  A logistic regression model obtained a 

discrimination of 85%; this was determined by the concordance statistic or c statistic 
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(discriminative ability of the model, a measurement of specificity and sensitivity) 

generated by the logistic regression model.  RCAs that remained independent predictors 

of DLBCL in this latter model included +18, +X, 17pL, 15qL, 1p36L,+3, -4, -8, +16, 

BCL-2, +2, and -2, with the seven last RCAs predicting DLBCL perfectly.   

4.6 Cluster Analysis of DLBCL and BL based on RCAs 

To assess the performance of RCAs in predicting DLBCL vs. BL, we applied 

three unsupervised clustering methods (HC based on Euclidean distance, HC with p-

values and a K-means partition analysis using the PAM algorithm), a logistic regression 

model and a supervised model using artificial neural networks to a total of 177 cases 

(DLBCL, n=117; BL, n=60).  The complete cytogenetic characteristics of all cases (n = 

224) that were initially selected are found in Table 4-5. Of note, only those cases with 

more than 2 aberrations were used for this initial analysis (n = 177).   

 

Table 4-5. Cytogenetic Description in ISCN format of DLBCL and BL 
______________________________________________________________________________ 
 

ID DX Cytogenetics 
 
____________________________________________________________________________________________________________ 

 

Institutional Cases 
 
1 DLBCL 43,XX,del(1)(q42q44),der(2)t(2;8)(p13;q24),der(3)t(2;3)(p13;q27),-4,add(5)(q33),add(8)(q24),add(9)(q22),-10, 

  add(10)(q24),- 15,add(17)(p13) 

2 DLBCL 80~85<4n>-X,-Y,del(1)(p32p36.1),-2,ins(2;?)(q31;?)x2,-4,-4,-5,add(5)(p15),add(6)(q13),add(6)(q23), 
ins(6;?)(q23;?), 

  add(7)(q11.2), t(8;14)  (q24;q32)x2,add(9)(q22),add(9)(q22),-10,-10,-11,-12,-13,-15,+16,add(16)(p11.2), 
add(16)(p13.3),-18,-18,-20,-21,-22,-22,+7~13mar[cp5]/75~87,idem,add(19)(p13.3)[cp10] 

3 DLBCL 46,XX,t(1;17;1)(q23;p11.2;q42),der(5;15)(p10;q10) [1 cell]/43~45,XX,-3,add(5)(q13),add(7)(q22),-15,- 

17,add(22)(q13),+mar1,+1~3mar [cp6 cells]/43~45,XX,-3,add(5)(q13),add(6)(p21.1),add(7)(q22), 
-15,-17,add(22)(q13),+mar1, +1~3mar [cp8 cells] 

4 DLBCL 49~50,XY,+X,add(1)(q21),der(6)t(6;6)(q21;p12),t(8;14)(q24.1;q32),+11,der(13)t(2;13)(q21;q34), 

der(15)t(1;15)(q12;q22),+17[cp2] 
5 DLBCL 48,XY,+X,+3,add(7)(q32),add(10)(p11.2),der(15;21)(q10;q10),i(17)(q10),+18[9]/46,XY[9] 

6 DLBCL 38~59,XY,+X,-2,add(3)(q27),+add(6)(p15),+7,+i(8)(q10),dup(10)(q22.3q11.2),+11,+12,13, 

del(14)(q24q32),+15, 
add(18)(q12.2),+20,-21,+mar1,+mar2,+mar3,+mar4 

7 DLBCL 48,X,-Y,+X,del(6)(q13q21),+7,add(8)(p21),add(14)(q32),add(16)(q22),+der(?)t(?;1)(?;q12) [7 cells]/ 

46,XY [13 cells] 
8 DLBCL 50,X,-Y,-2,add(6)(q15),+del(6)(q13q21),+7,+8,add(10)(q22),+11,+12,t(14;18)(q32;q21),-15,der(15)t(15;15) 

(p11.2;q15),+18,+mar [1 cell]/46,XY [19 cells] 

9 DLBCL 53,X,-Y,+X,der(4)add(4)(p16)dup(4)(q25q27),+5,add(12)(p13),+add(12)(p13),-15,add(16)(p13),+add(17)(q23), 
add(19)(q13.3),+21,+21,+21,+mar1,+mar2 [7 cells]/46,XY [10 cells] 
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10 DLBCL 45,XY,t(2;11)(q23;q12),add(3)(p12),-9,-9,add(14)(q32),add(17)(p11.2),+mar[9]/46,XY[11] 

11 DLBCL 48~91<4n>XXY,+X,-4,+der(6)t(1;6)(q21;q13),del(9)(q22),add(12)(p11.2),del(12)(p13),add(13)(p11.2)x2,- 
14,add(14)(q32),der(16)t(12;16)(q13;p13.3)x2,-17,dup(18)(q21q22)x2,-19,+20,+1~2rs 

12 DLBCL 46,XX,add(6)(q11)[1]/46,XX,idem,+12[1]/91,idemx2,i(X)(p10)x2,-8,+12,-15[cp5]/92,idemx2,i(X)(p10)x2, 

+add(6)(q11),- 
8,+12,-15[cp3]/46,XX[7] 

13 BL 46,XY,t(8;14)(q24.1;q32) [20]  

14 BL 46,XX,t(8;14)(q24.1;q32) [20] 
15 BL 46,XY,t(8;14)(q24.1;q32) [5] 

16 BL 46,XY,t(8;22)(q24.1;q11.2) [20]  

17 BL 46,XY,t(8;14)(q24.1;q32) [16] 
18 BL 46,XX,t(8;14)(q24.1;q32) [19] 

19 BL 46,XY,t(8;14)(q24.1;q32) [20] 

20 BL 46,XY,der(6)t(1;6)(q12;q13),t(8;14)(q24.1;q32) [20] 
21 BL 47,XY,t(8;14)(q24.1;q32),+12 [20] 

22 BL 46,XY,t(8;14)(q24.1;q32),+20[12]/ 46,XY,t(8;14)(q24.1;q32),add(17)(p11.2)[4]  

23 BL 46,XY,del(4)(q27q31),t(8;14)(q24.1;q32) [10] 
24 BL 46,XY,dup(1)(q?12q?24),i(7)(q10),t(8;14)(q24.1;q32) [8] 

25 BL 46,XY,der(2)del(2)(q?13q21)del(2)(q23q31),t(8;22)(q24.1;q11.2),del(17)(p11.2) 

26 BL 47,XY,t(8;14)(q24.1;q32),add(18)(q21),+19  

27 BL 46XY, t(8;14)(q24.1;q32), add(13)(q34), del(17)(p11.2) 

28 BL 47,+X,idic(X)(p11.2)x2,t(8;14)(q24.1;q32)[20] 

29 BL 47,XY,+del(7)(p15p22),t(8;14)(q24.1;q32) [10]/47,idem,ins(1;1)(q25;q31.2q21)[3] 
30 BL 47,XX,t(8;14)(q24.1;q32),+12[15]/46,idem,-X,[3]/47,idem,-X,+mar[2] 

31 BL 47,XY,+8,der(8)t(8;14)(q24.1;q32),t(8;14)(q24.1;q32),dup(11)(q13q23),add(13)(q22)[19] 

32 BL 46,XY,t(8;14)(q24.1;q32) [2 cells]/46,idem,t(2;21)(p21;q22) [15 cells]/45,idem,-Y,t(4;17)(q21;p11.2), 
del(6)(q21q23) [4] 

33 BL 46, XY,del(2)(p21p23),t(8;14)(q24.1;q32)[3]/47,idem,- del(2)(p21p23),+7[1]/ 
  47, idem,del(2)(p21p23),+der(7)del(7)(p13p15)inv(7)(p22q11.2)[15] 

34 BL 47, XY,t(2;8)(p12;q24.1),add(3)(q27),t(12;22)(p13;q11.2),+add(12)(q24.1), add(14)(q32), 

  der(14)t(1;14)(q12;p11.2)add(14)(q32),  add(15)(q24) [15 ]/47,idem,add(2)(q31),-add(3)(q27),+add(3)(q27) [4] 
35 BL 46,XX,t(8;14)(q24;q32),add(13)(p11.2)[20] 

36 BL 46,XX,t(8;14)(q24.1;q32),der(18)t(1;18)(q12;p11.32) [18 cell],46,X,add(X)(p22.1),t(8;14)(q24.1;q32), 

der(18)t(1;18)         
                   t(1;18)(q12;p11.32) [cp2 cells] 

 

Reference 
47,107-109

 

 
37 BL 46,XX,t(8;14)(q24;q32),add(11)(q23),add(13)(q34) 
38 BL 46,XX,del(6)(q13q23),t(8;14)(q24;q32),add(11)(q23),add(13)(q34) 

39 BL 46,XY,ins(1;?)(q21;?),t(8;14)(q24;q32),add(11)(q23),add(17)(p11) 

40 BL 46,XY,add(13)(q),t(8;14)(q24;q32),add(17)(p) 
41 BL 46,XY,t(8;14)(q24;q32),-13,+der(13)t(13;?)(q26;?) 

42 BL 46,XY,dup(1)(q21q32),t(8;14)(q24;q32) 

43 BL 46,XY,t(8;14)(q24;q32),+add(1)(q),del(15)(q) 
44 DLBCL 51,XX,add(1)(q?4),+3,+3,+7,t(8;14)(q24;q32),+10,+18 

45 DLBCL 48,XY,+X,add(2)(p?2),add(3)(p2?5),add(3)(q2?),add(6q?1),+add(7)(p1?),-8,add(11)(q23),-13,  

  der(14)t(8;14)(q24;q32),add(15)(q2?),add(16)(p1?),-21,+4mar 
 

Reference 
55

 

 
46 DLBCL 46,XY,t(8;14)(q24;q32),add(11)(q23),der(16)t(13;16) (q22;q24),der(21)t(1;21)(p10;p13)[6]/47,XY, 

+i(1)(q10),t(8;14) 

(q24;q32),der(16)t(13;16)(q22;q24)[6]/48,XY,+X,+i(1)(q10),t(8;14)(q24;q32),der(16)t(13;16)(q22;q24)[13] 
47 DLBCL 46,XY,+der(1)t(1;7)(q32;q22)del(1)(p11pter),ins(3)(p21), -4,t(8;14)(q24;q32),add(13)(q32),add(21)(p11)[22]/ 

45,idem,t(8;14)(14;22)(q24;q32p11;q11),-22[3] 

48 DLBCL 47,XY,t(1;12)(p31;p11),add(8)(q24),add(11)(q25)[13]/47,idem,add(10)(q26),-12,+mar[2] 
49 DLBCL 77 – 84,XXX,-X,add(1)p21,dic(1;1)(p36;p13),+2,-5,+7,t(8;14)(q24;q32)x2,-9,-10,-12,-13x2, der(14)t(8;14) 

(q24;q32)x2,-15,-16,i(21)(q10),-22,+3 – 4mar[cp6] 

50 DLBCL 48,X,-X,-4,add(6)(q21),+7,t(8;9)(q24;p13),+der(8)t(8;9)(q24;p13),+10,+12,del(14)(q22),add(18)(q12),-22,  
+mar[9] 

51 DLBCL 86 – 97,XXYY,+X,-1,t(1;4)(q21;p15),del(3q),add(3)(q12),-4, add(5)(q34)x2,del(6)(q13), 

+del(6)(q13),add(8)(q24), 
add(10)(q26),+1 – 5 mars[cp15] 

52 DLBCL 54 – 58,XY,+del(1)(p22),+2,-3,-4,+7,del(8)(q24qter),-9,+add(12)(p11),-14,+15,+15,del(17)(q25), +7- 

10mars,+2dm[cp10] 
53 DLBCL 46,X,der(X)t(X;8)(q22;q24.3),del(2)(p13p21),der(3)del(3)(q21q26)t(3;14)(q27;q32),add(4)(p11),add(6)(q11),  

der(8)t(X;8) 

(q22;q22),del(10)(p11.1p11.2),der(14)t(3;14)(q27;q32),-21,+mar[25] 
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54 DLBCL 47,X,-Y,add(1)(p36),dup(2)(p15p23),-3,+del(4)(q25q31),+7,t(8;14)(q24;q32),-9,del(12)(p12),add(13)(q14),- 

15,-16x2,-17,+18,+22x2,+3mars,+ring[cp8] 
55 DLBCL 37 – 42,X,-X,-2,-8,-12,-19,del(19)(p13),-20,-21,-22[cp5]/48,XX,+del(3)(q27),add(8)(q24),-9,-17,+18,- 

22,+3mars[1] 

56 DLBCL 47,XY,+der(?)t(1;?)(q24;?),t(3;14)(q27;q32),del(8)(q24),add(13)(q14),t(18;22)(q21;q11)[2] 
57 BL 46,X,add(X)(q11),inv dup(1)(q12q32), t(8;14)(q24;q32),t(13;3)(3;22;7)(q14;q27p21;q11;q34)[9] 

58 BL 46,X,del(X)(p11),t(2;8)(p11;q24),del(6)(q13)[7]/46,idem,der(7)t(1;7)(q11;q11)[11] 

59 BL 46,XY,inv dup(1)(q12q32),add(7)(q32),t(8;14)(q24;q32),add(13)(q14)  
[9]/50,XY,+1,add(7)(q32),+add(7)(q32),-10, 

+12,t(8;14)(q24;q32),+19,+mar[cp3] 

60 BL 48,XY,t(8;14)(q24;q32),der(13)(q32),+20,+mar [15] 
 

Reference 
51

  

 
61 BL 48,XX,+7,t(8;14)(q24;32),+13 

62 BL 46,XX,t(8;14)(q24;q32),inv(9)c+12 

63 BL 43-46,XY,add(1)(q21),t(8;14)(q24;q32),+1-2mar 
64 BL 44,XY,add(6)(p21),t(8;14)(q24;q32),add(13)(q34),add(14)(p11),-15,-22 

65 BL 48-49,XY,t(8;14)(q24;q32),+9,add(9)(q22),add(13)(q34),add(18)(23),+1-2mar 

66 BL 47,XY,t(8;14)(q24;q32),+12,der(14) 

67 DLBCL 89-90,XXYY,+X,+X,add(1)(p33),add(1)(p21),add(7)(p22)x2,+12,t(14;18)(q32;q21),del(20)(q11.2)x2,+3 

68 DLBCL 44,X,–Y,+9,der(9;13)(q10;q10),–15 

69 DLBCL 74-77,XXX,add(3)(p12),–10,–10,–10,add(13)(p11.2),add(16)(p13.3),+20,+20,+20,+7,–17mar,4-6dmin[cp] 
70 DLBCL 50,XX,add(1)(q44),+2,+7,del(10)(q24),t(14;18)(q23;q21),del(15)(22),+16,+21[cp] 

71 DLBCL 62-90,XXY,–Y,–4,–14 

 

Reference 
110

  

 
73 DLBCL 48,XY,+Y,+18,-19,+mar 

74 DLBCL 47,XX,der(1)dup(1)(q21q23)dup(1)(q25q42),+3,del(6)(q13q23),-11,+der(14)t(11;14)(q13;p13),- 
15,+18,add(21)(p11)/ 

47,idem,del(4)(q21q25),add(5)(q13)/47,idem,del(4),add(5),+7,+15 

75 DLBCL 60,XY,-X,+Y,-1,-2,+i(3)(q10),-4,-6,-8,-9,-10,-13,-15,-17,+18,der(19)t(11;19)(q13;p13),-21 
76 DLBCL 49,XY,add(6)(q11),+add(7)(q32),+16,add(17)(q25),+18,der(19)t(11;19)(q13;p13)add(19)(q13) 

77 DLBCL 46,XY,add(2)(q31),add(3)(q12),t(3;8)(p21;q11),der(7)t(7;11)(p22;q13),add(16)(q22)/47,idem,+add(3) 

78 DLBCL 48,XY,+3,t(4;7)(q31;p22),del(9)(q22q32),+der(12)t(12;18)(q13;q11)/47,idem,der(10)t(10;11)(p13;q13),- 
12,/48,idem,del(6)(q21q23),+7,der(22)t(1;22)(q21;q13) 

 

Reference 
111

 
 

84 DLBCL 49-56,XY,+1,del(3)(p12p14),+5,t(14;18)(q32;q21),+i(21)(q10),+1-7mar 

85 DLBCL 47,XY,t(12;22)(q13;q11),t(14;18)(q32;q21),+mar/47,idem,+der(1)t(1;4)(p13;q12),-4 
 

Reference 
112

 

 
87 DLBCL 39-48,XY,+X,del(6)(q23),+9,der(19)t(2;19)(p14;q13) 
88 DLBCL 47-51,X,del(X)(q22-24),+3,der(9)t(8;9)(q13;p21-22),+16,+der(16)t(X;16)(q22- 

24;q13),+18,der(19)t(5;19)(q14;q13) 

89 DLBCL 41-48,XY,+X,del(1)(p12),+der(1)t(1;22)(q23;q12),+5,der(10)t(10;14)(q24;q32),+12,+13 
90 DLBCL 39-48,XY,+X,del(6)(q23),+9,der(19)t(2;19)(p14;q13) 

91 DLBCL 47-51,X,del(X)(q22-24),+3,der(9)t(8;9)(q13;p21-22),+16,+der(16)t(X;16)(q22- 

24;q13),+18,der(19)t(5;19)(q14;q13) 
92 DLBCL 45-46,X,del(X)(q26),del(1),del(5),der(7)t(1;7)(q32;q36),der(17)t(5;17)(p13;p13),der(22)t(1;22)(q22-25;q13) 

93 DLBCL 37-48,XX,+der(X)t(X;1)(p11;q21),+5,der(6)t(6;19)(q25-27;?),+7,+i(10)(q10),+11,+del(12)(p10) 

94 DLBCL 44-47,XY,der(2)t(2;11)(q37;q23),del(3)(p21p23-25),+der(3)t(3;14)(q27;q32),der(9)t(9;14)(p13;q32),- 
15,del(15)(q15q22), 

der(17)t(11;17)(q13;q24),+18,-21 

95 DLBCL 40-46,XY,der(1)del(1)(p22)del(1)(q21-22),-4,del(6)(q2?1q2?5),- 
11,del(11)(p13),der(11)t(1;11)(p22;q24)t(11;18)(p15;q21) 

  ins(12;1)(q15;q44q25-32),-19 

96 DLBCL 44-49,X,-X,-1,-2,del(2)(p11),+der(3)t(1;3)(p21-22;q21),-4,der(6)del(6)(p12)del(6)(q13),+der(6)t(1;6)(q21;q27),  
+der(8) 

  t(8;12)(p11;q15)t(8;12)(q13;q13),+der(9)t(9;14)(q34;q22),del(12)(q13),+13,+16,i(17)(q10),+18,+18,-22 

97 DLBCL 82-95,XXYY,-1,del(3)(p21p23-25),der(3)t(3;7)(p21;q22),+der(3)t(3;13)(?p21;?q22),-4 
98 DLBCL 47-50,XY,+del(3)(?p13),+del(3)(p21p23-25),der(14)t(1;14)(p11-13;q32)+ider(18)(q10)del(18)(q21) 

 

Reference 
113

 

 



82 
 

99 DLBCL 46-47,X,-Y,del(1)(q41),ins(1;?)(q21;?),+?3,add(6)(q13),+7,add(14)(q32),-19,+r 

100 DLBCL 48,X,+X,-Y,add(3)(q2?5),del(5)(q14q23),add(6)(q12),add(8)(q21),+12,?del(18)(q12q21),add(22)(q13),+mar 
101 DLBCL 101-104,YY,+Y,add(X)(q2?1)x2,+2,+2,add(2)(p1?3)x4,+6,+7,add(7)(q22)x3, -8,-8,+10,+10,+14,- 

15,+16,+19,+20,+21,+der(?)t(?;2)(?;p12),+der(?)t(?;8)(?;q11)x2 

102 DLBCL 57,XY,+X,+5,?del(6)(q1?q2?),+add(7)(p11),dic(9;12)(p2?1;q22),+10,+ins(11;?)(q21;?),+12,add(13)(q22),- 
14,add(14)(q32),add(18)(q21),+20,+21,+der(?)t(?;1)(?;q12),+r,+3mar 

103 DLBCL 75-99,XXYY,+Y,der(1)t(1;11)(q32;q13)x2,-2,-2,-5,-5,add(6)(q?15),add(6)(q?21),add(7)(q22)x2,i(7)(q10),- 

8,add(8)(q24)x2,-9,-9,-9,-9,-10,-11,-11,del(11)(q13q21),-12,-13,-14,-15,-16,-16,-17,-17,-17,-
17,dup(18)(q12q23)x2,-19,-19,-20,-22,+der(?)t(?;5)(?;q13)x2,+der(?)t(?;17)(?;q21)x2,+13mar 

104 DLBCL 45-49,X,-Y,del(2)(p11p13),+add(3)(q2?6),del(4)(q2?2),del(5)(q14q23),del(6)(p24),del(6)(q15q16), 

+add(7)(q31),del(9)(p21p22),add(10)(p1?2),dup(11)(q25q22),r(12)(p13q24),i(17)(p10),i(17)(q10),add(19)(p13)
,+20,+21 

105 DLBCL 45-50,dup(X)(p21p22),-Y,del(6)(q2?3),del(6)(q15),+8,t(11;14)(p11;q11),+12,+13,del(14)(q31),+18 

106 DLBCL 86-89,XXYY,+X,add(1)(p11),del(2)(p11),-3,-4,del(6)(q15q21)x3,+7,t(7;19)(q11;q13),+8,-10,-11,-12,-13,-13,- 
15,-15,-16,-17,-17,-18,-19,add(19)(p13),der(19)t(7;19)(q11;q13),-20,-22,+2mar 

107 DLBCL 92-115,XXYY,+X,add(3)(q27-29),-6,-6,-8,-8,-9,-10,-10,+15,-16,-17,-19,-19,-22,+13-23mar 

 

Reference 
114

 

 
108 BL 46,XX,del(6)(q14q22),t(8;14)(q24;q32) 

109 BL 46,XY,t(8;14)(q24;q32) 
110 BL 47,XY,t(2;8)(p11;q24),+7/47,XY,t(2;8),+16/48,XY,t(2;8),+7,+16 

111 BL 46,XX,dup(1)(p34p36),dup(1)(q12q32),der(14)t(8;14)(q24;q32) 

112 BL 46,XX,t(8;14)(q24;q32),der(13)t(1;13)(q21;q32)dup(13)(q31q32)/46,idem,dup(1)(q21q25) 
113 BL 46,XX,t(8;14)(q24;q32) 

114 BL 45,XY,t(1;11)(p36;q13),del(4)(q13q22),dup(7)(q21q36),t(8;14)(q24;q32),-15,del(17)(p11) 
115 BL 46,XY,dup(7)(q21q35),t(8;14)(q24;q32) 

116 BL 46,XX,t(1;13)(q21;q22),t(8;14)(q24;q32),inv(9)(p11q12)c/46,XX,t(8;14),inv(9)c,t(13;21)(q13;q22) 

/46,XX,t(6;16)(q15;q24),t(8;14),inv(9)c/46,XX,der(4)t(4;7)(p11;q11),t(8;14),inv(9)c,der(13)dup(13)(q22q11) 
del(13)(q22)/46,XX,add(2)(p14),t(8;14),inv(9)c,add(13)(q32) 

117 BL 46,XY,t(8;14)(q24;q32),dup(13)(q31q34) 

118 BL 47,XY,+X,t(8;14)(q24;q32)/48,idem,+7/48,idem,+1,der(1;2)(q10;q10)/52,idem,+i(1)(q10),+4,+6,+11/48,idem, 
+der(1;7)(q10;p10) 

119 BL 47,XY,t(8;22)(q24;q11),+19 

120 BL 42-44,X,dic(X;?)(q28;?),add(4)(p16),-6,t(8;14)(q24;q32),der(9)t(9;11)(p13;q13),dup(9)(q21q34),del(11)(q12), 
del(15)(q12),add(17)(p11),dup(18)(q12q23),-19,-22,+2mar 

121 BL 46,XY,t(8;14)(q24;q32) 

122 BL 46,XY,t(8;14)(q24;q32) 

123 BL 46,XY,t(8;14)(q24;q32) 

124 BL 46,XY,t(8;14)(q24;q32)/46,idem,dup(1)(q21q32)/46,idem,-4,+mar 

125 BL 46,XY,t(8;14)(q24;q32) 
126 BL 46,XY,t(8;14)(q24;q32) 

127 BL 46,XX,del(6)(q15q21),t(8;14)(q24;q32),+10,der(13)t(1;13)(q21;q34) 

128 BL 46,XY,del(6)(q12q25),t(8;14)(q24;q32),del(11)(q14),del(17)(p11)/46,XY,t(8;14),dup(13)(q31q33),del(17) 
/46,XY,t(8;14),t(9;11)(q12;q23),del(17) 

129 BL 46,XY,dup(1)(q12q25),t(8;14)(q24;q32),add(17)(p13) 

130 BL 46,X,-Y,der(6)t(6;10)(p21;q24),add(8)(q24),del(10)(q24),+13,ins(13;12)(q14;?)x2,der(14)t(8;14)(q24;q32), 
der(14)t(14;14)(q32;q?),t(15;16)(q15;q24),del(18)(q?),der(20)t(6;20)(p21;q13)/46,idem,der(8)t(8;13)(p23;q21) 

ins(8;12)(p23;?) 

131 BL 46,XY,t(8;14)(q24;q32) 
132 BL 47,XY,dup(1)(q21q42),?del(6)(q16q25),+7,t(8;14)(q24;q32),add(11)(q25) 

133 BL 46,XY,t(8;14)(q24;q32),add(13)(q22) 

134 BL 48,XX,+7,der(8)t(8;14)(q24;q32),+12,del(14)(q24),der(14)t(14;14)(q24;q32)t(8;14)/48,idem,-X,+r 
135 BL 46,XY,t(8;14)(q24;q32) 

136 BL 46,XY,dup(1)(p12p36),t(8;14)(q24;q32) 

137 BL 46,XY,del(2)(p16p25),dup(12)(p12p13),t(8;14)(q24;q32),del(13)(q33),dup(13)(q31q33) 
138 BL 46,XY,dup(1)(q12q31),t(8;14)(q24;q32) 

139 BL 46,XY,del(6)(q21q23),t(8;14)(q24;q32) 

 

Reference 
115

 

 
140 BL 46,XY,t(1;22)(q11;q11),t(8;14)(q24;q32)/46,XY,dup(1)(q11q44),t(8;14)(q24;q32) 

141 BL 46,XY,der(8)t(1;8)(q23;p21)t(8;14)(q24;q32),der(14)t(14;21)(q11;q22),der(21)t(8;14;21)(q24;q11q32;q22) 
142 BL 46,XX,t(8;14)(q24;q32)/46,idem,del(2)(p11),ins(5;2)(p14;p11p?) 

143 BL 46,XY,dup(1)(q31q44),add(6)(p25),t(8;14)(q24;q32) 

144 BL 46,XY,t(8;14)(q24;q32),der(11)inv(11)(q21q23)hsr(11)(q23),der(16)hsr(16)(q?)t(7;16)(q22;q24)/46,idem, 
dup(1)(q21q25),-der(16) 

145 BL 46,XY,der(2)t(2;14)(p12;q32),+7,dup(11)(q13q24),der(14)t(2;14)(p12;q32),der(14)t(1;14)(q12 or  

p11;p11)t(8;14)(q24;q32),-21,der(22)t(21;22)(q11;p11)/47,idem,+X,der(18)t(1;18)(q21;q2?2) 



83 
 

146 BL 46,XY,+i(7)(p10),t(8;14)(q24;q32),der(13)t(1;13)(q22;q32) 

147 BL 46,XY,dup(1)(q21q41),del(2)(q22-24q3?7),t(8;14;20)(q24;q32;q11)/46,idem,-dup(1),der(1)t(1;4)(q?32;q?)/ 
46,idem,-dup(1),der(Y)t(Y;1)(q12;?p3?) 

148 BL 46,XY,dup(1)(q12q31),t(8;14)(q24;q32)/46,idem,der(13)t(7;13)(q21;q34) 

149 BL 46,XX,der(6)t(6;7)(p23;?q22),t(8;14)(q24;q32)/46,XX,t(8;14),der(18)t(7;18)(q21;q22) 
150 BL 46,Y,t(X;3)(q2?;p21),t(5;12)(q22;q12),der(8)t(8;14)(q24;q32),der(9)t(1;9)(?;p2?),del(13)(q12), 

der(14)t(13;14)(?q21;p11)t(8;14)(q24;?q32) 

151 BL 46,XY,der(1)t(1;1;6)(?q31;?q12;q?21),der(1)t(1;7)(q44;?),del(3)(q21),der(5)t(1;5)(?;q35),del(6)(q2?1), 
der(6)t(6;7)(q13-21;?),t(8;14)(q24;q32),der(13)t(1;13;9)(?;?q34;?) 

152 BL 47,X,t(X;14)(p11;q32),del(6)(q13q24),inv(6)(p23q13),t(8;22)(q24;q11),+9 

153 BL 47,Y,t(X;1)(p22;q21),trp(1)(q21q32),t(8;14)(q24;q32),der(19)t(2;19) 
154 BL 54,XY,+X,+Y,del(1)(q11),+7,t(8;14)(q24;q32),del(9)(q11),+?der(9)t(9;11)(q12;?),del(13)(q?), 

+del(13)(q?),+18,der(21)t(1;21)(?;p11),der(22)t(1;22)(q?;q11),+der(22)t(1;22),+2mar/54,XY,+X, 

+Y,dup(1)(q?),+7,t(8;14),del(13)(q?),+del(13)(q?),+18,+der(19)t(1;19)(?;q10),der(21),+mar 
155 BL 46,XY,del(1)(q32),t(8;14)(q24;q32),der(11)t(1;11)(q32;q2?3),dup(13)(q2?q?) 

156 BL 48,XY,+r(X),+r(1)(p3?2?q12),del(6)(q16q23),der(7)?inv(7)(q11q36)?trp(7)(p22?q36),t(8;14)(q24;q32) 

157 BL 47,XX,+der(1)t(1;16)(p13;?p11),del(6)(q15q24),t(8;22)(q24;q11) 
158 BL 46,XY,dup(1)(q12q25),t(8;14)(q24;q32),der(13)t(13;16)(q33;?) 

159 BL 46,XY,dup(1)(q12q31),del(4)(q26),dup(6)(q23q26),t(8;14)(q24;q32),der(13)dup(13)(q?q?)t(4;13) 

(q2?6;q?)/46,idem,der(15)t(1;15)(q1?2;p1?),der(11)t(1;11)(q?;q2?3) 

160 BL 46,X,der(Y)t(X;Y)(q21;q12),der(1)t(1;9)(p34;p24)t(1;8)(q21;q24),t(2;6)(p1?1;q14- 

16),der(6)del(6)(q22q25)t(6;14)(p2?;q32),del(8)(q24) or add(8)(q24),der(9)t(1;9)(p34;p24),+12,der(14)t(1;14) 

(q21;q32),t(14;19)(q32;?p13)/46,idem,t(12;17)(q24;q21) 
161 BL 46,XY,t(8;22)(q24;q11),del(9)(q11q22),t(10;14)(q22;q32)/45,idem,-Y 

162 BL 46,X,der(Y)t(Y;1)(q12;q11),r(6),t(8;14)(q24;q32) 

 

Institutional Cases (cont.) 

 
163 BL 49,XX,add(1)(q25),t(8;14)(q24.1;q32),add(10)(q22),add(17)(p11.2),+22,+mar1,+mar2 [2 cells]/49,XX,add(1)  

(q25),der(1)t(1;1)(p13;q21)ins(1;?)(p13;?),t(8;14)(q24.1;q32),add(10)(q22),der(13)(t(1;13)(p13;q32),add(17) 

(p11.2),+22,+mar1,+mar2 [3 cells]46,XX [15 cells] 

164 BL 46,XY,del(2)(p21p23),t(8;14)(q24.1;q32)[3]/47,idem,-del(2)(p21p23),+7[1]/47,idem,-del(2)(p21p23),+der(7) 
del(7)(p13p15)inv(7)(p22q11.2)[15]/46,XY[1] 

165 BL 46,XY,add(3)(p11.2),t(8;14)(q24.1;q32),der(13)t(3;13)(p21;q32) [12 cells]/46,idem,del(13)(q12q14) [3 cells] 

166 BL 46,XY,t(8;14)(q24.1;q32)[20] 
167 BL 46,XX,t(8;14)(q24.1;q32)[cp5] 

168 BL 46~47,XY,t(8;14)(q24.1;q32)[cp5]/47,idem,+add(1)(p22)[6]/46,idem,dup(1)(q12q32)[3]/46,idem, 

der(18)t(1;18)(q21;q23)[3] 

169 BL 46,XY,t(8;14)(q24.1;q32)[15] 

 

Reference 
116

 

 
170 DLBCL 51,XX,+3,del(6)(q13q21),+7,del(9)(p22p24),del(9)(q13q32),+12,+i(18)(q10)+add(22)(p11) 

 

 

Reference 
34

 
171 DLBCL 45,XY,del(1)(p32),-2,-5,-8,-9,t(10;11)(q24;p15),add(12)(q24),-17,del(18)(q21),+4mar 

172 DLBCL 84,XXX,-X,add(1)(p13)x2,-2,-3,del(6)(q13)x2,-10,-10,+12,-13,-13,-14,-14,add(14)(q32),-15,-17,- 

17,del(18)(q21)x2,-19,-20,-22,+6mar 
173 DLBCL 45,XX,-1,dic(1;11)(q11;q23),-3,add(6)(q13),+der(9)t(9;11)(q34;q13),der(11),-14,add(19)(q13),der(21)t(14;21) 

(q11;p13),+mar 
174 DLBCL 89,XX,del(X)(q22)x2,-1,-4,-5,-6,-6,add(17)(p11),-22,+3mar 

175 DLBCL 89,XXXX,add(2)(q10),add(3)(q27),-6,-8,-9,+10,-11-19,-21,-22,+3mar/88,idem,-4/88,idem,-9 

176 DLBCL 48,XX,add(4)(q21),+9,+11 
177 DLBCL 49,XY,t(1;7)(p13;q32),+add(3)(q11),+9,add(10)(q22),+18,add(19)(q13) 

 

Reference 
117

 

 
178 DLBCL 46,XX,del(2)(p?),add(6)(q?),del(6)(q?),del(7)(q?),add(9)(p?),add(11)(q?),add(12)(p?),del(13)(q?), 

der(14)t(6;14)(p21;q32),del(20)(p?) 

179 DLBCL 49,XY,dup(1)(q21q32),add(2)(p13),+3,-6,t(6;14)(p21;q32),+der(8)del(8)(p21)t(8;21)(q22;?), 
add(9)(p24),add(10)(p11),del(11)(q13),+12,+18,-19,del(19)(p13),der(21)t(8;21),+mar 

180 DLBCL 48,XX,+18,+18,-19,+r 

181 DLBCL ??,X?,add(6)(q?),add(14)(q?) 
182 DLBCL 50,XX,+X,t(12;22)(p13;q11),+16,+18,+19 

183 DLBCL 44,X,-Y,add(2)(q32),del(4)(q?),der(14)t(8;14)(q24;q32),-15,add(17)(p11),i(21)(q10) 

 

Reference 
118

 



84 
 

 
184 DLBCL 49,X,-Y,+X,+2,del(3)(q13q21),add(4)(p16),add(7)(p22),inv(8)(p21q11) 
185 DLBCL 47,XY,-2,inv(3)(q?),del(5)(q?),-6,add(6)(p?),add(7)(p?),del(8)(p?),del(11)(q?),add(12)(q?),-21,+r,+3mar 

186 DLBCL 44-47,X,-Y,add(1)(p21),t(2;9)(q11;p24),t(3;6)(q27;p12),add(5)(p15),-7,-8,+9,del(11)(p14),add(17)(p13), 

del(17)(q23),+add(18)(q23),+21,+der(?)t(?;1)(?;p21) 
187 DLBCL 48,X,-Y,add(1)(p34),der(1)(q25q44),del(8)(p22),inv(10)(q22q24),dup(14)(q24q32),+18, 

+i(18)(q10),add(19)(p13),+mar 

188 DLBCL 47,XX,del(3)(q21),add(7)(p22),del(8)(p22),add(9)(p24),inv(14)(?q11q32),+18,-18,add(19)(p13)/ 
47,idem,add(17)(p13) 
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189 DLBCL 47,XX,+X,t(1;11)(p36;q13),der(6)(p11p21)add(6)(q21),i(18)(q10) 

190 DLBCL 47,XX,add(6)(q15),der(8)t(8;8)(p21;q13),der(15)t(15;21)(q26;q11),add(19)(q13),+mar 

191 DLBCL  49,XY,add(1)(p13),del(1)(p13),+der(1)t(1;1)(q23;p13),+der(2;11)(q10;q10),inv(4)(p15q21),+add(6)(q15), 
del(8)(p21),+9,t(13;18)(q22;q23),-15,der(22)t(7;22)(q11;p11)/95,idem,-2  

192 DLBCL 89,XXXX,-1,-2,-2,add(2)(p13),+3,-4,add(4)(p12),-5,-6,del(7)(q32),der(7)t(3;7)(p13;q32),der(8)t(8;8) 

(p21;q13)x2,+11,der(12)t(12;21)(q24;q11)x2,add(13)(q32),+14,-15,-16,-17,+18,+18,-19,-22,+3mar 
193 DLBCL 45,XY,der(2)t(2;8)(p23;q13),add(8)(p21),add(9)(p22),t(9;14)(p13;q32),del(10)(p11),- 

17/45,idem,i(21)(q10)/89,idemx2 

194 DLBCL 45,XX,del(1)(p13p22),der(3;17)t(3;17)(q27;p11)del(3)(p21p23),-4,add(8)(p21),der(9)t(4;9)(p12;p24), 
der(11)t(4;11)(p12;q23),der(11)del(11)(q23)inv(11)(q11q23),add(14)(p11),t(15;22)(p11;q11),-17,+20 

195 DLBCL

 49,XY,del(1)(p34),t(3;14)(q27;q32),t(3;6;7)(p24;p25;p15),der(6)t(1;6)(p34;q21),add(8)(p21),dup(8)(p23p21),+10,+11,+21 
196 DLBCL 49,XX,+X,dup(1)(q31q42),+der(3)t(3;3)(p13;q12),add(7)(q22),del(8)(p21),add(17)(q25),add(19)(p13) 

197 DLBCL 46,X,-Y,t(3;3)(q11;q27),+6,add(6)(q21)x2,r(18)/46,idem,add(7)(p22),add(12)(p13) 

198 DLBCL 86,XX,-Y,-Y,-1,dup(1)(q21q25)x2,t(3;11)(q13;q13),-4,t(4;9)(q31;q22)x2,-8,-14,- 
15,t(17;18)(p11;p11)x2,+18,der(19) 

t(19;22)(p13;q11)t(6;19)(p21;q13),der(22)t(19;22)(p13;q11)/84,idem,-6,-10 

199 DLBCL 46,X,-X,+18,der(19)r(19;?)(p13q13;?)/46,idem,t(3;4)(p25;q31)/46,idem,der(4)t(3;4)/47,idem,der(4)t(3;4),+18 
200 DLBCL 52,XX,+3,+12,+16,+18,+18,-19,+r/51,idem,-21 
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201 DLBCL 46,XY,der(1)t(1;2)(p13;?),del(2)(q12q31),der(2)t(1;2)(p11;p11)ins(2;1)(q3?2;q?),der(8)t(8;14) 

(q24;q32),del(9)(q12),der(13)t(3;13)(q24q25;p11)trp(13)(q31q34),der(14)t(2;1;14;8)(?;?;q32;q24),der(16)dup(1

6)(q11q22)t(9;16)(q22;q22), 
del(17),der(21)t(17;21)(p11;p11) 

202 DLBCL X,der(X)t(X;4)(p21;q21),der(X)t(X;10;4)(p21;?;q12),der(3)t(3;18)(q11;q21),dup(3)(q13q24),del(4)(q12),der(4) 

t(X;4)(?;p16),t(8;22)(q24;q11),der(9)t(3;9)(p13;p21),t(9;20)(q10;p10),der(10)t(3;10)(?;q11),dup(11)(q23q13),d
er(11)dup(11)(q23q13)t(1;11)(?;q25),der(11)dup(11)(q23q13)t(3;11)(?;q25),der(11)dup(11)(q23q13)t(7;11)(?;q

25),dup(11)(q23q13),trp(13)(q22q32),der(14)t(X;14)(q13;q24),der(15)t(1;15)(q11;p11),der(16)t(1;16)(p2?;q1?)

,der(17)t(X;17)(q21;p11),der(17)tX;17;6)(p11;p11q25;?),der(18)t(4;18)(?;q23),der(18)t(6;18)(?;q23),dup(18)(q
11q23),der(22)t(16;22)(?;q1?3) 

203 DLBCL 46,XY,-3,+7,t(8;14)(q24;q32),der(17)t(3;17)(q23;p11),hsr(18)(q?) 

204 DLBCL 46,XY,dup(7)(q35q11),t(8;14)(q24;q32)/46,XY,der(7)ins(7;7)(p21;q36q21),t(8;14)(q24;q32) 
205 DLBCL 45,X,-Y,i(1)(q10),+del(5)(q2?),-6,t(8;14)(q24;q32),der(15)t(7;15)(?;?p11),der(21)t(7;21)(?;q22), 

der(22)t(6;22)(?;q13)/45,idem,der(17)t(17;20)(p11;?q11)/45,idem,del(17)(q2?1),der(17)t(17;20) 

206 DLBCL 45,X,-Y,i(1)(q10),+del(5)(q2?),-6,t(8;14)(q24;q32),der(15)t(7;15)(?;?p11),der(21)t(7;21)(?;q22),der(22)t(6;22) 
(?;q13)/45,idem,der(17)t(17;20)(p11;?q11)/45,idem,del(17)(q2?1),der(17)t(17;20) 

207 DLBCL 46,XY,t(8;14)(q24;q32),del(13)(q22q31)/47,idem,+20 
208 DLBCL 40-53,XY,+X,-Y,del(Y)(q11),der(1)?dup(1)(q?)t(1;18)(q?;q?12),-3,-4,der(4)t(4;18)(q1?3;?),der(5)t(3;5) 

(?p21;q3?1),?del(6)(q?),der(6)t(4;6)(?;p21),der(7)?t(7;10;22),t(8;14)(q24;q32),der(8)t(8;18) 

(p12-21;q12-21),-10,del(11)(q14),der(11)t(11;13)(q?14;q?21),der(11)t(11;17)(q13;?p11),der(12)t(1;12)(?;p13), 
ider(13)del(13)(q?14),der(13)dup(13)(?q21q34)t(13;18)(q34;?),der(13)t(7;13)(?q32;q34),der(14)t(7;14)(?q11;p

?11),-15,-16,der(17)t(3;5)(q21?3;q3?)t(3;15)(q2?9;?)t(15;17)(?;p1?2),+18,+18,der(18)t(4;18)(?;p11), 

+der(18),i(18)(q10),+19,del(19)(q1?3),der(19)t(7;19)(q22;q13),der(19)t(10;19)(q21;p13 or 
q13),ins(20;18)(p11;?),-21,-22,der(22)t(Y;22)(q11;p1?) 

209 DLBCL 46,XY,dup(7)(q?),t(8;14)(q24;q32),der(14)t(7;14)(?;q3?2) 

210 DLBCL 49,XX,+X,der(1)t(1;14)(q?;q32),+7,der(8)t(8;14)(q24;q32)t(1;14)(q?21;q32)t(1;8) 
(q?42;q24),+13,der(14)t(8;14)t(1;8)(q?32;q1?)del(1)(q?32q?42)t(1;8)(q?42;q24)/48-49,idem, 

-20,der(22)t(14;22) 

211 DLBCL 47,X,-X,trp(1)(q11q21),t(2;10)(q12-14;q21),t(5;9)(q11;q31),+7,+der(7)del(7)(q31q35)t(1;7) 
(q11;p?21),+der(7)t(7;8;13) 

(p13;?q24;?),t(8;14)(q24;q32),del(8)(q1?),t(9;10)(q22;p11),del(13)(q14q22),del(17)(p12) 

212 DLBCL 85,XXXX,der(1)t(1;4)(p11;q2?1),+der(1)t(1;4),-3,-4,der(5)t(X;5)(?;q2?),del(7)(q22q32)x2,+der(7)t(7;10),- 
8,der(8)t(6;8),t(8;14)(q24;q32)x2,-9,-10,-14,-15,-15,-16,der(17)t(16;17)(?p10;?q10)x2,-18,-18,+r(?15)x2 

213 DLBCL 51-54,XX,+der(X)t(X;2)(p22;?),+Y,t(1;16)(q21;q12),-3,-4,+der(6)t(1;6)(q21;q13),+7,t(8;14)(q24;q32),- 

14,t(14;18) 
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(q32;q21),del(15)(q1?),+del(15)(q1?),+der(16)t(1;16),+17,+18,del(18)(q?),+?del(18)(q?),+20,+21,-22 

214 DLBCL 52,XY,+X,+3,+7,der(8)t(8;18)(q2?2;?q21),t(8;14)(q24;q32),t(9;11)(p13;p13),+der(14)t(8;14),+18,+18 
215 DLBCL 48,XX,der(1)t(1;15)(p13;?),+7,t(8;14)(q24;q32),r(11),+13,-15,+18 

216 DLBCL 48,XY,+der(1)t(1;2)(p21;p1?),+7,t(8;14)(q24;q32) 

217 DLBCL 48,XX,+t(3;18)(p1?3;q11),+der(7)t(6;7)(p21;q36),t(8;14)(q24;q32),del(15)(q15q24) 
218 DLBCL 45,XY,der(5)t(5;15)(q11;?),del(13)(q31q33),der(13;20)(q10;q10),del(17)(p11p12),der(20;22)(p10;q10)/ 

82,XYY,- 

X,der(X)t(X;2;3)(?q21;?;p12),der(X)t(X;3)(p11-21;?),der(1)hsr(1)t(1;1)(p?22;q?21),der(2)t(2;5)(?;q11), 
-3,der(3)t(3;4),-4,der(4)t(2;4;5),?del(5)(q31q33),t(8;22)(q24;q11),der(8)t(8;22)(q24;q11),der(9)t(X;9;9;2) 

(?q13;?p13;?q22;?),-11,-12,-13,-14,-15,-16,-18,-19,+21,-22 

219 DLBCL 47,XX,+idic(1)(p12),t(8;14)(q24;q32),del(10)(p14),der(14)t(8;14) 
220 DLBCL 46,XX,der(2)t(2;6)(p?14-16;q2?1),t(2;8)(p12;q24),t(4;14)(p12;q2?),der(6)t(6;?7;?16;9)(q2?1;?;?;?p?), 

der(9)t(2;9)(p?;p2?2) 

221 DLBCL 46,XX,t(8;14)(q24;q32)/46,idem,der(1)t(1;2)(q?31;?),der(2)t(2;17),der(3)t(2;3)(?;q2?),der(3)t(3;13)(p2?5;?), 
der(3)t(3;17)(q2?6;p?11),der(4)t(4;13)(q?31;q2?),+5,+del(5)(q22),der(6)t(2;6)(?;q2?),+12,dup(13)(q?),der(17)t(

3;17)(q2?6;p?11),der(17)t(2;17)(?;q2?) 

222 DLBCL 46,XX,der(1)del(1)(p12)dup(1)(q21q31),del(6)(q11),der(6)inv(6)(p21q11)t(6;7)(q11;q32),der(7)t(6;7) 
(q11;q32),der(8)t(1;8)(p3?;q24),t(8;14)(q24;q32),der(14)t(12;14)(q21;q32)/46,idem,der(12)t(6;12) 

223 DLBCL 50,XY,+X,-Y,+5,t(8;14)(q24;q32),+12,+19,+20 

224 DLBCL 46,XY,t(8;14)(q24;q32),dup(11)(q13q23),der(13)t(1;13)(q21;q34)/46,idem,-der(13),ins(13;1)(q34;?)/45,idem,- 

der(13),ins(13;1),-22 

225 DLBCL 44-49,XY,-2,del(7)(q11q21),+ider(7)del(7)(q11q21),t(8;22)(q24;q11),+19,-21/23-26,XY,+5,der(8)t(8;22),+10,- 

15,+18,+21 
226 DLBCL 46,XY,dup(1)(q12q32),t(8;14)(q24;q32),del(17)(p11) 
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227 BCLU 46,XX,t(4;7)(q13;q21),t(8;14)(q24.1;q32)[6]/46,XX[14] 

228 BCLU 47,XY,del(3)(p12p21),+del(3)(q12q29),t(8;22)(q24;q11.2),del(11)(q22q23),add(14)(q32),-19,+mar[20] 

229 BCLU 47,XX,der(1)t(1;8)(p36.3;q22),der(8)t(8;14)(q24.1;q23)t(8;t(14;18))(q24.1;q22),der(14)t(8;14), 

der(18)t(14;18)(q32;q21),+mar[20] 

230 BCLU 46,XX,der(1)dic(1;1)(q10;q31)t(1;5)(q21;q33),der(6)t(6;8)(q21;q22.1),del(8)(q13q24.1), 

der(11)dup(11)(q13q23)t(8;11)(q22.1;q25),der(13)t(6;13)(p12;q34),add(15)(p13),der(18)t(1;18)(p36.1;q23)[16]

/ 46,XX[4] 

231 BCLU 47,XY,der(1)t(1;3)(p36.3;p21),t(1;9)(p22;p13),+der(8)t(8;8)(p22;q22),del(9)(p22p24),add(13)(q22), 

der(14)add(14)(p11.2)t(14;18)(q32;q21),inv(15)(p11.2q15),-16,der(18)t(14;18)(q32;q21),+mar[20] 

Reference 
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232 BCLU 48,XX,+der(X)t(X;1)(q26;q21),t(2;8)(p12;q24.1),+der(8)t(2;8)(p12;q24.1)a,der(11)t(11;14)(p15;q32)b, add(14)(q32) 

233 BCLU 48,XX,dup(11)(q13q23),+12,ins(14;8)(q32;q24.1q24.1),+20.ish ins(14;8)(MYC+,IGH+;MYC+,IGH-)[17]/48,idem,  

add(9)(q34)[cp3] 

234 BCLU 47,XY,der(3)t(3;14)(q27;q32),der(8)t(8;14)(q24.1;q32)t(3;14)(q27;q32)b,del(10)(q23q23),der(14)t(8;14)(q24.1;q32), 
+der(17)t(1;17)(q12;p13)[3]/48,idem,+X [9 cells]/50,idem,+X,+7,+add(14)(q32) [2]/50,idem,+X,+add(14)(q32),+20 

 

 

____________________________________________________________________________________________________________ 

 

Key: DLBCL, diffuse large B-cell lymphoma; BL, Burkitt lymphoma; BCLU, 

Unclassifiable with features intermediate between DLBCL and BL. 

 

 

The HC heat map (see Figure 4-3) generated twelve large clusters when the dendrogram 

was cut at a specified level.  Of these, eleven clusters represented DLBCL, while only 

one was limited to BL (cluster 12).  As expected and in terms of genetic complexity, BL 

in cluster 12 was characterized by a low number of RCAs (1-2 for the most part), 
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whereas the remaining of the clusters contained a more complex chromosome 

complement (more than 3 RCAs).  The Total number of misclassified cases by this model 

included 15 cases (DLBCL, 5; BL, 10).  In terms of the HC dendrogram with p-values 

(Figure 4-4) and the K-means partition using the PAM algorithm (data not shown), 

twelve cases were misclassified by the HC with p-values (DLBCL, 1; BL, 11) and a total 

of 10 cases (DLBCL, 3; BL, 7) by the PAM algorithm.  In terms of the number of 

clusters generated for each of the latter models, a total of 21 clusters (existence of cluster 

< .05) were generated by the HC with p-values, while 75 clusters were pre-designated to 

the PAM algorithm.  In terms of the logistic regression model and as previously 

indicated, it obtained an ability to discriminate between the two histological tumor types 

of 85%.  In addition and based on cytogenetic findings from this current study, six of 

eight cases of unclassifiable with features intermediate between DLBCL and BL – BCLU 

(Table 4-5, cases 227-234) were re-classified as DLBCL and two were assigned as BL 

(case 227 and 230).  Case number 227 (46,XX,t(4;7)(q13;q21),t(8;14)(q24.1;q32)[6]) 

lacks any identifiable RCA associated with DLBCL and contains less than two 

chromosome alterations (i.e., a simple karyotype) besides the MYC translocation [i.e., 

t(8;14)].  This latter case may be best described as a MYC + BL lacking typical BL 

morphological and phenotypic features (given its classification of BCLU in the 

literature).  In terms of the second re-classified case of BL 

(46,XX,der(1)dic(1;1)(q10;q31)t(1;5)(q21;q33),der(6)t(6;8)(q21;q22.1),del(8)(q13q24.1), 

der(11)dup(11)(q13q23)t(8;11)(q22.1;q25),der(13)t(6;13)(p12;q34),add(15)(p13),der(18)

t(1;18)(p36.1;q23)[16]), it may seemed more problematic to classify.  First, it lacks a 

detectable MYC translocation and contains a more complex karyotype.  However and 
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based on a previous cytogenetic study
119

 where duplication of chromosome 11 was a 

frequent finding in MYC- BL, we believe this case is best classified as a MYC- BL with 

typical BL morphology and phenotypic features.  Moreover, loss of the long arm (q) of 

chromosome 13, present in this sample’s karyotype [der(13)t(6;13)(p12;q34)], has been 

also identified as recurrent aberration in BL
57

.   

   

 

 

Figure 4-3. Hierarchical cluster heat map.  Heat map modeled on 21 RCAs and applied to 

117 DLBCL and 60 BL cases.  The red and blue staining areas represent presence or 

absence of individual RCAs for each of the diagnostic tumor samples.
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Figure 4-4. Hierarchical cluster with p-values applied to 177 cases and based on  

21 RCAs.  Existence of a cluster is (p < .05) drawn in a red rectangle.  Cases placed  

at a higher height distance reflect an increase in genomic complexity based on  

the number of RCAs present. 

 

With regards to the supervised model (ANNs), a total of seven cases were misclassified 

by this model (DLBCL, 6; BL, 1) (see Figure 4-5).  The learning and training groups as 

indicated previously were 100 and 77 (DLBCL, 50; BL, 27) each.  A score index less 

than 0.2 was considered a diagnosis of BL, this based on the threshold level or optimal 

cut point between DLBCL and BL obtained from the ROC curve (see Figure 4-6).  ANN 

models containing more than one hidden layer were also constructed; however, results 

were comparable to the one hidden layer ANN model (data not shown). 
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Figure 4-5. ANN classification of the test dataset.  Classification of 77 cases by the ANN 

model based on 21 RCAs (1-26, BL; 27-77, DLBCL) by an artificial neural network 

containing one hidden layer.  A score index closer to 1 is more certain of DLBCL.  The 

threshold limit between DLBCL and BL was set at 0.2, this to allow for the small number 

of BL cases with a higher genomic complexity (molecular BL subtype).  

 

4.7 Discrimination Analysis: Area under the Curve and Specificity 

 To assess the discrimination ability or performance measure of each of the 

models, in terms of specificity, sensitivity and the area under the curve - AUC, an ROC 

curve was constructed.  Findings from this analysis showed the k-means partition using 

the PAM algorithm with the highest AUC (0.93).  However, it was the ANN model with 

the highest specificity at 92.3 (Figure 4-6).  When comparing cluster models, including 

the ANN model, with a logistic regression, all cluster models outperformed the logistic 

regression (0.9 or higher vs. 0.85).          
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Figure 4-6.  Receiver operating characteristic (ROC) curve of prediction models.  

Performance of each of the predictor models was assessed with the ROC curve.  Each 

model was analyzed with 177 sample cases and 21 RCAs.  

 

4.8  A Core Set of RCAs (Primary RCAs) 

 To further evaluate RCAs, a closer inspection of all RCAs applied to the four 

predictive models was further explored with a HC p-value (Figure 16), PAM algorithm 

and logistic regression.  The goal in this instance was to develop a primary set of RCAs 
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that are more certain of DLBCL.  Since BCL-2, our internal control, resides closer to 

DLBCL than BL, those RCAs clustered around BCL-2 suggest a DLBCL phenotype.  In 

the case of a HC p-value dendrogram of RCAs, +2 and +16 clustered around BCL-2, 

while -8, 14qL and -2 were found in nearby cluster in both the HC p-value dendrogram 

and PAM algorithm. Therefore, these RCAs seem to suggest closeness to DLBCL.  

Indeed, all but one (14qL) predicted DLBCL with 100% accuracy in the test dataset of 

177 cases.  Moreover, a closer inspection of the larger clusters (cluster 1 and cluster 2 vs. 

cluster 3, p < .0001) of the dendrogram showed these set of RCAs belonging to the GC-

DLBCL molecular subtype (these RCAs clearly clustered around characteristic GC-

DLBCL markers, BCL-2 and +12). Likewise, RCAs that clustered around +18, a well-

established marker for the ABC-DLBCL molecular subtype, were indicative of a DLBCL 

phenotype.  In this regard, +3, 15qL, 1p36L and 17pL (all found in cluster 3 and 

independent predictors of DLBCL by the logistic regression model) suggest an ABC-

DLBCL molecular subtype.  Thus for a primary set of RCAs that are highly predictive of 

DLBCL, we propose the following: +2, +16, -8, 14qL, -2, +3, +18, 15qL, 1p36L and 

17pL.  Of note, since 1qL along with 16qL and 9qL are considered close to DLBCL, but 

seem to belong to a different cluster from BCL-2 (Figure 4-7), these RCAs are here 

considered as secondary.              
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Figure 4-7.  Hierarchical cluster dendrogram with p-values of RCAs.  Dendrogram 

illustrates two larger clusters of RCAs (cluster 1 + cluster 2 vs. cluster 3).  First two 

clusters are characteristic of GC-DLBCL and cluster 3 of ABC-DLBCL. 

 

4.9 Additional RCAs Identified DLBCL and BL 

 Moreover, when combining the two datasets together (n = 515), that is the testing 

dataset used to evaluate predictor models, combined with the initial dataset to identify 

RCAs, additional chromosome aberrations (n = 8) were identified. In this analysis, gain 

of the short arm of chromosome 6 (6p Gain), 6qL, +5, +11 and concurrent losses of 

chromosome 10 and 15 (-10/-15), as well as -10/-14 were found associated with DLBCL.  

On the other hand, 13q loss and gain of the long arm of chromosome 1 were more 

prevalent in BL (Table 4-6).  Of note, an additional internal control (3q27 rearrangements 

exclusively present in DLBCL) was also added to the list of reliable RCAs.  Therefore, a 

total of 31 RCAs were identified as unique markers that may be use to distinguish 

between the two entities.  To further explore the relationship between RCAs, we 

constructed a correlational matrix of all RCAs (Figure 4-8).  

   

Table 4-6. Additional RCAs Associated with DLBCL (MYC+ and MYC-) and BL 

________________________________________________________________________ 

RCA         Morphology     p-value 

________________________________________________________________________ 

6p gain    DLBCL    .03 

6qL    DLBCL    .0001  

-10    DLBCL    .02 

-10/-14    DLBCL    .04 

-10/-15    DLBCL    .005 

1qG    BL     .0001     
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+11    DLBCL    .047    

+5    DLBCL    .02    

13qL    BL     .0006    

________________________________________________________________________

Key: L, loss; G, gain 

 

 

Figure 4-8.  Correlational matrix of the total number of RCAs (n = 31) identified. 

 

Based on the correlational matrix, we categorize RCAs based on subtypes of DLBCL 

(ABC-DLBCL, GC-DLBCL, 3q27 rearrangements and DLBCL – nonABC, non-GCB) 

and BL (Table 4-7).  The following internal controls were used for each of the 
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morphological entities: +18 and 19p loss (19pL has a strong correlation with -8 and 

1p36L,   markers of ABC-DLBCL in this study) for the ABC-DLBCL, BCL2 and +12 for 

the GC-DLBCL molecular subtype and 1qG for BL. 

 

Table 4-7. Classification of RCAs based on Subtypes of DLBCL and BL 

________________________________________________________________________ 

RCA    Associated RCAs   p-value 

________________________________________________________________________ 

 

ABC-DLBCL 

+18    +3     .0001 

    +7     .0005 

    19pL      .009 

    9qL     .04 

19pL    6qL     .0006 

    -8     .0001 

    16qL     .0001 

    1p36L     .0002 

    9qL     .01 

    15qL     .0001 

    14qL     .0001 

    -4     .0001 

    17pL     .0001 

    -10/-15     .0001 

 

GCB-DLBCL  

BCL-2    +12, +11    .0001 

    +7, +2     .0008 

    +5     .004 

    +X     .007 
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    -4     .0009 

    -2     .04 

DLBCL 

3q27    +7     .005 

    16qL     .0001 

    19pL     .02 

    14qL     .0001 

 

DLBCL 

Non-ABC/GCB  

 

+16    16qL     .04 

 

 

BL 

MYC    IqG     .0001 

    13qL     .04 

________________________________________________________________________ 

 

Additional RCAs (n = 8, plus 3q27 rearrangements) in combination with the previously 

identified RCAs were subsequently used in two supervised models (SVM and ANN).  A 

discrimination analysis of these two models was also performed (Figure 4-9).  Of note, 

sample partition with 10 fold cross validation and bootstrap of 1000 iterations was used 

for internal control on both supervised models.   
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Figure 4-9.  ROC curves of supervised models (Panel A, ANN with one hidden layer; B, 

SVM). Results are the averages of a 10 fold cross validation and 1000 boot-straps.  The 

ROC curves illustrated here are the closest representation of the averages obtained from a 

10-cross validation and 1000 boot-straps.  

Our results indicate higher performance of the ANN model compared to a SVM 

diagnostic classifier (specificity of the ANN model ranged from 95.1-100%, while that of 

the SVM model fluctuated from 92.3-94%).  To answer research question 5 (is there a 

difference between DLBCL and BL with respect to RCAs within a multivariable 
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context), a logistic regression model was also performed to explore the impact of each of 

the RCAs on DLBCL (see Figure 4-10).  Under this model, 6qL, 1qG, +5, +X, 1p36L, 

+3, 17pL, +18, 14qL and -4 remained independent predictors of DLBCL.  Of note, BCL2 

and 3q27 rearrangements, as expected for our internal controls, as well as -10/-15 

predicted DLBCL every single time (specificity and sensitivity of 100%).  Also, we 

should note that 1q gain (odds ratio of 0.21) is model here for DLBCL and not BL. To 

obtain the risk ratio of 1q gain in BL, simply inverting the risk ratio of 0.21 of DLBCL 

shows the risk ratio of the other group, in this case that of BL (1/0.21 = 4.76)
120

.  

 

Figure 4-10. Odds ratio estimates of RCAs implicated in DLBCL.  Schematic illustrates 

independent predictors of DLBCL and their respective odds ratio.  
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To determine discrimination and calibration, a c statistics and the Hosmer-Lemeshow 

goodness of fit - HL test were defined (Figure 4-11).  A c statistic of 0.83 described the 

logistic regression as a good model (discrimination) and the Hosmer-Lemeshow 

Goodness-of-fit test defined how well the model performed (calibration).  In this 

instance, a p-value > .05 signified the model fits the data well (p > 0.9161).   

 

Figure 4-11.  Discrimination and calibration of logistic regression model.  Panel A 

illustrates the c statistics result, while Panel B shows results from the Hosmer-Lemeshow 

Goodness-of-fit test. 

4.10 RCAs Guidelines for Distinguishing DLBCL from BL 

 Given these observations, we propose the following set of guidelines to assess 

DLBCL from BL: 1) Evaluate chromosome complement based on the number of 

cytogenetic aberrations, 2) presence of primary cytogenetic aberrations (i.e., those RCAs 

that are associated with DLBCL with a p value < .01 by the correlational matrix or by 

previous analyses such as a logistic regression model).  These primary RCAs include 



99 
 

3q27 rearrangements, BCL2, 6qL, -10/-15, +5, +7, 16qL, +X, 1p36L, +3, 9qL, +12, 

15qL, 17pL, +18, 19pL, 14qL, +2, -2, -4, -8, and 22qL and 3) presence of secondary 

RCAs (i.e., those associated with DLBCL with a p-value < .05 by the correlational 

matrix).  For the latter, these included: -10, -10/-14, 6pG and +11.  Presence of one 

primary RCA suggests DLBCL, while presence of one or more secondary RCAs in the 

context of 7 or more cytogenetic aberrations suggests DLBCL.
5,6

  Figure 4-12 illustrates a 

proposed cytogenetics-based algorithm constructed on RCA findings.    

 

Figure 4-12.  Proposed RCA algorithm for classification of DLBCL and BL. 
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4.11  Correlation of RCAs and Copy Number Aberrations in DLBCL and BL 

 Research question 6: Is there a difference in chromosome imbalances (measured 

by array CGH) in DLBCL subtypes compared to BL?  To address the general usefulness 

(external validity) of our findings and to answer research question 6, the present study 

considered copy number aberrations by array CGH (a literature review) between DLBCL 

subtypes and BL.  Of note and as indicated previously, only those copy number 

aberrations with a frequency of more than 20% were considered of relevance.  Findings 

from this review revealed a number of RCAs correlated with copy number aberrations, 

mainly +3, +18, +16, +2, -8, -4, 15qL, 1p36L, +7, +12, 9pL, 14qL, 6pG, +11 and13qL, 

while +X and 17p were prevalent in both tumor types.  RCAs not correlated with the 

literature review of array CGH were -2, 16qL, 19pL, 22qL, 1qL, +5 and -10/-15   (see 

Table 4-8).  

Table 4-8. Genomic Imbalances in DLBCL and BL and Correlated RCAs 

________________________________________________________________________ 

Copy Number Imbalance       DLBCL            BL  RCAs 

________________________________________________________________________ 

1p36L     +   -  1p36L 

2pG     +   -  +2 

3pG     +   -  +3 

4qL/4qG    +   -  -4 

6pG / 6pL / 6qL   +   -  6pG 

8pL / 8qG    +   -  -8 

9pL/ 9pG / 9qL   +   -  9qL 
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10pG      +   -  NA 

11pG     +   -  +11 

14qL/ 14q32 G   +   -  14qL 

15qL     +   -  15qL 

16q23-q24 L    +   -  16qL 

17pG / 17qG    +   -  NA 

19pG     +   -  NA 

3q13.1L / 3q27G   -   +  NA 

6q15G     -   +  NA 

13q14L / 13q12G   -   +  13qL 

19qL     -   +  NA 

XpL     -   +  NA 

________________________________________________________________________ 

Key: p, short arm of the chromosome; q, long arm of the chromosome; L, loss; G, gain; 

NA, not applicable.  

 

4.12 CNVs Differences between DLBCL and BL: a CGH Dataset Analysis 

 

With respect to the CNV analysis, Table 4-9 highlights the total number of cases 

along with sub-type classifications of the two distinct groups, while Table 4-10 shows 

significant CNVs associated with DLBCL and BL.   
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Table 4-9.  Total Number of Cases and Subgroups of DLBCL and BL 

________________________________________________________________________ 

Morphological Group        Total 

________________________________________________________________________ 

DLBCL NOS         24 

ABC DLBCL         63 

GCB DLBCL         64 

Transformed DLBCL        9 

Relapse DLBCL        11 

 

DLBCL Total         171 

 

Classic BL         17 

Atypical BL         12 

BL NOS         41 

Discrepant BL         8 

 

BL Total         78 

________________________________________________________________________ 

Key: NOS, not otherwise specified; Discrepant, molecular signature of BL 

 

 

Table 4-10. CNVs Differences between DLBCL and BL 

________________________________________________________________________ 

       CNV    Gain/Loss         DLBCL/BL       Specificity                DX           

p-Value 

                                n/(%) 

________________________________________________________________________ 

 

X cen-qter   G  17 (9.9)/0   100  DLBCL

 .004 

X cen-pter  G  19 (11.1)/0  100  DLBCL

 .001 

3 cen-qter  G  22 (12.9)/0  100  DLBCL

 .0008 

4p15-pter  G  0/5 (6.4)  100  BL 

 .003 

5 cen-pter  G  18 (10.5)/2 (2.6) 98.7  DLBCL

 .032 

6 cen-pter   G  18 (10.5)/0  100  DLBCL

 .002 
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6 cen-qter   L  15 (8.8)/1(1.3)  99.4  DLBCL

 .04 

8q24-qter  G  3 (1.8)/7 (9.0)  96.0  BL 

 .02 

13q31-q32  G  0/4 (5.1)  100  BL 

 .01 

17p13-pter  L  16 (9.4)/0  100  DLBCL

 .004 

17 cen-pter  G  0/10 (12.8)  100  BL 

 <.0001 

18 cen-qter   G  24 (14)/0  100  DLBCL

 .0003 

________________________________________________________________________ 

Key: cen, centromere; pter, p terminal region of chromosome; qter, q terminal region of 

chromosome; DX, diagnostic. 

 

 

A multivariable analysis (logistic regression) of all significant CNVs in BL revealed 

gains of 8q24 remained an independent predictor of BL (odds ratio of 7.3) and gains of 

4p15-pter, 13q31-32, and 17 cen-pter predicted BL. In contrast, gains of Xcen-qter, 

Xcen-pter,3 cen-qter, 6cen-pter, 18 cen-qter and 17p13-pter loss predicted DLBCL every 

single time, whereas 5 cen-pter gain (odds ratio of 2.9) remained an independent 

predictor (data not shown).  Genomic gains of 6p, X, 3, 5, 18 and loss of 17p in DLBCL 

was further supported by our previous RCA analysis.  All CNVs associated with DLBCL 

correlated perfectly with previous RCA findings.  The overall correlation between CVN 

and RCA data was 71.4%.  With respect to any significant differences found in DLBCL 

subtypes vs. BL, a number of CNVs were identified associated with both ABC and GCB 

subtypes when compared to BL (see Table 4-11).   
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Table 4-11. Significant CNVs Differences between Distinct DLBCL Subtypes and BL 

________________________________________________________________________ 

  CNV   G/L        n / (%)                  Specificity                Dx        p-

Value 

________________________________________________________________________ 

 

GCB vs. BL 

 

17 cen-pter  G 0/10(12.8)   100  BL 

 .005 

17 cen-qter  G 1 (1.6)/10(12.8)  98.6  BL 

 .02 

17p13-pter  L 5 (7.8)/0   100  DLBCL

 .02 

18 cen-qter  G 5 (7.8)/0   100  DLBCL

 .02 

 

ABC vs. BL 

 

1p34-pter  L 4 (6.25)/0   100  DLBCL

 .02 

1q25-qter  L 4/(6.25)/0   100  DLBCL

 .02 

3cen-pter  G 13(20.6)/3(3.8)  94  DLBCL

 .004 

3cen-qter  G 18(28.5)/0   100  DLBCL

 <.0001  

4p15-pter  G 0/5 (6.4)   100  BL 

 .038 

6cen-pter  G 6(9.5)/0   100  DLBCL

 .005 

6cen-qter  L 8(12.7)/1(1.3)   98.2  DLBCL

 .006 

8q24   G 0/5(6.4)   100  BL 

 .038 

13q14-q22  L 0/5(6.4)   100  BL 

 .038 

17cen-pter  G 0/10(12.8%)   100  BL 

 .003 
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17p13-pter  L 7(11.1)/0   100  DLBCL

 .002 

18cen-pter  G 9(14.3)/2(2.6)   96.4  DLBCL

 .001 

18cen-qter  G 14(22.2)/0   100  DLBCL

 <.0001 

Xcen-pter  G 10(15.9)/0   100  DLBCL

 .0002 

Xcen-qter  G 8(12.7)/0   100  DLBCL

 .001 

________________________________________________________________________ 

Key: cen, centromere; pter, p terminal region of chromosome; qter, q terminal region of 

chromosome; DX, diagnostic of tumor type. 
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Chapter V 

V. Discussion 

 

5.1 Overview 

Only a limited number of studies have examined and systematic compared the 

chromosome architecture on both DLBCL and BL.  In this present study, we explored 

RCAs in an effort to better define between DLBCL and BL.  We associated data and 

outlined a set of diagnostic models (considered excellent models based on an AUC of 0.9 

or greater) that better classified DLBCL from BL.  Our findings, as expected, indicated a 

higher frequency in the total number of structural and numerical cytogenetic aberrations 

in DLBCL compared to BL.  Also, unique recurring cytogenetic aberrations were 

identified between the two histological tumor types that suggest distinct molecular 

pathogenesis. Independent comparisons of both MYC+ and MYC- DLBCL, vs. BL also 

showed unique RCAs that may be used to properly distinguish between these groups.  

Here, our analysis showed only marginal differences between the MYC+ and MYC- 

DLBCL groups, allowing for these latter two groups as a whole to serve as a comparative 

group vs. BL .  In a similar manner, we also defined a core set of RCAs that are closely 

associated with molecular subtypes of DLBCL.  Knowledge of the presence or absence of 

MYC in DLBCL, as well as presence of RCAs that are closer in distance to specific 

molecular subtypes of DLBCL may be useful in further risk stratification of these 

patients.  Moreover, we were able to distinguish between the two histological tumors 

types (DLBCL vs. BL) with high levels of confidence by using both unsupervised and 

supervised predictor models applied to RCAs; however, our findings showed artificial 
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neural networks superior diagnostic classifiers compared to all other models in terms of 

specificity (95-100% obtained from the ROC curve).  Lastly, our results also revealed 

specific copy number variations and gene expression signatures that correlated with RCA 

data.     

The diagnostic criteria of BL are well established; nonetheless, there remain cases 

that show atypical morphology, immuno-phonotype and genetic features and thus 

distinguishing between the two neoplastic entities, that is DLBCL and BL, remains 

problematic.  Likewise, DLBCL in some instances may present with morphological 

features reminiscent of BL, such as a starry sky appearance that is so characteristic of BL.  

In addition and as previously mentioned in one study, six percent of histological DLBCL 

represent the molecular BL subtype
5
.  In adults, the accurate classification of these two 

entities has crucial clinical importance since treatment and prognosis relies on their 

correct classification.  Despite numerous studies in the area to better classify these two 

entities, additional clinical markers are clearly needed.   

 

5.2 A Complex Chromosome Complement Defines DLBCL from BL 

Our studies indicate DLBCL contains a higher level of genomic complexity than 

BL (greater than 2 RCAs).  Indeed, even after a total of 21 reliable RCAs were applied to 

all sample karyotypes (second dataset used to evaluate predictor models), in general, BL 

retained no more than two RCAs.  This was mostly evident in both the heat-map (cluster 

12 belonging to BL only showed 1-2 RCAs) and the ANN model (most BL cases were 

homogeneous with a simple karyotype and found at a threshold level just below 0.2).  

Therefore, we conclude that a simple karyotype with no more than 2 RCAs is, for the 
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most part, characteristic of a diagnosis of Burkitt lymphoma.  Indeed and in agreement 

with the published literature, BL is characterized by a simple karyotype. In 2009, Boerma 

and colleagues
57

 reported BL with a low genomic complexity score when compared to 

other B-cell non-Hodgkin lymphomas with a MYC rearrangement, including DLBCL.  In 

a similar manner, our group
35

 in 2010 reported cases containing less than two additional 

chromosome aberrations associated with a diagnosis of BL and with an overall better 

outcome.  Likewise in 2010 and using a microarray genomic hybridization method, 

Capello and co-workers
121

  reported HIV positive BL with a lower number of genomic 

lesions when compared to HIV positive DLBCL (p < 0.032).  Subsequent studies by 

Havelange et al.
115

 in 2013 using both conventional karyotyping and fluorescence in situ 

hybridization (FISH), showed similar results.  In this latter study, the chromosome 

complement of BL was less complex compared to other MYC+ B-cell lymphomas.  

Therefore, a lack of complex genetic aberrations in combination with a MYC 

rearrangement, especially a translocation of an immunoglobulin partner gene with MYC 

(IG/MYC), is more suggestive of BL.  Nevertheless and as previously mentioned, 

previous molecular studies have extended the spectrum of BL to include cases with 

morphological features of DLBCL and expression of BCL-2 
5,6

 and containing more 

complex genetic aberrations
8
.  Thus, additional genomic characteristics other than a MYC 

translocation coupled with a simple karyotype are needed to clearly distinguish a ‘true’ 

BL from DLBCL.  In this regard, the following sections explore RCAs that may be used 

to better classify a ‘true’ BL from DLBCL.   
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5.3 RCAs Delineate DLBCL (MYC+ and MYC-) vs. BL 

With respect to the frequency of RCAs in both the initial and combined dataset 

analysis of the two tumor types, our data showed unique cytogenetic aberrations present 

in DLBCL compared to BL.  These findings are in line with a previous study in 2008 by 

Boerma and colleagues
57

.  Using a more systematic approach, we corroborated the latter 

study and identified 4q loss (-4), 6q loss, +18, +7, +11, +12, +X, 17pL and 15qL in MYC 

+ DLBCL.  Thus, further support for the presence of these RCAs in DLBCL.  Moreover 

and in contrast with this earlier study, our analysis extended the number of RCAs in both 

tumor types and identified 13qL and 1q gain significantly more prevalent in BL, while 

gains of chromosomes 2, 3, 5, 6p and 16, as well as losses to chromosome 1p36, 1q, 2, 8, 

14q, 16q, 19p, 20q and 22q were significantly associated with DLBCL.  Discrepancy 

between our current findings and the study of Boerma and colleagues may be explained 

by the fact that the latter study only included MYC+ DLBCL.  Indeed, 1p36L, 1qL, +2, -

2, +3, -8, 14qL and 22qL, were all implicated with the MYC- DLBCL group in the 

present study, while gain of 6p was also more prevalent in the MYC- DLBCL group (data 

not shown).  Because both MYC+ and MYC- DLBCL may pose a challenge in 

distinguishing between BL, and given the fact that up to 10% of cases with a MYC 

rearrangement can go undetected by conventional FISH techniques due to the great 

variation in MYC breakpoints (i.e., a MYC- DLBCL may in fact represent a MYC+ 

DLBCL), both MYC+ and MYC- DLBCL were included in this current study.  In terms of 

practical implications of these findings and given the fact that chromosome analysis is a 

routine work-up of all suspected lymphomas, presence of these RCAs, easily identifiable 

in a sample karyotype and readily available in clinical settings, can with a high degree of 
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confidence distinguish between DLBCL and BL, thus reducing the number of patients 

that are incorrectly treated and assessing a more accurate prognosis of these patients.   

   

5.4 Reliable RCAs in the Published Literature 

To the best of our knowledge, these set of RCAs are here first reported to highly 

predict DLBCL from BL.  Indeed, these non-random RCAs preferentially seen in 

DLBCL compared to BL seem to suggest a role in the pathogenesis of disease.  For 

example, deletions at 1p36 normally detected in DLBCL may be important in 

lymphomagenesis. The tumor suppressor gene (TSG) p73 that maps to 1p36 was 

commonly deleted in 27% of DLBCL cases by fluorescence in situ hybridization
122

.  

Further support for 1p36 loss in DLBCL compared to BL, comes from a protein 

overexpression study of ID3 (located at 1p36) that was correlated with a diagnosis of BL 

vs. DLBCL (P < .001) in a recent study
75

.  Moreover, a review of array CGH revealed 

loss of 1p36 as a common occurrence in DLBCL subtypes
37

.  In this latter instance, loss 

of 1p36 was commonly deleted in 20% or more of the cases.  Subsequent survey of the 

literature assessing for copy number variations by array CGH of BL and later compared 

to previously reported findings on DLBCL by our group in 2012
37

 showed no distinct 

deletions at 1p36 for BL (Figure 2-1).  Similarly and further supported in our analysis, 

RCAs in a multivariable context also identified 1p36L as an independent predictor of 

DLBCL (odds ratio of 4.27).  Of interest, both +3 and +18 along with 1p36 loss remained 

relatively close in distance in terms of the k-means partition analysis using the PAM 

algorithm, as well as the RCA cluster dendogram based on Euclidian distance and p-

values.  This may suggest that 1p36L is preferentially found in the ABC-DLBCL 
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molecular subtype of DLBCL (or MYC- DLBCL).  Indeed, there was a significant 

difference in 1p36L between MYC+ and MYC- DLBCL; however, it should be mentioned 

that in a larger dataset, 1p36L was only more prevalent in a MYC- DLBCL group (p = 

.07, data not shown).  In terms of the remaining RCAs listed here, all appear in agreement 

with the published literature.  A comparative genomic hybridization study (n = 52) of 

DLBCL tumors, Berglund et al.
123

 reported chromosomal losses to 6q23-q terminal 

(20%) and gains were preferentially observed in Xq25-q26 (43%), 3q24-q25 (11%), 12 

centromere-q14 (20%), 7 (11%) and 18q12-21.  In terms of chromosome loss to the long 

arm (q) of chromosome 6, it is cited in the published literature as characteristic feature of 

the ABC-DLBCL molecular subtype. Here, our findings were also in line with the 

literature and found 6q loss significantly more prevalent in DLBCL vs. BL when we 

combined the two datasets (n = 515).  We should also note that 6q loss remained 

significant even when the number of RCAs for analysis was not restricted to more than 

two RCAs for sample karyotypes (data not shown).  In terms of loss of chromosome 2, 4 

and 9q, Chen and associates
124

 reported losses to chromosomes 2p25.2-25.3 and 4p15.32-

q35.2, as well as 1p31.1-p36.33 and 15q11.2-q26.3 using CGH in 64 DLBCL cases, 

while Deffenbacher et al.
71

 reported losses to 1p36.22-p36.32 (25%), 1p35.1 (30%) and 

9q22.31 (20%) using CGH in DLBCL.  Similarly, Oudejans and colleagues
76

 described 

losses to 4q12 and 15q11.2-q21.3.  With regards to gains of chromosome 16 found more 

prevalent in DLBCL compared to BL in this current study, previous work by Takeuchi 

and associates
125

 support our findings.  In this latter study, gains of 16p13.3, 16q24.3, 

16q22.1 and losses to 4q12 were identified in DLBCL.  In these same study, top clones in 

the ABC-DLBCL subset included gains to 3p, 3q and 18q21. Moreover and when 
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considering gain of chromosome 6p, Kasugai and colleagues
126

 published gains of 

chromosome 6p21 leading to the overexpression of CCND3 in DLBCL.  Lastly and in 

terms of DLBCL, we should mention the loss of the long arm of chromosome 20.  This 

latter chromosome abnormality was found more prevalent in DLBCL when the number 

of RCAs was not restricted to more than two RCAs in the comparative analysis of the 

two groups (data not shown).  Our findings of 20q loss in DLBCL are supported by a new 

diagnostic algorithm by Soldini and co-workers
75

.  Here, the CSE1L gene mapped at 20q 

was over-expressed in BL compared to DLBCL.  Of note, loss of 20q was not part of our 

diagnostic models.  When considering BL, we should highlight duplication of the long 

arm of chromosome 1 [dup(1)(q)] and 13q loss were identified as a frequent aberrations 

in recent studies of BL with complex karyotypes 
115,127

.  Although some of the 

chromosome alterations described in this present study have been previously identified 

more prevalent in DLBCL than BL, mainly those identified by Boerma and associates 

where they directly compared between the two tumor types, or just simply other RCAs 

that are described specifically in either DLBCL or BL (e.g., 13qL and dup (1)q in BL or 

loss of chromosome 2, 4, 9q in DLBCL), we should highlight other RCAs, to the best of 

our knowledge, appear new reports in the literature.  Among these include: +5, 1q loss, -

8, 14qL, 19pL and 22qL.    

5. 5 RCAs Define Molecular Subtypes of DLBCL  

DLBCL, as previously stated, contains three distinct molecular subtypes that originate 

from distinct B-cell differentiation stages (cell of origin, COO) that correlate with gene 

expression profiling: the germinal center B-cell like (GCB) – DLBCL, Activated B-cell-

like (ABC)- DLBCL and the primary mediastinal large B-cell lymphoma (PMBCL).  The 
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COO based gene expression signature also correlates with prognosis, with the ABC-

DLBCL having an inferior prognosis.  Table 5-1 outlines some of the characteristic 

features between the GCB and ABC subtypes. 

Table 5-1. Features of DLBCL (GCB and ABC subtypes) 

________________________________________________________________________ 

   GCB     ABC 

Frequency  ~50%     ~45% 

5-year OS  ~60%     ~30-40 

Cytogenetics  t(14;18), MYC , 3q27    3q27, +3, 6qL 

Protein markers CD10, BCL6, LM02, GCET1,2  MUM-1, CCND2, FOXP1, 

BCL2 

________________________________________________________________________ 

Because Gene expression profiling of COO is expensive, requires fresh tissue, not readily 

available in clinical practice and results laborious to perform, at present 

immunohistochemical (IHC) algorithms are used as surrogate markers of COO-DLBCL 

(GCB-DLBCL and non-GCB-DLBCL).  Among these include the Hans, Choi, Visco and 

Young, and Tally algorithms.  Below find an illustration of the Hans algorithm.  It has 

approximately an 80% concordance with gene expression profiling classification of GCB 

and non-GCB DLBCL.  Since the introduction of the Hans algorithm, others have 

improved concordance classification of gene expression profiling by introducing 

additional IHC stains.  One example is the Choi algorithm (Figure 5-1) that reported a 

93% concordance with gene expression by adding FOXP1
128

. 
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Figure 5-1.  Schematic of the Hans algorithm.  The Hans algorithm is used for the 

classification of germinal center and non-germinal center DLBCL. 

In this regard and in the context of a cytogenetic evaluation of lymphomas in a clinical 

setting, our findings show that RCAs may also be used as surrogate markers of COO that 

correlates with gene expression, while at the same time provide an accurate classification 

of DLBCL and BL.  In this terms, presence of +5, +11, +X, +2, 9qL and -8 may be added 

to the list of already well-established RCAs [+12 and (14;18) translocation] used for 

detecting neoplastic cells derived from the germinal center (i.e., GCB-DLBCL).  

Likewise, +3/+18, 6qL along with 1p36L, 19pL and 16qL based on our findings are more 

in line with the ABC-DLBCL molecular subtype.  Knowledge of those RCAs that clearly 

outline COO-DLBCL, as well as knowledge of the MYC status in DLBCL can further 

help risk stratified these patients.      

5.6 RCAs Applied to Supervise Predictor Models Show High Specificity 

Taken together and with the use of a reliable set of RCAs along with the 

application of unsupervised and supervised predictor models, especially that of 

supervised models, our findings showed high levels of discrimination for the ANN model 

(95-100% specificity) and supervised SVM model (92-94% specificity) , when 

distinguishing between DLBCL and BL.  Of note, since the primary need was to 



115 
 

distinguish one neoplasm from the other (i.e., ‘rule-in’ DLBCL), the primary requirement 

was to evaluate discrimination, and more specifically the degree of specificity of 

predictor models using the ROC curve.  In this context and to the best of our knowledge, 

this is the first reported set of predictor models based on chromosome alterations that 

resolve DLBCL from BL with high specificity.  Moreover, the RCA classifier established 

here outperforms previously reported classifiers in terms of specificity and is comparable 

to a very recent molecular targeted gene expression classifier just published in January of 

2015.  This latter study obtained a specificity of 91-100 for BL
129

 .  In terms of diagnostic 

classifiers for DLBCL and BL, it should be noted that only limited studies have evaluated 

such predictor models. For example, Gormley and associates
48

 using a hierarchical 

cluster based model on 8 ABC-DLBCL and GC-DLBCL markers reported a specificity 

of BL of 87% and based on the data provided by the authors a lower specificity of 

DLBCL.  Although the predictor models presented in this current study predicted tumor 

samples with a high level of certainty; nonetheless, it should be noted that one of the 

limitations of these models may be their inability to resolve simple karyotypes found in 

DLBCL (e.g., a single MYC rearrangement with no additional aberrations or cases with 1 

or 2 RCAs that are not otherwise identified as significant in this study).  Moreover and 

because it is expected of predictor models not to classify with a hundred percent 

accuracy, mainly due underlying markers that may not prove easily detectable as 

significant, other ancillary studies are needed to resolve these cases.   In fact, one other 

limitation of this study was that only cytogenetic markers were evaluated, and clearly a 

more comprehensive set of clinical biomarkers are warranted for evaluation.  Despite 

these shortcomings, predictor models applied to a set of reliable RCAs, mainly ANN and 
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SVM supervised models provide a high level of confidence when distinguishing between 

DLBCL and BL.  

5.7 Other Surrogate Biomarkers associated with RCAs may Prove Helpful in 

Distinguishing DLBCL from BL 

Based on our findings and in terms of the utility of these set of recurrent 

cytogenetic markers to distinguish between DLBCL and BL, other biomarkers associated 

with the presence or absence of these RCAs may also be used to distinguish between the 

two neoplasms.  For example, -4 and +11 correlate to a protein expression level of CD38-

/CD44+ (CD38 resides at 4p15 and CD44 at chromosome 11p13) in non-BL
53

.  

Moreover, and as indicated previously by an earlier study
51

, expression of CD44 makes a 

reliable candidate to immuno-phenotypically discriminate between DLBCL and BL.  

Therefore, use of CD38 and CD44 in a lymphoma work-up for differential diagnosis of 

these neoplasms is highly recommended.  Likewise and in a similar manner, these set of 

RCAs described herein may also be used to better define provisional cases that are 

assigned to the temporary container of B-cell lymphoma, unclassifiable, with features 

between DLBCL and BL (BCLU).  In this case, primary antibodies directed against the 

overexpression of SOX11, SRY sex determining region Y-box 11 (present at 

chromosome 2p25 and highly expressed in both BL and BCLU)
130

 and detected by 

immunohistochemistry-IHC, may better assign these cases as a B-cell lymphoma closer 

to BL in this BL-DLBCL continuum since monosomy of chromosome is more in 

agreement with a DLBCL tumor phenotype.  Thus, detection of SOX11 by IHC 

supported by a correlation of morphological, immunophenotypic and cytogenetic findings 

may indicate the use of a more aggressive chemotherapeutic regimen amenable to BL in 

border line cases.  Other biomarkers that are not fully documented in the literature in 
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terms of distinguishing DLBCL from BL that may be useful are CD83 (located at 

chromosome 6p and most likely over-expressed in DLBCL that may be detected by IHC 

or immunophenotypic methods) and CD200 (consistent with trisomy of chromosome 3).  

In short and for future studies, these biomarkers should be evaluated in a large cohort of 

patients to assess their utility in a clinical setting.  

5.8 Extended Literature Review and Copy Number Variations  

We correlated a number of CNVs to cytogenetic data.  In this analysis, all CNVs 

significantly associated with DLBCL correlated with the RCA data, while gains of 4p15-

pter, 8q24 and 17cen-pter uniquely distinguished BL from DLBCL in this present CNV 

analysis.   However, we should point out that gain of 8q24 has been implicated in a 

number of DLBCL subtypes
37

.  In terms of 1p36 loss in DLBCL, the CNV analysis 

showed a significant difference between the ABC DLBCL subtype and BL in terms of 

1p36 loss (p < .02), and gene expression of  ID3 (inhibitor of DNA binding 3, dominant 

negative helix-loop-helix protein) located at 1p36 was significantly under-expressed in 

DLBCL compared to BL.  Further evidence of ID3 in BL comes from  a recent study of 

protein overexpression where it was correlated with a diagnosis of BL (P < .001)
75

.  

Moreover, an extended literature review of array CGH revealed loss of 1p36 as a 

common occurrence in DLBCL subtypes
37

.  In this latter instance, loss of 1p36 was 

commonly deleted in 20% or more of the cases.  Subsequent survey of the literature 

assessing CNV by array CGH of BL revealed no distinct deletions at 1p36 for BL.  In 

addition and in a multivariable context, 1p36 loss remained an independent predictor of 

DLBCL vs. BL (odds ratio of 4.27).  Deletions of 1p36 have been implicated in Non-

Hodgkin lymphoma.  In one study, Stoffel and associates
122

 reported deletions to p73, a 
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tumor suppressor and key in lymphomagenesis that is mapped to 1p36 and related to p53, 

in 25% of follicular lymphoma and 27% of DLBCL cases.  Immunohistochemical 

analysis of these cases revealed a high Ki-67, indicating a high proliferation rate.  Other 

correlated RCAs and CNVs worth mentioning include: gain of 3cen-qter that was 

significantly associated with the ABC subtype compared to the atypical, classic and BL-

NOS groups (p < .0001) and +12 highly correlated with DLBCL (p < .0001).  

Furthermore, and of interest, both +3 and +18 along with 1p36 loss, all associated with an 

ABC subtype DLBCL remain relatively close in distance in terms of the k-means 

partition analysis and a RCA cluster dendogram construct, further supporting the 

presence of 1p36 loss in the ABC-DLBCL molecular subtype.  Of interest and in regards 

to BL, genes identified in a biological pathway that are directly or indirectly involved 

with MYC and that have been implicated in a BL diagnosis to drive neoplastic 

progression include CSEIL (mapped at 20q13), TCF3(19p13) and ID3 (1p36) 

overexpression
75,131

.  This suggests these genes are under expressed in DLBCL.  Indeed, 

loss of 1p36, 19p and 20q were found more prevalent in DLBCL in our cytogenetic 

analysis.  .  Of note, we should mention that loss of chromosome 20q was also 

significantly associated with DLBCL when compared to BL.   This difference was 

notable when the number of RCAs present in sample karyotypes were not restricted to 

more than 2 chromosome alterations when performing the comparative analysis between 

groups (data not shown).  Therefore and in a biological context, ID3 and TCF3 

overexpression results in VPREB3 (pre-B lymphocyte protein 3) increase expression, 

resulting in the activation of the pro-survival PI3K kinase pathway (phosphatidylinositol-

3-OH).  In this pathway, MYC controls the direct expression of EBF1 and that of TCF3 
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indirectly (through a negative feedback loop) that in turn activates the expression of 

VPREB3, resulting in a deregulated PI3K signaling pathway and subsequently supporting 

survival of BL cells
131

 (see Figure 5-2).   

 

Figure 5-2. PI3K pathway in BL.  Involvement of MYC, ID3, TCF3, VPREB1 in the 

phosphatidylinositol-3-OH kinase pathway in BL.  Schematic adapted from Soldini et 

al.
131

  

This pathway activation has been shown to play a key role in BL and concurrent 

expression of ID3/ VPREB3 is highly specific of BL
113

.  Based on Soldini and 

associates
131

, ID3-/ VPREB3- expression were absent in a BL group (n = 22).  These 

observations suggest that ID3-/ VPREB3- or a single positivity of either of these two 

tumor markers excludes a diagnosis of BL.  Of note, ID3-/ VPREB3- was also present in 

border line cases (BCLU, 19.2%) and DLBCL (37.2%).  Regarding DLBCL vs. BL and 

in terms of RCAs, these latter findings are in agreement with current observations of 

1p36 (ID3-) and 19p (TCF3-) loss in DLBCL, and the gene expression of this neoplasm 

(i.e., both ID3 and TCF3 are under expressed in DLBCL, while overexpression of these 

two genes is observed in BL).  Nonetheless, it should be mention that VPREB3 

expression is also found in border line cases (BCLU) and in 82% of DLBCL with a MYC 

translocation
114

.  Thus, presence of VPREB3+ expression in MYC+ DLBCL further 
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supports our observations of 1p36 and 19p loss in MYC- DLBCL, or for that matter; 

presence of these RCAs are more in line with the ABC-DLBCL molecular subtype (the 

GCB-DLBCL are characterize by MYC translocations).  In addition, in BCLU cases (n = 

26) a double positive of ID3+/ VPREB3+ was present in 100% and in contrast with the 

findings from Rodig and associates
114

 87.5% of cases lacking a MYC translocation were 

observed with ID3+/ VPREB3+
131

.  Therefore, we suggest that a chromosome 

complement containing 1p36 and 19p loss excludes BCLU and is more in line with a 

DLBCL tumor.  Moreover and in regards with reports of ID3+/ VPREB3+ in MYC- 

DLBCL, it should be noted that other molecular mechanisms other than MYC may be 

responsible for ID3+/ VPREB3+ modulation.  Hence and based on this information, we 

propose concurrent anomalies of 1p36 and 19p loss may be used to exclude both BL and 

BCLU.  Other notable gene worth mentioning in DLBCL is CD44.   Mapped at 

chromosome 11p13 and correlated with trisomy of chromosome 11 with our cytogenetic 

data, is involved in driving cell cycle progression and replication of neoplastic cells by 

acting on CCND2, and this latter gene subsequently acting on CDK5R1 to activate the 

G1/S transition of the cell cycle (this confirmed by a biological pathway generated from 

previously reported differentially expressed genes of DLBCL vs. BL – data not shown)
5,6

.  

Of interest, CDK5R1 (cyclin- dependent kinase 5 regulatory subunit 1) at chromosome 

17q11.2, is linked to the G1/S transition in the mitotic cycle by CCND2 as mentioned 

earlier and regulated by both micro RNA-103 and micro RNA-107 and, both 

differentially expressed in BL and DLBCL (fold change of -3.99 and -4.00 in BL vs. 

DLBCL each)
69,132

 suggesting CDK5R1 plays a role in the molecular pathogenesis of 

DLBCL.  Moreover, correlational studies between copy number aberrations by 



121 
 

comparative genomic hybridization and microarray expression profiles have shown an 

association between losses of chromosome 10, 14 and CDK5R1 overexpression
133

.  

Indeed, these observations are in agreement with our cytogenetic data (both -10/-14 are 

closely associated with a diagnosis of DLBCL).  Another correlation of interest is 

deletion of the long arm (q) of chromosome 13, more prevalent in BL than DLBCL (p = 

.0006).  In this regard, Onnis and co-workers reported a trend of down regulation of 

micro RNA, miR-9-1 (mapped at 13q), in a subset of BL cases that lacked a MYC 

translocation
134

.  Therefore, it may be argued that cases lacking a detectable MYC 

translocation with 13q deletion reminiscent of BL by morphology and/or 

immunophenotype may indeed represent true MYC- BL; however, further research is 

needed in this area.  
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 Chapter VI 

VI. Summary and Conclusion 

 

 6.1 Conclusion 

In light of the prognostic and therapeutic consequences, distinguishing between 

DLBCL and BL is critically important.  Therefore, a correct diagnosis requires a set of 

highly reliable tools that can discriminate between the two histological tumor types.  

Presently, morphological basis, as well as immunophenotypic and cytogenetics features 

are used in a clinical setting to properly diagnose DLBCL from BL.  Nonetheless, as 

mentioned previously, overlapping features between the two entities still pose a 

diagnostic challenge, and thus additional criteria is needed that can be easily 

implemented in a clinical setting (at present molecular profiling is complex, laborious 

and not an routine diagnostic tool in a clinical laboratory).  In this study, cytogenetic 

information from the Mitelman database was collected to identify reliable RCAs that may 

be used to distinguish between the two distinct neoplasms.  Since chromosome analysis is 

part of a lymphoma work-up, a diagnostic classifier based on RCAs is highly desirable.  

To answer our first research question-RQ1 (is the average number of chromosome 

aberrations in DLBCL greater than in BL?), an independent t-test showed DLBCL with a 

higher number of aberrations than BL (p < .003), these results are supported by previous 

studies (BL is characterized by a simple karyotype
35

).  Our initial analysis also revealed a 

total of 20 RCAs that were significantly associated with DLBCL.  These included the 

following: +3, +18, +7, +12, +X, -8, +16, -4, +2, -2, loss of 1p36, 17p, 15q, 22q, 9q, 19p, 

1q, 16q and 14q.  Of these and to answer RQ2 (is the number of RCAs different in MYC+ 

vs. BL), +X, +7, 15q loss, +16, 17 p loss and +18 were more prevalent in a MYC+ 
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DLBCL vs. BL (p < .05).  To further assess DLBCL vs. BL in more general terms, that is 

both MYC+ and MYC- DLBCL vs. BL and to address RQ3 (is the number of RCAs 

different between MYC+ DLBCL from MYC- DLBCL), our analysis showed marginal 

differences between the two groups.  From these, we conclude that both MYC+ and MYC- 

DLBCL may be used as comparative group vs. BL, and at the same time provide 

information regarding the MYC status of DLBCL to further risk stratify these patients.  

We should also point out that cases with MYC- DLBCL and BL may also be difficult to 

properly diagnose and thus, knowledge of RCAs unique to MYC- DLBCL are as well 

important to assess.  In this context and when MYC+ and MYC- DLBCL were combined 

and compared with BL - RQ4 (is the number of RCAs different from MYC+ and MYC- 

DLBCL different from BL); our data showed 20 unique RCAs associated with DLBCL.  

Subsequent analysis in a multivariable context- RQ5 (is there a difference between 

DLBCL and BL with respect to RCAs when multiple variable are included), revealed 

RCAs that remained independent predictors of outcome – in this cases DLBCL, mainly 

+18, +X, 17p loss, 15q loss, 1p36 loss, +3, -4, +16, +2 and -2.  To evaluate these RCAs 

with a different methodology and to explore RQ6 (is there a difference in chromosome 

imbalances by array CGH between DLBCL and BL), we performed an extended 

literature review of array CGH between the two entities.  Comparing the percentages of 

cases reported in the literature and setting an arbitrary difference of 20% or more as 

significant, this current study identified a number of genomic gains and losses that 

correlated with RCAs.  For example, 1p36 loss, +2, +3, -4, 6p gain, -8, 9q loss, +11, 14q 

loss, 15q loss, 16q loss and 13q loss were all correlated.  Likewise, when we assess copy 

number variations -RQ7 (is the number of CNVs different between DLBCL and BL), we 
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identified similar results.  Of interest, 1p36 loss, 1q loss, 6p gain, 6q loss, 17p loss, +18 

and +3 were associated with the ABC molecular subtype of DLBCL vs. BL.   

Next, to further investigate RCAs and to assess the clinical utility of cytogenetic 

markers, a number of diagnostic models were constructed.  For this analysis, a distinct 

cytogenetic dataset of 177 cases from the published literature, as well as a set of 

institutional cases were collected and tested.  These sample karyotypes were subsequently 

applied to a set of predictor models and reliable RCAs.  Among these models included: 

unsupervised models that included hierarchical clusters including one based on Euclidean 

distance and a second one based on both Euclidean distance and a p-value, k-means 

partition using the PAM algorithm, logistic regression and supervised models that 

included both neural networks and a SVM model.  The ability of models to discriminate 

between the two B-cell non-Hodgkin lymphomas was assessed with the receiver 

operating curve-ROC, here the specificity was considered as the major requirement to 

‘rule-in’ DLBCL or BL.  In these terms, the higher the specificity, the better the 

discrimination ability of the model.  In a similar manner, the area under the curve-AUC 

for the ROC curve or the concordance statistic – c for the logistic regression model were 

calculated to evaluate the clinical usefulness of the various models.  According to some, a 

c statistics (comparable to the AUC) of 0.7 is acceptable, 0.8 is described as a good 

model and over 0.9 is considered an excellent model.  With respect to both unsupervised 

and supervised models, the clustered heat-map based on Euclidean distance showed the 

following: 86.7, specificity; 93.2, sensitivity and an AUC of 0.9.  The cluster based on 

both Euclidian distance and a p-value had a specificity of 81.7 and a sensitivity of 99.1 

with an AUC of 0.9.  For the K-means partition using the PAM algorithm with a pre-
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designation of 75 clusters, it showed a specificity of 88.3 and a sensitivity of 97.3 with an 

AUC of 0.93.  In terms of the logistic regression, a c statistics revealed a discrimination 

of 85% and RCAs that remained independent predictors of DLBCL included +18, +3, -4, 

-8, +16, +2, -2 and loss of 17p, 15q and 1p36.  For the ANN model, the ROC curve 

showed a specificity of 92.3 and a sensitivity of 90.2, while the AUC measured 0.9.  

Thus, our findings revealed ANN models is a superior diagnostic classifier and in 

general, unsupervised and supervised models were both deemed ‘good’ to ‘excellent’ 

models respectively.  Moreover, to explore the relationship between RCAs, a cluster 

dendrogram of RCAs based on Euclidean distance and a p-value, along with a PAM 

algorithm and logistic regression were constructed.  This analysis showed both distinct 

RCAs between the two molecular subtypes of DLBCL (activated B-cell DLBCL, +3, 

+18, loss of 1p36, 17p and 19p loss; germinal center DLBCL, +X, +12, +2, +16, 9q loss 

and -8) and a primary set of 12 RCAs that were more closely associated with DLBCL, 

mainly +3, +18, +16, +2, -8, -2, +X, -4, 15q, 1p36, 16q and 19p.  These primary set of 

RCAs were then used to construct an algorithm that may be used to evaluate patient’s 

sample karyotypes between DLBCL vs. BL.  Of note, to determine RCAs between the 

two molecular subtypes of DLBCL, three internal controls were used for this purpose: 

BCL-2 for the GC-DLBCL and both +3 and +18 for the ABC-DLBCL.  Lastly, 5 

additional RCAs, 6p gain, +11, +5 and -10/-15, -10/-14 were defined more prevalent in 

DLBCL (p < .05), while loss of 13q loss and 1q gain were found associated with BL.  

These were obtained when the two cytogenetic datasets were combined (dataset used to 

identify RCAs + dataset used to test predictor models).  A correlational matrix of all 

RCAs was then constructed; findings from this analysis further supported our previously 
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proposed algorithm to assess sample karyotypes and further delineated DLBCL vs. BL, 

as well as molecular subtypes of DLBCL.  In this instance, +5 and +11 were added to the 

list of RCAs that are characteristic of the GCB-DLBCL.  Moreover, a logistic regression 

that included all cytogenetic data identified 6q loss, +5, +X, 1p36 loss, +3, 17p loss, +18, 

14q loss and -4 as independent predictors of DLBCL. Subsequently, a support vector 

machine - SVM and ANN model of all cases was generated and plotted against a ROC 

curve.  Here, a specificity ranging from 92-94% and an AUC of 0.93 was obtained for the 

SVM model, while 95-100% specificity was determined for the ANN model with an 

AUC of 0.90.  Therefore, presence of these RCAs (18 previously identified plus an 

additional 6 RCAs obtained from the combining of datasets) increased specificity and 

showed a high reliability of these RCAs when distinguishing between the two distinct 

neoplasms.   In brief, our findings indicate that a diagnostic classifier based on RCAs can 

be used with great level of confidence to consistently diagnose between the two tumor 

types.  In addition and in terms of internal validity, a 10 cross validation and 1000 boot-

straps obtained stable results for both SVM and ANN models.  Likewise, correlations of 

RCAs to copy number variations (both classical CGH and a literature review of array 

CGH) showed generalization (external validity) of these results.      

6.2 Summary 

In summary, this is the first comprehensive cytogenetic analysis that tries to 

systematically establish unique cytogenetic markers that can be used to reliably 

distinguish between DLBCL vs. BL in a clinical setting.  We described certain genomic 

aberrations that were significantly more common in one than the other and that may 

display distinct biological activities and/or pathways.  Based on these current findings, 
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we proposed a set of RCAs that can help guide clinicians to better manage each patient 

and provide them with the optimal treatment.    With this in context, both unsupervised 

and supervised predictor models applied to RCAs were explored to correctly classify 

between the two distinct neoplasms.  Of these, ANN models obtained the highest levels 

of specificity.  Moreover, our findings add knowledge to unique cytogenetic markers that 

may be used as surrogate markers to identify molecular subtypes of DLBCL (cell of 

origin-COO classification in DLBCL).  Likewise, unique RCAs were also identified that 

excluded a MYC rearrangement in DLBCL.  This added information (i.e., COO and MYC 

status) provides further risk stratification of DLBCL patients.  In addition, we identified 

distinct RCAs that may serve to re-classify BCLU cases, so called border line cases (e.g., 

loss of chromosome 2 resulting in SOX11 under-expression precludes a classification of 

BL or BCLU).  Similarly, we re-classify BCLU cases accordingly and provide further 

evidence of chromosome 13 q loss in BL and possibly an association with duplication of 

the long arm of chromosome 11 in MYC- BL (See Table 3-5 case number 230, the latter 

RCA, i.e., duplication of 11q was previously outlined in a cytogenetic study
119

).  

Although, we provide a detailed outline of the cytogenetic profiles of DLBCL and BL 

(evaluated for internal and external validity), a major limitation of this study is the lack of 

additional biomarkers that may be applied to a diagnostic classifier (ANN model) or a 

bioinformatics algorithm that may be used to distinguish between the two tumor types.  

We should also point out that DLBCL with no RCAs present or those with a simple 

karyotype (containing random or non-random RCAs not identified in this study) are not 

detected by our classifiers.   

 



128 
 

6.3 Future Research 

Moving forward and to gain a better understanding of those cases that fall into the 

provisional container of B-cell lymphoma, unclassifiable, with features intermediate 

between BL and DLBC-BCLU, further research is needed to characterize these cases at 

the molecular level, as well as assigned these findings to specific RCAs (limited or no 

comprehensive data is available on BCLU cases with both molecular and cytogenetics 

data).  Similarly, added research is needed to better characterize atypical cases of BL that 

are CD10-, BCL2 weak + and MUM1 weak + at the molecular and cytogenetic level.  

Likewise, rare cases (~ 3%) that are characterize as molecular BL otherwise similar to BL 

but lack a detectable MYC rearrangement needs further research.    Briefly, although we 

provide a detailed classification of both DLBCL and BL in terms of cytogenetic markers, 

the ability to enhance prediction models and better predict border line cases requires a 

broad spectrum of ancillary markers in a large independent cohort study.  This will lead 

to better classification systems that can consistently distinguish between difficult cases of 

DLBCL and BL and decrease the number of patients that are under-treated or over- 

treated.  As more detailed information is gained from these additional investigations, 

more precise therapeutic modalities can also be developed that can benefit these patients. 
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Summary of Contributions 

 

All Figures and Tables   page 1-119  RG 

CyDAS analysis    page 71  RG 

t-test analysis     page 71  RG 

Identification of reliable RCAs  page 71  RG 

Cytogenetic analysis in ISCN format  page 71-78  RG 

All cluster analyses    page 79-89,96  RG 

Cross validation / Bootstrapping  page 96  RG 

ROC analysis     page 90,96  RG 

Correlation matrix    page 93-95  RG 

All logistic regression analyses  page 97-98  RG 

Extended array CGH analysis   page 100-101  RG 

CNV analysis     page 101-105  RG 

 

Key: RG, Rolando Garcia. 

     



131 
 

References 

1. Bellan C, Stefano L, Giulia de F, Rogena EA, Lorenzo L. Burkitt lymphoma 

versus diffuse large B-cell lymphoma: a practical approach. Hematol Oncol. Jun 

2010;28(2):53-56. 

2. Haralambieva E, Boerma EJ, van Imhoff GW, et al. Clinical, immunophenotypic, 

and genetic analysis of adult lymphomas with morphologic features of Burkitt 

lymphoma: Am J Surg Pathol2005. 

3. McClure RF, Remstein ED, Macon WR, et al. Adult B-cell lymphomas with 

burkitt-like morphology are phenotypically and genotypically heterogeneous with 

aggressive clinical behavior. Am J Surg Pathol. Dec 2005;29(12):1652-1660. 

4. A clinical evaluation of the International Lymphoma Study Group classification 

of non-Hodgkin's lymphoma.  The Non-Hodgkin's Lymphoma Classification 

Project. Blood. 1997;89(11):3909-3918. 

5. Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt's 

lymphoma from transcriptional and genomic profiling. N Engl J Med. Jun 8 

2006;354(23):2419-2430. 

6. Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt's lymphoma. N 

Engl J Med. Jun 8 2006;354(23):2431-2442. 

7. Swerdlow SH, Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, 

J., Vardiman, J.W. WHO Classification of Tumours of Haematopoietic and 

Lymphoid Tissues. 2008. 

8. Salaverria I, Zettl A, Bea S, et al. Chromosomal alterations detected by 

comparative genomic hybridization in subgroups of gene expression-defined 

Burkitt's lymphoma. Haematologica. Sep 2008;93(9):1327-1334. 

9. Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi OP. Genome 

screening by comparative genomic hybridization. Trends Genet. Oct 

1997;13(10):405-409. 

10. Lemeshow S, Hosmer DW, Jr. A review of goodness of fit statistics for use in the 

development of logistic regression models. Am J Epidemiol. Jan 1982;115(1):92-

106. 

11. Anderson RP, Jin R, Grunkemeier GL. Understanding logistic regression analysis 

in clinical reports: an introduction. Ann Thorac Surg. Mar 2003;75(3):753-757. 

12. Andreopoulos B, An A, Wang X, Schroeder M. A roadmap of clustering 

algorithms: finding a match for a biomedical application. Brief Bioinform. May 

2009;10(3):297-314. 

13. Chopra P, Kang J, Yang J, Cho H, Kim HS, Lee MG. Microarray data mining 

using landmark gene-guided clustering. BMC Bioinformatics. 2008;9:92. 

14. Kaufmann L RP. Clustering by means of medoids.  In: Dodge Y, (ed).  Statistical 

Data Analysis Based on the L 1 Norm and Related Methods. Elsevier Science,. 

1987:405-416. 

15. Liu B, Cui Q, Jiang T, Ma S. A combinational feature selection and ensemble 

neural network method for classification of gene expression data. BMC 

Bioinformatics. Sep 27 2004;5:136. 

16. O'Neill MC, Song L. Neural network analysis of lymphoma microarray data: 

prognosis and diagnosis near-perfect. BMC Bioinformatics. Apr 10 2003;4:13. 



132 
 

17. Ando T, Suguro M, Kobayashi T, Seto M, Honda H. Multiple fuzzy neural 

network system for outcome prediction and classification of 220 lymphoma 

patients on the basis of molecular profiling. Cancer Sci. Oct 2003;94(10):906-

913. 

18. Hanrahan G. Computational neural networks driving complex analytical problem 

solving. Anal Chem. Jun 1 2010;82(11):4307-4313. 

19. Schalkoff RJ, ed. A. Artificial Neural Networks. McGraw-Hill: New York. 1997. 

20. Byvatov E, Schneider G. Support vector machine applications in bioinformatics. 

Appl Bioinformatics. 2003;2(2):67-77. 

21. Cortes CV, V. support vector networks. Machine Leraning. 1995;20:273-297. 

22. Coiffier B. Diffuse large cell lymphoma. Curr Opin Oncol. Sep 2001;13(5):325-

334. 

23. Rosenwald A, Ott G. Burkitt lymphoma versus diffuse large B-cell lymphoma. 

Ann Oncol. Jun 2008;19 Suppl 4:iv67-69. 

24. Frick M, Dorken B, Lenz G. New insights into the biology of molecular subtypes 

of diffuse large B-cell lymphoma and Burkitt lymphoma. Best Pract Res Clin 

Haematol. Mar 2012;25(1):3-12. 

25. de Leval L, Hasserjian RP. Diffuse large B-cell lymphomas and burkitt 

lymphoma. Hematol Oncol Clin North Am. Aug 2009;23(4):791-827. 

26. Barrans S, Crouch S, Smith A, et al. Rearrangement of MYC is associated with 

poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of 

rituximab. J Clin Oncol. Jul 10 2010;28(20):3360-3365. 

27. Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene rearrangements are 

associated with a poor prognosis in diffuse large B-cell lymphoma patients treated 

with R-CHOP chemotherapy. Blood. Oct 22 2009;114(17):3533-3537. 

28. Obermann EC, Csato M, Dirnhofer S, Tzankov A. Aberrations of the MYC gene 

in unselected cases of diffuse large B-cell lymphoma are rare and unpredictable 

by morphological or immunohistochemical assessment. J Clin Pathol. Aug 

2009;62(8):754-756. 

29. Copie-Bergman C, Gaulard P, Leroy K, et al. Immuno-fluorescence in situ 

hybridization index predicts survival in patients with diffuse large B-cell 

lymphoma treated with R-CHOP: a GELA study. J Clin Oncol. Nov 20 

2009;27(33):5573-5579. 

30. Yoon SO, Jeon YK, Paik JH, et al. MYC translocation and an increased copy 

number predict poor prognosis in adult diffuse large B-cell lymphoma (DLBCL), 

especially in germinal centre-like B cell (GCB) type. Histopathology. Aug 

2008;53(2):205-217. 

31. Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R. Different regions 

of the immunoglobulin heavy-chain locus are involved in chromosomal 

translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl 

Acad Sci U S A. Apr 1988;85(8):2748-2752. 

32. Tagawa H, Suguro M, Tsuzuki S, et al. Comparison of genome profiles for 

identification of distinct subgroups of diffuse large B-cell lymphoma. Blood. Sep 

1 2005;106(5):1770-1777. 

33. Raphael M, Gentilhomme O, Tulliez M, Byron PA, Diebold J. Histopathologic 

features of high-grade non-Hodgkin's lymphomas in acquired immunodeficiency 



133 
 

syndrome. The French Study Group of Pathology for Human Immunodeficiency 

Virus-Associated Tumors. Arch Pathol Lab Med. Jan 1991;115(1):15-20. 

34. Dave SS. Genomic stratification for the treatment of lymphomas. Hematology Am 

Soc Hematol Educ Program. 2013;2013:331-334. 

35. Seegmiller AC, Garcia R, Huang R, Maleki A, Karandikar NJ, Chen W. Simple 

karyotype and bcl-6 expression predict a diagnosis of Burkitt lymphoma and 

better survival in IG-MYC rearranged high-grade B-cell lymphomas. Mod Pathol. 

Jul 2010;23(7):909-920. 

36. Hasserjian RP, Ott G, Elenitoba-Johnson KS, Balague-Ponz O, de Jong D, de 

Leval L. Commentary on the WHO classification of tumors of lymphoid tissues 

(2008): "Gray zone" lymphomas overlapping with Burkitt lymphoma or classical 

Hodgkin lymphoma. J Hematop. Jul 2009;2(2):89-95. 

37. Tirado CA, Chen W, Garcia R, Kohlman KA, Rao N. Genomic profiling using 

array comparative genomic hybridization define distinct subtypes of diffuse large 

B-cell lymphoma: a review of the literature. J Hematol Oncol. 2012;5:54. 

38. Orem J, Mbidde EK, Lambert B, de Sanjose S, Weiderpass E. Burkitt's lymphoma 

in Africa, a review of the epidemiology and etiology. Afr Health Sci. Sep 

2007;7(3):166-175. 

39. Facer CA, Playfair JH. Malaria, Epstein-Barr virus, and the genesis of 

lymphomas. Adv Cancer Res. 1989;53:33-72. 

40. Ziegler JL, Bluming AZ, Morrow RH, Fass L, Carbone PP. Central nervous 

system involvement in Burkitt's lymphoma. Blood. Dec 1970;36(6):718-728. 

41. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin's 

lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's 

Lymphoma Classification Project. J Clin Oncol. Aug 1998;16(8):2780-2795. 

42. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of 

lymphoid neoplasms: a proposal from the International Lymphoma Study Group. 

Blood. Sep 1 1994;84(5):1361-1392. 

43. Frost M, Newell J, Lones MA, Tripp SR, Cairo MS, Perkins SL. Comparative 

immunohistochemical analysis of pediatric Burkitt lymphoma and diffuse large 

B-cell lymphoma. Am J Clin Pathol. Mar 2004;121(3):384-392. 

44. Dogan A, Bagdi E, Munson P, Isaacson PG. CD10 and BCL-6 expression in 

paraffin sections of normal lymphoid tissue and B-cell lymphomas. Am J Surg 

Pathol. Jun 2000;24(6):846-852. 

45. Rodig SJ, Vergilio JA, Shahsafaei A, Dorfman DM. Characteristic expression 

patterns of TCL1, CD38, and CD44 identify aggressive lymphomas harboring a 

MYC translocation. Am J Surg Pathol. Jan 2008;32(1):113-122. 

46. Braziel RM, Arber DA, Slovak ML, et al. The Burkitt-like lymphomas: a 

Southwest Oncology Group study delineating phenotypic, genotypic, and clinical 

features. Blood. Jun 15 2001;97(12):3713-3720. 

47. Nakamura N, Nakamine H, Tamaru J, et al. The distinction between Burkitt 

lymphoma and diffuse large B-Cell lymphoma with c-myc rearrangement. Mod 

Pathol. Jul 2002;15(7):771-776. 

48. Gormley RP, Madan R, Dulau AE, et al. Germinal center and activated b-cell 

profiles separate Burkitt lymphoma and diffuse large B-cell lymphoma in AIDS 

and non-AIDS cases. Am J Clin Pathol. Nov 2005;124(5):790-798. 



134 
 

49. Cogliatti SB, Novak U, Henz S, Schmid U, Moller P, Barth TF. Diagnosis of 

Burkitt lymphoma in due time: a practical approach. Br J Haematol. Aug 

2006;134(3):294-301. 

50. Chuang SS, Ye H, Du MQ, et al. Histopathology and immunohistochemistry in 

distinguishing Burkitt lymphoma from diffuse large B-cell lymphoma with very 

high proliferation index and with or without a starry-sky pattern: a comparative 

study with EBER and FISH. Am J Clin Pathol. Oct 2007;128(4):558-564. 

51. Schniederjan SD, Li S, Saxe DF, et al. A novel flow cytometric antibody panel for 

distinguishing Burkitt lymphoma from CD10+ diffuse large B-cell lymphoma. 

Am J Clin Pathol. May 2010;133(5):718-726. 

52. McGowan P, Nelles N, Wimmer J, et al. Differentiating between Burkitt 

lymphoma and CD10+ diffuse large B-cell lymphoma: the role of commonly used 

flow cytometry cell markers and the application of a multiparameter scoring 

system. Am J Clin Pathol. Apr 2012;137(4):665-670. 

53. Naresh KN, Hazem A.H Ibrahim, Stefano Lazzi, Patricia Rince, Monica Onorati, 

Maria R. Ambrosio et al.,. Diagnosis of Burkitt Lymphoma Using an Algorithmic 

Approach-Applicable in Both Resource-poor and Resource-rich Countries. British 

Journal of Haematology. 2011;154:770-776. 

54. Lu B, Zhou C, Yang W, et al. Morphological, immunophenotypic and molecular 

characterization of mature aggressive B-cell lymphomas in Chinese pediatric 

patients. Leuk Lymphoma. Dec 2011;52(12):2356-2364. 

55. Au WY, Horsman DE, Gascoyne RD, Viswanatha DS, Klasa RJ, Connors JM. 

The spectrum of lymphoma with 8q24 aberrations: a clinical, pathological and 

cytogenetic study of 87 consecutive cases. Leuk Lymphoma. Mar 2004;45(3):519-

528. 

56. Perry AM, Crockett D, Dave BJ, et al. B-cell lymphoma, unclassifiable, with 

features intermediate between diffuse large B-cell lymphoma and burkitt 

lymphoma: study of 39 cases. Br J Haematol. Jul 2013;162(1):40-49. 

57. Boerma EG, Siebert R, Kluin PM, Baudis M. Translocations involving 8q24 in 

Burkitt lymphoma and other malignant lymphomas: a historical review of 

cytogenetics in the light of todays knowledge. Leukemia. Feb 2009;23(2):225-

234. 

58. Garcia JL, Hernandez JM, Gutierrez NC, et al. Abnormalities on 1q and 7q are 

associated with poor outcome in sporadic Burkitt's lymphoma. A cytogenetic and 

comparative genomic hybridization study. Leukemia. Oct 2003;17(10):2016-

2024. 

59. Barth TF, Muller S, Pawlita M, et al. Homogeneous immunophenotype and 

paucity of secondary genomic aberrations are distinctive features of endemic but 

not of sporadic Burkitt's lymphoma and diffuse large B-cell lymphoma with MYC 

rearrangement. J Pathol. Aug 2004;203(4):940-945. 

60. Toujani S, Dessen P, Ithzar N, et al. High resolution genome-wide analysis of 

chromosomal alterations in Burkitt's lymphoma. PLoS One. 2009;4(9):e7089. 

61. Scholtysik R, Kreuz M, Klapper W, et al. Detection of genomic aberrations in 

molecularly defined Burkitt's lymphoma by array-based, high resolution, single 

nucleotide polymorphism analysis. Haematologica. Dec 2010;95(12):2047-2055. 



135 
 

62. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to 

predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J 

Med. Jun 20 2002;346(25):1937-1947. 

63. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell 

lymphoma identified by gene expression profiling. Nature. Feb 3 

2000;403(6769):503-511. 

64. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular 

classification of diffuse large B-cell lymphoma by immunohistochemistry using a 

tissue microarray. Blood. Jan 1 2004;103(1):275-282. 

65. Mittrucker HW, Matsuyama T, Grossman A, et al. Requirement for the 

transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. 

Science. Jan 24 1997;275(5299):540-543. 

66. Rosenwald A, Staudt LM. Gene expression profiling of diffuse large B-cell 

lymphoma. Leuk Lymphoma. 2003;44 Suppl 3:S41-47. 

67. Deffenbacher KE, Iqbal J, Sanger W, et al. Molecular distinctions between 

pediatric and adult mature B-cell non-Hodgkin lymphomas identified through 

genomic profiling. Blood. Apr 19 2012;119(16):3757-3766. 

68. Walther N, Ulrich A, Vockerodt M, et al. Aberrant lymphocyte enhancer-binding 

factor 1 expression is characteristic for sporadic Burkitt's lymphoma. Am J 

Pathol. Apr 2013;182(4):1092-1098. 

69. Lenze D, Leoncini L, Hummel M, et al. The different epidemiologic subtypes of 

Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse 

large B-cell lymphoma. Leukemia. Dec 2011;25(12):1869-1876. 

70. Di Lisio L, Sanchez-Beato M, Gomez-Lopez G, et al. MicroRNA signatures in B-

cell lymphomas. Blood Cancer J. Feb 2012;2(2):e57. 

71. Deffenbacher KE, Iqbal J, Liu Z, Fu K, Chan WC. Recurrent chromosomal 

alterations in molecularly classified AIDS-related lymphomas: an integrated 

analysis of DNA copy number and gene expression. J Acquir Immune Defic 

Syndr. May 1 2010;54(1):18-26. 

72. Lenz G, Wright GW, Emre NC, et al. Molecular subtypes of diffuse large B-cell 

lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A. Sep 9 

2008;105(36):13520-13525. 

73. Obuchowski NA. Receiver operating characteristic curves and their use in 

radiology. Radiology. Oct 2003;229(1):3-8. 

74. Scholtysik R, Nagel I, Kreuz M, et al. Recurrent deletions of the TNFSF7 and 

TNFSF9 genes in 19p13.3 in diffuse large B-cell and Burkitt lymphomas. Int J 

Cancer. Sep 1 2012;131(5):E830-835. 

75. Soldini D, Montagna C, Schuffler P, et al. A new diagnostic algorithm for Burkitt 

and diffuse large B-cell lymphomas based on the expression of CSE1L and 

STAT3 and on MYC rearrangement predicts outcome. Ann Oncol. Sep 11 2012. 

76. Oudejans JJ, van Wieringen WN, Smeets SJ, et al. Identification of genes 

putatively involved in the pathogenesis of diffuse large B-cell lymphomas by 

integrative genomics. Genes Chromosomes Cancer. Mar 2009;48(3):250-260. 

77. Lombardi C, Tassi GF, Pizzocolo G, Donato F. Clinical significance of a multiple 

biomarker assay in patients with lung cancer. A study with logistic regression 

analysis. Chest. Mar 1990;97(3):639-644. 



136 
 

78. Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and 

bioinformatics approaches for identification of serum biomarkers to detect breast 

cancer. Clin Chem. Aug 2002;48(8):1296-1304. 

79. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of 

genome-wide expression patterns. Proc Natl Acad Sci U S A. Dec 8 

1998;95(25):14863-14868. 

80. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class 

discovery and class prediction by gene expression monitoring. Science. Oct 15 

1999;286(5439):531-537. 

81. Jaeger J, Sengupta R, Ruzzo WL. Improved gene selection for classification of 

microarrays. Pac Symp Biocomput. 2003:53-64. 

82. Li J, Liu H, Ng SK, Wong L. Discovery of significant rules for classifying cancer 

diagnosis data. Bioinformatics. Oct 2003;19 Suppl 2:ii93-102. 

83. Khan J, Wei JS, Ringner M, et al. Classification and diagnostic prediction of 

cancers using gene expression profiling and artificial neural networks. Nat Med. 

Jun 2001;7(6):673-679. 

84. Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide 

expression data processing and modeling. Proc Natl Acad Sci U S A. Aug 29 

2000;97(18):10101-10106. 

85. Speed  T. Statistical analysis of gene expression microarray data. CRC Press. 

2003:190-197. 

86. Wall ME, Dyck PA, Brettin TS. SVDMAN--singular value decomposition 

analysis of microarray data. Bioinformatics. Jun 2001;17(6):566-568. 

87. Devore J. Probability and statistics for engineering and the sciences. 4th edition. 

Ducbury Press. 1995. 

88. Xingran Cui C-WL MFA, Quan Liu, Jiann-Shing Shieh. Diffuse large B-cell 

lymphoma classification using linguistic analalysis and ensembled artificial neural 

networks. Journal of the Taiwan Institute of Chemical Engineers. 2012;43:15-23. 

89. Lek S BA, Dimopoulos I, Lauga J,Moreau J. Improved estimation using neural 

networks of the food consumption of fish populations. Marine Fresh Water 

Research. 1995;46:1229-1236. 

90. Lisboa PJ, Taktak AF. The use of artificial neural networks in decision support in 

cancer: a systematic review. Neural Netw. May 2006;19(4):408-415. 

91. Lancashire LJ, Lemetre C, Ball GR. An introduction to artificial neural networks 

in bioinformatics--application to complex microarray and mass spectrometry 

datasets in cancer studies. Brief Bioinform. May 2009;10(3):315-329. 

92. Bishop C. Neural Networks for Pattern Recognition. Oxford: Oxford University 

Press. 1995. 

93. Chen H, Zhang, J., Xu, Y., Chen, B., & Zhang, K. . Performance comparison of 

artificial neural network and logistic regression model for differentiating lung 

nodules in CT scans. Expert Systems with Applications. 2012. 

94. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network 

classification models: a methodology review. J Biomed Inform. Oct-Dec 

2002;35(5-6):352-359. 

95. Kim SM, Han H, Park JM, et al. A comparison of logistic regression analysis and 

an artificial neural network using the BI-RADS lexicon for ultrasonography in 



137 
 

conjunction with introbserver variability. J Digit Imaging. Oct 2012;25(5):599-

606. 

96. Forsberg JA, Sjoberg D, Chen QR, Vickers A, Healey JH. Treating metastatic 

disease: Which survival model is best suited for the clinic? Clin Orthop Relat Res. 

Mar 2013;471(3):843-850. 

97. Shi HY, Lee KT, Wang JJ, Sun DP, Lee HH, Chiu CC. Artificial neural network 

model for predicting 5-year mortality after surgery for hepatocellular carcinoma: a 

nationwide study. J Gastrointest Surg. Nov 2012;16(11):2126-2131. 

98. Shi HY, Hwang SL, Lee KT, Lin CL. In-hospital mortality after traumatic brain 

injury surgery: a nationwide population-based comparison of mortality predictors 

used in artificial neural network and logistic regression models. J Neurosurg. Apr 

2013;118(4):746-752. 

99. Oermann EK, Kress MA, Collins BT, et al. Predicting survival in patients with 

brain metastases treated with radiosurgery using artificial neural networks. 

Neurosurgery. Jun 2013;72(6):944-951; discussion 952. 

100. Shi HY, Lee KT, Lee HH, et al. Comparison of artificial neural network and 

logistic regression models for predicting in-hospital mortality after primary liver 

cancer surgery. PLoS One. 2012;7(4):e35781. 

101. Caocci G, Baccoli R, Vacca A, et al. Comparison between an artificial neural 

network and logistic regression in predicting acute graft-vs-host disease after 

unrelated donor hematopoietic stem cell transplantation in thalassemia patients. 

Exp Hematol. May 2010;38(5):426-433. 

102. Hiller B, Bradtke J, Balz H, Rieder H. CyDAS: a cytogenetic data analysis 

system. Bioinformatics. Apr 1 2005;21(7):1282-1283. 

103. Cutler P, ed Problem Solving in Clinical Medicine. Baltimore, Maryland: 

Lippincott, Williams & Wilkins; 1998. 

104. Shimodaira H. Approximately unbiased tets of regions using multistep-multiscale 

bootstrap resampling. Annals of Statistics. 2004;32:2616-2641. 

105. Pallant J, ed A step by step guide to data analysis using IBM SPSS. 5th ed. New 

York,NY: McGraw-Hill companies; 2013. 

106. Cook NR. Use and misuse of the receiver operating characteristic curve in risk 

prediction. Circulation. Feb 20 2007;115(7):928-935. 

107. Sigaux F, Berger R, Bernheim A, Valensi F, Daniel MT, Flandrin G. Malignant 

lymphomas with band 8q24 chromosome abnormality: a morphologic continuum 

extending from Burkitt's to immunoblastic lymphoma. Br J Haematol. Jul 

1984;57(3):393-405. 

108. Slavutsky I, Andreoli G, Gutierrez M, Narbaitz M, Lucero G, Eppinger M. 

Variant (8;22) translocation in lymphoblastic lymphoma. Leuk Lymphoma. Mar 

1996;21(1-2):169-172. 

109. Sawyer JR, Waldron JA, Jagannath S, Barlogie B. Cytogenetic findings in 200 

patients with multiple myeloma. Cancer Genet Cytogenet. Jul 1 1995;82(1):41-

49. 

110. Yoshioka T, Miura I, Kume M, et al. Cytogenetic features of de novo CD5-

positive diffuse large B-cell lymphoma: chromosome aberrations affecting 8p21 

and 11q13 constitute major subgroups with different overall survival. Genes 

Chromosomes Cancer. Feb 2005;42(2):149-157. 



138 
 

111. Aamot HV, Torlakovic EE, Eide MB, Holte H, Heim S. Non-Hodgkin lymphoma 

with t(14;18): clonal evolution patterns and cytogenetic-pathologic-clinical 

correlations. J Cancer Res Clin Oncol. Jul 2007;133(7):455-470. 

112. Adam P, Steinlein C, Schmid M, et al. Characterization of chromosomal 

aberrations in diffuse large B-cell lymphoma (DLBL) by G-banding and spectral 

karyotyping (SKY). Cytogenet Genome Res. 2006;114(3-4):274-278. 

113. Sander S, Calado DP, Srinivasan L, et al. Synergy between PI3K signaling and 

MYC in Burkitt lymphomagenesis. Cancer Cell. Aug 14 2012;22(2):167-179. 

114. Rodig SJ, Kutok JL, Paterson JC, et al. The pre-B-cell receptor associated protein 

VpreB3 is a useful diagnostic marker for identifying c-MYC translocated 

lymphomas. Haematologica. Dec 2010;95(12):2056-2062. 

115. Havelange V, Ameye G, Theate I, et al. Patterns of genomic aberrations suggest 

that Burkitt lymphomas with complex karyotype are distinct from other 

aggressive B-cell lymphomas with MYC rearrangement. Genes Chromosomes 

Cancer. Jan 2013;52(1):81-92. 

116. Johnson NA, Al-Tourah A, Brown CJ, Connors JM, Gascoyne RD, Horsman DE. 

Prognostic significance of secondary cytogenetic alterations in follicular 

lymphomas. Genes Chromosomes Cancer. Dec 2008;47(12):1038-1048. 

117. Watanuki J, Hatakeyama K, Sonoki T, et al. Bone marrow large B cell lymphoma 

bearing cyclin D3 expression: clinical, morphologic, immunophenotypic, and 

genotypic analyses of seven patients. Int J Hematol. Sep 2009;90(2):217-225. 

118. Yeh YM, Chang KC, Chen YP, et al. Large B cell lymphoma presenting initially 

in bone marrow, liver and spleen: an aggressive entity associated frequently with 

haemophagocytic syndrome. Histopathology. Dec 2010;57(6):785-795. 

119. Pienkowska-Grela B, Witkowska A, Grygalewicz B, et al. Frequent aberrations of 

chromosome 8 in aggressive B-cell non-Hodgkin lymphoma. Cancer Genet 

Cytogenet. Jan 15 2005;156(2):114-121. 

120. Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry. Aug 

2010;19(3):227-229. 

121. Capello D, Scandurra M, Poretti G, et al. Genome wide DNA-profiling of HIV-

related B-cell lymphomas. Br J Haematol. Jan 2010;148(2):245-255. 

122. Stoffel A, Filippa D, Rao PH. The p73 locus is commonly deleted in non-

Hodgkin's lymphomas. Leuk Res. Dec 2004;28(12):1341-1345. 

123. Berglund M, Enblad G, Flordal E, et al. Chromosomal imbalances in diffuse large 

B-cell lymphoma detected by comparative genomic hybridization. Mod Pathol. 

Aug 2002;15(8):807-816. 

124. Chen W, Houldsworth J, Olshen AB, et al. Array comparative genomic 

hybridization reveals genomic copy number changes associated with outcome in 

diffuse large B-cell lymphomas. Blood. Mar 15 2006;107(6):2477-2485. 

125. Takeuchi I, Tagawa H, Tsujikawa A, et al. The potential of copy number gains 

and losses, detected by array-based comparative genomic hybridization, for 

computational differential diagnosis of B-cell lymphomas and genetic regions 

involved in lymphomagenesis. Haematologica. Jan 2009;94(1):61-69. 

126. Kasugai Y, Tagawa H, Kameoka Y, Morishima Y, Nakamura S, Seto M. 

Identification of CCND3 and BYSL as candidate targets for the 6p21 



139 
 

amplification in diffuse large B-cell lymphoma. Clin Cancer Res. Dec 1 

2005;11(23):8265-8272. 

127. Maria Murga Penas E, Schilling G, Behrmann P, et al. Comprehensive 

cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: 

secondary chromosomal changes characterization, karyotypic evolution, and 

comparison with primary samples. Genes Chromosomes Cancer. Jun 

2014;53(6):497-515. 

128. Choi WW, Weisenburger DD, Greiner TC, et al. A new immunostain algorithm 

classifies diffuse large B-cell lymphoma into molecular subtypes with high 

accuracy. Clin Cancer Res. Sep 1 2009;15(17):5494-5502. 

129. Carey CD, Gusenleitner D, Chapuy B, et al. Molecular Classification of MYC-

Driven B-Cell Lymphomas by Targeted Gene Expression Profiling of Fixed 

Biopsy Specimens. J Mol Diagn. Jan 2015;17(1):19-30. 

130. Burgesser MV, Gualco G, Diller A, Natkunam Y, Bacchi CE. Clinicopathological 

features of aggressive B-cell lymphomas including B-cell lymphoma, 

unclassifiable, with features intermediate between diffuse large B-cell and Burkitt 

lymphomas: a study of 44 patients from Argentina. Ann Diagn Pathol. Jun 

2013;17(3):250-255. 

131. Soldini D, Georgis A, Montagna C, et al. The combined expression of VPREB3 

and ID3 represents a new helpful tool for the routine diagnosis of mature 

aggressive B-cell lymphomas. Hematol Oncol. Sep 2014;32(3):120-125. 

132. Moncini S, Salvi A, Zuccotti P, et al. The role of miR-103 and miR-107 in 

regulation of CDK5R1 expression and in cellular migration. PLoS One. 

2011;6(5):e20038. 

133. Wrobel G, Roerig P, Kokocinski F, et al. Microarray-based gene expression 

profiling of benign, atypical and anaplastic meningiomas identifies novel genes 

associated with meningioma progression. Int J Cancer. Mar 20 2005;114(2):249-

256. 

134. Onnis A, De Falco G, Antonicelli G, et al. Alteration of microRNAs regulated by 

c-Myc in Burkitt lymphoma. PLoS One. 2010;5(9). 

 

 

 

 

 

 

 

 


